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Summary

Today nearly everyone carries a microphone every waking moment. The world
and particularly the internet is awash with digital audio. This excess generates
demand for tools, using machine learning algorithms, capable of organisation
and interpretation. Thereby enriching audio and creating actionable Informa-
tion.

This thesis tackles the problem of speaker diarisation, answering the question of
"Who spoke when?", without the need for human intervention. This is achieved
through the design of a custom algorithm that when given data, automatically
designs an algorithm capable of solving this problem optimally.

Initially this thesis scans the �eld of change-detection in general. A diverse
variety of methods are studied, compared, contrasted, combined and improved.
A subgroup of these methods are selected and optimised further through a
recursive design. Beyond this, the raw audio is processed using a model of the
speech production system to generate a sequence of highly descriptive features.
This process deconvolves an auditory �ngerprint from the literal information
carried by speech.

Given data from normal conversation, between an arbitrary number of people,
the generated algorithm is capable of identifying almost 19 out of 20 speaker
changes with very few false alarms. The algorithm operates 5 times faster
than real-time on a contemporary PC and subsequently answers the "who" by
comparing the speaker turns and assigning labels.

The work carried out in this thesis is of particular practical use in the �eld of
audio editing.
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Resumé

Næsten alle bærer en mikrofon hvert vågent øjeblik. Verdenen og især internet-
tet er oversvømmet med digital lyd. Dette overskud genererer efterspørgsel efter
værktøjer som, ved brug af maskine-lærings algoritmer, kan håndtere organise-
ring og fortolkning. Derved beriges lyd og handlingsrettet information skabes.

Denne afhandling tackler spørgsmålet om "Hvem talte, hvornår?", uden behov
for menneskelig indgriben. Dette opnås gennem design af en nyskabende algo-
ritme, som ved brug af data automatisk designer en algoritme i stand til at løse
dette problem optimalt.

Efter en dybere gennemgang af teorien bag ændrings-detektion i sin helhed,
anvendes en mangfoldig række metoder. Disse metoder bliver undersøgt i de-
taljen, hvorefter de sammenlignes, kontrasteres, kombineres og forbedres. En
undergruppe af disse metoder bliver valgt og optimeres derefter ved brug af et
rekursivt design. Ud over dette, er den rå lyd forarbejdet ved anvendelsen af
en model for tale-produktions-systemet. Denne anvendes til at generere en se-
kvens af højt beskrivende attributter, som a�older et auditivt �ngeraftryk fra
den bogstavelige informationen båret af talen.

Givet data fra normale samtaler, mellem et vilkårligt antal mennesker, er den
genererede algoritme i stand til at identi�cere næsten 19 ud af 20 taler-skift.
Disse identi�ceres med meget få falske alarmer og algoritmen operere 5 gan-
ge hurtigere end realtid på en moderne PC. Derefter besvares "hvem" ved at
sammenligne udsagn og tildele etiketter.

Metoder udviklet i denne afhandling er af særlig praktisk anvendelse inden for
lydredigering.
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Preface

This Master's thesis was carried out at the department of Applied Mathemat-
ics and Computer Science in collaboration with the department of Electrical
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opment of various machine learning methods, as well as the modelling of audio
speci�c features in the cepstral domain.
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Abstract

The problem of unsupervised retrospective speaker change detection contin-
ues to be a challenging research problem with signi�cant impacts on automatic
speech recognition and spoken document retrieval performance. The aim here is
to design a much faster than real-time speaker diarisation software suite possi-
bly for use in news audio editing. This thesis aims broadly, comparing a variety
of well-known speaker segmentation methods based around vector quantization
and Gaussian processes. These well established methods are compared to a novel
statistical change-point detection algorithm based on non-parametric divergence
estimation in the �eld of relative density-ratio estimation using importance �t-
ting. All methods are optimized using a direct search method, initialized by a
custom multi-step grid-search, in a recursive speaker change detection paradigm,
built on Mel-Frequency Cepstral Coe�cients. Methods are compared on the ba-
sis of their performance and their e�ciency on the ELSDSR speech data corpus.
It is found that an inexpensive Gaussian process based on the Kullback-Leibler
distance when optimized in this recursive SCD paradigm, can compete in terms
of performance with far more expensive methods while maintaining a very high
e�ciency. Further a recursive speaker change detection paradigm yields promis-
ing results. Beyond this, it is shown that a simple feature selection based on
a theoretical model of the human speech production system yields a marked
improvement in performance. Lastly this method is experimentally applied in
the �eld of agglomerative hierarchical speaker clustering and compared to a
more well established method based on the Baysian Information Criteria. Here
a novel approach similar to the Kullback-Leibler distance called the Information
change rate shows promising results. The system developed in this thesis could
be implemented in digital audio workstations to greatly simplify the process of
speaker segmentation by automatically answering the question of "Who spoke
when?".
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Chapter 1

Introduction

The internet has become a vast resource for news pod-casts and other media
containing primarily speech. This poses an interesting problem as traditional
text-based search engines will only locate such content through information
tagged onto the audio-�les manually. Manual labelling of audio content is an
extensive task and therefore necessitates automation. This in turn created the
whole �eld of Speaker Change Detection, SCD, or speaker diarisation, involving
methods from machine learning and pattern recognition.

This thesis will explore a range of available methods for SCD and compare
them for use in audio editing. Audio editing involves a rather tedious process
of familiarisation with the individual segments of the media content. The hope
is that the aforementioned methods can ease and simplify this process, thus
empowering Digital Audio Workstations, DAWs, by adding automated speaker
diarisation.

Optimally a DAW using speaker diarisation would be able to search inside au-
dio �les for high level information, here referring to topics, speakers, environ-
ments, etc. This thesis will however focus primarily on SCD, as it builds on
the knowledge gathered from the creation of Castsearch [87], a context based
Spoken Document Retrieval, SDR, search engine. During the creation of Cast-
search, Jørgensen et al. designed a system for audio classi�cation [55]. This
classi�cation system includes the classes; Speech, music, noise and silence. This
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classi�cation system was applied to allow raw data to be processed, the use of
such a system in this thesis is discussed in section 2.1. To clarify this thesis will
focus solely on audio content. In other words incorporation of audio meta-data,
audio transcriptions, associated video content, etc., is outside the scope of this
thesis.

1.1 Speaker Change Detection

SCD is the process of locating the speaker to speaker changes in an audio stream.
This section will delineate the methods found in the �eld of SCD and describe
their general application is this thesis. This section will also brie�y touch on
speaker clustering, a process which SCD enables.

The end goal is to hypothesize a set of speaker change-points by comparing
samples before and after a potential change-point at regular intervals, see �gure
1.1.

1.1.1 Real-time detection vs. retrospective detection

The process of detecting abrupt changes in an audio stream must be divided
into two distinct sub-�elds with disparate challenges and trade-o�s involved.
As the title suggests these sub-�elds revolve around the proximity to real-time
detection. As will be mentioned below the metric-based methods employed
in this thesis require a certain amount of data after a potential change point
in order to detect it. In addition to the requirements on data, there are the
requirements on processing time. The aim of this thesis is to design a system
that takes recordings, thus not real-time, and process these. This processing
must however be comparable or preferably much quicker than real-time in order
to retain its usefulness. The work here will therefore use optimised retrospective
detection.

1.1.2 Supervised vs. unsupervised methods

Another way to bisect the �eld of SCD is a division into supervised and unsuper-
vised methods. If the number of speakers and identities are known in advance,
supervised models for each speaker can be trained, and the audio stream can
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Figure 1.1: This �gure is presented as a rough reference of the basic concept:
Which is to compare segments of data before and after a potential
change-point and judge whether it is di�erent enough. The data,
consist of a sequences of feature vectors describing the sound over
a small interval. As seen the �gure uses a variety of parameters,
which will be described throughout this thesis as they become
relevant, these include the analysis windows A and B, of length
law, as they are shifted forward in time. This occurs by regular
increments of ls, to the next potential change-point at time tn.
The reader is encouraged to review this �gure at regular intervals.
It should be noted that the proportions portrayed in this �gure
are greatly exaggerated.
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Figure 1.2: Rationale of direct density-ratio estimation. As seen a shortcut
to the standard approach is taken. Rather than model the prior
and the posterior data individually only to subsequently estimate
the ratio, a more direct method is to directly model the ratio, see
secion 3.2.3. Figure concept borrowed from [75].

be classi�ed accordingly. If the identities of the speakers are not known in ad-
vance unsupervised methods must be employed. Due to the nature of the data;
unsupervised SCD is a premise of this thesis and its approaches can roughly
be divided into three classes, namely energy-based, metric-based and direct
density-ratio estimation:

Energy-based methods rely on thresholds in the audio signal energy. Changes
are found at silence-periods. In broadcast news the audio production can be
quite aggressive, with only little if any silence between speakers, which makes
this approach less attractive. Whereas metric-based methods basically model
the data before and after a potential change point and subsequently measures
the di�erence between these consecutive frames that are shifted along the audio
signal.

Despite the established results of these metric based methods, they have a dis-
advantage; they try to estimate a distinct Probability Density Functions, PDFs,
before and after a potential change point, rather than directly estimating the
di�erence between these. Since this di�erence contains all required information,
the intermediate step of gathering information only to discard it later is circum-
vented, see 1.2. This group of methods is called direct density-ratio estimation
and is a fairly new idea in the �eld of SCD; with the method, RuLSIF [75],
applied here designed some months ago, see section 3.2.3.



1.1 Speaker Change Detection 5

1.1.3 Precision in time vs. false positive rate

The process of SCD has an inbuilt trade-o� that needs to be addressed. In
order to detect short speaker segments it needs to be fairly constrained in time.
This however leads to a smaller dataset per possible change point and naturally
causes a higher amount of false positives. Turning SCD into an iterative process
can mediate this trade-o� between the ability to notice short segments vs. a
higher false positive rate. This method has previously been called false alarm
compensation, is applied in this thesis and is described in section 2.4.

1.1.4 Speaker change detection methods

Speaker change detection methods used in this project can be further grouped
into three subgroups:

1. Gaussian Processes

2. Vector quantization

3. Direct density-ratio estimation

The �rst subgroup are the distance measures between separate multivariate
Gaussians trained on data before and after the potential change-point. These
include the Kullback-Leibler Distance, here termed KLdistance or simply KL,
and a simpli�cation of it, the so-called Divergence Shape Distance, DSD, which
focuses solely on locating covariance changes. For more details see section 3.2.2.

The second subgroup is the Vector Quantization, VQ, approach which incorpo-
rates a variety of approaches to 'discover' the underlying structure of a dataset
through iteratively improved guesses. These guesses are in the form of a much
smaller amount of representative data, the di�erence is then measured in the to-
tal movement of this representative data, called Vector Quantization Distortion,
VQD. For more details see section 3.2.1.

Lastly, for the Direct density-ratio estimation a variant of Kullback-Leibler Im-
portance Estimation Procedure, KLEIP, called Relative unconstrained Least-
Squares Importance Fitting, RuLSIF, introduced by Liu et al. [75] is applied.
The concept behind this method is slightly more abstract, but revolves around
modelling the distortion of the prior data required to produce the posterior
data and then condensing this distortion model into a single number. KLIEP
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is designed to be coordinate transformation invariant, this however has the dis-
advantage of an increased sensitivity to outliers. For this reason the variant,
RuLSIF, is preferable in practical use. For more details see section 3.2.3.

All methods are metric-based; in essence this means that they supply a number
for every point in time. The magnitude of this number is correlated with the
likelihood of a change-point at that moment. These metrics therefore need
to be thresholded to yield de�nite predictions, rather than a smooth scale of
possibilities. These thresholds will be de�ned relative to a smoothed version of
the metric itself, see �gure 1.1. For more details see section 1.1 and 2.4

1.1.5 Overlapping speech

Since real dialogue does not always conform to the simple model of speaker turns
the possibility of overlapping speech segments is a liability and the de�nition
for 'babble noise' is vague in this sense. Overlapping speech naturally spreads a
speaker change over time, this may even blur the speaker change to insigni�cance
and a smooth transition to a di�erent speaker altogether is a real liability. The
methods discussed in section 1.1.3 can alleviate this issue assuming the notion
of speaker turns remains valid. This issue naturally lowers the precision of the
model, in a sense this issue will be regarded as a single speaker in speech noise.
The data used in this thesis does not contain overlapping speech; therefore its
imagined consequences are purely theoretical.

1.1.6 Speaker segment clustering

Once a dialogue has been separated into speaker turn segments, these segments
can be clustered. This process will produce a reasonable guess as to the amount
of speakers present in the dialogue and a notion of �who said what when�. The
amount of background noise and other such limitations may impact the perfor-
mance of this step.

In this thesis several approaches to speaker clustering within the �eld of Al-
gomerative Hierarchical Clustering [8], AHC, have been compared; the general
concept is to start by assuming that every speaker turn is a unique person. The
algorithm then iteratively combines the most similar segment until only 2 seg-
ments remain. The correct amount of speakers is then found by looking for the
combination where the constituents were the most dissimilar.

AHC naturally requires a metric by which to judge the dissimilarity between
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speakers. Here the tested metrics include all the metric described in section
3.2 along with a Bayesian Information Criterion, BIC, approach and a further
improvement on this termed Information Change Rate, ICR, [42].

Unfortunately speaker clustering was started late in the thesis, as SCD naturally
is a prior step. The scarcity of available computing resources at that point
was enhanced by unforeseen circumstances, see section 4.3.1. This necessarily
deprioritised a rigorous approach to speaker clustering. The relevant software
was written, see appendix A.1.2, but were only lightly experimented with in the
further work section 5.

This step could have an important role to play as information gathered here
could have hinted at which segments contain missed change points and might
have facilitated the possibility of the software storing a pro�le for a particular
speaker for later recognition.

1.2 Toolboxes and other software packages

All software is developed using MATLAB and its accompanying toolboxes. In
addition to this, custom toolboxes were employed including; the Intelligent
Sound Processing, ISP, Toolbox, developed as part of the Intelligent Sound
project by Jensen et al. [53] and Mike Brookes' VOICEBOX toolbox [13]. It
should be mentioned that the ISP toolbox has been adapted to support a 64 bit
windows based OS, along with a number of technical improvements, whenever
unsupported features were required, see section 4.3.1.

1.3 System overview

This section presents a basic modular design of the proposed system given as a
�ow chart in �gure 1.3. The process starts with a raw audio sample containing
speech, with multiple speakers. This raw data is far too redundant and messy
to reliably determine speaker changes. The raw data is therefore fed into a
preprocessing mechanism that generates the raw audio feature, the MFCCs, see
section 2.2.

The system subsequently blindly segments these MFCCs into 3 second segment,
with a new segment starting every 0.1 seconds, marking a position to be checked
for a possible change-point. This results in an organised data structure, see
�gure 1.1.
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Figure 1.3: Simpli�ed overview of the system developed in this thesis pre-
sented as a one-way �ow chart, where arrows mark the outputs
and inputs of the various modules. Section 1.3 is dedicated to
describing this �gure in detail.
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Prior to checking the possible speaker change points, it is veri�ed that all these
segments contain primarily speech. Segments containing music, silence or clas-
si�ed as other are discarded.

All segments containing primarily speech are then fed into the speaker change
detection module. This module, using only the 3 second segment before and
after a possible change-point quickly sorts through the vast majority change-
points.

The remaining possible change-points are then scrutinised using as much data
as possible by the false alarm compensation module, which attempts to identify
and remove the remaining false positives. This process concludes with a set of
hypothesized speaker change points and the corresponding speaker turns.

The speaker turns are then handed to an unsupervised clustering module which
assigns a label to each speaker and subsequently marks every speaker turns with
the label of its speaker, using an agglomerative hierarchical clustering approach.
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Chapter 2

Data pre-processing

This chapter will begin with a description of the available data corpora, why
ELSDSR was selected in lieu of more common choices, and why raw news pod-
cast data was not applied. Given this information the methods involved in
applying the selected data will be explained, and a deeper analysis is conducted
into potential weak links of the process.

The chapter will then proceed to an exhaustive search of the commonly used
feature extraction techniques applied in SCD and related �elds, speaker recog-
nition, speaker diarisation, etc. The process concludes with the selection of
Mel-Frequency Cepstral Coe�cients, MFCCs, as the sole features used in this
thesis.

This is followed by a thorough description of the theory, the methods, the rea-
sons and the attributes of the MFCCs. This process concludes with a range of
possible feature sets; these feature sets are compared in section 4.1.

Finally, this chapter will conclude with a description of the methodologies and
practices applied to detect speaker changes and to reject false speaker changes.
This �nal part is accompanied by the theory and concepts behind a novel hybrid
approach based on combining unrelated SCD methodologies.
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2.1 Data

A dataset of speech changes is required in order to train, test and compare the
speaker change detection and speaker clustering methods. In addition to this a
data set is needed to evaluate hyper parameters and �nally a dataset is needed
to evaluate the performance of the full system.

As the present work builds the preliminary work for CastSearch, by Mølgaard et
al. [87], and is intended for use in news editing; it seems natural to acquire the
CNN (Cable News Network) pod-cast dataset. This dataset presently consists of
1913 pod-cast, totalling about 6.6GB. Due to the size alone the dataset contains
more than enough speaker variety and speaker changes.

The use of the CNN data does however pose some problems. Firstly since it is
merely recordings of actual news shows it contains a mixture of speech, music,
silence and other. All non-speech section would have to be �ltered out, since
this project is focused on detecting changes from one speaker to another, not
from speaker to music, etc.

However even with the data preprocessed to only include speech a signi�cant
problem remains, namely the quality of the di�erent speech segments. News
anchors usually have expensive equipment and are situated in studios. Whereas
with reporters in the �eld, background noise, bandwidth and bit-rates play a
large role in the quality of the recording.

These are powerful cues as they almost always signify actual speaker changes.
They are however not cues speci�c to the speaker and are therefore not actual
cues at all, but merely a potentially powerful masking of cues correlated with
actual cues. In addition they represent a loss of information and can therefore
not be corrected for or �ltered away.

And �nally the CNN data is not annotated, requiring a tedious process of manual
labelling, not always possible since the assumption of individual speaker turns
does not always fully apply. All in all using actual raw data may hinder rather
than serve the purpose of training a speaker change detection model. As such
the only alternative is to design synthetic data that comes as close to the real
data as possible, without the inherent problems mentioned above.
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2.1.1 Synthetic data

Since the use of raw data for model training is not viable, the use of synthetic
data is necessary. Several options, corpora, are readily available for this pur-
pose. They are however generally accompanied by a rather large price tag. The
department DTU Compute has two usable corpora on hand, the ELSDSR [31]
and the TIMIT [37] corpora.

Since the ELSDSR corpus contains a su�cient amount of data and has long
uninterrupted speaker segment, on the order of 20 sec, it is almost ideal for
the purpose of this project. A few minor hassles have to be overcome though,
these include how to string several segments together, how to handle the bias
inherent in the distribution of speaker segment lengths and �nally how to sample
the data.

The TIMIT corpus could be applied, but su�ers from all the issues of ELSDSR,
but also has fairly short uninterrupted speech segments. It could be argued
that using TIMIT, which is well recognised and widely applied, would enable a
more direct comparison to other work. It could also be argued that the wider
range of dialects available in TIMIT would slightly increase generalisability.
However, these factors a considered minor compared to the advantage of longer
uninterrupted segments that ELSDSR �elds. Therefore as ELSDSR has more
than su�cient data TIMIT will not be applied.

2.1.2 ELSDSR speech corpus

ELSDSR [31] is an English Language Speech Database designed for Speaker
Recognition [30].

ELSDSR contains voice recordings from 23 speakers (13M/10F), age ranging
from 24 to 63. The spoken language is English, all except one speaker have
English as a second language.

The corpus is divided into a training and a test set. Part of the test set, which
is suggested as training subdivision, was made with the attempt to capture all
the possible pronunciation of English language including the vowels, consonants
and diphthongs, etc. Seven paragraphs of text were constructed and collected,
which contains 11 sentences. The training text is the same for every speaker in
the database. As for the suggested test subdivision, forty-four sentences (two
sentences for each speaker) were collected.
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In summary, for the training set, 161 (7 Utterances ∗ 23 People) utterances were
recorded; and for test set, 46 (2 Utterances∗23 People) utterances were provided.

2.1.3 Splicing speech samples

The creation of synthetic data has an inherent problem associated, as these
corpora do not contain speaker changes, they contain speech samples. These
speech samples need to be spliced together and this is where the problem enters;
how to distinguish between locating the spike, the sudden change in sound
pressure, that the splicing creates and locating an actual speaker change.

2.1.3.1 Method

It was surprisingly di�cult to �nd any work that mentioned this issue, let alone
proposed methods to solve it. Even presenting the issue to a signi�cant pro-
portion of the departments DTU Compute and DTU Acoustic Technology at
separate status presentations, failed to yield reference-able research into the is-
sue. It is therefore necessary to invent a method. As this issue it probably minor,
a relatively simple method is proposed in order to avoid creating unnecessary
artefacts.

Authors note: It should be mentioned that upon revision; a patent issued in 1988
to Neil R. Davis [22] was located by the thesis supervisor, methods described in
this patent did not make it into this thesis.

Several simple solutions made it onto the drawing board, revolving around three
groups of methods:

1. Searching in the vicinity for suitably similar features of the signals, dis-
carding data around the edges of the signal.

2. Warping the signals in the vicinity in order to reduce the broadband noise
that a spike would create.

3. Overlapping the signals, thus smearing the speaker change over time.

The fact that the data is purely speech with almost no background noise means
that the signal regularly crosses zero and has smooth derivatives. The method
applied is a variant of method 1 and locates the nearest zero crossing with
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Figure 2.1: Visual illustration of the splicing issue when combining two audio
�les. In the graph two speech samples are directly combined and
combined using a splicing method. In the lower graph the cor-
responding e�ects in the spectral domain are observed. As seen
the splicing method used here substantially reduces the broadband
noise that the sharp transition creates. In this particular example
a version of the 2. group of methods is applied, though as men-
tioned in section 2.1.3.1 this is not the version that is used in this
thesis. This is provided merely for visual reference. This splicing
method simply pulls the ends together, which has the disadvan-
tage of a number of free parameters. These free parameters control
the locality of the splicing, in this case it converges exponentially
towards the junction. See appendix A.5.2.
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identical sign on the �rst derivative and merely discards the data in between.
This slightly reduces the length of the speech segments, but this e�ect is on the
order of milliseconds and is thus negligible.

As the MFCC calculation uses temporal windows with 50% overlap, only 3
feature vectors will be a�ected by the switch. See section 2.2 for details and See
�gure 2.2 for a graphical representation of the data using principal component
analysis on a random change-point.

If these vectors are highly a�ected this could mean that up to 0.5% of the data
could be outliers, since the analysis window on each side is 3 seconds long and
each MFCC has a width of 20ms with 50% overlap. This is of cause assuming
only 1 speaker change is inside the analysis windows, however with more than
one speaker change this issue would be minor in comparison. Since some of
the applied methods, KL and DSD, model the subsequent analysis windows
with normal distributions, which are very sensitive to outliers [51, 117], these
potential outliers could amplify or even dominate the di�erence between the
analysis windows.

2.1.3.2 Analysis

Figure 2.3 displays a histogram of the local outlier factor, LOF, [12] on the
border region compared to a histogram of the LOF of all other data within the
analysis windows. This data is gathered from 200 change-points.

The LOF score is basically a local density estimation where the density is mod-
elled using the Euclidean distance to the Kth nearest neighbour, in this case K
is set to 3 since the outliers might be clustered together in which case they will
be each other's 1st and 2nd neighbours.

From �gure 2.3 two things are apparent; the LOF scores are fairly normally
distributed and the region is de�nitely showing anomalous behaviour with a
mean signi�cantly di�erent from the rest of the data. However, whether this is
an inherent part of the data, a result of the method or whether this method is
merely completely ine�ectual in dampening the splicing e�ect is unknown and
will require deeper analysis.

Figure 2.4 displays a similar representation of the data, this time without any
modi�cation to the border region between the speech samples, here a very similar
result is seen. This seems to indicate that the method for splicing the data
together is ine�ectual or being masked by an actual trend in the data.
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Figure 2.2: MFCCs visualised through a Principal Component Analysis, PCA,
of data from 2 random subsequent analysis windows. The region
potentially a�ected by the temporal e�ects of splicing the 2 au-
dio �les together is highlighted in red. In this example the audio
�les are joined without splicing. As is evident the MFCCs at the
change-point are not obvious outliers. As is seen from the scree
plot and as mentioned in section 2.2.4 the data is quite globu-
lar, even with this small subset of the data the �rst 3 principal
components only account for 25% of the total variance. Meaning
that the MFCCs might still clearly be outliers, but due to the di-
mensionality; the human visual system is inadequately capable of
receiving the data e�ciently.
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Figure 2.3: Investigation into which degree the MFCCs at the change-point
can be considered outliers, in this case with the novel splicing
method applied. As seen the distributions are clearly almost Gaus-
sian and are clearly distinct. The x-axis represents the LOF score,
a measure of the density around an MFCC. This density is mea-
sured in Euclidean distance.

Figure 2.4: Investigation into which degree the MFCCs at the change-point
can be considered outliers, in this case without a splicing method
applied, i.e. the audio �les were simply joined. As seen the distri-
butions are clearly almost Gaussian and are clearly distinct. The
x-axis represents the LOF score, a measure of the density around
an MFCC. This density is measured in Euclidean distance.
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2.1.3.3 E�ectiveness

The hypothesis is that the splicing of sound �les will cause the MFCCs at -
and possibly next to - the change-point to exhibit outlier behaviour. Since
the MFCC at the change-point exhibits outlier behaviour even when the sharp
change of sound pressure is removed, the e�ectiveness of the applied method
must be in how distinct the outlier behaviour is, in comparison to how distinct
the outlier behaviour is without any splicing method applied. As seen in table
2.1 the distributions seen in �gures 2.3 and 2.4 yield very high t-scores and
as such are de�nitely outliers, whether one of them is less distinct will require
further analysis.

2.1.3.3.1 Statistical hypothesis test

A way to quantify the degree to which these MFCCs exhibit outlier behaviour
is through the use of the Welch's t-test [120], otherwise known as the unequal
sample sizes, unequal variances and independent two-sample t-test:

t-score =
X1 −X2

sX1−X2

(2.1)

Where Xi is the sample mean of the ith sample and where

sX1−X2
=

√
s21
N1

+
s22
N2

(2.2)

Where s2i is the unbiased [27] estimator of the variance and Ni is the sample
size. Unlike in Student's t-test [27], the denominator is not based on a pooled
variance estimate.

When performing statistical hypothesis testing, the �rst step is to determine
the null hypothesis, H0. In this case it is that the MFCC at the change-point
is not an outlier, that is, that the mean LOF score is equal to the mean LOF
score of all the data:

H0 : µ1 − µ2 = 0 (2.3)

The hypothesis is identical in the no splicing method test.
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Run # 1 2 3 4 5 6 7 8 9 10 Mean Standard Error
T-Score (With splicing) 27.7 28.4 30.2 29.6 29.5 28.7 30.7 28.6 29.2 31.3 29.4 1.1
T-Score (Without splicing) 30.0 29.0 26.6 30.2 27.5 28.6 28.6 30.8 29.3 26.7 28.7125 1.4313

Table 2.1: Results from 10 runs of Welch's t-test between a sample of MFCCs
LOF scores directly at its change-point and the LOFs of a collec-
tion of every other MFCC, except MFCCs adjacent or on change-
points. The results clearly showing very high t-scores irrespective
of whether a splicing method was applied. In addition it is seen
that the mean t-scores are also very similar and overlap each others
standard error, indicating that with or without splicing results in
roughly the same outlier degree. A separate t-test is necessary to
determine within which certainty the 2 trials run sets can be said
to di�er.

The procedure used is to �rst draw 1000 change-points, as described in section
2.1.5, except that the analysis windows are kept clean of any other change-
points. Only the MFCC directly at the change-point is used, excluding the
adjacent ones, in order to increase the signal-to-noise ratio.

Then to run the t-test between all the data and the data at the change-points,
repeat this procedure 10 times to get a better estimate of the t-score and to
estimate of the standard error [27] of the estimated t-score. See table 2.1 for
the result with and without the splicing method.

And �nally run a new t-test similar to the one performed in the previous step,
but between the results with and without the splicing method. This yielded the
result:

t-score = 1.1949 (2.4)

This t-score is quite low and will require interpretation in order to determine at
which signi�cance level the null hypothesis of the proposed method making no
di�erence can be rejected.

2.1.3.3.2 Interpretation

The di�erence is statistically signi�cant at a speci�c con�dence level if the t-
score is outside the corresponding con�dence interval about the hypothesized



2.1 Data 21

value of zero. If on the other hand the t-score is within the con�dence interval
the null hypothesis cannot be rejected at that con�dence level and the di�erence
could just be statistical variation. A common choice is a con�dence level of 95%,
meaning that the result has a one in twenty chance of being wrong, assuming
the t-distribution is a good approximation.

To determine the con�dence interval the degrees of freedom, D.o.F, must be
estimated. For this purpose the Welch-Satterthwaite equation [103] is employed,
in this case:

υ = (N1 − 1) + (N2 − 1) (2.5)

Where υ the D.o.F is simply the amount of observations minus one for each of
the estimated means.

The t-score that corresponds to the edge of the con�dence interval, is calculated
by computing the inverse of Student's t Cumulative Distribution Function, CDF,
FCDF. The t inverse function in terms of the t CDF is [27]:

x = F−1CDF(p|υ) = {x : FCDF(x|υ) = p} (2.6)

Where [27]:

p = FCDF(x|υ) =

∫ x

−∞

Γ(υ+1
2 )

Γ(υ2 )

1√
υπ

1

(1 + t2

υ )
υ+1
2

dx (2.7)

Where Γ is the gamma function [27] and the result, x, is the solution of the
CDF integral given the D.o.F, υ, and the desired probability p. The result was
calculated using the MATLAB function tinv.

The t-scores are expected to fall within:

±t95% = 2.1009 (2.8)

It is therefore concluded that at this con�dence level the di�erence might be
due to chance and the null hypothesis cannot be rejected. Simply put more
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data is required, the applied method has no statistically signi�cant impact on
the outlier score at the change-point, given that:

t-score = 1.1949 < ±t95% = 2.1009 (2.9)

Using equation 2.6, the con�dence level at which the null hypothesis can be
rejected is:

Null hypothesis rejected at a con�dence level of 75.24% (2.10)

The results from the �nal t-test on the t-scores gathered using the method
compared to not using the method are quite interesting. It would appear that
the data shows, to a con�dence level of 75%, that applying the splicing method
actually increases the outlier score of the MFCC at the change-point, since

T-Score (With splicing) ≥ T-Score (Without splicing) (2.11)

,seen in table 2.1.

If anything this suggests that the method should not be used. However since
the method renders the click noise from the transition inaudible and the null
hypothesis can only be rejected at a con�dence level of 75%, the method must
have some e�ect and is therefore applied in lieu of a better methodology.

2.1.4 Speech sample sizes

Since the dataset only contains a small amount of speech samples, 161 training
and 46 test, the variation of speech sample lengths in also small, see �gure 2.5.
To ensure that the methods do not make use of this fact in some fashion, and
to ensure that the methods are calibrated to take short segments into account,
a process is applied to ensure a uniform distribution of speech segment lengths.
This is achieved by swapping the uniform distribution of speakers with the non-
uniform distribution of lengths as follows.

1. A random length, Rlen, is drawn from a uniform distribution between a
�xed lower and upper boundary.
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Figure 2.5: Distribution of speech samples lengths in the ELSDSR database.
As seen the distribution is di�erent for test and training data, far
from uniform and samples of sizes smaller than 3 seconds, while
common in news pod-casts are entirely missing. This clear bias
could skew the results if not removed. Section 2.1.4 describes how
the speech sample lengths are randomised to a uniform distribu-
tion.

2. A random speech sample, Rsample, is drawn from the pool of samples
longer than Rlen.

3. A random subsection with the length of Rlen is drawn from Rsample.

Through this process a wide variety of speaker lengths are achieved, and by
extension a huge number of speaker changes are possible. This process does
however favour the middle part of the longer speech samples. Since the dy-
namics of speech, with respect to MFCCs, is constant independent of where in
the sample it is drawn, this should not bias the data. The lower boundary of
how short a speech segment can be is set to 1 second, as the change-detection
algorithm by design �lters away segments shorter than 1 second, see section 2.3,
whereas the upper boundary of how long a sample can be is arbitrarily set to 15
seconds to ensure that the pool of samples longer than Rlen has some speaker
variety.
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2.1.5 Data bootstrap aggregation

Bootstrap aggregation, also known as `bagging' [113], is a technique that repeat-
edly samples - with replacement - from a data set using a uniform distribution.
ELSDSR contains 161 �les in the training set and another 46 in the test set.
Looking at the training data alone this yields the possibility of 161∗160 = 25760
di�erent speaker changes. With the method described in section 2.1.4, whereby
changes occur at almost any point in any �le, the amount of possible speaker
changes in turn becomes astronomical. For this reason an exhaustive training
of the model using every data combination is implausible, thereby requiring a
method for data selection. This is where bootstrap aggregation comes into play;
on average a su�ciently large dataset will contain about 63% of the data be-
cause each sample has a probability 1− (1− 1/N)N of being selected [113]. For
large N this probability converges to [113]:

1− (1− 1/N)N ∼ 1− 1/e ≈ 0.632 (2.12)

2.2 Feature extraction

Feature extraction is the process of extracting relevant information prior to
processing, while discarding irrelevant and redundant information.

In more detail feature extraction is the process whereby speci�c aspects of raw
data is accentuated as a means to increase class separation, reduce noise, avoid
redundancy, reduce dimensionality and tease apart the products of non-linear
behaviours. This step is vital in order to avoid traps like the infamous curse of
dimensionality [52].

More speci�c to speaker diarisation, the extracted features from the pressure
wave should contain information able to distinguish speakers and possibly en-
vironments. As this project focuses on speaker change detection, features that
distinguish speakers take absolute priority. The hope is that even if di�erent
environments trigger the speaker change detection algorithm, that the speaker
clustering algorithm will be able to merge the relevant sections.

Lu et al. [78] comments that compensating for the e�ect of the channel or
environment mismatch remains a di�cult issue in speaker recognition research.
They use the Cepstral Mean Subtraction, CMS, algorithm. They however press
that CMS alone is insu�cient.
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2.2.1 Feature type selection

Kinnunen et al. [62] compiled a list of appropriate properties that features for
speaker modelling and discrimination should have:

• Have large between-speaker variability and small within speaker variabil-
ity.

• Be robust against noise and distortion.

• Occur frequently and naturally in speech.

• Be easy to measure from speech signal.

• Be di�cult to impersonate/mimic.

• Not be a�ected by the speaker's health or long-term variations in voice.

In addition to these, a �nal system must operate computationally e�cient and
since the number of required training samples for reliable density estimation
grows exponentially with the number of features, the number of features must
be as low as possible in order to detect short speaker turns:

• Be computationally e�cient.

• Small feature vector size.

A range of feature types have been employed in the �eld of speaker diarisation
[86]:

• Short Time Energy, STE, by Meignier et al. [84].

• Zero Crossing Rate, ZCR, by Lu et al. [79].

• Pitch by Lu et al. [77, 78].

• Spectrum magnitude by Boehm et al. [9].

• Line Spectrum Pairs, LSPs, by Lu et al. [78, 79].

• Perceptual Linear Prediction, PLP, cepstral coe�cients by Tranter et al.
[114] and Chu et al. [19].
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• Features based on phoneme duration, speech rate, silence detection, and
prosody are also investigated in the literature Wang et al. [119].

Kinnunen et al. [62] categorise the features from the viewpoint of their physical
interpretation:

1. Short-term spectral features.

2. Voice source features.

3. Spectro-temporal Features.

4. Prosodic features.

5. High-level features.

Then proceeds to recommend new researchers in the �eld of speaker change
detection to use only the �rst type. Namely short-term spectral features, on the
argument that they incorporate all the properties above, are easy to compute
and yield decent performance. Referencing the results by Reynolds et al. [101].

