
A Time-Composable Operating
System for the Patmos Processor

Marco Ziccardi

Kongens Lyngby 2013
M.Sc.-2013-73

Technical University of Denmark
Applied Mathematics and Computer Science
Matematiktorvet, building 303B, DK-2800 Kongens Lyngby, Denmark
Phone +45 4525 3031, Fax +45 4588 1399
compute@compute.dtu.dk
www.compute.dtu.dk M.Sc.-2013-73

Summary

The aim of this thesis is to port the TiCOS operating system to the Pat-
mos processor. TiCOS is a light-weight operating system developed to obtain
composability and analyzability and targeting single-processors. Patmos is a
time-predictable single-processor developed in the framework of the T-CREST
project. The aim of the T-CREST project is to develop a time-predictable
multi-processor able to meet both the requirements of safety and processing
capacity for modern real-time and embedded systems.

ii

Preface

This thesis was carried out at the department of Applied Mathematics and
Computer Science, at the Technical University of Denmark, in fulfilment of the
requirements for acquiring an M.Sc. in Informatics.

The thesis was developed in the framework of the Time-Predictable Multi-
Core Architecture for Embedded Systems (T-CREST) project, a Specific Tar-
geted Research Project (STREP) of the European Union’s 7th Framework Pro-
gramme, whose goal is the creation of a time-predictable multi-core architecture
for embedded systems. In order to do so the T-CREST group is developing,
amongst other things, the processor, the Network on Chip (NoC) and the com-
piler. The T-CREST project is a collaboration of many industrial and research
organizations and the architecture, as a research project, is continuously evolv-
ing. The research and dynamic nature of T-CREST architecture made of my
master thesis project a challenging and meaningful experience. On the other
hand my thesis aided in identifying industrial requirements that the architecture
was missing, which caused me to further my understanding of the T-CREST
architecture itself, extending it with the needed features.

The thesis consists of the adaptation of an existing time-composable operating
system for the T-CREST processor (Patmos). In order to make this possible the
need for extensions to the processor architecture was identified and the relevant
features implemented in the software simulator.

Lyngby, 31-July-2013

Marco Ziccardi

iv

Acknowledgements

I would like to thank my supervisor Martin Schoeberl for driving my project
work in the right direction. I would also like to thank all the T-CREST group at
the Technical University of Denmark and Stefan Hepp from the Vienna Univer-
sity of Technology, special thanks go to Florian Brandner for helping me every
time I needed. Finally, I would like to thank Andrea Baldovin, Enrico Mezzetti
and Tullio Vardanega for the endless amount of valuable advices.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Real-time Systems . 1

1.1.1 Task Models . 3
1.2 Timing Analysis . 4
1.3 Time composability . 5
1.4 Real-time Operating Systems . 5

1.4.1 Memory Management . 7
1.4.2 Scheduling Algorithms . 8
1.4.3 PikeOS . 10
1.4.4 INTEGRITY . 11
1.4.5 LynxOS-178 . 12
1.4.6 CompOS . 12
1.4.7 TiCOS . 14

1.5 The T-CREST Project . 14
1.6 Thesis Structure . 15

2 The Patmos Processor 17
2.1 Memory . 18

2.1.1 Method Cache . 18
2.1.2 Data Cache . 20
2.1.3 Stack Cache . 20
2.1.4 Data Scratchpad . 24

2.2 Registers . 24

viii CONTENTS

2.3 Patmos ISA (Instruction Set Architecture) 27
2.3.1 Binary Arithmetic . 27
2.3.2 Multiply . 27
2.3.3 Compare . 28
2.3.4 Predicate . 28
2.3.5 NOP . 29
2.3.6 Wait . 29
2.3.7 Move To/From Special . 29
2.3.8 Load/Store Typed . 30
2.3.9 Stack control . 30
2.3.10 Call and Branch . 31
2.3.11 Call and Branch Indirect 33
2.3.12 Return . 33

3 The Operating System 35
3.1 The Kernel Layer . 36
3.2 ARINC653 Entities . 37

3.2.1 Partitions and Processes 37
3.2.2 Events . 37
3.2.3 Semaphores . 38
3.2.4 Blackboards . 38
3.2.5 Buffers . 38
3.2.6 Sampling and Queueing Ports 39

3.3 The Library Layer . 39
3.3.1 Core Library . 39
3.3.2 Middleware Library . 42
3.3.3 ARINC Library . 44

3.4 TiCOS Time-composability . 45
3.4.1 Time Management . 46
3.4.2 Scheduling . 46
3.4.3 IO Communication . 46

3.5 Build Chain . 47
3.5.1 Kernel Compilation . 48
3.5.2 Partitions Compilation . 48
3.5.3 Integration of Kernel and Partitions 49

4 Processor Extensions 51
4.1 Interrupts . 52

4.1.1 Simulator Implementation 53
4.2 Stack Cache Manipulation . 55
4.3 Memory Protection . 59
4.4 Explicit Supervisor Mode and Cache Invalidation 60

CONTENTS ix

5 TiCOS Extensions 63
5.1 Architectural Changes . 64

5.1.1 Clock . 64
5.1.2 Thread’s Context . 66
5.1.3 Memory Management . 68

5.2 Core Changes . 71
5.2.1 Bootloader . 71

5.3 Library Changes . 77
5.3.1 System Calls Implementation 77

5.4 Context Switch . 81
5.4.1 Interrupt-driven Context Switching 81
5.4.2 Explicit Context Switching 88

6 Source Code Access 91
6.1 Running an Example . 92

7 Conclusions 95
7.1 Personal Knowledge . 95
7.2 Main Contributions . 96
7.3 Suggested Future Works . 97

A Software Simulator of Patmos 99
A.1 Instruction Simulation . 101
A.2 Memory and Cache Simulation 102

B ELF File Structure 103
B.1 File Structure . 103

B.1.1 ELF Header . 104
B.1.2 Program Header . 105
B.1.3 Section Header . 106

Bibliography 109

x CONTENTS

Chapter 1

Introduction

In this chapter we introduce some key aspects of Real-Time Systems (RTS),
starting from the computational model. We then discuss timing analysis and
Worst-Case Execution Time (WCET) calculation. After that we introduce time-
composability and how important that property is. In Section 1.4 the role of
a Real-Time Operating System (RTOS) is described and some examples are
presented. In the end the T-CREST project and platform are briefly described.

1.1 Real-time Systems

A real-time system receives inputs and sends outputs to the hardware, working
under strict constraints on its response time [Ben06]. Real-time systems (RTS)
are almost everywhere in our everyday life, applications of real-time systems can
be found in [Mal09]:

• Industrial applications: key industrial systems often require a RTS, for
example process control and automation are usually RTS-managed

• Medical : a RTS is hidden behind almost all medical diagnostic machines

2 Introduction

• Peripherals: devices like laser printers or digital cameras contain embed-
ded real-time systems

• Automotive and Transportation: automotive assistant systems such as au-
tomated pedestrian detection are implemented through real-time systems.
Likewise the safety system of a train is a RTS

• Telecommunication applications: real-time systems are used in modern
cellular systems

• Aerospace: real-time systems in aerospace industry have to deal with the
big amount of fresh data collected from the environment and the scarce
downlink bandwidth

• Avionics: several systems on an aircraft perform real-time operations and
have to be coordinated. Examples are the communication and the navi-
gation systems

• Defence

A simplified model for a RTS is shown in figure 1.1. A sensor has to convert
environmental inputs to electrical signals while an actuator is a device that
takes an electric signal and converts it to physical action on the environment.
Conditioning units are responsible for translating the electric signal coming
from a sensor to an electric signal that could be used by a computer and like-
wise they translate computer electric signal to something understandable by an
actuator. An interface unit translates signals between the two talking ends
(CPU and conditioning unit) and eventually takes care of buffering [Mal09].

Figure 1.1: A real-time system model (from [Mal09])

1.1 Real-time Systems 3

1.1.1 Task Models

A real-time application can also be viewed as a taskset τ , a static set of tasks [DB11].
Each real-time task is characterized by a set of attributes specifying its timing
behaviour [Ben06]:

• Release time: time when the task is ready to be executed

• Worst case execution time Ci

• Response time Ri: amount of time between the task release time and the
end of its execution

• Deadline Di: maximum allowed response time

In the literature two simple task models are mainly used [DB11]:

• Periodic task model [LL73]: tasks perform an ideally infinite sequence of
invocations (jobs). Jobs arrival time is periodical: between two invocations
always occurs the same amount of time, we call this amount period Ti

• Sporadic task model [Mok83]: each task’s invocation may occur at any
time once a fixed interval Ti since the last invocation passed

In the above task models intra-task parallelism is not allowed: only a single job
of a task can be active at a time.
Ti indicates the period in the periodic model and the minimum inter-arrival
time in the sporadic one. There are three different types of deadlines Di with
respect to the value of Ti:

• Implicit deadlines: deadlines correspond to the periods, Di = Ti

• Constrained deadlines: deadlines are less than or equal to the periods
Di ≤ Ti

• Arbitrary deadlines: deadlines can be less than equal to or greater than
the periods

Tasks and therefore real-time systems can be classified according to the conse-
quences of a deadline miss [Mal09] into:

4 Introduction

• hard : the task has to produce a result within its deadline otherwise the
whole system is considered to have failed

• firm: the task is required to produce a result within its deadline. Eventual
late results are discarded

• soft : the task has an associated deadline which, however, is not absolute
but expressed as an average response time required

The developed real-time operating system is targeting hard real-time systems.

1.2 Timing Analysis

The maximum execution time is a key attribute of a task and it is commonly
called Worst Case Execution Time (WCET) [WEE+08]. The calculation of
the WCET is crucial in the development and validation of a real-time systems.
Timing analysis is the process of computing execution time bounds [WEE+08],
which not necessarily correspond to the WCET, as shown in figure 1.2.

Figure 1.2: Relationship between measured execution times, WCET and
WCET bound

Timing analysis has to face several problems when computing the WCET for
a task. It has to consider each path of the control flow through the task and
its time to be executed on the specified hardware. The computation of the ex-
ecution time of a path is harder when the underlying hardware makes use of

1.3 Time composability 5

history-dependent components such as caches.

1.3 Time composability

Complex systems are often built integrating independent components. A com-
posable architecture assures that the components can be integrated together
without changing their behaviour [KO02]. In real-time systems we refer to
time-composability as the property of being composable in the time domain;
that is, the timing characteristics of a component do not change upon composi-
tion of that component in a larger system.
Modern real-time systems development relies on the assumption that the timing
behaviour of the whole system can be obtained by composing the WCET of its
components [BMV13]. When developing a system, assuming composability has
an innate characteristic is not always correct: several issues arise from modern
hardware which affects not only single component’s timing behaviour but even
time-composability. As a non-time-composable hardware feature we can think
about the use a cache when two functions are executed: each function’s timing
behaviour is probably not going to be preserved [LRL10]; the same reasoning
can be made for bigger components such as tasks. Moreover, not only hardware
can interfere with time-composability but even the execution of the operating
system’s services has an influence on the execution of application’s tasks. Using
a time-composable operating system is highly desirable when developing sys-
tems with strict timing-behaviour constraints [BMV13].

1.4 Real-time Operating Systems

An Operating System (OS) is a software working as an interface between com-
puter hardware and application programs, controlling the execution of other
applications [Sta08]. An OS tries to hide hardware complexity from the pro-
grammer and in order to do so it provides several services [Sta08], like:

Executing a program. That is, performing several operation like loading pro-
gram’s code or initializing hardware

Accessing I/O devices. Each hardware resource may need dedicated instruc-
tions, the OS tries to provide a uniform interface avoiding the programmer
from dealing with these details (drivers)

6 Introduction

Providing core functionalities. In order to avoid each programmer from imple-
menting them, assuring that these functionalities are correctly imple-
mented

Controlling accesses to the system

Controlling accesses to data

Detecting errors and handling them

An OS is usually developed relying on a hardware interface called Instruction
Set Architecture (ISA), which is the set of instructions the underlying hardware
is able to execute. The OS uses these instructions (some of them are reserved
to the OS itself and not accessible by user programs) to provide its services.
Likewise the operating systems offers two other interfaces:

• Application Binary Interface (ABI): the ABI is the system call interface
to the OS and it defines the rules for applications portability

• Application Programming Interface (API): the API offers higher level func-
tions to perform system calls. Developing applications around an API
ensures their portability to systems supporting the same API

A computer system is a set of resources (like CPU and memory), therefore the
OS can be seen as a program developed to manage these resources. An OS
is usually made of several components. The key part of an operating system
is called kernel. The kernel contains the most used services of the OS and
is permanently placed in memory during system’s execution. An OS uses an
abstract representation of a computer program, usually called process. The role
of the OS as a resource manager is to assign resources to processes so that
they can execute. In order to correctly manage resources, operating systems
implement several features:

• Interrupts handling : interrupts provide the operating system a way to
react to external events. Interrupts are used to manage I/O devices. An
interrupt makes the computer suspend the current execution and jump
to an operating system’s routine called Interrupt Service Routine (ISR)
responsible for handling the exception associated to the interrupt

• Memory management : each process needs some memory for its execution.
The OS has to grant each process an adequate amount of memory and
has to grant also that every process accesses this memory correctly: for
example a process should not access other processes memory. Memory
protection allows the OS kernel to avoid any illegitimate access

1.4 Real-time Operating Systems 7

• Multitasking : on modern computers several programs are executed at the
same time. The OS has to grant each program to proceed in its execution
arbitrating a possibly single CPU. A component of the kernel is called
scheduler and is responsible for allocating the CPU to processes. In order
to perform this allocation, the OS must be able to take control over a
running process. This may happen after a process explicit request or due
to an external event (interrupt). When gaining control of the CPU the OS
has to save the current execution state of the process in order to restore it
later (we call this execution state context). After having saved the context
the scheduler has to select the next process to execute, whose context is
going to be restored. The just explained process is called context switch
and is a key feature implemented by an OS

A real-time system consists of one or more applications, each containing one or
more communicating tasks. In order to manage the complexity of such systems
a Real-Time Operating System (RTOS) is used. As a normal OS, a RTOS has to
handle resource arbitration, and more precisely: time sharing, (virtual) memory
allocation and inter-task communication. However, the real-time nature of the
OS imposes more requirements. First of all a RTOS has to consider time as a
key parameter [Tan07]. More features of a RTOS are listed in [SBWT87]:

• A RTOS must support different types of task, from small and high rate
tasks to larger and less frequently executed ones

• A RTOS should not rely on a simplified task model and therefore it should
be able to handle both periodic and sporadic tasks

• Inter-task communication is time-critical and different tasks may assume
different models of communication

• Different systems may have different requirements on the operating sys-
tem. Some systems may need full RTOS functionalities such as complex
scheduling policies or space partitioning while others may need a more
lightweight OS, so an RTOS should be configurable according to the sys-
tem’s needs

1.4.1 Memory Management

As previously stated memory management and inter-task communication are
key features offered by a RTOS. Both memory allocation and inter-task commu-
nication mechanisms implemented by a RTOS have to assure that tasks timing

8 Introduction

constraints are not going to be violated due to other task’s interference. More
precisely, in the case of memory allocation a good and widely adopted way of
guaranteeing no interference between tasks is not allowing shared memory using
tasks space partitioning, which can be implemented through memory virtual-
ization or memory protection. Moreover a RTOS has to provide to tasks ways
of communicating between each other without violating deadlines constraints,
not allowing shared memory means that communication services have to be
implemented by the RTOS.

1.4.2 Scheduling Algorithms

Several scheduling algorithms have been developed to share a single-processor
between tasks. Scheduling algorithms can be classified in different ways. Schedul-
ing may be:

Static: based on offline information

Dynamic: based on run-time information

A scheduling algorithm can also be classified as:

Preemptive: a task computes for a certain amount of time then the control comes
back to the operating system which selects an other task to be assigned
the processor

Non-preemptive: a task executes until completion or until it yields control to
another task

We call a scheduler work-conserving if it never lets the processor idle when there
is a task ready to run.
Several algorithms have been developed for scheduling tasks on a single-processor,
both static and dynamic. Rate-monotonic [LL73] is a static priority algorithm
assigning each task a priority proportional to its request rate (defined as the
reciprocal of its period). On the other hand Earliest-Deadline-First (EDF), pre-
sented in [LL73], is a dynamic priority scheduling algorithm. EDF assigns the
highest priority to the task whose current request has the nearest deadline. EDF
is proved to be optimal for tasksets with implicit deadlines; that is, it reaches a
processor utilization factor of 1.

1.4 Real-time Operating Systems 9

Scheduling on multi-processors systems attempts to solve two problems [DB11]:
allocation problem (decide to which processor allocating a task) and priority
problem (decide in which order the jobs of all tasks should execute). In the last
years two main approaches to multi-processor scheduling have been investigated:
partitioning and global scheduling [CFH+04]. With partitioned scheduling each
task is permanently assigned to a processor and then each processor is scheduled
independently. On the other hand, global scheduling enqueues all the tasks in
a priority queue from which highest priority tasks are then selected for the
execution. Unfortunately, optimal solutions found for the scheduling problem
on single-processors like EDF result in non-optimal schedules with very low
processor utilization [DL78]. Partitioning approaches reduce the problem of
multi-processor scheduling to a set of single-processor ones.

1.4.2.1 Partitioning

A well known approach to the scheduling in systems where multiple applica-
tions share one processor is the partitioned one: static non-work-conserving
schedulers, such as time division multiplexing, assign applications to the pro-
cessor according to a pre-defined offline order. Since scheduling decisions do not
rely on the run-time behaviour, such schedulers provide time isolation (time-
composability between tasks or partitioning): the actual behavior of an appli-
cation is independent of others.
It is also desirable to have different applications follow different computational
models. In order to do so a two-level scheduling is required: inter-application
and intra-application. Preemptive intra-application schedulers promise to reach
better processor’s utilization than non-preemptive approaches but at the cost
of more overhead.
ARINC653 [Gro03] is a standard specification for time and space partitioning in
safety-critical avionics real-time operating systems. According to ARINC, time
is divided in a number of slots called partitions, each of which is assigned an
application. In each partition a second-level scheduler can be used to allocate
the CPU to the partition’s tasks, see figure 1.3 for a sample of architecture for
an ARINC653 RTOS [Inc08].
Just a few real-time operating systems implement partitioning with two-level
scheduling, inter-application and intra-application. CompOSe [HEM+11], PikeOS
[Pik], INTEGRITY [INT] and LynxOS-178 [Lyn] implement both partitioning
and two-level scheduling.

10 Introduction

Figure 1.3: Architecture’s structure of an ARINC653 system (from [Inc08])

1.4.3 PikeOS

PikeOS [Pik] is a commercial micro-kernel RTOS targeting safety-critical em-
bedded real-time systems and supporting the ARINC653 standard. PikeOS is
able to run different applications, whether real-time or not, in different virtual
machines on a single underlying hardware. For real-time applications PikeOS is
able to guarantee spacial and temporal constraints.

