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Summary

The goal of this thesis is to examine the control of a single wind turbine.
The demand in power from wind turbines is increasing. But while everyone
demands more power production from wind turbines no one wants to have
wind turbines in their own backyard. Therefore it is essential that when a
turbine is placed somewhere that it will produce the most power with less
wear as possible. Another need for controlling the power production of wind
turbines is within the implementation of the Smart Grid all over Europe.
With the Smart Grid it is wanted to control the flexible demand in power
by increasing automatisation, distant control and the exchange of data with
other IT systems. By controlling the wind turbines they can be set to steer
the power production towards a certain demand and thus help the Smart
Grid in doing its best.

A wind turbine model is presented and linearized. The model has been
tested by simulations and then verified. The Model Predictive Control tool-
box in Matlab was chosen to help design the controller for the model. Model
Predictive Control has been investigated as a way to steer the wind turbine
towards the wanted output and still be in the feasible area of the constraints
that the model has. It has been shown through various simulations that such
a controller is a reliable method.
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Preface

This thesis was prepared at the department of Applied Mathematics and
Computer Science at the Technical University of Denmark in fulfilment of
the requirements for acquiring the B.Sc. in Mathematics and Technology.

The thesis deals with control and optimization of a wind turbine. A model
for the wind turbine is presented, linearized, simulated and varyfied. The
MPC toolbox in Matlab is used to design a controller for the wind turbine
which then can be steered toward a higher power production and less load
on the tower.

The thesis consists of four chapters. Chapter 1 which deals with the theory
of MSD systems that are used twice in the turbine model. Chapter 2 which
describes the wind turbine model, linearizes it and then chapter 3 holds the
simulations and varification of the model. Chapter 4 is about the theory in
MPC, the use of MPC toolbox in Matlab and simulations of the turbine
with controller implemented.

Lyngby, June 28, 2012

Hasham Mazhar Mirza & Dennis Søren Holm
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1 | Mass-Spring-Damper Systems

This chapter is an introduction to the mass-spring-damper systems, which
are a part of the NREL 5MW model. The MSD systems will be described and
the stability in a MSD system will be investigated.

1.1 The MSD System

Figure 1.1: Mass-Spring-Damper system (MSD-system)

A mass, m, is attached to a spring of stiffness k, and a viscous damper of
damping coefficient c. Recall Hooke’s law for a compressed spring

Fs = −kx (1.1)

The damping force can be described as

Fd = −cv = −cẋ (1.2)
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1.1. THE MSD SYSTEM 3

Applying Newton’s second law of motion

Ftot = ma = mẍ (1.3)

Where x is the displacement of the mass, ẋ is the velocity of x and ẍ is the
acceleration. Combining (1.1), (1.2) and (1.3) gives the differential equation
Ftot = Fs + Fd or

mẍ = −kx− cẋ (1.4)

By dividing by m this can be rearranged into

ẍ+
c

m
ẋ+

k

m
x = 0 (1.5)

Let ω0 =
√

k
m

and ζ = c
2
√
mk

then the differential equation can be written
as [Wika]

ẍ+ 2ζω0ẋ+ ω2
0x = 0 (1.6)

It is no coincidence that ω0 and ζ are chosen that way. Actually ω0 is the
natural frequence of the system and ζ is the damping ratio.

To solve the system, let x = eγt where γ ∈ C and the characteristic
equation becomes

γ2 + 2ζω0γ + ω0 = 0 (1.7)

Solving this equation will give two roots.
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Figure 1.2 shows the result of simulating various systems with constant ζ
and diverse values of ω0.

Figure 1.2: The influence of ω0 in the MSD-system

By examining the oscillations in the figure above, it is easy to see that by in-
creasing ω0 the frequency of the oscillation increases aswell.
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Doing the same simulations but now with diverse ζ with constant ω0, the
influence that ζ has on the system can be explained as the damping ratio.

Figure 1.3: The influence of ζ in the MSD-system

The damping can be explained in three different scenarioes. [Wika]

The critical damped system with ζ = 1 and a real double root γ. This
system is not oscillating and converges to zero as fast as possible. This can
be compared to the damping in a door closer.

The over-damped system where ζ > 1 and there are two different real roots.
This system is also not oscillating but converges slower towards zero than
the critical-damped system. Related to the door closer example would mean
that the door would close slower.

The under-damped system with 0 ≤ ζ < 1 and two complex roots. For
0 < ζ < 1 the system oscillates in the begining but converges to zero. This
would mean that the door closer would close fast and the door would hit
the door frame with a forceful velocity or continue oscillating in case of a
swinging door. For ζ = 0 there is no damping and the system is describing
a harmonic oscillation.
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1.2 Stability in MSD-systems

The second order differential equation (1.6) can be set up as two coupled
first order differential equations[

ẋ
ẍ

]
=

[
0 1
−ω2

0 −2ζω0

] [
x
ẋ

]
(1.8)

The eigenvalues of the matrix can be used to dermine the stability of the
system. It all depends upon the existence of real and imaginary parts of the
eigenvalues, together with the sign of the real parts and their actual values.
When the eigenvalues are complex numbers, i.e. on the form a + bi where
a ∈ R, b ∈ R \ 0 and i is the complex number

√
−1, there are three cases

of oscillatory behavior. The three cases are when a is positive, negative or
zero. The system is always oscilatory because b 6= 0. [KMNWG]

• When the real part is negative, the system is stable and behaves damped.
The amplitude of the oscillations decreases as a function of time.

• When the real part is positive, the system is unstable and the amplitude
of the oscillations will increase as a function of time.

• When the real part is zero, the system behaves like an undamped os-
cillation, i.e. the amplitude is constant.

Figure 1.4: Graphs of systems with different eigenvalues. From the top down:
1) Real part is negative 2) Real part is positive 3) Real part is zero.



2 | Wind Turbine Model

The equations used to model a wind turbine will be introduced in this chapter.
In this thesis the wind turbine is chosen to be an NREL 5MW wind turbine.
The model will then be linearized and set up as a state-space model.

2.1 Aerodynamics

To begin with, the power that is extracted by the wind turbine from the
passing wind is described. The following equation describes how much power
the turbine extracts from the wind.

P =
1

2
ρπR2v3CP (2.1)

Here P is the power, ρ is the density of the air, R is the radius of the
circle formed by the blades of the wind turbine. v is the wind speed. CP
is the efficiency coefficient defined from the pitch of the blades θ and the
tip-speed-ratio of the wings λ . [Hen07]

The aerodynamic torque is then given as

Qr =
P

Ωr

(2.2)

Where Ωr is the angular velocity.
Below is given the thrust force, in this equation CT can be observed, which
is defined by the pitch of the blades θ and the tip-speed-ratio of the wings λ
, just like the coefficient CP .

Qt =
1

2
ρπR2v2CT (2.3)

7



8 CHAPTER 2. WIND TURBINE MODEL

It should be noted that CP and CT are not analytically derived. These
are specific for each wind turbine model, and are mostly looked up in a table
and are derived from measurements. Plots of CP and CT as functions of θ
and λ are shown below. [AEO]

Figure 2.1: CP and CT plots

Scripts for plotting are provided in appendix C.1.1.5



2.2. LOAD ON THE TOWER 9

2.2 Load on the Tower

The flexible wind turbine experiences wind from every direction that causes
it to oscillate from side to side and forth and back, for the sake of simplicity
it is assumed that the wind turbine only oscillates forth and back.

The displacement is denoted xt. [Hen07]

ẍt =
1

Mt

(Qt −Dtẋt −Ktxt) (2.4)

In the above equation Mt is the mass of the tower, Dt is the damping
constant and Kt is the spring contant. When formed as a system of two
coupled differential equations it can be written as.[

ẋ
ẍ

]
=

[
0 1
−Kt

Mt
−Dt

Mt

] [
x
ẋ

]
+

[
0
1
Mt

]
Qt (2.5)

Now that the swaying is a part of the model, it is necessary to look at the
relative velocity because if the wind turbine is moving forward the relative
wind speed is higher than the actual wind speed and if the wind turbine
is moving backwards the relative wind speed is lower than the actual wind
speed.

vr = v − ẋt (2.6)

So when the load on the tower is taken into consideration, v should be
replaced by vr.