Mel-Frequency Cepstral Coe�cients, MFCCs, sometimes with their �rst and
second derivatives are the most common features used (e.g. [23, 54, 79, 107]).

This project is built on the preliminary work for CastSearch by Jørgensen et
al. [55] and Mølgaard et al. [87] which exclusively employs MFCCs. As the
use of MFCCs is quite common, literally recommended for new researchers and
mediates direct comparison with previous work, this project will employ MFCCs
as the sole features. Section 2.2.2 will go into detail on attributes and parameters
of the MFCCs used in this thesis, section 2.2.3 looks at the largest limitation of
MFCCs and section 2.2.4 describes the underlying theory behind MFCCs.

2.2.2 MFCC attributes

For a description of the Mel-Frequency Cepstrum and the Mel-Frequency Cep-
stral Coe�cients, see section 2.2.4 and 2.2.4.2.

Even though the use of MFCCs is very common, the range of MFCCs used
remains diverse. The use of 24-order MFCCs seems quite common [4, 17, 18, 115]
while Kim et al. [60] applies 23-order MFCCs. Using derivatives is also common,
13-order MFCCs along with their �rst-order derivatives are consistently applied
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by Kotti et al. [64, 66], while Wu et al. [122] employs 12-order MFCCs along
with their �rst-order derivatives.

Understandably, in later work, various types of feature selection are being ap-
plied to mitigate this issue. Wu et al. [122] investigates several MFCC orders
before the 12-order MFCCs along with their �rst derivatives are chosen. In
Kotti et al. [65], an e�ort is made to discover an MFCC subset that is more
suitable to detect a speaker change, with some performance gains, however they
do remark that this may reduce generalisability to other datasets. To further
this process this thesis applies several types of feature selection, see section 4.1
and 4.3.1.

Also, there is no consensus with respect to �rst-order MFCC derivatives. While
�rst-order MFCC derivatives are claimed to deteriorate e�ciency by Delacourt
et al. [24], the use of �rst-order MFCC derivatives is found to improve perfor-
mance by Wu et al. [122]. In this thesis this is found to depend on the applied
method's sensitivity to dimensionality issues, see section 4.1.1.2.

Since no consensus seems evident and since the 'direct comparison with previous
work' argument remains valid; this project will employ 12 MFCCs, with the use
of �rst and second order derivatives and then perform forwards and backwards
feature selection, see section 4.1 and section 4.3.1, respectively.

The majority of temporal parameters are borrowed from Jørgensen et al. [55],
but it is unclear which speci�c MFCCs are used. For this reason only 13 Mel-
�lters are used rather than 20, ensuring that the 12 MFCCs cover the entire
range. 13 rather than 12 Mel-�lters are used as the �rst MFCC is discarded since
it encodes the log energy of the signal and relying on the volume is obviously
a poor indicator for a speaker change detection. In section 4.3.1 backwards
feature selection will be applied to extend the 13 Mel-�lters up to the 20 used
in [54].

In addition, in line with Jørgensen et al. [54] among many others, 20ms windows
are used for the Short-Time Fourier Transform, STFT, with 10ms overlap and
a hamming window is applied to minimise spectral leakage. This choice seems
arbitrary, it is however very common, the earliest example found is by Ahalt
et al. [2]. In line with [55] and in line with the sampling frequency of the
ELSDSR database a sampling rate of 16KHz is used. Unlike in [54] the MFCCs
are standardized [67]:

Z =
X −X
s

(2.13)
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Where Z is the standard score of a raw score X. X is the expected value of X,
in this case a Gaussian is assumed reducing it to the sample mean, calculated
using equation 3.9 and s is the standard deviation of X calculated using equation
3.10.

This has been shown to improve performance in Viikki et al. [118].

2.2.3 MFCCs and noise

Despite the de facto standardization of their use as front-ends, MFCCs are
widely acknowledged not to cope well with noisy speech [16]. As written by Chen
et al. [16], many techniques have been deployed to improve the performance in
the presence of noise, such as Wiener or Kalman �ltering [98, 116], spectral
subtraction [10, 33, 47, 48, 49], cepstral mean or bias removal [38, 56], model
compensation [35, 88], Maximum Likelihood Linear Regression, MLLR, [121]
and �nally the method applied by the inventors of the RuLSIF method, transfer
vector interpolation [92].

The general concept in all of these is to use prior knowledge of the noise to mask,
cancel or remove noise during preprocessing or to adjust the relevant parameters
to compensate for the noise. However it was realised that applying any of these
methods is beyond the scope of this thesis. The necessary source code for adding
various types of noise was designed, but testing the method chosen in section
4.1 with it would require source code components that would simply take too
long to design and is therefore relegated to further work, see section 5.

The results found in this thesis is necessarily based on a relatively noise free
environment. In the context of news editing this should not pose a problem as
speaker transitions are rarely from one noisy environment to another. The SCD
method found as optimal in this thesis will easily detect a change from a speaker
in a noiseless environment to a speaker in a noisy environment, but might have
di�culties under changing noise conditions not coinciding with speaker transi-
tions.

2.2.4 MFCC theory

As mentioned in section 2.2, this work is based solely on manipulation of
MFCCs.

The Mel-Frequency Cepstral Coe�cient, MFCC, features have been used in a
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wide range of areas. The Mel-Frequency Cepstrum, MFC, originates in speech
recognition [100], but has increasingly been used in other areas as well. Such as
music genre classi�cation [3, 83], music/speech classi�cation [28, 89] and many
others, for instance [32, 123].

The implementation used here is from the Voicebox toolbox by Brookes et al.
[13]. This section will go into greater detail on the underlying theoretical aspects,
by �rst examining the cepstrum, extraction of coe�cients using the Discreet
Cosine Transform, DCT, and then moving onto a description of the Mel scale
and its applications.

2.2.4.1 The Cepstrum

This section is to a large degree based on the book, "Discrete-time processing
of speech signals" by Deller et al. [25].

Speech in general can be modelled as a �ltering of the vocal excitation by the
vocal tract, in other words a convolution in the time domain. The vocal excita-
tion, produced by the vocal cords, controls the pitch and the volume of speech.
Whereas the shape of the vocal tract controls the formants of speech which
de�ne literal semantics and nuances in the speech helpful for speaker discrimi-
nation. Taking this into account is shown to improve performance in section 4.3.
The speech signal, s(n), is therefore the vocal excitation, sometimes referred to
as the excitation sequence [55], e(n), which is convolved with the slowly varying
impulse response, θ(n), of the vocal tract:

s(n) = e(n) ∗ θ(n) (2.14)

An initial task in speech data preprocessing is therefore a deconvolution and
separation of these di�erent aspects of speech. This separation is useful for
a number of reasons, mainly it enables the analysis of the separate aspects
individually. This individual analysis is essential since the shape of the vocal
tract control literal semantics and is thus useful in speech recognition, whereas
the vocal excitation is speaker speci�c and is therefore used mainly in speaker
recognition. Using all the data for SCD is shown to reduce performance in
section 4.3.

This deconvolution is where the cepstrum comes into play, the cepstrum is a rep-
resentation used in homomorphic signal processing, to convert signals combined
by convolution into sums of their cepstra, for linear separation. If the full com-



30 Data pre-processing

plex cepstrum is generated this process is termed `homomorphic deconvolution'
[94, 99].

In the �eld of speech analysis the cepstrum is particularly useful as the low-
frequency excitation and the the formant �ltering, which are convolved in the
time domain and multiples in the frequency domain, are additive and in di�er-
ent regions in the quefrency domain. Quefrency being the independent variable
of the cepstrum, analogues to frequency of the spectrum, in line with the ana-
grammatic naming convention of the �eld.

The complex cepstrum, as described by [93], contains all phase information
and thereby enables signal reconstruction. However for application in speech
analysis, only the real cepstrum is standard and consequently the version im-
plemented in Voicebox [13] and in this thesis employs this version. The real
cepstrum, cs(n), is de�ned as [99]:

cs(n) = IDFT{log |DFT{s(n)}|} (2.15)

Where DFT and IDFT are the Discrete Fourier Transform and the Inverse
Discrete Fourier Transform respectively and n is the time-like variable in the
cepstral domain. Through the use of the Fourier transform the spectrum of the
signal becomes a multiplication of the components rather than a convolution:

S(k) = E(k)Θ(k) (2.16)

In practice a variation of the Short-Time Fourier transform, STFT, using over-
lapping hamming windows is applied, see section 2.2.2. The logarithm product
rule enables a linear separation of the components; thereby the multiplication
becomes an addition, simultaneously the absolute value is used to discard all
phase information:

log |S(k)| = log |E(k)Θ(k)| (2.17)

= log |E(k)|+ log |Θ(k)| (2.18)

= Ce(k) + Cθ(k) (2.19)

Finally to enter the quefrency-domain the IDFT is applied. Since IDFT is
a linear operation it applies to each component according to the principle of
superposition, giving the real cepstrum of s(n), cs(n):
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cs(n) = IDFT{Ce(k) + Cθ(k)} (2.20)

= IDFT{Ce(k)}+ IDFT{Cθ(k)} (2.21)

= ce(n) + cθ(k) (2.22)

For a pictographical summary of the signal transformation process see �gure
2.6.

2.2.4.2 Mel-frequency warping

The cepstrum described in section 2.2.4.1, is lacking a key feature often ap-
plied, namely a frequency warping used to model the human auditory system.
The general idea is that by applying this frequency warping the information is
more evenly distributed among the coe�cients. In [106] di�erent version are
examined and contrasted, including the one applied in the ISP toolbox [53]
and therefore the one used here. The use of the Mel scale has been shown to
increase performance many times over and is standard practice in the �eld of
speech analysis.

The calculation of the mel-cepstrum is similar to the calculation of the real
cepstrum except that the frequency scale of the magnitude spectrum is warped
to the mel scale.

Originally proposed by Stevens et al. [110] the mel scale is a perceptual scale
of pitch. The scale is based on an empirical study of subjectively judged pitch
ratios by a group of test subjects.

It should be mentioned that among others Donald D. Greenwood, a student of
Stevens, found the existence of hysteresis e�ects in the mel scale in 1956. This
is mentioned in [109] and was submitted in a mailing list in 2009 [41]. The mel
scale does not take these hysteresis e�ects into consideration and is therefore
slightly biased, but has been shown to increase performance nonetheless.

The mel scale is usually approximated by a mapping with a single independent
variable, the corner frequency, i.e. the frequency to which the pitch ratio is
measured against. This frequency have varied over the years, the currently
most popular, and the version implemented in Voicebox [13], was proposed by
[80] with a corner frequency of 700 Hz. The 700 Hz version superseded the 1000
Hz version �rst proposed by [29], on the conclusion that it provides a closer
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Figure 2.6: Shows how a speech signal is composed of a slowly varying envelope
part convolved with quickly varying excitation part. By moving to
the frequency domain, the convolution becomes a multiplication.
Further taking the logarithm the multiplication becomes an ad-
dition. Thereby neatly separating the components of the original
signal in its real cepstrum. Figure borrowed from [25].
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approximation of the mel scale, especially at high and low frequencies [36]:

fmel = 2595 log10(1 +
f

700
) (2.23)

Where f is frequency.

Using this mel frequency mapping the MFCCs are calculated according to �gure
2.7. In line with section 2.2.4.1, the only addition is the step for discretizing
the cepstrum, the discrete cosine transform. The MFCCs are computed from
the Fast Fourier Transform, FFT, power coe�cients which are �ltered by a
triangular band pass �lter bank. The �lter bank used in this thesis consists of
12 triangular �lters later expanded to 20, see section 2.2.2. The MFCCs, Cn,
are calculated as [99, 124]:

Cn =

√
2

Kmel

Kmel∑
k=1

(log10Sk) cos

(
n(k − 1

2 )π

k

)
(2.24)

Where Sk(k = 1, 2, . . . ,Kmel) is the outputs of the �lter bank and n = (1, 2, . . . , N)

are the samples in a 20ms audio unit. The
√

2
Kmel

normalisation factor is added

so that the inverse does not require an additional multiplicative factor, this is
used to make the transform matrix orthogonal.

As mentioned in section 2.2.4.1, ideally only the vocal excitation part of the
speech signal is wanted and therefore only the highest coe�cients of the mel-
cepstrum are extracted. As mentioned in section 2.2, this thesis initially uses all
coe�cients except the lowest from the 13 �lters, and subsequently �nd improved
results by using only the 12 upper coe�cients from 20 �lters. In addition this
project includes the �rst and second order derivatives of these coe�cients, as
mentioned in section 2.2.

An interesting note is that some authors, including [23] have commented that
the spectral basis functions of the cosine transform in the MFC are very similar
to the principal components of the spectra, which were applied to speech rep-
resentation and recognition much earlier by Pols et al. [97, 96]. Thereby giving
credit to the whole notion of MFCCs as a means to accurately represent spectral
content e�ciently. Indeed it has even been found that MFCCs if produced from
a very wide range of sounds, might be similar to an Independent Component
Analysis, ICA, of sound perceived by mammalian ears in general [43][71].
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Figure 2.7: Process by which the MFCC features are calculated. This �gure
is meant as an overview, not a summery, minor steps like win-
dowing are overlooked for concision. Section 2.2.4 is dedicated to
explaining the process portrayed in this �gure.
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2.3 Change-point detection

The end goal is to hypothesize a set of speaker change-points, all methods
however only produce a metric in which peaks correspond to possible change-
points. This in essence boils the problem of change-point detection down to
a need for a 1D-peak detection algorithm. In Jørgensen et al. [55] a suitable
algorithm is proposed, which includes a series of steps and a few free parameters.

A change-point is de�ned as a local, within Ti seconds, maxima above the thresh-
old, Mcd. This threshold is the moving average over a region, 2 ∗ Tmax seconds,
with a gain, αcd, applied to the threshold.

Mcd = αcd
1

2 ∗ Tmax + 1

n+Tmax∑
i=n−Tmax

metrici (2.25)

These free parameters Ti, Tmax and αcd need to be �xed or trained. This thesis
de�nes a speaker turn as being above at least 1 sec. Therefore, in accordance
with [54], Ti is set to 2 seconds (other peaks within ±1 second are ignored).

In Jørgensen et al. [55], Tmax is used for multiple purposes, in addition to
de�ning a length for the moving average it de�nes the maximum use of data in
the False Alarm Compensation algorithm, FAC. A discussion of why and how
Tmax is determined will be delineated in section 2.4, after the FAC method has
been explained.

The threshold gain parameter, αcd, is trained empirically through a search, in
the free parameter space, for a maximal F-measure, see section 3.3.

2.4 False Alarm Compensation

The common approach to speaker change detection is that of a comparison
between subsequent segments of a �xed length [54][111][105]. This approach
however is saddled with an inherent problem, namely the ability to detect short
speaker turns, requiring short analysis windows, versus the ability to avoid false
positives, requiring long analysis windows, see section 1.1.3. The literature
proposes several solutions to this dilemma.

• Algorithms that successively build larger segments rather than comparing
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equal sized segments [42].

• Methods for running several analysis window lengths in parallel and then
combining the results [7].

• Iterative methods, where the algorithm is run recursively with successively
longer analysis windows on the successively smaller amount of possible
change-points in order to reject false alarms. This class of methods has
been termed False Alarm Compensation, FAC, and is employed by [54].
Here the false alarm compensation step was run only once.

This project employs a variant of the FAC method employed in Jørgensen et
al. [54], the di�erence being an investigation into the bene�t of a multistep
procedure, here termed Recursive FAC, RFAC, see section 2.4.1 and 5.2.

This approach has a number of free parameters; A bu�er variable equal to Ti,
see section 2.3 used as a bu�er zone around a hypothesized change-point, a
threshold gain parameter, αFAC , and �nally, Tmax, the maximum data used
from available data on each side of a hypothesized change-point.

αFAC is a gain applied to the moving average threshold calculated on the met-
ric, MFAC , similar to the variable, αcd, see section 2.3. αFAC times this moving
average threshold is the function below which a hypothesized change-point is
rejected. Only two thresholds exist, the change-detection one which is the mov-
ing average of the metric with the gain αcd, and the same moving average with
the gain αFAC .

MFAC = αFAC
1

2 ∗ Tmax + 1

n+Tmax∑
i=n−Tmax

metrici (2.26)

The threshold gain parameter, αFAC , is trained empirically through a search,
in the free parameter space, for a maximal F-measure, see section 3.3.

In Jørgensen et al. [55] it is argued that in order to maintain correlation between
the FAC threshold and the change-point threshold, Tmax, the maximum analysis
window and length of the moving average must be identical across algorithms.

Tmax has the additional purpose of maintaining speaker turn purity. I.e. if a
speaker-change point is missed during the �rst iteration, the resulting speaker
turn data would contain multiple speakers. Tmax counteracts this issue by using
the data closest to the hypothesized change-point in question, thus using as much
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data from the true speaker as possible and completely purifying the data if the
true speaker turn is longer than Tmax.

2.4.1 Hybrid method

This section will slightly modify the basic FAC method mentioned in section 2.4,
by proposing a robust novel approach where metrics are combined to compensate
for dissimilar weaknesses. A novel approach is proposed as a literature search
failed to yield any solutions to the problems described in this section.

In section 4.1.3.1, it is shown that combining di�erent metrics could potentially
increase performance, the reason being that they might be able to complement
each other on several key points. As mentioned in section 2.4, the idea of a
false alarm compensation paradigm is to incrementally increase the amount of
data available to the metric to progressively re�ne its estimate at a potential
change-point, using the earlier iterations to determine how much data is actually
available. During these iterations potential change-points that are found to be
false alarms are deleted freeing up data for neighbouring potential change-points.

The metrics, see section 3.2, vary in computational complexity and performance,
with the computationally heavy metrics generally outperforming the light met-
rics, see section 4.1.3. Using a light metric to quickly detect a large amount of
potential change-points and then subsequently applying a heavy metric on the
small data set to �lter out the false alarms seems logical.

This combined metric approach however has a serious issue at its core. In the
standard FAC paradigm the FAC threshold is merely a scaled version of the
threshold applied in the change-detection step, see section 2.4. As the same
metric is usually applied to both change-detection and FAC the only di�erence
is in the amount of data the metric is working with. I.e. in the standard FAC
paradigm it is assumed that the FAC metric assumes roughly the same range
of values as the change-detection metric irrespective of the amount of data used
and that peaks will merely be scaled versions depending on the data amount.

When combining metrics both of these assumptions fail and must be handled.
The novel approach proposed here involves discarding the notion of using the
moving-average of the change-detection step in the FAC step altogether.

Ideally the FAC metric is only evaluated at potential change-points, this however
poses a problem as a reference is required in order to determine a threshold to
which the FAC metric is compared. As one of the strengths of the combined
metric approach is that they treat the data di�erently, i.e. accentuating di�erent
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aspects, using a threshold based on a scaled version of the change-detection
metric is invalid.

What is proposed instead is a heuristic for estimating a noise �oor of the FAC
metric through information gathered from the change-detection step. The basic
assumption is that if the change-detection metric has a low threshold, thereby
proposing a large amount of potential change-points, then a position far from a
potential change-points is very unlikely to actually be a change-point.

The Combined Metric FAC, CMFAC, is therefore given the list of potential
change-points along with a list of not-change-points. It is then saddled with
the job of identifying which of the potential change-points are di�erent enough
from the not-change-points. These not-change-points are chosen as close to the
center as possible between the proposed change-points.

This novel CMFAC method applies its particular metric, RuLSIF is used in
section 5.2, to each of the not-change-points using as much data as possible up
to Tmax, in exactly the same fashion as the standard FAC method, see section
2.4. Thereby acquiring a list of values that probably correspond to the noise
�oor of the CMFAC metric. This list might however still contain change-points
or other rare events, this is handled by taking the median of this list, thereby
acquiring a single value very likely to be representative of the noise �oor.

This single value is then used as a constant threshold to which the gain, αFAC ,
is trained, see section 3.3. The hope is that the disadvantage of trading the
moving average threshold of standard FAC for the constant median threshold of
the CMFAC approach will be out weighted by the bene�t of a more expensive
and more thorough metric. A metric that does not have to correspond to the
metric used in the change-detection step.

This median approach is chosen as that will enable the algorithm to apply even in
the case of news editing, where only a few speaker changes occur. The CMFAC
method is applied in section 5.2, with KL and RuLSIF used as change-detection
metric and CMFAC metric respectively. There the performance is compared to
standard FAC using KL with KL and RuLSIF with RuLSIF.



Chapter 3

Methodology

This chapter will delineate the theoretical ground work. To begin with, a short
introduction to the concept of metrics and how they relate to the actual sound,
is bridged using a spectrogram and a graphical representation of the MFCCs.
Once this is in place, the independent approaches to SCD are described in detail,
these include; Vector Quantization, Gaussian based approaches and Relative
Density Ratio Estimation.

This chapter will then describe the parameter optimisation technique used to
train the change detection and the FAC thresholds. These methods are applied
in section 4.1.2. Finally this chapter will conclude with some miscellaneous basic
required theory.

3.1 Metric introduction

This section will try to bridge the gap from sound pressure up one abstraction
level to the SCD F-measure score using the various methods.

The upper graph seen in �gure 3.1 shows a spectrogram of some speech data,
i.e. with frequency on the y-axis, time on the x-axis and magnitude encoded in
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the color scale going from blue, low, to red, high. The speech is recognisably
producing patterns, but obviously distinguishing between speakers is di�cult at
best.

Using the feature extration methods described in section 2.2; The MFCCs are
shown in the middle graph which to a large degree resembles noise, but most
assuredly contains SCD cues. Slightly confusingly the frequency scale in the
middle graph is an inverted version of the upper graph, this is a remnant of an
alignment process which was more straightforward this way and given that the
MFCCs are standardized the relevance is negligible.

The bottom graph displays the metrics of the various methods applied to the
MFCCs and here the speaker changes are obviously very detectable. The hori-
zontal dotted green lines represent actual changes from one speaker to another,
the red ones denote changes between �les containing the same speaker, these
are obviously invalid and should not get detected. The metrics are designed to
peak at speaker changes and are independent of the green and violet circles.

These green and violet circles represent the change-detection and FAC algo-
rithms respectively applied to the metrics, with a green simply signifying that
the algorithm thinks it encountered a speaker change, not denoting the success.
The violet circles represent potential speaker change-points - formerly green cir-
cles - that the FAC algorithm has �agged as false alarms. Note that a potential
change-point must be within 1 second of the actual change to count towards the
F-measure score seen in the legend. The F-measure being the harmonic mean
between hits-to-tries ratio and hits-to-possible-hits ratio.

3.2 Speaker dissimilarity metrics

To determine the dissimilarity of two subsequent analysis windows a suitable
dissimilarity metric must be chosen. In the literature many such measures have
been proposed, in this project some of the most common approaches are singled
out and compared, this section will describe the theory behind these and the
limitations of them. The metrics will then be trained, see section 4.1.2, and
compared using test data, see section 4.1.3, to determine their performance in
the context segment comparison and false alarm compensation. In must be
noted that alternatives to the metric based approach, when comparing analysis
windows, are used in the literature, but will not be tested in this thesis. As an
example Henkel et al. [46] compares distributions in the framework of hypothesis
testing.
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Figure 3.1: The upper graph shows a spectrogram of the data, i.e. with fre-
quency on the y-axis, time on the x-axis and magnitude encoded
in the color scale going from blue, low, to red, high. The standard-
ized MFCCs are shown in the middle graph. Slightly confusingly
the 'frequency scale' in the middle graph is an inverted version of
the upper graph. The bottom graph displays the various metrics
applied to the MFCCs. The horizontal dotted green lines rep-
resent actual changes from one speaker to another, the red ones
denote changes between �les containing the same speaker, these
are obviously invalid and should not get detected. The metrics
are designed to peak at speaker changes and are independent of
the green and violet circles. These green and violet circles repre-
sent the change-detection and FAC algorithms respectively, with a
green simply signifying that the algorithm thinks it encountered a
speaker change, not denoting the success. The violet circles repre-
sent potential speaker change-points that the FAC algorithm has
�agged as false alarms. As seen the FAC algorithm does fairly
well, but sometimes marks correct change-points as false alarms,
see upper right on bottom �gure. Note that a potential change-
point must lie within 1 second of the actual change to count to-
wards the F-measure score seen in the legend. The F-measure
being the harmonic mean between the hits-to-tries ratio and hits-
to-possible-hits ratio.
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3.2.1 Vector Quantization

Vector quantization, VQ, [39, 40] incorporates a variety of approaches to 'dis-
cover' the underlying structure of a dataset through iteratively improved guesses.
More technically VQ is a central topic in signal processing, a sub-�eld of com-
petitive learning and deals with the problem of representing a dataset by means
of a smaller, �nite size, K, codebook of representative data points or 'centroids'
[50]. The size of K must be chosen to match the application and how the cen-
troids are initially chosen as well as how they are updated depends on the choice
of algorithm. An example of a simple VQ algorithm could be:

1. Pick a sample point at random.

2. Move the nearest centroid towards this sample point.

3. Go to step 1.

An input belongs to cluster i if i is the index of the closest centroid, here distance
is measured using the Euclidean distance. This has the e�ect of dividing up the
space into a Centroidal Voronoi tesselation, CVT, a high dimensional beehive-
esque structure where the cells size is inversely proportional to the data density
and the shape is determined by the proximity to other cells [26].

Many di�erent algorithms for various purposes have been designed, within the
�eld of speaker diarisation VQ has found its uses in many di�erent aspects, such
as word recognition [14], speaker recognition [108], and of cause speaker change
detection [54].

3.2.1.1 Choice of algorithm

This section will describe the VQ algorithm choice, for a description of the choice
see section 3.2.1.2.

Within the �eld of VQ there are two distinct groups of algorithms, the on-line
algorithms and the batch algorithms. Batch algorithms recomputed all values
at each iteration, whereas on-line algorithms compute only a single value each
iteration. An example of this distinction is the standard K-means [8] vs. the so
called Winner-Takes-All, WTA, version of K-means [45].

On-line does not necessarily refer to new data coming in, as VQ is sensitive
to sequential data that is non-i.i.d. - independent and identically distributed -
these centroids chosen for updates are either randomly or carefully selected [45].
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On-line methods that update sequentially on incoming data are not directly
applicable in the context of speech as the signal varies far too quickly to be
of practical use, beyond this the common approach, when analysing temporal
e�ects in the signal, is to use derivatives of the input along with the input, this
is discussed in section 2.2.

Ahalt et al. [2] compares several algorithms in the context of speech data,
but �nds no signi�cant di�erence in performance, signifying that the particu-
lar choice of training algorithm is to some degree irrelevant performance wise.
The algorithms included the Self Organizing Maps [63], SOM, the Frequency-
Sensitive Competitive Learning, FSCL, algorithm neural network [50, 108] and
the Linde�Buzo�Gray algorithm, LBG, [73]. The LBG algorithm is an extension
of Lloyd's algorithm [76] and similar to the more well-known K-means algorithm
[8]. The result is similar in another study, this time by Kinnunen et al. [61],
where �ve di�erent clustering algorithms are compared for use in a speaker iden-
ti�cation setup using vector quantization. The comparison shows only marginal
di�erence in the results obtained with the �ve algorithms.

Beyond performance this still leaves attributes like e�ciency, robustness and
convergence. In lieu of other work that compares di�erent algorithms, a ro-
bust common choice must be made. The previous work this project builds on
Jørgensen et al. [55] used a version of the K-means algorithm and proposed
some optimisations, see section 3.2.1.4, along with �nding overall decent results
using it. For this reason the K-means algorithm will be employed for use in
VQ. The convergence properties, the limitations and the general principals of
the K-means algorithm will be discussed in the following subsections.

3.2.1.2 K-means

Given a dataset {x1, . . . , xn} consisting of N observations of arbitrary dimen-
sionality. The goal of K-means is to group the data into K pure clusters with the
minimum within-cluster sum of squares, WCSS, distance. As such the objective
function for K-means is given as [8]:

WCSS =

N∑
n=1

K∑
k=1

rnk||xn − µk||2 (3.1)

Where µk are the cluster centroids and rnk is a vector signifying to which cluster
xn belongs:
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rnk =

{
1 if k = argminj ||xn − µk||2

0 otherwise.

This objective function is also referred to as a distortion measure by bishop [8]
and is also used as the metric to quantify the change in the signal, see section
3.2.1.3.

The objective of the K-means algorithm is to solve the NP-hard problem [6] of
�nding the optimal combination of µk and rnk for minimising WCSS heuristi-
cally.

This heuristic is a 2-step procedure similar to the more general EM-algorithm [8]
used in the also very established Gaussian Mixture Model, GMM, [8] approach
which has also found its uses in SCD [68, 81]. The GMM approach was originally
included in this thesis, but was cut both for e�ciency reasons and due to the
di�culty in de�ning a suitable dissimilarity metric, which lead to the �eld of
the Adapted Gaussian Mixture Models, AGGM, [81] or out of this paradigm
altogether into the Hidden Markov Model, HMM, [68].

The basis of this heuristic is the fact that a closed form solution of the objective
function is easily found looking at a speci�c cluster k, Ck. The objective function
3.1 is quadratic in µk and therefore convex, meaning that a local minimum is
the global minimum. The minimum is found by minimising the derivative of
WCSS with respect to µk:

dWCSS
dµk

=

N∑
n=1

K∑
k=1

2rnk(xn − µk) = 0 (3.2)

Where µk is just the arithmetic mean of xn found by solving for µk:

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

(3.3)

Since the denominator is the total number of points in cluster k, Sk, and the
numerator is the sum of all points in cluster k, Ck:

µk =

∑
xn∈Ck xn

Sk
(3.4)
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This is also the reason why the method is called K-means.

Using this closed form solution a local minima to the NP-hard problem [6] is
found using this algorithm [8]:

• Initialisation step: Initially Initialise centroids using Forgy's method
[34], which simply uses k data points drawn at random. On subsequent
analysis windows use previous centroids, see section 3.2.1.4.

• Assignment step: Assign each data point to the cluster whose centroid
is closest to it. Where each data point xn belongs to only one cluster,
which is not a problem here as the distance measure used is Euclidean.

If any cluster is empty, reinitialise it using the singleton method, i.e. move
it to the data point furthest from all centroids.

• Update step: Calculate the new position for the centroids of each cluster
using equation 3.4.

If the stopping criterion is not met, return to the assignment step.

• Stopping criteria: The algorithm has converged when the no centroids
were moved. This stopping criteria is shown in [11] to be stable, but as a
fail-safe the algorithm will stop if a large maximum number of iterations
have passed.

The MATLAB function kmeans from the statistics toolbox is used to implement
K-means [82].

3.2.1.2.1 Limitations of K-means

K-means as a method for clustering has some stringent limitations that must to
be addressed.

In particular K-means in the context of clustering has problems [8] when clusters
have:

• Di�ering sizes

• Di�ering densities

• Non-globular shapes

• Outliers
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Most of these concerns however are not as crucial here as K-means is used to
approximate the underlying probability density function, PDF, not to identify
meaningful clusters in the data.

As seen in �gure 2.2 the data in the MFCC space is roughly globular, but
does contain some outliers. What these outliers signify and by extension what
individual clusters found by K-means signify is not investigated in this thesis.

These limitations do however limit K-means' ability to approximate nuances in
the PDF and will therefore skew the results slightly as a di�erence between sub-
sequent analysis windows might not be representative of the underlying PDF,
but in how K-means approximates it. How this a�ects the results is not inves-
tigated in this thesis, however this issue is inverse proportional to the size of K,
see section 4.1.1.3.2 for selection of codebook size.

Beyond this K-means have di�culties when unfortunate initialisation or iter-
ations results in empty clusters. This thesis applies the singleton approach
wherein empty clusters are assigned to the data point furthest from any cen-
troid. This singleton approach obviously makes the K-means method even more
outlier sensitive. The larger the codebook is the more likely it is that an outlier
will be assigned as its own cluster, but the less likely it is that it will signi�-
cantly impact that approximation. This issue however is mitigated due to how
di�erences between codebooks are calculated, see section 3.2.1.3, since a cluster
is merely compared to its closest neighbour in the previous codebook, not its
previous position.

3.2.1.2.2 Codebook size

The choice of codebook size, K, and feature selection in the context of K-means
is investigated in section 4.1.1.3.

3.2.1.3 Choice of metric

Given that the analysis windows are clustered using the K-means algorithm
described in section 3.2.1.2, a crucial step remains, which is a choice of metric for
comparing windows. Since the K-means algorithm is designed to minimise the
WCSS, the obvious choice is to use the previous analysis window as training data
and the subsequent analysis window as test data, thereby directly measuring the
WCSS using equation 3.1.

This approach has been termed Vector Quantization Distortion, VQD, by Nak-
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agawa et al. [90]. In summary VQD can be expressed as:

VQD(CA, B) =
1

N

N∑
n=1

argmin
1≤k≤K

{d(cAk , x
B
n )} (3.5)

Where cAk denotes the kth code-vector in CA, with 1 ≤ k ≤ K. d(·,·) is the
distance between two feature vectors, in this context the well-known Euclidean
distance is used:

dEuclidean(p, q) = dEuclidean(q, p) =

√√√√ D∑
d=1

(qd − pd)2 (3.6)

Where p and q are J dimensional vectors, subscript d denoting dimension.

Thus, the VQD measure 3.5 is the mean distances from all the feature vectors
xBn in the later analysis window B to the nearest code-vector in the prior analysis
window cAk . The keen observer will notice that 3.5 is identical as a metric to
3.1 when using a constant analysis window size, since the normalization in this
case is irrelevant.

This metric is slightly altered in order to optimise K-means, see section 3.2.1.4.

3.2.1.4 Optimisations

Two basic optimisations to the standard K-means / VQD approach of Nakagawa
et al. [90] are given in Jørgensen et al. [55]. These have been included in the
algorithm as they substantially improve run time, at almost no cost [55].

The �rst optimisation is in the initialisation approach, this is also mentioned in
the algorithm described in section 3.2.1.2. For the very �rst analysis window the
Forgy initialisation method [34] is used, wherein the centroids are just placed on
random data points without overlap. This initialisation method is bias free, but
is quite expensive computationally, as a large amount of steps are needed for
convergence, see section 3.2.1.2. The proposed method is to initialise subsequent
analysis window codebooks by the codebook of the previous analysis window.

The idea behind the proposed method is that subsequent analysis windows are
either of the same speaker or not, and that the codebooks should be person
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speci�c. This means that if the previous codebook was not a good approximation
of the next analysis window, then a large change in the codebook should occur,
signifying a speaker change. This optimisation improves the run-time by a factor
of about 2.5 using a codebook size of K = 56.

The second optimisation applies the assumption that the codebook of an analysis
window is a fair approximation of said analysis window. Thereby replacing all
data points, xBn , in equation 3.5, with the codebook for analysis window B, CBk :

VQDOptimised(CA, CB) =
1

N

N∑
n=1

argmin
1≤k≤K

{d(cAk , c
B
k )} (3.7)

This assumption is the basic assumption of VQ in general, see section 3.2.1 and
is therefore a logical necessity. This optimisation improves the run-time by a
factor of about 7, using K = 56, see section 4.1.1.3.2 for choice of codebook size.

In total these optimisations improve the run-time of the K-means algorithm by a
factor of about 15, enabling its use, for a deeper analysis into the computational
e�ciency of the various approaches compared to real time, see section 4.1.3.2.

3.2.2 Gaussian based approaches

This section will describe the second group of approaches tested in this project
in the context of SCD, which is the single multivariate Gaussian approach, along
with its individual sub constituents. This approach is common in the context
of SCD, and has been shown to perform decently [54, 85].

