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Abstract

Obtaining reliable information about the noise in seismic reflection data can be difficult.
Noise is often estimated from "expert knowledge" or other available information on which
uncertainty is hard to quantify. I propose a method to characterize the noise directly
from the data, without the need for external information, by using 4-D data. It is shown,
that the covariance of the residual of two 3-D data sets (together constituting 4-D) with
identical geological subsurface is a good representation of the noise in the summed data
set. The noise is characterized in the form of a positive definite semi-variogram model,
and hence can be used in any probabilistic inversion. The method is demonstrated on
both synthetic and real data by solving the linear least-squares problem (LSQ, Tarantola
[2005]) without change of parameters, effectively removing the modeled noise from the
data. Tests on the synthetic data with realistic noise levels show almost perfect removal
of additive noise. A real 4-D dataset from the Halfdan field in the North Sea with severe
acquisition striping was also de-noised in this way. The data were mild- to moderately
non-Gaussian, but the correlated noise was still convincingly attenuated. It is expected,
that many commercial inversion algorithms use some form of linearized LSQ. Hence, the
method developed here will easily integrate into existing software.
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Resume (DK)

Indhentning af pålidelige oplysninger om støj i seismiske reflektionsdata kan være svært.
Støj er ofte estimeret fra "ekspertviden" eller andre tilgængelige oplysninger hvis usikker-
hed er svær at kvantificere. Jeg foreslår en metode til at karakterisere støj direkte fra
data, uden behov for ekstern information, ved anvendelse af 4-D data. Det er vist, at
kovariansen af residualet af to 3-D datasæt med identisk geologisk undergrund er en god
repræsentation af støj i det summerede datasæt. Støjen er karakteriseret i form af en
positiv definit semi-variogrammodel, og kan dermed anvendes i enhver probabilistisk in-
version. Metoden er demonstreret på både syntetiske og ægte data ved at løse det lineære
mindste kvadraters problem (LSQ, Tarantola [2005]) uden at ændre parametre mellem
model- og datarum, hvilket i praksis fjerner den modelerede støj fra dataene. Test på syn-
tetiske data med realistiske støjniveauer viser næsten perfekt fjernelse af additiv støj. Et
ægte 4-D datasæt fra Halfdan feltet i Nordsøen blev også behandlet for støj ved denne
metode. Dataene var mildt til moderat ikke-Gaussiske, hvilket vanskeliggører brugen af
LSQ, men metoden fjernede alligevel meget af den korrolerede støj. Det forventes, at
mange kommercielle inversionsalgoritmer bruger en form for lineariseret LSQ. Derfor vil
metoden udvilket her nemt kunne integreres i eksisterende software.
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Preface

This thesis was prepared at the department of Applied Mathematics and Computer Science
at the Technical University of Denmark in fulfillment of the requirements for acquiring an
M.Sc. in Geophysics and Space Technology.

The thesis consists of a methodology part, a theory part, a simulation part, and an
application to a large, real data set. The methodology chapter presents an overview
of the complete procedure, and in particular explains why the noise characterization is
only possible with 4-D data. The basic theory upon which the method is developed is
introduced more or less immediately before it is used, and is therefore scattered somewhat
throughout the report. All simulation was done in MathWorksr MATLAB. An existing
geostatistical software package, mGstat, along with MATLAB’s build-in functions were
used for generating models, simulating data and interpreting results. The inversion (the
process of removing the noise) was written by myself. The full data set provided by
Maersk Oil has not been certified for public release. However, the thesis includes only
the statistical properties, results and conclusions on the data, and can thus be distributed
freely. A set of learning objectives formulated in the initial phase of the project, can be
found in the appendix.

Lyngby, August 1st, 2013
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Chapter 1

Introduction

As the oil industry is exploring and exploiting natural resources in increasingly difficult
environments, the need for very accurate subsurface parameter estimation arises accord-
ingly. Higher accuracy can be achieved by minimizing noise in the data from which the
parameters are derived. However, the degree to which noise can be minimized is directly
linked to the quality of information available on the noise itself. Unfortunately, noise is an
unavoidable part of measuring any real quantity. Despite this, noise is rarely investigated
in detail. Therefore, it is the purpose of this thesis to develop a method which objectively
estimates an accurate, detailed description of the statistical properties of the noise.

I begin by introducing the concept of noise and noise removal. The noise characteriza-
tion and removal method will be explained in Chapter 2, followed by the theory of inverse
problems in Chapter 3. As will be explained in the coming chapters, the variogram is
central to the method. Hence, Chapter 4 is dedicated to variogram theory and simulation.
In a synthetic case, noise will be estimated and removed in Chapter 5. The method will be
repeated on real data in Chapter 7. The chapter in between is dedicated to investigating
the statistical properties of the real data. The project is concluded with a discussion and
conclusion in Chapter 8.

1.1 What is noise?

The concept of noise in data is to many a very intuitive way of characterizing the part of
a signal or data collection which is not due to the property we would like to measure. E.g.
wind noise on the cell phone. Or CMB radiation induced static on the radio. Noise is
everywhere. However, most people are only concerned about what information (data) that
lies behind the noise. The industries which have a commercial interest in the data strive
to enhance the quality of these data by removing the noise, or rather, by suppressing
or reducing whatever they think is not supposed to be there. Hence the term "noise
reduction".

Noise can be reduced, even sometimes completely removed, if there exists, or one can
estimate, a mathematical model of the noise. E.g. a probability density function (pdf)
describing the statistical properties of the noise such as mean and variance. Unfortunately,
obtaining a true description of the noise is complicated, since one usually does not know
exactly what created that noise in the first place. Fortunately, the human brain is very
good at picking out noise in an otherwise well behaving signal. In many cases, good (but
not necessarily true) noise models can be estimated just by looking at the data. For
instance, anyone listening to a radio station that is not perfectly tuned, will be able to tell
that the constant "shh" sound in the background is noise, despite none of them knowing

1



2 CHAPTER 1. INTRODUCTION

the true origin of that noise. A mathematical description of this type of noise can then be
estimated and the noise removed.

In a seismic survey, the picture is not so simple. Usually many types of noise have
contaminated the signal, hence estimating the noise may be very difficult. Increasingly
demanding environments (high temperature, high pressure, narrow reservoirs, etc.) call
for detailed surveys and high confidence in the seismic processing. Increasing the accuracy
of the noise model is a step in that direction.

1.2 Marine reflection seismics

Reflection seismology utilizes the fact, that different rock types in the Earth have different
wave velocities. Hence, a signal (a pressure wave) propagating downwards will be reflected
at different layer interfaces and received at the surface where it was originally emitted.
Pressure, then, as a function of time, constitutes the raw seismic data. This is later
heavily processed and converted into a time dependent reflection amplitude, which is how
reflection seismics are usually presented. At sea, data are collected by dragging a tow line
of hydrophones behind a vessel, while firing an air gun or other pressure wave inducing
device at regular intervals. Figure 1.1 is a schematic drawing of the basic setup. A
single pass above some feature of interest will yield a 2-D cross-section of the subsurface
reminiscent of Figure 1.2.

Figure 1.1: Diagram of a marine seismic survey.

A 3-D seismic survey is shot much the same way as 2-D, but with numerous, closely
space tow lines laid out in a grid to obtain high spatial resolution. After acquisition, the
data must be processed in several ways to obtain what we refer to as seismic reflection data.
Some common corrections are Normal Moveout correction (NMO), stacking by Common
Midpoint gather (CMP), and low frequency noise filtering. Subsequently, the data can be
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converted or inverted to yield more interesting parameters, such as time/depth conversion,
acoustic impedance, porosity or oil saturation.

Figure 1.2: Seismic reflection amplitude versus time. 2-D cross-section of 3-D Halfdan
data along random inline.

1.3 Noise in marine seismics

Noise can be divided into two groups: Coherent and random. In marine seismics, the most
common source of noise is bad weather conditions OGP and IAGC [2011], manifesting itself
as uncorrelated or random noise in the data. Coherent noise, such as acquisition noise,
is generated by infrastructure, other vessels, and the vessel itself. The data you see in
Figure 1.2 is affected by acquisition noise, especially in the upper layers. This is better
illustrated in a time slice like Figure 1.3.
Understanding how these unwanted sources affect the seismic signal is key to eliminat-
ing them. Of course, the best way to ensure high quality data, is to use well calibrated,
high precision equipment, "removing" noise before they enter the data. However, some
types of noise cannot be attenuated in this way and must be mathematically removed
post acquisition. Unfortunately, it is near impossible to have a complete understanding of
the noise. Hence, noise processing tends to be based largely on intuition. The danger in
this approach is that intuitive processing cannot be completely accounted for, leading to
results which cannot be reproduced.

In reality, even though one seldom knows the exact type and magnitude of noise ob-
scuring the data, trial and error, along with experience, is often enough to effectively
remove what is believed to be noise. However, one can only wonder how much of the true
signal is actually affected by the possibly inexact noise description? In particular, what is
the impact on uncertainty?

The method developed here is an attempt to characterize noise and uncertainty as re-
alistically and objectively as possible, by deriving information about the noise straight
from the data. An objective noise estimate will increase trust in all results derived from
the data. The method is developed specifically to remove 2-D acquisition noise, working
on time slices (i.e. arrays of data as a function of x and y coordinates, for a constant value
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of reflection travel time) like Figure 1.3, but will in principle work in any directions with
any number of dimensions. The next chapter will explain the methodology.

Figure 1.3: Time slice of Halfdan data (seismic reflection amplitude) in the shallow part
of the overburden.



Chapter 2

Methodology

In this chapter, I explain the method in small sections. It is not meant as a complete
description of all aspects of the method. Only to serve as an overview. Each topic will
be thoroughly investigated in due course. The complete procedure is illustrated in the
flowchart figure 2.1. It has three main parts:

1) Characterizing and modeling the noise.
2) Modeling the (noise-free) geology.
3) Removing the noise.

4-D
data set

residual
(subtract)

observations
(sum)

1) model noise

2) model geology

3) remove noise

calculate
experimental
variogram

model
variogram

modeled
noise

prior
noise-free
geology

LSQ
inversion

background
model

Posterior noise-free geology

Figure 2.1: Flowchart of the general procedure. The main goal is to model the noise
covariance from the residual of the data. Then remove the noise via LSQ inversion.

The focus of part 1, is to characterize and model the noise correctly in accordance with
the observations, in order to obtain an objective probabilistic description of the noise.

5



6 CHAPTER 2. METHODOLOGY

Part 2 repeats part 1 but on the geology. Part 3 describes how the noise is removed and
how to interpret the result. The chapter concludes with a brief description of the set of
assumptions needed for this method to be valid.

Characterizing and modeling the noise correctly is central to the validity of any in-
version results. The modeling procedure is therefore described in detail in Chapter 4.
Modeling the geology (whatever signal that is not noise) is also required, but is not impor-
tant for characterizing the noise and hence will not receive the same attention. The noise
is removed by applying a special form of least-squares (LSQ) inversion where the forward
model operator is the identity matrix. The inversion method is described in Chapter 3.

Some confusion, if not handled now, might arise in relation with the word "model":
When one, in inverse problem theory, refers to a "model", it refers to the unknown set
of parameters, in our case the noise-free data (geology). When mentioned in context
with geostatistics, the "model" refers to a semi-variogram model or combination of semi-
variogram models. The two should not be confused. I also use the verb to model as
in fitting a semi-variogram model to data. The overlap is unfortunate but unavoidable
when mixing inverse problem theory with geostatistics. When the two definitions occur
together, I will attempt to clarify their meaning more literally.

2.1 The 4-D data

The method relies on two sets of 3-D data, acquired from the same area, but at different
times, collectively constituting one 4-D data set. Each survey is assumed to include
additive noise and hence can be separated into two parts: The noise-free data and the noise.
The interesting part is of course the noise-free data, which depend only on the geological
structure in the subsurface. I will refer to the noise-free data as geology. Whatever is not
geology, is then considered and referred to as noise. Following this setup, the two surveys,
referred to as Base and Monitor, can be described as

Base: s1 = g + n1 Monitor: s2 = g + n2. (2.1)

Both surveys are assumed to include the same geology g. Hence, for this to hold, ge-
ology must be fairly undisturbed in between acquisitions; if production is presumed to
cause structural changes to the formation in between the two surveys, results can become
unreliable.

Throughout this report it is assumed that both geology and noise can be described by
a stochastic, stationary Gaussian process. Hence, g, the true, noise-free geology, and the
noise n1 and n2 are all realizations of their individual stochastic processes (see full set of
assumptions in section 2.6). This assumption is necessary when we isolate and describe
the noise from its covariance in the next section.

2.2 Residual and Observations

To filter the noise correctly, the noise must be removed from the summed signal s1 + s2
and characterized by the differenced signal s1 − s2. Why this is will become clear in a
moment. I will refer to the summed signal as the Observations and the differenced signal
as the Residual. Then we have

Observations: dobs = s1 + s2 = 2g + n1 + n2 Residual: dres = s1 − s2 = n1 − n2.
(2.2)
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Note that the Observations and the Residual distributions are also Gaussian if g, n1 and
n2 are Gaussian. The Residual then only includes (Gaussian) noise, as the geology cancels
out. Specifically, it includes noise in the form n1 − n2. The Observations on the other
hand, includes noise (also Gaussian) in the form n1 +n2. Thus, Observations and Residual
contain different realizations of noise. However, if N1 and N2 are independent, stochastic
variables, with dimension k, mean µ1 and µ2, and variance Σ1 and Σ2 of a Gaussian
distribution:

N1 ∼ Nk(µ1,Σ1) and N2 ∼ Nk(µ2,Σ2). (2.3)

Then it holds, that
N1 ±N2 ∼ Nk(µ1 ± µ2,Σ1 + Σ2). (2.4)

It follows (see Appendix A), that

Cov(N1 +N2) = Cov(N1 −N2). (2.5)

Thus, assuming n1 and n2 are realizations of N1 and N2, the covariance of the Residual
(n1 − n2), is identical to the covariance of the noise in the Observations (n1 + n2):

Cov(n1 + n2) = Cov(n1 − n2), (2.6)

assuming a reasonable number of data points in n1 and n2. This means that the covariance
describing the noise in s1 +s2 equals the covariance of s1−s2. Note, this is only possible if
all stochastic processes are Gaussian, and if the geology cancels out in the Residual. The
geology will only cancel, if the subsurface properties are unchanged in between surveys.