PikeOS executes applications with different timing requirements: hard real-
time, soft real-time and non real-time. In order to support all these kinds of
applications PikeOS implements both a priority-driven and time-driven sched-
uler. Such a scheduler allows to re-allocate computing times not used by hard
real-time tasks. In figure 1.4 the difference between PikeOS scheduler and a
normal RTOS scheduler is shown.

1.4 Real-time Operating Systems 11

Figure 1.4: Comparison between PikeOS and a normal RTOS scheduler
(from [Pik])

A time slice is assigned to each virtual machine, each virtual machine receives a
fixed amount of time and is able to schedule real-time tasks itself. As previously
stated, PikeOS scheduler is able to exploit the slack time (not used computing
time) and allocate it to non real-time tasks. We can see in figure 1.4 how it
reduces the time exclusively allocated to these tasks, with respect to a standard
scheduler.

1.4.4 INTEGRITY

INTEGRITY [INT] is a partitioning RTOS aiming to provide reliability, se-
curity, and maximum performance to embedded systems. INTEGRITY uses
memory protection to separate each application execution from other applica-
tions. Partitioning ensures that a task is granted enough resources to execute
correctly and does not affect other application’s and OS execution.
INTEGRITY exploits the Memory-Management Unit (MMU) hardware and
therefore offers memory protection without sacrificing performances. INTEGRITY
is implemented to react to interrupts as fast as possible and in order to do so it
never masks or disables interrupts.

One of INTEGRITY’s goals is a safe handling of memory: in order to always
guarantee enough memory to the kernel, kernel’s objects are never placed in ker-

12 Introduction

nel’s memory. RTOS services always use resources owned by the calling task.
Moreover these services are executed on a dedicated kernel’s stack in order to
prevent stack overflow and to allow user’s tasks to precisely specify their stack
size.

1.4.5 LynxOS-178

LynxOS-178 [Lyn] is a commercial hard real-time operating system that sup-
ports both POSIX and ARINC653 standards. LynxOS-178 targets safety-critical
real-time systems and guarantees time and space-partitioning relying on virtual
machines, which lead system events happening in a partition not to interfere with
events in another. Each RTOS partition behaves just like a single, independent
RTOS. LynxOS-178’s partitioning grants three types of exclusive access: time,
space and resources.
Time is divided according to ARINC653 specification in fixed-size time slices,
each of which is assigned to a partition.
Memory partition is accomplished by dividing it in blocks of different address
spaces. Each partition is assigned one and only one block.
Partitioning of resources means that every resource is associated to one and only
one partition at any time so that a fault can be handled in a single partition,
without affecting the others. For example each partition uses a RAM-based file
system which is private to the partition and never shared.

LynxOS-178 structure is depicted in figure 1.5. The CPU support package con-
tains all processor family-specific routines.The Board support package contains
all the routines needed for booting and controlling the hardware. The Static
device drivers are components isolating specific hardware details from applica-
tion code and are statically compiled with the kernel. LynxOS-178 kernel offers
partitioning functionalities.

1.4.6 CompOS

CompOSe [HEM+11] is a composable, light weight real-time operating system
targeting Multi-Processor Systems on Chip (MPSoC). Each processor executes
an independent instance of CompOSe which has no idea of the existence of the
other processors, therefore each scheduler performs local decisions. CompOSe
scheduler’s aim is to ensure that every task executes without any interference,
in order to do so some requirements need to be fulfilled:

1.4 Real-time Operating Systems 13

Figure 1.5: Architecture’s structure of LynxOS-178 RTOS (from [Lyn])

• Preemption-based CPU sharing, so that system correctness does not rely
on tasks well-behaviour

• Context-switch mechanism not interfering with user tasks; that is, running
in constant time

• Scheduling between applications with adequate cache management

CompOSe implements a two-level scheduler in order to have different intra-
application schedulers. Moreover a slack manager allows to exploit all unused
capacity.

CompOSe uses C-HEAP [NKG+02] as a communication API. C-HEAP does not
use atomic operations (therefore no need for locks and semaphores) or interrupts,
all communication takes place on a buffer through explicit calls to acquire and
release. A C-HEAP FIFO is a circular buffer placed in shared memory. FIFO
read and write pointers are hold in producer and consumer local memory in order
not to make a task suffer from remote access latency. If there is enough space
in the task’s local memory even FIFO’s communication buffers are placed there

14 Introduction

to avoid accessing remote memory. When communication buffers are placed in
the local memory, before starting the execution of a task data has to be copied
from remote locations to local buffers.

1.4.7 TiCOS

Time-Composable Operating System (TiCOS) [BMV12] is an open-source time-
composable real-time operating system implementing a two-level partitioned
scheduler and conforming to the ARINC653 standard. TiCOS is based on
POK [DL11] a light weight ARINC653 operating system released under the
BSD license. Details of TiCOS operating system can be found in Chapter 3.

1.5 The T-CREST Project

Real-time embedded systems are everywhere in our daily life. Examples can be
found in the most different fields like space systems, avionics, automotive and
consumer electronics. Those fields are constantly evolving and improving, so
real-time embedded systems should improve too [DB11]. Real-time embedded
systems evolution takes place on two different sides, one regards systems ana-
lyzability while the other regards system performances.

The modern technological progress causes software complexity to grow and along
with this complexity growth even processing demand is increasing [DB11]. This
increase of processing demand made hardware producers try to create more
powerful processors. The first trial was miniaturization, following the Moore’s
law, which says that every two years the density of transistors on an integrated
circuit doubles (that is: every two years processor speed doubles). But this was
no longer possible due to problems of heat dissipation and high power consump-
tion. The second and still used trial was putting more than one processor on a
single chip: this gave birth to multi-processors.

Even for real-time embedded systems there is the need for more powerful pro-
cessors and thus a big effort has been spent in the last years finding ways of
creating time-predictable real-time systems on modern multi-processors. Time-
predictability is a key feature of safety-critical systems (systems whose failure
can result in the loss of life). In such systems the worst case execution time
has to be known in order to assure a certain behaviour (response time) when

1.6 Thesis Structure 15

critical events happen. However, multi-processors vendors focus their attention
on end-user needs and so they try to give best performances in the average case,
leading to bad results in the worst case execution and making those processors
hardly analyzable [DB11].
The aim of T-CREST is to create a time-predictable chip multi-processor, de-
veloping the processor, memories and the interconnect optimized for minimiz-
ing the WCET. Moreover, through time-predictable caches the system aims to
fulfill the increased needs of processing power. Patmos [SSP+11] is the single-
processor used to build T-CREST architecture. The final goal of T-CREST is
creating an architecture capable of high performances but still easily analyzable.

1.6 Thesis Structure

The thesis is structured as follows:

1. First we present Patmos and TiCOS:

• Chapter 2: The Patmos processor : a detailed description of the pro-
cessor’s instruction set and memories

• Chapter 3: The Operating System: a description of the OS kernel’s
architecture and library

2. In order enable on the T-CREST architecture a computational model more
complex than the direct mapping of threads to processors; that is: exe-
cuting an operating system on each Patmos core, some extensions to the
processor itself were needed:

• Chapter 4: Processor extensions: presents a set of extensions per-
formed to the Patmos processor and a set of useful possible exten-
sions

3. Finally we present the extensions made to TiCOS to port it to Patmos:

• Chapter 5: TiCOS extensions: details the main changes performed
to TiCOS starting from the architectural-dependent layer up to the
application library

Some details about Patmos simulator and ELF file format can be found in
Appendix A: Software Simulator of Patmos and Appendix B: ELF file structure.

16 Introduction

Chapter 2

The Patmos Processor

Patmos [SSP+11] is a time-predictable, reduced instruction set (RISC) processor
targeting real-time systems aiming to reduce the complexity of WCET analysis.
The Patmos pipeline is made of 5 stages:

• FE: instruction fetch

• DEC: instruction decode

• EX: execute

• MEM: memory access

• WB: register write back

In the following, Patmos is described. The aim is to clearly define the architec-
ture, highlighting the main points in its technical report [SBH+] which influence
the development of an operating system.

18 The Patmos Processor

2.1 Memory

Patmos uses several local memories in order to reduce memory operations la-
tency. Four types of local memories are used:

• Method cache

• Stack cache

• Data cache

• Scratchpad memory

Memory access instructions which deal only with local memory (that is: scratch-
pad or stack cache) are guaranteed to never stall the pipeline while other memory
instructions (accessing data cache or global memory) define opcodes that either
stall the pipeline or perform decoupled operations.

2.1.1 Method Cache

The Patmos processor implements the idea of a method cache [Sch04]. With to-
day’s performance requirements caches cannot be avoided due to their important
role in filling the gap between processors speed and memory access delays, how-
ever caches focus on the average case performance, making the system hardly
analyzable from a WCET point of view.
A standard instruction cache makes each instruction’s WCET potentially suffer
from the penalties of a cache miss and subsequent refill. The method cache
is structured in order to free all instructions from cache miss penalties, these
penalties are relegated to the function calls and returns.
The basic idea is that functions do not usually have big sizes and that an instruc-
tion cache could be divided in blocks that can possibly hold an entire function.
The whole replacement mechanism is so performed on blocks of instructions not
on single instructions: the instructions of a functions are in this case guaranteed
to be cache hits while eventual cache misses can happen on function calls (called
function miss) and function returns (caller function miss).
No way for loading single instructions is provided: cache can only be manipu-
lated through blocks. Since the size of a block is fixed and functions bigger than
this size can exist functions are allowed to be split into several blocks.
Some limitations caused by the method cache structure do exist:

2.1 Memory 19

• The size of the code sequence that can be loaded is bounded by the size
of the method cache. However, as said, functions can be split in more
segments

• Since call instruction does not carry any information regarding the func-
tion’s size this information has to be saved in memory just before the first
function’s instruction

• Due to block-oriented manipulation of the cache more code than the func-
tion’s one could be loaded into the cache

Just like other caches, different replacement policies can be implemented for
the method cache: both FIFO and LRU are being investigated in the Patmos
development.

2.1.1.1 FIFO

When working with the FIFO policy the method cache allocates to each segment
of code a number of adjacent blocks. The first block assigned to the segment is
labeled with the base address of the code segment it is holding, the other blocks
labels are empty. The method cache is extended with a pointer, pointing to the
location where a new loaded block will be placed and updated according to the
FIFO semantics.

2.1.1.2 LRU

[SBH+] suggest that LRU replacement can be implemented in Patmos. This
implementation needs more memory to work: a segment of code is no longer
placed in adjacent blocks but its blocks can be split in the whole cache according
to LRU semantics. Each block must be therefore extended with its real memory
address and it LRU timestamp.
When an instruction has to be fetched all the cache blocks have to be looked
for, if one of the blocks address contains the searched instruction then it is not
loaded (already in the cache). If the instruction is not in the cache then its code
segment has to be loaded.
A method cache may not have enough space to hold a new code segment, in
this case some older segment has to be removed from the cache: note that the
replacement mechanism removes all the blocks of a segment, not single blocks
(for doing this a data structure is needed to keep track of which blocks make up
a segment.

20 The Patmos Processor

LRU implementation clearly need more hardware than the FIFO one and may
also result in an additional pipeline stage in order to perform the lookup needed
at each instruction fetch.

2.1.2 Data Cache

The data cache, as a normal cache, is used to speed up memory accesses. Patmos
data cache uses a write-through policy, every store instruction writes changes to
the data cache and to the main memory. Write-through policy leads to a higher
number of memory accesses but results in a more analyzable system from a
WCET perspective (less cache states to be taken into account).
Different opcodes for memory access instructions are provided by the Patmos
instruction set allowing not only access different types of value (8, 16 and 32
bits) but also to perform blocking memory operations (stalling the pipeline) or
decoupled ones.
Operations accessing directly the global memory are provided in order to bypass
the data cache.

2.1.3 Stack Cache

The stack cache presented in [ABS13] is a dedicated cache meant to hold stack
allocated values. The idea of having more than a cache holding different types
of values (data cache, stack cache and instruction cache) is intended to help
simplify the WCET analysis.
The stack area holds return address, callee saved registers, and function local
variables. This data has a high access frequency and so it will greatly benefit
of caching. Moreover stack data is always function local and therefore some
optimizations can be done: due to its locality stack cache data does not need to
be consistent with the main memory and when a function returns this data can
simply be discarded with no need to write back the content. The stack cache
has a fixed size so when some of its content has to be replaced it is written back
to memory.
The stack cache is managed by the compiler: when a function is called a stack
frame of the required size is reserved on the top of the stack and when a function
returns this space is freed. When a function returns to a caller the frame of the
caller must be ensured to be in the stack cache (due to the function call chain
it may have been split to the main memory). Doing so each memory access in
the body of the function is guaranteed to be a hit while a stack cache miss can
only happen when reserving or ensuring a stack frame.

2.1 Memory 21

In order to manipulate the stack as just described the Patmos ISA defines the
following instructions:

• reserve - sres: reserves space in the stack cache and may spill data to
the main memory if there is no enough free space

• ensure - sens: when returning from a function call sens ensures that
the stack frame of the calling function is available. May need to fill the
cache with previously spilled data

• free - sfree: frees the reserved space on the stack

These instructions specify as an immediate parameter the size of the frame to
be reserved/ensure so that the interaction with stack in the function calls tree
can be easily analyzed (easy WCET calculation).

In the Patmos implementation the stack cache is a data structure placed in the
local memory holding values from the actual global memory stack. Consistency
with the global memory is managed through 2 pointers:

• st: pointer to the top of the stack

• ss: pointer to the last element of the stack cache spilled to main memory

The code in listing 2.1 represents a simple example used to show the stack cache
behaviour. Assuming each function reserves (and ensures after each function
call) 16B and the whole stack cache size is 32B, the evolution of stack and stack
cache will be the one in figures 2.1, 2.2 and 2.3.

Listing 2.1: Code snippet to show the stack cache behaviour

1

2 void C() {
3 // . . .
4 }
5

6 void B() {
7 // . . .
8 C() ;
9 // . . .

10 }
11

12

13 void A() {

22 The Patmos Processor

Figure 2.1: Stack cache status after the call A(). Space for A is reserved on
the stack and the stack cache. The main memory is not consistent
with the cache

14 // . . .
15 B() ;
16 // . . .
17 }
18

19 A() ;

The organization of the stack cache has some drawbacks:

• At any moment the program cannot access more stack data than the stack
cache size. To solve this problem the stack frame can be split or the shadow
stack can be used, an extra stack placed in main memory

• When a pointer to data placed on the stack cache is passed to another
function it has to be ensured that the pointed data will not be split to
main memory as long as it is needed. Otherwise this kind of aliased data
can be placed on the shadow stack

• Reserve and ensure instructions only accept constant size immediate ar-
guments, therefore dynamic size data has to be placed on the shadow
stack

2.1 Memory 23

Figure 2.2: Stack cache status after the call B(). Space for B is reserved on
the stack and the stack cache. The stack cache becomes full, main
memory is still not consistent with the cache

Figure 2.3: Stack cache status after the call C(). The data for A is spilled to
main memory and replaced with C data

24 The Patmos Processor

2.1.4 Data Scratchpad

Patmos provides a local memory called data scratchpad. The Patmos ISA has
instructions that allow accessing this local memory. These instructions do not
stall the pipeline.
The address space of the local memory is the same as that of global one but the
used range is different. Instructions to access the data scratchpad are detailed
in Section 2.3.8.

2.2 Registers

Patmos provides three distinct register files:

• R: 32 general-purpose registers (32 bit), shown in figure 2.5

• S: 16 special-purpose registers (32 bit), shown in figure 2.6

• P: 8 predicate registers (1 bit), by convention p0 is set to true (1), shown
in figure 2.4

Figure 2.4: Predicate registers (P)

r0 is always set to 0 and read-only. The other general-purpose registers are
used, according to a compiler convention, as follows:

• r1 and r2: contain the result of a function (up to 64 bits)

• r3-r8: contain the arguments of a function

• r27: temporary register

• r28: frame pointer

2.2 Registers 25

Figure 2.5: General-purpose registers (R)

26 The Patmos Processor

• r29: shadow stack pointer

• r30: address of the return function (function base)

• r31: offset of the return instruction in the return function (function offset)

Special-purpose registers are dedicated to hold special values:

Figure 2.6: Special-purpose registers (S)

• s0: lower 8 bits are used to save and restore P, the other bits are reserved
and not yet used

• s1 (also named sm): contains the result of a decoupled load operation.
The contained value can be signed or unsigned depending on the load’s
type

2.3 Patmos ISA (Instruction Set Architecture) 27

• s2 (also named sl): lower 32-bits of the result of a multiplication

• s3 (also named sh): upper 32-bits of the result of a multiplication

• s5 (also named ss): stack cache spill pointer, point to the top element of
the stack that is saved in the main memory

• s6 (also named st): point to the top of the stack

2.3 Patmos ISA (Instruction Set Architecture)

Patmos allows bundles made of one or two instructions. Since instructions are
32 bits long bundles can be 32 or 64 bits. The most significant bit allows to
distinguish between short and long bundles:

• 0: 32 bits long bundle

• 1: 64 bits long bundle

Several instruction’s formats have been defined, each instruction respects a for-
mat; a single format can be used for several operations (with assigned opcodes).
In the following all the Patmos instructions and operations are described.

2.3.1 Binary Arithmetic

In this section opcodes for binary arithmetic with registers (ALUr), immediate
operands (ALUi) and long immediate operands (ALUl) are going to be examined.
In table 2.1 opcodes semantics are described, Op2 stands for immediate operand
for ALUi, long immediate operand for ALUl and register operand for ALUr.

2.3.2 Multiply

Multiplications follow the ALUm format. Two opcodes are defined for this for-
mats defining multiplication of normal integers and multiplication of unsigned
integers, as shown in table 2.2. Multiplication are carried on in parallel with
the normal pipeline and always terminate in constant number of cycles.

28 The Patmos Processor

Opcode Semantics
add Rd = Rs1 +Op2

sub Rd = Rs1−Op2
xor Rd = Op2ˆRs1

sl Rd = Rs1 << Op2[0 : 4]

sr Rd = Rs1 >>> Op2[0 : 4]

sra Rd = Rs1 >> Op2[0 : 4]

or Rd = Rs1|Op2
and Rd = Rs1&Op2

nor Rd = (Rs1|Op2)
shadd Rd = (Rs1 << 1) +Op2

shadd2 Rd = (Rs1 << 2) +Op2

Table 2.1: ISA: binary arithmetic

Opcode Semantics

mul sl = Rs1 ∗Rs2
sh = (Rs1 ∗Rs2) >>> 32

mulu sl = (uint32_t)Rs1 ∗ (uint32_t)Rs2
sh = ((uint32_t)Rs1 ∗ (uint32_t)Rs2) >>> 32

Table 2.2: ISA: multiplication

2.3.3 Compare

Compare instruction follows the ALUc format. Operations perform comparisons
between integers and unsigned integers putting the result in a predicate register.

2.3.4 Predicate

Predicate instruction follow the ALUpformat and offer basic binary operations
on predicate registers storing the result in a predicate register, opcodes and
semantics are shown in table 2.4.