This approach is basically modelling each analysis window as being drawn from
its individual multivariate Gaussian and then comparing analysis windows by
the distortion of the estimated underlying PDF. These distortion measures in-
clude the Kullback-Leibler distance, KL, and its constituents, the Divergence
Shape Distance, DSD, and the Euclidean distance between the sample means.

The distance between sample means is implemented using VQ and a K-means
algorithm with a codebook size of K = 1, in which case it degenerates into
the Euclidean distance between sample means, see section 4.1.1.2. The sections
below will describe the KL and DSD dissimilarity measures, 3.2.2.3 and 3.2.2.4
respectively.
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3.2.2.1 Estimation of population parameters

A multivariate Gaussian distribution has two population parameters, the pop-
ulation mean, µ, and the population covariance matrix, Σ, and is given by [8]:

N (x|µ,Σ) =
1

(2π)
D
2

1√
|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.8)

Where D is the number of dimensions, x is a D-dimensional vector in the MFCC
space, xT and x−1 signi�es the transpose and inverse of x respectively and �nally
the population parameters µ and Σ which must be estimated empirically.

The population mean is estimated using the sample mean [8], which is basically
the arithmetic mean of every dimension individually:

x =
1

N

N∑
i=1

xi (3.9)

Where N is the sample size.

The calculation of the sample covariance matrix is slightly more complicated,
as it has the disadvantage of being very prone to outliers [51, 117]. Section
2.1.3.1 analysis how prone the MFCC data is to outlier behaviour, as seen,
outliers are rare and the data follows a multivariate normal distribution to a
good approximation. For this reason an unbiased estimator of the covariance
matrix is used and is given by [8]:

qjk =
1

N − 1

N∑
i=1

(xij − xj)(xik − xk) (3.10)

Where qjk are the entries of the sample covariance matrix, Q, Which is just the
average covariance of every pair of dimensions, where N − 1 is used rather than
N , since a D.o.F was spent calculating the sample mean. This is implemented
using the MATLAB function cov.
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3.2.2.2 Limitations of the Gaussian approach

Since the data can, to a good approximation, be modelled as drawn from a
multivariate Gaussian, see �gure 2.2, and since it appears to be a simple model,
this approach appears quite optimal. This supposedly simply approach does
however have quite signi�cant limitations. The main limitation [8] being that
it fails to utilise the large amount of parameters e�ectively. The method is
intrinsically uni-modal and as such, even if that is su�cient for modelling a
speaker, it will fail if multiple speakers are present in the same analysis window,
i.e. if the analysis window crosses a change-point. Even given this fairly large
disadvantage the number of independent parameters needed, P , is quadratic in
the dimensionality, D, more precisely the amount of parameters is given by [8]:

P = (
D2

2
+
D

2
) +D (3.11)

Where the �rst 2 terms are the parameters needed for the covariance matrix,
divided by 2 since the covariance matrix is symmetric, with the second term
adding the missing half of the diagonal and the last term are the parameters
needed for the mean. In this case, given the 36 dimensional input space, see
section 2.2, the amount of parameters used is P = 702, more than twice the
300 MFCCs in an analysis window, see section 2.2.2. One should think that
the obvious over �tting issues would be a detriment to performance and that
using the small input space of D = 12, P = 90, would circumvent these issues.
This however appears not to be the case, see section 4.1.1.2 for performance
depending on attributes and dimensionality of the input space. Irrespective of
the limitations this approach is very computationally e�cient as the models can
be directly applied, as opposed to the VQ approach, see section 3.2.1.2, where
no closed-form solution for the model parameters in known. The fact that the
parameters can be directly calculated results in a very short runtime, see section
4.1.3.2.

3.2.2.3 Kullback Leibler Distance

Information theoretically the relative entropy, or the information gain, between
two PDFs is called the Kullback-Leibler divergence [69, 105]:

KLdivergence(A;B) =

∫ ∞
−∞

PA ln

(
PA
PB

)
dx (3.12)
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This measure is not directly applicable as a metric, as it is a divergence and is
obviously not symmetric. This is handled by introducing the notion of Relative
Cross Entropy [105], or in common parlance the Kullback Leibler distance, often
abbreviated KL2, here for practical reasons referred to simply as KL. The Kull-
back Leibler distance merely solves the issue by looking from both directions at
once:

KLdistance(A;B) = KLdivergence(A;B) + KLdivergence(B;A) (3.13)

=

∫ ∞
−∞

(PA − PB) ln

(
PA
PB

)
dx (3.14)

A full derivation of the Kullback Leibler distance can be found in the original
work by Kullback and Leibler [69].

Inserting equation 3.8 into 3.13 and moving into the discrete domain, yields [55]:

KLdistance(A;B) =
1

2
Tr
[
(ΣA − ΣB)(Σ−1A − Σ−1B )

]
+

1

2
Tr
[
(Σ−1A − Σ−1B )(µA − µB)(µA − µB)T

]
(3.15)

This is the implemented version of the Kullback-Leibler distance, see appendix
A.3.2. The Kullback-Leibler distance has been applied broadly, with decent
performance, in the �eld of speaker diarisation [54, 85, 105].

3.2.2.4 Divergence Shape Distance

In Lu et al. [78] it was found that environment to a large degree is encoded
in the position of the Gaussian in space, or its mean. To circumvent this the
Kullback-Leibler distance 3.15 was applied without the second term involving
the means, a measure called the Divergence Shape Distance, DSD:

DSD(A;B) =
1

2
Tr
[
(ΣA − ΣB)(Σ−1A − Σ−1B )

]
(3.16)

As such the DSD is used as a metric for determining the divergence of the
covariance matrix. All data in this project, see section 2.2.3, is as environment-
free as possible, given that it is not recorded in an anechoic chamber. To avoid
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any e�ects the environment could have on the performance, code was developed
for applying various noise types, but due to lack of resources this has been
relegated to further work in section 5. The DSD measure is however included to
determine whether excluding the means improves the performance even in an
environment free setting. This appears to not be the case, see section 4.1.1.2.

3.2.3 Relative Density Ratio Estimation

The �eld of change-detection in general is vibrant with new methods and ap-
proaches. This section will describe how and why a novel approach development
by Liu et al. [75] is applied. Let it be noted that for unreferenced statements
in this section [75] is implied.

The other applied approaches, see section 3.2.1 and 3.2.2, su�er from a core de-
�ciency that this new approach circumvents. They estimate individual models
for the preceding and the succeeding analysis windows, then subsequently esti-
mate the di�erence between these, discarding the individual models, see �gure
1.2. This section will describe a novel approach in the �eld of change-detection
that directly estimates the relative density-ratio. The applied method is called
Relative unconstrained Least-Squares Importance Fitting, RuLSIF, and is an
extension of the more comprehensible Kullback-Leibler Importance Estimation
Procedure [112], KLIEP, by Sugiyama et al.

RuLSIF was introduced to overcome certain de�ciencies of KLIEP. These de-
�ciencies are mainly extreme sensitivity to outliers, see section 3.2.3.1.1, and
the lack of a closed-form solution [112]. Along with the avoidance of these
de�ciencies RuLSIF provides a set of advantages, these include; an improved
non-parametric convergence rate [57, 125], numerical stability [58] and robust-
ness [111].

This section will �rst outline KLIEP and its relation to the KL method described
in section 3.2.2.3, as well as proceed to extent KLIEP to the full RuLSIF method.

3.2.3.1 From KLIEP to RuLSIF

The KLIEP method is related to the KL method described in section 3.2.2.3, in
that it is based on the KL-divergence. KLIEP however takes a non-parametric
approach and directly approximates a measure similar to the KL distance.

The essence of the density-ratio estimation is the notion of a function, g(x|θ),
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called the density-ratio that when multiplied by the PDF of the succeeding
analysis window, PB yields the PDF of the preceding analysis window, PA:

PA = g(x|θ)PB (3.17)

⇔

g(x|θ) =
PA
PB

(3.18)

In other words estimating the density-ratio, g(x|θ), can be expressed as an
optimisation problem, whereby g(x|θ) is estimated through a minimisation of
the KL-divergence 3.12:

KLdivergence(A;B) =

∫
PA log10

(
PA

PBg(x|θ)

)
dx (3.19)

Where the PDFs, PA and PB are functions of x. To elaborate; in practice g(x|θ)
is approximated as seen below, 3.22, if approximated ideally the KLdivergence(A;B)
is naturally:

KLdivergence(A;B) =

∫
PA log10 (1) dx = 0 (3.20)

Indicating no information gain from PA to g(x|θ)PB .

The reader will have noticed that the logarithm base has changed from 3.12
to 3.19. To dispel confusion it must be noted that the KL divergence holds
irrespective of log base [69]. Logarithms in these formulae are taken to base 2 if
information is measured in units of bits and to base e if information is measured
in nats. Too simplify the implementation the version used here uses base 10 as
chosen by Liu et al. in [75] on which the work here is based.

The trick then is that by the quotient logarithm rule [1] the unknown PDFs PA
and PB can be ignored:

KLdivergence(A;B) =

∫
PA log10

(
PA
PB

)
dx−

∫
PA log10(g(x|θ)) dx (3.21)
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As they are irrelevant to g(x|θ) and as the second term for obvious reasons
cannot exceed the �rst term, since that would result in the approximation re-
sembling the function more than the function itself. Since the �rst term must
be positive and has no parameters, the only way to minimise 3.21 is to minimise
the second term.

In KLIEP as well as RuLSIF the density-ratio, g(x|θ), is modelled using a kernel
model:

g(xA|θ) =

N∑
i=1

θiK(xA, xBi ) (3.22)

Where N is the number of samples in an analysis window and where θ =
(θ1, . . . , θN )T , are the parameters to be learned via the mentioned optimisa-
tion problem 3.21. For the kernel basis function the Gaussian kernel is applied:

K(xA, xB) = exp

(
−||x

A − xB ||2

2σ2

)
(3.23)

Where σ is the kernel width trained for each density-ratio individually, see
section 3.2.3.2 for more details.

Inserting 3.23 into 3.21 yields a convex optimisation problem which in the case of
KLIEP lacks a closed form solution and therefore requires an iterative approach
[75]. This optimisation yields the estimate of the density-ratio, ĝ(x|θ̂).

Finally given this estimate of the density ratio, the estimate of the KL-divergence
can be approximated as the arithmetic mean of the log density ratio [59]:

K̂L =
1

n

n∑
i=1

log10 ĝ(x|θ̂) (3.24)

Where n is the number of samples in an analysis window.

3.2.3.1.1 Outlier sensitivity of KLIEP

The main reason KLIEP is not applied is its extreme sensitivity to outliers
which for lack of a referenceable source will be fully deduced in this section.
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Given two PDFs, p(x) and q(x), the KL-divergence is given as 3.12:

KLdvg(p; q) =

∫
p(x) log10

(
p(x)

q(x)

)
dx (3.25)

=

∫
p(x)(log10p(x)− log10q(x)) dx (3.26)

Now setting q(x) equal to p(x) plus an error term δ(x):

q(x) = p(x) + δ(x) (3.27)

Where the error term δ(x)� p(x), yields:

KLdvg(p; q) =

∫
p(x)(log10p(x)− log10(q(x) + δ(x))) dx (3.28)

Performing a Taylor series expansion [1] of the term containing the error:

log10(q(x) + δ(x)) = f(y) (3.29)

= f(a+ δ(x)) (3.30)

=

∞∑
n=0

f (n)(a)

n!
(y − a)n (3.31)

=

∞∑
n=0

f (n)(a)

n!
(δ(x))n (3.32)

=

∞∑
n=0

(log10p(x))(n)

n!
δ(x)n (3.33)

=
log10p(x)

1
δ(x)0 +

1
p(x)

1
δ(x)1 +

− 1
p(x)2

2
δ(x)2 + . . . (3.34)

= log10p(x) +
δ(x)

p(x)
+

(
−1

2

δ(x)2

p(x)2

)
+ . . . (3.35)

Reveals an interesting fact:
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KLdvg(p; q) =

∫
p(x)

(
log10p(x)− log10p(x) +

δ(x)

p(x)
+

(
−1

2

δ(x)2

p(x)2

)
+ . . .

)
dx

(3.36)

=

∫ (
−δ(x)−

(
−1

2

δ(x)2

p(x)

)
− . . .

)
dx (3.37)

Now since p(x) and q(x) are PDFs they are constrained to an integral of 1,
which means that 3.27 integrated over all x reduces to:

∫
q(x) dx =

∫
p(x) dx+

∫
δ(x) dx (3.38)

1 = 1 +

∫
δ(x) dx (3.39)

0 =

∫
δ(x) dx (3.40)

(3.41)

Thereby the integral further reduces to:

KLdvg(p; q) =

∫
−
(
−1

2

δ(x)2

p(x)

)
− . . . dx (3.42)

Now ignoring all additional terms in the taylor expansion as the integral will be
dominated by the second term, due to the 1

n! factor on the nth term:

KLdvg(p; q) ≈
1

2

∫
δ(x)2

p(x)
dx (3.43)

This result is similar to a squared loss, but as is evident, errors are not weighted
uniformly, they are weighted by the probability density at the position of the
error. This means, that as p(x) goes towards zero, which as a PDF is it required
to do since it must integrate to 1, the entropy required to compensate for the
error term δ(x) grows towards in�nity.

Q.E.D.
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In essence this result means that a single outlier, like the ones discussed in
section 2.1.3.2, can signi�cantly skew the result, rendering KLIEP impractical.

3.2.3.1.2 RuLSIF

The RuLSIF method solves both the major problems of KLEIP in one stroke by
using the Pearson-divergence, PE, instead of the KL-divergence. These problems
being the outlier sensitivity, see section 3.2.3.1.1, and the lack of a closed form
solution to its optimisation problem, see section 3.2.3.1. The PE-divergence is
given by [95]:

PE(A;B) =
1

2

∫
PB

(
PA
PB
− 1

)2

dx (3.44)

Where A and B are the preceding and succeeding analysis windows, where PA
and PB are the corresponding populations.

Both KL and PE -divergence are merely di�erent versions of the more general
f-divergence [5, 21]. The PE-divergence avoids the issue of outlier sensitivity,
see section 3.2.3.1.1, by not being based on a log scale. More precisely the
PE-divergence is not a measure of the entropy, or the information gain, the
density-ratio model is instead �tted to the true density-ratio under the squared
loss, i.e. the divergence is independent of p(x).

Through a similar deduction to the one described in section 3.2.3.1, �nding the
optimal parameters for the kernel approximation is a matter of minimising the
PE-divergence, using the regularization parameter mentioned in section 3.2.3.2,
to avoid over�tting. This, as opposed, to the KLIEP case does yield a closed-
form solution, this calculation is beyond the scope of this section, for more detail
see [75].

Finally the 'R' in RuLSIF denotes a smoothing used to avoid the issue that the
density-ratio can be unbounded, i.e. it can be in�nite. This poses problems
as the convergence rate is governed by the supremum norm or sup-norm of the
true density-ratio function [75].

According to [102] the sup-norm does not allow unbounded functions, since it
will fail to yield a norm or metric in a strict sense, it will only allow one to
de�ne a topology on the function space in question.

This smoothing is governed by the smoothing parameter, αR, which simply
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de�nes a mixture-density, termed the alpha-relative density-ratio, rα:

rα(x) =
PA

αRPA + (1− αR)PB
(3.45)

Which is obviously bounded above by 1
αR

when the density-ratio is unbounded,
the unbounded case is now a subset of rα|α=0. It must be noted that symmetry
is achieved in an identical fashion to the method used in section 3.2.2.3.

3.2.3.2 Limitations

The main limitation of RuLSIF is the need for parameter training using cross-
validation for every individual density ratio between analysis windows. These
parameters are the kernel width, σ, in the kernel model 3.22 and the regulariza-
tion parameter, λ. This parameter training is very computationally expensive,
see section 3.2.3.3, for the implications.

It must be noted that usually cross-validation is performed to decrease over-
�tting to a training data set and thereby to maintain generalisability. However
in this case the training set is the entire data set consisting of the full analysis
window. This means that the bias of the dataset is merely lessened.

3.2.3.3 RuLSIF Implementation

The implemented version of RuLSIF was adapted from the change-detection ver-
sion of the RuLSIF distribution by Song Liu, lead author of [75]. The original
implementation can be found on Prof. Sugiyama's webpage [74]. Several alter-
ations to the code were implemented, mainly an extension from 1-dimensional
change-detection to an D-dimensional paradigm using matrix notation. Source
code can be found in appendix A.3.8.

It is left to further work, see section 5, to test RuLSIF performance depending
on the smoothing parameter αR. In this thesis αR is left unaltered from the
default setting of 0.1 as the performance gains of RuLSIF compared to plain
uLSIF is evident [125]. The alpha parameter could not be added as a third cross-
validation parameter as that would stretch already limited computing resources
and might ramify the 1D peak detection algorithm described in section 2.3, as
a constant width on the moving average threshold might not be su�cient. It
should be noted that a heuristic in-exhaustive trial using di�erent values of αR



3.3 Parameter optimisation techniques 59

was naturally performed to verify its impact and to check if small alterations
causes large performance variations, this was not the case.

The range of values for the kernel width, σ, and for the regularization parameter,
λ, to be chosen during training had to be set. This was done empirically by
feeding the algorithm a large range of values and subsequently zooming in on
the range of chosen values. These values fell roughly in bell curves around the
values of 1 times the median for σ and 10−4 on a log10 scale for λ respectively.
The resolutions of the ranges was kept to the default setting, which is 5 and
the ranges were truncated as close to the point where the values beyond were
chosen in less than 10% of the trials. 10% was chosen arbitrarily to conserve
the limited range of values inside the region of maximum likelihood. The range
is scaled linearly for σ and logarithmically with base 10 for λ. In MATLAB
notation:

σ : median · (0.2 : 0.4 : 1.8) (3.46)

λ : 10−6:1:−2 (3.47)

As per default, the algorithm does a 5-fold cross validation of every combination.
It then selects the optimal combination for a �nal run.

Circumventing this entire training procedure does reduce runtime, but also by
about a factor of 4, which is the major drawback of this approach and is the
reason it was discarded as the sole method, see section 4.1.3.2. However, the
reduction in runtime was not deemed signi�cant to pursue this line of inquiry
and as such the rami�cations on performance and the underlying theory is left
to further work, see section 5.

3.3 Parameter optimisation techniques

This section will describe the method used for the parameter selection of the
two threshold gains associated with change-detection, αcd and false alarm com-
pensation, αFAC , respectively, see section 2.3 and 2.4 for further description
of these parameters. In addition, the rationale behind the design, the theory
behind the individual components and the repeatability of said method is also
discussed.

The reason these two parameters in particular require special attention is the
fact that they are very interdependent, i.e. either can compensate for the other.
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For this reason an optimisation of one parameter followed by an optimisation
of the other would undoubtedly result is a suboptimal solution where one pa-
rameter tries to do things the other would be more pro�cient at. This point is
demonstrated experimentally in section 4.1.2.

It must be noted that only the F-measure, see section 3.4.1, is optimised. The
algorithm does therefore not optimise for computational e�ciency, which could
be done given that a higher αcd, see section 2.3 reduces the runtime of the FAC
as fewer potential change-points makes it through the change detection to be
screened for false alarms. This would however increase the average data used in
the FAC step. However, since the complexity of the metrics do not scale linearly
with the data size the picture is not clear.

Many advanced methods for parameter optimisation have been developed. The
method used here will employ a non-linear optimisation technique, with steps
taken to avoid local minima. This is achieved by �rst locating a rough estimate
using a multi-step grid search.

3.3.1 Basic grid search approach

The de facto standard for performing parameter optimisation is the grid search
paradigm. Given some boundaries and a mesh, this method is simply an ex-
haustive search of the parameter space for an optimal solution. Unfortunately,
maintaining a su�cient resolution of the mesh along with a su�cient amount of
change-points to keep the Signal-to-Noise Ratio SNR high enough stretches the
available computing power beyond their feasible limits. The simple brute force
approach for parameter training of even a single metric takes on the order of a
day or of weeks of computing time on a high end gaming system, depending on
the metric used.

The obvious solution to this issue was an implementation on the IMM-Cluster,
this would seem ideal as a grid search is perfectly parallelizable, this should
reduce the complexity by up to a factor of 16, the number of grid terminals
available. This however required about a weeks worth of redesigning the scripts
involved. This approach was discontinued when another project with higher
priority kept shutting down threads. The approach was simply too unreliable,
too impractical and required too much data recombination.

The approach and the associated code was therefore scrapped and a novel ap-
proach was designed. The trade-o� remains between a su�cient resolution of
the mesh and a su�cient amount of data to achieve a reliable SNR.
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3.3.2 Novel method design

Instead of the basic brute force approach to grid search, an iteration based
approach is implemented, see appendix A.2 for the source code. This iteration
based approach is used as an initialisation step and is followed by a non-linear
optimisation technique called the 'Nelder-Mead method', that part is described
in section 3.3.4.

The concept is based on the observation that the underlying cost function has
a uni-modal envelope, possibly with smaller peaks on the border regions where
one of the parameters is ignored, and a multi-modal �ne structure. This is also
evident in the results, see section 4.1.2.

The algorithm therefore starts out with a relatively �ne grid and a low amount
of change-points per parameter combination in order to do a grid search on the
envelope of the cost function. This process is then repeated using a new grid
centred on the location found in the previous iteration. The new grid's size
is reduced by half in both dimensions and the resolution is lowered, whereas
the amount of change-points per parameter combination is increased in order
to progressively increase the SNR of the �ne structure. In this fashion only
few precise calculations have to be made. The parameters of each iteration are
designed to results in an equal runtime per iteration by maintaining a constant
total amount of change-points.

In practice 3 iteration of this algorithm are run, thereby reducing the area of the
search space by a factor of 16 before the most precise measurements are made.

This iteration based grid search, is followed by the Nelder-Mead method, see
section 3.3.4.

3.3.3 Location of grid boundaries

The use of grid search obviously requires the design of a grid. For simplicity the
grid used in each iteration is regular, uniform and is rectangular in proportion
to the size of the original grid.

During each iteration the range of values in each dimension is halved. This
only leaves the original boundaries as free parameters to be chosen. Fortunately
this is a simple task and is performed by heuristically locating upper and lower
values that are de�nitely outside the suitable range. The reader is reminded
that these values refer to the gain on the acceptance threshold, i.e. the values
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for which each threshold accepts and rejects everything respectively.

It must be noted that only the original boundaries are respected when drawing
a new grid.

3.3.4 The Nelder-Mead method

Once the grid search method �nds a suitable combination of initial values for
the threshold gains the non-linear optimisation technique called the Nelder-
Mead method, or downhill simplex method, is applied to locate the nearby
local minima of the cost function. Note that the cost function is minimised as
minimisation in optimisation techniques is the standard procedure; the cost-
function is merely one minus the F-measure.

This section will not go into great detail on the background theory of this
method. It will however discuss how and why it applies.

The method is part of the class of optimisation methods known as �Direct
Search� [72]. Unlike more traditional optimisation methods that use information
about the gradient or higher derivatives to search for an optimal point, a direct
search method merely searches for points around the current point, looking for
values lower than the value at the current point. For this reason a direct search
method is ideal as the notion of a smooth cost function might be a fantasy,
direct search methods do not require derivatives and are robust for problems
with discontinuities or where the function values are a�ected by noise [15]. In
this case noise merely refers to the variability of the F-measure given a random
data sample according to the method described in section 2.1.5.

The Nelder-Mead method is also termed the `downhill simplex method' as that
is exactly what it does. A simplex is a polytope of D+1 vertices in D dimensions.
Or in other words a 1-simplex is line segment on a line, a 2-simplex is a triangle
on a plane, a 3-simplex is a tetrahedron in 3-dimensions and so on. What it does
is continually try to �t smaller versions of this simplex down the local minima
of the cost function, through a series of deformations of the simplex.

The stopping criterion is arbitrarily set to 0.01 as the diameter of the simplex,
i.e. the longest of the shortest paths between any pair of vertices. The rationale
being that, according to [91], if the curvature is slight then the sampling variance
of the estimates will be large and so there is no sense in �nding the coordinates
of the minimum very accurately. Whereas if the curvature is marked, then there
is justi�cation for pinning down the minimum more exactly. In other words, if
the diameter is su�ciently small then it can be assumed that a local minima is
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reached and given that these are merely parameters trained on training data,
then moving to the exact local minima is bound to equate to over-�tting.

The implemented version uses the MATLAB function fminsearch, which is
based on the work by Lagarias et al. [70].

3.3.5 Repeatability

In any science having a result is useless without a notion of the error involved
in the measurement of said result. This however presents a problem as the
designed procedure is optimised to be barely feasible given the computing re-
sources available. Since the resolution to which a result is gathered is set by the
time required to calculate the result. This 'resolution' being a trade-o� between
the amount of data and the size of the mesh in the space of possibilities.

Fortunately the F-measure error is obviously inversely proportional to the amount
of change-points each combination of parameters is evaluated on. Furthermore
the most e�cient algorithm is about two orders of magnitude quicker than the
least e�cient approach, see section 4.1.3.2. For this reason the smallest amount
of change-points and the sparsest mesh which is applied to RuLSIF, see section
4.1.2, is applied here to the most e�cient approach, DSD, repeatedly. In order
to, in lieu of a standard error on results, at least, get an upper bound on the
variability of chosen threshold gains associated with this procedure.

The procedure is repeated 4 times and the results are seen in �gure 3.2, 3.3, 3.4
and 3.5.

As seen the procedure is fairly repeatable �nding roughly the same local maxima
in all 4 cases, albeit by quite di�erent paths, as is expected the positions of the
intermediate local maxima vary. The result is promising and shows a robust
and e�cient parameter optimisation technique, even using low amounts of data.

The full procedure has a repeatability given by a standard deviation of 0.023
on the chosen αcd and 0.0433 on the chosen αFAC , or ≈ 5% and ≈ 10% of
the valid ranges respectively. As a worst case scenario this variability is deemed
very acceptable. The repeatability is expected to be much greater on the most
precise runs as the used data is increased �vefold, see section 4.1.2.
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Figure 3.2: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the �rst run of the repeatability test for the
custom parameter optimisation process described in section 3.3.
The repeatability test and its results are discussed in section 3.3.5.
Computing resources were dedicated to run this test 4 times in
total, the results are seen in this �gure, along with �gures 3.3,
3.4 and 3.5. The amount of data at each grid point and for each
iteration of the direct search method is displayed below the title
of the �gure. The number of draws refers to the data generation
method described in section 2.1.5, is 1 higher than the number of
change-points ad corresponds to about 10 seconds of speech per
draw.
In this particular run the algorithm chose to favour FAC slightly
above the norm and change detection slightly below the norm; this
yielded a training result slightly below the norm.
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Figure 3.3: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the �rst run of the repeatability test for the
custom parameter optimisation process described in section 3.3.
The repeatability test and its results are discussed in section 3.3.5.
Computing resources were dedicated to run this test 4 times in
total, the results are seen in this �gure, along with �gures 3.2,
3.4 and 3.5. The amount of data at each grid point and for each
iteration of the direct search method is displayed below the title
of the �gure. The number of draws refers to the data generation
method described in section 2.1.5, is 1 higher than the number of
change-points ad corresponds to about 10 seconds of speech per
draw.
This particular run falls very close to the norm on all scores; FAC
threshold, change detection threshold and the F-measure at the
local peak.
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Figure 3.4: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the �rst run of the repeatability test for the
custom parameter optimisation process described in section 3.3.
The repeatability test and its results are discussed in section 3.3.5.
Computing resources were dedicated to run this test 4 times in to-
tal, the results are seen in this �gure, along with �gures 3.2, 3.3
and 3.5. The amount of data at each grid point and for each it-
eration of the direct search method is displayed below the title
of the �gure. The number of draws refers to the data generation
method described in section 2.1.5, is 1 higher than the number of
change-points ad corresponds to about 10 seconds of speech per
draw.
This particular run found the largest F-measure of the batch. The
choice fell on a fairly high change-detection threshold and a cor-
respondingly lower FAC threshold.
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Figure 3.5: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the �rst run of the repeatability test for the
custom parameter optimisation process described in section 3.3.
The repeatability test and its results are discussed in section 3.3.5.
Computing resources were dedicated to run this test 4 times in to-
tal, the results are seen in this �gure, along with �gures 3.2, 3.3
and 3.4. The amount of data at each grid point and for each it-
eration of the direct search method is displayed below the title
of the �gure. The number of draws refers to the data generation
method described in section 2.1.5, is 1 higher than the number of
change-points ad corresponds to about 10 seconds of speech per
draw.
This run of the algorithm found an F-measure close to the norm,
using a change detection threshold close to the norm, but surpris-
ingly using a low FAC threshold.
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3.4 Miscellaneous

Essential concepts not directly connected to other sections are relegated to this
section. These include the optimisation parameter from section 3.3, the F-
measure, which this section will start o� by explaining. Subsequently the notion
of the Standard Error of the Means, SEM, which is seen as the errorbars in every
graph will be delineated.

3.4.1 F-measure and the confusion matrix

Most results in this thesis will primarily be presented in the form of an F-
measure, also know as the F1 score. In addition the optimisation from section
3.3 used in section 4.1.2 is designed to maximise this F-measure. This section
will explain this choice and describe the F-measure.

Two types of error are possible in this thesis' approach to SCD. A missed change-
point and inferring a false alarm. The evaluation measures used to measure
these are recall, RCL, 3.48 and precision, PRC, 3.49. The F-measure is the
harmonic mean between RCL and PRC, see equation 3.50. The RCL and the
PRC are condensations of the confusion matrix, see �gure 3.6. By this process
the confusion matrix is expressed by a single number between 0 and 1.

RCL =
no. of hits

no. of targets
=

tp
tp + fn

(3.48)

PRC =
no. of hits
no. of tries

=
tp

tp + fp
(3.49)

Are combined into:

F =
RCL× PRC

αF × RCL + (1− αF × PRC)
(3.50)

Where αF is a parameter used to tweak the cost function between the error
types. In this thesis αF is kept at an equal weighting:

αF =
1

2
(3.51)
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Figure 3.6: The confusion matrix. A graphical representation of the possible
outcomes of any binary choice. For practical reasons the confusion
matrix, in the context of this thesis, is distilled into the precision
3.49, the recall or sensitivity 3.48 and the speci�city 3.56. The
precision and recall are then further distilled into the F-measure.
While the sensitivity and the speci�city are used to generate ROC
curves.

This is done in order to maximise the F-measure, the option of tweaking the
cost between errors is included in the code as some practical system may have
a higher intolerance for either error type.

The primary advantage of the F-measure for this thesis, beyond the convenient
simpli�cation of the confusion matrix, is that it circumvents the need for a
known number of true negatives, tn, which in other words is the correct absence
of check. In the context of this thesis' approach to SCD, correct absence of
check is not applicable, see �gure 1.1.

A change-point proposed by the algorithm may not be precisely aligned with
the actual change-point. To take this into account, a found change is counted
as correct if it is within 1 second of the correct change-point as de�ned by the
Ti parameter, see section 2.3.

The implementation of the F-measure is found in appendix A.6.1 and in the
context of FAC in appendix A.4.3.
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Figure 3.7: This �gure elaborates on how the confusion matrix is applied in the
context of FAC and in extension how PRC, RCL and F-measure
�t. The di�erent cases show how the concepts of tp, fp, fn and
tn apply to FAC choices. As seen from the color the examples are
taken from the K-means method, the blue curve therefore repre-
sents the VQD metric. The green dotted line represents a true
change-point, with the absence denoting a non-change-point posi-
tion in time. The magenta circles represent change-points marked
as false alarms (a positive hypothesis) and the green circles denot-
ing that the FAC algorithm rejected it as a false alarm (a negative
hypothesis).

3.4.1.1 Interpretation of FAC performance

Both proofreaders found that the calculation of FAC performance was obscure,
this section will try to shed light on this issue. Figure 3.7 shows the confusion
matrix and how the corresponding FAC cases �t into it.

Furthermore, when the various result sections conclude that FAC is used ag-
gressively what is meant is that if:

RCL > PRC (3.52)
tp

tp + fn
>

tp
tp + fp

(3.53)

fn < fp (3.54)
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Then the algorithm favours positive hypotheses over negative hypotheses, an
aggressive strategy.

It should be noted that upon re�ection a better measure for FAC performance
would have been the accuracy given by:

Accuracy =
tp + tn

tp + tn + fp + fn
(3.55)

Since it would take the true negatives into consideration. This however, was
discovered a matter of hours before the deadline and would require a major
revision of chapter 4, it therefore did not make it into the thesis. This is not a
huge concern as the optimisation algorithm, see section 3.3, optimises for general
performance not FAC performance. Using the accuracy could have revealed
some interesting design choices made by the optimization algorithm though.

3.4.1.2 Receiver Operator Characteristics

In section 4.1.1.1 some related measures are applied. In the context of ROC
curves the false negative score is unobtainable, for this reason the PRC is invalid.
There the sensitivity is another name for Recall 3.48 and its counterpart called
speci�city 3.56 is the true negative rate.

speci�city =
tn

tn + fp
(3.56)

3.4.2 Standard Error of the Mean

The repeatability of results are commonly measured using the Standard Error of
the Mean , SEM, in lieu of a more rigorous approach using maximum likelihood
or con�dence intervals. Most results in this thesis use the SEM, while con�dence
intervals are estimated for a few.

Most results in this thesis are based on parameters that a�ect the precision of
said results, mostly in the form of the amount of data averaged over, using the
method described in section 2.1.5. Unintuitive the tests cannot simply be run
on as much data as the computation resources allow, as this would preclude any
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information on the precision of the result, beyond the knowledge that it is as
precise as possible.

To get a measure of the precision of a results; the result which itself is the
average over results from data will have to be repeatedly gathered.

This is where the notion of SEM enters the picture. To avoid running several
trials of the series of experiments averaged to get a result, the average of a series
of experiments is assumed to be normally distributed. Using this assumption,
the series of experiments only has to be run once and the accuracy of the average
can be approximated [27]:

SEM =
s√
N

(3.57)

Where s is the standard deviation of results calculated using equation 3.10 and
N is the number of results obtained.

The SEM of results are provided in the form of error bars in every graph.



Chapter 4

Application

This chapter will describe and discuss how the various methods are compared,
contrasted, combined and improved. This is done by �rst performing individual
feature selection for the various methods using ROC curves based on the metrics,
see �gure 3.1. ROC curves are used to enable pre-training feature selection of
the methods, as it circumvents the entire change-point detection system, see
section 2.3.

Subsequently the remaining methods, along with a hybrid method, are trained
using the novel optimisation technique, see section 3.3, the results of which are
compared based on the F-measure, the thoroughness and the e�ciency as ap-
plied on test data. Evaluation of the involved trade-o�s are made and the KL
method is shown to outperform the other methods. The KL method subse-
quently undergoes a �nal backward feature selection based on a model of the
human speech production system, see section 2.2.4. This backwards feature
selection is shown to result in a marked increase in SCD performance.
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4.1 Feature selection and method comparison

This section starts with a pre-training comparison based on receiver operating
characteristic, ROC, curves which are used to perform forward feature selection
on the raw metrics without any FAC. In addition to this, the ROC curves are
used to rule out DSD as a SCD metric due to its poor performance and they are
used to determine a suitable codebook size for K-means, which is subsequently
validated during training.

4.1.1 Pre-training method comparison

This section will describe how ROCs are generated and used as a precursor to
model training for model choice elimination and feature selection.

The problem of comparing metrics is tricky as individual metrics may outper-
form each other depending on the choice of basic parameters such as the various
time constants, described in section 2.3, but may also outperform each other
depending on the feature set used. This section will compare the use of �rst
and second order derivatives of the MFCCs for the various metrics, moving for-
ward with separate feature sets onto the post-training method comparison, see
section 4.1.3, as necessary. Once a �nal method is selected a backward feature
selection will be performed, see section 4.3.1. As this project builds on the work
of Jørgensen et al. [55], this section will use the basic parameters found to be
optimal previously, see section 2.2.