2.3 Actuators

Actuators are a necessity because of the lack of the ability to change the
pitch and the torque immediately.

2.3.1 Pitch of the Blades

The pitch of the blade is controlled by a motor. The actuator can be described
by a second order differential equation, where θref is the desired pitch and θ
is the actual pitch.

θ̈ = ω2
nθref − 2ωnζθ̇ − ω2

nθ (2.7)

In the above equation ωn is the natural pitch frequency, θref is the desired
angle that θ turns towards. ζ is the damping of the pitch actuator. This
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second order differential equation can also be written as a system of two
coupled first order differential equations. [Hen07] [LM06][

θ̇

θ̈

]
=

[
0 1
−ω2

n −2ζωn

] [
θ

θ̇

]
+

[
0
ω2
n

]
θref (2.8)

2.3.2 The Generator

The electromagnetic torque can be described by a first order differential
equation

Qg,ref = τQ̇g +Qg (2.9)

To achieve the desired form, this is rewritten

Q̇g = −1

τ
Qg +

1

τ
Qg,ref (2.10)

Here Qg is the actual torque and Qref is the desired torque that Qg steers
towards. τ is a time constant. [LM06]

2.3.3 The Drive Train

The drive train is the inner gearing of the wind turbine, it is here that power
is transformed to the state of electrical energy and this is modelled by three
first order differential Equations.

The first equation is

Ω̇r =
1

Ir
(Qr −∆φKs −∆φ̇Ds) (2.11)

This equation describes the derivative of the angular velocity of the rotor.
Here Ir is the inertia of the rotor and ∆φ is the torsion angle of the drive shaft,
Ks is the spring constant of the drive shaft, and Ds is the damping/friction
constant of the driveshaft.

The second equation is

Ω̇g =
1

Ig
(−Qg + ∆φ

Ks

Ng

+ ∆φ̇
Ds

Ng

) (2.12)

This equation describes the derivative of the angular velocity of the gen-
erator. Here Ig is the inertia of the generator and Ng is the gear ratio.

The third equation describes the derivative of the of the torsion angle of
the driveshaft.

∆φ̇ = Ωr −
1

Ng

Ωg (2.13)
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The result is the system of equations shown below. It is a result of
inserting (2.13) into (2.12) and (2.11).

 Ω̇r

Ω̇g

∆φ̇

 =

 −
Ds

Ir
Ds

IrNg
−Ks

Ir
Ds

IgNg
− Ds

IgN2
g

Ks

IgNg

1 − 1
Ng

0


 Ωr

Ωg

∆φ

+

 1
Ir

0

0 − 1
Ig

0 0

[ Qr

Qg

]
(2.14)

This is how the actuators are described. [LM06]

2.3.4 Power

To calculate the power produced by the wind turbine, it is necessary to look
at the torque experienced by the generator.

The generator torque Qg is adjusted in such a way in the model that
Q̂g = Qg · τ is the generator torque.
Therefore the power P produced by the generator i.e. the wind turbine

is. [Hen07]

P = ΩgQg =
ΩgQ̂g

τ
(2.15)
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2.4 Linearization

The objective has been to obtain a linear model all along, so that the linear
model can be implemented, but the state space model obtained so far has
some defects concerning its linearization. The problem is in the tip-speed-
ratio, which is dependent on both vr and Ωr.

λ =
vr

ΩrR
(2.16)

The tip-speed-ratio λ is contained in both the aerodynamic torque, Qr,
and the thrust force, Qt, which both are functions of λ which of course make
them non-linear.
Again the objective is to linearize the model. In order to complete that task
it is nececary to linearize both Qr and Qt. [AEO]

Qr =
Pr
Ωr

=
1
2
ρπR2v3Cp(λ, θ)

Ωr

=
1
2
ρπR2v3Cp(

vr
RΩr

, θ)

Ωr

(2.17)

The linearization is done by executing the first order Taylor expansion
with respect to the variables vr, ωr and θ for some linearization points vr0,Ωr0

and θ0

Qr ≈ Qr0 +
∂Qr

∂vr

∣∣∣∣
vr0

∆vr +
∂Qr

∂Ωr

∣∣∣∣
Ωr0

∆Ωr +
∂Qr

∂θ

∣∣∣∣
θ0

∆θ (2.18)

In equation (2.18) ∆ means the difference between the variable and a
chosen linearized point for instance

∆vr = vr − vr0

The individual first order partial derivatives of (2.18) is

∂Qr

∂vr

∣∣∣∣
vr0

=
1

Ωr

∂Pr
∂vr

∣∣∣∣
vr0

∂Qr

∂Ωr

∣∣∣∣
Ωr0

=

∂Pr

∂Ωr0

∣∣∣∣
Ωr0

Ωr0 − Pr0

Ω2
r0

=
1

Ωr0

∂Pr
∂Ωr

∣∣∣∣
Ωr0

− Pr0
Ω2
r0

∂Qr

∂θ

∣∣∣∣
θ0

=
1

Ωr

∂Pr
∂θ

∣∣∣∣
θ0
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The partial derivatives of Pr of the above equations are

∂Pr
∂vr

∣∣∣∣
vr0

=
1

2
ρπR2

(
3v2

r0CP0 + v3
r0

∂CP
∂λ

∣∣∣∣
λ0

∂λ

∂vr

∣∣∣∣
vr0

)
∂Pr
∂Ωr

∣∣∣∣
Ωr0

=
1

2
ρπR2v3

r0

∂CP
∂λ

∣∣∣∣
λ0

∂λ

∂Ωr

∣∣∣∣
Ωr0

∂Pr
∂θ

∣∣∣∣
θ0

=
1

2
ρπR2v3

r0

∂CP
∂θ

∣∣∣∣
θ0

and the partial derivatives with regards to λ are

∂λ

∂Ωr

∣∣∣∣
Ωr0

= − vr0
RΩ2

r0

∂λ

∂vr

∣∣∣∣
vr0

=
1

RΩr0

Just as the aerodynamic torque was linearized, the thrust force exerted
on the tower has to be linearized. Like with Qr the linearization variables
are vr,Ωr and θ and the Taylor expansion is done with respect to some
linearization points that are vr0,Ωr0 and θ0

Qt ≈ Qt0 +
∂Qt

∂vr

∣∣∣∣
vr0

∆vr +
∂Qt

∂Ωr

∣∣∣∣
Ωr0

∆Ωr +
∂Qt

∂θ

∣∣∣∣
θ0

∆θ (2.19)

The individual first order partial derivatives of (2.19) is [Hen07]

∂Qt

∂vr

∣∣∣∣
vr0

=
1

2
ρπR22vr0Ct0 + v2

r0

∂Ct
∂λ

∣∣∣∣
λ0

1

RΩr0

∂Qt

∂Ωr

∣∣∣∣
Ωr0

=
1

2
ρπR2v2

r0

∂Ct
∂λ

∣∣∣∣
λ0

(
− vr0
RΩ2

r0

)
∂Qt

∂θ

∣∣∣∣
θ0

=
1

2
ρπR2v2

r0

∂Ct
∂θ

∣∣∣∣
θ0

Now only the expressions remaining non-linear are the derivatives of CP
and CT . The first order derivative approximation is obtained by the finite
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differens method. [Ras12]

∂CP (λ, θ)

∂λ

∣∣∣∣
λ0

≈ CP (λ, θ0)− CP (λ0, θ0)

∆λ

∂CP (λ, θ)

∂θ

∣∣∣∣
θ0

≈ CP (λ0, θ)− CP (λ0, θ0)

∆θ

∂Ct(λ, θ)

∂λ

∣∣∣∣
λ0

≈ Ct(λ, θ0)− Ct(λ0, θ0)

∆λ

∂Ct(λ, θ)

∂θ

∣∣∣∣
θ0

≈ Ct(λ0, θ)− Ct(λ0, θ0)

∆θ

Now the entire state space model is linearized, and is ready to be used.