2.3 Patmos ISA (Instruction Set Architecture) 29

Opcode Semantics
cmpeq Pd = Rs1 == Rs2

cmpneq Pd = Rs1! = Rs2

cmplt Pd = Rs1 < Rs2

cmple Pd = Rs1 <= Rs2

cmpult Pd = Rs1 < Rs2, unsigned

cmpule Pd = Rs1 <= Rs2, unsigned

Table 2.3: ISA: compare opcodes

Opcode Semantics
por Pd = Ps1|Ps2
pand Pd = Ps1&Ps2

pxor Pd = Ps1 ˆ Ps2

Table 2.4: ISA: predicate manipulation opcodes

2.3.5 NOP

A single cycle no-operation instruction.

2.3.6 Wait

The wait instruction format is called SPCw. These instructions wait for a multi-
plication or a memory access to end stalling the pipeline. One single opcode is
defined (wait.mem), it makes the pipeline stall until a memory operation ends.

Opcode Semantics
wait.mem Wait the end of a memory access

2.3.7 Move To/From Special

SPCt format is defined for its only opcode mts which moves the content of a
general purpose register to a special purpose register. SPCf format is specified

30 The Patmos Processor

for the opcode mfs which moves the content of a special purpose register to a
general purpose register. Semantics are shown in table 2.5.

Opcode Semantics
mts Sd = Rs

mfs Rd = Ss

Table 2.5: ISA: move to/from special opcodes

2.3.8 Load/Store Typed

Operations to access to the stack cache (sc), to the local scratchpad memory
(lm), to the data cache (dc) and to the global shared memory (gm) are available.
Load operations, in table 2.6, follow the LDT format while store operations, in
table 2.7, follow the STT format. Load and store operations to the stack cache
and the local memory do not stall the pipeline while the others do. However,
when accessing the local memory, if the address maps some I/O device the op-
eration may stall the pipeline.
Decoupled loads are also implemented which do not stall the pipeline and al-
low the execution to continue. These instructions put the loaded value into
the special register sm. A wait instruction can be used to explicitly stall the
pipeline. When a decoupled is tried to be executed while a previous one is still
being processed the pipeline is automatically stalled so that the result of the
first load will be available for at least one processor’s cycle. A use-delay must
be respected before accessing the destination register of a load operation.
Stores to the data cache use the write-through strategy with no write allocate,
that is: when writing to data not present in the cache this data is fetched into
the cache, if the data is present it is updated.

Loads to the stack cache are relative to the st pointer and can be performed on
both slots of an instruction bundle. The other loads can only be issued on the
first slot.

2.3.9 Stack control

Stack control operation all refer to the STC format and allow to manipulate the
stack cache. STC instruction immediate argument is always interpreted in word
size. Opcodes referring to the operations detailed in Section 2.1.3 are shown in
table 2.8.

2.3 Patmos ISA (Instruction Set Architecture) 31

Opcode Semantics
lws Rd = sc[Ra+ Imm << 2]32
lwl Rd = lm[Ra+ Imm << 2]32
lwc Rd = dc[Ra+ Imm << 2]32
lwm Rd = gm[Ra+ Imm << 2]32
lhs Rd = (int32_t)sc[Ra+ Imm << 1]16
lhl Rd = (int32_t)lm[Ra+ Imm << 1]16
lhc Rd = (int32_t)dc[Ra+ Imm << 1]16
lhm Rd = (int32_t)gm[Ra+ Imm << 1]16
lbs Rd = (int32_t)sc[Ra+ Imm]8
lbl Rd = (int32_t)lm[Ra+ Imm]8
lbc Rd = (int32_t)dc[Ra+ Imm]8
lbm Rd = (int32_t)gm[Ra+ Imm]8
lhus Rd = (uint32_t)sc[Ra+ Imm << 1]16
lhul Rd = (uint32_t)lm[Ra+ Imm << 1]16
lhuc Rd = (uint32_t)dc[Ra+ Imm << 1]16
lhum Rd = (uint32_t)gm[Ra+ Imm << 1]16
lbus Rd = (uint32_t)sc[Ra+ Imm]8
lbul Rd = (uint32_t)lm[Ra+ Imm]8
lbuc Rd = (uint32_t)dc[Ra+ Imm]8
lbum Rd = (uint32_t)gm[Ra+ Imm]8

dlwc sm = sc[Ra+ Imm << 2]32
dlwm sm = gm[Ra+ Imm << 2]32
dlhc sm = (int32_t)dc[Ra+ Imm << 1]16
dlhm sm = (int32_t)gm[Ra+ Imm << 1]16
dlhuc sm = (uint32_t)sc[Ra+ Imm << 1]16
dlhum sm = (uint32_t)gm[Ra+ Imm << 1]16
dlbuc sm = (uint32_t)dc[Ra+ Imm]8
dlbum sm = (uint32_t)gm[Ra+ Imm]8

Table 2.6: ISA: load typed operations

The sres and sens operations are blocking operations.

2.3.10 Call and Branch

These instructions apply to the CFLb format and supports different opcodes
allowing to perform function calls (call), branches (brcf) and local branches
(br) within the method cache.
A call instruction performs a function call and therefore stores the current

32 The Patmos Processor

Opcode Semantics
sws sc[Ra+ Imm << 2]32 = Rs

swl lm[Ra+ Imm << 2]32 = Rs

swc dc[Ra+ Imm << 2]32 = Rs

swm gm[Ra+ Imm << 2]32 = Rs

shs sc[Ra+ Imm << 1]16 = Rs[15 : 0]

shl lm[Ra+ Imm << 1]16 = Rs[15 : 0]

shc dc[Ra+ Imm << 1]16 = Rs[15 : 0]

shm gm[Ra+ Imm << 1]16 = Rs[15 : 0]

sbs sc[Ra+ Imm]8 = Rs[7 : 0]

sbl lm[Ra+ Imm]8 = Rs[7 : 0]

sbc dc[Ra+ Imm]8 = Rs[7 : 0]

sbm gm[Ra+ Imm]8 = Rs[7 : 0]

Table 2.7: ISA: store typed operations

Opcode Semantics

sres Reserves space on the stack
(eventually spilling other frames to main memory)

sens Ensures that a stack frame is entirely loaded
otherwise refills the stack cache

sfree Frees space on the stack frame
(no spill/fill)

Table 2.8: ISA: stack control operations

function offset into register r31 (function address has to be saved manually by
the programmer/compiler) in order to return from the call itself.
Since both call and brcf opcodes perform non local jumps they can result in
a method cache miss and a subsequent refill. On the contrary a br is always
guaranteed to be a cache hit.
call is an absolute operation so the immediate operand is interpreted as an
unsigned int while br and brcf are PC-relative and therefore the operand is
considered to be signed. In both cases the operand is assumed to be word size.

Call and branch instructions are executed in the EX stage of the pipeline, the
instructions fetched during the decode and the execution step of a branch are

2.3 Patmos ISA (Instruction Set Architecture) 33

call Function call, absolute, with cache fill

br Local branch, PC relative, always hit

brcf Local branch, PC relative, with cache fill

Table 2.9: ISA: immediate Call and Branch

still executed, this results in a delay of 2 instructions which has to be taken into
account be the compiler/programmer (branch-delay slots).
All call and branch instructions can only be placed in the first position of the
bundle.

2.3.11 Call and Branch Indirect

This instruction is just like the call and branch one but takes a register operand
rather than an immediate operand. A new format, called CFLi is therefore
defined. As for the call and branch the three opcodes call, brcf and br are
provided. Everything that was said in Section 2.3.10 regarding method cache
interaction, parameter interpretation, and branch delay is also true for call and
branch indirect.

call Function call, absolute, with cache fill

br Local branch, PC relative, always hit

brcf Local branch, PC relative, with cache fill

Table 2.10: ISA: register Call and Branch

2.3.12 Return

Transfer control back to the calling function or return from an interrupt. ret
may cause a cache miss and subsequent cache refill to load the target code.

34 The Patmos Processor

Chapter 3

The Operating System

TiCOS [BMV12] is a time-composable real-time operating system developed
within the framework of the Probabilistically Analysable Real-Time Systems
(PROARTIS) project (www.proartis-project.eu) supporting the ARINC653
software specification and originally targeting the PPC architecture. TiCOS is
based on POK [DL11], a light weight operating system implementing the AR-
INC653 standard and distributed under the BSD license.

The high level architecture of TiCOS is shown in figure 3.1. It is made of
two basic layers: the kernel layer and the application layer. The kernel layer
is responsible for implementing the OS services while the application layer is
composed by the user application, a core library layer, the ARINC library layer
and the middleware library layer. The ARINC library offers a simple set of
ARINC services. Those services are implemented (just like the core library
functionalities) through the system call mechanism to the middleware layer.
That mechanism makes the systems start executing in supervisor mode and call
the proper kernel layer services.

www.proartis-project.eu

36 The Operating System

Figure 3.1: High level structure of the OS (from [BMV12])

3.1 The Kernel Layer

This layer is made of two fundamental components: an architectural dependent
part (called arch component) and an architectural independent part (called core
component), both parts implement kernel services but while the first one ac-
cesses directly architectural functionalities (to implement for example: timer,
context switch, memory management, etc.) the core component does not need
to directly use the underneath architecture. This kind of structure makes it
possible to target an architecture different from PPC focusing only on changing
the arch component and eventually adjusting the core component. Adjustments
to the core component may be needed, as in the case of Patmos porting, for
operating systems not supporting memory virtualization or for changing the
loading mechanism of applications.

The kernel layer as a whole provides the following services:

• Partitions support. Partition is the name used by ARINC to indicate an
application made by one or more threads. TiCOS wants to provide time-
composability and for doing so it implements time and space isolation
among partitions. Each partition is granted its own space and no shared
memory is allowed

• Scheduling. A two-level scheduling algorithm is implemented. First a

3.2 ARINC653 Entities 37

partition is selected for execution according to a cyclic strategy then a
selected partition’s thread is chosen according to a fixed priority policy

• Lock objects management. Lock objects are used by the middleware layer
to implement events and thus providing synchronization for buffers and
blackboards (ARINC communication mechanisms). TiCOS works in a
run-to-completion semantics which assures there’s no need to worry about
mutual exclusion; therefore locks are not used for that purpose. A lock
object memorizes threads which are waiting for it to be free, at the moment
priority policies are not used to select the next thread to be unlocked

• Ports support. Ports are the ARINC way of communicating between par-
titions, since partitions do not share memory the kernel is responsible for
copying messages from source ports to destination ports

3.2 ARINC653 Entities

The ARINC specification defines several entities; some of these entities represent
active components of a real-time systems, such as partitions and processes,
while others represent communication mechanisms such as events, semaphores,
blackboards, buffers and ports.

3.2.1 Partitions and Processes

An application is usually made of an ARINC partition (the equivalent of a
POSIX process) and each partition is made of threads. Each partition has a
main thread which runs only once and creates all other partition’s threads.
Each partition is allocated a fixed time slot and is not allowed to share memory
with other partitions. ARINC processes are the way the ARINC653 specification
names tasks or POSIX threads. Processes have defined priorities and are allowed
to share memory. In TiCOS the scheduling of processes inside a partition is made
by a fixed-priority constant time scheduler, called O(1) scheduler and detailed
in Section 3.4.2.

3.2.2 Events

ARINC events can assume one between two states: set (“up”) and reset (“down”).
When an event is in set state it allows all the waiting processes to continue.

38 The Operating System

When an event is in reset state all processes waiting for the event are blocked [TBV10].
In TiCOS ARINC events are implemented through kernel locks; each middle-
ware event is associated to one and only one kernel lock (and has the same
identifier).

3.2.3 Semaphores

The aim of ARINC semaphores, just like normal semaphores, is to provide
mutual exclusion in accessing a shared resource. Shared resources can only exist
between processes of the same partition, however, as said, TiCOS assumes run-
to-completion semantic between the processes of the same partition, this means
that there is no need to worry about mutual exclusion. ARINC semaphores
are implemented as nothing more than stubs since a semaphore lock is always
granted by construction.

3.2.4 Blackboards

Blackboards are one of the mechanisms used to make processes of a partition
communicate. A blackboard holds only one message at once, so if a process
displays a new message in a non-empty blackboard the previously shown message
gets lost. Events are used to allow more processes use the same blackboard: an
event is associated to each blackboard, when a process tries to read from an
empty blackboard the event is set to “down” and the process is suspended.
When a process displays a message the event is set to “up” and all processes
waiting for that event become runnable again.

3.2.5 Buffers

Buffers are another mechanism used to make processes of the same partition
communicate. More than a message can be stored in a non-empty buffer, pro-
cesses are not allowed to write to a full buffer and when a message is read it
is removed from the buffer. When a process tries to receive a message from an
empty buffer the associated event is set to “down”. When a message is sent to
an empty buffer the event is set to “up”. Moreover, an associated event is used
to handle the buffer’s fullness: the event is set to “down” when a process tries
to write to a full buffer and when a message is read from a full buffer the event
is set to “up”, making runnable all the waiting processes.

3.3 The Library Layer 39

3.2.6 Sampling and Queueing Ports

Ports are used to make different partitions communicate. A queueing port
is a communication channel which allows to enqueue tokens and read in the
exact order they have been inserted and is the inter-partition equivalent to a
buffer [TBV10]. A sampling port allows to read only the last inserted value, so
writing to a sampling port means updating its content. Sampling ports are the
equivalent to blackboards with the difference that writing and reading from a
sampling port is never blocking [TBV10].

3.3 The Library Layer

The operating system library layer allows the user application to access TiCOS ser-
vices through user-level functions. These functions are implemented through
system calls to kernel services. The library is structured as shown in figure 3.2.

3.3.1 Core Library

The contained functions offer the operating system’s core functionalities. Some
of these functions are used to implement the ARINC library. Application error
codes are also defined. These functions are not part of the ARINC653 specifi-
cation, using them in the user code results in a non-portable application. The
functions in the core and middleware library are the only part of the POK oper-
ating system ([DL11]) kept unmodified, this is the reason why their names start
with the pok_ prefix.

• Event: is implemented through a kernel lock

– pok_event_create: performs a system call to create a kernel lock

– pok_event_wait: performs a system call to wait for the event asso-
ciated to the lock, with a specified timeout

– pok_event_broadcast: performs a system call to wake up all the
threads waiting for the event associated to the lock

– pok_event_signal: performs a system call to notify the first thread
waiting for the event

– pok_event_lock: performs a system call to lock the kernel lock cor-
responding to the event (event set to “down”)

40 The Operating System

Figure 3.2: Structure of the OS library for user applications

3.3 The Library Layer 41

– pok_event_unlock: performs a system call to unlock the kernel lock
corresponding to the event (event set to “up”)

• Syscall: An identifier for each system call is defined as depicted in table
3.1. The following functions realize the system calls for different number
of parameters.

System call ID
CONSWRITE 10
GETTICK 20
GET_TIME 21
THREAD_CREATE 50
THREAD_SUSPEND 52
THREAD_STOP 55
THREAD_PERIOD 56
THREAD_STOPSELF 57
THREAD_ID 58
THREAD_SUSPEND_OTHER 67
THREAD_RESUME 68
THREAD_START 69
THREAD_DELAYED_START 70
MIDDLEWARE_SAMPLING_ID 101
MIDDLEWARE_SAMPLING_READ 102
MIDDLEWARE_SAMPLING_WRITE 104
MIDDLEWARE_SAMPLING_CREATE 105
MIDDLEWARE_QUEUEING_CREATE 110
MIDDLEWARE_QUEUEING_SEND 111
MIDDLEWARE_QUEUEING_RECEIVE 112
LOCKOBJ_CREATE 201
LOCKOBJ_OPERATION 202
ERROR_HANDLER_CREATE 301
ERROR_HANDLER_SET_READY 302
ERROR_RAISE_APPLICATION_ERROR 303
ERROR_GET 304
PARTITION_SET_MODE 404

Table 3.1: System call IDs

– pok_syscall1

– pok_syscall2

– pok_syscall3

– pok_syscall4

– pok_syscall5

42 The Operating System

– pok_syscall6

– pok_syscall7

• Thread:

– pok_thread_create: performs the THREAD_CREATE system call which
creates a thread with the specified identifier

– pok_thread_sleep: performs the THREAD_SLEEP system call which
makes the thread sleep for the specified amount of time

– pok_thread_start: performs the THREAD_START system call which
starts the specified thread

– pok_thread_wait_infinite: alternative name for pok_thread_suspend
– pok_thread_period: performs the THREAD_PERIOD system call which

ends the current thread’s period
– pok_thread_id: performs the THREAD_ID system call which sets a

value at a given location to the current thread identifier
– pok_thread_resume: performs the THREAD_RESUME system call which

resumes a thread given an id
– pok_thread_suspend_other: performs the THREAD_SUSPEND_OTHER

system call which suspends the specified thread
– pok_thread_suspend: performs the THREAD_SUSPEND system call which

suspends the current thread
– pok_thread_stop_self: performs the THREAD_STOP_SELF system

call which stops the current thread
– pok_thread_stop: performs the THREAD_STOP system call which stops

the specified thread

• Time:

– pok_time_get: performs the GET_TIME system call which returns a
64 bit value containing the current time

– pok_time_gettick: performs the GETTICK system call which returns
the number of ticks since the system started

3.3.2 Middleware Library

The functions contained in this layer implement most of the functionalities of-
fered by the ARINC library but are not part of the ARINC653 specification.
These functionalities should be used through ARINC library functions, accessing
them directly results in a non-portable application.

3.3 The Library Layer 43

• Blackboard:

– pok_blackboard_create: creates a blackboard data structure and
associates an event to it

– pok_blackboard_read: reads a message from the blackboard, if the
blackboard is empty the associated event is locked and the caller
waits the specified timeout. When a message arrives or the timeout
expires the event is unlocked

– pok_blackboard_display: displays a message in the blackboard and
unlocks the associated event

– pok_blackboard_clear: empties the blackboard

– pok_blackboard_id: returns blackboard’s identifier

– pok_blackboard_status: returns blackboard’s status

• Buffer:

– pok_buffer_create: creates a buffer data structure and the associ-
ated events

– pok_buffer_receive: reads a message from the buffer, if the buffer
is empty the associated event is locked and the caller waits the spec-
ified timeout. If the buffer becomes empty the event is locked, if it
becomes non-full the event is unlocked

– pok_buffer_send: tries to send a message to the buffer, if it is full
the associated event is locked and the caller waits for it to become
unlocked. If the buffer becomes non-empty the corresponding event
is unlocked

– pok_buffer_status: returns the status of the buffer

– pok_buffer_id: returns the identifier of the buffer

• Port:

– pok_port_queueing_create: creates a queueing port

– pok_port_queueing_receive: receives data present in the queue

– pok_port_queueing_send: sends data to the port if it is not full

– pok_port_sampling_create: creates a sampling port

– pok_port_sampling_write: writes some content to a sampling port,
updating the previously stored data

– pok_port_sampling_read: reads the content of the sampling port
which according to the sampling semantics is the last written content

– pok_port_sampling_id: gets the sampling port identifier

44 The Operating System

3.3.3 ARINC Library

The functions contained in this part of the library deal with the creation and
management of the data structures presented in Section 3.2. Blackboards,
buffers and ports functions are implemented calling the ones in the middleware
library presented in Section 3.3.2.