2.3 Modeling the noise
We will choose to remove the noise on dobs via linear LSQ inversion. This type of inversion
requires information on the covariance on the model and the data. (More on LSQ inversion
in the next chapter). In our case this refers to the noise-free geology (model) and the
noise (data). With the noise characterization method described in the former section,
an experimental data covariance matrix can now be calculated from n1 − n2 describing
the noise in dobs. (We forget about the geology covariance for now). However, the LSQ
inversion technique requires that the inverse of the covariance matrix exists. This is
guaranteed if the covariance matrix is positive definite. Hence, we must somehow make
the noise covariance matrix positive definite. This is achieved by fitting a known positive
definite covariance model, or rather a positive definite semi-variogram modela, to the
experimental covariance. Thus ensuring an invertible matrix in the LSQ inversion.

2.4 Modeling the geology
When the noise covariance has been estimated, one should assess the covariance of the ge-
ology. The geology covariance should reflect the prior knowledge of the noise-free geology.
As with the noise covariance, the geology covariance should also be positive definite and
must be modeled using a similar procedure. Using previous assumptions, and taking the
covariance on the Observations, we get

Cov(s1 + s2) = Cov(2g) + Cov(n1 + n2) = 22Cov(g) + Cov(n1) + Cov(n2). (2.7)
aThe relationship between the covariance and the semi-variogram is stated in Chapter 4
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Knowing Cov(s1 + s2) and having just modeled Cov(n1 + n2) (the covariance of the
noise)b we simply find Cov(2g) by rearranging Equation 2.7. Notice, that Cov(2g) 6=
Cov(g)+Cov(g). g and g are obviously not independent, and the law for adding variances
of uncorrelated stochastic variables does not apply. Rather, Cov(2g) = 22Cov(g)c. Thus,
when modeling the geology on the Observations we would expect about four times the
variance of g. This is not important for the modeling or the inversion. Only when the
inversion result is compared to the original geology g or any other single survey from the
data, i.e. s1 or s2.

2.5 Inversion
As an appetizer to the coming theory chapter, I present the noise removal method of choice;
Linear Least-Squares (LSQ) inversion. The mean posterior solution m̃ and covariance C̃m

are stated here:

m̃ = mprior + CmGt(GCmGt + Cd)−1(dobs −Gmprior)
C̃m = Cm −CmGt(GCmGt + Cd)−1GCm.

(2.8)

Here, Cd is the covariance matrix of the noise we have just modeled on the Residual.
Cm is the covariance matrix for the prior geology. And dobs is the vector of Observations
defined in Equation 2.2. Note, that the noise must then be removed from the summed
signal, the Observations, only. Not a single survey. Removing noise from either s1 or s2
independently with noise based on the combined signal s1− s2 will overestimate the noise
and result in unnecessary high posterior uncertainty. However, one can get around this
by assuming the stochastic noise process is the same in both surveysd. The operator G is,
in this case, just the identity matrix. I will elaborate on this in the next chapter. mprior

is the background model vector and is throughout this thesis assumed to be zero, unless
otherwise stated.

It should be noted that, as the noise is removed from the sum of two surveys (s1 + s2)
with identical geology, a realization of the posterior distribution will have about twice
the mean and four times the variance than either s1 or s2. Hence, when comparing a
posterior realization to either the Base or Monitor survey, one should remember to divide
the posterior mean by 2 and the posterior covariance by 4 to obtain comparable amplitudes.
The 4 is due to the rule of adding completely correlated variables (or rather, the variance
of a constant times a stochastic variable), as mentioned in section 2.4. The 2 is due to the
fact, that the noise is removed from the summed signal dobs with double the magnitude
and double the mean of the original s1 or s2 signal.

2.6 Assumptions
A number of assumptions have been made along the way:

• Stationary, additive geology and noise: The method relies on stationary, ad-
ditive noise and geology. Otherwise the problem will become non-linear. It is likely
to encounter non-stationary, non-additive noise. However, it is often possible to find
an interval in which the problem becomes linear or only mildly non-linear.

bWe actually modeled Cov(n1 − n2), but I proved earlier, that the two are equivalent.
cIf X is a stochastic variable and a is a constant, then Cov(aX) = a2Cov(X).
dDivide the mean and variance of the estimated noise process by 2, and let dobs = s1 or s2.
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• Geological stability between surveys: Base and Monitor surveys must contain
the same subsurface formation for the geology to cancel out. If geological activity
is present in the area of interest, due to production or natural causes, the method
developed here, might not be applicable. If changes in geology does occur between
surveys, steps should be taken to mitigate the effect.

• Pixel to pixel correspondence in data sets: The two data sets must be properly
aligned to ensure the geology cancels out. Hence, care must be taken, that each
position in each data cube corresponds to the same depth and horizontal position in
all surveys.

• Data must be normally distributed: The linear least squares inverse problem
implicitly assumes normally distributed data and models. Hence, geology and noise
must be Gaussian. The data should be tested to certify that they comply reasonably
well with this assumption.

Each item will be discussed later in context with the data to which they apply.
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Chapter 3

The inverse problem and noise
filtering technique

In this chapter I will describe the inverse problem and present the general solution as well
as the linearized one. For more detailed account, please refer to Tarantola [2005].

Inverse problem theory is a very important part of science and mathematics. The category
holds problems in which the parameters of interest can only be measured indirectly. One
might measure the gravity field of the Earth from a satellite and ask: What does the
acquired data tell me about the mass density distribution of the interior of the Earth? It
is not possible to drill to the center of the Earth and take samples, but given gravity data
and the relation between gravity and density with distance, we can calculate an estimate
of the density profile. This is called an inverse problem. In geophysics, this type of prob-
lem is encountered everyday. However, the problem with inverse problems, is that due to
our ignorance about the complete problem (exact temperature, pressure, uncertainty in
gravity measurements, etc.), it is usually not possible to find a unique solution. One may
calculate an optimal solution, e.g. the solution with minimum variance, but without any
prior knowledge about the subsurface, like a bore hole, many different earth models may
explain the same data equally well.

Since there exists a host solutions (often infinite) to the inverse problem, it is desired to
introduce some knowledge about the problem that will constrain the solution. This type
of information is called a priori information. The combination of a priori information
with observations was formulated by Thomas Bayes in 1761 in terms of probability. His
contribution to probability theory was vital and influences the work of statisticians among
many others to this day. Tarantola and Valette [1982] formulated a more general approach
to solve the inverse problem, from which Bayes’ theorem can be derived as a special case
(see Appendix B). All probability theory and combination of states of information in this
project is based on their work. The a priori information in particular will be discussed
extensively, as building an unbiased, scientific prior probability distribution is essential to
the validity of the solution of the inverse problem.

I present the essential results of Tarantola and Valette’s theory below and follow their
application to least-squares inversion. An interesting, though rather technical presenta-
tion and discussion of the probabilistic approach to the inverse problem, can be found
in Mosegaard and Tarantola [2002].

11
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3.1 The general inverse problem

The general inverse problem relates the observed data, d, to the model parameters m, by
the possibly non-linear relation g:

d = g(m). (3.1)

The model m is the unknown, and d are the observed data. In our case, m is the noise-
free geology, and d the noise. If one accepts the mathematically friendly, but for some
intuitively difficult statement, that the solution can be represented as a probability density
distribution, and not a single unique set of parameters, the solution, including uncertainty,
can be obtained in the form of an a posteriori probability distribution:

σm(m) = kρm(m)L(m) (3.2)

L(m) is the likelihood function which gives a measure of how well the model m explains
the data, and ρm(m) is the a priori pdf describing the data-independent prior knowledge
of the model parameters.

Please take a moment to dwell on the simplicity of Equation (3.2). This is the solution
to the inverse problem. From the perspective of probability densities, the solution is
unique, and from it, all manner of results can be generated, including mean, median,
maximum likelihood and uncertainty.

3.2 Linear least-squares inversion

Many problems are naturally linear, or approximately linear over a certain interval. In
that case, the model m becomes independent of the forward operator g, and the problem
can be expressed as

d = Gm. (3.3)

The linear inverse problem can be solved by minimizing the sum of squared differences
between the data values and their corresponding modeled values, also known as least-
squares inversion, but only if all "input" probabilities in Equation 3.2 are Gaussian:

If an observation, dobs, is made, and one assumes negligible modelization errors (as
is done in many applications), and if the observational errors are assumed Gaussian, the
likelihood function is Gaussian and can be written

L(m) = const. exp

{
−1

2(d− dobs)tC−1
d (d− dobs)

}
. (3.4)

The matrix Cd is the data covariance matrix. Or in our case, the noise covariance matrix.
It describes the errors associated with each observation. A completely uncorrelated and
noise-free dataset will yield a covariance matrix with ones in the diagonal and zeros every-
where else. Most of the time this however is not the case, and some consideration should
go into constructing this matrix. It is the purpose of this project to model the noise on
the data, so as to make the noise covariance matrix as objective as possible.

The Gaussian a priori model pdf can be written in a similar manner:

ρm(m) = const. exp

{
−1

2(m−mprior)tC−1
m (m−mprior)

}
. (3.5)

In our case, this will represent the geology pdf with mean mprior and covariance Cm.
Cm is the model covariance matrix representing the covariance of the noise-free data; the
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geology. In Chapter 5 I will inspect how various geology and noise covariance models affect
the inversion result.

For a linear problem, in which the likelihood and the a priori pdf can be described by
a Gaussian distribution, the a posteriori distribution is also Gaussian and is completely
described by its mean and covariance. Hence, the posterior probability density can be
written as:

σm(m) = const. exp(−1
2(m− m̃)tC̃−1

m (m− m̃). (3.6)

If m̃ is defined as the center of the Gaussian posterior probability density with posterior
covariance C̃m, one can solve for each of them. In the end, we obtain (also shown in
Equation (2.8)).

m̃ = mprior + CmGt(GCmGt + Cd)−1(dobs −Gmprior)
C̃m = Cm −CmGt(GCmGt + Cd)−1GCm.

(3.7)

(3.7) is the solution to the linear inverse problem. It provides a complete probabilistic
description of the noise-attenuated signal, including uncertainty. The analytical form
makes it fast and easy to compute. However, the covariance matrices Cm and Cd are
required to have an inverse. The method also becomes painstakingly time and memory
consuming for large Cm and Cd since matrix inversion complexity goes up as O(N3) for
an N x N matrix. How I will ensure the inverses to these matrices exist, will be discussed
in the next chapter. mpri denotes the background model which is assumed zero, unless
otherwise stated. m̃ is the mean of the Gaussian posterior, also called the maximum a
posteriori solution (MAP), and is often given as the solution. However, it is just the mean
of a Gaussian distribution, and often much smoother than any random realization of the
posterior. One can even construct a movie of realizations, in which each frame will capture
the essential random fluctuations of the posterior. Hence, a series of Gaussian realizations
shall accompany all solutions to the inverse problem in this report. Also, one should be
confident that the data are Gaussian and the problem is linear. For problems where these
criterions are not satisfied, it is discouraged to make use of this technique. However, the
advantages of the approach are diverse and manifold, and are hence used extensively in
one form or another, also in mildly non-Gaussian cases.

In the general nonlinear inverse problem, g(·) is called the forward operator, or the
mapping operator. It expresses our mathematical model of the physical system we are
studying and is used to predict the outcome of some observation. When the problem can
be considered linear, the forward operator becomes linear and can be represented by a
matrix, G. Normally, G will be mapping the model parameters from the model space
into the data space. However, in our case, we do not want to map between spaces. Only
to reduce noise. I will not go into detail about the definition of model space and data
space (see Tarantola [2005]). We only need to understand, that to filter noise using this
particular method, G needs to map into itself. This is easily done by letting G equal the
identity matrix.

Hence, assuming G = I and mpri = 0, Equation (3.7) reduces to a compact noise
filtering technique, with a Gaussian posterior distribution describing the LSQ estimate of
the noise-free geology:

m̃ = Cm(Cm + Cd)−1dobs

C̃m = Cm −Cm(Cm + Cd)−1Cm.
(3.8)
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Chapter 4

Variogram investigation and
simulation

In Chapter 3 I explained the linear inverse problem and the need for Gaussian pdfs and
invertible covariance matrices. In this chapter I will investigate the semi-variogram mod-
els and the modeling procedure used to obtain these covariance matrices. I begin the
variogram investigation with a short theory section.

4.1 Theory

Say for each position r in the domain D, which is typically a subset of R2 or R3, we have
a set of observed values z(r), which all are realizations of the stochastic variable Z(r).
Assuming first and second order stationarity (i.e. the mean value and the variance are
independent of r), Z(r) has the expectation value

E{Z(r)} = µ(r) = µ, (4.1)

and auto-covariance
Cov{Z(r), Z(r + h)} = C(r,h) = C(h), (4.2)

where h is termed the displacement vector. It is customary in the geophysical community
to analyze and describe the statistical properties of data with a semi-variogram γ, which
is related to the (stationary) auto-covariance in the following way:

γ(h) = C(0)− C(h). (4.3)

Note, that C(0) = σ2, the variance of the stochastic variable. The semi-variogram can be
understood as a measure for the expected difference squared between stochastic variables
as a function of the displacement vector. When given a set of measurements the semi-
variogram may be calculated by means of the following estimator, which calculates (half)
the mean value of the squared differences between all pairs of measurements z(rk) and
z(rk + h) separated by the displacement vector h:

γ̂(h) = 1
2N(h)

N(h)∑
k=1

[z(rk)− z(rk − h)]2. (4.4)

N(h) is the number of point pairs separated by h. γ̂ is termed the experimental semi-
variogram. The experimental semi-variogram, can provide an experimental (as in obtained

15
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from data) covariance model. We will use this methodology to obtain an estimate of a
Gaussian covariance model describing the noise. Please note that I may refer to the
variogram or semi-variogram interchangeably, in all cases referring to the definition in
Equation (4.3).