2.5 Constraints

In order to make to the model as realistic as possible it is also necessary to
have some contraints, because of the mechanical limitations. The pitch of the
blades cannot be controlled as wished, one of the limitations are for instance
regarding how fast the pitch can change, the speed at which the pitch changes
is dependent on how fast the engine that is used for that purpose can rotate
the wings. The constraints of a realistic wind turbine is given below.

θmin ≤ θ ≤ θmax

θ̇min ≤ θ̇ ≤ θ̇max

Just like the pitch, the generator torque also has some constraints caused by
some limitations. [Ras12]

Qg,min ≤ Qg ≤ Qq,max

Q̇g,min ≤ Q̇g ≤ Q̇q,max

These contriants have to be satisfied otherwise the model will not end up
useful.
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2.6 The Complete Model

The previous derived and explained models can be collected in one big model.

ẋ = Ax + Bu + Ev

y = Cx

Here x is the state vector. A,B,E and C are matrices defining the system.
u and v are the input to the model and finally y is the output. From the
previously derived bits of the model we define. [LM06]

x =



Ωr

Ωg

∆φ
xt
ẋt
θ

θ̇

Q̂g


u =

[
θref
Qg,ref

]
y =


Ωr

Ωg

∆φ
xt
Qg



A =



−Ds

Ir
+ 1

Ir

∂Qr

∂Ωr

Ds

IrNg
−Ks

Ir
0 − 1

Ir

∂Qr

∂v
1
Ir

∂Qr

∂θ
0 0

Ds

IgNg
− Ds

IgN2
g

Ks

IgNg
0 0 0 0 − 1

Igτ

1 − 1
Ng

0 0 0 0 0 0

0 0 0 0 1 0 0 0
1
Mt

∂Qt

∂Ωr
0 0 −Kt

Mt
−Dt

Mt
− 1

Mt

∂Qt

∂v
1
Mt

∂Qt

∂θ
0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 −ω2

n −2ζωn 0
0 0 0 0 0 0 0 − 1

τ



B =



0 0
0 0
0 0
0 0
0 0
0 0
ω2
n 0

0 1
τ


E =



1
Ir

∂Qr

∂v

0
0
0

1
Mt

∂Qt

∂v

0
0
0


C =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

τ





3 | Simulations

This chapter will show various simulations of the NREL 5MW wind turbine.
The simulations are done in Matlab with ode45. The model is then vari-
fied.

In chapter 2 a model for the NREL 5MW wind turbine was described.
In this chapter the model has been implemented and simulated in Matlab,
the implementation of the model i shown in appendix C.1.1.7. To get the
coefficients CT and CP the tables are downloaded from [AEO] and they are
implemented for look-up in script C.1.1.3. The look-up tables and other
NREL 5MW specifications are implemented in script for loading, see ap-
pendix C.1.1.4. The input of the simulations are v, θref and Qg,raef , all
vectors and the simulations are done by using Matlab function ode45, see
the script in appendix C.1.1.8. The input wind v should be between 4m/s
and 11.4m/s. The starting point is chosen as x0 = 0 except for Ωr,0 which
should be chosen between 0.7 rad

s
and 1.2 rad

s
[Ras12]. The simulation results

in plots of the input and output but only a selection of the output plots
are shown in here. The simulations does not output the power production
directly but it is known from (2.15) that P = ΩgQg.

16
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In the first simulation the inputs are kept stable for 300 seconds. The
wind speed is chosen to be at 11m/s, a strong breeze in the upper end of the
boudary.
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It is seen on the output that the tower displacement begins with an oscil-
lation but then it converges towards a specific point. This is expected as the
real parts of the eigenvalues of tower displacement equations (2.4) are both
negative for the NREL 5MW turbine. As seen in section 1.2 this leads to a
stable damped system. The same goes for tower velocity ẋ. All in all it is
satifiable that every output converges.
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For the next simulation it is tried to change the wind speed from a strong
breeze of 11m/s to a moderate breeze of 7m/s when the system has stabilized.
Still the other inputs are constant.
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Like the previous simulation the systems stabilizes for the wind speed of
11m/s and when the wind speed then drops at 150 sec the tower begins to
oscillate again. It stabilizes now at a lower point as it would be expected.
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It would also be interesting to see what influence the pitch of the blades
will have on the output. For this simulation the pitch is changed from 0◦ to
10◦ and the wind speed kept steady at 7m/s
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As expected all the shown values drops. This is due to the fact that the
thrust force Qt becomes lower as it is depending on the pitch. According
to (2.4) the displacement and the velocity of the tower is depending on the
thrust force. Of course this also leads to a decrease in the power production
and the angular velocity of the rotor.
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For this last simulation the wind input is stochastic. It is generated with
the NREL 5MW simulink simulator from [AEO]. The wind has a speed
varying from 5.2m/s to 11.2m/s.
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It is seen that all of the outputs are affected by this. Both the displace-
ment of the tower, the velocity of the rotor and the power production seems
to follow the changes in the wind speed.
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Simulations of various input values and changes in the inputs has been
made. From the output of those simulations the model has been varified at
suitable for further progress



4 | Model Predictive Control

In this chapter it will be explained what Model Predictive Control (MPC) is
and why it can be beneficial to use it. In Matlab there exists a MPC toolbox
and some of its features will be examined through this chapter aswell. At last
some simulations with the MPC implemented will be shown.

4.1 MPC as a tool

Model predictive control is a process control method. It predicts the changes
in the dependent variables. There are two categories of the independent vari-
ables, the first one is, the ones that can be adjusted by the controller also
called the manipulated variables, and the second category is of the variables
that cannot be adjusted by the controller and the latter ones is called mea-
sured disturbance. [Wikb]
A simplified explanation of how the MPC works is that the model is given
some setpoints to how the outputs are desired; from those setpoints to the
actual results a cost function is constructed. The aim is to minimize the
cost function as much as possible so to obtain results as close to the desired
setpoints. The predictions of events are given by the following equations

x̂k+i+1|k = f
(
x̂k+i|k,uk+i|k

)
(4.1)

ŷk+i|k = g
(
x̂k+i|k,uk+i|k

)
(4.2)

22
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An example of this could be the linear formulation

x̂k+1 = Axk + Buk + Evk
ŷk+1 = Cx̂k+1 + Duk+1

}
for k = {0, 1, . . . , N − 1} (4.3)

In the calculations of the predictions of NREL 5MW D = 0 will be used.
For discrete time the predictions can be found iteratively. The predictions
can be expressed as a loop as shown below.

x̂k+1|k = Axk + Buk + Evk

ŷk+1 = Cx̂k+1|k

= CAxk + CBuk + CEvk

x̂k+2|k = Ax̂k+1|k + Buk+1 + Evk+1

= A (Axk + Buk + Evk) + Buk+1 + Evk+1

= A2xk + ABuk + AEvk + Buk+1 + Evk+1

ŷk+2 = Cx̂k+2|k

= CA2xk + CABuk + CAEvk + CBuk+1 + CEvk+1

x̂k+3|k = Ax̂k+2|k + Buk+2 + Evk+2

= A(A2xk + ABuk + AEvk + Buk+1 + Evk+1) + Buk+2 + Evk+2

= A3xk + A2Buk + A2Evk + ABuk+1 + AEvk+1 + Buk+2 + Evk+2

ŷk+3 = Cx̂k+3|k

= CA3xk + CA2Buk + CA2Evk + CABuk+1 + CAEvk+1 + CBuk+2 + CEvk+2

...
x̂k+N |k = xk+N−1|k + BuN−1 + EvN−1

= ANxk + AN−1Buk + AN−1Evk + AN−2Buk+1 + AN−2Evk+1 + . . .

+ BuN−1 + EvN−1

ŷk+N = Cx̂k+N |k

= CANxk + CAN−1Buk + CAN−1Evk + CAN−2Buk+1 + CAN−2Evk+1 + . . .

+ CBuN−1 + CEvN−1

The above predictions can be expressed in matrix form as shown below.
x̂k|k

x̂k+1|k
x̂k+2|k

...
x̂k+N |k

 =


I
A
A2

...
AN

xk +


0 0 0 . . . 0
B 0 0 . . . 0

AB B 0 . . . 0
...