• Error:

– RAISE_APPLICATION_ERROR: raises an application error through a
system call

• Event:

– CREATE_EVENT: creates an event using the core library, the ARINC
event is created locked

– SET_EVENT: calls the pok_event_signal function of the core library

– RESET_EVENT: calls the pok_event_lock of the core library and sets
the event to “down”

– GET_EVENT_ID: returns the identifier of the event

– GET_EVENT_STATUS: returns the status of the event

• Partition:

– SET_PARTITION_MODE: calls the core library and sets the partition
operating mode

• Process: As stated before an ARINC process corresponds to a POSIX
thread. Processes are implemented through kernel threads

– CREATE_PROCESS: creates a thread using the core library

– SUSPEND_SELF: calls the core library and suspends the calling thread

– SUSPEND: calls the core library and suspends a thread given an iden-
tifier

– STOP_SELF: calls the core library and stops the calling thread

– STOP: calls the core library and stops a thread given an identifier

– START: calls the core library and starts a thread given an identifier

– DELAYED_START: calls the core library and starts a thread given an
identifier after a given delay

– GET_MY_ID: returns the identifier of the calling process

– GET_PROCESS_ID: returns a process identifier given its name

3.4 TiCOS Time-composability 45

• Time:

– TIMED_WAIT: calls the function pok_thread_sleep of the core library

– PERIODIC_WAIT: calls the function pok_thread_period of the core
library

– GET_TIME: calls the function pok_time_get of the core library

3.4 TiCOS Time-composability

One of the goals of the development of TiCOS was obtaining time-composability.
The ARINC 653 standard focuses on the creation of partitioned systems in which
each application is time and space isolated from the others.
In order to assure time-composability at the kernel level two main requirements
have to be guaranteed:

• Zero-disturbance: when using hardware which exposes history-dependent
behaviour the execution of the operating system services must not influ-
ence the application timing behaviour. Two techniques were inspected in
the development of the operating system [BMV12]: 1) using techniques
similar to cache partitioning [Mue95]: reserving a cache portion for the
OS services makes the OS still benefit from performance enhancements
without affecting user code timing behaviour; 2) preventing the OS from
using all the history dependent hardware. Moreover: time-triggered OS
services (activated by a timer expire) may disturb the execution of ap-
plication software. To mitigate this interference a deferred preemption
mechanism is adopted by the OS in order to identify a limited number of
preemption points assuring uninterrupted execution times.

• Steady timing behaviour: Different factors may influence the OS jittery
time behaviour: 1) hardware state; 2) software state; 3) input data. Hard-
ware state influence is taken into account along with the zero-disturbance
treatment. Software state is solved by developing system services with a
constant-time behaviour, such as a O(1) scheduler [BMV12]. The execu-
tion time of some services, such as ARINC communication services, may
depend on the size of manipulated data. This type of influence is hard to
be completely removed, the solution adopted is shown in Section 3.4.3.

46 The Operating System

3.4.1 Time Management

The time management approach used by TiCOS minimizes the interference of
OS routines used to manage the time with the user applications. Instead of
using a tick-counter-based approach which forces certain routines of the OS to
be periodically executed, and thus interfere with applications, an interval timer
mechanism is used. Originally implemented through the PPC DEC register the
interval timer approach ensures to incur in less interference: an application is
interrupted at fixed points. In the ARINC standard, where a system is di-
vided into partitions each of which is assigned a time slot, the interval timer
is set to expire only at partition switches so that no application is interrupted.
During each time slot partition’s processes (ARINC equivalent for task) share
the processor, preemption is enabled only at the end of each job, implementing
run-to-completion behaviour.

3.4.2 Scheduling

TiCOS has a constant-time (O(1)) fixed-priority scheduler inspired by the O(1)
Linux scheduler adopted in kernel version 2.5 [Mol]. The selection of the highest
priority task is implemented through bitwise operations and in order to avoid
the use of FIFO queues (non-constant-time insertion) for each priority level
each task is required to have a different level of priority. 255 levels of priority
are defined, since ARINC applications have to support up to 128 processes a
different priority level can be assigned to each of them.
A process can be set to be activated at each time in a scheduling slot but since
a run-to-completion semantics is required the activation time is delayed until
the end of the current process execution (see figure 3.3).

3.4.3 IO Communication

The communication between partitions is implemented through ARINC ser-
vices: sampling and queueing ports. These two structures enable a message-
oriented communication between applications. Ports can be a treat for time-
composability mostly because of the variability of the amount of data that can
be transferred. A possible solution could be forcing to transfer always as much
data as the maximum size of a port, resulting in a constant time behaviour, but
this would lead to a considerable performance loss.
To partially solve the problem the data-dependent part of each IO operation
is delayed and placed where it will have less interference with the user appli-

3.5 Build Chain 47

Figure 3.3: Run-to-completion within a time slot (from [BMV12])

cations. Each write to a port is placed in the slack time at the end of the
execution of a partition before the end of the execution slot. Likewise data is
read at the beginning of the execution slot, as shown in figure 3.4. In this way
the correctness of the communication is guaranteed since we are dealing with
inter-partition communication.

Figure 3.4: Inter-partition port communication (from [BMV12])

3.5 Build Chain

The compilation of an architecture realized with TiCOS requires two phases:
1) kernel and partition compilation; 2) integration of kernel and partitions into

48 The Operating System

a single executable. Kernel and each partition are compiled in different ELF files
and then assembled in a single bootable ELF. Each partition contains a main
function responsible for creating all the partition’s threads.

3.5.1 Kernel Compilation

The kernel’s compilation requires a configuration file, deployment.h, containing
pre-compilation directives to configure the kernel’s executable. deployment.h is
included in every compilation unit. The build process creates the file kernel.lo
as shown in figure 3.5.

Figure 3.5: Visual representation of the compilation units concurring to form
the kernel link object

A linker script (kernel.lds) is used to create the kernel’s executable.

3.5.2 Partitions Compilation

Each partition willing to execute in the system is compiled separately into an
ELF file. These executables contain the user code and the TiCOS library. First
of all the TiCOS library is compiled using the configuration file deployment.h
into a static library, secondly the partition ELF is built compiling with a linker
script (partition.lds) the user code with the shared library just created, as
depicted in figure 3.6.

3.5 Build Chain 49

Figure 3.6: Visual representation of the compilation units concurring to form
the partition ELF

3.5.3 Integration of Kernel and Partitions

Figure 3.7: Visual representation of the integration process of kernel and par-
titions

To integrate kernel and partitions each partition executable is padded in order
to have it aligned then all partition’s ELF are assembled in the same binary
archive partitions.bin. After this a sizes.c file is created, containing the
sizes of each partition, and compiled obtaining sizes.o. partitions.bin is
then added to size.o and finally compiled with kernel.lo. The process is
described in figure 3.7.

50 The Operating System

Chapter 4

Processor Extensions

Coarsely, an RTOS offers services of three kinds: CPU allocation, memory
allocation, and intra-task communication. In order to offer these functionalities,
which allow to furnish a computational model more complex than the fixed
allocation of a task to a processor, the underlying hardware should implement
mechanisms such as interrupts and memory protection. This is the reason why
the Patmos processor described in Chapter 2 has been extended with:

• Interrupts

• Stack cache manipulation instructions

Other extensions, e.g., for memory protection, have been discussed and investi-
gated. However, since their implementation was not mandatory for the OS to
work they have not been realized yet:

• Address range checks

• Supervisor mode and cache invalidation

52 Processor Extensions

4.1 Interrupts

Interrupts are used to stop the current flow of control jumping to a dedicated
Interrupt Service Routine (ISR) in order to react to external events [DTU12b].
Interrupts are widely adopted by modern architectures for several reasons; inter-
rupts are used, for instance, to implement preemptive scheduling mechanisms,
start periodic operations, or react to I/O events.
When a context switch happens, processor’s state must be stored to memory in
order to restore it at a later point.

Different solutions for time and interrupt management have been developed.
PPC 750 model [Fre12] offers a long-period timer called TB - Time Base. The
TB is a 64-bit structure that consists of two 32-bit registers: time base upper
(TBU) and time base lower (TBL). PPC 750 offers also a decrementer register DEC.
The DEC register is a 32-bit decrementing register used to fire a decrementer in-
terrupt at a programmable delay. DEC has the same update frequency as the
time base. When a decrementer interrupt is fired, instruction fetching resumes
at a specified position in main memory where an ISR (Interrupt Service Rou-
tine) has been previously set.
A more complete solution is AM17x/AM18x ARM Microprocessor which of-
fers a Real-Time Clock (RTC) [Ins11]. Several RTC registers are mapped into
memory: SECOND, MINUTE, HOUR, DAY, MONTH, YEAR, some memory-mapped reg-
isters can be used to set up interrupt intervals: ALARMSECOND, ALARMMINUTE,
ALARMHOUR, ALARMDAY, ALARMMONTH, ALARMYEAR.

The Patmos RTC offers different registers mapped to the local memory, which
allow to read/write different values.

Address I/O Device
0xf0000300 Clock cycles (lower 32 bits)
0xf0000304 Clock cycles (upper 32 bits)
0xf0000308 Time in microseconds (lower 32 bits)
0xf000030C Time in microseconds (upper 32 bits)
0xf0000310 Interrupt interval
0xf0000314 ISR address

Table 4.1: Memory mapped RTC registers

The clock cycles counter is a 64 bits value updated every CPU cycle. The time
in microseconds (64 bits) value is incremented every microsecond. The interrupt
interval value is decremented every CPU cycle and when it reaches 0 an interrupt

4.1 Interrupts 53

is fired and it is set back to its maximum value (both upper and lower registers
to 0xfffffff). The ISR address value can be used to set the address of the
interrupt service routine which has to be called after an interval interrupt.

4.1.1 Simulator Implementation

In order to implement the interrupts mechanism (the memory mapped RTC
and the ISR calls) the Patmos simulator (whose architecture is described in
Appendix A) has been extended. A memory mapped resource has been added
mapping the register of the RTC as shown in table 4.1. Given the architecture
explained in appendix A a new class called mm_rtc has been created extending
the base class mapped_device, this class makes available the addresses in table
4.1 and allows to access the RTC registers. In order to access RTC registers
the mm_rtc class contains a field referencing an object of another class which
actually implements the RTC functionalities (rtc_t class).

The rtc_t class holds a value for each register: clock cycles, time in microsec-
onds, interrupt interval and ISR address and publishes methods to read and
write those values. Moreover the rtc_t class has a method to notify the RTC
that a cycle has passed, this method is called tick.

A single RTC object is created as the simulation starts and is contained in
the class simulator_t, at every simulator cycle the tick method is called on
the rtc_t object. Since the software simulator cycle can not execute with a
guaranteed frequency the tick method increments by one both the clock cycle
counter and the time in microseconds register; this method is also responsible for
decrementing the interrupt interval value. The extended architecture is shown
in figure 4.1.

The class interrupt_handler_t realizes the connection between the compo-
nents firing interrupts and the simulation core, responsible of actually handling
those interrupts. When an interrupt is fired it is appended to a collection of
interrupt describers in the class interrupt_handler_t. At every cycle the sim-
ulator checks for interrupts pending in the interrupt_handler_t object, the
handling code is shown in listing 4.1.

To handle the interrupts a new branch instruction has been defined, represented
by the class i_intr_t, and it is inserted in the pipeline when a pending inter-
rupt is detected. An i_intr_t instruction can not be decoded so it can not be

54 Processor Extensions

Figure 4.1: Class diagram for the RTC’s simulator extension

used by the programmer. However, it can be executed by the simulator. An
i_intr_t instruction is just like a branch instruction which jumps to the ISR
address. After this instruction is added a special register (s9) is set to the re-
turn address (the PC). interrupt_handling counter is set in order to remember
that an interrupt instruction has been added and since it behaves like a branch
bubble instructions must be added in the next cycles.

Particular attention must be placed into handling interrupts fired during the
execution of branch instructions. As shown in Section 2.3.10 branch instructions
must be followed by branch-delay slots, during these slots the branch takes
actually place. The execution of an interrupt instruction should be placed after
those slots, but in case of loop it has to be placed before the branch instruction
is executed again. Those are the reasons why if a branch instruction is decoded
a counter is set in order to make the simulator aware that the next instructions
have not to be interrupted.

Listing 4.1: Interrupt handling code added to the simulator main cycle

1 i f (Interrupt_handler . interrupt_pending () &&
2 branch_counter == 0 &&
3 in ter rupt_handl ing == 0)
4 {
5

4.2 Stack Cache Manipulation 55

6 in te r rupt_t &in t e r r up t = Interrupt_handler . ge t_inter rupt () ;
7

8 Pipe l i n e [0] [0] = instruct ion_data_t : :mk_CFLb(∗ i n t r , p0 , i n t e r r up t
. Address) ;

9 Pipe l i n e [0] [1] = instruct ion_data_t () ;
10

11 // Handling in t e r rupt , next CPU cyc l e no new i n s t r u c t i o n s have to
be decoded

12 in ter rupt_handl ing = 3 ;
13

14 // Store re turn from in t e r r up t address
15 SPR. s e t (s9 , PC) ;
16 }
17 e l s e
18 {
19 i f (inter rupt_handl ing > 0)
20 {
21 // Putt ing more empty i n s t r u c t i o n s
22 Pipe l i n e [0] [0] = instruct ion_data_t () ;
23 Pipe l i n e [0] [1] = instruct ion_data_t () ;
24 interrupt_handl ing −−;
25 } e l s e {
26 // f e t ch the i n s t r u c t i o n word from the method cache .
27 Method_cache . f e t ch (PC, iw) ;
28 iw_size = Decoder . decode (iw , P ip e l i n e [0]) ;
29

30 // prov ide next program counter va lue
31 i f (P ip e l i n e [0] [0] . I−>is_f low_contro l ())
32 branch_counter = 2 ;
33 e l s e i f (branch_counter)
34 branch_counter−−;
35

36 nPC = PC + iw_size ∗4 ;
37 }
38 }

4.2 Stack Cache Manipulation

As noted in Section 2.1.3 the stack cache is handled using three simple instruc-
tions:

• sres

• sens

• sfree

56 Processor Extensions

Any of those instructions takes an immediate parameter. In order to sup-
port context switching more complex ways of manipulating the stack cache are
needed. Section 2.1.3 shows how the type of data a stack cache contains allows
not to implement a write-back policy; this may lead to inconsistencies: the stack
cache can contain data not persisted in the actual stack. When a context switch
happens there is the need not only to save registers state but the state of the
stack cache needs to be saved for the current executing thread and not only
registers state of the next executing thread but even its stack cache has to be
restored. Figure 4.2 shows how the stack cache can have a more updated state
than the actual stack and the values of the pointers ss (stack spill address) and
st (stack pointer).

Figure 4.2: Possible state of the stack cache and the actual stack during the
execution

When a context switch occurs the stack cache state may be the one depicted in
figure 4.2. In this case stack cache content has to be saved to the main memory
since it has not been saved yet and the new executing thread may be changing
the stack cache itself. None of the three previously defined instructions allows
writing back a specific amount of stack cache, so a new instruction, sspill has
been introduced.

sspill instruction takes an immediate or a register parameter and saves the
specified amount of stack cache in main memory downward, starting from ad-
dress ss. This means that, starting from the configuration in figure 4.2 and
supposing to execute the instructions in listing 4.2, the stack state will be just

4.2 Stack Cache Manipulation 57

like the one in figure 4.3.

Listing 4.2: Code for spilling to main memory the cached stack

1 // Computing the s i z e o f the cached stack
2 mfs r5 = s s
3 mfs r6 = s t
4 sub r27 = r5 , r6
5 // S p i l l i n g the computed s i z e to main memory
6 s s p i l l r27

Figure 4.3: Stack cache and memory state after executing instructions 4.2

On a context switch the current executing thread must be saved but the re-
entering thread’s context must also be restored and this means restoring the
stack cache state too. Even in this situation none of the three previously defined
instructions can be helpful. What is needed is an ensure instruction capable of
checking and eventually loading a dynamic amount of stack. A new sens in-
struction, accepting a register parameter has been defined. Its behaviour is just
like the immediate ensure and is shown in figure 4.4.

Immediately after saving the current executing thread’s stack cache the elected
thread’s stack cache state needs to be restored. To restore the stack cache the
sens instruction is used in its register version. This instruction takes a register
as a parameter and ensures that the specified amount from the top of the stack
is contained in the stack cache. To restore the previous state the size of the stack

58 Processor Extensions

previously contained in the cache has to be known, this value can be computed
as old_ss - st.

(a) State of a newly elected thread’s stack and stack cache before sens

(b) State of the stack cache after sens

Figure 4.4: Changes to the stack cache after the execution of sens rX where
rX contains the value old_ss - st

4.3 Memory Protection 59

4.3 Memory Protection

A composable operating system has to offer timing and spatial separation be-
tween processes. Moreover, in modern real-time systems it is common to have
processes of different integrity levels executing on the same processor, this makes
the need of memory protection arise. In order to have a time-composable system
and to guarantee memory protection between different integrity levels spatial
separation is necessary.
Several ways of providing spatial separation exist, most of them rely on mem-
ory virtualization and the usage of a Memory Management Unit (MMU). Modern
processors implement a MMU which is responsible for translating virtual to phys-
ical addresses in order to make processes access their own memory and avoid
forbidden accesses. Commercial MMUs are often tuned on the average case, they
make use of a software managed address cache called Translation Look-aside
Buffer (TLB). A TLB is a fixed size software managed set of PTE (Page Table
Entries), it is searched through a virtual address and allows to translate it to a
physical address.

TLB lookups, just like normal caches lookups, can result in a hit or a miss. A suc-
cessful lookup (hit) has a bounded WCET. On the other hand the miss WCET
is really hard to compute since a complex pagetable data structure stored in
memory has to be consulted.

Different solutions are adopted by modern real-time operating systems in the
field of memory separation and protection, always trying to avoid the complexity
of virtual address translation. [BA01] argues that two main approaches can be
carried on:

1. Using the MMU translation system as it is

2. Disabling all the memory translation features and running all the processes
in the same address space

TiCOS natively targets the PowerPC architecture and makes use of virtual
address translation. In the case of Patmos no virtual memory support and
address translation was available. Because of the lack of these functionalities all
processes run in the same address space.

Often real-time operating system exploit only the permission functionalities of
a MMU, avoiding the virtual-to-physical address translation, to provide mem-

60 Processor Extensions

ory protection ([SMB05] and [Car04]). Using only some MMU’s functionalities,
as shown in [BA01], can guarantee spatial separation maintaining the system
analyzable. Processors providing a software programmable TLB (that is: with
explicit PTEs load, such as PowerPC) allow to translate a certain range of vir-
tual addresses without incurring in a TLB miss. If the virtual addresses of all
pagetables are limited to this range the worst case execution time for a transla-
tion to physical address is limited by the time needed to search the TLB.
In the future Patmos processor may be extended with address range checks in
order to have spatial separation between processes.

