
Content-based Recommender
Systems

John Bruntse Larsen

Kongens Lyngby 2013

IMM-M.Sc.-2013-67

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2013-67

Summary (English)

The goal of the thesis is to evaluate content-based recommender systems in the
domain of video games. The thesis compares approaches based on Linked Open
Data and natural language processing(NLP) with traditional approaches which
are only based on NLP methods.

ii

Summary (Danish)

Målet med afhandlingen er at evaluere indholdsbaserede anbefalersystemer i
domænet af computerspil. Afhandlingen sammenligner tiltag baseret på Linked
Open Data og sprogteknologi(NLP) med traditionelle tiltag der udelukkende er
baseret på NLP.

iv

Preface

This thesis was prepared in spring 2013 at the department of Computer Science
at Korea Advanced Institute of Science and Technology(KAIST), and �nished in
July 2013 at the department of Informatics and Mathematical Modelling at the
Technical University of Denmark in ful�lment of the requirements for acquiring
an M.Sc. in Informatics.

The thesis deals with content-based recommender systems where most of my
background in information retrieval is from a semester of courses at KAIST and
projects at the Semantic Web Research Center at KAIST.

The thesis consists of this report and a web-application that demonstrates a
content-based recommender system in the domain of video games.

Lyngby, 11-July-2013

John Bruntse Larsen

vi

Acknowledgements

I would like to thank Professor Tony Veale and Dr. Martín Rezk for helpful
discussions and feedback during during the early stages of the thesis. As exter-
nal expert, Professor Tony Veale has also been very helpful with critique and
suggestions during the thesis. I thank my co-supervisor at DTU Professor Jør-
gen Fischer Nillsson for helping with the schedule and clarifying the problem
statement. I thank Professor Key-Sun Choi for being the primary supervisor of
the thesis. I will also thank Professor Jørgen Villadsen at DTU for being my
personal supervisor during the master degree. I would like to thank the students
Kyung Tae Lim and Hahm Myoung Gyun for showing interest in the thesis and
providing moral support.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Recommender Systems . 2

1.2 Products as Documents . 4

1.2.1 Term-Document matrix 4

1.2.2 Simple Vector Correlation 5

1.2.3 Latent Semantic Indexing 6

1.3 Products as Linked Open Data Entities 8

1.3.1 LOD for Content-Based Recommendation 9

1.3.2 Mixing NLP with Linked Open Data 9

1.4 Practical Details . 10

1.5 Evaluation Methods . 11

1.6 Problem De�nition . 11

1.7 Expected Results . 12

1.8 Report Structure . 12

2 Pure NLP Approaches 13

2.1 Term-Document Matrix . 14

2.2 Simple Vector Correlation . 16

2.3 Latent Semantic Indexing . 19

x CONTENTS

3 Linked Open Data Approach 21
3.1 Analysis of Dbpedia Data . 22

3.1.1 Extracting Data from the Semantic Web 27
3.2 Pro�ling with Raw Data . 28
3.3 Data Optimization . 31

3.3.1 Category Intersection Modules 31
3.3.2 Generalizing Categories 34
3.3.3 Narrowing Categories . 37

3.4 Similarity Measure and Recommender System 38

4 Evaluation 43
4.1 Evaluation Strategy . 43

4.1.1 Goal Sets . 43
4.1.2 Input Data Sets . 45

4.2 Results . 48
4.3 Discussion . 50

4.3.1 Dataset Evaluation . 50
4.3.2 Result Evaluation . 51
4.3.3 Further Method Improvements 52

5 Conclusion 55

A XML Tags 57

Bibliography 59

Chapter 1

Introduction

As the speed of the Internet increases, it has become more viable to distribute
software as digital downloads (commonly referred to as digital distribution).
Digital distribution is one of the features of Steam made by the game devel-
oper Valve. In Steam, users created an account, bought games for the account
through the Web and then downloaded both the games and future updates
through a local client on a PC. Since its release in 2004, Steam has expanded
as a distribution platform where any game developer can submit a game to be
distributed digitally, under the supervision of Valve.

Recently Valve launched Steam Greenlight (from here simply referred to as
Greenlight), where game developers can submit text and other media to a web
page for their game. The Steam users can visit this page and vote for the the
game to become available in Steam to be bought. Figure 1.1 shows a part of
the submission for the game �Primordia� and the lifetime of a game in this sys-
tem. As such, Greenlight provides a platform for developers to promote their
unreleased products to potential customers.