In order to compare the di�erent metrics a method is needed that can work
without the entire change point selection mechanism, described in section 2.3,
the reason being that this will eliminate a signi�cant amount of the parameters
simplifying the problem immensely.

Using this method it is unfortunately not possible to apply the FAC mechanism
described in section 2.4, the reason being that the iterative approach is incom-
patible with the ROC method used here. Nonetheless the FAC mechanism only
improves the results slightly, see section 4.1.2.2.3, and the rough estimate of
model performance achieved using ROCs should su�ce.
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4.1.1.1 ROC generation

The method used to generate the ROCs was borrowed from the supervisor L.
K. Hansen, see appendix A.6.4.

The method has been adapted slightly to improve the performance in the context
of this thesis, mainly the application of a non-constant threshold, this however
was achieved through manipulations of the input. The method in essence takes
a metric and a list of equal length specifying when change-points occur as input.
The change-points are de�ned as true if within Ti seconds, as described in section
2.3.

The algorithm subsequently varies the gain on the moving average of the metric
in order to scan over the ROC. The moving average de�nes the threshold, similar
to what is described in section 2.3.

Ideally this method would simply scan the threshold over the metric calculating
the precision and the speci�city for each iteration, enabling the use of FAC, see
section 2.4, however this would pose some key issues. The primary issue being
that the change-point detection, the 1-dimensional peak detection algorithm,
borrowed from [55] has the Ti constraint on the minimum distance between
proposed change-points, in other words it is biased towards not predicting an
excess of change-points. This in essence would result in a ROC that does not
converge towards a ratio of one, instead the speci�city would converge to one
whereas the precision would converge to some value between 0 and 1 depending
on the size of Ti. This would not necessarily facilitate the comparison of di�erent
metrics.

To avoid this complication, at each iteration, the algorithm simply calculates
the precision as the percentage of metric above the threshold within Ti seconds
around each change-point and calculates the speci�city in an identical manner
for the parts of the metric not within Ti seconds of a change-point.

This method arguably is biased towards metrics with slow slopes around change-
points, but is far more robust, does converge to a ratio of one and the steepness
of the slopes on the proposed metrics as roughly similar. This method will
naturally only evaluate the metrics abilities to model speaker change dynamics
at the used analysis window length of 3 seconds, borrowed from [55], see section
2.3.

The more complex methods, K-means and RuLSIF, may be able to more closely
follow the speaker change dynamics when given longer analysis windows, i.e.
they would provide better performance in the context of FAC, see section 2.4.
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In actuality this method is performed through sorting lists of indexes as an
iterative based approach would be time consuming.

4.1.1.2 Results from ROC analysis

Figure 4.2 shows an example of the metric scores with the actual change-points
mark as the region contained by the vertical lines. Using the method described
in section 4.1.1.1 the ROC curves in �gure 4.2 are generated, using no MFCC
derivatives, using only 1st and using both 1st and 2nd derivatives respectively.
As all curves are smooth arcs the concept of Area Under the Curve, AUC,
applies directly and is used to marginalise each curve to a single performance
score, see Figure 4.1, here the di�erent methods are compared to each other as
a function of used derivatives.

As seen in �gure 4.1, DSD consistently under-performs all other methods. In
addition the only theoretical di�erence between KL and DSD is whether or not
the mean of the normal distribution �tted to the data is discarded, which in the
case of DSD it is, see section 3.2.2.4. For this reason DSD as a change-detection
method is discarded.

Another interesting conclusion that can be drawn from �gure 4.1, is that DSD
and KL improve performance with the addition of derivatives as features, whereas
K-means signi�cantly decreases in performance. This K-means e�ect might be
caused by the 'hub e�ect', discussed in section 4.1.1.3.3, a feature of the not
fully understood curse of dimensionality [52]. How the size of K, number of
centroids, a�ects the AUC is investigated in section 4.1.1.3.2, su�ce to say that
a suitable value for K is found to be 25 in section 4.1.2.1. The use of derivatives
does not appear to a�ect RuLSIF performance greatly, for convinience and to
facilitate the novel method described in section 2.4.1, the full feature set is used
for RuLSIF.

Going forward with alpha training, see section 4.1.2, RuLSIF and KL will be
trained using all features, that is 0th, 1st and 2nd derivatives, whereas K-means
is trained and designed to work on the smallest subset of the features to avoid
the derivatives issue, see section 4.1.1.3.3.

It should be mentioned that the use of 3rd derivatives and upwards are not tested
for two reasons. First, the ISP toolbox [53] does not support this and second,
no mentioning of the use of higher derivatives has been found in the literature.
This however might be interesting to investigate as the slope of KL seems to
indicate that it will outperform the other methods using higher derivatives or
possibly just more features.
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Figure 4.1: This �gure displays the feature selection results from section
4.1.1.2. All four methods were run using 1500 change-points, cor-
responding to roughly 4 hours of speech, and every feature/method
combination were run 2 times to verify the approximate repeata-
bility. A ROC curve was then calculated for each point, see �gures
in 4.2, and marginalised to their AUC. The errorbars represent the
standard error of the results.
As seen the RuLSIF method in terms of AUC barely changes de-
pending on the feature set applied. For convenience and to enable
use of the hybrid method between KL and RuLSIF, see section
2.4.1, RuLSIF will use the full feature set.
DSD and KL both show marked improvement using the larger
dataset in spite of the dimensionality issue mention in section
3.2.2.2. Since DSD shows signi�cantly worse results it is discarded
from here on in.
The K-means method on the other hand shows a marked decrease
in performance with the larger feature sets, this is investigated in
detail in section 4.1.1.3.
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Figure 4.2: This �gure serves as the example for the abstraction levels below
the results seen in �gure 4.1.
In (A) a 2 minute example of the about 4 hours of data for each
metric in each trial is displayed for reference. Figures (B-D) are
calculated by varying a moving threshold of each metric seen in
(A) for the feature set displayed in the titles of (B-D), as described
in section 4.1.1.1.
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It should also be mentioned that the use of more features in the form of deriva-
tives does increase the overall likelihood of over-�tting, see section 3.2.2.2.

4.1.1.3 K-means - Feature and codebook size selection

As mentioned in section 4.1.1.2, a trade-o� between the dimensionality of the
feature vector and the amount of centroids, K, must be explored for K-means
to be an e�ective method. This section will explore this trade-o� and make a
suitable selection for use in alpha training, see section 4.1.2.

This section will scan over a range of K, using the ROC method described in
section 4.1.1.1, for three choices of feature sets, these being without derivatives,
with 1st derivatives and with 1st & 2nd derivatives. Initially the values of K are
spaces logarithmically in the suitable range, from 1 centroid to about a centroid
for every 2 data points. Since a singleton approach is taken to empty clusters
in the version of K-means applied here, see section 3.2.1.2, as K approaches the
number of data points in an analysis window the K-means method begins to
resemble some version of a nearest neighbour metric [8], such an approach could
be taken, but is not investigated in this thesis.

Going into this section the hypothesis was that the de�ciency of K-means with
increasing derivatives, found in section 4.1.1.2, was attributed to some version
of the 'hub problem', see section 4.1.1.3.3. In essence this would mean that a
suitable choice of K should merely di�er depending on the input feature space.
However as seen in �gure 4.3, the choice of K is not su�cient to account for
the decrease in AUC. In e�ect this might still be caused by some dimensionality
issue, however no means to compensate for it remains as the value of K is the
only free parameter in the Euclidean distance based K-means algorithm, see
section 3.2.1.2.

The de�ciency could be caused by the optimisations described in section 3.2.1.4,
this however has not been tested since the simulation would take signi�cantly
longer without these optimisations.

Another interesting point is that given a single centroid the K-means algorithm
reduces to a geometric mean distance metric. This approach in combination with
the DSD measure would resemble the KL distance, what is interesting to note
is that DSD and K-means with K=1 both have an AUC of approximately 0.89.
The fact that the KL measure has an AUC of about 0.92, means that they encode
complimentary information, giving yet another reason for the invalidation of the
DSD metric as a method for SCD. It should be noted that this work does not
explore which parts of the auditory information is carried by the covariance and
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Figure 4.3: Performance of K-means as a function of codebook size for di�er-
ent sets of MFCCs. Each set is comprised of derivatives of the
12 MFCCs as described in section 2.2. Each combination is re-
peated 10 times using a random set of 100 change-points drawn
as described in section 2.1.5. The error bars indicate the standard
error, described in section 3.4.2, under the assumption that the
mean is drawn from an underlying normal distribution. The per-
formance is measured using the AUC measure calculated using the
ROC method described in section 4.1.1.2. As seen the performance
deteriorates with the addition of more derivatives irrespective of
codebook size, this may merely be caused by the increasing di-
mensionality, as discussed in section 4.1.1.3.3. The peak at K=27
is shown in greater detail in �gure 4.4.
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which is carried by the mean, it might be of interest to discard one of them
given that the other might base the SCD decision on more reliable information,
see section 3.2.2.4.

4.1.1.3.1 Feature selection

Going forward with alpha training, see section 4.1.2, the K-means method will
be trained without the use of the derivatives of the input features. The reason
being that �gure 4.3 shows a signi�cant advantage irrespective of the number of
centroids. Whether K-means is merely under-performing for higher dimensional
spaces irrespective of the number of centroids would need further analysis. This
further analysis could be in the form of a comparison between the performances,
using various combinations of features, while keeping the absolute amount of
features constant. This further analysis into an optimal feature set for this par-
ticular method, K-means, would have been examined using backwards feature
selection if K-means had proved to be the most viable method. As seen in
section 4.1.3, KL proves to be a superior method in terms of a performance-
e�ciency ratio, for this reason the backwards feature selection is performed on
KL, see section 4.3.

4.1.1.3.2 Centroid amount selection

The work by Kinnunen et al. [61] concludes that identi�cation rate increases
with increasing codebook size. Figure 4.3 however seems to indicate a peak
around K=27 using only the MFCCs. Using MFCC and 1st derivatives does
also indicate this peak. In order to investigate this further the simulation is
rerun at higher precision between the values K=20 to K=35 using only the
MFCCs, see �gure 4.4.

Figure 4.4 obviously does not indicate any statistically signi�cant advantage of
one value of K over another K. To further illustrate this, �gure 4.5 shows the
results from the test run a second time.

The results here do not provide any reason to choose a speci�c value of K,
beyond the need for it to be above about 10. Theoretical speculations in section
3.2.1.2.1 indicate that a higher value of K may be preferable. However e�ciency
results from section 4.1.3.2 indicate that K-means must be fairly optimised to
be of practical use. For these reasons K-means will be trained using the fairly
high value of K=56 chosen in [55] and the value of K=25, as �gure 4.4 does
indicate a peak. Whether the amount of centroids in�uence the performance
can be seen in section 4.1.2.1, where K=25 is compared to K=56.
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Figure 4.4: Figure 4.3 promted a more precise test around a codebook size of
K=27, the results of which are shown here. The results here show
that the peak around 27 was statistical noise. To further illustrate
this point, this test is rerun in �gure 4.5, showing a completely
di�erent results. The test here is run 10 times and the errorbars
indicate the standard error.
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Figure 4.5: Figure 4.3 promted a more precise test around a codebook size of
K=27. To test this the test was rerun around K=27, 10 times in
2 trials. This �gure shows the result from the second trial, the
�rst trial is seen in �gure 4.4. The standard error is displayed
using errorbars. As seen the results in the 2 trials do not resemble
eachother and do not indicate any peak around K=27. The vari-
ations seen are probably just statistical noise. An upwards trend,
as shown in [61], is still possible in the original and both re-trials.
Going forward the e�ect of the codebook size is investigated using
the full change-point detection and FAC paradigm to reduce the
statistical noise, the results of which are seen in section 4.1.2.1.
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4.1.1.3.3 K-means and high dimensional data

Two hypotheses can be drawn from K-means failure when using derivatives,
seen in section 4.1.1.2, either the derivatives hold very little information, which
the results from the other metrics refute, or K-means has issues that do not
a�ect the other methods. The reason that K-means fails using high dimensional
data might be linked to the higher dimensionality of the input space using
derivatives, this is also discussed in section 4.1.1.2. If this is the case then one
of the reasons posted in a survey by Zimek et al. [126] where they identi�ed
the following problems when searching for anomalies in high-dimensional data
could be the cause:

1. Concentration of scores and distances: derived values such as dis-
tances become numerically similar.

2. Irrelevant attributes: in high dimensional data, a signi�cant amount
of attributes may be irrelevant.

3. De�nition of reference sets: for local methods, reference sets are often
nearest-neighbour based.

4. Incomparable scores for di�erent dimensionalities: di�erent sub-
spaces produce incomparable scores.

5. Interpretability of scores: the scores often no longer convey a semantic.
meaning

6. Exponential search space: the search space can no longer be system-
atically scanned.

7. Data snooping bias: given the large search space, for every desired
signi�cance an hypothesis can be found.

8. Hubness: certain objects occur more frequent in neighbour lists than
others.

In particular the Hubness might be an issue with respect to K-means. Partic-
ularly as centroids would gravitate towards these meaningless - in the context
of SCD - Hubs. In addition to this, point number 1 might pose problems for
K-means as it is heavily based on distance measures. In this case an input space
of higher dimensionality might render K-means more susceptible to noise, since
making distances more similar would decrease the signal to noise ratio.
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4.1.2 Method training results

Given that the ROC method - used to provide a rough comparison of the metrics,
see section 4.1.1.2 - only succeeded in eliminating a single candidate. The full
method is trained using K-means, KL and RuLSIF as contenders. In addition
the results in section 4.1.1.2, prompted an idea for a novel FAC method, here
termed CMFAC, the concept behind this novel approach is described in section
2.4.1. In this section CMFAC will be used to apply RuLSIF as FAC metric
to KL, the result of which is compared to the pure methods that made it into
threshold training.

The choice of codebook size for K-means proved ambiguous in section 4.1.1.3.2;
therefore this section will start o� by comparing two choices of codebook size,
before moving on to compare K-means with KL, RuLSIF and the KL/RuLSIF
hybrid. This codebook size comparison is on the basis of the F-measure at the
local maxima of the cost-function that the individual codebook choices locate
in the threshold parameter space. As well as on the relative magnitude between
chosen thresholds for each method.

4.1.2.1 Compare K-means codebook sizes

The ROC method applied in section 4.1.1.3.2 was unable to select a codebook
size for K-means, as it appeared to reach a maximum around K = 20 with
further increase having no statistically signi�cant impact.

Previous work found that larger codebook size should increase performance
[55, 61] and the ROC method was deemed too coarse to discount the literature.
For this reason the values of K=25 and K=56 were selected, K=25 was selected
as a probably statistically insigni�cant peak was located there, see �gure 4.4,
and K=56 was chosen as that was the value chosen in [55].

This section will apply the full training method, described in section 3.3, to
these two values and compare the results. The results of this process can be
seen in �gures 4.6 and 4.7 for K=25 and K=56 respectively.

As seen in �gures 4.6 and 4.7, the end results is identical to 3 signi�cant digits,
both choosing an αcd around 1.1 and an αFAC around 0.91. The more expensive
method using K=56, �gure 4.7, chose to favor FAC slightly more, but not to
a signi�cant degree. The F-measures found for the di�erent approaches is also
e�ectively identical meaning that the approaches probably found the same local
maxima, again lending credence to the hypothesis that the codebook size is
irrelevant.
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Figure 4.6: This �gure shows the K-means algorithm trained using a code-
book size of K=25, with the colours representing the F-measure
for the corresponding threshold gain combination, the contours in
between is a linear interpolation.
The ROC based method used in section 4.1.1.3 was unable to pro-
vide an unambiguous answer to the question on whether a larger
codebook size in the K-means algorithm would yield better results.
The results seemed to indicate that an increase beyond K=25 had
no e�ect. This section tests this de�nitively by training the full
K-means algorithm on both K=25 and K=56, see �gure 4.7, using
the optimisation method from section 3.3. As seen the results from
the 2 trials using K=25 and K=56 show almost identical results.
For this reason K=25 is used as it is more e�cient.
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Figure 4.7: This �gure shows the K-means algorithm trained using a code-
book size of K=56, with the colours representing the F-measure
for the corresponding threshold gain combination, the contours in
between is a linear interpolation.
This �gure is the second part in the K-means codebook selection
test. See �gure 4.6 or section 4.1.2.1 for further details.



88 Application

Obviously to get an unbiased result the found parameters should be used to run
a series of test on the test data. E�ectively a hypothesis test is clearly needed to
�nd any signi�cant di�erence between the results using di�erent codebook sizes.
However, as the results are almost identical any di�erence would be insigni�cant
compared to the additional computational cost of the larger codebook.

For this reason the series of tests on test data are not performed as this would be
a waste of resources. The parameters found using the smaller codebook (K=25)
are selected and compared to the other contenders, KL and RuLSIF in section
4.1.2.

4.1.2.2 Pre-test comparison

As the alpha training, see section 3.3, of the K-means algorithm was run in
section 4.1.2.1, only the alpha training of the KL and RuLSIF metrics remain.
The reader is reminded that DSD was discarded in section 4.1.1.2. This section
will therefore begin by providing the results for the remaining metrics, then
subsequently compare the 3 metrics on the basis of performance and e�ciency
using as of yet unused test data. In addition to this the combination of KL and
RuLSIF using CMFAC, see section 2.4.1, is trained and compared to the pure
methods using standard FAC, see section 2.4.

4.1.2.2.1 Threshold training

The alpha training results of the KL and the RuLSIF metrics are displayed
in �gure 4.8 and �gure 4.9 respectively. The result for the KL/RuLSIF combi-
nation using CMFAC, see section 2.4.1, is shown in �gure 4.10.

In �gure 4.8 the result of the threshold training for the KL metric is displayed.
As the KL metric is quite light computationally, see section 4.1.3.2, a large res-
olution along with a large amount of data per threshold combination is possible.
What is interesting to note is that the strength of the grid search is very evident
here. In �gure 4.8 top left the overall envelope of the cost function appears to
have two minima (or maxima in F-measure). In the second iteration using more
data, top right, this however turns out to be random �uctuations as one simply
turns out to be an upwards slope.

As seen in �gure 4.9 the process did not completely follow the procedure de-
scribed in section 3.3. As the RuLSIF method proved too computationally heavy
to fully realise the process. Only relatively few change-points are used for each
combination and the resolution of each iteration is set to a bare minimum. As
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Figure 4.8: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the training steps and training result of the full
KL method; using the optimisation method described in section
3.3, the results here are compared to the other methods on training
data in table 4.1. The various methods are compared using test
data in section 4.1.3.
As seen in this �gure a large amount of data is drawn for each
grid point, and the resulting objective function is very smooth. In
the �rst iteration the grid method �nds two peaks and selects one
of them, in the second iteration using more data it realises that
there really was only a single peak.
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Figure 4.9: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the training steps and training result of the
full RuLSIF method; using a slightly scaled down version of the
optimisation method described in section 3.3. As seen the reso-
lution is kept at a bare minimum and the data amount is quite
low, yet still running the 3rd iteration and the �nal direct search
method proved too computationally expensive. The results here
are compared to the other methods on training data in table 4.1.
The various methods are compared using test data in section 4.1.3.
As seen the envelope of the cost function appears relatively smooth
and the maxima found in the �rst iteration is also located in the
second iteration indicating that the algorithm is probably center-
ing on a maxima and not just on noise.
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such only the �rst step is ful�lled, namely locating the approximate maxima
of the cost function envelope. The second step of locating a local maxima of
the �ne structure and the �nal step using a non-linear optimisation algorithm
was skipped as this process would take on the order of weeks to �nish. As seen
the envelope of the cost function appears relatively smooth and the maxima
found in the �rst iteration is also located in the second iteration indicating that
the algorithm is probably centring on a maxima and not just on noise. The
threshold gains could clearly be optimised further probably yielding an increase
in F-measure of no more than about 0.01 � 0.02. RuLSIF might have bene�ted
from a training session without FAC altogether, see section 2.4, thereby locating
the precise peak of the local maxima seen in the �gure on the left on the south
border, as the computing power could then be concentrated on a 1-dimensional
grid-search rather than a 2-dimensional one. This test was not performed as it
would require unavailable computing resources. It should be mentioned that a
FAC'less approach is provided for reference using KL in section 4.1.2.2.3, show-
ing a fairly marked lose in performance.

It should be mentioned that the missing square, in the top right corner of �g-
ure 4.9, merely indicates that no change-points at all were found given that
parameter combination.

The results for the CMFAC metric combination using KL and RuLSIF is shown
in �gure 4.10. As seen in section 4.1.3.2, the cost of applying the computationally
heavy RuLSIF even as a FAC step signi�cantly decreases the computational
e�ciency, for this reason the data applied for each threshold combination is set
quite low to keep the resolution high. This trade-o� was selected to make sure
the global maxima was not simply too narrow to be missed and since the process
yields fairly consistent results, as seen in the smoothness of the cost-function.

What is shown in this training session is quite interesting; the south border with
a threshold gain of 2 on the CMFAC RuLSIF metric was found heuristically to
be the point at which the CMFAC process had no e�ect at all, however as seen
the grid search method iteratively approaches this boundary even selecting a
value on it.

The obvious conclusion is that the CMFAC process failed completely, that the
change-detection is clearly better o� without it. Upon closer inspection this
however is not the case, as the �nal local minima of the cost function yields an
F-measure of comparable magnitude, if not larger, than the pure KL method
in �gure 4.8. Further, in section 4.1.2.2.3, the KL metric is trained without
any FAC at all, this is shown to yield signi�cantly poorer results con�rming the
necessity for the FAC step.

The next natural conclusion is that this lower border of 2 is too high, that given
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Figure 4.10: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the training steps and training result of the
KL/RuLSIF hybrid method; see section 2.4.1, using the optimi-
sation method described in section 3.3, the results here are com-
pared to the other methods on training data in table 4.1. The
various methods are compared using test data in section 4.1.3.
As seen the added RuLSIF FAC step to the very e�cient KL
change-point detection took its toll and the training was com-
pleted using a fairly low amount of data per threshold gain com-
bination.
Interestingly this �gure shows that the hybrid method �nds an
optimal solution using a very high thresholds on both change-
point detection and a very low threshold on FAC. Yet still man-
ages to �nd a solution that seems as good, if not better than the
pure KL method. This indicates that the CMFAC method using
RuLSIF is very pro�cient at locating very di�cult false alarms,
but fails at locating false alarms that the pure method excels at.
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Table 4.1: This table shows the �nal threshold parameters for the various
methods along with their results as applied on training data. The
intermediate stages, of the optimisation method, for the various
methods can be seen in �gures, 4.8 (KL), 4.9 (RuLSIF), 4.6 (K-
means) and 4.10 (the KL/RuLSIF hybrid). These results seem to
indicate that as expected the more expensive methods pull slightly
ahead of the more e�cient methods. The generalisability of these
results are investigated in section 4.1.3.

the opportunity the algorithm would choose an even lower threshold gain on
CMFAC. This step was rerun and a border of 2 was found to be very slightly
too constricting, but was con�rmed to be suitable. The suitability is also seen
in the path of the Nelder-Mead method, which is not designed to be constrained
by the boundaries of the grid search algorithm, yet decides to move slightly
northward of the border.

4.1.2.2.2 Threshold training results

As seen in �gures 4.6, 4.8, 4.9 and 4.10 the threshold gains and the F-measures
found in the training session are as seen in table 4.1.

The training results, seen in table 4.1, indicates a fairly close run between the
di�erent approaches. The results indicate that the most expensive method, RuL-
SIF, is probably also the most precise given adequate computational resources
for the training process, which were unavailable.

As it stands K-means and RuLSIF show fairly identical results edging slightly
ahead of the computationally cheapest and simplest solution, KL, and the ex-
perimental KL/RuLSIF combination, which also yield similar results.

The results also show that the metrics di�er in SNR, as is also evident in �gure
3.1. This di�erence in SNR is seen in the ratio between αcd and αFAC . It
is seen that K-means looks similar on the short time scale that the change-
detection operates on to the long time scale of FAC. As is also seen in �gure
3.1, KL shows a tendency to have a low noise �oor and a large di�erence in the
magnitude of the peaks, this is seen to a�ect its performance as the change-
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detection threshold favors a large value and the smoothing long time scale of
FAC requires a much lower threshold. RuLSIF is somewhere in between these
two extremes, but su�ers from another unique disadvantage. For RuLSIF the
noise �oor is not independent of the speaker. This e�ect is seen visually in �gure
3.1 and had impacts in section 4.1.1.1, where a moving average threshold had
to be employed, since otherwise the RuLSIF method falsely indicated a poor
performance.

The experimental KL/RuLSIF combination is oddly enough seen to favor a
very restrictive change-detection step, apparently signifying that the CMFAC
RuLSIF step can correctly �lter out quite certain potential change-points as
false alarms. It must be mentioned that K-means has an advantage given that
all the time-constants, see section 2.3, used in this thesis were borrowed from
the previous project [55], which found the K-means method superior to the KL
and DSD methods. In spite of this, section 4.1.3.2 will show that KL has its
advantages. An optimisation of these time-constants could, as mentioned in
section 4.1.1, not be performed until a method is selected and due to time
constraints on the thesis are relegated to further work, see section 5. The
RuLSIF method was not applied in [54] as it was invented several years later
[75].

These results are obviously not conclusive since they were the product of the
training process, applied on training data. Section 4.1.3 will apply the met-
rics with the optimised parameters on test-data, thus enabling a comparison in
precision, recall, thoroughness and e�ciency.

4.1.2.2.3 No FAC reference

In this section the KL metric is trained without the use of false alarm com-
pensation, see section 2.4. This is not done as a viable method, but is meant as
a reference to verify the necessity for the FAC step.

As the exclusion of the FAC step reduced the 2-dimensional optimisation to a 1-
dimensional problem, the intricate multi-step optimisation procedure described
in section 3.3, is unnecessary. In 1-dimension the standard brute force approach
is still computationally viable. The relevant range is simply split into a su�-
ciently �ne resolution and the algorithm is trained with a large amount of data
for each individual potential threshold 10 times.

The result can be seen in �gure 4.11, displayed through the mean of the 10 runs
along with the corresponding SEM, see section 3.4.2.
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Figure 4.11: This �gure is presented as a reference to show the performance
of a method without a FAC step. KL is used as it shows decent
results and is very e�cient, thereby reducing the complexity of
this test. Since this is a 1-dimensional optimisation problem the
advanced custom optimisation technique used in all other tests
is excessive. In this case the KL method is simple tested using
a large amount of data - as seen below the title - and a �nely
meshed basic grid search. This grid search is run 10 times to
provide a better estimate and to show the standard error.
As seen the optimisation is convex and a global good approxi-
mation of the global maxima is clearly reached. The reader is
reminded that the borders represent the approximate levels at
which the threshold either accepts or rejects everything. Even
though the method is optimised almost perfectly it is seen that
the corresponding F-measure reached is far below the methods
that apply FAC, see table 4.1.
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As seen in �gure 4.11, the optimisation problem is quite simple. Clear slopes
leading to a plateau with the algorithm selecting a threshold gain roughly in
the center of this plateau. The plateau is assumed to be a range of threshold
magnitudes where a change merely shifts the precision-recall trade-o�. This as-
sumption however remains untested as it is irrelevant to the actual optimisations
used.

Obviously the most important information this test yields is that the KL metric
without the FAC step is signi�cant worse than with the FAC step. With an
F-measure of 0.7786 compared to 0.8432 using FAC, see table 4.2. The other
methods have not been trained in a similarly rigorous fashion, but very imprecise
trial runs indicated that this conclusion holds for the other methods as well.

4.1.3 Post-test method comparison

This section will apply the remaining methods using the optimised threshold
parameters from section 4.1.2. The remaining methods are K-means, KL, and
RuLSIF, since DSD was eliminated in section 4.1.1.2, along with the KL/RuL-
SIF hybrid method.

This comparison will be on the basis of precision, recall, thoroughness and e�-
ciency as applied on test data that was set aside for this purpose, see section 2.
Finally this section will select a method based on this comparison.

In section 4.3.1, this chosen method will then be used to test the hypothesis that
high MFCCs encode person speci�c information. In addition to this, the further
work section will apply various approaches to optimise this method further, this
will however not be in a rigorous fashion and is meant to inspire further research,
see section 5.

It should be mentioned that it would be interesting to compare the methods
on the basis on how close the average potential change-point is to the true
change-point, as was done by Jørgensen et al. [55]. This however was found
to be very tricky as it required guessing to which true change-point a speci�c
potential change-point belonged. This was probably not a problem in [55] as
a preprocessing step similar to the one described in section 2.1.4, was not per-
formed. This left their data biased, but enabled model comparison on the basis
on change-point accuracy. For this reason, this particular comparison is not
performed and will not in�uence the choice of method.
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Table 4.2: The precise results of the method performance comparison. For
a more detailed description of the results and the implications see
�gure 4.12 or section 4.1.3.1.

4.1.3.1 Performance results

Each method is run on a sample size of 500 change-points, or the equivalent of
about 2 hours of speech, created using the method described in section 2.1.5.
This is then repeated in a loop for each method individually with a runtime of
approximately 10-12 hours per method. Depending on the runtimes, see section
4.1.3.2, this resulted in somewhere between 8 and 68 reruns. The results are
presented in �gure 4.12 and table 4.2, with the error bars naturally representing
the SEM of the measurement. The corresponding FAC performance is seen in
�gure 4.13 and table 4.3.

The reader is reminded that precision is the percentage of correctly placed
change-points, recall is the percentage of change-points found and the F-measure
is the harmonic mean of precision and recall, see section 3.4.1.

From �gure 4.12 and table 4.2 it is seen that the performance of the methods
have shifted compared to each other when compared with training results, see
table 4.1. This is caused in part by the generalisation error, but is thought to
mainly be caused by the selection of positive noise during training. This can
be seen in the fact that the generalisation error is inversely correlated with the
amount of data used during the training procedure. Even though this correlation
would also cause a larger generalisation error, it is believed that this should not
be at this large a magnitude.

As seen the hybrid method su�ers the worst, whereas standard KL barely
changes at all. With the greatly reduced e�ciency of applying CMFAC, the only
advantage is in how well CMFAC does at identifying the tough false alarms, as
mentioned in section 4.1.2. Interestingly this might merit a hybrid between the
standard KL and the Hybrid method using CMFAC, whereby both standard
FAC and CMFAC is applied to KL in a similar fashion to the ensemble method
mentioned in section 2.4. The reason why this could increase performance is seen
in table 4.1, where the CMFAC method chooses a very high change-detection
threshold compared to standard FAC. In essence this means that the CMFAC
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Figure 4.12: The results from the method performance comparison using test
data in the form of an F-measure and is constituents. Each
method is run on a sample size of 500 change-points, created us-
ing the method described in section 2.1.5. This is then repeated
in a loop for approximately 10-12 hours per method. Depending
on the runtimes, see section 4.1.3.2, this resulted in somewhere
between 8 and 68 reruns. For the precise numbers see table 4.2.
Oddly enough the failures of the expensive metrics seem to out-
weigh their bene�ts and the simple KL method seems to outper-
form them using the current methodology. Not strictly in terms
of F-measure - where K-means is slightly higher - but in terms of
a performance versus e�ciency ratio, see section 4.1.3.2. In ad-
dition the KL method �elds the best recall score of all the meth-
ods, indicating that it has the highest potential to see further
improvements, performed in section 4.3 and 5.2. This result is
counter-intuitive as the expectation was that the more advanced
methods would also have the highest potential. Their ine�ciency
during optimisation shows through clearly.
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is optimised to only remove the tough false alarms, the ones standard KL will
obviously tend to miss. This would also barely decrease e�ciency of the CM-
FAC method as the standard KL FAC is very e�cient using less than 1% of the
computing resources, see section 4.1.3.2. The task of implementing this ensem-
ble base FAC is unfortunately beyond the scope of this thesis and is relegated
to further work, see section 5.

RuLSIF generalises poorly, probably due the poor training, this could undoubt-
edly be improved by running the training algorithm of RuLSIF at a higher
resolution. However as mentioned in section 4.1.2 and seen in section 4.1.3.2,
this is not computationally feasible as such a simulation would take weeks if not
months. It could be done using IMMs Cluster, however as mentioned in section
3.3.1, that prospect has been exhausted. Therefore, due to the poor e�ciency
of RuLSIF it is not feasible in real world applications for years to come and is
discarded as a change-detection method.

K-means fared slightly better than RuLSIF in the generalisation and actually
showed better results than all other approaches. The margin is slight as com-
pared to standard KL and at the additional factor 2.5 increase in computa-
tional runtime, see section 4.1.3.2, the better F-measure performance is clearly
not enough. Another point where K-means excels is in its precision where it
only competes with the hybrid KL/RuLSIF CMFAC method. Unfortunately
this precision comes at the cost of a lower recall score, this is thought to be
caused by the smaller feature space used by K-means, see section 4.1.1.3.1. The
conclusion is that K-means is a decent choice, but is upper bounded by its
dimensionality issues, see section 4.1.1.3.3.

Oddly enough the failures of the expensive metrics seem to outweigh their ben-
e�ts and the simple KL method seems to outperform them using the current
methodology. In addition the KL method �elds the best recall score of all the
methods, indicating that it has the highest potential to see further improve-
ments, performed in section 4.3 and 5.2. This result is counter-intuitive as the
expectation was that the more advanced methods would also have the highest
potential.

In �gure 4.13 and table 4.3, the FAC performance for the various methods
is seen. It is immediately obvious that the optimisation step tend to use FAC
aggressively, since it favors recall over precision, or in other words it has found it
optimal to remove potential change-point if they might be false alarms. Another
interesting note is that, as seen in �gure 3.1, RuLSIF as applied to speech
detects many 'changes' that do not correspond to speaker changes. What these
correspond to is untested, but this has shaped a method that relies heavily on
FAC for SCD. However even though RuLSIF relies heavily on FAC, see table
4.3 and �gure 4.14, it is simultaneously seen to spend very few computational
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Figure 4.13: The FAC performance during the method performance compar-
ison, see �gure 4.12. As seen the optimisation step tends to
use FAC aggressively, since it favours recall over precision. In
other words it has found it optimal to remove potential change-
point if they might be false alarms. Interestingly it is seen that
standard FAC for KL has almost the same recall as the CM-
FAC method, but as expected the more expensive CMFAC is
substantially more precise. RuLSIF is seen to have the worst
FAC performance, this however is misleading. As seen in �gure
4.14 RuLSIF applied FAC to a far greater degree than the other
methods, it is actively using it, rather than merely polishing its
results. Unsurprisingly the K-means method has a solid FAC
performance in line with its great performance in general.

Table 4.3: The precise results of the FAC performance, see �gure 4.13, and the
false alarm percentage, see �gure 4.14. For an explanation of the
results and their implications see the caption of the corresponding
�gure or section 4.1.3.1.
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Figure 4.14: The false alarm percentage used by the methods during the
method performance comparison, see �gure 4.12. As seen RuL-
SIF relies heavily on FAC, further decreasing its e�ciency, it
however is simultaneously seen to spend very few computational
resources on the FAC step, see section 4.1.3.2. A discussion of
this strange phenomena is found in section 4.1.3.1. The hybrid
method is seen to use FAC aggressively, which is fortunate as
that increases its e�ciency. It does however suggest that the hy-
brid method fails to use FAC pro�ciently. K-means and standard
KL are seen to use FAC in a more well-rounded manner. For the
precise percentages see table 4.3.
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Table 4.4: The precise results for the runtime test, included for reference. For
a description and interpretation of these results see �gure 4.15 or
section 4.1.3.2.

resources on the FAC step, see in section 4.1.3.2. The hypothesis is that this
is caused by a combination of factors; RuLSIF is optimised to produce a lot of
potential change-points and then to remove these by applying FAC, this is seen
in the relatively close threshold gains, see table 4.1. However with the large
number of change-points the average distance between change-points decreases.
During FAC the amount of data used to test for false alarms is maximised, but
is limited to not use data within 1 second of other potential change-points, see
section 2.4. Since RuLSIF's runtime scales super-linearly with the data amount
the large number of change points might actually reduce the runtime of the FAC
step.