4.4 Explicit Supervisor Mode and Cache Invali-
dation

Modern processors offer a way to distinguish between at least two execution
modes: user and supervisor mode. Supervisor mode allows to execute all in-
struction, even privileged ones, access a different address space and manipulate
memory management hardware. The existence of these modes helps protecting
the operating system data structures from corruption attempts made by user
code. When supervisor mode is not active the CPU will not allow to access
privileged memory areas or execute privileged instructions.

The switch between execution modes may be expensive in terms of computing
time: when switching from supervisor to user mode it is recommended to flush
and invalidate the caches in order to make sure the user code can not access
something it is not meant to. Switching to supervisor mode is usually done
when executing context switches and system calls.

Different processors provide different ways of switching to supervisor mode.
PowerPC processors [Fre05] have two levels of privilege: supervisor mode (used
only by the operating system) and user mode (used by the operating system
and application code). PowerPC architecture distinguishes between these two
modes through the Machine State Register (MSR), a special purpose register
holding processor’s configuration setup: the PR bit of the MSR indicates the
privilege level as follows:

• MSR[PR]=1: user mode

• MSR[PR]=0: supervisor mode

4.4 Explicit Supervisor Mode and Cache Invalidation 61

MSR[PR] is set to 0 (supervisor) every time an interrupt happens and an ISR is
executed. The user code can explicitly switch to supervisor mode through the
sc instruction which causes a System Call exception and the execution of the
system call ISR.
An ARM processor [ARM12] has 7 different privilege levels:

• SVC (supervisor): entered when a system call instruction (SVC) is executed

• FIQ: high priority interrupts mode

• IRQ: normal priority interrupts mode

• Abort: entered when memory protection is violated

• Undef: entered when undefined instructions are used

• System: just like SVC mode but working with user mode registers

• User

The privilege level is stored in a field in the Current Program Status Register
(CPSR), a special register holding both ALU’s and processor’s status. Modifi-
cation to the priority level can be done by directly manipulating the CPSR. In
order to access the OS services user code can explicitly switch to supervisor
mode through the system call instruction (SVC).

As a future possible extension, the Patmos processor might be added a syscall
instruction dedicated to switching to supervisor mode through an interrupt and
defining a special register holding the machine state, including at least one bit
to distinguish between user and supervisor mode.

Another possible extension may be the previously mentioned cache flushing and
invalidation. Invalidating the caches when a context switch happens is a com-
mon practice in avionics when a partition switch happens since partitions do
not have shared memory. Moreover cache invalidation can be useful to avoid in-
terference between the current executing thread and the next elected one when
preemption is enabled.

Patmos provides three kinds of caches: stack, method, and data cache. The
stack cache has enough instruction to be handled precisely by the operating
system, storing and restoring its content without any need for invalidation.

62 Processor Extensions

Chapter 5

TiCOS Extensions

The TiCOS operating system has been extended to support the Patmos ar-
chitecture. The porting of the operating system has been carried on following
an incremental development technique. Following the structure presented in
Chapter 3 the incremental development followed the operating system layers
order:

1. kernel: the kernel layer, divided itself in two layers, examined in the
appearing order: arch and core

2. ARINC API and library

The incremental development technique allowed to start from the most architectural-
dependent layer, understanding and modifying small functions which form to-
gether the core functionalities of the operating system. Moving to the next layer
(the core one) all the underneath dependencies were already ported to the Pat-
mos architecture and this let the development be more focused on core services
of the operating system.

A common risk when porting an existing operating system to a different archi-
tecture is concentrating too much on the architectural-dependent code. This

64 TiCOS Extensions

attitude may lead to miss the perspective on the system as a whole. When
working with notably different architectures, like Patmos, the porting is not
only an assembly-translation but the core functionalities of an OS have to be
inspected paying attention on identifying unnecessary operations and possible
optimizations.

In the following the operating system’s changes are analyzed as incrementally
as possible. Some functionalities that are inherently cross layer (like context
switching) are however explained in a dedicated section in order to achieve
more clarity.

5.1 Architectural Changes

As shown is Section 3.5 the architectural layer of the operating system is com-
piled in a single link object (arch.lo). Since this layer is mainly made of
assembly files not much code can be reused and for this reason a new directory
named arch/patmos has been created containing all the Patmos-dependent code
which is then compiled in arch.lo.

5.1.1 Clock

In Section 4.1 the new memory mapped real-time clock is presented. The RTC’s
registers are mapped to the local memory and therefore have to be accessed
through local memory instructions.
A header file has been created defining a number of pre-compilation directives
allowing to read and write RTC memory mapped registers, see listing 5.1 for
details.

Listing 5.1: rtc.h contains directives to read and write memory mapped RTC
registers

1 #de f i n e _IODEV __attribute__ ((address_space (1)))
2

3 typede f _IODEV unsigned i n t v o l a t i l e ∗ const _iodev_ptr_t ;
4

5 #de f i n e __PATMOS_RTC_CYCLE_LOW_ADDR (0 xF0000300)
6

7 #de f i n e __PATMOS_RTC_CYCLE_UP_ADDR (0 xF0000304)
8

9 #de f i n e __PATMOS_RTC_TIME_LOW_ADDR (0 xF0000308)
10

5.1 Architectural Changes 65

11 #de f i n e __PATMOS_RTC_TIME_UP_ADDR (0xF000030C)
12

13 #de f i n e __PATMOS_RTC_INTERVAL_ADDR (0 xF0000310)
14

15 #de f i n e __PATMOS_RTC_ISR_ADDR (0 xF0000314)
16

17 #de f i n e __PATMOS_RTC_RD_CYCLE_LOW(re s) r e s = ∗ ((_iodev_ptr_t)
__PATMOS_RTC_CYCLE_LOW_ADDR) ;

18

19 #de f i n e __PATMOS_RTC_RD_CYCLE_UP(r e s) r e s = ∗ ((_iodev_ptr_t)
__PATMOS_RTC_CYCLE_UP_ADDR) ;

20

21 #de f i n e __PATMOS_RTC_RD_TIME_LOW(re s) r e s = ∗ ((_iodev_ptr_t)
__PATMOS_RTC_TIME_LOW_ADDR) ;

22

23 #de f i n e __PATMOS_RTC_RD_TIME_UP(r e s) r e s = ∗ ((_iodev_ptr_t)
__PATMOS_RTC_TIME_UP_ADDR) ;

24

25 #de f i n e __PATMOS_RTC_WR_CYCLE_LOW(va l) ∗ ((_iodev_ptr_t)
__PATMOS_RTC_CYCLE_LOW_ADDR) = va l ;

26

27 #de f i n e __PATMOS_RTC_WR_CYCLE_UP(va l) ∗ ((_iodev_ptr_t)
__PATMOS_RTC_CYCLE_UP_ADDR) = val ;

28

29 #de f i n e __PATMOS_RTC_WR_INTERVAL(i n t e r v a l) ∗ ((_iodev_ptr_t)
__PATMOS_RTC_INTERVAL_ADDR) = i n t e r v a l ;

30

31 #de f i n e __PATMOS_RTC_WR_ISR(address) ∗ ((_iodev_ptr_t)
__PATMOS_RTC_ISR_ADDR) = address ;

Some of the directives define addresses to the local memory:

• _IODEV: redefines __attribute__((address_space(1))) which allows to
access different address spaces, in this case 1 indicates the local memory

• _iodev_ptr_t: type for a constant pointer to the local memory, allows to
access memory mapped registers

• __PATMOS_RTC_CYCLE_LOW_ADDR: address for the lower 32 bits of the cycle
counter

• __PATMOS_RTC_CYCLE_UP_ADDR: address for the upper 32 bits of the cycle
counter

• __PATMOS_RTC_TIME_LOW_ADDR: address for the lower 32 bits of the time
in microseconds register

• __PATMOS_RTC_TIME_UP_ADDR: address for the upper 32 bits of the time
in microseconds register

• __PATMOS_RTC_INTERVAL_ADDR: address for the interval register

66 TiCOS Extensions

• __PATMOS_RTC_ISR_ADDR: address for the memory mapped register of the
ISR’s address

Other directives enable reading memory-mapped registers:

• __PATMOS_RTC_RD_CYCLE_UP and __PATMOS_RTC_RD_CYCLE_LOW: read up-
per and lower 32 bits of the cycle counter

• __PATMOS_RTC_RD_TIME_UP and __PATMOS_RTC_RD_TIME_LOW: read upper
and lower 32 bits of the time in microseconds

And some directives allow to write values to the memory-mapped registers:

• __PATMOS_RTC_WR_CYCLE_UP and __PATMOS_RTC_WR_CYCLE_LOW: write up-
per and lower 32 bits of the cycle counter

• __PATMOS_RTC_WR_INTERVAL: writes to the memory-mapped interval reg-
ister, the value is supposed to be a clock cycles number

• __PATMOS_RTC_WR_ISR: writes to the memory-mapped register holding the
interval ISR address

The above directives are used in the time management functions of the operating
system’s architectural layer. These functions realize basic operative system’s
services such as: reading the time base, writing the time base, and setting the
interrupt interval.

5.1.2 Thread’s Context

The PowerPC architecture provides three types of registers [IBM98]:

• volatile: functions may modify these registers. The content of volatile
register has not to be preserved

• non-volatile: functions must preserve their value. If a function modifies a
non-volatile register it has to restore the previous content before returning

• dedicated : these registers have to be used only for their specific purpose

5.1 Architectural Changes 67

The original operating system defined two data structures holding a thread’s
context: volatile_context_t and context_t. The structures holding the con-
text were originally allocated on the top of the thread’s stack. The union of the
two data structures is a multiple of a quadword since, according to the PowerPC
EABI [IBM98], a stack frame has to be quadword aligned.

The thread context in Patmos is much simpler for several reasons:

• In Patmos there’s no particular need to have different data structures for
volatile (caller-saved) and non-volatile (callee-saved) registers

• The thread context in Patmos is more compact: as presented in Section
2.2 there are only 32 general purpose registers (32 bit), 16 special pur-
pose registers (32 bit) and 8 predicate registers (1 bit). No floating point
registers have to be saved

• Patmos stack do not impose any particular alignment to stack frames;
furthermore, in Patmos thread’s context is not placed on the stack

That said, the data structure holding the context is presented in listing 5.2.

Listing 5.2: C structure holding Patmos context

1 typede f s t r u c t
2 {
3 uint32_t r1 ; /∗ 0 ∗/
4 uint32_t r2 ;
5 uint32_t r3 ; /∗ 8 ∗/
6 uint32_t r4 ;
7 uint32_t r5 ; /∗ 16 ∗/
8 uint32_t r6 ;
9 uint32_t r7 ; /∗ 24 ∗/

10 uint32_t r8 ;
11 uint32_t r9 ; /∗ 32 ∗/
12 uint32_t r10 ;
13 uint32_t r11 ; /∗ 40 ∗/
14 uint32_t r12 ;
15 uint32_t r13 ; /∗ 48 ∗/
16 uint32_t r14 ;
17 uint32_t r15 ; /∗ 56 ∗/
18 uint32_t r16 ;
19 uint32_t r17 ; /∗ 64 ∗/
20 uint32_t r18 ;
21 uint32_t r19 ; /∗ 72 ∗/
22 uint32_t r20 ;
23 uint32_t r21 ; /∗ 80 ∗/
24 uint32_t r22 ;
25 uint32_t r23 ; /∗ 88 ∗/

68 TiCOS Extensions

26 uint32_t r24 ;
27 uint32_t r25 ; /∗ 96 ∗/
28 uint32_t r26 ;
29 uint32_t r27 ; /∗ 104 ∗/
30 uint32_t r28 ;
31 uint32_t r29 ; /∗ 112 ∗/
32 uint32_t r30 ;
33 uint32_t r31 ; /∗ 120 ∗/
34

35 uint32_t s0 ;
36 uint32_t s1 ; /∗ 128 ∗/
37 uint32_t s2 ;
38 uint32_t s3 ; /∗ 136 ∗/
39 uint32_t s4 ;
40 uint32_t s5 ; /∗ 144 ∗/
41 uint32_t s6 ;
42 uint32_t s7 ; /∗ 152 ∗/
43 uint32_t s8 ;
44 uint32_t s9 ; /∗ 160 ∗/
45 uint32_t s10 ;
46 uint32_t s11 ; /∗ 168 ∗/
47 uint32_t s12 ;
48 uint32_t s13 ; /∗ 176 ∗/
49 uint32_t s14 ;
50 uint32_t s15 ; /∗ 184 ∗/
51

52 uint32_t s s i z e ; /∗ 188 ∗/
53 } context_t ;

The Patmos context contains general-purpose caller-saved (scratch) registers
(r1-r19), general-purpose callee-saved registers (r20-r31) and special purpose
registers (s0-s15). Since r0 always contains 0 by convention there’s no need
to save in in the context. In the Patmos processor the context of a thread is
not only made of registers but even the stack cache status has to be taken into
account. This is the reason for the field ssize in the context data structure: it
holds the amount of thread’s stack stored in the cache and it is used to restore
the stack cache status after a context switch, details in Section 5.4.

5.1.3 Memory Management

The original operating system made use of PowerPC memory virtualization func-
tionalities. As stated in Section 4.3 Patmos has no virtual memory capabilities
so a new memory allocation mechanism has to be thought. In 4.3 address range
checks have been presented as a possible extension for the Patmos processor,
keeping this in mind the memory could be divided in parts each of which could
be assigned a different privilege level. According to this a thread’s context is
no longer stored on the top of the thread’s stack but a dedicated OS structure

5.1 Architectural Changes 69

has been allocated in memory, holding all the user application threads contexts.
Using the memory protection technique this array of contexts could be stored
in the protected memory area with kernel level privilege.

As presented in Chapter 2, Patmos not only supports a normal and cached
stack but even a shadow stack dedicated to hold aliased data. Therefore each
thread must benefit from allocated memory for both caches. Before inspecting
the memory layout created by the operating system it is worth to take a look to
how the system is inited and the partitions are created. First of all the kernel
is booted using a kernel stack (cached) and a kernel shadow stack. During
the booting phase each partition is loaded into memory and for each partition
a main thread is created, responsible for starting all the partition’s processes.
Each partition’s main thread owns a cached stack and a shadow stack. Each
ARINC process is mapped to a thread and so is granted space for both stacks.
To sum things up the memory to be allocated is:

• A cached stack and a shadow stack for the kernel

• A cached stack and a shadow stack for each partition’s (main thread)

• A cached stack and a shadow stack for each partition’s process

The memory for the kernel’s stack is placed in the bss section and two labels
are defined in order to access this memory (see listing 5.3).

Listing 5.3: Assembly labels for the kernel’s stacks

1 . s e c t i o n " . bss " , "aw"
2 pok_shadow_stack :
3 . space 8 ∗ 1024
4 . g l o b l pok_shadow_stack_end
5 pok_shadow_stack_end :
6

7 pok_stack :
8 . space 8 ∗ 1024
9 . g l o b l pok_stack_end

10 pok_stack_end :

The two defined labels are used to initialize stack pointer’s register (st), shadow
stack pointer’s register (r29) and the stack cache spill address (ss) in the entry
point function of the operating system, indicated in listing 5.4.

Listing 5.4: Assembly code for the entry point of the operating system

1 . g l o b l _pok_reset

70 TiCOS Extensions

2 . type _pok_reset , @function
3 . s i z e _pok_reset , . Ltmp8−_pok_reset
4 . f s t a r t _pok_reset , . Ltmp8−_pok_reset , 4
5 _pok_reset :
6 l i $r1 = pok_stack_end
7 l i $r2 = pok_shadow_stack_end
8 mov $r29 = $r1
9 mts $s t = $r2

10 mts $s s = $r2
11 and $r0 = $r0 , 0x0
12

13 br c f _pok_clear_bss
14 nop
15 nop
16 nop
17 . Ltmp8 :

Through the kernel’s linker script a label _end is defined, identifying the end
of the bss section. When the kernel is loaded into memory the _end pointer
indicates where to start allocating threads stacks. The space allocation works
as follows:

1. For each partition:

(a) An amount of memory enough to hold all its threads stacks is allo-
cated (_end pointer is moved forward)

(b) From this memory some space is reserved for the main thread ’s stacks

2. For each partition’s user thread:

(a) Some space is reserved in the partition’s memory for stack and shadow
stack

(b) Some memory is allocated, starting from _end pointer) to hold the
thread’s context

The size of the kernel stacks is set by default while the size of the user threads
stacks can be configured through two directives, as shown in table 5.1.

Threads stacks are placed in partition’s memory starting from its bottom, first
the cached stack is placed and then the shadow stack. The memory layout
created by the operating system follows the structure depicted in figure 5.1.

5.2 Core Changes 71

Directive Value
USER_STACK_SIZE Configurable by the user
USER_SHADOW_STACK_SIZE Configurable by the user
KERNEL_STACK_SIZE 8192
KERNEL_SHADOW_STACK_SIZE 8192

Table 5.1: Stack sizes for user and kernel threads

5.2 Core Changes

Some of the changes made to the architectural layer are reflected to the core
layer. The core layer of the kernel is compiled into a library object core.lo, as
stated in 3.5. Since most of the code of this layer did not change, it made no
sense to create different directories for each architecture, therefore to implement
the following changes two pre-compilation directives are used: POK_ARCH_PPC
(indicates that the kernel is being compiled for PowerPC architecture) and
POK_ARCH_PATMOS (indicates that the kernel is being compiled for Patmos ar-
chitecture).

5.2.1 Bootloader

Section 3.5 showed how the partitions are compiled, archived together and then
put in the kernel’s executable. During the kernel’s boot phase the original ver-
sion of the operating system used to search the executable for the partitions
code, the research was made exploiting an array of partition’s sizes.

The partitions loading mechanism has been modified so as to make the sys-
tem more flexible and extendable: when booting the OS calls the function
partition_init responsible for creating the data structures holding all par-
titions and for loading each partition into memory, the partitions are loaded
from the UART.
The operating system expects a specific stream of data for each partition, the
format of the partition’s stream is shown in figure 5.2.

The loading of a partition, given a stream structured like in figure 5.2, is made
through two auxiliary functions: read_uint32 and read_data which respec-
tively load from the UART an unsigned integer and a specified amount of binary
data, these functions are shown in listing 5.5; both return the number of read
bytes.

72 TiCOS Extensions

Figure 5.1: Memory layout created by the operating system

5.2 Core Changes 73

Figure 5.2: Format of the partition’s stream expected by the operating system
on the UART

Listing 5.5: Function to read an integer and a variable amount of data from the
UART

1 s t a t i c uint32_t read_uint32 (uint32_t∗ ptr)
2 {
3 r e turn uart_read ((char ∗) (ptr) , s i z e o f (uint32_t)) ;
4 }
5

6 s t a t i c uint32_t read_data (uint32_t s i z e , char ∗ ptr)
7 {
8 r e turn uart_read (ptr , s i z e) ;
9 }

A partition is loaded through the function load_partition. First of all the par-
tition entry and the number of segments are read through the function read_int.
Then for each segment address and size are read through read_int, after this an
amount of data of the specified size is read using read_data. load_partition’s
code can be seen in listing 5.6.