4.1.1 Semi-variogram models

The experimental semi-variogram is an estimate of the true variability in the data. How-
ever, a covariance matrix build on this estimate is likely not to have an inverse, which is a
requirement in LSQ inversion. Therefore, in order to ensure we obtain a covariance matrix
with an inverse, we choose to model the experimental semi-variogram using a number of
pre-defined semi-variogram models, that are all positive definite. I list three of the most
applied models below. The magnitude of h is denoted by h, also called the lag. I introduce
the Spherical model:

γ∗(h) =


0 h = 0
C0 + C1[3

2
h
R −

1
2

h3

R3 ] 0 < h < R

C0 + C1 h ≥ R,
(4.5)

Figure 4.1: Spherical model with range = 1.5 and sill = 1, abbreviated: 1 Sph(1.5).

where C0 is the nugget effect, R is the range and C0+C1 is the sill (= σ2). Note, that C0
is not equal to C(0). The range is defined as the distance from where on samples become
uncorrelated. This distance also marks maximum variance (the sill). Model variance is
unchanged for higher lags. The nugget effect is also in itself a semi-variogram model,
albeit rather boring as it is constant. This is not the case for the Exponential model:

γ∗(h) =
{

0 h = 0
C0 + C1[1− exp(−3h

R )] h > 0,
(4.6)

Figure 4.2: Exponential model with range = 1.5 and sill = 1, abbreviated: 1 Exp(1.5).

or the Gaussian model:

γ∗(h) =
{

0 h = 0
C0 + C1[1− exp(−3h2

R2 )] h > 0.
(4.7)
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Figure 4.3: Gaussian model with range = 1.5 and sill = 1, abbreviated: 1 Gau(1.5).

The two latter models approach their sill asymptotically. The range is then usually
defined as 95% of the sill. The models can be combined (nested) to obtain various shapes,
without loosing positive definiteness ( Goovaerts [1997]).

Figure 4.4: Sketch of elliptic cone 2-D semi-variogram model. From [Nielsen, 1994, p.12]
.

The above models are independent of orientation (isotropic). If anisotropy is desired, one
has to introduce an angle dependent displacement vector. If the angle and coordinates are
defined as in Figure 4.4, we have (in 2-D):

x = x1 cosα1 − y1 sinα1

y = x1 sinα1 + y1 cosα1 (4.8)

x1 = x cosα1 + y sinα1

y1 = −x sinα1 + y cosα1. (4.9)

By rotating through the angle α1 we can sample correlation in any direction. The mag-
nitude of the displacement vector then becomes: h =

√
x2 + y2. Spatially correlated
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acquisition noise is highly anisotropic and must of course be parameterized by such a
model. Nielsen [1994].

4.1.2 Fast semi-variogram computation with FFT

From a practical point of view, it is necessary to take into account the time it takes to
calculate a semi-variogram, i.e. the number of point pairs included in the calculation of the
experimental variogram. In his paper from 1996 Marcotte details a way to efficiently calcu-
late 2-D semi-variograms using the well known Fast Fourier Transform (FFT) algorithm.
The method reduces the complexity of the computing the semi-variogram for a nx x ny

matrix from (nx ·ny) ·(nx ·ny−1)/2 to (2ny−1)(2nx−1)log2(2nx−1). Using the standard
spatial approach one should not consider calculating a full variogram for matrices with
more than 5002 data points. With the FFT based approach semi-variograms for matrices
with 10002 data points are calculable within a second. The backside is increased memory
usage during calculation. The amount of RAM however is easily increased, whereas CPU
speed is not. The method also introduces some variance issues at high lags (close to the
edges of the variogram). However this is not important as statistics always get unreliable
at the edges due to insufficient point pairs anyway. I will use this method to calculate the
experimental semi-variogram, and from it, the covariance matrix.

4.1.3 Covariance matrix

When a fitting semi-variogram model has been found, the corresponding covariance matrix,
Cm or Cd, must be calculated. From Equation 4.3 we see, that C(h) = σ2−γ(h). Knowing
the semi-variogram model we can then calculate the auto-covariance model. However, the
LSQ inversion requires a covariance matrix: A nxny · nxny large matrix including explicit
calculation of correlation coefficients from all points to all points. This is done by setting
up a mesh grid with a constant cell size ∆h and applying the chosen covariance model.
Ex: nx = ny = 4. ∆h = 1. Mesh grid matrices:

x̂ =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

 ŷ =


1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

 (4.10)

Then one can calculate the euclidean distance (difference) from all points to all points.
With an isotropic Gaussian covariance model with sill=1 and range=2, this results in the
covariance matrix in Figure 4.5.

Figure 4.5: Isotropic Gaussian covariance matrix with sill=1 and range=2.
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4.1.4 Drawing Gaussian realizations

When a (stationary) covariance matrix is obtained, a random realization of the Gaussian
process is fairly simple to compute by Cholesky decomposition. The Cholesky algorithm
expresses the covariance matrix C as a product of upper and lower triangular matrices:

C = LLt (4.11)

Solving for L and multiplying by a random realization w of Gaussian process with zero
mean and unit variance yields a Gaussian realization x with said mean and variance:

x = Lw. (4.12)

Other, more efficient algorithms exist for computing random Gaussian realizations. For
instance, the FFT Moving Average (FFT-MA) generator is an efficient numerical method
for generating and conditioning large Gaussian simulations, as it is based on convolu-
tion in the Fourier domain. Figure 4.6 shows three such random Gaussian realizations.
See Tarantola [2005] for a discussion and derivation of the Cholesky method and Ravalec
et al. [2000] for a description of the FFT-MA algorithm.

Figure 4.6: Random Gaussian realizations (bottom) of the covariance model (top) gener-
ated by FFT-MA.

4.2 Modeling
The success of the noise characterization and removal technique relies on the degree to
which the noise can be estimated correctly. However, it also relies on the existence of
the inverse of the noise covariance matrix Cd. We found that the Residual, dres, is a
good description of the noise in the Observations, dobs. Hence, we fit a positive definite
semi-variogram model to the experimental semi-variogram, as represented by the Residual
data, and convert that into a noise covariance matrix with an inverse now guaranteed
to exist. When a model has been chosen, random Gaussian realizations of this model
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should be compared to the Residual data for confirmation of its resemblance. I will begin
by investigating the Residual of a real time slice of the Halfdan data and compute the
experimental variogram on which we shall model Cd.

4.2.1 The noise

(a) Residual, dres (b) 2-D experimental variogram

(c) 3-D experimental variogram. Same as (b) but shown in 3-D.

Figure 4.7: Residual data and 2-D variogram of layer 140 in the Halfdan data. The
left figure shows part of layer 140 (the Residual). The right and lower its corresponding
experimental 2-D variogram in 2 and 3-D. The mean has not been subtracted from the
data.

Figure 4.7 shows data and corresponding 2-D variogram in 2 and 3-D of layer 140. Inline
correlation (N-S) is strong and dominates the variogram giving it anisotropic characteris-
tics. The data also have a smooth look. This is seen as the small, circular (isotropic) blue
patch in the center (low lag) of the variogram. A small part of the signal also seems to
oscillate, like a wave pattern, especially in the cross-line (E-W) direction. This is due to
the repeating N-S pattern. Thus, we have identified three distinct characteristics of the
variogram: A high correlation part, a low correlation part and an oscillating part. In the
ideal case then, we need at least three different models to accurately describe the Residual.



4.2. MODELING 21

A 1-D version of Figure 4.7 with more lags better illustrates the shape and magnitude of
the variogram (see Figure 4.8).

(a) dres. Inline direction. (b) dres. X-line direction.

Figure 4.8: Experimental semi-variograms in 1-D.

The direction of anisotropy is obviously in the inline direction (this is why the 1-D semi-
variogram (a) was depicted in this direction). The sill and range can also be estimated
from this plot, as a combination of three distinct models: One isotropic model with range
around 3, seen in both (a) and (b). One Linear, anisotropic model with range at least
50, best seen in (a). And a hole modela (describing oscillatory motions), best seen in (b).
Unfortunately, only certain hole models belong to the group of positive definite models,
and then only in certain dimensions (Deutsch and Journel [1998]). As a result I choose not
to model the oscillations to ensure the covariance model stays positive definite in all cases.
The isotropic, short range model could be either Gaussian, Spherical or Exponential. The
Linear model might also be approximated by a long range Exponential model.

The sill of the first model is estimated from (a). A Linear model does not have a sill
(unless it is constant). Hence, the gradient of a Linear model will then replace the sill pa-
rameter. However, assuming the Linear model can be approximated by a slowly increasing
(long range) Exponential, the sill of the Exponential can approximated by elimination: By
linear regression the Linear/Exponential model is estimated to be shifted +40 in variance
(see (a)), assuming the isotropic model has variance = 40. If the (unmodeled) hole model
has a constant mean variance of zero, the maximum sill (80) (see (b)) minus the isotropic
model sill (40) equals the sill of the remaining model(s) - in this case the Exponential
model.

I have listed two possible nested models in Table 4.1 and plotted them along with
the experimental semi-variograms in Figure 4.9. From these models I calculate their
corresponding covariance matrices Cd,1 and Cd,2. Making realizations of the different
model combinations will reveal which combination is best and how to improve it.

Model Sill Range Angle Aniso. (b1/a1)

Model 1, Cd,1
Exponential 40 100 180 .03
Spherical 40 4 0 1

Model 2, Cd,2
Exponential 40 100 180 .03
Gaussian 40 3 0 1

Table 4.1: Two noise models based on the Residual (Figure 4.9). Angle is defined as
degrees from North.

aE.g. the cosine hole model: γ(h) = C0[1 − cos( h
R
π)]
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(a) Model 1. dres. Inline direction. (b) Model 1. dres. X-line direction.

(c) Model 2. dres. Inline direction. (d) Model 2. dres. X-line direction.

Figure 4.9: Experimental semi-variograms of the Residual in 1-D, with synthetic noise
models from Table 4.1. The maximum lag calculated is reduced to 30 to increase detail in
the plot.

Both proposed models have the same function and parameters modeling the long range
part of the signal (an Exponential). The short range correlations however, have a greater
impact on realizations of the model (short range correlations have a higher probability).
Model 1 uses a Spherical short range model, whereas Model 2 uses a Gaussian. This
should be evident in the realizations.

I present the first model (Model 1), three Gaussian realizations of it and their respec-
tive experimental semi-variograms, see Figure 4.10. The Gaussian realizations should be
compared to the Residual data on which their Gaussian random process are modeled. We
have already made sure to choose parameters close to those of the data (including the
mean which is equal or close to zero in both cases). Thus, it is up to the interpreter to
ensure that realizations and data look similar. It is possible in more or less simple cases
to automatize this procedure. However, I prefer to keep some measure of human influence
on the modeling, even though building an advanced algorithm for model fitting would be
interesting.

Each realization is accompanied by its experimental semi-variogram to measure how
well one can expect to retrieve the synthetic semi-variogram parameters (top figure). It is
also these experimental semi-variograms which should be compared to the experimental
semi-variogram of the Residual. Once again, the human eye should be applied to ensure
likeliness.
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Figure 4.10: Model 1 from Table 4.1: 40 Exp(100,180,.03) + 40 Sph(4,180,1). Top:
Synthetic semi-variogram. Middle: Gaussian realizations. Bottom: Experimental semi-
variograms.

COMPARE TO:

(a) Residual (b) 2-D experimental variogram

Figure 4.11: Residual data and experimental semi-variogram.
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The second model is presented in Figure 4.12.

Figure 4.12: Model 2 from Table 4.1: 40 Exp(100,180,.03) + 40 Gau(3,180,1). Top:
Synthetic semi-variogram. Middle: Gaussian realizations. Bottom: Experimental semi-
variograms.

COMPARE TO:

(a) Residual (b) 2-D experimental variogram

Figure 4.13: Residual data and experimental semi-variogram.
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The best semi-variogram model is then chosen, based on visual fit to the experimental
semi-variogram and realizations of the model. In this case, the best resemblance is found in
Model 2. Both models reproduce long range correlations well. However, Model 2 featuring
the Gaussian short range model, ensures smooth features on the small scale found in the
data but not reproduced in Model 1 with the Spherical model. It should be mentioned,
that none of the models are perfect, in part due to the possibility, that the data might
not be completely stationary. We will investigate this in Chapter 6. There are also some
internal modeling errors introduced, due to the finite number of data points and the FFT
based experimental semi-variogram calculation technique.

4.2.2 The geology

As explained in the Methodology section, knowing Cov(s1 + s2) and having modeled
Cov(n1 + n2), we can find Cov(2g). However, it must also be modeled to ensure positive
definiteness of the geology covariance matrix Cm. The procedure is the same for the
geology as for the noise, only with the Residual replaced by the Observations. A 1-D
modeling of the geology summed with the chosen noise model (Model 2) is drawn in
Figure 4.14. Semi-variogram parameters are given in Table 4.2.

Figure 4.14: Experimental semi-variograms of the Observations in 1-D. Solid lines are the
sum of geology and noise models.

Model Sill Range Angle Aniso. (b1/a1)
Geology, Cm Gaussian 800 7 0 1

Noise (Model 2), Cd
Exponential 40 100 180 .03
Gaussian 40 3 0 1

Table 4.2: Geology and noise models based on the Observations and Residual. Angle is
defined as degrees from North.