It must be stressed though that this is an untested hypothesis and that its
testing is left to further work, see section 5.

If this is true, it would mean that RuLSIF might fare better on data with
long speaker turns, with a recursive FAC paradigm or without FAC entirely.
However as RuLSIF is very computationally expensive none of these options
are explored, the slight improvement in performance is far out weighted by the
further decreases in e�ciency they would cost. This could potentially also be
the reason for the peak on the south border of left �gure in �gure 4.9, which is
the part of the function-space that corresponds to a FAC'less method.

It should be noted that RFAC is found to improve KL performance, see section
5.2, and KL is found to decrease in performance without the FAC step, see
section 4.1.2.2.3. How/if this applies to RuLSIF is untested.

4.1.3.2 E�ciency results

Runtime measurements for the individual methods are displayed in �gure 4.15.

The time measure is a sum of the time it takes to calculate the models, the time
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Figure 4.15: The runtimes for the various method, displayed as the time
needed per actual change-point, meaning that thorough meth-
ods automatically score slightly higher. The data is presented on
a logarithmic scale to �t all results onto the �gure, the precise
numbers are seen in table 4.4.
As seen RuLSIF is very computationally heavy at about 2 or-
ders of magnitude slower than the most e�cient method which
as expected is KL. This is also seen in the hybrid method, where
the FAC step takes the majority of the computational e�ort. K-
means has undergone several optimisations, see section 3.2.1.4,
and is therefore faster than the hybrid, but still clocks in at 2.5
times slower than KL.
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it takes to calculate the dissimilarity measures and �nally the time it takes to
run the FAC. This sum is then normalized by the amount of change-points in
the measurement. It must be noted that the result here does not include the
overhead, e.g. the feature extraction among others. The result is presented as
the mean and the SEM. As seen in �gure 4.15, RuLSIF is very computationally
heavy at about 2 orders of magnitude, or more precisely 80 times, slower than
the most e�cient method which as expected is KL.

K-means has undergone several optimisations, see section 3.2.1.4, and clocks in
at 2.5 times slower than KL. The precise numbers are seen in table 4.4.

Disclaimer: It must be noted that the run-times are merely guidelines and the
exact numbers depend on the implementation, particularly on how parallelizable
it is and how well the MATLAB's Just-In Time, JIT, accelerator can optimise
it. The run times at measured using MATLAB's tic/toc functions.

To maintain a clean measure of the run-times the methods were naturally run
individually except for RuLSIF, which was run in parallel with itself to maximise
CPU usage. This slightly exaggerates is e�ciency, but was necessary to reduce
the required total runtime.

For reference; the hardware used was a single Intel R© CoreTM i5-2400k proces-
sor running four cores at 3.4GHz, 32GB RAM and running MATLAB 7.11.0
(R2010b) 64-bit.

As such these run-time ratios are meant as guidelines, especially in the context of
implementation outside the MATLAB environment, they are however assumed
to be similar in such a case.

4.2 Method comparison conclusion

In summary the choice of applying K-means in the previous project by Jørgensen
et al. [55] was a decent choice given the implementation. However it is found
in section 4.1.2.1, that a smaller codebook will increase e�ciency with no e�ect
on the performance. The K-means method has a severe limitation though, its
performance is upper bounded by its dimensionality issues, see section 4.1.1.3.3.

It is found here that the KL method is fairly unambiguously the superior method
due to its close second in F-measure, its low computational cost and its high
recall indicating hidden potential. Furthermore the KL training procedure is
e�cient enough that retraining given new data in commercial software is still



4.3 Method re�nement 105

slow, but not excessively so.

The backwards feature selection mentioned in section 2.2.4, will be performed
on KL in section 4.3.1. Once an optimal feature set is found the KL method
will undergo yet another training session, in section 5.2, using the multi-step
FAC method, mentioned in section 2.4.

4.3 Method re�nement

This section will test the hypothesis from section 2.2.4, that using only the
upper MFCCs will improve performance. The theory is that the deconvolution
of the time signal via the ceptrum shifts the envelope of the spectrum to the
low MFCCs and the �ne structure to the high MFCCs. The hypothesis is that
the human speech system when talking can be modelled as an Linear Time-
Invariant, LTI, system with the excitation signal generated by the voice box
undergoing a convolution by the vocal tract acting as a linear �lter. The vocal
tract �lter in this model shapes the excitation signal, thereby forming the literal
semantics of the speech signal, whereas the excitation signal is arbitrary, person
speci�c and should thereby work as sort of an acoustic �ngerprint.

4.3.1 Backwards feature selection

If the hypothesis from introduction to this section holds then the upper MFCCs
should yield better results than the lower MFCCs in the context of SCD. This
section will use the designed optimisation tools from section 3.3 on the method
selected in section 4.1.3 to test this hypothesis. As mentioned in section 2.2.2,
up till this point 12 MFCCs have been used along with their 1st and 2nd order
derivatives, in this section this will still be the case. What is changed is the Mel
�lter bank size described in section 2.2.4.2.

As mentioned in section 2.2.1, 20 Mel �lters will be used and KL is trained on
the outputs of the 12 upper and on the 12 lower ones. The very �rst component
is obviously still left out, see section 2.2.2 for the explanation.

It must be noted that the ISP toolbox [53] - used to generate the MFCCs - does
not support the selection of speci�c MFCCs. The ISP toolbox automatically
selects the lower MFCCs, which probably means that it was designed with speech
transcription as the main focus. So far the outputs from all �lters have been
used; this has therefore not had an impact up till this point. At least that was
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the assumption, however - as described in the next paragraph - this was not the
case.

To enable feature selection the ISP toolbox [53] underwent more custom modi-
�cations, see section 1.2. During this overhaul of the ISP toolbox, some leftover
debugging code from its creation was discovered, wherein several inputs were
overridden by custom, non-default values, in a fashion easily overlooked under
a casual inspection and invisible from the outside. This included the amount of
�lters used in the Mel �lter bank. This debugging code was obviously removed
and all previous tests were scrapped and rerun. The creators of the ISP toolbox
were noti�ed and the entire toolbox was thoroughly examined. The relevant
modi�ed scripts can be seen in appendix A.5.4.

4.3.2 Training results

The training results of the KL method using the upper and lower MFCCs are
shown in �gure 4.16 and 4.17, respectively. The training or optimisation method
used is described in section 3.3.

At a casual glance the results in �gures 4.16 and 4.17 seem similar; in both
cases the optimisation of KL is roughly a convex optimisation problem which
the optimisation algorithm handles well. The results seem similar with the
main di�erence being slightly steeper slopes in the upper MFCCs case. However
when studying the F-measures that the color contours correspond to and the
F-measure at the found local minima the di�erence becomes readily apparent.

An interesting note is that the full KL method training results, see �gure 4.8,
did show two peaks. While the upper and lower KL methods �nd one peak
each, see �gures 4.16 and 4.17. These original peaks might correspond to paired
down versions of the full method that resemble the upper and lower methods.
Testing this hypothesis would however require an extensive feature selection
process which will not be performed.

In table 4.5 the training result using the upper and lower MFCCs are compared
to the previous training results using all MFCCs from section 4.1.2.

As seen in table 4.5, interestingly the FAC is apparently much more reliable in
both the lower and upper case compared to the full case, as the optimisation
chooses to use signi�cantly more of it, especially the lower case which removes
one out of four potential change-points, see table 4.3.

The fact that the algorithm is more FAC reliant means that it is better able
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Figure 4.16: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the training steps and training result of the
KL method using only upper MFFCs; using the optimisation
method described in section 3.3. The results here are compared
to the other methods, all MFCCs and lower MFCCs, on training
data in table 4.5. The various methods are compared using test
data in section 4.3.3.
As seen in this �gure a large amount of data is drawn for each
grid point, and the resulting objective function is very smooth.
In the �rst iteration the grid method �nds the global maxima
roughly, the subsequent iterations and the direct search method
merely locate the peak with greater precision.
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Figure 4.17: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the training steps and training result of the
KL method using only lower MFFCs; using the optimisation
method described in section 3.3. The results here are compared
to the other methods, all MFCCs and upper MFCCs, on training
data in table 4.5. The various methods are compared using test
data in section 4.3.3.
As seen in this �gure a large amount of data is drawn for each
grid point, and the resulting objective function is very smooth.
In the �rst iteration the grid method �nds the global maxima
roughly, the subsequent iterations and the direct search method
merely locate the peak with greater precision.
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Table 4.5: This table shows the �nal threshold parameters for KL using the
3 feature sets, lower MFCCs, upper MFCCs and all MFCCs. The
intermediate stages, of the optimisation method, for the various
methods can be seen in �gures, 4.8 (Full), 4.16 (upper) and 4.17
(lower).
Firstly it is seen that using the upper MFCCs, as expected, seems
to result in a marked improvement. Beyond this it is seen that the
FAC is interestingly much more reliable in both the lower and upper
case compared to the full case, as the optimisation chooses to use
signi�cantly more of it, especially the lower case which removes one
out of four potential change-points, see table 4.3. It is believed that
this is a re�ection of what a uni-modal model is able to interpret,
see section 4.3.2.

to distinguish speakers given large amounts of data. As both K-means, but
especially RuLSIF applied more FAC than KL, see section 4.1.3, indicates that
the lower and upper MFCCs distinguish speakers based on di�erent aspects
and that they were better able to model this bi-modal underlying PDF. This
is as expected since RuLSIF and K-means do not model the speaker using a
uni-modal model like KL.

Interestingly this bodes well for KL as it should do well only looking at the
lower or only the upper MFCCs. This is also indicated by the magnitude of the
F-measure at the local minima found during training, see table 4.1; the training
result indicates that KL using lower MFCCs is almost as good as using the full
range, however as the hypothesis this section set out to test states, KL using
only the upper MFCCs shows great promise.

These results are naturally not conclusive as they are the product of the train-
ing process, applied on training data. Section 4.3.3 will apply KL with the
relevant feature set and the optimised parameters on test-data, thus testing the
generalisability of the results found here.
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Figure 4.18: This �gure shows the performance of the upper and lower MFCC
KL methods compared to the methods tested in section 4.1.3.1.
The result is seen to be conclusive; compared to the previous
full range KL method, using only the upper MFCCs signi�cantly
improves the performance, whereas using only the lower MFCCs
signi�cantly deteriorates the performance. Where the full range
KL lies in between, which further points to the hypothesis; that
high and low MFCCs distinguish speakers di�erently and that
full range KL being uni-model fails to capture each attribute
independently. Con�rming the validity of the speech production
system model from section 2.2.4.

4.3.3 Test results

In this section the test results for KL using lower MFCCs and using upper
MFCCs are compared to KL using the full range, see section 4.1.3.

In �gure 4.18 and table 4.6 it is again con�rmed, as was seen in section 4.1.3,
that the training result found using the optimisation method generalises very
well using the resolution and data amount applied here. The reader is reminded
that the reason why all methods tend to favor precision over recall is the direct
consequence of the FAC paradigm. Furthermore the result is seen to be con-
clusive; using only the upper MFCCs signi�cantly improves the performance,
whereas using only the lower MFCCs signi�cantly deteriorates the performance.
Where the full range KL lies in between which further points to the hypothesis;
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Table 4.6: The precise results of the method performance comparison between
the di�erent feature sets for the KL method. For a more detailed
description of the results and the implications see �gure 4.18 or
section 4.3.3.

Table 4.7: The precise results of the FAC performance, see �gure 4.19, and the
false alarm percentage, see �gure 4.20. For an explanation of the
results and their implications see the caption of the corresponding
�gure or section 4.3.3.

that high and low MFCCs distinguish speakers di�erently and that full range
KL being uni-model fails to capture each attribute independently.

In �gures 4.19, 4.20 and table 4.7, KL using the di�erent feature sets is compared
on the basis of FAC.

In �gure 4.19, 4.20 and table 4.7, the conclusion, from section 4.3.2, that KL
when trained on lower or on upper MFCCs relies heavily on FAC is con�rmed.
Similarly to the results with other methods in section 4.1.3, the FAC is erring
on the aggressive side. It is also found that lower KL is far more reliant on FAC
than upper KL, this seems to indicate one of two things. Either the information
relevant for SCD in the lower MFCCs is found on fairly long time scales, at least
longer than the analysis window size of 3 seconds or that lower MFCC is very
sensitive to multiple speakers in an analysis window, something FAC inherently
counteracts with its variable size analysis window, see section 2.4. Regardless of
the reason for this KL using lower MFCCs is clearly inferior to KL using upper
MFCCs. KL using upper MFCCs is seen to maintain the high recall FAC of full
range KL, even though it applies FAC on twice as many potential change-points
and has a greatly increased precision. This is clearly one of the reasons why
upper KL has superior performance compared to full range KL.
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Figure 4.19: This �gure displays the FAC performance during the performance
test for di�erent KL feature sets, see �gure 4.18, here compared
to the methods tested in section 4.1.3.1. Again the FAC method
is found to adopt an aggressive strategy - liable to throw away
potential change-points if unsure - seen in the fact that RCL is
greater than PRC, see section 3.4.1.1. KL using upper MFCCs is
seen to maintain the high recall of the full range KL, even though
it applies FAC on twice as many potential change-points and has
a greatly increased precision. This is clearly one of the reasons
why upper KL has superior performance compared to full range
KL.
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Figure 4.20: This �gure displays the percentage of false alarms the KL method
chooses depending on the feature sets compared to all methods
from section 4.1.3.1. As seen the conclusion from section 4.3.2
is con�rmed, the new KL methods rely choose to rely heavily on
FAC. It is also found that lower KL is far more reliant on FAC
than upper KL, this seems to indicate one of two things. Either
the information relevant for SCD in the lower MFCCs is found on
fairly long time scales, at least longer than the analysis window
size of 3 seconds or that lower MFCC is very sensitive to mul-
tiple speakers in an analysis window, something FAC inherently
counteracts with its variable size analysis window. This is not
investigated as the lower MFCC method is clearly inferior to the
upper MFCC one, see �gure 4.18.
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4.4 Method re�nement conclusion

In conclusion the hypothesis this section set out to test is clearly validated. KL
shows marked improvement using only upper MFCCs compared to using the
full range, while maintaining the same feature vector size. Whereas using only
the lower MFCCs forces the optimisation to choose a very heavy FAC strategy,
however impressive this fails to reach even the performance of the full range KL
found to outperform other methods in section 4.1.3.

The impact of feature selection on the runtime of the KL method is left untested.
The runtime would be slightly longer as both the lower MFCC and upper MFCC
versions rely more on the FAC step than the full range MFCC version. However
as seen in section 4.1.3.2, this decrease in e�ciency would be very slight as the
FAC step of the KL method is very e�cient, taking less than 1% of the full
runtime for the full-range MFCC version.

Doing a full backwards feature selection, rather than a single step as is performed
in this section, seems very promising. However this would likely tune the method
to the format of the dataset and the generalisability could su�er; this however
would require the method be applied to other data sets than ELSDSR, which is
beyond the scope of this thesis. Beyond that a full backwards feature selection
would be very computationally costly and though all the relevant software has
been created it is beyond the scope of this thesis to run it. The work here
unfortunately only has the resources to provide this proof of concept, the full
backwards feature selection is left to further work, see section 5.



Chapter 5

Further work

Beyond the work described so far, a range of topics and �elds were propped and
tested at varying degrees of rigorousness. This section will quickly describe the
results from the areas in which a su�ciently large amount of work was done.
The methods and results presented in this section were not given adequate
attention or computing resources to merit admission into the greater body of
work. Beyond this, this section will conclude with a list of promising avenues
that was left unexplored due to time constraints.

5.1 Speaker clustering

Once speaker change points have been identi�ed and the audio stream has been
segmented into a set of speaker turns, a crucial part of the original question of
�who spoke when?� still remains, namely the who. Assuming some of the seg-
ments are spoken by the same person, the task of identifying these and annotat-
ing them with a label is an important part of speaker diarisation. As mentioned
in section 1, this project does not attempt to classify these speech segments, the
process of grouping the segments is purely addressed as a clustering problem.

This section assumes that the SCD process operates ideally separating speaker
segments perfectly. The reason for this assumption is to avoid carrying over
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biases from the SCD process. It must be noted that this assumption beyond
rendering the process of perfect clustering ideally possible, removes the possi-
bility of investigating possible non-linear processes whereby biases in the SCD
process interact with biases in the clustering process.

By cluster, what is meant is that all MFCCs from a speaker segment are grouped
together with sequential information ignored. The speaker clustering process
uses the 12 MFCC 1st & 2nd derivatives upper range features found to improve
results in section 4.3.1.

5.1.1 Agglomerative Hierarchical Clustering

The clustering method implemented and compared in this thesis are various
dissimilarity measures using an Agglomerative Hierarchical Clustering, AHC,
[8] approach. The basic concept behind AHC is to de�ne a dissimilarity metric
to distinguish between clusters, e.g. the Euclidean distance between their clos-
est members, usually in the form of linkage functions. Then to �nd the least
dissimilar clusters and combine them, repeating this process until some desired
criteria is met.

This process is slightly more complicated when clusters cannot be directly com-
pared in a geometric sense as is the case in this thesis. The reason being that
even using the process of MFC the clusters are occupying approximately the
same region of MFCC space, see �gure 2.2. This issue is dealt with by instead
of directly comparing clusters, a model with a set of parameters is trained to
describe the underlying cluster. This model is then compared to the models
trained on every other cluster, forming the dissimilarity matrix, see an example
in �gure 5.1. This dissimilarity matrix must be computed fully at every step of
the process, a range of method to optimise this was investigated, a good solution
was not found.

This model comparison process brings with it an issue, as model training scales
super-linearly with the data size. This issue is circumvented by simply building
the model on a random sample of the data. The size of this sample is set to
Tmax which all the way through this thesis has de�ned the maximal amount of
data to be applied.

This sampling however brings yet another issue into the picture, which is that
sampled data might fail to represent the structure of the cluster. A solution
to this issue is proposed by Han et al. [42] in the form of a normalized BIC
based dissimilarity measure termed the Information Change Rate, ICR. It is
called ICR as [42] shows it measures how much information (entropy) would be
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changed (increased) by merging the clusters under consideration. In this sense it
functions slightly like a Kullback-Leibler dissimilarity metric with incorporated
regularization and normalization of cluster sizes.

Using the non-geometric dissimilarity measures enable AHC, but losses the sim-
ple progression of ever more dissimilar cluster being the least dissimilar clusters,
resulting in a slightly messy dendrogram. The issue of a non-simply progression
makes the use of simple thresholding techniques as a stopping criteria fail.

The stopping criteria proposed here is to incorporate active learning techniques
incorporating the user of the audio editing software as an oracle. Settles [104]
provides a broad view into the �eld of active learning. This framework of ideas
was not fully developed, but would require the user to provide an estimate of
the amount of speakers in the pod-cast, the AHC algorithm would then look for
a marked increase in dissimilarity around the required number of clusters.

5.1.2 AHC: Dissimilarity metrics

The AHC process is tested using all metrics described in section 3.2, along
with the BIC and the ICR dissimilarity metrics as proposed in [42]. In this
section only the results from the KL trial, along with the BIC and ICR trials
are presented. The results are presented in the form of dendrograms, see �gures
5.2, 5.3 and 5.4.

The generation of the dendrogram in �gures 5.2, 5.4 and 5.3, are repeated 5
times and combined into the results seen in �gure 5.5.

In the top �gure in 5.5 it is seen that all metrics start mixing speakers into the
same clusters before all segments of the same speaker are combined. Resulting
in a smooth transition to a single cluster containing all speakers. Beyond this
it is seen that BIC and KL do signi�cantly better at maintaining cluster purity
than ICR, as ICR start combing speaker clusters far in advanced of the target
value of 5 speaker clusters.

In �gures 5.2, 5.3 and 5.4, it is seen that the results from the KL and the BIC
approach resemble each other and both work decently well. However a feed-back
process is seen to deteriorates results. What happens is that two individually
speaker-pure clusters, of several speaker segments each, can resemble each other
more than the cluster's own outliers. When two of these pure clusters are
combined this process is even more likely to repeat itself, rapidly deteriorating
the results.
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Figure 5.1: This �gure shows the dissimilarity matrix at a single step in the
AHC process. As seen every segment is compared to every other
segment, this obviously forms a symmetric matrix, for e�ciency
only one triangle is calculated. Segment dissimilarity is displayed
through color, with deep blue being identical and deep red be-
ing very dissimilar. The scale and slope of the dissimilarity is
determined by the dissimilarity metric applied, in this case KL.
As seen the dissimilarity matrix will form striped patterns, this
re�ects that some speakers are apparently very distinguishable.
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Figure 5.2: This �gure shows the agglomerative hierarchical clustering process
using the BIC dissimilarity metric in the form of a dendrogram.
As seen the algorithm does fairly well to begin with at combining
segments spoken by the same person. What is however also seen is
that as soon as the process combines clusters containing di�erent
speakers a feed-back e�ect occurs, making more misclassi�cation
more likely. This feed-back e�ect makes the approach less appeal-
ing. This is also evident using KL, but the results from the ICR
trials hints at a solution.
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Figure 5.3: This �gure shows the agglomerative hierarchical clustering process
using the KL dissimilarity metric in the form of a dendrogram.
As seen the algorithm does fairly well to begin with at combining
segments spoken by the same person. What is however also seen is
that as soon as the process combines clusters containing di�erent
speakers a feed-back e�ect occurs, making more misclassi�cation
more likely. This feed-back e�ect makes the approach less appeal-
ing. This is also evident using BIC, but the results from the ICR
trials hints at a solution.
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Figure 5.4: This �gure shows the agglomerative hierarchical clustering process
using the ICR dissimilarity metric in the form of a dendrogram.
The reader is directed to notice that the cluster dissimilarity on
the y-axis in this case of ICR is shown logarithmically. This makes
it very easy to notice the point at which single speaker segments
are added using a simple thresholding technique
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Figure 5.5: This �gure presents the full results from a series of 5 AHC pro-
cesses. It should be noted that these 2 �gures must be read from
right to left. Starting at 50 clusters on the right which are then
combined down to a single cluster on the left. The upper �gure
shows the mean cluster purity, a measure describing the mean over
all cluster of its ratio between its largest subclass and its total size.
The lower �gure shows the min., avg. and max. cluster sizes as a
function of clusters left.
As seen all methods here fail to maintain perfect cluster purity
down to the ideal of 5 speaker clusters. In the lower �gure it is
seen that BIC is slightly better at maintaining an equal size for
its clusters, whereas ICR fails completely and quickly generates a
single super cluster. KL is seen to be somewhere in between these
extremes.
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However, the ICR results suggest an interesting novel approach, rather than
completing the full AHC process. As seen in �gure 5.4 ICR starts out very
robustly by �nding representative samples of each speaker, and follows this by
adding every other speaker one at a time. The interesting novel approach could
be to simply stop the AHC process before the large clusters are combined. Then
subsequently treat the clustering problem as a classi�cation problem which has
an "unknown" class. This approach remains untested, but looks promising as
this, in similar �elds, has been shown to result in a marked increase in perfor-
mance [44].

Furthermore, in the context of SCD, the additional classi�cation step is required.
The reason being that speaker turns smaller than the size of an analysis window
must be excluded from the clustering process and classi�ed afterward to the
cluster they resemble the most. Including these in the AHC process resulted in
a marked decrease in performance.

The implementation of the speaker clustering using AHC can be found in ap-
pendix A.1.2.

5.2 Recursive False Alarm Compensation

This section will consider the notion of a multi-stage FAC procedure as men-
tioned in section 2.4, here termed Recursive False Alarm Compensation, RFAC.
The idea behind standard FAC is to optimise the data usage around a potential
change-point in order to validate it. Standard FAC is limited in that it does not
use data within 1 sec of the nearby change-points, even if a nearby change-point
is found to be a false alarm.

RFAC extends this by recursively calling FAC on change-points in which nearby
data was freed by false alarms. This may cause a run-away e�ect, if the nearby
false alarm was not actually a false alarm. The optimisation algorithm found
the best use in standard FAC through a fairly aggressive strategy, this is seen
in the recall to precision ratio of table 4.7. Besides improving the F-measure,
the hope is that the optimisation algorithm will tune the method to use the
RFAC in a more well rounded fashion, thereby optimising the KL approach to
its fullest potential. Beyond this, it is seen from the e�ciency results in section
4.1.3.2 that RFAC is very cheap computationally.

The training result for the RFAC KL method is seen in �gure 5.6. When com-
pared to the training result using standard FAC, see �gure 4.16, it is very clear
that the RFAC method opened up new design choices for the algorithm. The
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Figure 5.6: The colours - which are a linear interpolation of the values of the
grid - represent the F-measure for the corresponding threshold
gain combination. Note that the grid is independent of the axes.
This �gure displays the training steps and training result of the -
upper MFCCs, RFAC - KL method using the optimisation method
described in section 3.3. The result here shows that the RFAC
step yields a slightly higher training F-measure compared to the
standard FAC step in �gure 4.16. It is also seen that the design
leans heavily on RFAC as the change-point detection threshold is
substantially lower and the FAC threshold is slightly lower. The
reader is reminded that the borders represent thresholds that ac-
cept and reject everything respectively.
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Figure 5.7: In this �gure the performance of KL using RFAC is compared to
all other trained methods. The result is generated using 500 draws
of test 37 times, the data is represented as the mean and the stan-
dard error seen as errorbars.
As seen the RFAC method only slightly improves the performance,
with an F-measure of 0.893 using RFAC and an 0.885 without, to-
talling an increase of 0.00828 slightly less than the training results
indicated. This improvement comes from an increased precision
up to 0.956 from 0.927, but a reduction in recall down to 0.838
from 0.846.

F-measure of the peak found using training data is 0.0137 higher, whether this
generalises onto test data is seen i �gure 5.7. As was expected it is seen that
the algorithm also tests a paradigm where the change-point detection simply
passing everything through and leaves the entire job for the RFAC step (a value
on the left border). This design option was not selected, which is fortunate as
the implications would be unclear. Su�ce to say that a change-detection step
that allows everything through still only selects a peak if it is the local maxima,
where locality is dependent on the Ti parameter, see section 2.3, such an ap-
proach would be very data dependent. The algorithm's choice falls on a slightly
less change-point detection based method, the FAC threshold however remains
in roughly the same location. This obviously means that the newly designed
approach leans heavily on the RFAC steps.
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Figure 5.8: This �gure shows the FAC performance of the RFAC KL method
compared to all previous methods. The result is generated using
500 draws of test 37 times, the data is represented as the mean
and the standard error seen as errorbars.
As expected the RFAC method produces a far more well-rounded
FAC performace, but unfortunately the overall performance gain
is very slight up to an FAC F-measure of 0.956 from 0.952. Then
again this is as expected - since the FAC step almost perfectly
captures all false alarms - further improvement through a higher
F-measure is negligible. The performance gain must come from a
more extensive - not a more precise - application of FAC.

In �gure 5.7 it is seen that RFAC slightly improves the results, but it also seems
to indicate that the KL method is reaching a barrier to its performance. This
barrier could be posed by the temporal parameters. This is discussed further in
section 5.4 and section 5.3 provides circumstantial evidence.

All in all the RFAC method does improve the KL method over the standard
FAC method, but the improvement gain is marginal. Interestingly RFAC almost
always runs 4 levels for FAC, with 4 runs in 78% of the tests and was not seen
using less than 3 or more than 6. Even if the computational cost of the FAC
step is increased slightly the RFAC takes advantage of the cheap FAC of the
KL approach, which as seen in section 4.1.3.2 is very fast. E�ciency wise the
RFAC method is de�nitely worth it as the runtime is only increased very slightly,
whereas the performance gain is slight but statistically signi�cant.
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Figure 5.9: This �gure shows the percentage of false alarms for the RFAC
method. Unexpectedly the percentage of false alarms only went
up very slightly, by about 1 percentage point, compared to the
upper MFCC KL standard FAC method.

This section did not make it into the greater body of work since the e�ect of a
set number of FAC runs, rather than a fully recursive one is left unexplored due
to a lack of computational resources.

5.3 Mimicking news pod-cast data

Upon a closer inspection of the results using KL with RFAC and upper MFCCs,
an interesting discovery was made. It was found that the method did surprisingly
well, except in the case of very short speaker turns in rapid succession, here
referring to speaker turns at a length of about 2 seconds. In the news pod-cast
scenario this type of conversation is very rare and as seen in Jørgensen et al.
[55] speaker segments below 5 seconds in general are uncommon.

As an experiment and to mediate better comparison with other work, the KL
model already trained is simply fed data with speaker turns lengths always
above 5 seconds. The result of this trial is seen in �gure 5.10 and as seen
the performance without short speaker turns is far greater than with. The
F-measure increases to 0.940 with a precision of 94.3%, and a recall of 93.7%.
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Figure 5.10: This �gure shows that the performance of the KL method - us-
ing RFAC and upper MFCCs - is far greater if the speech data
does not contain short speaker turns (<5s). With the F-measure
increasing to 0.940 having a precision of 94.3%, and a recall of
93.7%.
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This result is very promising as the optimisation method designed in this thesis
could be exported onto commercial software. The commercial software could
then train the algorithm to its particular speech data and performance could
far exceed the general case performance.

This section is not admitted into the greater body of work, as mimicking the
distribution of speaker turn lengths found in news pod-casts, goes far beyond
the fairly arbitrary limit of min. 5 seconds of speech.

5.4 Promising avenues

This section will quickly enumerate promising unexplored avenues in bullet-point
form.

• In section 2.2.3 several methods for reducing the e�ect of noise were inves-
tigated. Beyond this, code was developed for generating data immersed
in varying SNR of several noise types, including babble noise, white noise
and potentially noise caused by phone-line compression. As was mentioned
MFCCs have been found to handle noise poorly and this might reveal in-
teresting strengths and weaknesses in the various approaches. For instance
section 3.2.2.2 mentions research where KL was found to be weak in a noisy
environment.

• During the RuLSIF implementation, see section 3.2.3.3, the smoothing
parameter αR was left at its default setting. An optimisation of this pa-
rameter might increase the performance of RuLSIF, however as RuLSIF's
weakness lies in its e�ciency this avenue was barely explored.

• More promisingly it was found that RuLSIF's e�ciency could be optimised
signi�cantly in section 3.2.3.3. This would require tampering with its
cross-validation step of the kernel width and its regularization parameter.
This cross-validation is performed in every single density-ratio estimation
individually, which is probably excessive, as test revealed that the range
of values selected was quite tight. If this cross-validation step could be
skipped entirely its e�ciency could be improved by up to a factor of 4.

• The change-point detection algorithm, the FAC algorithm and the MFCC
calculation have a number of temporal parameters, in this thesis all these
were borrowed from previous work. The majority of these were optimised
by Jørgensen et al. [55] for a vector quantization based approach. As
the selected method in this thesis is not based on vector quantization, a
tuning of these parameters might increase performance.
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• In section 2.4 alternatives to the FAC based SCD was mentioned. In
section 4.1.3.1 results indicated that a combination of the ensemble based
approach with with the FAC based approach might be promising.

• In section 4.1.3.1 it was hypothesized that RuLSIF might bene�t signif-
icantly e�ciency wise, if the optimisation algorithm from section 3.3 in-
cluded e�ciency in its optimisation goal.

• Finally in section 4.4 it is concluded that a full backwards feature selection
of KL using the optimisation technique developed in section 3.3 would
likely result in a marked improvement. This would however be a very
costly process computationally.



Chapter 6

Final conclusions

This thesis has investigated, implemented, contrasted and combined a wide
range of methods for speaker change detection using segmentation, and sub-
sequently selected a method on which novel improvements have been imple-
mented. These improvements revolve around a custom parameter optimisation
technique for automatic model selection, a fully recursive speaker change detec-
tion paradigm and a model of the human speech production system. In addition
the �eld of speaker clustering has been propped to fully resolve the problem of
speaker diarisation, the question of "who spoke when?".

The investigated speaker change detection methods were drawn from the �elds
of vector quantization, Gaussian processes and relative density-ratio estimation,
a novel approach from general change-detection theory not previously applied
to speaker change detection. These methods mainly included an optimised K-
means algorithm, the Kullback-Leibler distance, KL, and Relative unconstrained
Least-Squares Importance Fitting, RuLSIF, respectively.

As the available speech corpora, ELSDSR & TIMIT, are designed for speech
recognition, a novel method for generating speaker change detection data from
ELSDSR was designed. This method solves the issues of �le splicing, of non-
uniform speech sample lengths and of the limited combinatorial nature of the
corpora using a custom algorithm based on data bootstrapping. This method
is designed to test the methods to their limit, capable of generating a broad
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range of change-point sequence types; anything from rapid-�re arguments to
long monologues.

A broad search into the feature extraction techniques commonly applied to
speaker change detection is conducted. Through a literary study a list of re-
quirements for the feature set is established. It is found that short-term spectral
features meet all requirements, yield decent performance and are easy to com-
pute. Within short-term spectral features, particularly the Mel-Frequency Cep-
stral Coe�cients are selected as they �eld a sound theoretical basis. The concept
is to deconvolve the person speci�c excitation signal of the voicebox from the
literal-semantic speci�c �ltering of the vocal tract. The literary study found the
amount of the Mel-Frequency Cepstral Coe�cients, the use of derivatives and
their placement in the cepstrum to be very diverse. This thesis employs several
stages of feature selection to deal with this issue.

K-means, KL and RuLSIF, among others, were compared to various degrees of
precision before these main contenders remained. Along with these a hybrid
combination of KL and RuLSIF was designed to incorporate both the e�ciency
of KL and the thoroughness of RuLSIF. These 4 methods were fed through the
custom optimisation algorithm using training data and tested on test data.

Out of the resulting optimised methods K-means �elded the highest F-measure
of 0.84, with 93.4% of hypothesised change-point being true and �nding 76.3%
of all possible change-points. Whereas RuLSIF and the RuLSIF/KL hybrid
failed to utilise the optimisation algorithm fully, due to e�ciency issues. The KL
method however came in as a close second, �elding an F-measure only 0.05 lower
than K-means using a more well-rounded approach. KL only had a precision
of 88.9%, but succeeded in locating 78.8% of the total change-points, meaning
that KL in spite of being the simplest method displayed the greatest potential
for improvement. Beyond this the KL approach has a closed form solution
and therefore clocks in at 2.5 times faster than K-means despite the e�ciency
improvements reducing the runtime of K-means 15-fold, with KL running at 5
times real-time. Due to e�ciency, the possible hidden potential and the close
performance scores, KL was chosen.

KL subsequently underwent a series of improvements involving a backwards
feature selection based on the model of the human speech production system
and a fully recursive false alarm compensation paradigm. This process resulted
in an F-measure of 0.893. This improvement comes from an increased precision
up to 95.6%, with the method �nding 83.8% of change-points, at almost no
decrease in e�ciency.

Upon close inspection almost all missed change-points were found in rapid-
�re speech, with speaker-turns of about 2 seconds, in which case the algorithm
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often combined multiple speaker changes into a single speaker change. Using the
same parameter set the F-measure increases to 0.940 using data with speaker
turns always above 5 seconds, here with a precision of 94.3%, while locating
93.7% of all change-points. This result is very promising as the optimisation
method designed in this thesis could be exported onto commercial software. The
commercial software could then train the algorithm to its particular speech data
automatically and performance could far exceed the general case performance.
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Appendix A

MATLAB Code

For the sake of transparency, all essential functions for reproducing results are
included here. Peripheral code such as toolboxes, plotting functions, �le man-
agement, scripts, etc. are excluded.