Listing 5.6: load_partition code

1 void pok_loader_load_part it ion (const uint32_t part_id , uint32_t ∗
entry)

2 {
3 uint32_t part_entry ;
4 uint32_t segments ;
5

74 TiCOS Extensions

6 i f (read_uint32(&part_entry) != s i z e o f (uint32_t))
7 {
8 pok_part i t ion_error (part_id ,

POK_ERROR_KIND_PARTITION_CONFIGURATION) ;
9 }

10 i f (read_uint32(&segments) != s i z e o f (uint32_t))
11 {
12 pok_part i t ion_error (part_id ,

POK_ERROR_KIND_PARTITION_CONFIGURATION) ;
13 }
14

15 unsigned i n t segment = 0 ;
16 whi le (segment < segments)
17 {
18 uint32_t segment_address ;
19 uint32_t segment_size ;
20

21 i f (read_uint32(&segment_address) != s i z e o f (uint32_t))
22 {
23 pok_part i t ion_error (part_id ,

POK_ERROR_KIND_PARTITION_CONFIGURATION) ;
24 }
25 i f (read_uint32(&segment_size) != s i z e o f (uint32_t))
26 {
27 pok_part i t ion_error (part_id ,

POK_ERROR_KIND_PARTITION_CONFIGURATION) ;
28 }
29 i f (read_data (segment_size , (char ∗) segment_address) !=

segment_size)
30 {
31 pok_part i t ion_error (part_id ,

POK_ERROR_KIND_PARTITION_CONFIGURATION) ;
32 }
33 segment++;
34 }
35 ∗ entry = part_entry ;
36 }

The partition entry point is then set as the entry for the partition’s main thread
and partition’s segments are loaded into memory at the specified addresses.

5.2.1.1 elf2uart

elf2uart is a small program written in order to stream a Patmos executable to
the simulator UART. The Patmos simulator can be configured to take a text file
to be used as an input for UART reads, so elf2uart takes two files as parameters:
the Patmos executable and the UART file.
elf2uart uses libelf to inspect the executable file and performs the following
operations:

5.2 Core Changes 75

• Opens the executable file as a read file and the UART file as write file; lines
5 to 10 of listing 5.7

• Gets the ELF header; lines 21 to 23 of listing 5.7

• Gets the number of program’s headers in the program’s header table
(e_phnum field); lines 25 to 27 of listing 5.7

• Gets the file entry point (e_entry field) from the ELF header and writes
it to the UART; lines 29 to 32 of listing 5.7

• Computes the number of segments of type PT_LOAD. That is, segments to
be loaded into memory; lines 36 to 48 of listing 5.7

• For each segment:

– Segment address is written to the UART; lines 65 to 73 of listing 5.7

– Segment size is written to the UART; lines 65 to 73 of listing 5.7

– Segment data is written to the UART; lines 75 to 79 of listing 5.7

The function responsible for streaming a partition to the UART can be seen in
listing 5.7.

Listing 5.7: Functions to stream an ELF file to the UART file

1 s t a t i c void s t r e ame l f (const char ∗ e l f_f i l ename , const char ∗
uart_f i lename)

2 {
3 e l f_ve r s i on (EV_CURRENT) ;
4

5 i n t e l f _ f i l e = open (e l f_f i l ename , O_RDONLY, 0) ;
6 a s s e r t (e l f _ f i l e > 0) ;
7

8 FILE∗ ua r t_ f i l e ;
9 ua r t_ f i l e = fopen (uart_fi lename , "w") ;

10 a s s e r t (u a r t_ f i l e) ;
11

12 El f ∗ e l f = e l f_beg in (e l f _ f i l e , ELF_C_READ, NULL) ;
13 a s s e r t (e l f) ;
14

15 Elf_Kind ek = el f_kind (e l f) ;
16 a s s e r t (ek == ELF_K_ELF) ;
17

18 i n t ec = g e l f_g e t c l a s s (e l f) ;
19 a s s e r t (ec == ELFCLASS32) ;
20

21 GElf_Ehdr hdr ;
22 GElf_Ehdr ∗tmphdr = ge l f_getehdr (e l f , &hdr) ;
23 a s s e r t (tmphdr) ;
24

76 TiCOS Extensions

25 s i ze_t n , i ;
26 i n t ntmp = elf_getphdrnum (e l f , &n) ;
27 a s s e r t (ntmp == 0) ;
28

29 uint32_t entry = hdr . e_entry ;
30

31 uint32_t big_entry = toBigEndian (entry) ;
32 fw r i t e (&big_entry , 4 , 1 , u a r t_ f i l e) ;
33

34 std : : vector<GElf_Phdr> load_segments ;
35

36 f o r (i = 0 ; i < n ; i++)
37 {
38 GElf_Phdr phdr ;
39 GElf_Phdr ∗phdrtmp = gel f_getphdr (e l f , i , &phdr) ;
40 a s s e r t (phdrtmp) ;
41

42 i f (phdr . p_type == PT_LOAD)
43 {
44 load_segments . push_back (phdr) ;
45 }
46 }
47

48 i n t segments_number = load_segments . s i z e () ;
49

50 uint32_t big_segments_number = toBigEndian (segments_number) ;
51 fw r i t e (&big_segments_number , 4 , 1 , u a r t_ f i l e) ;
52

53 f o r (std : : vector<GElf_Phdr >: : i t e r a t o r i t = load_segments . begin () ;
i t != load_segments . end () ; ++i t)

54 {
55 GElf_Phdr phdr = ∗ i t ;
56 a s s e r t (phdr . p_vaddr == phdr . p_paddr) ;
57 a s s e r t (phdr . p_ f i l e s z <= phdr . p_memsz) ;
58

59 char ∗buf = (char ∗) mal loc (phdr . p_ f i l e s z) ;
60 a s s e r t (buf) ;
61

62 l s e e k (e l f _ f i l e , phdr . p_of fset , SEEK_SET) ;
63 read (e l f _ f i l e , buf , phdr . p_ f i l e s z) ;
64

65 uint32_t s t a r t_o f f s e t = phdr . p_vaddr ;
66 uint32_t s i z e = phdr . p_ f i l e s z ;
67 uint32_t t o t a l_ s i z e = phdr . p_memsz ;
68

69 uint32_t b ig_s ta r t_o f f s e t = toBigEndian (s t a r t_o f f s e t) ;
70 uint32_t b ig_s ize = toBigEndian (s i z e) ;
71

72 fw r i t e (&b ig_star t_o f f s e t , s i z e o f s t a r t_o f f s e t , 1 , u a r t_ f i l e) ;
73 fw r i t e (&big_size , s i z e o f s i z e , 1 , u a r t_ f i l e) ;
74

75 i n t j ;
76 f o r (j =0; j < s i z e ; j++)
77 {
78 fw r i t e (&(buf [j]) , 1 , 1 , u a r t_ f i l e) ;

5.3 Library Changes 77

79 }
80

81 f r e e (buf) ;
82 }
83

84 el f_end (e l f) ;
85 c l o s e (e l f _ f i l e) ;
86 f c l o s e (u a r t_ f i l e) ;
87 }

If elf2uart is executed on a little-endian architecture the read integers (sizes
and addresses) are represented according to the little-endian format. Patmos
processor manipulates big-endian data, so before streaming those integers to the
UART they have to be converted to big-endian using the function in listing 5.8.

Listing 5.8: Functions converting small-endian integers to big-endian integers

1 s t a t i c i n l i n e uint32_t toBigEndian (uint32_t value)
2 {
3 r e turn ((va lue & 0xFF000000) >> 24) |
4 ((va lue & 0x00FF0000) >> 8) |
5 ((va lue & 0x0000FF00) << 8) |
6 ((va lue & 0xFF) << 24) ;
7 }

5.3 Library Changes

The ARINC and library layer allows the user code to call operating system
services. This layer is not compiled with the kernel but guarantees access to
kernel functionalities through the system call mechanisms. Since the services
offered by the operating system to the user code did not change this layer
remained almost the same apart from the way system calls are performed.

5.3.1 System Calls Implementation

A library layer allows to call kernel services from the user code. Clearly a way to
jump safely to the kernel code must be provided. As stated in 4.4 architectures
like PowerPC and ARM provide a special instruction able to perform a system
call using the interrupts mechanism. In the original version of the operating
system the dedicated PowerPC sc instruction was used to implement all the
system call functions presented in Section 3.3.1, see listing 5.9.

78 TiCOS Extensions

Listing 5.9: PowerPC system call implementation

1 . g l o b l pok_sysca l l2
2 . g l o b l pok_sysca l l3
3 . g l o b l pok_sysca l l4
4 . g l o b l pok_sysca l l5
5 . g l o b l pok_sysca l l6
6 . g l o b l pok_sysca l l7
7 pok_sysca l l2 :
8 pok_sysca l l3 :
9 pok_sysca l l4 :

10 pok_sysca l l5 :
11 pok_sysca l l6 :
12 pok_sysca l l7 :
13 sc
14 b r l

The Patmos processor does not provide a system call instruction. A normal
call instruction can not be used since kernel symbols are not available when
compiling user code. A special convention has to be adopted between kernel
and library layers. Two solutions have been investigated:

• Placing each kernel service in a fixed and known location in memory, call
it serviceN_addr, with each library’s system call performing a immediate
call to this address (call serviceN_addr)

• Placing in a dedicated and known memory location a system call service
routine used by all system calls and able to dispatch to the proper kernel
service

Clearly, the first proposed technique would have result in an unrealistic and
non-extensible system. The second solution, on the other hand, is more realistic
and resembles the way system calls are handled when using interrupts.

To implement the second solution the system_call function, shown in listing
5.10, is placed at location 0x900 in the text segment through the .org 0x900
- 4 directive. As said in Section 2.1.1 each function’s code is preceded by its
size so, in order to place a method at location 0x900, the .org directive has
to consider the space dedicated to the function’s size, this explains the given
address of 0x900 - 4.

Listing 5.10: Kernel system_call function

1 . g l o b l system_cal l
2 . type system_cal l , @function

5.3 Library Changes 79

3 . s i z e system_call , . Ltmp2−system_cal l
4 . org 0x900 − 4
5 . f s t a r t system_cal l , . Ltmp2−system_call , 4
6 system_cal l :
7 s r e s 2
8 sws [1] = $r31
9 sws [0] = $r30

10

11 l i $r30 = system_cal l
12 c a l l pok_arch_sc_int
13 nop
14 nop
15 nop
16

17 sens 2
18 lws $r31 = [1]
19 lws $r30 = [0]
20 s f r e e 2
21 r e t $r30 , $r31
22 nop
23 nop
24 mov $r1 = $r0
25 . Ltmp2 :

pok_arch_sc_int is the function responsible for identifying the type of system
call, retrieving all the parameters, and calling the proper function.

Through the linker script the kernel’s text segment is placed at the address
0x1C0000. When running the system the kernel’s system_call function is going
to be located at the address 0x1C0900. That said, library’s system calls are
implemented via explicit calls to 0x1C0900, as shown in listing 5.11.

Listing 5.11: Library’s system call implementation

1 #de f i n e SYS_CALL_ADDR 0x1C0900
2 #de f i n e NOT_USED(x) ((void) (x))
3 uint32_t (∗ s y s c a l l) (void) = (uint32_t (∗) (void)) SYS_CALL_ADDR;
4 pok_ret_t pok_sysca l l1 (pok_syscall_id_t sysca l l_ id ,
5 uint32_t arg1)
6 {
7 NOT_USED(sy s c a l l_ id) ;
8 NOT_USED(arg1) ;
9 r e turn s y s c a l l () ;

10 }
11 pok_ret_t pok_sysca l l2 (pok_syscall_id_t sysca l l_ id ,
12 uint32_t arg1 ,
13 uint32_t arg2)
14 {
15 NOT_USED(sy s c a l l_ id) ;
16 NOT_USED(arg1) ;
17 NOT_USED(arg2) ;

80 TiCOS Extensions

18 r e turn s y s c a l l () ;
19 }
20 pok_ret_t pok_sysca l l3 (pok_syscall_id_t sysca l l_ id ,
21 uint32_t arg1 ,
22 uint32_t arg2 ,
23 uint32_t arg3)
24 {
25 NOT_USED(sy s c a l l_ id) ;
26 NOT_USED(arg1) ;
27 NOT_USED(arg2) ;
28 NOT_USED(arg3) ;
29 r e turn s y s c a l l () ;
30 }
31 pok_ret_t pok_sysca l l4 (pok_syscall_id_t sysca l l_ id ,
32 uint32_t arg1 ,
33 uint32_t arg2 ,
34 uint32_t arg3 ,
35 uint32_t arg4)
36 {
37 NOT_USED(sy s c a l l_ id) ;
38 NOT_USED(arg1) ;
39 NOT_USED(arg2) ;
40 NOT_USED(arg3) ;
41 NOT_USED(arg4) ;
42 r e turn s y s c a l l () ;
43 }
44 pok_ret_t pok_sysca l l5 (pok_syscall_id_t sysca l l_ id ,
45 uint32_t arg1 ,
46 uint32_t arg2 ,
47 uint32_t arg3 ,
48 uint32_t arg4 ,
49 uint32_t arg5)
50 {
51 NOT_USED(sy s c a l l_ id) ;
52 NOT_USED(arg1) ;
53 NOT_USED(arg2) ;
54 NOT_USED(arg3) ;
55 NOT_USED(arg4) ;
56 NOT_USED(arg5) ;
57 r e turn s y s c a l l () ;
58 }
59 pok_ret_t pok_sysca l l6 (pok_syscall_id_t sysca l l_ id ,
60 uint32_t arg1 ,
61 uint32_t arg2 ,
62 uint32_t arg3 ,
63 uint32_t arg4 ,
64 uint32_t arg5 ,
65 uint32_t arg6)
66 {
67 NOT_USED(sy s c a l l_ id) ;
68 NOT_USED(arg1) ;
69 NOT_USED(arg2) ;
70 NOT_USED(arg3) ;
71 NOT_USED(arg4) ;
72 NOT_USED(arg5) ;

5.4 Context Switch 81

73 NOT_USED(arg6) ;
74 r e turn s y s c a l l () ;
75 }
76 pok_ret_t pok_sysca l l7 (pok_syscall_id_t sysca l l_ id ,
77 uint32_t arg1 ,
78 uint32_t arg2 ,
79 uint32_t arg3 ,
80 uint32_t arg4 ,
81 uint32_t arg5 ,
82 uint32_t arg6 ,
83 uint32_t arg7)
84 {
85 NOT_USED(sy s c a l l_ id) ;
86 NOT_USED(arg1) ;
87 NOT_USED(arg2) ;
88 NOT_USED(arg3) ;
89 NOT_USED(arg4) ;
90 NOT_USED(arg5) ;
91 NOT_USED(arg6) ;
92 NOT_USED(arg7) ;
93 r e turn s y s c a l l () ;
94 }

5.4 Context Switch

Patmos context switching can be interrupt-driven: TiCOS configures the real-
time clock interrupt interval to expire at specified points where scheduling de-
cisions have to be taken and the current executing thread’s context has to be
switched, for example when a time slice ends and another partition has to exe-
cute.
A context switch can be also caused by the run-to-completion semantics: when
a periodic thread ends its period or when a sporadic thread waits for an event
to be “up”.

5.4.1 Interrupt-driven Context Switching

When an interval interrupt is raised the control flow jumps to an interval in-
terrupt service routine. The ISR defined by the operating system whose role is
to perform the context switch is called _interval_ISR and is shown in listing
5.12.
The Patmos RTC was presented in Section 4.1: one of its memory mapped
registers allows to set the address of the interval ISR. When the system boots
the operating system’s entry point (in listing 5.4) calls the booting function

82 TiCOS Extensions

pok_boot responsible for configuring the system before starting user’s appli-
cations. pok_boot initializes the underlying hardware through the function
pok_arch_init which uses the function __PATMOS_RTC_WR_ISR to set the ad-
dress of the ISR.

The modified TiCOS maintains a pointer to the current executing thread’s con-
text, current_context, which is used to save the current thread’s status. After
performing scheduling decisions current_context points to the thread elected
for execution (possibly the same), so it can be used to restore the elected thread’s
context.

Listing 5.12: Function _interval_ISR: the interval interrupt service routine

1 . g l o b l _interval_ISR
2 . type _interval_ISR , @function
3 . s i z e _interval_ISR , . Ltmp3−_interval_ISR
4 . f s t a r t _interval_ISR , . Ltmp3−_interval_ISR , 4
5 _interval_ISR :
6 and $r0 = $r0 , 0x0
7

8 sub $r29 = $r29 , 4
9 swm [$r29 + 0] = $r1

10 l i $r1 = pok_current_context
11 lwc $r1 = [$r1 + 0]
12

13 swm [$r1 + 1] = $r2
14 swm [$r1 + 2] = $r3
15 swm [$r1 + 3] = $r4
16 swm [$r1 + 4] = $r5
17 swm [$r1 + 5] = $r6
18 swm [$r1 + 6] = $r7
19 swm [$r1 + 7] = $r8
20 swm [$r1 + 8] = $r9
21 swm [$r1 + 9] = $r10
22 swm [$r1 + 10] = $r11
23 swm [$r1 + 11] = $r12
24 swm [$r1 + 12] = $r13
25 swm [$r1 + 13] = $r14
26 swm [$r1 + 14] = $r15
27 swm [$r1 + 15] = $r16
28 swm [$r1 + 16] = $r17
29 swm [$r1 + 17] = $r18
30 swm [$r1 + 18] = $r19
31 swm [$r1 + 19] = $r20
32 swm [$r1 + 20] = $r21
33 swm [$r1 + 21] = $r22
34 swm [$r1 + 22] = $r23
35 swm [$r1 + 23] = $r24
36 swm [$r1 + 24] = $r25
37 swm [$r1 + 25] = $r26
38 swm [$r1 + 26] = $r27
39 swm [$r1 + 27] = $r28

5.4 Context Switch 83

40

41 add $r29 = $r29 , 4
42 swm [$r1 + 28] = $r29
43 swm [$r1 + 29] = $r30
44 swm [$r1 + 30] = $r31
45

46 mfs $r5 = $s5
47 mfs $r6 = $s6
48 sub $r2 = $r5 , $r6
49 s s p i l l $r2
50 swm [$r1 + 47] = $r2
51

52 mfs $r2 = $s0
53 swm [$r1 + 31] = $r2
54 mfs $r2 = $s1
55 swm [$r1 + 32] = $r2
56 mfs $r2 = $s2
57 swm [$r1 + 33] = $r2
58 mfs $r2 = $s3
59 swm [$r1 + 34] = $r2
60 mfs $r2 = $s4
61 swm [$r1 + 35] = $r2
62 mfs $r2 = $s5
63 swm [$r1 + 36] = $r2
64 mfs $r2 = $s6
65 swm [$r1 + 37] = $r2
66 mfs $r2 = $s7
67 swm [$r1 + 38] = $r2
68 mfs $r2 = $s8
69 swm [$r1 + 39] = $r2
70 mfs $r2 = $s9
71 swm [$r1 + 40] = $r2
72 mfs $r2 = $s10
73 swm [$r1 + 41] = $r2
74 mfs $r2 = $s11
75 swm [$r1 + 42] = $r2
76 mfs $r2 = $s12
77 swm [$r1 + 43] = $r2
78 mfs $r2 = $s13
79 swm [$r1 + 44] = $r2
80 mfs $r2 = $s14
81 swm [$r1 + 45] = $r2
82 mfs $r2 = $s15
83

84 sub $r29 = $r29 , 4
85 lwc $r2 = [$r29 + 0]
86 add $r29 = $r29 , 4
87 swm [$r1 + 0] = $r2
88

89 l i $r29 = pok_stack_end
90 mts $s6 = $r29
91 mts $s5 = $r29
92 l i $r29 = pok_shadow_stack_end
93

94 l i $r30 = _interval_ISR

84 TiCOS Extensions

95 c a l l pok_arch_decr_int
96 nop
97 nop
98 nop
99

100 br c f r e s to re_context
101 nop
102 nop
103 nop
104

105 . Ltmp3 :

_interval_ISR is an assembly routine performing the following operations:

Line 6 r0 is assured to be set to 0

Lines 8-11 To bootstrap the context switch a register has to be freed
in order to hold the current_context value. The shadow
stack is used to hold the value of register r1 and then the
value of current_context’s pointer is loaded into r0

Lines 12-39 General purpose registers from r2 to r28 are saved starting
from the next word pointed by current_context according
to the structure of context_t presented in Section 5.1.2

Lines 41-44 r29 is reset to its original value (after having stored r1
value) and is stored to the correct memory locations pointed
by current_context

Lines 46-50 The size of the thread’s stack stored in the cache (and not
consistent with the main memory, as explained in Section
2.1.3) is computed by subtracting to the stack cache spill
address the stack pointer. This value is used to spill all the
cached stack to the main memory. The size of the spilled
stack is then saved in the right position in the context struc-
ture pointed by current_context

Lines 52-82 For each special register from s0 to s15 its content is
saved to r2 and then saved to the context pointer by
current_context

Lines 84-87 The content of r2, previously stored on the shadow stack,
is retrieved and saved in the context; then the original value
of the shadow stack pointer (r29) is restored

Lines 89-92 In order to prepare the execution of the kernel, the kernel’s
stack pointer is loaded into registers r5 and r6 and kernel’s
shadow stack pointer is loaded into register r29

Lines 94-98 The function pok_arch_decr_int is called

Lines 100-103 A branch is performed to restore_context

5.4 Context Switch 85

The control flow started by an interval interrupt is depicted in figure 5.3.