Greenlight features a recommender system which presents only a few submis-
sions to users, however in the interviews with game developers on Greenlight, it
is criticized for favouring only the popular content. To address this problem, the
recommender system could instead make recommendations based on the content
of the games and products ratings for the given user. Figure 1.2 demonstrates

2 Introduction

Steam
Community

votes
comments

Developer

Submission

buys

approves

Game

Figure 1.1: The lifetime of a game in Steam and Greenlight. The developer
submits a description to Greenlight which can be rated and com-
mented by the Steam users. Eventually Valve may approve of the
game to be included in Steam where it can be bought.

such a recommendation with the Greenlight submission �Primordia� which will
be used as a running example in the report. Because of the high correlation
between the properties of a game likened by the user and the submission, the
recommender system should both recommend �Primordia�.

1.1 Recommender Systems

The purpose of a recommender system for an user is to present the most relevant
products from a larger set of products. In the domain of this project the set
of products are Greenlight submissions and the relevant submissions are those
which a speci�c Steam user would want to discover, rate and eventually buy.
Recommender systems can very roughly be categorized into two distinct ap-
proaches (i) content-based and (ii) collaborative. A third approach (iii) hybrid
combines the other two approaches [AT05].

Content-based recommender systems �nds the products that are similar to those
that the user likes by measuring similarity between products. With this ap-
proach, a �tting product can be recommended to the user even though no one
have rated it before. In [AT05] they following issues for content-based recom-
mender systems

Limited Content Analysis Automatic pro�ling of products can be di�cult
and manual pro�ling can be impractical.

1.1 Recommender Systems 3

Machinarium Primordia
Genre/gameplay Point-and-click adventure Point-and-click adventure
Theme/setting World of robots World of robots
Theme/setting Steam punk Post-apocalyptic

Figure 1.2: Assumed characteristics of the Steam game �Machinarium� (left
screenshot) and the Greenlight submission �Primordia� (right
screenshot). Each rows state some property about the games.
Assuming the user likes Machinarium, Primordia should be rec-
ommended due to similar characteristics.

Overspecialization The recommender system should attempt to achieve di-
versity among the recommendations and avoid recommending products
that are too similar to the pro�le.

New User Problem New users without a pro�le do not get accurate recom-
mendations. This is known as the cold-start problem for new users.

Collaborative recommender systems �nds the products which the highest ratings
from other users. A pure collaborative approach eliminates the cold-start prob-
lem for new users, however it introduces a cold-start problem for new products
which do not have any ratings yet.

A hybrid recommender system is any recommender system which combines
content-based and collaborative recommendations in one system. Hybrid recom-
mender systems attempt to combine the best of content-based and collaborative
approaches and in [Bur07] several di�erent hybrid approaches are evaluated and
compared.

Additional approaches presented in [Bur07] are knowledge-based systems, which
are similar to content-based systems and rely on inferring the user needs, and
demographic systems which groups users and products into demographic niches
by using ratings of the users. Figure 1.3 from [Bur07] shows a comparison by
the di�erent approaches by their input.

4 Introduction

Domain
Knowledge

Product
Database

User Ratings
Database

User Demographics
Database

User's
 Demographics

User's
Ratings

User's Need
or Query

Knowledge-based
Recommendation

Content-based
Recommendation

Collaborative
Recommendation

Demographic
Recommendation

Figure 1.3: Input for di�erent recommendation approaches.

The running example from �gure 1.2 is of a content-based recommender system
as the listed properties make out a product pro�le and the recommendation is
based on a positive rating of the product �Machinarium�.

The following sections introduce a few approaches for pro�ling products and
measuring similarity, which addresses the limited content analysis issue.

1.2 Products as Documents

Typically products are described in documents of text intended to be read by
humans and measuring similarity between such documents is a well-studied
area in Natural Language Processing (NLP) with many available methods and
tools. Relations between words are stated informally and the following methods
attempt to measure similarity from such words. The following sentences will
be used as an example to illustrate the methods although the actual corpus
is generally much larger. The sentences are not related to the domain of this
project.

Sentence 1: Trees can be trees in nature or trees in computer science.
Sentence 2: It can be dangerous to be in caves.
Sentence 3: In nature, monkeys can live in trees or caves.