*

With the noise covariance matrix Cd and geology covariance matrix Cm now guaranteed to
have an inverse, we can calculate the posterior of the linear least squares inverse problem in
Equation (3.8). In the next chapter, we will see how this works with a synthetic example.
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Chapter 5

Synthetic example

In this chapter, I conduct a synthetic experiment to evaluate the performance of the
method. Hence, I will generate some data, model the noise, calculate the LSQ posterior
(posterior noise-free geology) and compare to the known true noise-free geology. In this
synthetic case I will have complete knowledge of all parameters making evaluation easy.
The experiment is scaled down to one time slice, 90 pixels on each side, due to memory
issuesa.

5.1 Generating the data

Two random data sets with zero mean are generated from Gaussian realizations of the
semi-variogram models shown in Table 5.1. Each data set has the same geology, g, but
different noise realizations, n1 or n2 (both noise realizations are generated from the same
variogram model though). The noise model is a combination of an Exponential model with
high correlation length in the N-S direction, and an isotropic Gaussian model for short
correlation lengths. It is designed to mimick the acquisition imprint seen on the Halfdan
data. The geology is an anisotropic Spherical model. Anisotropy in geology is vastly
exaggerated compared to the Halfdan data. The models are illustrated in Figure 5.1.

(a) Geology variogram (b) Noise variogram

Figure 5.1: 2-D variogram models used to generate the synthetic data in Figure 5.2.

aAn experiment comparable in size to a full horizontal slice of the Halfdan data, would require about
14 terabytes of RAM (per layer).

27
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Model Sill Range Angle Aniso. (b1/a1)
Geology (g) Spherical 100 20 90 .5

Noise (n1 and n2)
Exponential 25 300 180 .01
Gaussian 25 3.5 0 1

Table 5.1: The reference models. The synthetic data are generated from the models listed
above. Angle is defined as degrees from North.

As mentioned earlier, the first survey acquired is referred to as Base. The second survey
is referred to as Monitor. Both are a combination of geology g and noise n1 or n2.

Base: s1 = g + n1 Monitor: s2 = g + n2.

g, n1 and n2 are generated from the models in Table 5.1 by an FFT based moving average
algorithm (see section 4.1.4).

As explained in the Methodology section, the noise filtering must be applied to the summed
signal, i.e. s1+s2 (the Observations). The noise is characterized from the Residual, s1−s2:

Observations: dobs = s1 + s2 = 2g + n1 + n2 Residual: dres = s1 − s2 = n1 − n2

All four data sets are presented in Figure 5.2.

Figure 5.2: Gaussian synthetic data generated by FFT based moving average algorithm.
dobs is used as input observations for the inversion. dres is used to characterize the noise.

5.2 Inversion results with true covariance models
The initial inversion results are designed to illustrate the best possible result you can
expect from the defined setup. I.e. neither geology nor noise is modeled. All estimated
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models used for this inversion are identical to the models used for generating the data
(except the variance, which is increased in the inversion priors, since the summed and
differenced signals have higher variance than the original data s1 and s2). Thus, the only
information lost, is due to the finite number of data points. I give the geology and noise
models in Table 5.2 from which Cd and Cm can be constructed and hence the least squares
inversion solved by solving Equation (3.8).

Model Sill Range Angle Aniso. (b1/a1)
Prior geology, Cm (true) Spherical 400 20 0 .5

Noise, Cd (true) Exponential 50 300 180 .01
Gaussian 50 3.5 0 1

Table 5.2: "Estimated" (true) geology and noise models used in the first synthetic example
(ideal case). Angle is defined as degrees from North.

I will investigate a number of properties of the inversion result. Comments will be made
along the way, but I will keep the final conclusion to the last section in this chapter. I begin
by comparing the posterior mean solution with the true geology g shown in Figure 5.3.
Note, that through out the rest of the report, when referring to the posterior distribution
I refer to m̃/2 and C̃m/4. The inversion is applied to the summed result of two signals
(Base and Monitor). Hence, as explained in the Methodology section, to obtain comparable
reflection amplitude and variance, one has to divide m̃ by 2 and C̃m by 4.

5.2.1 Posterior mean solution

(a) True signal (g). (b) Posterior mean (m̃/2).

Figure 5.3: Noise filter simulation with known solution. All geology and noise models used
for the inversion are identical to the models used for generating the data.

This initial inversion is expected to perform extraordinarily well, since all assumptions
about Gaussianity, linearity, additivity, etc. are true and valid. Hence, it is no surprise,
that all major and minor features of the original geology g have been resolved, with no
indication of striping visible. There is a slight decrease in peak amplitude (max(|g|)). This
is expected as it is only the mean of the posterior solution. The true variability of the
solution is better illustrated with a series of random Gaussian realizations (section 5.2.3).
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5.2.2 Removed noise and residual error

Figure 5.4 illustrates removed (estimated) noise and the residual error. The removed part
of the signal clearly shows high correlation in the N/S direction with some smoothness, as
dictated by the prior.

(a) Removed noise, dobs/2− m̃/2. (b) Residual error, g − m̃/2.

Figure 5.4: Left: Difference between the noisy Observations and the mean posterior solu-
tion. Right: Difference between the original noise-free observations and the mean posterior
solution.

The residual error, g − m̃/2, illustrates the difference between the mean posterior
solution and the true solution. In this case, where we know the prior geology is identical
to the true geology, the "error" is due to the smoothness of the mean posterior and can be
thought of as the information lost in the inversion, if one uses the mean solution as the
only estimate of the posterior. A deterministic solution of that kind fails to capture the
full variability of the solution.

5.2.3 Gaussian realizations

The posterior solution in Figure 5.3 is the model with the Maximum A Posteriori proba-
bility, the MAP solution (see section 3.2). Maximum a posteriori probability also means
minimum variance in the solution. Hence, the MAP solution tends to be too smooth.
Instead, a way to illustrate the true variability of the solution, is to generate random
Gaussian realizations of the posterior distribution N (m̃/2, C̃m/4). 9 such realizations are
shown in Figure 5.5.

The variance of the realizations is higher than the mean solution (on average), and
small scale variability is now seen. The ability to generate a sample of posterior solutions
to the problem, all with the same a posteriori probability, is one of the leading advantages
of a probabilistic Gaussian inversion scheme.
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Figure 5.5: Realizations of posterior distribution N (m̃/2, C̃m/4). All realizations have
the statistical properties of the least squares solution to the inversion. All carry a clear
resemblance with the noise-free geology in Fig. 5.3.

5.2.4 Variograms

Figure 5.6 compares the original variogram model used to generate the synthetic geology,
with the experimental variogram of the mean posterior solution. The shape and amplitude
of the noise-free geology variogram is well preserved. The slight decrease in variance and
slight increase in range is another sign of the inherent smoothness of the mean solution.

(a) Synthetic variogram of prior geology
model.

(b) Experimental variogram of posterior
mean.

Figure 5.6: Before and after variogram comparison.

The success of the inversion is better illustrated by directional 1-D variograms. Figure 5.7
shows how close the posterior solution and in particular its realizations come to the real
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solution, as a function of lag distance. The red line marks the true geology, the blue line
is the mean posterior solution, and the stars are realizations of the posterior. The pos-
terior realizations are all scattered around the true geology, albeit with some uncertainty
(spread). The too low variance of the mean solution is evident here.

(a) Major principal direction (180 degrees). (b) Minor principal direction (90 degrees).

Figure 5.7: Comparing semi-variograms of; the true geology, the mean posterior solution,
and five posterior realizations.

*

It has been established, that, in this ideal case where both noise and geology are known,
the characteristics of the posterior pdf follow those of the reference model closely. I will
now advance to the central question of this thesis, and replace the true noise model with
a model estimated from the residual, dres.

5.3 Inversion results with noise modeled on the Residual

The following inversion will aim to remove the noise from dobs by modeling the noise
covariance on dres. To investigate how well the noise is characterized and modeled under
otherwise ideal conditions, the geology is not modeled, i.e. is assumed perfectly modeled.
The previous "true model", or reference model, inversion will serve as a benchmark. I
will compare the solutions from the "true model" inversion, m̃ with the "estimated model"
inversion, m̃mod. I will also evaluate how wrong or vague priors, which arguably are
sometimes used in the industry, impact the result.

5.3.1 Modeling the noise

As described in the Methodology section, I model the noise variogram on the experimental
variogram of the Residual. The result of fitting is seen in 1-D and 2-D in Figure 5.8 and 5.9.

The solid blue line in Figure 5.8 is the modeled noise. Have in mind that, in real life,
the true distribution (green dashed line) is not known. However, it is straight forward to
fit a model well to the Residual (blue dash-dot line), as it is well behaved, in the sense,
that range and sill are relatively easy to determine. Moving to 2-D, I check and model
anisotropy not observed in x, y directions. And finally 3D for a thorough visualization
(not shown here).
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Figure 5.8: Modeling the noise variogram from the experimental variogram of the Residual.
x is East/West, y is North/South. The experimental variogram is well behaved and easy
to model.

Random Gaussian realizations are generated and compared to the true Residual. If model
and Residual appear similar, I proceed with the inversion. Figure 5.9 illustrates the
modeling procedure.

Figure 5.9: Noise variogram modeling. The noise is modeled on the experimental vari-
ogram of the Residual dres. Random Gaussian realizations are generated to ensure likeli-
ness to the true residual.

The resulting noise model is included in an updated version of Table 5.2 in Table 5.3.
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Model Sill Range Angle Aniso. (b1/a1)
Prior geology, Cm (true) Spherical 400 20 0 .5

Noise, Cd (true) Exponential 50 300 180 .01
Gaussian 50 3.5 0 1

Prior geology Cmod
m (modeled) Same as true geology

Noise Cmod
d (modeled) Exponential 51 280 180 .012

Gaussian 51 3.5 0 1

Table 5.3: The newly fitted noise model is tabled, along with the true geology and noise
models.

5.3.2 Posterior mean solution

(a) Mean posterior with true priors,
m̃/2.

(b) Mean posterior with modeled noise,
m̃mod/2.

(c) True signal (g).

Figure 5.10: Noise filter simulation with known solution. The noise covariance Cmod
d was

modeled on the covariance of the Residual. The geology covariance Cmod
m was identical to

that of the true geology.

Figure 5.10 (b) shows (half) the mean posterior m̃mod obtained using Cmod
d as noise co-

variance. As was the case in the former inversion (a), striping is completely removed,
and little difference is seen between m̃mod/2 and the true solution g (c). Only a slight
smoothing and drop in variance is noticeable.
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5.3.3 Removed noise and residual error

Figure 5.11a and 5.11b illustrate removed (estimated) noise (dobs/2−m̃mod/2) and residual
error (g − m̃mod/2). The removed noise and residual error from the previous "true noise"
inversion (Figure 5.4) is repeated in (c) and (d) for comparison.

(a) Removed noise, dobs/2− m̃mod/2
(modeled noise).

(b) Residual error, g − m̃mod/2
(modeled noise).

(c) Removed noise, dobs/2− m̃/2
(true noise model).

(d) Residual error, g − m̃/2
(true noise model).

Figure 5.11: Left: Difference between the noisy Observations and the mean posterior
solution. Right: Difference between the original noise-free observations g and the mean
posterior solution.

No significant difference between (a), (c) and (b), (d) is seen. The modeled noise and
the true noise essentially produce the same result.

5.3.4 Gaussian realizations

Gaussian realizations of the posterior distributionN (m̃mod/2, C̃mod
m /4), seen in Figure 5.12,

are also similar to the previous realizations of the posterior reference modelN (m̃/2, C̃m/4).
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Figure 5.12: Random realizations of the posterior distribution N (m̃mod/2, C̃mod
m /4).

5.3.5 Variograms

(a) Synthetic variogram of prior geology
model.

(b) Experimental variogram of posterior
mean.

Figure 5.13: Variogram comparison between the synthetic (true) model and the experi-
mental variogram of the modeled mean posterior.

Figure 5.13 compares the original variogram model used to generate the synthetic geology,
with the experimental variogram of the mean posterior solution. The similarity to the
true prior solution continues, as the shape and amplitude of the geology variogram is
well preserved, with a notable decrease in variance and increase in range. The 1-D plot
illustrates the shortcomings better (see Figure 5.14). However, once again, the Gaussian
realizations turn out evenly spread out around the true solution, with a tendency to
increase in uncertainty with increasing lag.



5.4. INVERSION RESULTS WITH BADLY ESTIMATED GEOLOGY AND NOISE MODELS37

(a) Major principal direction (180 degrees). (b) Minor principal direction (90 degrees).

Figure 5.14: Comparing semi-variograms of; the true geology, the posterior mean with
true and modeled noise, and five realizations hereof (with estimated noise).

5.4 Inversion results with badly estimated geology and noise
models

As mentioned earlier, in conventional noise processing the noise is often estimated from
expert knowledge or other information which uncertainty is not necessarily well known,
leading to uncertain and/or unreliable results. Despite this, the resulting error or bias
in the posterior solution is almost never investigated in practice. In the synthetic case,
knowing the true solution, it is possible to confirm, both visually and probabilistically, just
how good or bad a de-noising scheme has performed. In this case, I have modeled the noise
on the Residual, and confirmed, that the noise modeling technique successfully removes
striping. But is it actually necessary to know that much about the noise to remove it?

In this section, I will investigate what happens when noise and geology is not well
known, beginning with a common choice of noise: Uncorrelated noise, or nugget noise. I
will also investigate the effect of a wrong geology prior, with too long range, and too high
variance. The last iteration will include both wrong models at the same time. Table 5.4
updates the previous model tables.