A.1 Main Scripts

A.1.1 Main: Speaker Change Detection

1 %% enable wrapper func t i on
2 i f e x i s t ( 'wrapper_ON ' )
3 wrapper_OFF = 0 ;
4 enable_data_plots = 0 ;
5 e l s e
6 c l c ; c l e a r a l l ; c l o s e a l l ;
7 wrapper_OFF = 1 ;
8 change_points = 50 ;
9 i f change_points > 100
10 enable_data_plots = 0 ;
11 e l s e
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12 enable_data_plots = 1 ;
13 end
14 RandStream . setDefau l tStream . . .
15 (RandStream( ' mt19937ar ' , ' seed ' , sum(100∗ c l o ck ) ) ) ;
16 end
17

18 %% Change Point Detect ion parameters
19 % Parameters ( va lue s taken from Lasse s e c t i o n 4 . 4 . 4 , law

= 3s , Ti = 2s , Tmax = 8s , and l s = 0 .1 s . )
20 l_aw = 3 ;
21 l_s = 0 . 1 ;
22 Tmax = 8 ;
23 Ti = 2 ; % the width o f a changepoint , another chanpoint

must be out s id e t h i s width . I t i s o f cause centered on
the changepoint

24 bu f f e r = Ti /2 ; %dont use data with in x seconds o f
surrounding change po in t s f o r f a l s e alarm compensation

25 i f wrapper_OFF == 1
26 alpha_cd .VQD = 1 . 1 1 3 ;%56 : 1 . 0 9 6 ; %25: 1 . 1 1 3 ;
27 alpha_cd .KL = 1 . 7 0 3 ;%lowermfcc 1.6656%

uppermfcc 1.6621;% p la in 1.703;% r u l s i f 2 . 0 003 ;
28 alpha_cd .DSD = 1 . 3 ;
29 alpha_cd . RuLSIF = 1 . 4 8 3 ;
30

31 alpha_fac .VQD = 0 . 9085 ;%56 : 0 . 9 155 ; %25:
0 .9085

32 alpha_fac .KL = 0 . 4324 ;%lowermfcc 0.6892%
uppermfcc 0.6643;% p la in 0.4324;% r u l s i f 2 . 0 500 ;

33 alpha_fac .DSD = 0 . 4 ;
34 alpha_fac . RuLSIF = 0 . 9 5 ;
35 end
36

37 %% samplerate
38 f s = 16000 ;
39

40 %% Change po int de t e c t i on methods
41 i f wrapper_OFF == 1
42 method_list = { 'k−means ' , 'KL ' , 'DSD ' , 'RuLSIF ' } ;
43 end
44

45 %% False alarm compensation methods
46 % CP method order : ' k−means ' 'KL' 'DSD' 'RuLSIF '
47

48 fac_methods = { 'k−means ' , 'KL ' , 'DSD ' , 'RuLSIF ' } ;
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49

50 i f wrapper_OFF == 0
51 fac_methods{ strcmp (method_list , { 'k−means ' , 'KL ' , 'DSD ' ,

'RuLSIF ' }) } = fac_method ;
52 end
53 %% Read data
54 type = ' t r a i n ' ;
55 shor te s t_length = 1 ;
56 combine_method = 'LHKs ' ;
57

58 [ data time_info ] = combinee l sdsr ( change_points ,
wrapper_OFF , type , shortes t_length , f s , combine_method ) ;

59

60 %% Read changepoints
61 Read_actual_changepoints_section
62

63 %% Remove non−speech par t s
64 % Remove_nonspeech_parts_section %in a c t i v e
65

66 %% add no i s e
67 % input_no i s e_f i l e = ' babble ' ;
68 % SNRdB = 100 ;
69 % add_noise
70

71 %% Feature ex t r a c t i on
72 Feature_extract ion_sect ion
73

74 %% Divide ceps in to segments
75 ceps_segmentat ion_sect ion
76

77 %% VQD using K−means
78 i f sum( strcmp (method_list , ' k−means ' ) )~=0
79

80 di sp ( 'WARNING: k_means hardcoded to only use f i r s t 12
MFCCs, a l s o in FAC! ' )

81 ceps_temp = ceps ;
82 ceps = ceps ( : , 1 : 1 2 ) ;
83 g l oba l K
84 K = 25 ;
85

86 Kmeans_VQD_section
87

88 ceps = ceps_temp ;
89 end
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90

91 %% KL & DSD us ing s i n g l e mu l t i va r i an t gauss ian model
92 KL_DSD_section
93

94 %% RuLSIF
95 i f sum( strcmp (method_list , 'RuLSIF ' ) )~=0
96 alpha = . 1 ; % Smoothing parameter
97 s igma_l i s t = 0 . 2 : 0 . 4 : 2 ; % Kernel Width
98 lambda_list = −6:1:−2; % Regura l i z a t i on parameter
99 n = seg_length ;
100 s tep = seg_shi f t_length ;
101 k_folds = 5 ;
102 RuLSIF_section
103 end
104

105 %% Calcu la te timestamps
106 x_axis = ( seg_start_samples ( 1 : end−seg_overlap )+(

seg_length−1) ) . / mfcc_opts . mfccprsec ; %a f t e r the
segment s i n c e the changepoint i s measured inbetween 2
segments

107

108 %% mark change po in t s ( Ca l cu la t e VQD_n, avr & th_cd , n (
Lasse ' s r epo r t page 62) )

109 Mark_change_points_section
110

111 %% False alarm compensation (VQD)
112 any_FAC_updates=1;
113 any_FAC_updates_count = 1 ;
114 whi le (any_FAC_updates~=0) %Keeps running u n t i l l no

changepo ints are marked as f a l s e
115 FAC_section
116 any_FAC_updates_count = any_FAC_updates_count + 1 ;
117 end
118

119 %% f−measure
120 F_measure_section
121

122 %% FAC performance
123 FAC_performance_section
124

125 %% Plo t t i ng
126 i f wrapper_OFF == 1
127 main_fig = f i g u r e ;
128
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129 i f enable_data_plots == 1 ;
130 % Compute and p lo t Spectrogram of data
131 Spectrogram_section
132

133 % plo t MFCCs
134 Feature_plott ing_sect ion
135 end
136

137 % plo t Metr ics and CPs
138 Metr ic_plott ing_sect ion
139 end
140

141 %% ROC
142 i f wrapper_OFF == 1
143 ROC_section
144 end

A.1.2 Main: Speaker Clustering

1 c l c ; c l e a r a l l ; c l o s e a l l ;
2 f s = 16000 ;
3 Tmax = 8 ;
4 runs = 5 ;
5

6 f i g u r e
7 f o r n_out = 1 : runs
8 %% Read data
9 N_segment = 500 ;
10 N_people = 5 ; %t r a i n i n g max 23 %obs , s imply wanting

a l l the data i s not p o s s i b l e ( s i n c e i a l s o use
sub s e c t i on s o f data as i nd i v i dua l data ) %obs ,
s i n c e the data i s drawn randomly the datase t might
not conta in the f u l l amount o f speaker s

11 type = ' t r a i n ' ;
12 shor te s t_length = 3 ;
13 fs_out = 16000 ;
14 [ input chosen_names ] = e l s d s r_c l u s t e r i n g (N_segment ,

N_people , type , shortest_length , fs_out ) ;
15

16 %% Feature ex t r a c t i on
17 f o r n = 1 : s i z e ( input , 1 )
18 data = input {n , 1 } ;
19 Feature_extract ion_sect ion
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20 Tmax_influence = Tmax∗mfcc_opts . mfccprsec ;
21 input {n ,3} = ceps ;
22 end
23

24 input_orig = input ( randperm ( s i z e ( input , 1 ) ) , : ) ; %
s h u f f l e input

25

26 %% c l u s t e r i n g metr ic
27 method_list = { 'KL ' , 'DSD ' , ' k−means ' , 'RuLSIF ' , 'BIC ' , '

ICR ' } ;
28

29 f o r n_method = 1 : numel ( method_list )
30 method = method_list {n_method } ;
31 input = input_orig ;
32

33 f i g u r e (n_method)
34 i ndexes = 1 :N_segment ;
35 n = 1 ;
36 whi le (1 )
37

38 %% compute d i s t matrix
39 dist_matrix = 1e6 .∗ ones ( s i z e ( input , 1 ) ) ; %

cons t ruc t d i s t ance matrix
40 % wbar = waitbar ( 0 , [ ' C lu s t e r i ng

us ing ' method ] ) ;
41 lower_triangle_and_diag = 1 ;
42 f o r row = 1 : s i z e ( input , 1 )
43 f o r c o l = (1+lower_triangle_and_diag ) :

s i z e ( input , 1 )
44

45 A = input {row , 3 } ;
46 B = input { co l , 3 } ;
47

48 i f s i z e (A, 1 )>Tmax_influence | | s i z e (B
, 1 )>Tmax_influence

49 i f s i z e (A, 1 )>Tmax_influence
50 tmp = randperm ( s i z e (A, 1 ) ) ;
51 A = A(tmp ( 1 : Tmax_influence )

, : ) ;
52 end
53 i f s i z e (B, 1 )>Tmax_influence
54 tmp = randperm ( s i z e (B, 1 ) ) ;
55 B = B(tmp ( 1 : Tmax_influence )

, : ) ;
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56 end
57

58 dist_matrix ( row , c o l ) =
compare_segments (A,B, method ) ;

59 e l s e
60 dist_matrix ( row , c o l ) =

compare_segments (A,B, method ) ;
61 end
62

63 end
64 lower_triangle_and_diag =

lower_triangle_and_diag+1;
65 end
66

67 %% f ind more common segments
68 [ mins (n) , I ] = min ( dist_matrix ( : ) ) ;
69 [ row , c o l ] = ind2sub ( s i z e ( dist_matrix ) , I ) ;
70

71 %% combine l i k e l y cond idate s
72 number_added (n) = sum( input { co l , 2 } ) ;
73 Z(n , : ) = [ indexes ( row ) indexes ( c o l ) mins (n) ] ;
74

75 input {row ,1} = [ input {row , 1 } ; input { co l , 1 } ] ;
76 input {row ,2} = input {row ,2} + input { co l , 2} ;
77 input {row ,3} = [ input {row , 3 } ; input { co l , 3 } ] ;
78 i ndexes ( row ) = N_segment+n ;
79

80 input ( co l , : ) = [ ] ;
81 i ndexes ( c o l ) = [ ] ;
82

83 %% pur i ty
84 pur i ty = ze ro s ( s i z e ( input , 1 ) , 1 ) ;
85 f o r n2 = 1 : s i z e ( input , 1 )
86 pur i ty ( n2 ) = max( input {n2 , 2 } ) /sum( input {

n2 , 2 } ) ;
87 end
88 purity_avg ( s i z e ( input , 1 ) , n_out , n_method) =

mean( pur i ty ) ;
89 c l e a r pur i ty
90

91 %% c l u s t e r s i z e s
92 s i z e s = ze ro s ( s i z e ( input , 1 ) ,1 ) ;
93 f o r n2 = 1 : s i z e ( input , 1 )
94 s i z e s ( n2 ) = sum( input {n2 , 2 } ) ;
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95 end
96 min_clust_size ( s i z e ( input , 1 ) , n_out , n_method)

= min ( s i z e s ) ;
97 max_clust_size ( s i z e ( input , 1 ) , n_out , n_method)

= max( s i z e s ) ;
98 avg_clust_size ( s i z e ( input , 1 ) , n_out , n_method)

= mean( s i z e s ) ;
99

100 i f sum( s i z e s > 1) == N_people
101 save_s i ze s {n_method} = s i z e s ;
102 va l i d_c lu s t (n) = 1 ;
103 e l s e
104 va l i d_c lu s t (n) = 0 ;
105 end
106

107 %% break cond i t i on
108 i f ( s i z e ( input , 1 )==1)
109 break ;
110 end
111

112 %% plo t
113 dist_matrix ( dist_matrix==1e6 )=max( dist_matrix

( dist_matrix~=1e6 ) ) ;
114 imagesc ( dist_matrix , [ min ( dist_matrix ( : ) ) max(

dist_matrix ( : ) ) ] )
115 co l o rba r
116 drawnow ;
117

118 %loop counter
119 n=n+1;
120 end
121 c l o s e (n_method)
122 %%
123 i f runs == 1
124

125 i f (min (Z ( : , 3 ) ) < 0)
126 Z ( : , 3 ) = Z ( : , 3 ) − min(Z ( : , 3 ) ) + 1 ;
127 neg = 1 ;
128 e l s e
129 neg = 0 ;
130 end
131

132 i f sum( va l i d_c lu s t ) > 0
133 index = max( f i nd ( va l i d_c lu s t ) ) ;
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134 th r e sho ld = Z( index+1 ,3) ∗1 . 0 01 ;
135 e l s e
136 di sp ( ' Using d e f au l t th r e sho ld ' )
137 th r e sho ld= . 7∗ (max(Z ( : , 3 ) ) ) ;
138 end
139

140 i f strcmp ( method_list {n_method} , 'ICR ' )
141 Z ( : , 3 ) = log10 (Z ( : , 3 ) ) ;
142 th r e sho ld = log10 ( th r e sho ld ) ;
143 l ogy = 1 ;
144 e l s e
145 l ogy = 0 ;
146 end
147

148 f ont = 13 ;
149 f i g u r e
150 [H,T, perm ] = dendrogram (Z , 0 , ' c o l o r t h r e s h o l d ' ,

th r e sho ld ) ;%' de fau l t ' ) ;
151 s e t (H, ' LineWidth ' , 2 )
152 hold a l l
153 h l e g l i n e s = [ ] ;
154 f o r n2 = 1 : N_people
155 dots = [ ] ;
156 f o r n = 1 :N_segment
157 index = perm(n) ;
158 i f input_orig { index , 2 } ( n2 ) == 1
159 dots = [ dots n ] ;
160 end
161 end
162 tmp = p lo t ( dots , z e r o s (1 , l ength ( dots ) )

+0.001∗max(Z ( : , 3 ) ) , ' . ' , ' markers i ze '
, 20) ;

163 l egends {n2} = [ ' Speaker #' num2str ( n2 ) ] ;
164 h l e g l i n e s = [ h l e g l i n e s tmp ] ;
165 end
166 p lo t ( 1 : N_segment , th r e sho ld .∗ ones (1 ,N_segment )

, ' k−. ' , ' l i n ew id th ' , 3 )
167

168 y l ab l = method_list {n_method } ;
169 i f neg == 1
170 y l ab l = [ y l ab l '+ (−min( ' y l ab l ' ) ) + 1 '

] ;
171 end
172 i f l ogy == 1
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173 y l ab l = [ ' log10 ( ' y l ab l ' ) ' ] ;
174 end
175

176 y l ab e l ( [ ' C lus te r d i s s im i l a r i t y [ ' y l ab l ' ] ' ] ,
' f o n t s i z e ' , f ont )

177 x l ab e l ( ' Fu l l Speaker segment index ( order
i r r e l e v a n t ) ' , ' f o n t s i z e ' , f ont )

178 t i t l e ( [ 'Dendrogram of f u l l speaker segments
us ing Agglomerative H i e r a r c h i c a l
C lu s t e r i ng with ' method_list {n_method} '
c l u s t e r d i s s im i l a r i t y measure ' ] , ' f o n t s i z e '
, f ont )

179 l egend ( h l e g l i n e s , l egends , ' Locat ion ' , '
northwest ' ) ;

180 s e t ( gca , ' f o n t s i z e ' , 13)
181 end
182 end
183 end

A.2 Parameter Optimisation

A.2.1 Main: Parameter Optimisation

1 c l c ; c l e a r a l l ; c l o s e a l l ;
2

3 RandStream . setDefau l tStream . . .
4 (RandStream( ' mt19937ar ' , ' seed ' , sum(100∗ c l o ck ) ) ) ;
5

6 r e s o l u t i o n s = [10 5 ] ;
7 data_amounts = [500 10 00 ] ;
8 remove_bound_percentage = 50 ;
9 cd_method = 'KL ' ;
10 fac_method = 'KL ' ;
11 re runs = 3 ;
12

13 no_fac = 0 ;
14 maxiter = 30 ;
15

16 cd_bound = [ 1 . 0 2 . 5 ] ;
17 fac_bound = [ 0 . 2 1 . 5 ] ;
18
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19 r e s o l u t i o n s = round ( l i n s p a c e ( r e s o l u t i o n s (1 ) , r e s o l u t i o n s
(2 ) , r e runs ) )

20 data_amounts = round ( l i n s p a c e ( data_amounts (1 ) ,
data_amounts (2 ) , r e runs ) )

21

22 cd_center = mean( cd_bound) ;
23 fac_center = mean( fac_bound ) ;
24 cd_range = range ( cd_bound) ;
25 fac_range = range ( fac_bound ) ;
26

27 ID = f l o o r ( rand∗1 e6 )+1;
28 di sp ( ID)
29

30 f i g u r e
31 f o r rerun = 1 : re runs
32

33 r e s o l u t i o n = r e s o l u t i o n s ( rerun ) ;
34 data_amount = data_amounts ( rerun ) ;
35

36 cd_range = range ( cd_bound) ∗( remove_bound_percentage
/100) ^( rerun−1) ;

37 fac_range = range ( fac_bound ) ∗(
remove_bound_percentage /100) ^( rerun−1) ;

38

39 cd_bound_current (1 ) = cd_center−cd_range /2 ;
40 cd_bound_current (2 ) = cd_center+cd_range /2 ;
41

42 i f cd_bound_current (1 )<cd_bound (1)
43 cd_bound_current = cd_bound_current+(cd_bound (1)−

cd_bound_current (1 ) ) ;
44 e l s e i f cd_bound_current (2 )>cd_bound (2)
45 cd_bound_current = cd_bound_current−(

cd_bound_current (2 )−cd_bound (2) ) ;
46 end
47

48 fac_bound_current (1 ) = fac_center−fac_range /2 ;
49 fac_bound_current (2 ) = fac_center+fac_range /2 ;
50

51 i f fac_bound_current (1 )<fac_bound (1)
52 fac_bound_current = fac_bound_current+(fac_bound

(1)−fac_bound_current (1 ) ) ;
53 e l s e i f fac_bound_current (2 )>fac_bound (2)
54 fac_bound_current = fac_bound_current−(

fac_bound_current (2 )−fac_bound (2) ) ;
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55 end
56

57 cd = l i n s p a c e ( cd_bound_current (1 ) , cd_bound_current
(2 ) , r e s o l u t i o n )

58 f a c = l i n s p a c e ( fac_bound_current (1 ) , fac_bound_current
(2 ) , r e s o l u t i o n )

59

60 i f no_fac == 1
61 f a c = fac (1 ) ;
62 end
63

64 gdvalues = {cd f a c } ;
65

66 i f rerun == reruns && maxiter~=0
67 fminON = 1 ;
68 e l s e
69 fminON = 0 ;
70 end
71

72 addarg = {cd_method , fac_method , data_amount } ;
73 [ x co s t f v a l e x i t f l a g output x_al l f v a l_a l l ] =

simpgdsearch ( ' obj fun ' , gdvalues , addarg , ' temp . txt ' ,
fminON , maxiter ) ;

74

75 cd_center = x (1) ;
76 fac_center = x (2) ;
77 %% save in te rmed ia t e c a l c s
78 mat_name = [ ' cd method ' cd_method ' f a c method '

fac_method ' run ' num2str ( rerun ) ' out o f '
num2str ( re runs ) ' ID ' num2str ( ID) ] ;

79 save (mat_name)
80

81 %% Plot r e s u l t s
82 i f e x i s t ( ' no_fac ' ) == 1 && no_fac == 1
83 p lo t ( cd ,1− cost , '−o ' , ' l i n ew id th ' , 2 )
84 hold a l l
85 xlim ( [ cd_bound ] )
86 ylim ( [ 0 1 ] )
87 i f rerun == reruns
88 p lo t ( x_al l ( : , 1 ) ,1− f va l_a l l , '−o ' , ' l i n ew id th '

, 2 )
89 p lo t ( x ( : , 1 ) ,1− f va l , '−x ' , ' l i n ew id th ' ,10)
90 end
91 e l s e
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92 optim_parameter_plott ing_section
93 end
94 end

A.2.2 Objective Function

1 f unc t i on f = obj fun ( parameters , addarg )
2

3 f = 1−Main_wrapper ( addarg {1} , parameters (1 ) , parameters (2 ) ,
addarg {3} , addarg {2}) ;

A.2.3 Parameter Optimisation

1 f unc t i on [ x co s t minval e x i t f l a g output x_al l f v a l_a l l ] =
simpgdsearch ( objfun , gdvalues , addarg , f i l e o u t , fminON ,

maxiter )
2 %% number o f dimensions
3 nd = s i z e ( gdvalues , 2 ) ;
4

5 %% crea t e parameter s tep
6 f o r k = 1 : nd
7 paramstep (k , : ) = gdvalues ;
8 end
9

10 %% model : a l l the combination o f the eva luated parameters
11 s t r = [ ] ;
12 f o r k = 1 : nd
13 s t r = [ s t r ' gdvalues { ' num2str ( k ) ' } , ' ] ;
14 end
15 s t r ( l ength ( s t r ) ) = [ ] ;
16 eva l ( [ ' model = setprod ( ' s t r ' ) ; ' ] ) ;
17

18 %% gr id search
19 time = 0 ;
20 co s t = ze ro s (1 , s i z e (model , 1 ) ) ;
21 wbar = waitbar (0 , ' P lease wait . . ' ) ;
22 f o r l = 1 : s i z e (model , 1 )
23 in terna l_t ime = t i c ;
24

25 i f ( l ~=1)
26 average_runtime = time /( l −1) ;
27 runs_le f t = s i z e (model , 1 )−( l −1) ;
28 t ime_le f t = runs_le f t ∗average_runtime ;
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29 t ime_le f t_st r ing = [ ' Time l e f t : ' secs2hms (
t ime_le f t ) ] ;

30 waitbar ( l / s i z e (model , 1 ) ,wbar , s p r i n t f ( '%s ' ,
t ime_le f t_st r ing ) )

31 di sp ( t ime_le f t_st r ing )
32 end
33

34 co s t ( l ) = f e v a l ( objfun , model ( l , : ) , addarg ) ;
35

36 time = time + toc ( interna l_t ime ) ;
37 end
38 de l e t e (wbar )
39

40 %% best f i t model %%
41 [ minval ind ] = min ( co s t ) ;
42 x_grid = model ( ind , : ) ;
43 x = x_grid ;
44

45 e x i t f l a g = [ ] ;
46 output = [ ] ;
47 i f fminON ==1
48 %% Simplex method %%
49 opt ions = opt imset ( ' Display ' , ' i t e r ' , 'TolX ' , 0 . 0 1 , '

TolFun ' ,1 e10 , ' MaxIter ' , maxiter , 'OutputFcn ' ,
@outfun ) ; %

50 [ x , f va l , e x i t f l a g , output , x_all , f v a l_a l l ] = fminsearch
( objfun , x , opt ions , addarg ) ;

51

52 x_al l = [ x_grid ; x_al l ] ;
53 f v a l_a l l = [ minval ; f v a l_a l l ] ;
54

55 minval = f v a l ;
56

57 %% save data %%
58 i f narg in == 4
59 f oo = [ model , cost ' ] ;
60 f oo = [ foo ; x , f v a l ] ;
61 save ( f i l e o u t , ' f oo ' , '−a s c i i ' ) ;
62 end
63 e l s e
64 x_al l = x ;
65 f v a l_a l l = minval ;
66 end
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A.3 SCD Methods

A.3.1 Main: Gaussian approach section

1 i f sum( strcmp (method_list , 'KL ' ) )~=0 | | sum( strcmp (
method_list , 'DSD ' ) )~=0

2 % ML es t o f s i n g l e gauss ian on each segment
3 i f wrapper_OFF == 1
4 wbar = waitbar (0 , 'ML est imate o f sigma and mu ' ) ;
5 end
6 ML_est_timer = t i c ;
7 sigma = ze ro s ( s i z e ( ceps , 2 ) , s i z e ( ceps , 2 ) , l ength (

seg_start_samples ) ) ;
8 mu = ze ro s ( s i z e ( ceps , 2 ) , l ength ( seg_start_samples ) ) ;
9

10 f o r n_seg = 1 : l ength ( seg_start_samples )
11 i f wrapper_OFF == 1
12 waitbar ( n_seg/ l ength ( seg_start_samples ) ) ;
13 end
14

15 ceps_seg = ceps_seg_func ( n_seg , seg_start_samples ,
ceps , seg_length ) ;

16 sigma ( : , : , n_seg ) = cov ( ceps_seg ) ;
17 mu( : , n_seg ) = mean( ceps_seg ) ;
18 end
19 i f wrapper_OFF == 1
20 de l e t e (wbar )
21 end
22 time .ML_est = toc (ML_est_timer ) ;
23 end
24

25 i f sum( strcmp (method_list , 'KL ' ) )~=0
26 % Kullback Le i b l e r d ive rgence
27 i f wrapper_OFF == 1
28 wbar = waitbar (0 , 'KL ' ) ;
29 end
30 KL_timer = t i c ;
31 KLs = ze ro s ( l ength ( seg_start_samples )−seg_overlap , 1 ) ;
32 f o r n_seg = 1 : l ength (KLs)
33 i f wrapper_OFF == 1
34 waitbar ( n_seg/ l ength (KLs) ) ;
35 end
36
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37 KLs( n_seg ) = KL( sigma ( : , : , n_seg ) , sigma ( : , : , n_seg+
seg_overlap ) ,mu( : , n_seg ) ,mu( : , n_seg+
seg_overlap ) ) ;

38 end
39 time .KL = toc (KL_timer ) ;
40 i f wrapper_OFF == 1
41 de l e t e (wbar )
42 end
43 end
44

45 i f sum( strcmp (method_list , 'DSD ' ) )~=0
46 % Divergence Shape Distance
47 i f wrapper_OFF == 1
48 wbar = waitbar (0 , 'DSD ' ) ;
49 end
50 DSD_timer = t i c ;
51 DSDs = ze ro s ( l ength ( seg_start_samples )−seg_overlap , 1 )

;
52 f o r n_seg = 1 : l ength (DSDs)
53 i f wrapper_OFF == 1
54 waitbar ( n_seg/ l ength (DSDs) ) ;
55 end
56

57 DSDs( n_seg ) = DSD( sigma ( : , : , n_seg ) , sigma ( : , : ,
n_seg+seg_overlap ) ) ;

58 end
59 time .DSD = toc (DSD_timer) ;
60 i f wrapper_OFF == 1
61 de l e t e (wbar )
62 end
63 end

A.3.2 Kullback Leibler distance

1 f unc t i on out = KL(sigma_A , sigma_B ,mu_A,mu_B)
2 %KL: Kullback−Le i b l e r Distance
3

4 out = 1/2∗ t r a c e ( ( sigma_A − sigma_B) ∗( inv ( sigma_B) − inv (
sigma_A) ) + . . .

5 1/2∗ t r a c e ( ( inv ( sigma_A) + inv ( sigma_B) ) ∗(mu_A −
mu_B) ∗(mu_A − mu_B) ' ) ) ;

6

7 end
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A.3.3 Divergence Shape Distance

1 f unc t i on out = DSD(sigma_A , sigma_B)
2

3 out = 1/2∗ t r a c e ( ( sigma_A − sigma_B) ∗( inv ( sigma_B) − inv (
sigma_A) ) ) ;

4

5 end

A.3.4 Main: Vector Quantization section

1

2 %% Calcu la te codebooks
3 warning ( ' o f f ' , ' a l l ' ) ;
4 i f wrapper_OFF == 1
5 wbar = waitbar (0 , 'K−means ' ) ;
6 end
7 kmeans_timer = t i c ;
8 kmeans_opts = s t a t s e t ( ' MaxIter ' ,10000) ;
9

10 c en t r o i d s = ze ro s (K, s i z e ( ceps , 2 ) , l ength ( seg_start_samples
) ) ;

11 f o r n_seg = 1 : l ength ( seg_start_samples )
12 i f wrapper_OFF == 1
13 waitbar ( n_seg/ l ength ( seg_start_samples ) ) ;
14 end
15

16 ceps_seg = ceps_seg_func ( n_seg , seg_start_samples , ceps
, seg_length ) ;

17

18 % Optimized by pas s ing on old cent ro id s , ~2.5 t imes
f a s t e r . (OBS! This a l s o smoothes the r e su l t , thus
degrading i t . )

19 i f n_seg ~= 1
20 % [ IDX, c en t r o i d s ( : , : , n_seg ) ] = kmeans ( ceps_seg

( : , : , n_seg ) ,K, ' Options ' , kmeans_opts , ' emptyaction ' , '
s i ng l e t on ' , ' s t a r t ' , c e n t r o i d s ( : , : , n_seg−1) ) ;

21 [ IDX, c en t r o i d s ( : , : , n_seg ) ] = kmeans ( ceps_seg ,K, '
Options ' , kmeans_opts , ' emptyaction ' , ' s i n g l e t on '
, ' on l inephase ' , ' o f f ' , ' s t a r t ' , c en t r o i d s ( : , : ,
n_seg−1) ) ;

22 e l s e
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23 % [ IDX, c en t r o i d s ( : , : , n_seg ) ] = kmeans ( ceps_seg
( : , : , n_seg ) ,K, ' Options ' , kmeans_opts , ' emptyaction ' , '
s i ng l e t on ' ) ;

24 [ IDX, c en t r o i d s ( : , : , n_seg ) ] = kmeans ( ceps_seg ,K, '
Options ' , kmeans_opts , ' emptyaction ' , ' s i n g l e t on '
, ' on l inephase ' , ' o f f ' ) ;

25 end
26 end
27 time . kmeans = toc ( kmeans_timer ) ;
28 i f wrapper_OFF == 1
29 de l e t e (wbar )
30 end
31 warning ( ' on ' , ' a l l ' ) ;
32

33 %% Calcu la te d i s t o r t i o n measure
34

35 % VQD (Optimized ) ~7 t imes f a s t e r
36 VQDs_optim = ze ro s ( l ength ( seg_start_samples )−seg_overlap

, 1 ) ;
37 i f wrapper_OFF == 1
38 wbar = waitbar (0 , ' Vector Quant izat ion D i s t o r t i on

Ca l cu l a t i on ' ) ;
39 end
40 VQD_timer = t i c ;
41 f o r n_seg = 1 : l ength (VQDs_optim)
42 i f wrapper_OFF == 1
43 waitbar ( n_seg/ l ength (VQDs_optim) ) ;
44 end
45

46 VQDs_optim( n_seg ) = VQD_optim( c en t r o i d s ( : , : , n_seg ) ,
c en t r o i d s ( : , : , n_seg+seg_overlap ) ) ;

47 end
48 time .VQDs_optim = toc (VQD_timer) ;
49 i f wrapper_OFF == 1
50 de l e t e (wbar )
51 end

A.3.5 Vector Quantization Distortion

1 f unc t i on out = VQD_optim(CA,B)
2 %VQD: Vector Quant izat ion D i s t o r t i on
3 %
4 % CA : I s a kmeans codebook on the prev ious segment
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5 % B : I s e i t h e r the f u l l next segment or the codebook o f
the next segment

6 %
7 % out : The c a l c u l a t ed VQD
8 %
9 % Both CA and B must have f e a t u r e s in colomns and vec to r s

in rows
10

11 out = 0 ;
12 f o r n = 1 : s i z e (B, 1 )
13

14 tmp = repmat (B(n , : ) , s i z e (CA, 1 ) ,1 ) ;
15

16 tmp = CA−tmp ;
17

18 d i s t s = sq r t (sum(tmp .^2 ,2 ) ) ;
19

20 out = out + min ( d i s t s ) ;
21 end
22 end

A.3.6 Main: Relative Density Ratio Estimation

1 addpath ( ' RuLSIF_change_detection ' )
2 addpath ( ' RuLSIF_change_detection\RuLSIF ' )
3

4 y = ceps ' ;
5

6 RuLSIF_timer = t i c ;
7

8 [ score1 , sigma_chosen1 , lambda_chosen1 ] =
change_detect ion (y ,n , 1 , step , alpha , 'RuLSIF
Forward ' , k_folds , s igma_l ist , lambda_list , wrapper_OFF) ;

9 [ score2 , sigma_chosen2 , lambda_chosen2 ] =
change_detect ion (y ( : , end :−1:1) ,n , 1 , step , alpha , 'RuLSIF
Backward ' , k_folds , s igma_l ist , lambda_list , wrapper_OFF) ;

10 s co r e2 = sco re2 ( end :−1:1) ;
11

12 RuLSIFs = ( sco r e1 + sco re2 ) ' ;
13

14 time . RuLSIF = toc (RuLSIF_timer ) ;
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A.3.7 Change Detectoion front-end for RuLSIF

1 f unc t i on [SCORE, sigma_chosen , lambda_chosen ] =
change_detect ion (X, n , k , step , alpha , task , k_folds ,
s igma_l ist , lambda_list , wrapper_OFF)

2

3 SCORE= [ ] ;
4

5 WIN = sliding_window (X, k , 1) ;
6 nSamples = s i z e (WIN, 2 ) ;
7 t = n+1;
8 i f wrapper_OFF == 1
9 wbar = waitbar (0 , task ) ;
10 end
11

12 next_percentage = 0 ;
13 loopcount = 1 ;
14 whi le ( t + n −1 <= nSamples )
15 i f wrapper_OFF == 1
16 waitbar ( ( ( t − n)−1) / ( nSamples−(n−1) ) ) ;
17 end
18

19 new_percentage = f l o o r ( ( ( t − n)−1) / ( nSamples−(n−1) )
∗100) ;

20

21 i f new_percentage == next_percentage
22 di sp ( [ task ' ' num2str ( new_percentage ) '%' ] )
23 next_percentage = next_percentage +1;
24 end
25

26 YTest = WIN( : , t : n + t −1 ) ;
27 YRef = WIN( : , t−n : t−1) ;
28 % [ pe]=RelULSIF (YRef , YTest , [ ] , [ ] , alpha , k_folds ,

s igma_l ist , lambda_list ) ;
29 [ rPE , ~ , ~ , sigma_chosen ( loopcount ) , lambda_chosen (

loopcount ) ] = RelULSIF (YRef , YTest , [ ] , [ ] , alpha ,
k_folds , s igma_l ist , lambda_list ) ;

30 SCORE = [SCORE, rPE ] ;
31 t = t + step ;
32 loopcount = loopcount + 1 ;
33 end
34 i f wrapper_OFF == 1
35 de l e t e (wbar )
36 end
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37 end

A.3.8 RuLSIF

1 f unc t i on [ rPE , g_nu , g_re , sigma_chosen_index ,
lambda_chosen_index ] = RelULSIF ( x_de , x_nu , x_re ,
x_ce , alpha , k_folds , s igma_l ist , lambda_list )

2 %rng de f au l t
3 f o l d = k_folds ;
4 [~ ,n_nu ] = s i z e (x_nu) ;
5 [~ , n_de ] = s i z e (x_de) ;
6

7 % Parameter I n i t i a l i z a t i o n Sec t i on
8 i f narg in < 4 | | isempty ( x_ce )
9 b = min (100 ,n_nu) ;
10 idx = randperm (n_nu) ;
11 x_ce = x_nu ( : , idx ( 1 : b ) ) ;
12 end
13

14 i f narg in < 5
15 alpha = 0 . 5 ;
16 end
17

18 % cons t ruc t gauss ian c en t e r s
19 [~ , n_ce ] = s i z e ( x_ce ) ;
20 % get sigma cand idate s
21 x = [ x_de , x_nu ] ;
22 med = comp_med(x ) ;
23 % sigma_l i s t = med ∗ [ . 6 , . 8 , 1 . 0 , 1 . 2 , 1 . 4 ] ;
24 s igma_l i s t = med ∗ s igma_l i s t ;
25 % get lambda cand idates
26 % lambda_list = 10 .^( −3 :1 :1) ;
27 lambda_list = 10.^ lambda_list ;
28

29 [ dist2_de ] = comp_dist (x_de , x_ce ) ;
30 %n_de ∗ n_ce
31 [ dist2_nu ] = comp_dist (x_nu , x_ce ) ;
32 %n_nu ∗ n_ce
33