1.2.1 Term-Document matrix

In information retrieval, the term frequency-inverse document frequency (TF-
IDF) is a very common empirical metric to measure the signi�cance of a word

1.2 Products as Documents 5

Trees can be in nature or computer science

TF 3
11

1
11

1
11

2
11

1
11

1
11

1
11

1
11

IDF log 3
2 0 log 3

2 0 log 3
2 log 3

2 log 3
1 log 3

1

TF-IDF 0.048 0 0.016 0 0.016 0.016 0.043 0.043

Table 1.1: Example of TF-IDF of the words in Sentence 1 with 9 words, where
the letter-case is ignored. TF-IDF is the product of TF and IDF.
According to TF-IDF Trees is the most relevant word in this doc-
ument, followed by computer and science.

in a document. The TF-IDF is the product of the term frequency (TF) and
the inverse document frequency (IDF) and is generally high for words which are
uncommon among all documents but which occur frequently in a few documents.
Table 1.1 shows the TF, IDF and the TF-IDF of the words in sentence 1 of the
example. Notice that exact de�nition of a word is let open to the individual
application and the measure is purely based on syntax. Often stop-words such as
�in� which occur very frequently are considered insigni�cant and ignored when
calculating TF-IDF. Notice that the word can is ambiguous and may not be
considered a stop-word. The row vector of TF-IDF values can be considered a
document-vector for sentence 1.

Given a set of documents, the term-document matrix is a matrix of document-
vectors as columns. The rows in the term-document matrix are often referred to
as term-vectors. Table 1.2 shows a term-document matrix for the example sen-
tences with TF-IDF values. Both of the following methods compute similarity
between documents by using a term-document matrix.

1.2.2 Simple Vector Correlation

In this method, similarity between documents is measured directly from the
term-document matrix by correlating document-vectors with cosine similarity

sim(−→v ,−→u) = cos θ =
−→u · −→v
|−→u | · |−→v |

where θ is the angle between −→v and −→u . With the example term-document
matrix in �gure 1.2, the similarity values for Sentence 1 with the other sentences
are as such −−−−→

Sent.1 ·
−−−−→
Sent.2 = 0.016 · 0.045 = 0.0007

sim(
−−−−→
Sent.1,

−−−−→
Sent.2) =

0.0007

0.081 · 0.052
= 0.166

6 Introduction

Sent. 1 Sent. 2 Sent. 3
trees 0.048 0 0.020
can 0 0 0
be 0.016 0.045 0
in 0 0 0
nature 0.016 0 0.020
or 0.016 0 0.020
computer 0.043 0 0
science 0.043 0 0
it 0 0.06 0
dangerous 0 0.06 0
to 0 0.06 0
monkeys 0 0 0.053
live 0 0 0.053
caves 0 0.023 0.020

Table 1.2: The term-document matrix for the example with TF-IDF values.

−−−−→
Sent.1 ·

−−−−→
Sent.3 = 0.048 · 0.020 + 2 · (0.016 · 0.020) + 0.023 · 0.020 = 0.002

sim(
−−−−→
Sent.1,

−−−−→
Sent.3) =

0.002

0.081 · 0.083
= 0.297

According to this method, Sentence 1 and Sentence 3 are more similar than
Sentence 1 and Sentence 2.

The major advantage of this method is that it is simple to implement and will
in this project serve as the baseline similarity measure. A disadvantage of this
method is that the document vectors are generally sparse and synonyms are not
considered. It is also problematic to include new documents as it changes the
IDF values of words, which can be a problem as Steam Greenlight is frequently
updated.

1.2.3 Latent Semantic Indexing

Latent Semantic Indexing [DDF+90] (LSI) attempts to address some of the
disadvantages of computing similarity directly from the term-document matrix
by �rst applying Singular Value Decomposition (SVD) to the matrix. The
underlying intuitive assumption of LSI is that words that are highly related often
occur in the same documents and that this can be used to expand document
queries. It is out of the scope of this project to cover the theoretical background
of SVD in detail but in short it approximates a matrix A by decomposing it into

1.2 Products as Documents 7

a product of three smaller matrices by computing eigenvalues and eigenvectors.
The SVD of matrix A with k factors are written as follows.

Ak = SkΣkU
T
k

In LSI, Ak is the term-document matrix, Sk are k-dimensional term vectors,
Uk are k-dimensional document vectors and Σk are a diagonal matrix with the
k largest singular values. As an example, the result of SVD applied to the
term-document matrix in �gure 1.2 for k = 2 are the following matrices.