Model Sill Range Angle Aniso. (b1/a1)
Prior geology, Cm (true) Spherical 400 20 0 .5

Noise, Cd (true) Exponential 50 300 180 .01
Gaussian 50 3.5 0 1

Prior geology Cmod
m (modeled) Same as true geology

Noise Cmod
d (modeled) Exponential 51 280 180 .012

Gaussian 51 3.5 0 1
Prior geology, Cbad

m (bad) Gaussian 500 30 0 .7
Noise, Cbad

d (bad) Nugget 1 N/A N/A N/A

Table 5.4: Variations of noise or geology models estimated wrongly are tabled, along with
the modeled noise, true noise and true geology.
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5.4.1 Posterior mean solution

We already saw, that inverting with an estimated noise model yields less than optimal
results. The noise, however, was modeled on the Residual, which gave it a good chance
of being close to the true noise. If no or only vague information exists on the data, the
geology and noise models must be chosen with corresponding vagueness. I have chosen
two such models, listed in Table 5.4 and performed the inversion. Figure 5.15 shows the
posterior mean solutions of all four combinations of good and bad priors along with the
true geology and noisy Observations. Only the mean posteriors are shown.

Figure 5.15: Posterior mean solutions of all four combinations of good and bad priors, as
well as the true noise-free geology, and the noisy Observations.
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It is obvious from simply looking at the different posterior means, that the bad priors
have either destroyed the solution, or not affected it at all. Starting with the m̃bad

geo (bad
geology), the long range and high variance of the prior has smoothed the solution severely.
Noise is, however, efficiently removed. Looking at the m̃bad

noi (bad noise), the situation is
reversed, as a nugget model can never remove the correlated noise present in the data.
Hence, the solution is almost identical to the Observations, i.e. noise has not been removed.
Combining the two bad priors Cbad

d and Cbad
m we get m̃both (both priors bad) which of course

is a cross between m̃bad
geo and m̃bad

noi . The nugget prior nudges the solution towards shorter
range, which is an improvement over the long range m̃bad

geo solution, but still too smooth
to be useful to any geologist or petroleum engineer. The difference in variance and range
is better illustrated in a variogram which is discussed in the next section.

5.4.2 Variograms

(a) Major principal direction (180 degrees). (b) Minor principal direction (90 degrees).

Figure 5.16: Comparing semi-variograms of posterior solutions based on different combi-
nations of true, modeled or wrong priors.

Figure 5.16 shows semi-variograms in the two principal directions of the mean posterior
solutions shown in Figure 5.15. The three bad solutions are colored cyan, magenta, and
green. The red and blue lines are the covariance of the geology and m̃mod repeated from
earlier semi-variograms. The smoothness of m̃bad

geo and m̃both is seen here as too long range
in the y direction and too small gradient (initially). m̃bad

noi on the other hand, overestimates
the variance, but otherwise follows the true geology well, since it basically looks like the
Observations, which, in a statistical sense, is close the true geology. The increase in
variance is due to the nature of uncorrelated noise: No restraint is put upon variations
near or far from any point. All can vary randomly, giving rise to high variance. The m̃bad

noi

solution’s immediate close relationship with the true geology hence, is not a sign of success.
Rather a sign of the inability to move towards the true solution. m̃mod is clearly the best
estimate of the noise-free geology, in particular if one looks at the random realizations.

5.4.3 Assumptions

No assumptions made during this synthetic example; stationary, additive noise, geological
stability, alignment of data sets, normal distributed data, are violated. Only the number
of data points included in the modeling and inversion can alter each outcome slightly.
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It would, however, be interesting to investigate to what degree any assumption could be
weakened. However, due to the limited time set for this project, these questions were not
investigated.

5.5 Conclusion
The synthetic example has provided an insight into the inversion and modeling procedure,
not possible with real data. By knowing the true solution to the problem, i.e. the noise-free
geology, the posterior solutions can be graded and the success of the de-noising procedure
quantified. Several posterior distributions based on different noise and geology models
were compared to a posterior reference distribution, m̃, where the noise and geology
models were identical to the models used to generate the synthetic data. No solution
can be expected to surpass the performance of the reference distribution. The posterior
estimate with modeled noise, m̃mod, was very close to m̃, which lends credibility to the
noise characterization technique. Inversions based on wrong prior information, made to
simulate the absence of good prior information, performed much worse. Hence, estimating
the noise model from the Residual s1−s2, and filtering the Observations s1+s2, has proven
highly successful in this synthetic event where all assumptions are valid. It remains to be
seen, if the method works on real data.



Chapter 6

Preliminary studies of the data

The method has been tested successfully on synthetic data. However, before we attempt
to apply it to real data, those data must pass some validation checks. I have been provided
with two cubes of seismic reflection data from the upper part of the Halfdan field in the
North Sea. In the following sections of this chapter, I will investigate if these data can be
assumed to have some or all of the following properties:

• Normally distributed

• Zero mean

• First and second order stationarity

Besides these three statistical properties, the data should also comply with the following
three properties:

• Additive noise

• Correct geographical alignment of data sets

• Geological stability

6.1 History of the data
Two data sets have been kindly provided by Maersk Oil. The data are in the form of marine
reflection seismics (SEG-Y format), and were taken at the Halfdan field in the North Sea.
The acquisition boat dragged several lines of hydrophones along what becomes the inline
direction of the data. This created a strong inline noise acquisition imprint. The first data
were taken in 2005. 7 years later, in 2012, the survey was repeated. Combined, the two
3-D data sets constitute one 4-D data set. The data have been modified to include only
the overburden, i.e. above the reservoir, and are from a part of the section which does
not exhibit changes in elastic properties between the two surveys. Hence, the geological
component can be assumed constant. This would not be true for parts including the
reservoir, which does show differences.

Each original data set measured 1751 by 800 by 450 cells, (12.5 m, 12.5m, 4 ms). This
was cut down to 1751 by 651 by 31 (every fifth layer between layer 50 and 200) to resolve
memory issues and the fact that the data were irregularly sized. The data have been
through Krichhoff Prestack time migration (PSTM) and stacking, prior to my analysis.
However, it is not known if the data are suitable for Bayesian inversion. The coming
analysis will address this issue.

41



42 CHAPTER 6. PRELIMINARY STUDIES OF THE DATA

6.2 Gaussianity
A true Gaussian distribution is completely described by its mean and variance. Other
interesting characteristics are skewness and kurtosis. These parameters are closely related
to the moments of the distribution. The m’th moment about the mean µ is

µm = E[(X − E[X])m] =
∫ +∞

−∞
(x− µ)mf(x)dx, (6.1)

where X is a stochastic variable, x is a realization of the stochastic process, and f(x) is
a probability density function. Notice that I am talking about the central moment here,
which means the moment is centered around the mean µ, which is defined

µ = E[X] =
∫ +∞

−∞
xf(x)dx. (6.2)

As just mentioned, the mean and variance completely describes the true Gaussian dis-
tribution. Skewness and kurtosis, related to the third and fourth moment, play no role
in characterizing the true normal distribution. If the distribution is not truly Gaussian
however, skewness and kurtosis must be calculated to quantify how close to or far from
Gaussian it is. Real data are usually not perfectly Gaussian. In the discrete case, we have
the sample central moment

µm = 1
n

n∑
k=1

(xk − µ)m, (6.3)

where n is the sample size, and µ = 1
n

∑n
k=1 xk. I will continue to investigate the mean,

variance, skewness and kurtosis of the Halfdan data.
The data set stretches over large distances, both horizontally and vertically. Therefore,

I will list the parameters for several parts of the data set, both in the form of Observations
(Base and Monitor added) and Residual (Base and Monitor differenced). The results
are presented in Table 6.1 and 6.2 and discussed in turn in the following sections. For
comparison, I calculated the same parameters for the synthetic data generated in the
previous chapter, which are known to be zero mean and Gaussian. All investigated data
are shown in Figures 6.1 and 6.2, except the 3-D cube. Histograms are also provided. The
investigated layer, layer 140, is chosen for its extremely noisy nature.
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Observations (s1 + s2) Mean Variance Skewness Kurtosis
Full 3-D cube 2.765 3205 0.6148 10.460

Single horizontal layer, shallow -7.244 2338 -0.2462 3.406
Single horizontal layer, deep -2.540 3386 -0.1151 3.310
Patch of 200x200, shallow -21.697 1074 -0.4378 3.951
Patch of 200x200, deep -23.996 1865 0.5522 3.208

Noisy synthetic data, dobs -3.397 1950 0.0751 3.239

Table 6.1: Statistics on Observations. The mean, variance, skewness and kurtosis of
different parts and sizes of the Halfdan data and synthetic data.

Residual (s1 − s2) Mean Variance Skewness Kurtosis
Residual full 3-D cube 0.970 198 0.7660 11.600

Residual single horizontal layer, shallow -1.020 99 0.0246 3.395
Residual single horizontal layer, deep 0.533 45 -0.0132 3.345
Residual patch of 200x200, shallow 2.032 86 -0.1500 3.074
Residual patch of 200x200, deep 1.417 40 0.2731 3.117
Residual synthetic data, dobs 0.460 181 0.0357 2.876

Table 6.2: Statistics on Residual. The mean, variance, skewness and kurtosis of the
residual of different parts and sizes of the Halfdan data and synthetic data.
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OBSERVATIONS

(a) Shallow layer. (b) Deep layer.

(c) Shallow patch. (d) Deep patch.

(e) Synthetic dobs.

Figure 6.1: Investigated data.
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RESIDUAL

(a) Residual of shallow layer. (b) Residual of deep layer.

(c) Residual of shallow patch. (d) Residual of deep patch.

(e) Residual of synthetic dobs.

Figure 6.2: Residual of investigated data.
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OBSERVATIONS

(a) Full 3-D cube.

(b) Shallow layer. (c) Deep layer.

(d) Shallow patch. (e) Deep patch.

(f) Synthetic dobs.

Figure 6.3: Histograms of investigated Observations data.
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RESIDUAL

(a) Residual of full 3-D cube.

(b) Residual of shallow layer. (c) Residual of deep layer.

(d) Residual of shallow patch. (e) Residual of deep patch.

(f) Residual of synthetic dobs.

Figure 6.4: Histograms of investigated Residual data.
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The mean

The mean, or expected value, is an intuitive variable that one would expect to find, if a
certain random variable process was repeated an infinite amount of times and multiplied
by its probability density function. The sample mean is an approximation to the true mean
that needs to converge for n approaching infinity. That is why having a large number of
data points ensures the best possible estimate of the mean. As briefly mentioned, the
sample mean is defined

µ = E[X] =
n∑

k=1
xkpk = 1

n

n∑
k=1

xk, (6.4)

where pk is the probability of the k’th value of x. If X is a stochastic process, pk becomes
1/n, and we have the right hand side of Equation (6.4). The mean specifies the center of
the Gaussian distribution and is assumed to be zero prior to data investigation. However,
the sample mean of the Halfdan is not zero, or even constant. I repeat the means from
Table 6.1 and 6.2 for convenience in Table 6.3. You will also need Table 6.4 (next page)
as I refer briefly to variances.

Mean of Observations Mean of Residual
Full 3-D cube 2.765 0.970
Single horizontal layer, shallow -7.244 -1.020
Single horizontal layer, deep -2.540 0.533
Patch of 200x200, shallow -21.697 2.032
Patch of 200x200, deep -23.996 1.417
Noisy synthetic data, dobs -3.397 0.460

Table 6.3: The mean of different parts and sizes of the Halfdan data and synthetic data.

The effect of the non-zero mean is, if not taken into account, a bias in the inversion
result. To prevent this, one can demean the data by subtracting the sample mean from
all data points. Looking at Observations (the first column of Table 6.3), the smallest
investigated data sets have a sample mean of -21.7 and -24.0. Hence, it deviates from
zero, but stays within one standard deviation (square root of variance) equal to 32.8 and
43.2, respectively. The single horizontal layers come much closer to the anticipated zero-
mean, with a sample mean of -7.2 and -2.5, respectively, and twice the variance, on the
same order of magnitude as the synthetic data. The large difference between means in
Single and Patch suggests the smallest data set only depict local behavior, and might
be considered too small to adequately characterize the geology. The complete cube tips
the mean to the positive side, but stays close to zero. With a variance of 3,205, and a
sample mean of 2.8, any bias introduced by assuming zero mean would be small. The
millions of data points involved could lead one to believe, that the sample mean is close
to the true mean. And it would be, if the random process generating all the data was
first order stationary. However, the vertical distance between the upper and lower layers
is thousands of feet. It is not likely, that the upper and lower layers can be described by
the same process and thus have the same mean.

The mean of the Residual, however, is close to zero in all cases. This suggests, that
the process generating the noise is more stationary than the geology, and that a zero mean
noise process is likely.
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Variance

The second central moment describes the squared differences with the mean summed.
Usually it is called the variance, and is carried by the symbol σ2. It describes how much
any data point is expected to vary from another.

µ2 = σ2 = E[(X − µ)2] = 1
n

n∑
k=1

(xk − µ)2. (6.5)

Variance is the second variable needed to describe the standard Gaussian distribution.

Variance of Observations Variance of Residual
Full 3-D cube 3205 198
Single horizontal layer, shallow 2338 99
Single horizontal layer, deep 3386 45
Patch of 200x200, shallow 1074 86
Patch of 200x200, deep 1865 40
Noisy synthetic data, dobs 1950 181

Table 6.4: The second moment of different parts and sizes of the Halfdan data and syn-
thetic data.

One of the assumptions made in the synthetic example, is second order stationarity,
meaning the variance must be invariant to translation. Looking at Table 6.4 we see sig-
nificantly different amount of variance in Single horizontal layer and Patch. This suggests
second order stationarity does not hold. Only 1-D variance is presented in the table (data
has been vectorized), but the assumption should still hold. They are of the same order of
magnitude though. The difference in variance supports the earlier statement, that a 200 x
200 patch might be too small to accurately describe the mean and variation in the process
behind the data.

In the Observational data, the shallow layers seem to have lower variance. It also
so happens, that noise is most visible in the shallow layers. Random or correlated noise
usually increases variance. That variance then is smaller in the shallowest layers, is un-
expected, but supports the earlier statement, that different processes created the upper
and lower layers. The Residual data however, have lowest variance in the deepest layers,
opposite the Observations. This is expected due to the way the data have been processed
(stacking) leading to better signal-to-noise ratio in the deeper layers.