• _interval_ISR: saves registers to current_context and switches to ker-
nel stack and kernel stack cache

• pok_arch_decr_int: sets the next timer interval and calls the scheduler

• pok_sched: performs scheduling decisions and updates current_context
to make it point to the context of the thread elected for execution

• restore_context: registers are restored from current_context and the
function returns from the interrupt

Figure 5.3: Flow of function calls needed to perform a context switch

Listing 5.13: Function restore_context restores context of the new selected
thread

1 . g l o b l r e s to re_context
2 . type restore_context , @function

86 TiCOS Extensions

3 . s i z e restore_context , . Ltmp3−r e s to re_context
4 . f s t a r t restore_context , . Ltmp3−res tore_context , 4
5 r e s to re_context :
6 and $r0 = $r0 , 0x0
7

8 l i $r1 = pok_current_context
9 lwc $r1 = [$r1 + 0]

10

11 lwc $r3 = [$r1 + 2]
12 lwc $r4 = [$r1 + 3]
13 lwc $r5 = [$r1 + 4]
14 lwc $r6 = [$r1 + 5]
15 lwc $r7 = [$r1 + 6]
16 lwc $r8 = [$r1 + 7]
17 lwc $r9 = [$r1 + 8]
18 lwc $r10 = [$r1 + 9]
19 lwc $r11 = [$r1 + 10]
20 lwc $r12 = [$r1 + 11]
21 lwc $r13 = [$r1 + 12]
22 lwc $r14 = [$r1 + 13]
23 lwc $r15 = [$r1 + 14]
24 lwc $r16 = [$r1 + 15]
25 lwc $r17 = [$r1 + 16]
26 lwc $r18 = [$r1 + 17]
27 lwc $r19 = [$r1 + 18]
28 lwc $r20 = [$r1 + 19]
29 lwc $r21 = [$r1 + 20]
30 lwc $r22 = [$r1 + 21]
31 lwc $r23 = [$r1 + 22]
32 lwc $r24 = [$r1 + 23]
33 lwc $r25 = [$r1 + 24]
34 lwc $r26 = [$r1 + 25]
35 lwc $r27 = [$r1 + 26]
36 lwc $r28 = [$r1 + 27]
37 lwc $r29 = [$r1 + 28]
38 lwc $r30 = [$r1 + 29]
39 lwc $r31 = [$r1 + 30]
40

41 lwm $r2 = [$r1 + 47]
42 sens $r2
43

44 lwc $r2 = [$r1 + 31]
45 mts $s0 = $r2
46 lwc $r2 = [$r1 + 32]
47 mts $s1 = $r2
48 lwc $r2 = [$r1 + 33]
49 mts $s2 = $r2
50 lwc $r2 = [$r1 + 34]
51 mts $s3 = $r2
52 lwc $r2 = [$r1 + 35]
53 mts $s4 = $r2
54 lwc $r2 = [$r1 + 36]
55 mts $s5 = $r2
56 lwc $r2 = [$r1 + 37]
57 mts $s6 = $r2

5.4 Context Switch 87

58 lwc $r2 = [$r1 + 38]
59 mts $s7 = $r2
60 lwc $r2 = [$r1 + 39]
61 mts $s8 = $r2
62 lwc $r2 = [$r1 + 41]
63 mts $s10 = $r2
64 lwc $r2 = [$r1 + 42]
65 mts $s11 = $r2
66 lwc $r2 = [$r1 + 43]
67 mts $s12 = $r2
68 lwc $r2 = [$r1 + 44]
69 mts $s13 = $r2
70 lwc $r2 = [$r1 + 45]
71 mts $s14 = $r2
72 lwc $r2 = [$r1 + 46]
73 mts $s15 = $r2
74

75 lwc $r2 = [$r1 + 40]
76 mts $s9 = $r2
77

78 br c f $r2
79 lwc $r2 = [$r1 + 1]
80 lwc $r1 = [$r1 + 0]
81 nop
82

83 . Ltmp3 :

restore_context function, shown in listing 5.13, performs the following oper-
ations:

Line 6 r0 is assured to be set to 0

Line 8-9 current_context pointer value is loaded into register r1

Lines 11-39 All the general purpose registers are restored from the con-
text pointed by current_context

Lines 41-42 The size of the stack previously hold in the cache is loaded
from the context into r2, r2 is then used to restore the
stack into the cache though the ensure instruction

Lines 44-73 For each special register from s0 to s15 its content is loaded
from the context into r2 and then restored

Lines 75-76 As stated in Section 4.1, when an interval interrupt happens
the current program counter is stored into register s9 and
represents the address to which the control has to return
after the interrupt handling. So the previous content of s9
loaded into r2 and restored

Lines 78-81 The control flow jumps to the location pointed by r2 (re-
turn address of the interrupt) and finally r2 and r1 are
restored

88 TiCOS Extensions

5.4.2 Explicit Context Switching

As previously stated a context switch is explicitly requested when the period of
a periodic task ends or when a sporadic task waits for an event. In this cases
the pok_context_switch function is explicitly called. This function is called
after a scheduling decision is taken and takes as a parameter the address of the
context of the previously executing thread. pok_context_switch code is shown
in listing 5.14.

Listing 5.14: Function context_switch: saves the context to the location
pointed by r3

1 . g l o b l pok_context_switch
2 . type pok_context_switch , @function
3 . s i z e pok_context_switch , . Ltmp6−pok_context_switch
4 . f s t a r t pok_context_switch , . Ltmp6−pok_context_switch , 4
5 pok_context_switch :
6 and $r0 = $r0 , 0x0
7

8 swm [$r3 + 0] = $r1
9 swm [$r3 + 1] = $r2

10 swm [$r3 + 2] = $r3
11 swm [$r3 + 3] = $r4
12 swm [$r3 + 4] = $r5
13 swm [$r3 + 5] = $r6
14 swm [$r3 + 6] = $r7
15 swm [$r3 + 7] = $r8
16 swm [$r3 + 8] = $r9
17 swm [$r3 + 9] = $r10
18 swm [$r3 + 10] = $r11
19 swm [$r3 + 11] = $r12
20 swm [$r3 + 12] = $r13
21 swm [$r3 + 13] = $r14
22 swm [$r3 + 14] = $r15
23 swm [$r3 + 15] = $r16
24 swm [$r3 + 16] = $r17
25 swm [$r3 + 17] = $r18
26 swm [$r3 + 18] = $r19
27 swm [$r3 + 19] = $r20
28 swm [$r3 + 20] = $r21
29 swm [$r3 + 21] = $r22
30 swm [$r3 + 22] = $r23
31 swm [$r3 + 23] = $r24
32 swm [$r3 + 24] = $r25
33 swm [$r3 + 25] = $r26
34 swm [$r3 + 26] = $r27
35 swm [$r3 + 27] = $r28
36 swm [$r3 + 28] = $r29

5.4 Context Switch 89

37 swm [$r3 + 29] = $r30
38 swm [$r3 + 30] = $r31
39

40 mfs $r5 = $s5
41 mfs $r6 = $s6
42 sub $r2 = $r5 , $r6
43 s s p i l l $r2
44 swm [$r3 + 47] = $r2
45

46 add $r2 = $r30 , $r31
47 mts $s9 = $r2
48

49 mfs $r2 = $s0
50 swm [$r3 + 31] = $r2
51 mfs $r2 = $s1
52 swm [$r3 + 32] = $r2
53 mfs $r2 = $s2
54 swm [$r3 + 33] = $r2
55 mfs $r2 = $s3
56 swm [$r3 + 34] = $r2
57 mfs $r2 = $s4
58 swm [$r3 + 35] = $r2
59 mfs $r2 = $s5
60 swm [$r3 + 36] = $r2
61 mfs $r2 = $s6
62 swm [$r3 + 37] = $r2
63 mfs $r2 = $s7
64 swm [$r3 + 38] = $r2
65 mfs $r2 = $s8
66 swm [$r3 + 39] = $r2
67

68 mfs $r2 = $s9
69 swm [$r3 + 40] = $r2
70 mfs $r2 = $s10
71 swm [$r3 + 41] = $r2
72 mfs $r2 = $s11
73 swm [$r3 + 42] = $r2
74 mfs $r2 = $s12
75 swm [$r3 + 43] = $r2
76 mfs $r2 = $s13
77 swm [$r3 + 44] = $r2
78 mfs $r2 = $s14
79 swm [$r3 + 45] = $r2
80 mfs $r2 = $s15
81 swm [$r3 + 46] = $r2
82

83 br c f r e s to re_context
84 nop
85 nop
86 nop
87 . Ltmp6 :

pok_context_switch, just like the interval ISR, saves the current context to
the location pointed by r3 register (which holds the function’s argument). In

90 TiCOS Extensions

order to restore the context later the return address, hold in r30 and r31, has to
be saved into s9 (lines 46-47). The context of the thread elected for execution is
pointed by current_context and restored by the function restore_context.

Chapter 6

Source Code Access

The operating system realized is open source and is published at the address:

https://github.com/t-crest/ospat

The directory structure of the published project is the following:

.
|-- elf2uart
| ‘-- src
|-- examples
| ‘-- arinc653-1event-O1
|-- kernel
| |-- arch
| |-- core
| |-- include
| ‘-- middleware
|-- libpok
| |-- arch
| |-- arinc653
| |-- core
| |-- include

https://github.com/t-crest/ospat

92 Source Code Access

| ‘-- middleware
‘-- misc

|-- ldscripts
‘-- mk

• elf2uart: contains the source code for the program streaming Patmos
ELFs to the UART (see Section 5.2.1.1)

• example: contains source code and makefiles for a sample application

• kernel: contains source code of the OS kernel, arch, core and middleware
contain the corresponding OS layers while include directory contains
header files

• libpok: holds the OS library’s source code

• misc: contains linker scripts (ldscripts) and make rules (mk)

The Patmos simulator’s code can be found at the address:

https://github.com/t-crest/patmos/tree/master/simulator

6.1 Running an Example

As stated before, the example directory contains the source code of a sample
application. The example code is structured as follows:

.
|-- cpu
| |-- kernel
| | |-- deployment.h
| | ‘-- Makefile
| |-- Makefile
| ‘-- part1
| |-- activity.c
| |-- activity.h
| |-- deployment.h
| |-- main.c
| ‘-- Makefile
‘-- Makefile

https://github.com/t-crest/patmos/tree/master/simulator

6.1 Running an Example 93

The makefile in the root directory allows to build both the kernel and the
partitions (in this example there is only one partition). The kernel direc-
tory contains a makefile to build the kernel and deployment.h file contains
pre-compilation directives used to configure kernel’s compilation. The part1
contains the partition’s code with main.c defining the partition’s entry point
and activity.c and activity.h contain partition’s threads definition.

To run the sample application on the Patmos simulator, the script in listing 6.1
can be run in the OS root directory.

Listing 6.1: Bash script to run the sample application

1 export ARCH=patmos
2 export POK_PATH=‘pwd ‘
3

4 cd . / examples / ar inc653−1event−O1/generated−code
5 make
6

7 cd $POK_PATH/ e l f 2 u a r t /
8 mkdir bu i ld
9 cd bu i ld

10 cmake . .
11 make
12

13 cd $POK_PATH
14 mkdir deploy
15

16 mv examples / ar inc653−1event−O1/generated−code/cpu/pok . e l f deploy /
ke rne l . e l f

17 mv examples / ar inc653−1event−O1/generated−code/cpu/ part1 / part1 . e l f
deploy / part1 . e l f

18 mv e l f 2 u a r t / bu i ld / e l f 2 u a r t deploy / e l f 2 u a r t
19

20 cd deploy
21 touch deploy . uart
22 . / e l f 2 u a r t part1 . e l f −−output=deploy . uart
23

24 pasim −−in=deploy . uart −−i n t e r r up t=1 ke rne l . e l f

Lines 1-2 Defines variables used in the build chain: path to the OS
and target architecture

Lines 4-5 Moves to the example’s directory and starts the compilation

Lines 7-11 Moves to the elf2uart directory and compiles the
elf2uart utility

Lines 13-14 Moves back to the root directory and creates the deploy
directory to hold the example executables

94 Source Code Access

Lines 16-18 Moves kernel, partition and elf2uart executables to the
deploy directory

Lines 20-22 Moves to the deploy directory, creates a file to simulate the
UART and streams the partition executable to the UART
using elf2uart

Lines 24 Runs the example

Chapter 7

Conclusions

This chapter has three main purposes: summarize what I learned, point out the
main contributions, and suggest possible future works.

7.1 Personal Knowledge

The skills I developed working on the project can be summarized in two main
fields: technical and methodological.
From a technical point of view I learned several things in the different stages of
the project:

• Studying the T-CREST architecture I understood the problems arising
from the development of a time-predictable multi-core architecture and
several valuable solutions for solving them

• Studying the original operating system I figured out what an OS requires
from the underlying hardware and what a RTOS has to implement in order
to support hard real-time tasks

• Developing the OS I learned Patmos assembly programming and I got in
touch with advanced features of the C programming language and compiler

96 Conclusions

From a methodological perspective I learned how to work in a research project.
Patmos processor, simulator and compiler are research work and therefore they
are always changing and evolving. I learned how important is knowing what the
people you work with are doing in order not to waste time. Moreover I learned
how talking to other people in the research group helps to spread the knowledge
and to see problems from different perspectives, which make them easier to be
solved.

7.2 Main Contributions

The project work resulted in two main contributions:

• TiCOS operating system has been ported to the Patmos processor

• The Patmos processor, simulator and compiler are research works, part of
the T-CREST project. As research projects they are continuously evolv-
ing. The development of an operating system for the Patmos processor
allowed to identify missing requirements for the architecture (detailed in
chapter 4) in order to support more complex computational models. More-
over the development itself started internal discussions on other possible
extensions of the processor, such as ways of implementing interrupts and
memory protection

• The T-CREST mission is to build a time-predictable multi-processor sys-
tem able to simplify the analysis and guarantee better performances [DTU12c].
In order to create such a system, hardware, simulator and compiler have
been developed and studied. An operating system for Patmos takes T-
CREST a step further in the direction of a multi-processor, time-predictable
and easily-analyzable platform made of hardware, compiler, OS and li-
braries

Other minor contributions follow:

• A considerable amount of code used for testing T-CREST simulator and
compiler has been developed, resulting in the identification and resolution
of several bugs

• Even if not fulfilling all the T-CREST’s requirements, the operating sys-
tem’s implementation is a solid starting point for further extensions and
research works

7.3 Suggested Future Works 97

7.3 Suggested Future Works

More work could be made both extending the operating system’s functionalities
and testing them.

• As previously stated, T-CREST’s aim is to create a multi-processor sys-
tem. The developed operating system targets a single Patmos processor.
A future extension could be making the operative system support multi-
processors. As a starting point an approach similar to the one adopted by
CompOSe could be used: having a different and independent instance of
the OS running on each processor [HEM+11]

• As soon as the hardware is extended with RTC and interrupts features
presented in Section 4, the operating system should be tested on it in
order to evaluate its performances. Particular attention should be paid
to context switching delay times in order to analyze the influence of stack
cache spill and restore operations

As stated before, the hardware was not completely ready to support the exe-
cution of the OS and this is the reason why OS performances have not been
measured and no functional evaluation has been performed. Moreover, Patmos
is a notably innovative architecture, the developed software is the first exam-
ple of operating system running on the Patmos processor. Therefore a critical
comparison of performances and functionalities between the developed OS and
other solutions running on the same architecture was simply impossible.
Implementing the proposed extensions in the hardware and porting other oper-
ating systems to the Patmos architecture would be a good starting point for a
future evaluation of the realized OS.

98 Conclusions

Appendix A
Software Simulator of

Patmos

The Patmos simulator [DTU12a] is a C++ implementation made of classes and
interfaces representing processor’s component and is designed to be modular
and extensible. A class diagram for the Patmos simulator can be seen in figure
A.1.

simulator_t is the main class of the simulator and controls the whole simula-
tion. This main class must be connected to the components of the processor
and so we have:

• decoder_t: is the component responsible for the instruction decode. The
decoder translates ISA instruction and translates them to simulator in-
structions.

• memory_t: abstract class for the memory, specifies a general behavior
a memory should expose such as read and write operations. This ab-
stract class is implemented by two other classes: ideal_memory_t and
fixed_delay_memory_t. The simulator uses this class to reference both
processor’s global and local memory.

• register_file_t: template class which offers methods for getting and
setting each register in a group of registers. Allows to implement predicate

100 Software Simulator of Patmos

Figure A.1: Class diagram for the Patmos software simulator

register (PGR), general purpose registers (GPR) e special purpose registers
(SPR).

• data_cache_t: another abstract class extending memory_t, is the root
of a hierarchy made of two other subclasses: ideal_data_cache_t and
lru_data_cache_t. Both those classes implement a type of data cache so
both wrap an other memory object to cache.