...
... . . . ...

ANB AN−1B AN−2B . . . 0




uk

uk+1

uk+2
...

uk+N

 . . .
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+


0 0 0 . . . 0
E 0 0 . . . 0

AE E 0 . . . 0
...

...
... . . . ...

ANE AN−1E AN−2E . . . 0




vk

vk+1

vk+2
...

vk+N


Just like the prediction are written in a matrix-system, the outputs can

also be written as a matrix system

ȳ = Φx0 + Γū + Λv̄ (4.4)

In this case the vector and matrices are defined as

ȳ =


ŷ1

ŷ2

ŷ3
...

ŷN

 ,Φ =


CA
CA2

CA3

...
CAN

 ,Γ =


CB 0 0 . . . 0

CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

... . . . ...
CANB CAN−1B CAN−2B . . . CB


,

ū =


u1

u2

u3
...

uN

 ,Λ =


CE 0 0 . . . 0

CAE CE 0 . . . 0
CA2E CAE CE . . . 0

...
...

... . . . ...
CANE CAN−1E CAN−2E . . . CE

 , v̄ =


v1

v2

v3
...

vN


Now a cost function is needed in order to have some kind of measurement

on how close the result are from the optimal solution. The cost will increase
the further the results deviate from the optimal solution, therefore the aim is
to minimize the cost function. The cost function is a sum of all the outputs
diviation from the optimal solution. As shown below takes the form of a
quadric norm.

1

2

N∑
k=0

||yk+1 − rk+1||2Q (4.5)

The quadric sum is multiplied by 1
2
, which is for practical reasons, it does

not have any effect on the minimization of the cost function which means
that it is permissible to do so.

Apart from that the fact is that it is not well wished that there should
be big changes in the inputs, this makes a basis for an extension of the cost
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function so that the bigger the change is in the inputs, the bigger penalty is
received in form of the cost function. The extension is as before mentioned
based on the change in the inputs, as demonstrated below.

1

2

N−1∑
k=0

||∆uk+1||2R (4.6)

Here ∆uk+1 is uk+1 − uk

By combining the two pieces of the cost functions the result obtained is

φ =
1

2

N∑
k=0

||yk+1 − rk+1||2Q +
1

2

N−1∑
k=0

||∆uk+1||2R (4.7)

Now a vector of the setpoints is defined and a matrix with weights for
(4.5) or the first part of (4.7) [Hen07]

r0 =


r1

r2

r3
...
rN

 ,Q =


Q 0 0 . . . 0
0 Q 0 . . . 0
0 0 Q . . . 0
...

...
... . . . ...

0 0 0 . . . Q

 ,R =


R 0 0 . . . 0
0 R 0 . . . 0
0 0 R . . . 0
...

...
... . . . ...

0 0 0 . . . R


The MPC-Toolbox asks for the setpoints as well as the weights as shown

above, in order to have the nessesary data to minimize the cost function.
The built in cost function is slightly bigger, but the neglegtet part of it is not
relevant for the criterion on which the above cost function is built on [Mat].
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4.2 MPC in Matlab

In Matlab there exists an MPC toolbox. By typing mpctool in Matlab’s
commando prompt, the control and estimation tool manager pops up, see fig
4.1.

Figure 4.1: The control and estimation tool manager (CETM) in Matlab

The CETM requires a plant which should be either in the workspace or in
a .mat file. The plant should be a linear model of what should be controlled.
In this case the plant is the model of the NREL 5 MW from section 2.6. One
way of defining a plant model is to define a state-space model. In Matlab
state-space models are of the form:

ẋ = Ax + Bu

y = Cx + Du
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It seems like this model does not allow any disturbances, which means
that the wind speed cannot be implemented in the system. To deal with this
situation a new matrix is defined as H =

[
E B

]
. And the plant will be

defined as the continious state-space model:

ẋ = Ax + Hū

y = Cx + Dū

Where ū is defined as the combination of measured distubances and ma-
nipulated variables

ū =
[

v u
]

=
[
v θref Ωr,ref

]
The plant is then discretised

x[k+1] = Ax[k] + Bū[k]

y[k] = Cx[k] + Dū[k]

It can now be imported into the CETM. The CETM automaticly gen-
erates a controller for the plant model. Anyhow it is desireble to make one
yourself with the right specifications. The sampling time was set when the
discrete model was created to be Ts = 2, this means that the controller com-
putes new manipulated variables every two seconds. The prediction horizon
and control horizon is set to be p = 10 and m = 3 which means that the
controller optimizes over 10 future sampling periods and calculates 3 future
moves. Finally the controller can be made with the mpc-command and the
constraints are added aswell, see C.1.1.10.
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4.3 MPC simulations

The simulations of a NREL 5 MW turbine is done by by setting up the state-
space model and the mpc described in section 4.2 and implementet in script
C.1.1.10. The simulations are performed in the CETM by entering setpoints
and measured disturbance. The duration of the simulations is 200 seconds.
The first thing to do when simulating is to define the setpoints and the
weights. The setpoints for xt and ∆φ are chosen to be low, so that the tower
will be more stable and the possibility that the driveshaft will cause the
generator to fail is smaller. It is known that the maximum power production
of the turbine is 5MW and Qg,max = 47.4kNm this implies that Ωg,max ≈
105 rad

s
and for the simulations the setpoint is chosen a little lower. Ωr is

dependent of Ωg and the setpoint is chosen so that it fits the setpoint for Ωg.
The setpoint of Qg is ofcourse not the same as the maximum. The setpoint
are as follows

r0 =


0.928

90
10−6

10−6

2 · 104


This means that the controller aims for a power production of 90 rad

s
·

20kN · m = 1.8MW . The wind speed is chosen to be of random numbers
with mean 7 and standard deviation 0.5. The weights and the rate weights
of the manipulated variables that are used for this simulation are as follows

Q =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 R =

[
1 0
0 1

]
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It it seen on the output that Qg hits its setpoint but Ωg struggels to get to
the 90 rad

s
This means that the power production never reaches the 1.8MW

that is aimed for. Instead it has a production of 1.63MW at the 200 seconds
mark of simulation. It is seen that the lack of power production is caused
by Ωg. So for the next simulation it is tried to change the weight matrix,
so that the it penalises the cost function when Ωg is away from its setpoint.
This should set the controllers main objective to be power production.

Q =


1 0 0 0 0
0 105 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 R =

[
1 0
0 1

]

For the next simulation it is only Q that has been changed.
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This solution leeds to the desired power production of 1.8MW in aprroxi-
mateliy 28 seconds. Also it leeds to an increase in the mean of xt. It could be
desireble to have a wind turbine that did not oscillate as much. By changing
the weights again, it might be optained.

Q =


1 0 0 0 0
0 102 0 0 0
0 0 1 0 0
0 0 0 104 0
0 0 0 0 1

 R =

[
1 0
0 1

]

With this weight matrix both the power production and the displacement
of the tower has become main objectives for the controller.

For the next simulation it is only Q that has been changed.
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It is seen that the MPC works as intended. The displacement has de-
creased, but unfortunately the cost of doing so is that the power production
decreased aswell.

The previous simulations and tests of the MPC shows that the wind tur-
bine model can be controlled in a way that one would prefer by changing the
weight such that the output will be satisfiable.



5 | Conclusion

A model for the NREL 5MW wind turbine was set up. The model was
then implemented in Matlab and then tested through simulations with the
ode45. Thereby the model of the NREL 5MW was verified. Matlab was
chosen because it can prove the concept and is easy when handling matrices.
It also already had an inbuilt MPC toolbox with the function needed.
The model was then linearized and set up as a state-space model. With the
state-space model we were able to set up a model predictive controller for the
wind turbine with the MPC toolbox in Matlab. The model combined with
the MPC was then put through several tests, which showed that it was able
to control the turbine and steer it towards the desired outputs. This means
that the MPC controls the manipulated variables of generator torque and
pitch angle of the blades in a way such that the turbine produces the wanted
power with the less force on the tower. By that the MPC was proven to be
an excellent way to control the turbine and thereby controlling the profit.