Skewness

Skewness is a measure of the extent to which the distribution "leans" to one side or another
relative to the mean. The definition of skewness, is

µ3 = E[(X − µ
σ

)3] = E[(X − µ)3]
(E[(X − µ)2])3/2 , (6.6)

also called the third standardized moment. The sample skewness follows

µ3 =
1
n

∑n
k=1(xk − µ)3

( 1
n

∑n
k=1(xk − µ)2)3/2 . (6.7)
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A distribution leaning to the right thus has positive skewness, and negative to the left. A
normal distribution is symmetric, and therefore has zero skewness. The data however, are
weakly or moderatley non-symmetric and skewed. This is evident from Table 6.5 but also
the histograms of the data in Figure 6.3.

Skewness of Observations Skewness of Residual
Full 3-D cube 0.6148 0.7660
Single horizontal layer, shallow -0.2462 0.0246
Single horizontal layer, deep -0.1151 -0.0132
Patch of 200x200, shallow -0.4378 -0.1500
Patch of 200x200, deep 0.5522 0.2731
Noisy synthetic data, dobs 0.075 0.0357

Table 6.5: The skewness of different parts and sizes of the Halfdan data and synthetic
data.

Skewness is prominent in both Observations and Residual for Patch and 3-D cube
data. For the Observations, the full data cube has the highest absolute skewness of 0.61,
closely followed by the smallest data sets with 0.55 and 0.44. The order is repeated for
the Residual, although the skewness is lessened in all but the Full 3-D cube. Only the
Single layers come close to the low level skewness of the synthetic data. Once again, this
suggests that the full data cube takes in too much data from too different distributions,
and the small data set takes in too little.

Kurtosis

The last distribution variable I will be investigating is kurtosis. Kurtosis refers to the
peakedness or curvature of a distribution and is related to the fourth central moment. It
is often used as a measure of tail length. A long, or heavy tail, suggests more variance is
due to infrequent but extreme deviations. The opposite means most events lie close to the
mean, yielding steep side slopes and short tails. Kurtosis is defined as the standardized
fourth moment

µ4 = E[(X − µ
σ

)4] = E[(X − µ)4]
(E[(X − µ)2])2 . (6.8)

The sample kurtosis is

µ4 =
1
n

∑n
k=1(xk − µ)4

( 1
n

∑n
k=1(xk − µ)2)2 . (6.9)

A Gaussian distribution should ideally have no excess kurtosis. Excess kurtosis is defined
as kurtosis minus 3. The kurtosis of the data is repeated in Table 6.6.
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Kurtosis of Observations Kurtosis of Residual
Full 3-D cube 10.460 11.600
Single horizontal layer, shallow 3.406 3.395
Single horizontal layer, deep 3.310 3.345
Patch of 200x200, shallow 3.951 3.074
Patch of 200x200, deep 3.208 3.117
Noisy synthetic data, dobs 3.239 2.876

Table 6.6: The kurtosis of different parts and sizes of the Halfdan data and synthetic data.

All data sets have slight excess kurtosis, including the synthetic data sets. Only the
Full 3-D cube is excessively kurtosious. This is hardly visible in Figure 6.3a or 6.4a, but
clear in Table 6.6.

Conclusion

From initial investigation of the four variables mean, variance, skewness and kurtosis, in
various segments of the data, we have learned that the Halfdan data are hard pressed to be
considered Gaussian in anything than the Single horizontal layers. The smaller data sets
introduced a bias due to non-zero mean and higher skewness, while the Full 3-D cube was
excessively skewed and highly kurtosious. It was however noted, that the Residual in all
but the Full 3-D cube, was much closer to a Gaussian distribution than the Observations.
I will continue the investigation with some normality tests.

6.3 Kolmogorov-Smirnov test

Figure 6.5: Illustration of the Kolmogorov-Smirnov statistic. Red line is CDF, blue line is
an ECDF, and the black arrow is the K-S statistic. Source: http://en.wikipedia.org/
wiki/Kolmogorov%E2%80%93Smirnov_test

It is possible to test for normality in more efficient ways than looking at standardized
central moments. One common test is the Kolmogorov-Smirnov (K-S) test which compares
the empirical distribution function of the sample with the cumulative distribution function

http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
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of a reference distribution, in our case the normal distribution. The probability that the
sample distribution is a realization of the reference distribution, is calculated. A generic
illustration is seen in Figure 6.5. Table 6.7 lists the calculated probabilities. Each data
set was compared to two reference Gaussians; one with zero mean and variance equal to
the variance of the data tested, and another with both mean and variance equal to that
of the data. The reference Gaussians are my null hypothesis’.

Gaussian probability Gaussian probability
for Observations for Residual

Zero mean / Sample mean Zero mean / Sample mean
Full 3-D cube 0 / 0 0 / 0
Single horizontal layer, shallow 0 / 0 0 / 8.206e-81
Single horizontal layer, deep 0 / 0 0 / 3.723e-76
Patch of 200x200, shallow 0 / 2.267e-32 0 / 3.428e-12
Patch of 200x200, deep 0 / 7.780e-119 0 / 5.050e-23
Noisy synthetic data, dobs 3.524e-11 / 3.352e-26 5.405e-17 / 0.953

Table 6.7: Kolmogorov-Smirnov tests of different parts and sizes of the Halfdan data and
synthetic data.

Clearly, the mean has a significant impact on the result, even for the synthetic data,
where the sample mean is very close to zero. The zero mean hypothesis is completely
rejected (0 % probability) in all cases but the synthetic data. The sample mean increases
the probability, though not to a degree validating the use of the term Gaussian about the
distribution.

From Table 6.7 it follows, that the Kolmogorov-Smirnov test rejects the null hypothesis
at a significance level of more than 99.9% for all but the synthetic residual with sample
mean. However, this should not discourage any further investigation or use of the data
in a Gaussian framework. The test is just one way of checking Gaussianity and is not
definitive. Also, if we loose the Gaussian assumption, the whole inversion scheme becomes
invalid.

6.4 Normal probability plots
Another way of testing normality is to look at normal probability plots. It is based on
normal order statistic medians or means (look up rankits), which are superimposed on a
line joining the first and third quartiles of the data, which is then extrapolated. Normality
is evaluated visually, by noting how far the data (blue stars, see next figure) are from the
empirical normal distribution (red dash). A Gaussian sample is expected to lie close to
the straight line. The normal probability plots of the previously investigated data are
presented in Figures 6.6 and 6.7.
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OBSERVATIONS

(a) Full 3-D cube.

(b) Shallow layer. (c) Deep layer.

(d) Shallow patch. (e) Deep patch.

(f) Synthetic dobs.

Figure 6.6: Normal probability plots of investigated data.
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RESIDUAL

(a) Residual of full 3-D cube.

(b) Residual of shallow layer. (c) Residual of deep layer.

(d) Residual of shallow patch. (e) Residual of deep patch.

(f) Residual of synthetic dobs.

Figure 6.7: Normal probability plots of investigated data.
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The Gaussian or non-Gaussian properties of the data are clearly illustrated in the
previous figures. In contrary to the previous K-S tests, all data sets seem fairly Gaussian,
following the line well in most cases, except for the Full 3-D cube. Small deviations are
expected, especially at extreme values where the number of data points is small. Excluding
the Full cube, this supports the earlier statement, that we should not or need not abandon
the Gaussian assumption lightly.

6.5 Stationarity

To avoid breaking the stationarity assumption, the stochastic process or processes de-
scribing the distribution, from which the Observations are a realization, must not change
over time or space. Formally, the mean must be constant over the data space (first order
stationary) and the auto-covariance function must be position independent (second order
stationary). That the mean and variance is not constant with depth is of no concern. But
we have also seen that mean and variance of Observations are not constant within one time
slice in shallow or in deep layers, thus making the mean and covariance of Observations
non-stationary.

The mean and variance of the Residual data vary much less. The mean is close to zero,
and the variance changes only slightly. From this, the noise can be assumed to be first
and second order stationary, at least if the noise description is limited to a single layer.

6.6 Other requirements

Additive noise
It is very difficult to assess whether the Halfdan data are contaminated only by additive
noise. It is a popular simplification to assume additive (linear) noise, which first of all
comes from the fact, that it is fast and easy to handle. Unless it seriously contradicts the
prior knowledge about the noise process, all noise is assumed additive. Furthermore, it is
often also assumed white and Gaussiana and hence uncorrelated. The assumption is well
known, and widely accepted, because the studies required to prove or disprove additivity
would be disproportionately demanding, compared to the seismic survey itself, in both
acquisition and processing time. Also, it is questionable whether a possibly more realis-
tic non-linear noise model will contribute significantly to the accuracy of the uncertainty
estimates and interpretation of the data in general. I was able to produce synthetic data
with additive noise, with roughly the same statistical properties as the Halfdan data, and
subsequently generate realizations that convincingly emulated the true data (see Chap-
ter 5). Hence, the additive noise assumption is believed to be valid.

Correct geographical alignment of data sets
This noise filtering technique relies on 4-D data from which we get the Observations and
the Residual. To avoid blurring when summing or differencing the data, the data sets
must be aligned perfectly so coordinate (x, y)Base lines up with coordinate (x, y)Monitor.
Misalignment will cause blurriness and reduce the effective resolution of the combined
signals. The alignment of the two data sets were done by professionals and assumed
related with negligible error compared to the size of an individual grid cell.
Geological stability
Vertical alignment of the data is also important and relies, as the horizontal alignment,

aIdentically distributed and statistically independent (iid).
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on the GPS and the data processing. Assuming the GPS is correct and both surveys
undergo the same processing sequence, geological instability of the region becomes the
largest source of error. The Halfdan field is known to be a production field and thus risks
various production related structural deformations, e.g. compaction. If deformation has
occurred, velocity stretching, among other things, will distort the combined signal just
like horizontal displacement, only in the vertical direction. However, the investigated data
all originate from above the reservoir, far above the production zone. It is presumed,
that deformation is negligible in this relatively shallow part of the formation, and thus
the assumption of geological stability holds. Also, more than 10 random trace pairs (Base
and Monitor) have been examined, by matching peaks and troughs down the trace. All
matched up well, especially in the deeper, less noisy layers suggesting no deformation.
Two of the inspected trace pairs are shown below.

Figure 6.8: Two random trace pairs from the Halfdan data. Peaks and troughs line up
well, indicating no deformation in the formation.

6.7 Conclusion

It has been established, that the data are far from perfectly Gaussian. In particular the
Full 3-D cube has shown significant deviation from Gaussian properties. Of course, since
I aim to remove horizontal noise, the Gaussianity of the Full 3-D cube is not strictly
important. I will not attempt to invert the Full cube. It does however reveal the fact,
that no one process can be expected to describe all the data. Only regional, horizontal
stationarity can be assumed. As a consequence, a new covariance model must be chosen
for each inverted section. The size of the inverted region also showed its importance in the
former investigation. Local trends are a problem, and it should be considered, if one should
sequentially invert smaller regions, while correcting for the trend, or invert a whole layer
at a time, assuming zero mean. The Observations especially were shown to be excessively
skewed and not zero-mean, while the Residuals exhibited more Gaussian values.
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It is concluded, that the Residual (the noise estimator) can be considered first and sec-
ond order stationary and Gaussian with zero mean, and its covariance matrix be estimated
from large or small patches of data. The Observations (i.e. the data set for inversion) are
significantly more complicated and may not be Gaussian of nature. K-S tests reject the
Gaussian hypothesis, but normal probability plots show less reason to worry. Hence, the
Observations are not strictly Gaussian, but retains the likeliness of a normal distribution
and likely does not belong to any other analytical distribution. Since the Gaussian as-
sumption must be accepted to proceed with the inversion, and the data are not extremely
non-Gaussian (e.g. bimodal), I move on to the real inversion with confidence.
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Chapter 7

Noise filtering of Halfdan data

With the Halfdan data thoroughly analyzed in the previous chapter, it is time to apply the
developed method on real data for the first time. The approach is identical to Chapter 5
where I tested the method on synthetic data. The data analysis in Chapter 6 raised ques-
tions about the statistical properties of the data. The most severe was non-stationarity,
seen as a change in variance with depth. As the noise filtering will only be horizontal, this
will not be an issue, if each layer is modeled and processed independently. The analysis
also showed the data should be de-meaned if inverting smaller patches of data. I present
the results based on one of the most noisy layers in the shallow part of the data, layer 140.
However, the method is applicable to any layer, and in fact all 4-D data sets, provided
they comply with the assumptions discussed in the former chapter.

I invert a large data set and a small data set. The small data set is inverted in
the spatial domain, restricting the sample size to no more than 902 data points due to
memory issues. The large data set is inverted in the Fourier domain where the size of a
covariance matrix of a N x N matrix is reduced from N4 to N2. CPU time is also reduced
significantly. However, some approximations are needed to make the method work in
the frequency domain. The impact of these approximations have not been investigated.
However, I present the results to show that the noise characterization is also valid for
larger areas. I begin in the spatial domain with a small subset of layer 140.
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7.1 Small subset inversion

As first described in the Methodology section, the two data sets, Base and Monitor, are
summed and differenced, creating two new data sets; Observations, dobs, and Residual,
dres. The following inversion will aim to remove the noise from dobs by modeling the noise
on dres.

(a) Base. (b) Monitor.

(c) Observations, dobs. (d) Residual, dres.

Figure 7.1: Data chosen for inversion.

7.1.1 Modeling the noise

With risk of repeating myself, I model the noise semi-variogram on the experimental semi-
variogram of the Residual, exactly as described in the Methodology section and in the
synthetic example. Figure 7.2 and 7.3 illustrate the modeling procedure. The resulting
noise model and prior geology are shown in Table 7.1.