34 %The Cross v a l i d a t i o n Sec t i on Begins
35 s co r e = ze ro s ( l ength ( s igma_l i s t ) , l ength ( lambda_list ) ) ;
36 f o r i = 1 : l ength ( s igma_l i s t )
37 k_de = kernel_gau ( dist2_de , s i gma_l i s t ( i ) ) ;
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38 k_nu = kernel_gau ( dist2_nu , s igma_l i s t ( i ) ) ;
39 f o r j = 1 : l ength ( lambda_list )
40

41 cv_index_nu=randperm (n_nu) ;
42 cv_split_nu=f l o o r ( [ 0 : n_nu−1]∗ f o l d . /n_nu)+1;
43 cv_index_de=randperm (n_de) ;
44 cv_split_de=f l o o r ( [ 0 : n_de−1]∗ f o l d . / n_de)+1;
45

46 sum = 0 ;
47 f o r k = 1 : f o l d
48 k_de_k = k_de( cv_index_de ( cv_split_de~=k) , : )

' ;
49 %n_ce ∗ n_de
50 k_nu_k = k_nu( cv_index_nu ( cv_split_nu~=k) , : )

' ;
51 %n_ce ∗ n_nu
52

53 H_k = ((1− alpha ) / s i z e (k_de_k , 2 ) ) ∗(k_de_k∗
k_de_k ' ) + . . .

54 ( alpha / s i z e (k_nu_k, 2 ) ) ∗(k_nu_k∗k_nu_k ' ) ;
55 h_k = mean(k_nu_k, 2 ) ;
56

57 theta = (H_k + eye (n_ce ) ∗ lambda_list ( j ) ) \h_k ;
58 %theta = max( theta , 0 ) ;
59

60 k_de_test = k_de( cv_index_de ( cv_split_de==k)
, : ) ' ;

61 k_nu_test = k_nu( cv_index_nu ( cv_split_nu==k)
, : ) ' ;

62 % ob j e c t i v e func t i on value
63 J = alpha /2 ∗ mean ( ( theta ' ∗ k_nu_test ) .^2)+

. . .
64 (1−alpha ) /2∗mean ( ( theta '∗ k_de_test ) .^2)−

. . .
65 mean( theta ' ∗ k_nu_test ) ;
66 sum = sum + J ;
67 end
68 s c o r e ( i , j ) = sum/ f o l d ;
69 end
70 end
71

72 %f ind the chosen sigma and lambda
73 [ sigma_chosen_index , lambda_chosen_index ] = f i nd ( s co r e==

min( s co r e ( : ) ) ) ;
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74 sigma_chosen = s igma_l i s t ( sigma_chosen_index ) ;
75 lambda_chosen = lambda_list ( lambda_chosen_index ) ;
76

77 %compute the f i n a l r e s u l t
78 k_de = kernel_gau ( dist2_de ' , sigma_chosen ) ;
79 k_nu = kernel_gau ( dist2_nu ' , sigma_chosen ) ;
80

81 H = ((1− alpha ) /n_de) ∗(k_de∗k_de ' ) + . . .
82 ( alpha /n_nu) ∗(k_nu∗k_nu ' ) ;
83 h = mean(k_nu , 2 ) ;
84

85 theta = (H + eye (n_ce ) ∗ lambda_chosen ) \h ;
86

87 g_nu = theta '∗k_nu ;
88 g_de = theta '∗ k_de ;
89 g_re = [ ] ;
90 i f ~isempty ( x_re )
91 dist2_re = comp_dist ( x_re , x_ce ) ;
92 k_re = kernel_gau ( dist2_re ' , sigma_chosen ) ;
93 g_re = theta '∗ k_re ;
94 end
95 rPE = mean(g_nu) − 1/2∗( alpha ∗mean(g_nu.^2) + . . .
96 (1−alpha ) ∗mean(g_de .^2) ) − 1/2 ;
97

98 end

A.4 False Alarm Compensation

A.4.1 Main: False Alarm Compensation section

1 i f ( bu f f e r >(Ti /2) )
2 e r r o r ( ' bu f f e r should be sma l l e r than or equal to Ti/2

' )
3 end
4

5 any_FAC_updates = 0 ;
6

7 i f sum( strcmp (method_list , ' k−means ' ) )~=0 && ~strcmp (
fac_methods {1} , ' ' )

8 t i c ;
9 [ CP.VQD FAC_change .VQD ] = FAC( ceps , th_cd .VQD

, alpha_fac .VQD , alpha_cd .VQD , CP.VQD ,
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l ength ( seg_start_samples ) , bu f f e r ,
seg_shi f t_length , mfcc_opts . mfccprsec ,
Tmax_influence , seg_start_samples , seg_length ,
seg_overlap , fac_methods {1} , ' k−means ' ,wrapper_OFF) ;

10 any_FAC_updates = any_FAC_updates + FAC_change .VQD;
11 time .FAC.VQD(any_FAC_updates_count ) = toc ;
12 end
13 i f sum( strcmp (method_list , 'KL ' ) )~=0 && ~strcmp (

fac_methods {2} , ' ' )
14 t i c ;
15 [ CP.KL FAC_change .KL ] = FAC( ceps , th_cd .KL

, alpha_fac .KL , alpha_cd .KL , CP.KL ,
l ength ( seg_start_samples ) , bu f f e r ,

seg_shi f t_length , mfcc_opts . mfccprsec ,
Tmax_influence , seg_start_samples , seg_length ,
seg_overlap , fac_methods {2} , 'KL ' ,wrapper_OFF) ;

16 any_FAC_updates = any_FAC_updates + FAC_change .KL;
17 time .FAC.KL(any_FAC_updates_count ) = toc ;
18 end
19 i f sum( strcmp (method_list , 'DSD ' ) )~=0 && ~strcmp (

fac_methods {3} , ' ' )
20 t i c ;
21 [ CP.DSD FAC_change .DSD ] = FAC( ceps , th_cd .DSD

, alpha_fac .DSD , alpha_cd .DSD , CP.DSD ,
l ength ( seg_start_samples ) , bu f f e r ,
seg_shi f t_length , mfcc_opts . mfccprsec ,
Tmax_influence , seg_start_samples , seg_length ,
seg_overlap , fac_methods {3} , 'DSD ' ,wrapper_OFF) ;

22 any_FAC_updates = any_FAC_updates + FAC_change .DSD;
23 time .FAC.DSD(any_FAC_updates_count ) = toc ;
24 end
25 i f sum( strcmp (method_list , 'RuLSIF ' ) )~=0 && ~strcmp (

fac_methods {4} , ' ' )
26 t i c ;
27 [ CP. RuLSIF FAC_change . RuLSIF ] = FAC( ceps , th_cd .

RuLSIF , alpha_fac . RuLSIF , alpha_cd . RuLSIF , CP.
RuLSIF , l ength ( seg_start_samples ) , bu f f e r ,
seg_shi f t_length , mfcc_opts . mfccprsec ,
Tmax_influence , seg_start_samples , seg_length ,
seg_overlap , fac_methods {4} , 'RuLSIF ' ,wrapper_OFF) ;

28 any_FAC_updates = any_FAC_updates + FAC_change . RuLSIF
;

29 time .FAC.RuLSIF(any_FAC_updates_count ) = toc ;
30 end
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A.4.2 False Alarm Compensation

1 f unc t i on [ CPs change ] = FAC( ceps , th_cd , alpha_fac ,
alpha_cd , CPs , seg_amount , bu f f e r , seg_shi f t_length ,
mfccprsec , Tmax_influence , seg_start_samples , seg_length ,
seg_overlap , method , metric , wrapper_OFF)

2 i f sum(CPs==1) == 0 %no change po in t s found
3 change = 0 ;
4 re turn ;
5 end
6

7 remember_CPs = CPs ;
8

9 bu f f e r_ in f l u enc e = bu f f e r ∗mfccprsec / seg_sh i f t_length ;
10

11 %% Find maximal data segments on which methods are
r eeva luated

12 CP_indexes = [ 1 ; f i nd (CPs==1) ; seg_amount ] ; %indexes
match %OBS th i s sentence removes bu f f e r zones at
beg inning and end automat i ca l l y

13 [ back forward indexes ] = l o c a t e_ in t e r v a l s (CP_indexes ,
bu f f e r_ in f lu ence , Tmax_influence , seg_overlap ) ;

14

15 %% Set th re sho ld o f which va lue s based on more data has
to exceed

16

17 i f strcmp (method , metr ic )
18 th_fac = alpha_fac . ∗ ( th_cd (CPs==1) . / alpha_cd ) ;
19 e l s e i f sum(CPs==1) > 5
20 midpoints = CP_indexes ( 1 : end−1)+f l o o r ( d i f f (CP_indexes

) /2) ;
21

22 temp_back = [ CP_indexes ( 1 : end−1)+bu f f e r_ in f l u en c e
midpoints ] ;

23 temp_back ( ( temp_back ( : , 2 )−temp_back ( : , 1 ) ) >
Tmax_influence , 1) = temp_back ( ( temp_back ( : , 2 )−
temp_back ( : , 1 ) ) > Tmax_influence , 2)−
Tmax_influence ;

24

25 temp_forward = [ midpoints CP_indexes ( 2 : end )−
bu f f e r_ in f l u enc e ] ;

26 temp_forward ( ( temp_forward ( : , 2 )−temp_forward ( : , 1 ) ) >
Tmax_influence , 1) = temp_forward ( ( temp_forward
( : , 2 )−temp_forward ( : , 1 ) ) > Tmax_influence , 2)−
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Tmax_influence ;
27

28 temp_indexes = f i nd ( ( temp_back ( : , 1 )<temp_back ( : , 2 ) ) &
( temp_forward ( : , 1 )<temp_forward ( : , 2 ) ) ) ;

29

30 value = inline_FAC ( temp_indexes , temp_back ,
temp_forward , ceps , th_cd , alpha_fac , alpha_cd ,
CPs , seg_amount , bu f f e r , seg_shi f t_length ,
mfccprsec , Tmax_influence , seg_start_samples ,
seg_length , seg_overlap , method , metric , wrapper_OFF) ;

31

32 th_fac = alpha_fac .∗median ( value ) .∗ ones ( s i z e ( th_cd (
CPs==1)) ) ;

33 e l s e %too few hypothes ized changepoints to es t imate a
th r e sho ld

34 change = 0 ;
35 re turn ;
36 end
37

38 %% Calcu la te new va lue s
39 value = inline_FAC ( indexes , back , forward , ceps , th_cd ,

alpha_fac , alpha_cd , CPs , seg_amount , bu f f e r ,
seg_shi f t_length , mfccprsec , Tmax_influence ,
seg_start_samples , seg_length , seg_overlap , method , metric
, wrapper_OFF) ;

40

41 %% Check i f new va lues exceed s e t th r e sho ld
42 p la c eho ld e r = CPs(CPs==1) ;
43 f o r n2 = 1 : l ength ( indexes )
44 n = indexes ( n2 ) ;
45 i f va lue (n) > th_fac (n)
46 p la c eho ld e r (n) = 1 ; % true changepoint
47 e l s e
48 p la c eho ld e r (n) = 2 ; % f a l s e changepoint
49 end
50 end
51

52 %% Assign f a l s e p o s i t i v e s to f a l s i f i e d changepo ints
53 CPs(CPs==1) = p la c eho ld e r ;
54

55 %% Check i f any f a l s e p o s i t i v e s were found ( i f so i t may
be prudent to rerun t h i s func t i on )

56 i f sum(remember_CPs ~= CPs) == 0 %i d e n t i c a l
57 change = 0 ;
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58 e l s e
59 change = 1 ;
60 end
61

62 end
63

64 f unc t i on [ back forward indexes ] = l o c a t e_ in t e r v a l s (
CP_indexes , bu f f e r_ in f lu ence , Tmax_influence , seg_overlap
)

65 back = ze ro s ( l ength (CP_indexes ) −2 ,2) ;
66 forward = back ;
67 f o r n = (1+1) : ( numel (CP_indexes )−1)
68

69 lowest_back = CP_indexes (n−1)+bu f f e r_ in f l u en c e ;
70

71 higest_back = CP_indexes (n) ;
72

73 i f ( higest_back−lowest_back > Tmax_influence )
74 lowest_back = higest_back−Tmax_influence ;
75 end
76

77 back (n−1 , : ) = [ lowest_back higest_back ] ;
78

79 lowest_forward = CP_indexes (n)+seg_overlap ;
80

81 highest_forward = CP_indexes (n+1)+1−bu f f e r_ in f l u enc e ;
%+1 s i n c e the prev ious segment has the same
number as the cur rent CP

82

83 i f ( highest_forward−lowest_forward > Tmax_influence )
84 highest_forward = lowest_forward+Tmax_influence ;
85 end
86

87 forward (n−1 , : ) = [ lowest_forward highest_forward ] ;
88 end
89 i ndexes = f i nd ( ( back ( : , 1 )<back ( : , 2 ) ) & ( forward ( : , 1 )<

forward ( : , 2 ) ) ) ;
90

91 end
92

93 f unc t i on value = inline_FAC ( indexes , back , forward , ceps ,
th_cd , alpha_fac , alpha_cd , CPs , seg_amount , bu f f e r ,
seg_shi f t_length , mfccprsec , Tmax_influence ,
seg_start_samples , seg_length , seg_overlap , method , metric
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, wrapper_OFF)
94

95 i f wrapper_OFF == 1
96 wbar = waitbar ( 0 , [ 'FAC on ' metr ic ' us ing ' method ] )

;
97 end
98 f o r n2 = 1 : l ength ( indexes ) ;
99 n = indexes ( n2 ) ;
100 i f wrapper_OFF == 1
101 waitbar (n/ l ength ( back ) ) ;
102 end
103

104 previous_segment = ceps ( seg_start_samples ( back (n
, 1 ) ) : ( seg_start_samples ( back (n , 2 ) )+(seg_length
−1) ) , : ) ;

105 next_segment = ceps ( seg_start_samples ( forward (n
, 1 ) ) : ( seg_start_samples ( forward (n , 2 ) )+(seg_length
−1) ) , : ) ;

106

107 value (n) = compare_segments ( previous_segment ,
next_segment , method ) ;

108 end
109 i f wrapper_OFF == 1
110 de l e t e (wbar )
111 end
112 i f strcmp ( 'k−means ' , method )
113 warning ( ' on ' , ' a l l ' ) ;
114 end
115 end

A.4.3 FAC Performance

1 fac_performance . alpha_f_measure = 0 . 5 ;
2 methods = f i e ldnames (CP) ;
3 fac_performance .TP = ze ro s ( numel (methods ) ,1 ) ;
4 fac_performance .FP = ze ro s ( numel (methods ) ,1 ) ;
5 fac_performance .FN = ze ro s ( numel (methods ) ,1 ) ;
6 fac_performance .TN = ze ro s ( numel (methods ) ,1 ) ;
7

8 f o r n_method = 1 : numel (methods )
9

10 accepted = x_axis (CP. ( methods{n_method})==1) ;
11 f o r n_acp = 1 : l ength ( accepted )
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12 i f sum( ( changepoints_true−Ti /2) < accepted (n_acp)
& accepted (n_acp) < ( changepoints_true+Ti /2) )
~=0;

13 fac_performance .TP(n_method) =
fac_performance .TP(n_method) + 1 ;

14 e l s e
15 fac_performance .FP(n_method) =

fac_performance .FP(n_method) + 1 ;
16 end
17 end
18

19 r e j e c t e d = x_axis (CP. ( methods{n_method})==2) ;
20 f o r n_rej = 1 : l ength ( r e j e c t e d )
21 i f sum( ( changepoints_true−Ti /2) < r e j e c t e d ( n_rej )

& r e j e c t e d ( n_rej ) < ( changepoints_true+Ti /2) )
~=0;

22 fac_performance .FN(n_method) =
fac_performance .FN(n_method) + 1 ;

23 e l s e
24 fac_performance .TN(n_method) =

fac_performance .TN(n_method) + 1 ;
25 end
26 end
27

28 fac_performance .PRC. ( methods{n_method}) =
fac_performance .TP(n_method) /( fac_performance .TP(
n_method)+fac_performance .FP(n_method) ) ;

29 fac_performance .RCL. ( methods{n_method}) =
fac_performance .TP(n_method) /( fac_performance .TP(
n_method)+fac_performance .FN(n_method) ) ;

30

31 fac_performance . F_measure . ( methods{n_method}) = (
fac_performance .RCL. ( methods{n_method}) ∗
fac_performance .PRC. ( methods{n_method}) ) / . . .

32 ( fac_performance . alpha_f_measure∗ fac_performance .
RCL. ( methods{n_method})+(1− fac_performance .
alpha_f_measure ) ∗ fac_performance .PRC. ( methods{
n_method}) ) ;

33 end
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A.5 Data Handling

A.5.1 ELSDSR front-end for Data Splicing

1 f unc t i on [ data time_info data_orig ] = combinee l sds r (N,
wrapper_OFF , type , shortes t_length , fs_out , combine_method
)

2

3 i f strcmp ( type , ' t e s t ' )
4 data_path = ' data\ e l s d s r \ Speaker_Ident i f i cat ion_Test \

' ;
5 e l s e i f strcmp ( type , ' t r a i n ' )
6 data_path = ' data\ e l s d s r \

Speaker_Ident i f i ca t ion_Tra in ing \ ' ;
7 end
8

9 l i s t = d i r ( [ data_path ' ∗ . wav ' ] ) ;
10

11 % al l_data = c e l l ( numel ( l i s t ) , 1 ) ;
12 % fo r n = 1 : numel ( l i s t )
13 % [ al l_data {n} , f s ] = isp_audioread ( [ data_path l i s t (n

) . name ] ) ;
14 % end
15 % save ( [ data_path ' al l_data ' ] , ' a l l_data ' )
16

17 load ( [ data_path ' a l l_data ' ] , ' a l l_data ' )
18

19 f s = 16000 ;
20 f i l e_ l e n g t h s = ze ro s ( numel ( l i s t ) , 1 ) ;
21 f o r n = 1 : numel ( l i s t )
22 f i l e_ l e n g t h s (n) = length ( a l l_data {n}) / f s ;
23 end
24

25 temp_fi le_lengths ( f i l e_ l e n g t h s~=max( f i l e_ l e n g t h s ) ) =
f i l e_ l e n g t h s ( f i l e_ l e n g t h s~=max( f i l e_ l e n g t h s ) ) ;

26 l ongest_length = max( temp_fi le_lengths ) ; %s e t at second
l a r g e s t ( o therw i se above that i t w i l l only have a
s i n g l e speaker to p ick from )

27 % longest_length = 15
28

29 %choose random length between a and b
30 de s i r ed_ f i l e_ l eng th s = shor te s t_length + ( longest_length−

shor te s t_length ) .∗ rand (N, 1 ) ; % ones (N, 1 ) ∗0 .5
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31

32 %choose random sample l onge r than the random length
33 random_sample = ze ro s (N, 1 ) ;
34 f o r n = 1 :N
35 random_sample (n) = randsample ( f i nd ( f i l e_ l e n g t h s >=

de s i r ed_ f i l e_ l eng th s (n) ) ,1 ) ;
36 end
37

38 l i s t = l i s t ( random_sample ) ;
39

40 i f wrapper_OFF == 1
41 wbar = waitbar (0 , ' Combining data ' ) ;
42 end
43 f o r n = 1 :N
44 i f wrapper_OFF == 1
45 waitbar (n/N) ;
46 end
47 tmp_data = al l_data {random_sample (n) } ;
48

49 %cut i t to the de s i r ed l ength
50 des i red_length = f l o o r ( d e s i r ed_ f i l e_ l eng th s (n) ∗ f s ) ;
51 s t a r t = randi ( [ 1 , l ength ( tmp_data )−des i red_length ] ) ;
52 tmp_data = tmp_data ( s t a r t : ( s t a r t+des i red_length ) ) ;
53

54 %resample ( p laced here to s p l i t up the c a l c u l a t i o n
in to a host o f smal l ones )

55 i f f s ~= fs_out
56 tmp_data=resample ( tmp_data , fs_out , f s ) ;
57 end
58

59 i f n == 1
60 data = ze ro s (N∗15∗ f s , 1 ) ;
61 data_length = length ( tmp_data ) ;
62 data ( 1 : data_length ) = tmp_data ;
63 e l s e
64 [ data data_length ] = sp l i ce_data ( data , tmp_data ,

50 , combine_method , data_length ) ;
65 end
66

67 i f n ~= N
68 % time = numel ( data ) / fs_out ;
69 time = data_length/ fs_out ;
70

71 minutes = f l o o r ( time /60) ;
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72 seconds = f l o o r ( ( time/60−minutes ) ∗60) ;
73 subseconds = f l o o r ( ( ( time/60−minutes )∗60− seconds )

∗100) ;
74

75 %check whether i t i s a t rue change po int
76 i f ( strcmp ( l i s t (n) . name ( 1 : 4 ) , l i s t (n+1) . name ( 1 : 4 ) )

) %(p(n)+1)==p(n+1) ) &&
77 true_change = 0 ;
78 e l s e
79 true_change = 1 ;
80 end
81

82 t ime_info . raw_secs (n) = time ;
83 t ime_info . minutes (n) = minutes ;
84 t ime_info . seconds (n) = seconds+subseconds

/100 ;
85 t ime_info . true_change (n) = true_change ;
86 end
87 end
88 i f wrapper_OFF == 1
89 de l e t e (wbar )
90 end
91

92 data ( data_length+1:end ) = [ ] ;

A.5.2 Data Splicing

1 f unc t i on [ data data_length ] = sp l i ce_data ( data_le ft ,
data_right , extend , method , data_length )

2 i f strcmp (method , 'TBNs ' )
3 % Combines 2 datase t by tak ing the <extend> l a s t

and f i r s t data from the
4 % s e r i e s r e s p e c t i v e l y . The da ta s e t s are then pushed

towards the average
5 % of the l a s t and f i r s t po int o f the s e t

r e s p e c t i v e l y . This pushing i s
6 % done l o g a r i t hm i c a l l y . That i s t h i s pushing decays

l o g a r i t hm i c a l l y away
7 % from the middle , with zero push at +−extend .
8 l e f t_rms = sq r t (mean( data_le f t ( end−(10−1) : end ) .^2) ) ;
9 right_rms = sq r t (mean( data_right ( 1 : 10 ) .^2) ) ;
10

11 th r e sho ld = 1e−4;
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12

13 i f ( left_rms>thre sho ld && right_rms>thre sho ld ) | | (
left_rms<thre sho ld && right_rms<thre sho ld )

14 l e f t_ f a c t o r = 2 ;
15 r i gh t_fac to r = 2 ;
16 e l s e i f left_rms<thre sho ld
17 l e f t_ f a c t o r = i n f ;
18 r i gh t_fac to r = 1 ;
19 e l s e i f right_rms<thre sho ld
20 l e f t_ f a c t o r = 1 ;
21 r i gh t_fac to r = i n f ;
22 end
23

24 l e f t = ( ( ( l og space (0 , 1 , extend )−1)/9) ∗( data_right (1 )−
data_le f t ( end ) ) / l e f t_ f a c t o r ) ' ;

25 r i g h t = ( f l i p l r ( ( l og space (0 , 1 , extend )−1)/9) ∗(
data_le f t ( end )−data_right (1 ) ) / r i gh t_fac to r ) ' ;

26

27 data_le f t ( end−(extend−1) : end ) = l e f t+data_le f t ( end−(
extend−1) : end ) ;

28 data_right ( 1 : extend ) = r i gh t+data_right ( 1 : extend
) ;

29

30

31 data = [ data_le f t ; data_right ] ;
32 e l s e i f strcmp (method , 'LHKs ' )
33 changes_le f t = [ d i f f ( s i gn ( data_le f t ( data_length −999:

data_length ) ) ) ; 0 ] ;
34 index_before_down_left = 1000−max( f i nd ( changes_le f t

==−2)) ;
35 index_before_up_left = 1000−max( f i nd ( changes_le f t==2)

) ;
36

37 changes_right = [ d i f f ( s i gn ( data_right ( 1 : 1000 ) ) ) ; 0 ] ;
38 index_before_down_right = min ( f i nd ( changes_right==−2)

) ;
39 index_before_up_right = min ( f i nd ( changes_right==2)) ;
40

41 i f index_before_up_left + index_before_up_right <
index_before_down_left + index_before_down_right

42 cut_off_end = index_before_up_left ;
43

44 data_length_new = ( data_length+length ( data_right (
index_before_up_right : end ) ) )−cut_off_end ;
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45

46 i f l ength ( data_le f t ( ( data_length+1−cut_off_end ) :
data_length_new ) )~=length ( data_right (
index_before_up_right : end ) )

47 save errordump
48 end
49

50 data_le f t ( ( data_length+1−cut_off_end ) :
data_length_new ) = data_right (
index_before_up_right : end ) ;

51 data_length = data_length_new ;
52 data = data_le f t ;
53 e l s e
54 cut_off_end = index_before_down_left ;
55

56 data_length_new = ( data_length+length ( data_right (
index_before_down_right : end ) ) )−cut_off_end ;

57

58 i f l ength ( data_le f t ( ( data_length+1−cut_off_end ) :
data_length_new ) )~=length ( data_right (
index_before_down_right : end ) )

59 save errordump
60 end
61

62 data_le f t ( ( data_length+1−cut_off_end ) :
data_length_new ) = data_right (
index_before_down_right : end ) ;

63 data_length = data_length_new ;
64 data = data_le f t ;
65 end
66 e l s e i f strcmp (method , 'None ' )
67 data_length_new = ( data_length+length ( data_right ) ) ;
68 data_le f t ( ( data_length+1) : data_length_new ) =

data_right ;
69 data_length = data_length_new ;
70 data = data_le f t ;
71 e l s e
72 e r r o r ( [ 'Unknown . wav combine method " ' method ' " . ' ] )
73 end
74 end

A.5.3 Main: Feature Extraction section
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1 % Compute mel f requency cepstrum
2 % mfcc_opts . nMelbanks = 30 ;
3 mfcc_opts . nMelbanks = 20 ;
4 % mfcc_opts . nMelbanks = 13 ;
5 mfcc_opts . nc = 12 ; %mfcc_opts . nMelbanks−1 i s max , −1

s i n c e whether the f i r s t c o e f ( c o e f 0) i s inc luded i s
dec ided in mfcc_opts .w

6 mfcc_opts . samplerate = f s ;
7 % mfcc_opts .w = 'Mta ' %EXCLUDE coe f 0 s i n c e i t encodes

the energy o f the window and i do not want to
d i s c r im ina t e passed on the loudness o f the segment

8 mfcc_opts .w = 'MtadD ' ; %inc lude both de l t a and d e l t a d e l t a
c o e f f i c i e n t s%EXCLUDE coe f 0 s i n c e i t encodes the

energy o f the window and i do not want to d i s c r im ina t e
passed on the loudness o f the segment

9 % mfcc_opts . h i g h o r l ow f i l t e r s = ' low '
10 mfcc_opts . h i g h o r l ow f i l t e r s = ' high '
11

12 [ ceps , mfcc_opts ]= isp_mfccvb ( data , mfcc_opts ) ;
13 ceps = ceps ' ;
14

15 %Normalize ceps
16 % Subtract the mean from the data
17 ceps = bsxfun (@minus , ceps , mean( ceps ) ) ;
18 % devide by standard dev i a t i on
19 ceps = bsxfun (@times , ceps , 1 . / std ( ceps ) ) ;

A.5.4 Modi�ed version of ISP's MFCC Extraction

1 f unc t i on [ o , opt ions ]= isp_mfccvb ( s , opt ions )
2 %ISP_MFCCVB MFCC implementation based on Mike Brookes '

Voicebox
3 %
4 % SYNTAX
5 % [ mfccs , opt i ons ]= isp_mfccvb ( s , opt i ons . . . )
6 %
7 % DESCRIPTION
8 % Wrapper func t i on f o r MELCEPST from Mike Brookes '

Voicebox too lbox .
9 %
10 % INPUT
11 % s :
12 % Sound s i g n a l .
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13 % opt ions . . . :
14 % Fie ld / value pa i r s or s t r u c t s with the f o l l ow i n g

f i e l d s :
15 % mfccprsec :
16 % Number o f MFCCs per second ( d e f au l t 100) .
17 % samplerate :
18 % Minimum 22050 Hz ( d e f au l t 44100 Hz) .
19 % nc :
20 % Number o f mfccs b e s i d e s the f i r s t ( d e f au l t 6) .
21 % frame :
22 % Frame s i z e ( d e f au l t 20 ms = f l o o r ( (FS/mfccprsec )

∗2) ) .
23 % hops i z e :
24 % Hop s i z e ( d e f au l t 10 ms = f l o o r (FS/mfccprsec ) ) .
25 % nMelbanks :
26 % Number o f mel banks ( d e f au l t 30) .
27 % lowercut :
28 % Lowest f requency in f r a c t i o n o f sampling ra t e (

d e f au l t 0) .
29 % highcut :
30 % Higest f requency in f r a c t i o n o f sampling ra t e (

d e f au l t 11025/FS > cu t o f f 55125 hz ) .
31 % w:
32 % Any s e n s i b l e combination o f the f o l l ow i ng : (

d e f au l t 0Mta)
33 % 'R' r e c t angu l a r window in time domain
34 % 'N' Hanning window in time domain
35 % 'M' Hamming window in time domain ( d e f au l t )
36 %
37 % ' t ' t r i a n gu l a r shaped f i l t e r s in mel domain (

d e f au l t )
38 % 'n ' hanning shaped f i l t e r s in mel domain
39 % 'm' hamming shaped f i l t e r s in mel domain
40 %
41 % 'p ' f i l t e r s act in the power domain
42 % 'a ' f i l t e r s act in the abso lu t e magnitude

domain ( d e f au l t )
43 %
44 % '0 ' i n c lude 0 ' th order c e p s t r a l c o e f f i c i e n t
45 % ' e ' i n c lude log energy
46 % 'd ' i n c lude de l t a c o e f f i c i e n t s ( dc/dt )
47 % 'D' inc lude de l t a to de l t a c o e f f i c i e n t s (d^2c

/dt ^2)
48 %
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49 % ' z ' h i ghe s t and lowest f i l t e r s taper down to
zero ( d e f au l t )

50 % 'y ' lowest f i l t e r remains at 1 down to 0
f requency and h ighe s t f i l t e r remains at 1 up to
nyqui s t f r eqency

51 % I f ' ty ' or ' ny ' i s s p e c i f i e d , the t o t a l power in
the f f t i s pre se rved .

52 %
53 % OUTPUT
54 % mfccs :
55 % Matrix where mfccs ( : , n ) i s the n ' th MFCC vector .
56 % opt ions :
57 % The sum of input opt ions and de f au l t opt ions .
58 %
59 % EXAMPLE
60 % [ mfccs ]= isp_mfcc ( s )
61 % [ mfccs , opt i ons ]= isp_mfcc ( s , opt i ons )
62 %
63 % HISTORY
64 % copyr i gh t s I n t e l l i g e n t sound 2006 and Mike Brookes
65 % l i c e n c e GPL?
66 % author Tue Lehn Sch i o e l e r , ISP ,IMM,DTU
67 % date 08022006
68 % ver s i on 1 .0
69

70 % This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t
and/ or modify i t

71 % under the terms o f the GNU General Publ ic L i cense
ve r s i on 2 as pub l i shed

72 % by the Free Software Foundation .
73

74

75 i f narg in < 2
76 par=' ' ;
77 end
78 i f narg in == 2
79 par=opt ions ;
80 end
81

82

83 par=se tpa r s ( par ) ;
84

85 i f par . samplerate <22050;
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86 % warning ( ' Sampling ra t e below 22050 , output cannot
be compared to other mfccs ' )

87 par . h ighcut =0.5 ;
88 end
89

90 [ o]= isp_melcepst ( s , par . samplerate , par .w, par . nc , par .
nMelbanks , par . frame , par . hops ize , par . lowercut , par .
highcut , par . h i g h o r l ow f i l t e r s ) ' ;

91

92 opt ions=par ;
93

94

95 f unc t i on par=se tpa r s ( par )
96 i f (~ i s f i e l d ( par , ' mfccprsec ' ) )
97 par . mfccprsec =100;
98 end
99 i f (~ i s f i e l d ( par , ' samplerate ' ) )
100 par . samplerate =44100;
101 end
102 FS=par . samplerate ;
103 i f (~ i s f i e l d ( par , ' nc ' ) )
104 par . nc=6;
105 end
106 i f (~ i s f i e l d ( par , ' frame ' ) )
107 par . frame=f l o o r ( (FS/par . mfccprsec ) ∗2) ;
108 end
109 i f (~ i s f i e l d ( par , ' hops i z e ' ) )
110 par . hops i z e=f l o o r (FS/par . mfccprsec ) ;
111 end
112 i f (~ i s f i e l d ( par , ' nMelbanks ' ) )
113 par . nMelbanks=30;
114 end
115 i f (~ i s f i e l d ( par , ' lowercut ' ) )
116 par . lowercut=0;
117 end
118 i f (~ i s f i e l d ( par , ' h ighcut ' ) )
119 par . h ighcut=11025/FS ;
120 end
121 i f (~ i s f i e l d ( par , 'w ' ) )
122 par .w=' 0Mta ' ;
123 end
124 i f (~ i s f i e l d ( par , ' h i g h o r l ow f i l t e r s ' ) )
125 par . h i g h o r l ow f i l t e r s=' 0Mta ' ;
126 end
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127 par . timestamp=dat e s t r (now) ;
128

129

130 f unc t i on f=isp_enframe (x , win , inc )
131 %ENFRAME s p l i t s i g n a l up in to ( over lapp ing ) frames : one

per row . F=(X,WIN, INC)
132 %
133 % F = ENFRAME(X,LEN) s p l i t s the vec to r X up in to
134 % frames . Each frame i s o f l ength LEN and occup i e s
135 % one row o f the output matrix . The l a s t few frames

o f X
136 % w i l l be ignored i f i t s l ength i s not d i v i s i b l e by

LEN.
137 % I t i s an e r r o r i f X i s sho r t e r than LEN.
138 %
139 % F = ENFRAME(X,LEN, INC) has frames beg inning at

increments o f INC
140 % The cent r e o f frame I i s X( ( I−1)∗INC+(LEN+1)/2)

f o r I =1 , 2 , . . .
141 % The number o f frames i s f i x ( ( l ength (X)−LEN+INC)/

INC)
142 %
143 % F = ENFRAME(X,WINDOW) or ENFRAME(X,WINDOW, INC)

mu l t i p l i e s
144 % each frame by WINDOW( : )
145

146 % Copyright (C) Mike Brookes 1997
147 %
148 % Last modi f i ed Tue May 12 13 : 42 : 01 1998
149 %
150 % VOICEBOX home page : http ://www. ee . i c . ac . uk/hp/ s t a f f /

dmb/ voicebox / voicebox . html
151 %
152 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

153 % This program i s f r e e so f tware ; you can r e d i s t r i b u t e
i t and/ or modify

154 % i t under the terms o f the GNU General Publ ic L i cense
as pub l i shed by

155 % the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
License , or

156 % ( at your opt ion ) any l a t e r v e r s i on .
157 %
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158 % This program i s d i s t r i b u t e d in the hope that i t w i l l
be u se fu l ,

159 % but WITHOUT ANY WARRANTY; without even the impl i ed
warranty o f

160 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the

161 % GNU General Publ ic L i cense f o r more d e t a i l s .
162 %
163 % You can obta in a copy o f the GNU General Publ ic

L i cense from
164 % ftp :// prep . a i . mit . edu/pub/gnu/COPYING2.0 or by

wr i t i ng to
165 % Free Software Foundation , Inc . , 675 Mass Ave ,

Cambridge , MA 02139 , USA.
166 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