34
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A.1 Mathematical Notatio

Scalars are in italic style: x1, Y, z where x1, Y, z ∈ R

Vectors are in lower case boldface style a,x, λ

x = (x1, x2, . . . , xn)T where x ∈ Rn

The vector of the k′th iteration is denoted x[k]

The i′th element of x is denoted xi
The derivative of vectors and scalars are denoted with a dot, such that the
derivative of x is denoted ẋ and the derivative of x is ẋ. The derivative is
with respect to the time if nothing else is mentioned e.g.

ẋ =
∂x

∂t
=


∂x1
∂t
∂x2
∂t...
∂xn
∂t



Matrices are in upper case boldface style, A,X,Λ

A =

 a1,1 . . . a1,m
... . . . ...
an,1 . . . an,m

 where A ∈ Rn×m

The tranpose of a vector or matrix is denoted with an upper T like
(AB)T = BTAT

35
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The idendity matrix is denoted I
The zero-matrix is denoted 0 no matter the size of it

0 =

 0 . . . 0
... . . . ...
0 . . . 0


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A.2 Acronyms

• NREL: National Renewable Energy Laboratory

• MSD (system): Mass-Spring-Damper (system)

• MPC: Model Predictive Control(ler)

• CETM: Control and Estimation Tool Manager

• MIMO: Multiple-Input and Multiple-Output
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B | System Parameters

B.1 Variables and data for NREL 5MW wind
turbine

Data is taken from [Ras12]
P W Power
ρ 1.25 kg/m3 mass density of air
R 63 m Lenght of rotor blade
v m/s Wind speed
vr m/s Relative wind speed
CP − Efficiency coefficient
λ − Tip speed ratio
θ ◦ Pitch angle of the blades
θ̇ ◦/s Pitch angle velocity
θ̈ ◦/s2 Pitch angle acceleration
θref

◦ Reference pitch angle
ωn 0.88 rad/s Natural pitch frequence
ζ 0.9 − Damping of the pitch
x m Displacement of tower
ẋ m/s Displacement of tower velocity
ẍ m/s2 Displacement of tower acceleration
Mt 4.4642e5 kg Mass of the tower
Dt 2.0213e3 N/(M · s) Tower damping constant
Kt 1.6547e6 N/m Tower spring constant
Qr N ·m Aerodynamic torque
Ωr rad/s Angular velocity of rotor
Qt N Thrust force
CT − Thrust coefficient
Qg N ·m Generator torque
Qg,ref N ·m Reference generator torque
τ 0.1 s Time constant for the generator
Ir 5.9154e7 kg ·m2 Inertia of the rotor
∆φ rad Torsion angle of the driveshaft
∆φ̇ rad/s Torsion angle velocity of the driveshaft
Ωg rad/s Angular velocity of the generator
Ig 500 kg ·m2 Inertia of the generator
Ng 97 − Gear ratio
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The constraints used in the MPC [Ras12]
θmin -5 ◦ Minimum pitch angle
θmax 25 ◦ Maximum pitch angle
θ̇min -8 ◦ Minimum pitch angle velocity
θ̇max 8 ◦ Maximum pitch angle velocity
Qg,min 0 N ·m Minimum generator torque
Qg,max 47,4 kN ·m Maximum generator torque
Q̇gmin -15 kN ·m Minimum generator torque velocity
Q̇gmax 15 kN ·m Maximum generator torque velocity



C | Implementation

C.1 Scripts

C.1.1 Matlab scripts

C.1.1.1 Script testprime

1 function dydt = testprime(t,y,zeta,omega0)
2 % MSD system of the form:
3 % \ddot y = 2*omega*zeta*\dot y - omega^2*y
4 %
5 dydt(1,1)=y(2);
6 dydt(2,1)=-2*zeta*omega0*y(2)-omega0^2*y(1);

41
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C.1.1.2 Script testODE

1 % This script is made to see the influence of
2 % zeta and omega in a % mass-spring-damper
3 % system by plotting the same system
4 % with various zeta and omega values
5

6 %%
7 %Initializing constants
8 zeta = [0 0.3 0.7 1 1.5];
9 colors = {[0.7,0.2,0.7], 'r', 'm', 'b', [0,0.7,0]};

10 omega0 = [0, 0.2, 0.5, 0.8, 1];
11 t = zeros(length(zeta),1);
12 y = zeros(length(zeta),1);
13

14 %% zeta influence
15 %Creating new figure
16 f1 = figure('units', 'normalized', 'position', [.1 .08 .6 .6]);
17 xlabel('t [s]', 'Fontsize', 14);
18 ylabel('x(t)/x(0) [m]', 'Fontsize', 14);
19 title('\zeta influence on damping', 'Fontsize', 14);
20

21 %Plotting the graphs for varying zeta
22 hold on
23 for i=1:length(zeta)
24 [t, y]=ode45(@testprime,0:0.01:16,[1 0],[],zeta(i), omega0

(5));
25 plot(t,y(:,1),'Color',colors{i}, 'LineWidth', 1.8)
26 end
27

28 legend('\zeta = 0', '\zeta = 0.3', '\zeta = 0.6', '\zeta = 1',
'\zeta = 1.5',...

29 'Location', 'Best')
30 grid on;
31 hold off;
32 saveas(f1, 'zetainfluence.png');
33

34 %% omega influence
35 %Creating new figure
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36 f2 = figure('units', 'normalized', 'position', [.1 .08 .6 .6]);
37 xlabel('t [s]', 'Fontsize', 14);
38 ylabel('x(t)/x(0) [m]', 'Fontsize', 14);
39 title('\omega_0 influence on damping', 'Fontsize', 14);
40

41 %Plotting graphs for varying omega0
42 hold on
43 for i=1:length(omega0)
44 [t, y]=ode45(@testprime,0:0.01:25,[1 0],[],zeta(1), omega0(

i));
45 plot(t,y(:,1),'Color',colors{i}, 'LineWidth', 1.8)
46 end
47

48 legend('\omega_0 = 0', '\omega_0 = 0.2', '\omega_0 = 0.5', '\
omega_0 = 0.8', '\omega_0 = 1',...

49 'Location', 'Best')
50 grid on;
51 hold off;
52 saveas(f2, 'omega0influence.png');
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C.1.1.3 Script getTables

1 function tables = getTables()
2 % This function loads the C_P and C_T tables
3 % downloaded from Aeolus website
4

5 %Basic parameters
6 rho = 1.25; %Air density
7 R = 63; %Rotor radius
8

9 omega = 12.1/60*2*pi; %Rotor speed used in wt_perf
10

11 %Load CP and thrust files
12 cp = load('nrel_cp.tsv', '-ascii');
13 F = load('nrel_thrust.tsv', '-ascii');
14

15 theta = cp(2:end,1); %Extract pitch
16 lambda = cp(1, 2:end); %Extract tip speed ratio
17 cp = cp(2:end, 2:end); %Extract power coefficient
18 F = F(2:end, 2:end)*1e3; %Extract thrust
19

20 uu = omega*R./lambda; %Derive wind speeds
21

22 %Compute thrust coefficient for each lambda
23 for i = 1:size(F,2)
24 ct(:,i)=F(:,i)./(.5*rho*pi*R^2*uu(i)^2);
25 end
26

27 %Remove negative coefficients
28 cp(cp<0) = 0;
29 ct(ct<0) = 0;
30

31 %Collecting the tables
32 tables = {cp, ct, lambda, theta};
33 end
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C.1.1.4 Script LoadParameters

1 function par = LoadParameters( )
2 % This function loads all the parameters
3 % for an NREL 5MW wind turbine
4 %%
5 % Loading the Cp and Ct tables
6 tables = getTables();
7 par.cp = tables{1};
8 par.ct = tables{2};
9