Model Sill Range Angle Aniso. (b1/a1)
Prior geology, Cm Gaussian 800 7 0 1

Noise, Cd
Gaussian 35 50 180 .045
Gaussian 45 3 0 1

Table 7.1: The geology and noise model estimated from the semi-variogram of the Obser-
vations and Residual is tabled.
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(a) dres and noise model. (b) dobs with combined noise and geology
model.

Figure 7.2: 1-D experimental semi-variogram of Residual and Observations data with
modeled noise and geology.

Figure 7.3: Noise semi-variogram modeling. The noise is modeled on the experimental
semi-variogram of the Residual dres. Random Gaussian realizations are generated to
ensure likeliness to the true residual.

With the best models found, I can construct Cm and Cd and perform the least-squares
inversion. The Observations, which had a mean of 37.1, are de-meaned.



62 CHAPTER 7. NOISE FILTERING OF HALFDAN DATA

7.1.2 Posterior mean solution

(a) Observations, dobs/2. (b) Posterior mean, m̃/2.

(c) Removed noise dobs/2− m̃/2.

Figure 7.4: Posterior mean solution to the inverse problem (b) with removed noise (c) and
original Observations (a).

Figure 7.4 shows the posterior mean solution in comparison to the original Observations
dobs (the original mean has been restored). The inversion has removed the subtle inline
striping, without removing large features not characterized by the noise covariance model.
The removed noise, Figure 7.4c, convincingly illustrates the removed striping. Some less
stripy features were also removed. This may or may not be actual noise. The short range,
isotropic part of the noise semi-variogram model allows the removal of small scale features,
even though they do not look like striping.

A set of 9 random Gaussian realizations of the posterior is presented in Figure 7.5 and
experimental 1-D semi-variograms in Figure 7.6. Variance is obviously increased in the
random realizations and some remnant striping is visible. It is likely that some striping
will remain, as we did not model the oscillations seen in Figure 7.2a.
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Figure 7.5: Gaussian realizations of the posterior distribution N (m̃/2, C̃m/4).

(a) Minor principal direction (E-W). (b) Major principal direction (N-S).

Figure 7.6: 1-D experimental semi-variograms of the posterior mean, including five real-
izations.
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7.1.3 Spherical geology prior

I would like to present an alternate solution than the one just presented, to illustrate how
small changes in the prior model can impact the result. I introduce a new geology prior
based on a Spherical model with slightly longer range. A comparison between the former
and latter models is shown in Figure 7.7. The fit of the Spherical model is worse than the
Gaussian at lags 0-3. At longer distances the two models are equally good.

Figure 7.8 compares the solution from the two models: The Spherical model solution
m̃Sph seen in (b) is less smooth, more irregular on a small scale, than the Gaussian m̃Gau

seen in (a). The bumpy character of the Spherical solution is better seen from the removed
part of the signal in Figure 7.9. The Spherical model has clearly removed some striping.
However, small scale observations (which are possibly noise) are not efficiently attenuated.

Model Sill Range Angle Aniso. (b1/a1)
Prior geology, CGau

m Gaussian 800 7 0 1
Alternate prior geology, CSph

m Spherical 800 10 0 1

Noise, Cd
Gaussian 35 50 180 .045
Gaussian 45 3 0 1

Table 7.2: An alternate prior geology model is introduced. The noise model is unchanged.

(a) dobs with combined Gaussian geology
model and noise.

(b) Spherical geology model + noise.

(c) dobs with combined Spherical geology
model and noise.

Figure 7.7: 1-D experimental semi-variograms of the two different models.
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(a) Mean posterior m̃Gau/2 with Gaussian
geology prior

(b) Mean posterior m̃Sph/2 with Spherical
geology prior.

(c) Observations, dobs/2.

Figure 7.8: Two mean posterior solutions to the inverse problem compared to the Obser-
vations.

(a) Removed noise, dobs/2− m̃Gau/2. (b) Removed noise, dobs/2− m̃Sph/2.

Figure 7.9: Removed (estimated) noise.
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Gaussian realizations of the posterior from the Spherical model is presented in Figure 7.10
and experimental 1-D semi-variograms in Figure 7.11. Realizations of the posterior based
on a Spherical prior model does not yield terrible results. However, one should always
choose the covariance model that best describes data.

Figure 7.10: Gaussian realizations of the posterior distribution N (m̃Sph/2, C̃Sph
m /4)

(Spherical geology model).

(a) Minor principal direction (E-W). (b) Major principal direction (N-S).

Figure 7.11: 1-D experimental semi-variograms of the posterior mean, including five real-
izations.
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7.2 Larger subset inversion (FFT)

To show that the modeled noise covariance can also be removed on larger data sets, I
model the noise on a 200 x 200 patch of data in layer 140. So much information (remember,
the covariance matrix is nxny · nxny = 40, 000 · 40, 000 = 1, 600, 000, 000 data points) is
impossible to store and invert on normal computers. Hence, we must solve the inverse
problem in the Fourier domain, where the covariance matrix is reduced to nx · ny =
200 · 200 = 40, 000), and the inversion is solved as a deconvolution problem. The problem
can now be solved in a matter of seconds. There are however issues of both technical
and theoretical nature when converting a non-periodic signal to a periodic signal. Issues
which are yet to receive proper attention. Those concerns aside, I present data set and
the inversion result below. The data are shown in Figure 7.12.

(a) Base. (b) Monitor.

(c) Observations, dobs. (d) Residual, dres.

Figure 7.12: Data chosen for inversion.

Model Sill Range Angle Aniso. (b1/a1)
Prior geology, Cm Gaussian 400 6 0 1

Noise, Cd
Gaussian 12 60 180 .035
Gaussian 45 3 0 1

Table 7.3: The noise model estimated from the semi-variogram of the Residual is tabled,
along with a geology model based on the Observations.



68 CHAPTER 7. NOISE FILTERING OF HALFDAN DATA

(a) dres and noise model.
(b) dobs with combined noise and geology

model.

Figure 7.13: 1-D experimental semi-variogram of Residual and Observations data with
modeled noise and geology.

(a) Observations, dobs. (b) Posterior mean, m̃.

(c) Removed noise, dobs − m̃.

Figure 7.14: Posterior mean solution to the inverse problem (b) with removed noise (c)
and original Observations (a).

The mean posterior solution is shown in Figure 7.14b along with the original Obser-
vations. 7.14c shows the difference between the least-squares estimator (LSE) and the
Observations. What has been removed from the Observations then, is mainly N-S cor-
related, while the lower frequency part of the observations perceived as true geology, is
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retained. The bad fit in Figure 7.13b is possibly due to some trend in the data.

7.3 Conclusion
The noise characterization technique was applied to real 4-D seismic reflection data from
the Halfdan field in the North Sea. The noise was modeled by fitting a positive definite
semi-variogram model to the experimental semi-variogram of the Residual data set. A
LSQ inversion technique was then used to filter the modeled noise. Several sizes of data
sets were filtered using spatial as well as frequency domain techniques. Modeling the noise
on the Residual proved easy when the sill and range were well defined, and noise was partly
removed. However, some remnant noise was visible in the posterior solution to both the
smaller and larger data set. This is possibly due to the inability to model the oscillations
in the Residual and unattended trends in the data (non-stationarity).

When applied to the smaller data set, two solutions with different prior models were
investigated. The best data-model fit was obtained with Gaussian noise and Gaussian
geology. This also yielded the most pleasing inversion results. In the synthetic chapter,
the true geological model was known, and hence could be compared to the posterior
solution. When working with real data, this is not possible. However, the success of the
synthetic example ensues a high degree of trust in the method, and hence also in the real
data inversion result.
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Chapter 8

Discussion and conclusion

8.1 Method

A method for characterizing and modeling noise in 4-D seismic reflection data has been
developed. The purpose of the method is to minimize errors introduced by priors based
on intuition. A more objective prior is obtained by ignoring external information such as
"expert knowledge". Instead, priors are estimated straight from the data. The noise in
particular is estimated from the experimental semi-variogram of the differenced data set
(the Residual). The prior information takes the form of Gaussian pdfs and can be used in
any probabilistic inversion.

This investigation has focused specifically on characterizing and removing horizontal 2-D
spatially correlated acquisition noise in time slices of 4-D data. The method can without
difficulty be applied to other types of noise, horizontal or vertical. Or expanded to work in
3 dimensions, provided positive definite 3-D geostatistical models are available, and that
assumptions such as stationarity still holds.

A special form of linear least squares inversion was used to demonstrate how well this
noise estimation method works. By letting the mapping operator map into itself, rather
than between model and data space, the characteristics of the (data derived) noise covari-
ance matrix are filtered from the data.

An important note is, that the noise model found by this method may be used in already
existing seismic inversion methods relying on Gaussian noise models, allowing inversion
directly on noisy data, without fitting the noise in the solution.

8.2 Results

The method has been tested on synthetic and real 4-D data. The synthetic case showed,
that the method, under optimal conditions, can remove a combination of high amplitude
correlated and uncorrelated noise (S/N = 2) with only a slight decrease in accuracy. The
noise proved easy to model, even with severe noise. All striping was removed. It was also
shown that, if badly estimated priors were used, the inversion results deteriorated severely.

When applied to real 4-D data, assumptions such as first and second order stationarity
were challenged. The data were also mildly non-Gaussian. However, non of the assump-
tions were deemed so severe, that the method could not be safely applied. The noise was
relatively easy to model with a combination of isotropic and anisotropic Gaussian models,
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and the inversion results were pleasing in both smaller and larger data sets. Most N-S
correlated noise was removed. However, some noise persisted, possibly due to unmod-
eled oscillations in the experimental noise covariance. The method proved less successful
in estimating the prior model (the noise-free geology) of the real data, possibly due to
non-stationarity in the Observations.

8.3 Discussion
It was unexpected to find how relatively well behaved the experimental semi-variogram of
the Residual was, and consequently, how easy it was to model the noise. The preliminary
data analysis also showed, that the Residual data, were much more Gaussian than the
Observations. This implies, that the nature of the noise is indeed a Gaussian process. It
was not possible though to model the oscillating hole effect in the noise (also to a lesser
extent present in the geology), due to the non-positive definiteness of the hole model. It
is believed, that the success of the inversion could improve considerably, if this oscillating
behavior was included in the model.

It would also be interesting to consider what might happen if we had some data in a
part of the section where there are production-related changes (which are the true targets
of 4-D surveys). The work flow would then be to build a noise model using the difference
from somewhere with no geological difference (as was done in this thesis), then use this
noise model on the difference between Base and Monitor (not the sum), in a region where
there are changes to the geology. One would then be estimating the 4-D signal. Knowing
how the geology has changed as a consequence of production is very interesting when
predicting the elastic properties of the reservoir.

8.4 Areas of interesting future research
As the variance of the data has been shown to vary with depth, and to a lesser extent,
with position, different noise models must be estimated for different areas of the data. As
of yet, the task of fitting noise and geology models by hand is tedious. If the method is to
be implemented in commercial software, some form of automation is needed. To make the
method fully autonomous, the noise and geology priors should be modeled automatically.
However, it is doubtful if a fully automated approach can ever be trusted. The properties
of the noise seem to be well characterized by the developed method, but the properties of
the prior geology is not. It is believed, that some subjective information, e.g. a geologist,
should be introduced when choosing this prior.
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Appendix A

Sum of variances

The following proof uses the fact that expected values are additive:
E(X ± Y ) = E(X)± E(Y ).
Lemma A.1. Let X be a real valued stochastic variable with second moment. And let
E(X) = µ. Then

V ar(X) = E(X2)− µ2.
Proof.

V ar(X) = E[(X − µ)2]
= E(X2 − 2Xµ+ µ2)
= E(X2)− 2µE(X) + E(µ2)
= E(X2)− 2µ · µ+ µ2

= E(X2)− µ2.

Theorem A.2. If X and Y are independent, real valued random variables with second
moments, then

V ar(X ± Y ) = V ar(X) + V ar(Y ).
Proof.

V ar(X ± Y ) = E[(X ± Y )2]− µ2
X±Y

= E(X2 ± 2XY + Y 2)− (µX ± µY )2

= E(X2)± 2E(XY ) + E(Y 2)− (µ2
X ± 2µXµY + µ2

Y )
= E(X2)± 2E(XY ) + E(Y 2)− µ2

X ∓ 2µXµY − µ2
Y

= E(X2)− µ2
X ± 2[E(XY )− µXµY ] + E(Y 2)− µ2

Y

Rewriting the terms in the square brackets, and using that the covariance of two indepen-
dent stochastic variables is zero, we see that the two terms cancel:

E(XY )− µXµY = E(XY )− E(X)E(Y ) = Cov(X,Y ) = 0.

It then follows, that
V ar(X ± Y ) = E(X2)− µ2

X + E(Y 2)− µ2
Y

= V ar(X) + V ar(Y ).
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Appendix B

Bayes’ theorem

The simplicity of Bayes’ theorem, and the fact that it allows the inclusion of prior proba-
bility, has made it popular in many different areas where inversion techniques are applied.
Why? An inverse problem is, in a nutshell, nothing more than solving a set of equations.
However, all real problems suffer from under- or overdeterminacy, multidimensionality
and uncertainty in the form of noise. Bayes’ theorem offers a way to make the problem
well-posed by combining a priori knowledge with information obtained from observations.
Building on previous definitions, we assume that the data space is linear (and thus
µd(d) = const.) and that modeling uncertainties are negligible (compared to observa-
tions). The relationship between model and data can then be written

θ(d|m) = δ(d− g(m)), (B.1)

where δ is the delta function. Hence, we are absolutely certain, that our forward model g
is correct, and we have an exact relation between model parameters and data:

d = g(m). (B.2)

The likelihood function then simplifies to

L(m) = ρd(g(m)), (B.3)

and equation (3.2) becomes

σm(m) = kρm(m)ρd(g(m)). (B.4)

By identifying f(m|dobs) ≡ σm(m), f(dobs|m) ≡ ρd(g(m)), f(m) ≡ ρ(m), and f(dobs) ≡ 1/k,
we obtain the well known Bayes theorem:

f(m|dobs) = f(m)f(dobs|m)
f(dobs) . (B.5)

Bayes theorem is thus a special case of Tarantola and Valette’s more general theory re-
lating posterior probability with prior probability scaled by the likelihood function and
the constant vector f(dobs). Bayes theorem can also be derived with the assumption that
observational uncertainty are negligible (compared to modeling uncertainties), or with a
combination of both, as long as they are independent.
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Appendix C

Learning objectives

To ensure that my thesis complies with the DTU requirements to professionalism and doc-
umentation, I have formulated a set of learning objectives, including goals for the process,
result, presentation and dissemination.