• stack_cache_t: another abstract class extending memory_t, is the root
of a hierarchy made of two other subclasses: ideal_stack_cache_t and
block_stack_cache_t. Both those classes implement a type of stack
cache and both wrap the global memory.

instruction_t is another important class which wraps the concept of a proces-
sor instruction. The class offers a method for each pipeline stage (IF, DR, EX, MW)
which actually executes the corresponding pipeline stage. instruction_data_t
class wraps an instruction and its operands. The simulator pipeline is nothing
more than a bidimensional array of NUM_STAGES x NUM_SLOTS of instruction
_data_t objects, where NUM_STAGES is the number of processor pipeline’s stages
and NUM_SLOTS is the number of slots in each bundle.

A.1 Instruction Simulation 101

The simulation is handled by a loop in the simulator_t class. At each iteration
a CPU cycle is executed and the following operations are performed:

1. The next NUM_SLOTS is decoded and the program counter is incremented
(only if the IF pipeline stage is not stalled).

2. For each instruction in the pipeline the method corresponding to the stage
where the instruction is placed is executed.

3. Each instruction is advanced to the next pipeline stage. In case some stage
is stalled only a subset of those instructions are advanced.

4. Memory and cache state is advanced.

A.1 Instruction Simulation

The class instruction_t is the root of a hierarchy of classes implementing each
a processor instruction, this hierarchy is shown in figure A.2 and allows to reuse
implementations common to group of instructions.

Figure A.2: Class diagram for simulator’s instructions hierarchy

102 Software Simulator of Patmos

A.2 Memory and Cache Simulation

Memories, caches and memory mapped devices can be accessed through ab-
stract classes which isolate from their actual implementation. The abstract
class memory_t is extended by other three abstract classes: data_cache_t,
stack_cache_t and memory_map_t.

Figure A.3: Class diagram for simulator’s memory hierarchy

memory_map_t extends memory_t and so it offers the same interface. memory_map
_t wraps an object of the class memory_t extends its base class with a collection
of mapped_device_t and offers methods to add object of this type to that
collection. The class mapped_device_t represents a portion of memory which
corresponds to the content of the registers of a memory mapped IO device (for
example an UART). When a read/write method is called for a specific address
on an object of the class memory_map_t all the mapped_device_t are inspected
to look for a device having a mapped register for the address, if an object is
found the read/write is forwarded otherwise the wrapped memory_t is accessed.
In the case of Patmos simulator the memory_map_t object is wrapped around
the local memory, so memory mapped devices can be accessed through local
memory read/write instructions.

Appendix B

ELF File Structure

The Executable and Linking Format (ELF), defined in [Com95], is a standard
file format used for executable files, object files and shared libraries. ELF is
meant to be extensible and portable in order to make compilation and reuse of
compiled code easier. ELF file format is adopted by different operating systems
since it is flexible and not tied up to a particular architecture. ELF can be used
to define three main types of files:

• relocatable file: can be used to build an executable file or a shared object
file, contain code and data

• executable file: contain a program and can be executed

• shared object file: is suited for compilation with relocatable files to build
other shared objects or with other shared objects to build executable files

B.1 File Structure

What emerges from the ELF file types is that an object file can both be used
in the linking process and in the execution itself. The same file offers different

104 ELF File Structure

views on the data it contains in order to satisfy these requirements (as shown
in figure B.1).

(a) Linker perspective (b) Execution perspective

Figure B.1: ELF file structure

B.1.1 ELF Header

The ELF header contains general information about the file that can be sum-
marized as follows:

• e_indent: the first bytes are used to identify an object file

• e_type: the type of the file, main types are: ET_REL (relocatable file),
ET_EXEC (executable file) and ET_DYN (shared object file)

• e_machine: the architecture of the file

• e_version: version of the object file

• e_entry: address of the entry point of the executable, if an entry point is
specified

• e_phoff: offset in bytes of the program header table in the file

B.1 File Structure 105

• e_shoff: offset in bytes of the section header table in the file

• e_flags: processor-specific flags

• e_ehsize: size of ELF header

• e_phentsize: size of an entry in the program’s header table

• e_phnum: number of entries in the program’s header table

• e_shnum: number of entries in the section’s header table

B.1.2 Program Header

A program header table describes how to create a program from an ELF file and
is needed only for executable and shared object file. A program header table
is a collection of program headers each of which describes an object segment, a
collection of sections.
A program header is a data structure made of the following fields:

• p_type: type of the segment, main values are:

– PT_NULL: unused segment

– PT_LOAD: loadable segment

– PT_DYNAMIC: dynamic linking information

• p_offset: offset from the beginning of the file for the segment

• p_vaddr: virtual address where the segment is located in memory

• p_addr: physical address where the segment is located in memory

• p_filesz: number of bytes of the segment in the file

• p_memsz: number of bytes of the segment in memory

• p_flags: flags for the segment

• p_align: alignment of the segment in the file and memory, integer number
(power of 2) in bytes

106 ELF File Structure

B.1.3 Section Header

The section header table is mandatory only for ELF files used in the linking
process. Section header table contains an entry for each section in the file.
Section entries contain information regarding the section like name or size.
All the information contained in an ELF file is divided in section, apart from
ELF header, program header table and section header table.
An ELF sections have to meet the following requirements:

• A section must have a section header

• A section is hold by contiguous bytes in the file

• Sections do not overlap

• Sections may not cover all the data in the file (inactive data)

The fields contained in a section header are the following:

• sh_name: name of the section

• sh_type: type of the section, describes its content

• sh_flags: collection of 1 bit flags for the section

• sh_addr: if the section will be loaded in memory this field contains the
address of the first byte of the section in memory

• sh_offset: the offset in byte of the first byte of the section from the
beginning of the file

• sh_size: section’s size in byte

• sh_link: section header index to link information for the section

• sh_info: extra information about the section

• sh_addralign: special information about alignment, may be needed by
some sections

• sh_entsize: for sections that hold a table structure this field defined the
entry size

B.1 File Structure 107

B.1.3.1 Pre-defined Sections

Some sections in an header file are pre-defined containing program and control
information used by the operating system.
When creating an executable more object files are put together in the linking
phase, the linker resolves references between object files, updates absolute refer-
ences and relocates instructions. In order to do this job some extra information
is needed, this information is contained in sections like .dynamic.
Pre-defined sections have reserved names beginning with a ., they can be:

• .bss: holds uninitialized data and is loaded into memory and set to 0

• .comment: holds version control information

• .data and .data1: holds initialized data loaded into memory

• .debug: holds content for symbolic debugging purpose

• .dynamic: contains information for dynamic linking

• .hash: hash table of symbols

• .line: contains line numbering information for symbolic debugging

• .note: holds special information eventually put by vendors

• .rodata and .rodata1: holds read-only values used to build the memory
image of the process (non-writable data)

• .shstrtab: contains section names data

• .strtab: contains string data, usually symbols names

• .symtab: symbol table

• .text: the program’s instructions

108 ELF File Structure

Bibliography

[ABS13] Sahar Abbaspour, Florian Brandner, and Martin Schoeberl. A time-
predictable stack cache. In Proceedings of the 9th Workshop on Soft-
ware Technologies for Embedded and Ubiquitous Systems, 2013.

[ARM12] ARM. Application Note 245: Migrating from Power Architecture
to ARM. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.dai0245b/index.html, August 2012.

[BA01] M.D. Bennett and N.C. Audsley. Predictable and efficient virtual
addressing for safety-critical real-time systems. 2012 24th Euromicro
Conference on Real-Time Systems, 0:0183, 2001.

[Ben06] M. Ben. Principles of concurrent and distributed programming, sec-
ond edition. Addison-Wesley, second edition, 2006.

[BMV12] Andrea Baldovin, Enrico Mezzetti, and Tullio Vardanega. A time-
composable operating system. In WCET, pages 69–80, 2012.

[BMV13] Andrea Baldovin, Enrico Mezzetti, and Tullio Vardanega. Towards a
time-composable operating system. In Ada-Europe, pages 143–160,
2013.

[Car04] John Carbone. Efficient memory protection for embedded systems.
http://www.rtcmagazine.com/articles/view/100120, Septem-
ber 2004.

[CFH+04] John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan,
James Anderson, and Sanjoy Baruah. A categorization of real-
time multiprocessor scheduling problems and algorithms. In HAND-

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0245b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0245b/index.html
http://www.rtcmagazine.com/articles/view/100120

110 BIBLIOGRAPHY

BOOK ON SCHEDULING ALGORITHMS, METHODS, AND
MODELS. Chapman Hall/CRC, Boca, 2004.

[Com95] TIS (Tool Interface Standard) Commitee. Executable and Linking
Format (ELF) Specification. http://pdos.csail.mit.edu/6.828/
2012/readings/elf.pdf, May 1995.

[DB11] Robert I. Davis and Alan Burns. A survey of hard real-time schedul-
ing for multiprocessor systems. ACM Comput. Surv., 43(4):35:1–
35:44, October 2011.

[DL78] Sudarshan K Dhall and CL Liu. On a real-time scheduling problem.
Operations Research, 26(1):127–140, 1978.

[DL11] Julien Delange and Laurent Lec. Pok, an arinc653-compliant oper-
ating system released under the bsd license. 13th Real-Time Linux
Workshop, 10 2011.

[DTU12a] DTU. D 2.1 Software Simulator of Patmos. Technical report, T-
CREST: http://www.t-crest.org/page/results, 2012.

[DTU12b] DTU. D 5.1 ISA and Architectural Support for Generating
Time-Predictable Code. Technical report, T-CREST: http://www.
t-crest.org/page/results, 2012.

[DTU12c] DTU. D 8.2 T-CREST White Paper. Technical report, T-CREST:
http://www.t-crest.org/page/results, 2012.

[Fre05] Freescale. Programming Environments Manual for 32-Bit Imple-
mentations of the PowerPC Architecture. http://www.freescale.
com/files/product/doc/MPCFPE32B.pdf, 2005.

[Fre12] Freescale. Powerpc 750 microprocessor. https://www-01.
ibm.com/chips/techlib/techlib.nsf/products/PowerPC_750_
Microprocessor, 2012.

[Gro03] APEX Working Group. Draft 3 of Supplement 1 to ARINC Specifi-
cation 653: Avionics Application Software Standard Interface, 2003.

[HEM+11] Andreas Hansson, Marcus Ekerhult, Anca Molnos, Aleksandar Mi-
lutinovic, Andrew Nelson, Jude Ambrose, and Kees Goossens. De-
sign and implementation of an operating system for composable
processor sharing. Microprocess. Microsyst., 35(2):246–260, March
2011.

[IBM98] IBM. Developing powerpc embedded application bi-
nary interface (EABI) compliant programs. https:
//www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

http://pdos.csail.mit.edu/6.828/2012/readings/elf.pdf
http://pdos.csail.mit.edu/6.828/2012/readings/elf.pdf
http://www.t-crest.org/page/results
http://www.t-crest.org/page/results
http://www.t-crest.org/page/results
http://www.t-crest.org/page/results
http://www.freescale.com/files/product/doc/MPCFPE32B.pdf
http://www.freescale.com/files/product/doc/MPCFPE32B.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_750_Microprocessor
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_750_Microprocessor
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_750_Microprocessor
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970071B0D6/\protect \T1\textdollar file/eabi_app.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970071B0D6/\protect \T1\textdollar file/eabi_app.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970071B0D6/\protect \T1\textdollar file/eabi_app.pdf

BIBLIOGRAPHY 111

852569B20050FF77852569970071B0D6/\protect\T1\
textdollarfile/eabi_app.pdf, 1998.

[Inc08] Wind River Inc. ARINC 653 - An Avionics Standard for Safe, Par-
titioned Systems. http://www.computersociety.it/wp-content/
uploads/2008/08/ieee-cc-arinc653_final.pdf, June 2008.

[Ins11] Texas Instruments. AM17x/AM18x ARM microprocessor periph-
erals overview. http://www.ti.com/lit/ug/sprufu0d/sprufu0d.
pdf, September 2011.

[INT] INTEGRITY. http://www.ghs.com/products/rtos/integrity.
html.

[KO02] H. Kopetz and R. Obermaisser. Temporal composability [real-
time embedded systems]. Computing Control Engineering Journal,
13(4):156–162, 2002.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM, 20(1):46–
61, January 1973.

[LRL10] Isaac Liu, Jan Reineke, and Edward A. Lee. A pret architecture
supporting concurrent programs with composable timing properties.
In 44th Asilomar Conference on Signals, Systems, and Computers,
pages 2111–2115, November 2010.

[Lyn] LynxOS-178. http://www.lynuxworks.com/rtos/rtos-178.php.

[Mal09] R. Mall. Real-Time Systems: Theory and Practice. Pearson Educa-
tion, 2009.

[Mok83] Aloysius Ka-Lau Mok. Fundamental design problems of distributed
systems for the hard–real–time environment. Technical Report MIT-
LCS-TR-297, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1983. Ph.D. Thesis.

[Mol] Ingo Molnar. Goals, Design and Implementation of the new
ultra-scalable O(1) scheduler. In 2.5 kernel documentation
(Documentation/sched-design.txt).

[Mue95] Frank Mueller. Compiler support for software-based cache partition-
ing. SIGPLAN Not., 30(11):125–133, November 1995.

[NKG+02] André Nieuwland, Jeffrey Kang, Om Prakash Gangwal, Ra-
manathan Sethuraman, Natalino Busa, Kees Goossens, Rafael Pe-
set Llopis, and Paul Lippens. C-HEAP: A Heterogeneous Multi-
processor Architecture Template and Scalable and Flexible Protocol
for the Design of Embedded Signal Processing Systems, 2002.

https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970071B0D6/\protect \T1\textdollar file/eabi_app.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970071B0D6/\protect \T1\textdollar file/eabi_app.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569970071B0D6/\protect \T1\textdollar file/eabi_app.pdf
http://www.computersociety.it/wp-content/uploads/2008/08/ieee-cc-arinc653_final.pdf
http://www.computersociety.it/wp-content/uploads/2008/08/ieee-cc-arinc653_final.pdf
http://www.ti.com/lit/ug/sprufu0d/sprufu0d.pdf
http://www.ti.com/lit/ug/sprufu0d/sprufu0d.pdf
http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
http://www.lynuxworks.com/rtos/rtos-178.php

112 BIBLIOGRAPHY

[Pik] PikeOS. http://www.sysgo.com/products/
pikeos-rtos-and-virtualization-concept/.

[SBH+] Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang
Puffitsch, and Daniel Prokesch. Patmos reference handbook.

[SBWT87] Karsten Schwan, Tom Bihari, Bruce W. Weide, and Gregor Taulbee.
High-performance operating system primitives for robotics and real-
time control systems. ACM Transactions on Computer Systems,
5:807–813, 1987.

[Sch04] Martin Schoeberl. A time predictable instruction cache for a java
processor. In In On the Move to Meaningful Internet Systems
2004: Workshop on Java Technologies for Real-Time and Embed-
ded Systems (JTRES 2004), volume 3292 of LNCS, pages 371–382.
Springer, 2004.

[SMB05] Matthew Simpson, Bhuvan Middha, and Rajeev Barua. Segment
protection for embedded systems using run-time checks. In Proceed-
ings of the 2005 international conference on Compilers, architectures
and synthesis for embedded systems, CASES ’05, pages 66–77, New
York, NY, USA, 2005. ACM.

[SSP+11] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian
Brandner, Christian W. Probst, Sven Karlsson, and Tommy Thorn.
Towards a time-predictable dual-issue microprocessor: The Patmos
approach. In First Workshop on Bringing Theory to Practice: Pre-
dictability and Performance in Embedded Systems (PPES 2011),
pages 11–20, Grenoble, France, March 2011.

[Sta08] William Stallings. Operating Systems: Internals and Design Princi-
ples. Prentice Hall Press, Upper Saddle River, NJ, USA, 6th edition,
2008.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall
Press, Upper Saddle River, NJ, USA, 3rd edition, 2007.

[TBV10] Sarah Thompson, Guillaume P. Brat, and Arnaud Venet. Software
model checking of arinc-653 flight code with mcp. In NASA Formal
Methods, pages 171–181, 2010.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Is-
abelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution-time problem - overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53,
May 2008.

http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Real-time Systems
	1.1.1 Task Models

	1.2 Timing Analysis
	1.3 Time composability
	1.4 Real-time Operating Systems
	1.4.1 Memory Management
	1.4.2 Scheduling Algorithms
	1.4.3 PikeOS
	1.4.4 INTEGRITY
	1.4.5 LynxOS-178
	1.4.6 CompOS
	1.4.7 TiCOS

	1.5 The T-CREST Project
	1.6 Thesis Structure

	2 The Patmos Processor
	2.1 Memory
	2.1.1 Method Cache
	2.1.2 Data Cache
	2.1.3 Stack Cache
	2.1.4 Data Scratchpad

	2.2 Registers
	2.3 Patmos ISA (Instruction Set Architecture)
	2.3.1 Binary Arithmetic
	2.3.2 Multiply
	2.3.3 Compare
	2.3.4 Predicate
	2.3.5 NOP
	2.3.6 Wait
	2.3.7 Move To/From Special
	2.3.8 Load/Store Typed
	2.3.9 Stack control
	2.3.10 Call and Branch
	2.3.11 Call and Branch Indirect
	2.3.12 Return

	3 The Operating System
	3.1 The Kernel Layer
	3.2 ARINC653 Entities
	3.2.1 Partitions and Processes
	3.2.2 Events
	3.2.3 Semaphores
	3.2.4 Blackboards
	3.2.5 Buffers
	3.2.6 Sampling and Queueing Ports

	3.3 The Library Layer
	3.3.1 Core Library
	3.3.2 Middleware Library
	3.3.3 ARINC Library

	3.4 TiCOS Time-composability
	3.4.1 Time Management
	3.4.2 Scheduling
	3.4.3 IO Communication

	3.5 Build Chain
	3.5.1 Kernel Compilation
	3.5.2 Partitions Compilation
	3.5.3 Integration of Kernel and Partitions

	4 Processor Extensions
	4.1 Interrupts
	4.1.1 Simulator Implementation

	4.2 Stack Cache Manipulation
	4.3 Memory Protection
	4.4 Explicit Supervisor Mode and Cache Invalidation

	5 TiCOS Extensions
	5.1 Architectural Changes
	5.1.1 Clock
	5.1.2 Thread's Context
	5.1.3 Memory Management

	5.2 Core Changes
	5.2.1 Bootloader

	5.3 Library Changes
	5.3.1 System Calls Implementation

	5.4 Context Switch
	5.4.1 Interrupt-driven Context Switching
	5.4.2 Explicit Context Switching

	6 Source Code Access
	6.1 Running an Example

	7 Conclusions
	7.1 Personal Knowledge
	7.2 Main Contributions
	7.3 Suggested Future Works

	A Software Simulator of Patmos
	A.1 Instruction Simulation
	A.2 Memory and Cache Simulation

	B ELF File Structure
	B.1 File Structure
	B.1.1 ELF Header
	B.1.2 Program Header
	B.1.3 Section Header

	Bibliography