10 % Loading the constants
11 par.Kt = 1.6547e6; % Tower Spring const. [N/m]
12 par.Dt = 2.0213e3; % Tower damping conts. [N/(m*s)]
13 par.Mt = 4.4642e5; % Tower mass [Kg]
14 par.rho = 1.25; % Air density [kg/m^3]
15 par.R = 63; % Roter blade length [m]
16 par.on = .88; % natural pitch frequency [rad/s]
17 par.zeta = .9; % Pitch damping
18 par.tau = .1; % Time const. [s]
19 par.Ir = 5.9154e7; % Rotor initia [kg*m^2]
20 par.Ks = 8.7354e8; % Spring-const. of driveshaft [N/(rad)]
21 par.Ds = 8.3478e7; % Damping-const. of driveshaft [N/(rad*s)]
22 par.Ig = 500; % Generator initia [kg*m^2]
23 par.Ng = 97; % Gear ration [-]
24 end
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C.1.1.5 Script CP_CT_plots

1 %Plot coeffiencients CP and CT
2

3 %NREL 5MW parameters
4 rho = 1.25; %Air density
5 R = 63; %Rotor radius
6

7 omega = 12.1/60*2*pi; %Rotor speed used in wt_perf
8

9 tables = getTables();
10 cp = tables{1};
11 ct = tables{2};
12 lam = tables{3};
13 th = tables{4};
14

15 [L,T] = meshgrid(1./lam(20:200),th(1:150));
16

17 %Plot CP
18 f1 = figure(1);
19 hold on
20 surf(L,T,cp(1:150,20:200),'Edgecolor', 'none', 'FaceColor', '

interp');
21 contour(L,T,cp(1:150,20:200),30); colorbar;
22 hold off
23 xlabel('\lambda=v/(\Omega_r R) [-]', 'Fontsize', 14);
24 ylabel('\theta[{\circ}]', 'Fontsize', 14);
25 zlabel('C_P[-]', 'Fontsize', 14);
26 title('Plot of power-coefficient C_P', 'Fontsize', 14)
27 grid on
28 view(-6,20)
29 saveas(f1, 'cpplot.png');
30

31 %Plot CT
32 f2 = figure(2);
33 hold on
34 surf(L,T,ct(1:150,20:200),'Edgecolor', 'none', 'FaceColor', '

interp');
35 contour(L,T,ct(1:150,20:200),30); colorbar;
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36 hold off
37 xlabel('\lambda=v/(\Omega_r R) [-]', 'Fontsize', 14);
38 ylabel('\theta[{\circ}]', 'Fontsize', 14);
39 zlabel('C_T[-]', 'Fontsize', 14);
40 title('Plot of thrust-force-coefficient C_T', 'Fontsize', 14)
41 grid on
42 view(-6,20)
43 saveas(f2, 'ctplot.png');

C.1.1.6 Script GetCpAndCt

1 function [Cp, Ct] = GetCpAndCt( vr, Omega_R, theta, par )
2 % This function is used to look-up the C_T and C_P values
3 % for given values of theta and Omega_r
4 %Input: vr - Relative wind speed
5 % Omega_R - Angular velocity of rotor
6 % theta - Pith andgle
7 % par - NREL 5 MW parameters
8 %Output: Cp - Efficiency coefficient
9 % Ct - Thrust coefficient

10

11 %Unpacking parameter for use
12 R = par.R;
13 cp = par.cp;
14 ct = par.ct;
15

16 %Computing lambda
17 lambda = (Omega_R*R)/vr;
18

19 %Getting indexes from values
20 i = round(theta*5)+1;
21 j = min(max(round(lambda*10),1),249);
22

23 %Look-up in tables
24 Cp = cp(i,j);
25 Ct = ct(i,j);
26 end
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C.1.1.7 Script WTM

1 function xdot = WTM(t,x,u,d,par)
2 %% This is the NREL 5MW model implementation
3 %Input: t - time
4 % x - vector of states
5 % u - vector of manipulated variables
6 % d - vector of disturbances
7 % par - NREL 5MW parameters
8 %Output: xdot - measured output from model
9 %%

10 % Unpack states
11 xt = x(1); % Tower position [m]
12 xtdot = x(2); % Tower velocity [m/s]
13 theta = x(3); % Pitch angle [deg]
14 thetadot = x(4); % Pitch angle velocity [deg/s]
15 Qg = x(5); % Generator torque [N*m]
16 Omegar = x(6); % Angular velocity of rotor [rad/s]
17 Omegag = x(7); % Angular velocitu of generator [rad/s]
18 dphi = x(8); % Torsion angular velocity of driveshaft [

rad/s]
19

20

21 % Unpack manipulated variables
22 thetaref = u(1); % Reference pitch angle [deg]
23 Qgref = u(2); % Reference generator torque [N*m]
24

25 % Unpack disturbances
26 v = d; % Wind speed [m/s]
27

28 % Unpack parameters
29 Kt = par.Kt; % Tower Spring const. [N/m]
30 Dt = par.Dt; % Tower damping conts. [N/(m*s)]
31 Mt = par.Mt; % Tower mass [Kg]
32 rho = par.rho; % Air density [kg/m^3]
33 R = par.R; % Roter blade length [m]
34 omegan = par.on; % natural pitch frequency [rad/s]
35 zeta = par.zeta; % Pitch damping
36 tau = par.tau; % Time const. [s]
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37 Ir = par.Ir; % Rotor initia [kg*m^2]
38 Ks = par.Ks; % Spring-const. of driveshaft [N/(rad)]
39 Ds = par.Ds; % Damping-const. of driveshaft [N/(rad*s)]
40 Ig = par.Ig; % Generator initia [kg*m^2]
41 Ng = par.Ng; % Gear ration [-]
42

43 %%
44 % Computing relative windspeed
45 vr = v - xtdot;
46

47 % Get the Cp and Ct values from table
48 [Cp, Ct] = GetCpAndCt(vr, Omegar, theta, par);
49

50 % Trust force
51 Qt = (rho * pi * R^2 * vr^2 * Ct)/2;
52

53 % Power
54 P = (rho * pi * R^2 * vr^3 * Cp)/2;
55

56 % Aerodynamic torque
57 Qr = P/Omegar;
58

59 %% Model
60 nx = length(x);
61 xdot = zeros(nx,1);
62

63 % Tower
64 Fs = Kt*xt; % Spring force
65 Fd = Dt*xtdot; % Damper force
66 xdot(1) = xtdot;
67 xdot(2) = (Qt - Fs - Fd)/Mt;
68

69 % Pitch
70 dtheta = thetaref - theta;
71 xdot(3) = thetadot;
72 xdot(4) = omegan*(omegan*dtheta - 2*zeta*thetadot);
73

74 % Generator
75 xdot(5) = (Qgref - Qg)/tau;
76

77 % Drive train
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78 dphidot = Omegar - Omegag/Ng;
79 Fs2 = dphi*Ks; %Spring force
80 Fd2 = dphidot*Ds; %Damper force
81

82 xdot(6) = (Qr - Fs2 - Fd2) / Ir;
83 xdot(7) = (-Qg + (Fs2 + Fd2)/Ng ) / Ig;
84 xdot(8) = dphidot;

C.1.1.8 Script WTMsimulation

1 %% This script is used to simulate the NREL 5MW wind turbine
2 %% Initializing constants
3 par = LoadParameters();
4 load simwindspeed.mat
5 % Set manual windspeed
6 windspeed1 = 7;
7 windspeed2 = 7;
8 % Set manual pitch reference value
9 thetaref1 = 0;

10 thetaref2 = 0;
11 % Set manual Qg ref
12 Qgref1 = 15000;
13 Qgref2 = 15000;
14

15 % Set simualtion time
16 n = 300;
17

18 % Defining input vectors
19 d = [windspeed1*ones(1,n/2), windspeed2*ones(1,n/2)]; % use for

manual wind
20 %d = v; % use for simulated wind speed
21 u = [[thetaref1*ones(n/2,1); thetaref2*ones(n/2,1)],...
22 Qgref1*ones(n/2,1); Qgref2*ones(n/2,1)];
23

24 %% Simulating
25 odeopt = odeset('abstol',1e-6,'reltol',1e-6);
26

27 [t, y]=ode45(@WTM,0:0.1:1,[0 0 0 0 0 0.7 0 0]',odeopt,u(1,:),d
(1),par);
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28 for i = 2:n
29 [t1, y1]=ode45(@WTM,i-0.99:0.1:i,y(end,:),odeopt,u(i,:),d(i