During the course of this project, I will

• Describe noise in relation to signal-to-noise optimization.

• Describe the noise removal technique.

• Describe and characterize the data made available by Maersk Oil (contact: Adam
Cherret).

• Main objective: Design a specific noise characterization and modeling
method which can be applied to the before mentioned data.

• Discuss the choice of method and theory.

• Apply the method to the data.

• Explore possible expansions to the method, e.g. automation.

• Have a critical theoretical and empirical discussion and conclusion on the results.

• Assess whether the method can be realized in commercial practice.

• Write the assignment in a structured, adequate, concise and clear manner, and
moreover in compliance with good practice in written geophysics so the method can
be reproduced by others.

• Outline my work in a weekly journal.

• Present and adjust the thesis in accordance with the achieved results.
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Appendix D

MATLAB scripts

The code responsible for generating the synthetic data, calculating the semi-variograms,
running the inversion and so on, accumulate to several thousand lines of code. I find it
disrespectful to the environment to include the code in any work that the reader might want
to have a printed copy of. Hence, I have uploaded all my scripts to my homepage http:
//clundmand.wix.com/christianljensen#!projects/ctzx for public download.
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Appendix E

Journal

Week 1, 1st-3rd of March
Had my first meeting with Adam Cherrett from Maersk Oil. He provided the data in the
form of two surveys geographically identical but temporally spaced, and told me about
the acquisition method and what type of noise I should expect and look for. The trick
is to subtract the two surveys and look at the residual. This is assumed to be a good
representation of the noise. Each data block is 800 by 1750 by 450 giving a total of
630,000,000 data points per survey. The vast size makes it impossible to read it all at once
in MATLAB and must be extracted trace by trace. Thomas provided me with a reader
that subsamples the data set.

I spend most of my time looking through the data at various angles and researching
existing noise characterization techniques. I found it difficult to find books or papers about
structured noise in seismics.
Week 2, 4th-10th of March
Met up with Klaus this week to discuss basic ideas for the project: What is noise really?
What type of noise id present in my data? How should I remove the noise; by overfitting
perhaps? I also met with Thomas. He liked the idea about overfitting. We also talked
about characterizing different types of noise independently, i.e. the striping noise as one
type, the overfitting residual noise as another, and more.
Looked into Gaussian probability theory, spectral subtraction and f-k filtering as well as
general FFT based filtering methods. Extracted a 99 by 99 by 450 data cube from each
data set. Inspected the spatial and temporal cross correlation of the data by FFT (wrote
code myself). Noticed noisyness/striping and variance decreases with depth. Made a 3D
tapering function so reduce ringyness when using FFT.
Week 3, 11th-17th of March
Read paper about automatic factorial co-kriging (AFACK), by T. Coleou. They reduce
striping from acquisition imprint by covariance modeling. Made a random function that
produces 3D matrices with random entries. Read about the subtle differences between
correlograms and variograms, and came up with an idea to use PCA to make better semi
variograms. The highest principal components (PCs) contain the parts of the image with
highest variance (through the 450 time steps). By making a semi variogram from the
highest PC it will be easier to fit a model to it since it contains only variance in the
principal direction (I think). I can calculate more semi variograms, fit models, and then
combine them into a more advanced model if needed. Now I only need to figure out how
to make the 2D semi variograms. Wrote my first entries in LATEX about my progress so
far. Read about Maximum Autocorrelation Factor, or MAF analysis. This supposedly is
better than PCA. Started reading Seismic Data Processing by Yilmaz [1987]. At meeting
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with Klaus we agree that I should characterize the noise by its mean and covariance. This
stochastic description will enable me to use Gaussian statistics. I read the first 100 pages
of Covariance Analysis for Seismic Signal Processing by Kirlin et al. [1999].
Week 4, 18th-24th of March
Met with Professor Allan Nielsen to discuss PCA, MAF, MAD, MNF and other data anal-
ysis methods. I also met with Thomas and got an action plan down: Model variogram
and see if it can reproduce your data. Started reading An Introduction to Applied Geo-
statistics, by Isaaks and Srivastava [1989] and calculated basic summary statistics and q-q
plots etc. for Base, Monitor and residual. Realized that the data have a bias. They do
not have zero mean, and only fairly fits a Gaussian model. Produced synthesized semi-
variograms and calculated realizations hereof, i.e. simulated data from variogram models.
Tried detecting striping by correlation coefficient in a moving window. It didn’t work, but
the idea should be developed.
Week 5, 25th-31st of March
2nd meeting with Adam. Looked at various variograms and histograms. Agreed I should
make a 2D variogram simulator so I could test how different size data sets, tapering and
detrending affect the variogram. Got 1D synthetic semi-variogram simulator code from
Thomas. Realized most graduate programs had reached their application deadlines. Up-
dated CV and wrote motivational letter. Contacted Maersk and Dong Energy. Prepared
variogram simulation document in LATEX. Investigated variogram variance development
as function of number of data points - variance decreases proportional to data square side
length. Investigated edge effects in Fourier domain - striping in real data thought to be
due to edge effects is not evident in simulated data, hence the edge effects are real. Went
to the DSE carrier expo. Fell ill at the end of the week.
Week 6, 1st-7th of April
Still feeling ill. Attended meeting for young SPE members. Applied for three positions at
Schlumberger. Produced 31 complete horizontal slabs of the data between layer 50 and
layer 200. Learned I must taper and zeropad (in that order) before using FFT. Found that
the variogram sill and nugget (exhaustive data set) decreases with depth. Range decreases
with depth. Tried out new approach: Maximum Noise Fraction, or MNF. Didn’t learn
much - needs several bands of data. I tried substituting the frequency bands with layers
from the residual survey, but I wasn’t able to separate the noise. Also tried calculating
semi-variogram of five high variance PCA components of residual. Maybe this can be used
to automate the variogram modeling. Read five chapters about Fast Fourier Transform
in Brigham [1974]. Implemented and tested 2D exponential variogram model. Modified
synthetic semi-variogram simulator code from Thomas to handle 2D. Added cosine func-
tion to mattaper.m. Designed flowcharts. Begun writing sections "The data" and "Noise
characterization". Updated profile on Jobindex.dk. Applied for job at MAN Turbo &
Diesel.
Week 7, 8th-14th of April
Wrote of few more lines in "The data". Assessed Gaussian properties of the data. Both
Lilliefors and Kolmogorov-Smirnov tests rejected the hypothesis of Gaussianity in all the
data as well as for individual layers. The test statistics were very bad! If tested on smaller
parts of the data (99x99) several layers are accepted as Gaussian with 5 per cent signifi-
cance interval... -> Nonstationarity? Started working on demeaning in windows of data to
determined if some parts of the data are more Gaussian than others (stationarity). Finally
started working a way to remove the noise (least squares inversion). Got the first working
synthetic noise removal method to work!! :D Started working on noise removal on real
data. Was successful in removing striped noise by modeling the covariance for geology and
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noise. Attended carrier seminar. Attended personal carrier counseling meeting. Worked
on poster (just for fun).
Week 8, 15th-21st of April
Rewrote my CV. Went to a doctor’s appointment. Investigated if the same noise and ge-
ology model could remove noise other data than they were modeled on. This worked very
well, although it got less convincing in the deep layers. Removing noise in this not-very-
noisy environment was almost futile. It only decreased the contrast. Weekly seminar. Job
seeking seminar. Found that variance amplitude was a plausible measure of noise filtering
effectiveness. My noise filter reduces variance by 25-50 per cent for all layers. Even those
temporally very far from the model. Started subdividing a layer into smaller squares to
produce a complete noise reduced image. Completed code for removing noise in windows.
PROBLEM: Each window now has different variance and mean, meaning the complete
image looks like a quilted rug. Effect decreases with increasing window size. IDEA: Let
windows overlap, then remove overlap at the end.
Week 9, 22nd-28th of April
Wrote an overview of stuff I had so far, and what I wanted to do, that I wanted to put in the
report. Also the order of things. Shifted things around in my report and added many lines
several places. Took a closer look at how the LSQ estimator distribution looked compared
to the true distribution and how it depended on number of data points. Weekly seminar.
Made 2 multi-distribution cumulative histograms instead of 6 single-distribution regular
histograms. Meeting with Thomas: Results look great! Size of covariance matrix an issue.
Can be circumvented by calculating cov.matrix from larger area than output model, but
still not bigger than 50x50. That way boundaries will be much less prominent. Problems
are then to verify that the small area used can truthfully represent the covariance of the
observed data. Also, many more (smaller) covariance matrices has to be calculated due to
overlap. We also talked about calculating the likelihood of my solution and compare it to
the likelihood of the true solution (in the synthetic case), and also calculate bad solutions
(from bad priors) to verify using the prior I have modeled. Meeting with Adam: He didn’t
like that I remove noise on single surveys with noise estimation taken from residual survey
(both surveys). He suggested I take my synthetic example further, by allowing for different
noise models in different locations: Calculate Gaussian probability that two blocks come
from the same variogram model. Looked up proof for sum of independent Gaussians.
Week 10, 29th-5th of April/May
Felt sick the first few days. Implemented double-signal idea in synthetics. Worked fine.
Implemented double-signal idea in real data. No significant change in noise reduction.
Read paper for weekly seminar (Bosch et al. 2010). Found references to papers I need
to read. Had quick talk with Thomas about meeting Adam. Weekly seminar. Started
writing an application for a job at Qeye Labs.
Week 11, 6th-12th of May
Finished and sent the job application to Qeye Labs. Got a reply from Qeye Labs the day
after. I was invited for a quick interview (screening) on Monday next week. Used most of
the week preparing for the interview.
Week 12, 13th-19th of May
Job interview on Monday. Studied the properties of circulant and symmetric Toeplitz
matrices when used with FFT. Made synthetic data set. Wrote sequential lsq filtering
with overlap. Studied effects of wrong geology prior and noise prior. Added virtual box
to geology to investigate how well it got resolved.
Week 13, 20th-26th of May
Worked on making the inversion faster by turning the inversion into a convolution in the
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Fourier domain. Didn’t manage to make it work in 2D. Wrote three pages about the in-
verse problem, the approach of Tarantola and Valette, Bayes’ theorem, and LSQ inversion.
Applied for job at DONG Energy.
Week 14, 27th-2nd of May/June
Worked yet again on making the FFT approach (inversion) work, without success. Com-
puter broke down! It took two days to get it up to speed again. Wrote some more on the
inverse theory part. Switched around the order of some chapters.
Week 15, 3rd-9th of June
Status meeting with Thomas. Walked through the essential parts of the project. Thomas
was pleased with my progress. I should quantify my results with a 1D cloud variogram.
In the synthetic case I know how the variogram should look like, hence realizations of my
posterior solution should lie on top of the true model. Demonstrate with good and bad
priors. Met with Adam and Hanno from Maersk to sort out the FFT inversion/deconvo-
lution approach. Sorted out some issues, but still not entirely sure. Also because the FFT
introduces more assumptions and "hacks" to the covariance matrix.
Week 16, 10th-16th of June
Generated and compared solutions based on good and bad priors via 1D semi-variograms.
This 1D comparison of solutions is supported by realizations of the different solutions.
I am planning to quantify the "goodness" by calculating the probability that posterior
covariance "A" is equal to posterior covariance "B". I also had a meeting with Klaus
Wednesday. I presented my work so far, and he suggested I should start writing the the-
sis, i.e. not attempt any new stuff. If I finish up before time, I could always pursue one of
many minor issues. Worked on presentation for QI job interview.
Week 17, 17th-23rd of June
Job interview with QI Labs on Monday. Finished first draft of the Methodology section.
Started working on writing the Synthetic example section.
Week 18, 24th-30th of June
Finished first draft of Synthetic example section. Started Preliminary studies of the data
section.
Week 19, 1st-7th of July
Working on Preliminary data analysis. The data (Observations) are not really as Gaussian
as I’d hoped. But the Residual seems fairly Gaussian, at least. Finished data analysis.
Proceeding with noise filtering on real data.
Week 20, 8th-14th of July
Finished a rough version of the real noise filtering section. The method seems to work
extraordinarily well. I read the whole manuscript through and sent the draft to Thomas
for a look-through. This can be considered a pre-alpha version of the final product. Got
feedback from Thomas and edited a lot.
Week 20, 15th-21st of July
Made a complete rewrite of the variogram section. Now with more theory. I also wrote
the abstract. A red thread is forming in the report. I finally seem to be getting things
together. However, I continue to find new information on stuff I’d like to do or had liked
to do differently. I must be strong and feel comfortable with what I have accomplished.
Week 20, 22nd-28th of July
All chapters are more or less finished. Wrote discussion and conclusion. Sent it off for
review. Took Tuesday off after working for 14 days straight. I clear up some possible mis-
understandings unavoidable when mixing inverse problem theory and geostatistics. Run
the simulations again to get the right color scale.
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Week 20, 29th of July - 1st of August
I make a last effort to express myself as clear and concise as possible. It is taking longer
than expected, and I get new ideas every day. The 1st of August has arrived. 5 long
months have passed. But I am done and pleased with the result. Now , I just need to
worry about the defense.
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