167

168 nx=length (x ) ;
169 nwin=length (win ) ;
170 i f ( nwin == 1)
171 l en = win ;
172 e l s e
173 l en = nwin ;
174 end
175 i f ( narg in < 3)
176 i n c = len ;
177 end
178 nf = f i x ( ( nx−l en+inc ) / inc ) ;
179 f=ze ro s ( nf , l en ) ;
180 i nd f= inc ∗ ( 0 : ( nf−1) ) . ' ;
181 inds = ( 1 : l en ) ;
182 f ( : ) = x ( i nd f ( : , ones (1 , l en ) )+inds ( ones ( nf , 1 ) , : ) ) ;
183 i f ( nwin > 1)
184 w = win ( : ) ' ;
185 f = f .∗ w( ones ( nf , 1 ) , : ) ;
186 end
187

188

189 f unc t i on [ x ,mn,mx]=isp_melbankm(p , n , f s , f l , fh ,w)
190 %MELBANKM determine matrix f o r a mel spaced f i l t e r b a n k [X

,MN,MX]=(P,N,FS ,FL,FH,W)
191 %
192 % Inputs : p number o f f i l t e r s in f i l t e r b a n k
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193 % n length o f f f t
194 % f s sample ra t e in Hz
195 % f l low end o f the lowest f i l t e r as a

f r a c t i o n o f f s ( d e f au l t = 0)
196 % fh high end o f h i ghe s t f i l t e r as a

f r a c t i o n o f f s ( d e f au l t = 0 . 5 )
197 % w any s e n s i b l e combination o f the

f o l l ow i ng :
198 % ' t ' t r i a n gu l a r shaped f i l t e r s in

mel domain ( d e f au l t )
199 % 'n ' hanning shaped f i l t e r s in mel

domain
200 % 'm' hamming shaped f i l t e r s in mel

domain
201 %
202 % ' z ' h i ghe s t and lowest f i l t e r s

taper down to zero ( d e f au l t )
203 % 'y ' lowest f i l t e r remains at 1

down to 0 f requency and
204 % highe s t f i l t e r remains at 1 up

to nyqui s t f r eqency
205 %
206 % I f ' ty ' or ' ny ' i s s p e c i f i e d , the

t o t a l power in the f f t i s pre se rved .
207 %
208 % Outputs : x a spar s e matrix conta in ing the

f i l t e r b a n k ampl itudes
209 % I f x i s the only output argument

then s i z e ( x )=[p,1+ f l o o r (n/2) ]
210 % otherwi se s i z e ( x )=[p ,mx−mn+1]
211 % mn the lowest f f t bin with a nonzero

c o e f f i c i e n t
212 % mx the h i ghe s t f f t bin with a nonzero

c o e f f i c i e n t
213 %
214 % Usage : f=f f t ( s ) ; f=f f t ( s ) ;
215 % x=melbankm(p , n , f s ) ; [ x , na , nb

]=melbankm(p , n , f s ) ;
216 % n2=1+f l o o r (n/2) ; z=log (x∗(

f ( na : nb) ) .∗ conj ( f ( na : nb) ) ) ;
217 % z=log (x∗abs ( f ( 1 : n2 ) ) .^2) ;
218 % c=dct ( z ) ; c (1 ) = [ ] ;
219 %
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220 % To p lo t f i l t e r b a n k s e . g . p l o t (melbankm
(20 ,256 ,8000) ' )

221 %
222

223

224 % Copyright (C) Mike Brookes 1997
225 %
226 % Last modi f i ed Tue May 12 16 : 15 : 28 1998
227 %
228 % VOICEBOX home page : http ://www. ee . i c . ac . uk/hp/ s t a f f /

dmb/ voicebox / voicebox . html
229 %
230 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

231 % This program i s f r e e so f tware ; you can r e d i s t r i b u t e
i t and/ or modify

232 % i t under the terms o f the GNU General Publ ic L i cense
as pub l i shed by

233 % the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
License , or

234 % ( at your opt ion ) any l a t e r v e r s i on .
235 %
236 % This program i s d i s t r i b u t e d in the hope that i t w i l l

be u se fu l ,
237 % but WITHOUT ANY WARRANTY; without even the impl i ed

warranty o f
238 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the
239 % GNU General Publ ic L i cense f o r more d e t a i l s .
240 %
241 % You can obta in a copy o f the GNU General Publ ic

L i cense from
242 % ftp :// prep . a i . mit . edu/pub/gnu/COPYING2.0 or by

wr i t i ng to
243 % Free Software Foundation , Inc . , 675 Mass Ave ,

Cambridge , MA 02139 , USA.
244 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

245 % p=30;
246 % f1=0;
247 % fh=11025/ f s ;
248 % i f f s <22100
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249 % warning ( ' Samling ra t e below 22100 , r e s u l t s may be
wrong ' ) ;

250 % fh =0.5;
251 % end
252

253 i f narg in < 6
254 w=' tz ' ;
255 i f narg in < 5
256 fh =0.5 ;
257 i f narg in < 4
258 f l =0;
259 end
260 end
261 end
262 f 0=700/ f s ;
263 fn2=f l o o r (n/2) ;
264 l r=log ( ( f 0+fh ) /( f 0+f l ) ) /(p+1) ;
265 % convert to f f t bin numbers with 0 f o r DC term
266 bl=n ∗ ( ( f 0+f l ) ∗exp ( [ 0 1 p p+1]∗ l r )−f 0 ) ;
267 b2=c e i l ( b l (2 ) ) ;
268 b3=f l o o r ( b l (3 ) ) ;
269 i f any (w=='y ' )
270 pf=log ( ( f 0+(b2 : b3 ) /n) /( f 0+f l ) ) / l r ;
271 fp=f l o o r ( pf ) ;
272 r=[ ones (1 , b2 ) fp fp+1 p∗ ones (1 , fn2−b3 ) ] ;
273 c =[1 : b3+1 b2+1: fn2 +1] ;
274 v=2∗ [0 .5 ones (1 , b2−1) 1−pf+fp pf−fp ones (1 , fn2−b3−1)

0 . 5 ] ;
275 mn=1;
276 mx=fn2+1;
277 e l s e
278 b1=f l o o r ( b l (1 ) )+1;
279 b4=min ( fn2 , c e i l ( b l (4 ) ) )−1;
280 pf=log ( ( f 0+(b1 : b4 ) /n) /( f 0+f l ) ) / l r ;
281 fp=f l o o r ( pf ) ;
282 pm=pf−fp ;
283 k2=b2−b1+1;
284 k3=b3−b1+1;
285 k4=b4−b1+1;
286 r=[ fp ( k2 : k4 ) 1+fp ( 1 : k3 ) ] ;
287 c=[k2 : k4 1 : k3 ] ;
288 v=2∗[1−pm( k2 : k4 ) pm( 1 : k3 ) ] ;
289 mn=b1+1;
290 mx=b4+1;
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291 end
292 i f any (w=='n ' )
293 v=1−cos ( v∗ pi /2) ;
294 e l s e i f any (w=='m' )
295 v=1−0.92/1.08∗ cos ( v∗ pi /2) ;
296 end
297 i f nargout > 1
298 x=spar s e ( r , c , v ) ;
299 e l s e
300 x=spar s e ( r , c+mn−1,v , p,1+ fn2 ) ;
301 end
302

303 f unc t i on c=isp_melcepst ( s , f s ,w, nc , p , n , inc , f l , fh ,
h i g h o r l ow f i l t e r s )

304 %MELCEPST Calcu la te the mel cepstrum of a s i g n a l C=(S ,FS ,
W,NC,P,N, INC ,FL,FH)

305 %
306 %
307 % Simple use : c=melcepst ( s , f s ) % c a l c u l a t e mel cepstrum

with 12 coe f s , 256 sample frames
308 % c=melcepst ( s , f s , ' e0dD ' )

% inc lude log energy , 0 th c e p s t r a l coe f , d e l t a and
de l t a to de l t a c o e f s

309 %
310 % Inputs :
311 % s speech s i g n a l
312 % f s sample ra t e in Hz ( d e f au l t 11025)
313 % nc number o f c e p s t r a l c o e f f i c i e n t s exc lud ing 0 ' th

c o e f f i c i e n t ( d e f au l t 12)
314 % n length o f frame ( d e f au l t power o f 2 <30 ms) )
315 % p number o f f i l t e r s in f i l t e r b a n k ( d e f au l t f l o o r

(3∗ l og ( f s ) ) )
316 % inc frame increment ( d e f au l t n/2)
317 % f l low end o f the lowest f i l t e r as a f r a c t i o n o f

f s ( d e f au l t = 0)
318 % fh high end o f h i ghe s t f i l t e r as a f r a c t i o n o f f s

( d e f au l t = 0 . 5 )
319 %
320 % w any s e n s i b l e combination o f the

f o l l ow i ng :
321 %
322 % 'R' r e c tangu l a r window

in time domain
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323 % 'N' Hanning window in
time domain

324 % 'M' Hamming window in
time domain ( d e f au l t )

325 %
326 % ' t ' t r i a n gu l a r shaped f i l t e r s in

mel domain ( d e f au l t )
327 % 'n ' hanning shaped f i l t e r s in mel

domain
328 % 'm' hamming shaped f i l t e r s in mel

domain
329 %
330 % 'p ' f i l t e r s act in

the power domain
331 % 'a ' f i l t e r s act in

the abso lu t e magnitude domain ( d e f au l t )
332 %
333 % '0 ' i n c lude 0 ' th order

c e p s t r a l c o e f f i c i e n t
334 % ' e ' i n c lude log energy
335 % 'd ' i n c lude de l t a

c o e f f i c i e n t s ( dc/dt )
336 % 'D' inc lude de l t a to

de l t a c o e f f i c i e n t s (d^2c/dt^2)
337 %
338 % ' z ' h i ghe s t and lowest f i l t e r s

taper down to zero ( d e f au l t )
339 % 'y ' lowest f i l t e r remains at 1

down to 0 f requency and
340 % highe s t f i l t e r remains

at 1 up to nyqui s t f r eqency
341 %
342 % I f ' ty ' or ' ny ' i s s p e c i f i e d , the

t o t a l power in the f f t i s pre se rved .
343 %
344 % Outputs : c mel cepstrum output : one frame per

row . Log energy , i f requested , i s the
345 % f i r s t element o f each row fo l l owed by

the de l t a and then the de l t a to de l t a
346 % c o e f f i c i e n t s .
347 %
348

349

350 % Copyright (C) Mike Brookes 1997
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351 %
352 % Last modi f i ed Mon May 20 10 : 35 : 32 2002
353 %
354 % VOICEBOX i s a MATLAB too lbox f o r speech p ro c e s s i ng .

Home page i s at
355 % http ://www. ee . i c . ac . uk/hp/ s t a f f /dmb/ voicebox / voicebox

. html
356 %
357 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

358 % This program i s f r e e so f tware ; you can r e d i s t r i b u t e
i t and/ or modify

359 % i t under the terms o f the GNU General Publ ic L i cense
as pub l i shed by

360 % the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
License , or

361 % ( at your opt ion ) any l a t e r v e r s i on .
362 %
363 % This program i s d i s t r i b u t e d in the hope that i t w i l l

be u se fu l ,
364 % but WITHOUT ANY WARRANTY; without even the impl i ed

warranty o f
365 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the
366 % GNU General Publ ic L i cense f o r more d e t a i l s .
367 %
368 % You can obta in a copy o f the GNU General Publ ic

L i cense from
369 % ftp :// prep . a i . mit . edu/pub/gnu/COPYING2.0 or by

wr i t i ng to
370 % Free Software Foundation , Inc . , 675 Mass Ave ,

Cambridge , MA 02139 , USA.
371 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

372

373 i f nargin<2 f s =11025; end
374 i f nargin<3 w='M' ; end
375 i f nargin<4 nc=12; end
376 i f nargin<5 p=f l o o r (3∗ l og ( f s ) ) ; end
377 i f nargin<6 n=pow2( f l o o r ( log2 (0 . 03∗ f s ) ) ) ; end
378 i f nargin <10
379 h i g h o r l ow f i l t e r s = ' low ' ;
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380 i f nargin<9
381 fh =0.5 ;
382 i f nargin<8
383 f l =0;
384 i f nargin<7
385 i n c=f l o o r (n/2) ;
386 end
387 end
388 end
389 end
390

391 i f ~strcmp ( h i g h o r l ow f i l t e r s , ' low ' ) && ~strcmp (
h i g h o r l ow f i l t e r s , ' high ' )

392 h i g h o r l ow f i l t e r s = ' low ' ;
393 warning ( [ ' high or low f i l t e r s un spec i f i ed , us ing '

h i g h o r l ow f i l t e r s ' f i l t e r s . ' ] ) ;
394 end
395

396 i f l ength (w)==0
397 w='M' ;
398 end
399 i f any (w=='R ' )
400 z=isp_enframe ( s , n , inc ) ;
401 e l s e i f any (w=='N ' )
402 z=isp_enframe ( s , hanning (n) , inc ) ;
403 e l s e
404 z=isp_enframe ( s , hamming(n) , inc ) ;
405 end
406 f=i s p_ r f f t ( z . ' ) ;
407 [m, a , b]=isp_melbankm(p , n , f s , f l , fh ,w) ;
408 pw=f ( a : b , : ) .∗ conj ( f ( a : b , : ) ) ;
409 pth=1e−8;
410 i f any (w=='p ' )
411 y=log (max(m∗pw, pth ) ) ;
412 e l s e
413 ath=sq r t ( pth ) ;
414 y=log (max(m∗abs ( f ( a : b , : ) ) , ath ) ) ;
415 end
416 c=isp_rdct ( y ) . ' ;
417 nf=s i z e ( c , 1 ) ;
418 nc=nc+1;
419 i f p>nc
420 i f strcmp ( h i g h o r l ow f i l t e r s , ' high ' )
421 c ( : , 2 : ( end−nc+1) ) = [ ] ;
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422 e l s e i f strcmp ( h i g h o r l ow f i l t e r s , ' low ' )
423 c ( : , nc+1:end ) = [ ] ;
424 end
425 e l s e i f p<nc
426 c=[c z e ro s ( nf , nc−p) ] ;
427 end
428 i f ~any (w==' 0 ' )
429 c ( : , 1 ) = [ ] ;
430 nc=nc−1;
431 end
432 i f any (w==' e ' )
433 c=[ l og (sum(pw) ) . ' c ] ;
434 nc=nc+1;
435 end
436

437 % ca l c u l a t e d e r i v a t i v e
438

439 i f any (w=='D' )
440 vf =(4:−1:−4) /60 ;
441 a f =(1:−1:−1) /2 ;
442 ww=ones (5 , 1 ) ;
443 cx=[c (ww, : ) ; c ; c ( nf ∗ww, : ) ] ;
444 vx=reshape ( f i l t e r ( vf , 1 , cx ( : ) ) , n f+10,nc ) ;
445 vx ( 1 : 8 , : ) = [ ] ;
446 ax=reshape ( f i l t e r ( af , 1 , vx ( : ) ) , n f+2,nc ) ;
447 ax ( 1 : 2 , : ) = [ ] ;
448 vx ( [ 1 nf +2 ] , : ) = [ ] ;
449 i f any (w=='d ' )
450 c=[c vx ax ] ;
451 e l s e
452 c=[c ax ] ;
453 end
454 e l s e i f any (w=='d ' )
455 vf =(4:−1:−4) /60 ;
456 ww=ones (4 , 1 ) ;
457 cx=[c (ww, : ) ; c ; c ( nf ∗ww, : ) ] ;
458 vx=reshape ( f i l t e r ( vf , 1 , cx ( : ) ) , n f+8,nc ) ;
459 vx ( 1 : 8 , : ) = [ ] ;
460 c=[c vx ] ;
461 end
462

463 i f nargout<1
464 [ nf , nc ]= s i z e ( c ) ;
465 t =((0: nf−1)∗ i n c+(n−1)/2) / f s ;
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466 c i =(1: nc )−any (w==' 0 ' )−any (w==' e ' ) ;
467 imh = imagesc ( t , c i , c . ' ) ;
468 ax i s ( ' xy ' ) ;
469 x l ab e l ( 'Time ( s ) ' ) ;
470 y l ab e l ( 'Mel−cepstrum c o e f f i c i e n t ' ) ;
471 map = (0 : 6 3 ) ' /63 ;
472 colormap ( [map map map ] ) ;
473 co l o rba r ;
474 end
475

476

477 f unc t i on y=isp_rdct (x , n)
478 %RDCT Di s c r e t e c o s i n e trans form o f r e a l data Y=(X,N)
479 % Data i s t runcated /padded to l ength N.
480 %
481 % This rou t in e i s equ iva l en t to mul t ip ly ing by the matrix
482 %
483 % rdct ( eye (n) ) = diag ( [ s q r t (2 ) 2∗ ones (1 , n−1) ] ) ∗ cos

( ( 0 : n−1) ' ∗ ( 0 . 5 : n ) ∗ pi /n)
484 %
485 % The rows and columns o f the matrix are orthogona l but

not un i t modulus .
486 % Various v e r s i on s o f the DCT are obtained by

premu l t ip ly ing the above
487 % matrix by diag ( [ b/a ones (1 , n−1)/a ] ) and pos tmu l t ip ly ing

the
488 % inve r s e trans form matrix by i t s i nv e r s e . A common

cho i c e i s a=n and/or b=sq r t (2 ) .
489 % Choose a=sq r t (2n) and b=1 to make the matrix orthogona l

.
490 % I f b~=1 then the columns are no longe r orthogona l .
491 %
492 % see IRDCT fo r the i nv e r s e trans form
493

494

495

496

497 % Copyright (C) Mike Brookes 1998
498 %
499 % Last modi f i ed Tue Apr 13 15 : 56 : 48 1999
500 %
501 % VOICEBOX i s a MATLAB too lbox f o r speech p ro c e s s i ng .

Home page i s at
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502 % http ://www. ee . i c . ac . uk/hp/ s t a f f /dmb/ voicebox / voicebox
. html

503 %
504 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

505 % This program i s f r e e so f tware ; you can r e d i s t r i b u t e
i t and/ or modify

506 % i t under the terms o f the GNU General Publ ic L i cense
as pub l i shed by

507 % the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
License , or

508 % ( at your opt ion ) any l a t e r v e r s i on .
509 %
510 % This program i s d i s t r i b u t e d in the hope that i t w i l l

be u se fu l ,
511 % but WITHOUT ANY WARRANTY; without even the impl i ed

warranty o f
512 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the
513 % GNU General Publ ic L i cense f o r more d e t a i l s .
514 %
515 % You can obta in a copy o f the GNU General Publ ic

L i cense from
516 % ftp :// prep . a i . mit . edu/pub/gnu/COPYING2.0 or by

wr i t i ng to
517 % Free Software Foundation , Inc . , 675 Mass Ave ,

Cambridge , MA 02139 , USA.
518 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

519

520 f l=s i z e (x , 1 )==1;
521 i f f l x=x ( : ) ; end
522 [m, k]= s i z e ( x ) ;
523 i f nargin<2 n=m;
524 e l s e i f n>m x=[x ; z e r o s (n−m, k ) ] ;
525 e l s e i f n<m x(n+1:m, : ) = [ ] ;
526 end
527

528 x=[x ( 1 : 2 : n , : ) ; x (2∗ f i x (n/2) : −2 : 2 , : ) ] ;
529 z=[ sq r t (2 ) 2∗ exp ((−0.5 i ∗ pi /n) ∗ ( 1 : n−1) ) ] . ' ;
530 y=r e a l ( f f t ( x ) .∗ z ( : , ones (1 , k ) ) ) ;
531
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532 i f f l y=y . ' ; end
533

534 f unc t i on y=i s p_ r f f t (x , n , d)
535 %RFFT FFT of r e a l data Y=(X,N)
536 % Data i s t runcated /padded to l ength N i f s p e c i f i e d .
537 % N even : (N+2)/2 po in t s are returned with
538 % the f i r s t and l a s t being r e a l
539 % N odd : (N+1)/2 po in t s are returned with the
540 % f i r s t be ing r e a l
541

542

543

544 % Copyright (C) Mike Brookes 1998
545 %
546 % Last modi f i ed Fr i Mar 7 15 : 43 : 06 2003
547 %
548 % VOICEBOX i s a MATLAB too lbox f o r speech p ro c e s s i ng .

Home page i s at
549 % http ://www. ee . i c . ac . uk/hp/ s t a f f /dmb/ voicebox / voicebox

. html
550 %
551 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

552 % This program i s f r e e so f tware ; you can r e d i s t r i b u t e
i t and/ or modify

553 % i t under the terms o f the GNU General Publ ic L i cense
as pub l i shed by

554 % the Free Software Foundation ; e i t h e r v e r s i on 2 o f the
License , or

555 % ( at your opt ion ) any l a t e r v e r s i on .
556 %
557 % This program i s d i s t r i b u t e d in the hope that i t w i l l

be u se fu l ,
558 % but WITHOUT ANY WARRANTY; without even the impl i ed

warranty o f
559 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the
560 % GNU General Publ ic L i cense f o r more d e t a i l s .
561 %
562 % You can obta in a copy o f the GNU General Publ ic

L i cense from
563 % ftp :// prep . a i . mit . edu/pub/gnu/COPYING2.0 or by

wr i t i ng to
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564 % Free Software Foundation , Inc . , 675 Mass Ave ,
Cambridge , MA 02139 , USA.

565 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

566

567 s=s i z e ( x ) ;
568 i f prod ( s )==1
569 y=x
570 e l s e
571 i f narg in <3
572 d=f i nd ( s>1) ;
573 d=d (1) ;
574 i f nargin<2
575 n= [ ] ;
576 end
577 end
578 y=f f t (x , n , d) ;
579 y=reshape (y , prod ( s ( 1 : d−1) ) , s (d) , prod ( s (d+1:end ) ) ) ;
580 s (d)=1+f i x ( s (d) /2) ;
581 y ( : , s (d )+1:end , : ) = [ ] ;
582 y=reshape (y , s ) ;
583 end

A.5.5 Main: MFCC segmentation section

1 seg_length = l_aw∗mfcc_opts . mfccprsec ; % l_aw ( l ength
ana l y s i s window)

2 seg_shi f t_length = l_s∗mfcc_opts . mfccprsec ; %l_s ( l ength
s h i f t ) in Lasse ' s

3

4 seg_overlap = seg_length / seg_shi f t_length ;
5 i f ( f l o o r ( seg_overlap )~=seg_overlap )
6 e r r o r ( ' Overlap must be a whole number ! Adjust l_aw

and l_s . ' )
7 end
8

9 seg_start_samples = 1 : seg_shi f t_length : ( s i z e ( ceps , 1 )−(
seg_length−1) ) ;

10

11 %% Calcu la te the l ength o f Tmax and Ti in segments
12 Tmax_influence = Tmax∗mfcc_opts . mfccprsec /

seg_shi f t_length ;
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13 Ti_inf luence = Ti ∗mfcc_opts . mfccprsec /
seg_shi f t_length ;

A.5.6 MFCC segmentation

1 f unc t i on ceps_seg = ceps_seg_func ( n_seg , seg_start_samples
, ceps , seg_length )

2

3 seg = seg_start_samples ( n_seg ) : ( seg_start_samples ( n_seg )
+(seg_length−1) ) ;

4

5 ceps_seg = ceps ( seg , : ) ;
6

7 end

A.5.7 Main: Metric Peak Detection section

1 i f sum( strcmp (method_list , ' k−means ' ) )~=0
2 [ CP.VQD , th_cd .VQD ] = mark_change_points (

VQDs_optim , alpha_cd .VQD , Ti_inf luence ,
Tmax_influence , seg_start_samples , seg_overlap ) ;

3 end
4

5 i f sum( strcmp (method_list , 'KL ' ) )~=0
6 [ CP.KL , th_cd .KL ] = mark_change_points ( KLs

, alpha_cd .KL , Ti_inf luence ,
Tmax_influence , seg_start_samples , seg_overlap ) ;

7 end
8

9 i f sum( strcmp (method_list , 'DSD ' ) )~=0
10 [ CP.DSD , th_cd .DSD ] = mark_change_points ( DSDs

, alpha_cd .DSD , Ti_inf luence ,
Tmax_influence , seg_start_samples , seg_overlap ) ;

11 end
12

13 i f sum( strcmp (method_list , 'RuLSIF ' ) )~=0
14 [ CP. RuLSIF , th_cd . RuLSIF ] = mark_change_points (

RuLSIFs , alpha_cd . RuLSIF , Ti_inf luence ,
Tmax_influence , seg_start_samples , seg_overlap ) ;

15 end

A.5.8 Metric Peak Detection
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1 f unc t i on [ CP, th_cd ] = mark_change_points ( metric_data ,
alpha , Ti_inf luence , Tmax_influence ,

seg_start_samples , seg_overlap )
2 %% Calcu la te VQD_n, avr & th_cd , n ( Lasse ' s r epo r t page 62)
3

4 movingavg = moving (metric_data ,2∗Tmax_influence+1) ; %
c a l c u l a t e moving average with begin and end phase
inc luded

5

6 th_cd = alpha ∗movingavg ;
7

8 %% Find change−po in t s
9

10 CP = ze ro s ( l ength ( seg_start_samples )−seg_overlap , 1 ) ;
11 f o r n_seg = 1 : l ength ( metric_data )
12 i f ( metric_data ( n_seg )>th_cd ( n_seg ) )
13 %take s t a r t and end s t ep s in to account
14 i f ( n_seg − Ti_inf luence < 1)
15 Ti_influenced_segments = 1 : n_seg+Ti_inf luence

;
16 e l s e i f ( n_seg + Ti_inf luence > length ( metric_data

) )
17 Ti_influenced_segments = n_seg−Ti_inf luence :

l ength ( metric_data ) ;
18 e l s e
19 Ti_influenced_segments = n_seg−Ti_inf luence :

n_seg+Ti_inf luence ;
20 end
21 %f ind l a r g e s t l o c a l peak
22 i f ( metric_data ( n_seg )==max(metric_data (

Ti_influenced_segments ) ) )
23 CP(n_seg ) = 1 ;
24 e l s e
25 CP(n_seg ) = 0 ;
26 end
27 end
28 end
29

30 end

A.6 Miscellaneous
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1 f unc t i on value = compare_segments ( segment_A , segment_B ,
method )

2

3 i f strcmp ( 'k−means ' , method )
4

5 segment_A = segment_A ( : , 1 : 1 2 ) ;
6 segment_B = segment_B ( : , 1 : 1 2 ) ;
7 g l oba l K
8 K_FAC = K
9

10 kmeans_opts = s t a t s e t ( ' MaxIter ' ,10000) ;
11

12 warning ( ' o f f ' , ' a l l ' ) ;
13 [~ , prev ious_cent ro ids ] = kmeans ( segment_A ,K_FAC, '

Options ' , kmeans_opts , ' emptyaction ' , ' s i n g l e t on ' , '
on l inephase ' , ' o f f ' ) ;

14 [~ , next_centro ids ] = kmeans ( segment_B ,K_FAC, '
Options ' , kmeans_opts , ' emptyaction ' , ' s i n g l e t on ' , '
on l inephase ' , ' o f f ' ) ;

15 warning ( ' on ' , ' a l l ' ) ;
16 %value (n) = (VQD_optim( prev ious_centro ids , segment_B)

+ VQD_optim( next_centroids , segment_A) ) /2 ;
17 value = (VQD_optim( prev ious_centro ids , next_centro ids )

+ VQD_optim( next_centroids , p rev ious_cent ro ids ) )
/2 ;

18 e l s e i f strcmp ( 'RuLSIF ' , method )
19

20 alpha = . 1 ; % Smoothing parameter
21 s igma_l i s t = 0 . 2 : 0 . 4 : 2 ; % Kernel Width
22 lambda_list = −6:1:−2; % Regura l i z a t i on parameter
23 k_folds = 5 ;
24

25 addpath ( ' RuLSIF_change_detection ' )
26 addpath ( ' RuLSIF_change_detection\RuLSIF ' )
27

28 [ score1 , ~ , ~ , ~ , ~] = RelULSIF ( segment_A ' , segment_B
' , [ ] , [ ] , alpha , k_folds , s igma_l ist , lambda_list ) ;

29 [ score2 , ~ , ~ , ~ , ~] = RelULSIF ( segment_B ' , segment_A
' , [ ] , [ ] , alpha , k_folds , s igma_l ist , lambda_list ) ;

30

31 value = sco re1 + sco re2 ;
32 e l s e i f strcmp ( 'DSD ' , method )
33 previous_sigma = cov ( segment_A) ' ;
34 next_sigma = cov ( segment_B) ' ;
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35

36 value = DSD( previous_sigma , next_sigma ) ;
37 e l s e i f strcmp ( 'KL ' , method )
38 previous_sigma = cov ( segment_A) ' ;
39 previous_mu = mean( segment_A) ' ;
40 next_sigma = cov ( segment_B) ' ;
41 next_mu = mean( segment_B) ' ;
42

43 value = KL( previous_sigma , next_sigma , previous_mu ,
next_mu) ;

44 e l s e i f strcmp ( 'BIC ' , method )
45

46 previous_segment = segment_A ;
47 next_segment = segment_B ;
48

49 s igma_le f t = cov ( previous_segment ) ;
50 sigma_right = cov ( next_segment ) ;
51 s igma_ful l = cov ( [ previous_segment ; next_segment ] ) ;
52 N1 = s i z e ( previous_segment , 1 ) ;
53 N2 = s i z e ( next_segment , 1 ) ;
54 N = N1+N2 ;
55 R = N∗ l og ( det ( s igma_ful l ) )−N1∗ l og ( det ( s igma_le f t ) )−N2

∗ l og ( det ( sigma_right ) ) ;
56 d = s i z e ( previous_segment , 2 ) ;
57 P = 1/2∗(d+1/2∗d∗(d+1) ) ∗ l og (N) ;
58 lambda = 1 ; %BIC d e f i n i t i o n
59 BIC = R−lambda∗P;
60

61 value = BIC ;
62 e l s e i f strcmp ( 'ICR ' , method )
63

64 sigma_A = cov ( segment_A) ;
65 sigma_B = cov ( segment_B) ;
66 s igma_ful l = cov ( [ segment_A ; segment_B ] ) ;
67 N1 = s i z e ( segment_A , 1 ) ;
68 N2 = s i z e ( segment_B , 1 ) ;
69 N = N1+N2 ;
70

71 ICR = 1/2∗ l og ( det ( s igma_ful l ) ) − . . .
72 1/N∗1/2∗(N1∗ l og ( det ( sigma_A) )+N2∗ l og ( det ( sigma_B)

) ) ;
73

74 d = s i z e ( segment_A , 2 ) ;
75 P = 1/2∗(d+1/2∗d∗(d+1) ) ∗ l og (N) ;
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76 lambda = 1 ; % from paper (A Robust Stopping Cr i t e r i on
f o r Agglomerative H i e r a r c h i c a l C lu s t e r i ng in a

Speaker D i a r i z a t i on System )
77 value = ICR−lambda∗P;
78 e l s e
79 e r r o r ( [ 'Unknown segment comparison method : " ' method

' " . ' ] )
80 end
81

82 end

A.6.1 F-measure

1 alpha_f_measure = 0 . 5 ;
2 methods = f i e ldnames (CP) ;
3 CP_TP = ze ro s ( numel (methods ) ,1 ) ;
4

5 f o r n_method = 1 : numel (methods )
6 CP_temp = x_axis (CP. ( methods{n_method})==1) ;
7 f o r n_CP = 1 : numel ( changepoints_true )
8 i f sum( (CP_temp−Ti /2) < changepoints_true (n_CP) &

changepoints_true (n_CP) < (CP_temp+Ti /2) )~=0;
9 CP_TP(n_method) = CP_TP(n_method) + 1 ;
10 end
11 end
12 RCL. ( methods{n_method}) = CP_TP(n_method) /numel (

changepoints_true ) ;
13 PRC. ( methods{n_method}) = CP_TP(n_method) /numel (

CP_temp ) ;
14 F_measure . ( methods{n_method}) = (RCL. ( methods{

n_method}) ∗PRC. ( methods{n_method}) ) /(
alpha_f_measure∗RCL. ( methods{n_method})+(1−
alpha_f_measure ) ∗PRC. ( methods{n_method}) ) ;

15 end

A.6.2 SCD Main Wrapper

1 f unc t i on out = Main_wrapper (method , alpha_cd_input ,
alpha_fac_input , change_points , fac_method )

2
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3 method_list = {method } ;
4

5 alpha_cd . ( structname ) = alpha_cd_input ;
6 alpha_fac . ( structname ) = alpha_fac_input ;
7

8 wrapper_ON = 1 ;
9 Main
10 c l e a r wrapper_ON
11

12 out = F_measure . ( structname ) ;
13

14 end

A.6.3 Principal Component Analysis

1 % Subtract the mean from the data
2 % Y = bsxfun (@minus , ceps ' , mean( ceps ' ) ) ; %a l rdy done in

Feature ex t r a c t i on
3

4 % Obtain the PCA so l u t i o n by doing a SVD of Y
5 [U, S , V] = svd (PCA_input , ' econ ' ) ;
6

7 % Compute the p r o j e c t i o n onto the p r i n c i p a l components
8 Z = U∗S ;
9

10 % Compute amount o f var i ance exp la ined by components
11 rho = diag (S) .^2 . / sum( diag (S) .^2) ;

A.6.4 Receiver Operator Characteristics

1 f unc t i on [ rx , ry , area ] = rocarea ( Ztest , Ytest , f r a c )
2 % func t i on [ rx , ry , area ] = rocarea ( Ztest , Ytest , f r a c )
3 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % th i s func t i on f i n d s the ROC and the area under the
5 % ROC fo r l a b e l s in YTEST
6 % STEP 1 convert Y to 0−1 array
7 %
8 % INPUT
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9 % Ztes t : va lue s to be ROC' ed
10 % Ytest : "True" l a b e l s obta ined by th r e sho ld ing Ytest

at zero
11 % f r a c : the f r a c o f f a l s e p o s i t i v e s f o r which the area

i s computed
12 % OUTPUT
13 % rx : Fa l se p o s i t i v e r a t e s
14 % ry : True p o s i t i v e r a t e s
15 % area : the area under the curve f o r rx < f r a c
16 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 % Lars Kai Hansen , Technica l Un ive r s i ty o f Denmark , ( c )
2004

18 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19

20 top=max( Ytest ) ;
21 N=length ( Ytest ) ;
22 y=ze ro s (N, 1 ) ;
23 indy=f i nd ( Ytest >0) ;
24 y ( indy )=1;
25 Npos=sum(y ) ;
26 Nneg=N−Npos ;
27 %IZt e s t index f o r order Zte s t ( smal l f i r s t )
28 [dummy, IZ t e s t ]= so r t (−Ztes t ) ;
29 y=y( IZ t e s t ) ;
30 % COMPUTE SENSITIVITY
31 ry=cumsum(y ) ;
32 % compute 1− s p e c i f i c i t y
33 rx=(1:N)−ry ' ;
34 %normal ize
35 ry=ry/Npos ;
36 rx=rx . /Nneg ;
37 %whos
38 % compute area f o r rx<f r a c
39 index_max=max( f i nd ( rx<f r a c ) ) ;
40 area=sum( ry ( 1 : ( index_max−1) ) ' . ∗ ( rx ( 2 : index_max )−rx ( 1 : (

index_max−1) ) ) ) / f r a c ;
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A.6.5 Welch's t-test

1 f unc t i on [ SE DF t s c o r e t95 f ] = ttest_mine (A, B)
2

3 n1 = length (A) ;
4 x1 = mean(A) ;
5 s1 = std (A) ;
6

7 n2 = length (B) ;
8 x2 = mean(B) ;
9 s2 = std (B) ;
10

11 SE = sqr t ( s1^2/n1 + s2^2/n2 ) ;
12

13 DF = (n1 − 1) + (n2 − 1) ;
14

15 t s c o r e = abs ( ( ( x1 − x2 )−0)/SE) ;
16

17 c i = 0 . 9 5 ;
18 alpha = 1 − c i ;
19 t95 = t inv (1−alpha /2 , DF) ;
20

21 f = t cd f ( t s co re ,DF)−t cd f (− t s co re ,DF) ;
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