),par);
30 t = [t; t1];
31 y = [y; y1];
32 end
33

34 %% Input plot
35 time = 0:n-1;
36

37 f1 = figure('units', 'normalized', 'position', [.1 .3 .8 .5]);
38 subplot(1,3,1)
39 plot(time,d)
40 set(gca,'YLim',[4 12])
41 set(gca,'YTick',[4:2:12])
42 set(gcf,'PaperPositionMode','auto')
43 xlabel('t [s]');
44 ylabel('v [m/s]');
45

46 subplot(1,3,2)
47 plot(time,u(:,1));
48 set(gca,'YLim',[-1 1])
49 set(gca,'YTick',[-1:0.5:1])
50 set(gcf,'PaperPositionMode','auto')
51 xlabel('t [s]');
52 ylabel('\theta_{ref}[^\circ]');
53

54 subplot(1,3,3)
55 plot(time,u(:,2));
56 set(gca,'YLim',[14995 15005])
57 set(gca,'YTick',[14995:2.5:15005])
58 set(gcf,'PaperPositionMode','auto')
59 xlabel('t [s]');
60 ylabel('Qg_{ref} [N \cdot m]');
61 suptitle('INPUT');
62 matlab2tikz('inputWind.tikz', 'height', '\figureheight', 'width

', '\figurewidth');
63

64 %% Output plot
65 f2 = figure('units', 'normalized', 'position', [.1 .08 .8 .8]);
66
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67 subplot(3,3,1)
68 plot(t,y(:,1));
69 xlabel('t [s]');
70 ylabel('x[m]');
71

72 subplot(3,3,2)
73 plot(t,y(:,2));
74 xlabel('t [s]');
75 ylabel('\xdot[m/s]');
76

77 subplot(3,3,3)
78 plot(t,y(:,3));
79 xlabel('t [s]');
80 ylabel('\theta[^\circ]');
81

82 subplot(3,3,4)
83 plot(t,y(:,4));
84 xlabel('t [s]');
85 ylabel('\theta \dot[^ \circ /s]');
86

87 subplot(3,3,5)
88 plot(t,y(:,5));
89 xlabel('t [s]');
90 ylabel('Qg[N \cdot m]');
91

92 subplot(3,3,6)
93 plot(t,y(:,6));
94 xlabel('t [s]');
95 ylabel('\Omega_{r}[rad/s]');
96

97 subplot(3,3,7)
98 plot(t,y(:,7));
99 xlabel('t [s]');

100 ylabel('\Omega_{g}[rad/s]');
101

102 subplot(3,3,8)
103 plot(t,y(:,8));
104 xlabel('t [s]');
105 ylabel('\Delta\phi[rad/s]');
106

107 % Calculate the power production
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108 P = y(:,5).*y(:,7);
109

110 subplot(3,3,9)
111 plot(t,P);
112 xlabel('t [s]');
113 ylabel('P[W]');
114 suptitle('OUTPUT');
115

116 %% Simplified output plot
117 figure('units', 'normalized', 'position', [.1 .3 .5 .5]);
118

119 subplot(2,2,1)
120 plot(t,y(:,1));
121 xlabel('t [s]');
122 ylabel('x[m]');
123

124 subplot(2,2,2)
125 plot(t,y(:,2));
126 xlabel('t [s]');
127 ylabel('xdot [m/ s]');
128

129 subplot(2,2,3)
130 plot(t,y(:,6));
131 xlabel('t [s]');
132 ylabel('\Omega_{r}[rad/s]');
133

134 subplot(2,2,4)
135 plot(t,P);
136 xlabel('t [s]');
137 ylabel('P[W]');
138 suptitle('OUTPUT');
139 matlab2tikz('outputWind.tikz', 'height', '\figureheight', '

width', '\figurewidth');



54 APPENDIX C. IMPLEMENTATION

C.1.1.9 Script setUpLinearModel

1 function [A,B,E,C,D] = setUpLinearModel(ssp)
2 % This function sets up the
3 % the state-space model of the NREL 5 MW turbine
4 % such that:
5 % \dot x = Ax + Bu + Ev
6 % y = Cx + Du
7 %
8 %Input: ssp - steady-state point
9 %Output: A,B,C,D,E - Matrices defining the state-space model

10 %% Get the NREL 5 MW data
11 par = LoadParameters();
12 % Unpack parameters
13 Kt = par.Kt; % Tower Spring const. [N/m]
14 Dt = par.Dt; % Tower damping conts. [N/(m*s)]
15 Mt = par.Mt; % Tower mass [Kg]
16 rho = par.rho; % Air density [kg/m^3]
17 R = par.R; % Roter blade length [m]
18 wn = par.on; % natural pitch frequency [rad/s]
19 zeta = par.zeta; % Pitch damping
20 tau = par.tau; % Time const. [s]
21 Ir = par.Ir; % Rotor initia [kg*m^2]
22 Ks = par.Ks; % Spring-const. of driveshaft [N/(rad)]
23 Ds = par.Ds; % Damping-const. of driveshaft [N/(rad*s)]
24 Ig = par.Ig; % Generator initia [kg*m^2]
25 Ng = par.Ng; % Gear ration [-]
26

27 % Loading the tables
28 tables = getTables();
29 cp = tables{1};
30 ct = tables{2};
31 lamb = tables{3};
32 thet = tables{4};
33

34 %% Steady state
35 % Extracting steady state points
36 vr0 = ssp(1);
37 Or0 = ssp(2);
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38

39 % Calculating steady state pitch angle
40 if vr0<11
41 thet0 = 0;
42 else
43 co = [-0.0258 2.0590 -16.1587];
44 thet0 = co(1)*vr0^2+co(2)*vr0+co(3);
45 end
46

47 % Calcualting steady state tip speed ratio
48 lamb0 = vr0/(R*Or0);
49

50 % Look up cp and ct for steady state
51 i = round(thet0*5)+1;
52 j = min(max(round(1./lamb0*10),1),249);
53 CP0 = cp(i,j);
54 CT0 = ct(i,j);
55

56 %%
57

58 % Calculating the first order derivative approximations
59 dCPdl = (cp(i,j+1)-cp(i,j))/(1/lamb(j+1)-1/lamb(j));
60 dCPdth = (cp(i+1,j)-cp(i,j))/(thet(i+1)-thet(i));
61 dCTdl = (ct(i,j+1)-ct(i,j))/(1/lamb(j+1)-1/lamb(j));
62 dCTdth = (ct(i+1,j)-ct(i,j))/(thet(i+1)-thet(i));
63

64 %calculate derivatives
65 dQrdOr = 1/Or0*(1/2*rho*pi*R^2*vr0^3*dCPdl*(-vr0/(Or0^2*R)))

-...
66 (1/2*rho*pi*R^2*vr0^3*CP0)/Or0^2;
67 dQrdv = 1/Or0*(1/2*pi*R^2*vr0^2*CP0+vr0^3*dCPdl*1/(Or0*R));
68 dQrdth = 1/Or0*(1/2*rho*pi*R^2*vr0^3*dCPdth);
69

70 dQtdOr = 1/2*rho*pi*R^2*vr0^2*dCTdl*(-vr0/(Or0^2*R));
71 dQtdv = 1/2*rho*pi*R^2*vr0*CT0+vr0^2*dCTdl*1/(Or0*R);
72 dQtdth = 1/2*rho*pi*R^2*vr0^2*dCTdth;
73

74 %% Setting up the matrices
75

76 A = ...
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77 [-Ds/Ir+1/Ir*dQrdOr Ds/(Ir*Ng) -Ks/Ir 0 -dQrdv/Ir
dQrdth/Ir 0 0

78 Ds/(Ig*Ng) -Ds/(Ig*Ng^2) Ks/(Ig*Ng) 0 0 0 0
-1/(Ig*tau)

79 1 -1/Ng 0 0 0 0
0 0

80 0 0 0 0 1 0
0 0

81 dQtdOr/Mt 0 0 -Kt/Mt (-Dt-dQtdv)/Mt
dQtdth/Mt 0 0

82 0 0 0 0 0 0
1 0

83 0 0 0 0 0 -wn^2
-2*zeta*wn 0

84 0 0 0 0 0 0
0 -1/tau];

85

86

87

88 B = zeros(8,2);
89 B(7,1) = wn^2;
90 B(8,2) = 1/tau;
91

92

93 C = zeros(5,8);
94 C(1:4,1:4) = eye(4);
95 C(end,end) = 1/tau;
96

97

98 D = zeros(5,3);
99

100 E = zeros(8,1);
101 E(1,1) = dQrdv/Ir;
102 E(5,1) = dQtdv/Mt;
103 end
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C.1.1.10 Script MPC

1 % This script sets up the NREL 5MW model
2 % as a discrete state-space model
3 % and then a MPC is constructed
4

5 %% Setting up the plant
6 ssp=[11,0.925];
7 tables = getTables();
8 [A,B,E,C,D] = setUpLinearModel(ssp);
9 H = [E,B];

10

11 model = ss(A,H,C,D);
12 clear A B C D E H ssp
13

14 Ts=2; %Sampling time
15 model=c2d(model,Ts); %Convert to discrete time
16

17 % Defining the input
18 model.InputGroup.MV = 2; %Manipulated variables
19 model.InputGroup.MD = 1; %Measured distubance
20

21 % Specifying I/O names and units
22 model.Inputname = {'v', '\theta_{ref}', 'Q_{g,ref}'};
23 model.InputUnit = {'[m/s]' '[Deg]' '[N\cdot m]'};
24 model.OutputName = {'\Omega_r', '\Omega_g', '\Delta\phi', 'x',

'Q_g'};
25 model.OutputUnit = {'[rad/s]' '[rad/s]' '[rad]' '[m]' '[N \cdot

m]'};
26 model.StateName = {'\Omega_r', '\Omega_g', '\Delta\phi', 'x', '

\dot x',...
27 '\theta', '\dot \theta', '\hat{Q}_g'};
28

29

30 %% Setting up the MPC
31 % Define input constraints
32 clear InputSpecs OutputSpecs
33 InputSpecs(1)=struct('Min',-5,'Max',25,'RateMin',-8,'Ratemax'

,8);
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34 InputSpecs(2)=struct('Min',0,'Max',4750,'RateMin',-1500,'
Ratemax',1500);

35

36 % Define weights on manipulated and controlled variables.
37 Weights=struct('ManipulatedVariables',[0 0],...
38 'ManipulatedVariablesRate',[1 1],...
39 'OutputVariables',[1 1 1 1 1]);
40

41 % Define prediction and control horizons, and set up the MPC
object.

42 p=10; %Prediction horizon
43 m=3; %Control horizon
44 MPCobj=mpc(model,Ts,p,m,Weights,InputSpecs);
45

46 %% Opens the CETM
47 mpctool



D | Matlabs mpctool

D.1 Guide to Matlabs mpctool

When running the scrip in appendix C.1.1.10 the wind turbine model is setup
as a plant and a controller is setup aswell. The window in figure 4.1 is then
shown (the figure is reshown below).

Figure 4.1: The control and estimation tool manager (CETM) in Matlab

First thing to do is to import the plant. Press the import plant button
and import the plant named model, then press close. Then import the
controller named MPCobj the same way by clicking import controller.

59
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D.1.1 Editing the controller

To change anything about the controller click the plus (+) in the left side
menu of the window (not shown in figure). There are two controllers to
choose. The one, MPC1, is autogenerated by mpctool when the plant
was imported, the other one,MPCobj, is the one that was made with the
script. Click the MPCobj one. In the first tab the control interval, predic-
tion horizon and control horizon can be changed. Those were already set by
the script and was not changed. If wished the constraints can be changed in
the constraints tab.

To change the weight matrices go to the weight tuning tab. There are two
tables. For the input weights the weight should be zeros as they are not
considered in this reports simulations. The rate wieght is the diagonal of R
and are chosen to be ones for the simulations. The weights on the output
however, are the ones that are changed. The values that are in the outputs
weights tables weight column are the diagonal of Q

D.1.2 Simulating

Click the plus (+) next to the scenarios folder in the left side menu. A
scenario named Scenario1 is displayed, click it. In the top it is possible
to change the controllers and the plants. As there is only one plant, do
not change that. Instead change the controller to MPCobj and change the
duaration from 10 to 200, for a 200 second simulation.
The setpoints will be set here with the type constant and the initial value
should be equal to the elements in r0 in section 4.3.
In the mesured distubances table the input of the wind speed is specified, it
can be chosen as constant, step, random and other. To have random wind
speeds choose the Gaussian type, the initial values field will then be the mean
of the random numbers and the size values will be the standard deviation.

y = y0 for 0 ≤ t ≤ t0 where y0 = Initial value and t0 = Time
y = y0 +Mrandn for t ≥ t0 where M = Size

For the simulation in this thesis the initial value was chosen to be 8 the
size was 0.5 and time was 1.
To simulate with the controller make sure that the box next to Close loops
is checked. When ready click the simulated button.



Bibliography

[AEO] AEOLUS. Aeolus simwindfarm. World Wide web, http://www.
ict-aeolus.eu/SimWindFarm/model-turbine.html. [Online;
accessed 04-June-2013].

[BJSB11] T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi. Wind Energy
Handbook. Wiley, 2011.

[Hen07] Lars Christian Henriksen. Model predictive control of a wind
turbine. Master’s thesis, Technical University of Denmark, 2007.

[KMNWG] D. Katzman, J. Morene, J. Noelanders, and M. Winston-Galant.
Eigenvaluestability - the michigan process dynamics and controls
open text book. World Wide Web, https://controls.engin.
umich.edu/wiki/index.php/EigenvalueStability. [Online;
accessed 08-May-2013].

[LM06] A. Larsen and T. Mogensen. Individuel pitchregulering af vind-
molle. Master’s thesis, Technical University of Denmark, 2006.

[Mat] Mathworks. Optimization problem — mathworks, homepage.
World Wide Web, http://www.mathworks.se/help/mpc/ug/
optimization-problem.html#bsc6bhk. [Online; accessed 20-
June-2013].

[Ras12] Rasmus Dalgas Rasmussen. Wind turbine control for wind parks,
2012.

[unkxx] unk. PDE bogen. unk, xxxx.

[Wika] Wikipedia. Damping — wikipedia, the free encyclopedia. World
Wide Web, http://en.wikipedia.org/wiki/Damping. [Online;
accessed 08-Mayl-2013].

61

http://www.ict-aeolus.eu/SimWindFarm/model-turbine.html
http://www.ict-aeolus.eu/SimWindFarm/model-turbine.html
https://controls.engin.umich.edu/wiki/index.php/EigenvalueStability
https://controls.engin.umich.edu/wiki/index.php/EigenvalueStability
http://www.mathworks.se/help/mpc/ug/optimization-problem.html#bsc6bhk
http://www.mathworks.se/help/mpc/ug/optimization-problem.html#bsc6bhk
http://en.wikipedia.org/wiki/Damping


62 BIBLIOGRAPHY

[Wikb] Wikipedia. Mpc — wikipedia, the free encyclopedia.
World Wide Web, http://en.wikipedia.org/wiki/Model_
predictive_control. [Online; accessed 20-June-2013].

http://en.wikipedia.org/wiki/Model_predictive_control
http://en.wikipedia.org/wiki/Model_predictive_control

	Mass-Spring-Damper Systems
	The MSD System
	Stability in MSD-systems

	Wind Turbine Model
	Aerodynamics
	Load on the Tower
	Actuators
	Pitch of the Blades
	The Generator
	The Drive Train
	Power

	Linearization
	Constraints
	The Complete Model

	Simulations
	Model Predictive Control
	MPC as a tool
	MPC in Matlab
	MPC simulations

	Conclusion
	Notation
	Mathematical Notatio
	Acronyms

	System Parameters
	Variables and data for NREL 5MW wind turbine

	Implementation
	Scripts
	Matlab scripts


	Matlabs mpctool
	Guide to Matlabs mpctool
	Editing the controller
	Simulating