Σ2 =

[
0.61 0.0
0.0 0.12

]

S2 =

0.08 0.01
0.00 0.00
0.03 0.39
0.00 0.00
0.03 0.01
0.03 0.01
0.70 −0.01
0.70 −0.01
0.00 0.52
0.00 0.52
0.00 0.52
0.00 0.03
0.00 0.03
0.00 −0.21

trees
can
be
in

nature
or

computer
science
it

dangerous
to

monkeys
live
caves

U2 =

 1.00 0.002
−0.002 1.00
0.004 0.07

Sent.1Sent.2
Sent.3

A query in LSI is a list of terms l, which is converted to a k-dimensional vec-
tor query by summing together the corresponding term vectors of Sk. As an
example, suppose l is the list of terms in Sentence 1 which have a non-zero
TF-IDF

lSent.1 = [trees, be, nature, or, computer, science]

−−−−−−−→querySent.1 =

trees(
0.08
0.01

)
+

be(
0.03
0.39

)
+

nature(
0.03
0.01

)
+

or(
0.03
0.01

)
+

computer(
0.70
−0.01

)
+

science(
0.70
−0.01

)
=

(
1.57
0.40

)
The correlation between query and a document vector from Uk can then be used
for measuring document similarity. In the Lingpipe tutorial, the vectors are also

8 Introduction

scaled by the corresponding eigenvalues. Using this approach for this example,
the similarity values for Sentence 1 are as such

|−−−−−−−→querySent.1| =
√

1.572 · 0.61 + 0.402 · 0.12 =
√

1.52

−−−−−−−→querySent.1 ·
−−−−→
Sent.2 = 0.61(1.57 · (−0.002)) + 0.12(0.40 · 1.00) = 0.046

sim(−−−−−−−→querySent.1,
−−−−→
Sent.2) =

0.046√
1.52 ·

√
(−0.002)2 · 0.61 + 1.002 · 0.12

= 0.11

−−−−−−−→querySent.1 ·
−−−−→
Sent.3 = 0.61(1.57 · 0.004) + 0.12(0.40 · 0.07) = 0.0072

sim(−−−−−−−→querySent.1,
−−−−→
Sent.3) =

0.0072√
1.52 ·

√
0.0042 · 0.61 + 0.072 · 0.12

= 0.24

According to this method, Sentence 1 and Sentence 3 are more similar than
Sentence 1 and Sentence 2. The same conclusion was found using the simple
vector correlation approach in section 2.2.

A major advantage of LSI is that it to some extend considers synonyms and
addresses the sparsity problem of the original term-document matrix. An im-
plementation of SVD is available in Java with the proprietary library Lingpipe,
which is freely available for research use with freely available data and software.
There is also an online tutorial on how to use Lingpipe for LSI. A disadvantage of
LSI is that it involves solving an often large polynomial which takes a long time
and must be done whenever a new document is added to the term-document
matrix.

1.3 Products as Linked Open Data Entities

In the methods introduced in section 1.2, products were considered as documents
and similarity were measured from informally related words. This section intro-
duces an approach for content-based recommendation [DNMO+12] using Linked
Open Data, where products are considered logical entities with formally stated
properties.

Linked Open Data [BHBL09] (LOD) is a recent approach in the Semantic Web
community for storing and accessing data on the Web in a standardized and
structured way. Data are de�ned with triples such as (Steam, developer, Valve),
to express that �the developer of Steam is Valve�, where Steam and Valve are
entities and developer is a relation (sometimes called a property). Such triples
are accessed using the query language SPARQL [BHBL09].

1.3 Products as Linked Open Data Entities 9

Amajor advantage of the LOD is that entities have an URI so that other datasets
can make a reference to them. In particular, equality between two entities in
di�erent datasets can be formally declared by the owl:sameAs relation, which
allows information about a single entity to be distributed over multiple datasets.
Instances of the relation may be de�ned manually or automatically with tools
such as LIMES [NA11].

1.3.1 LOD for Content-Based Recommendation

In [DNMO+12] the authors used the datasets from Dbpedia [BLK+09], Freebase
and LinkedMDB for a content-based recommender system in the �lm domain.
Using SPARQL, they identi�ed �lms as LOD individuals in the datasets, which
gave triples such as the ones below for �Rightous Kill� and �Heat�

(Rightous Kill, starring, Al Pachino), (Rightous Kill, starring, Brian Dennehy)

(Rightous Kill, starring, Robert de Niro)

(Heat, starring, Al Pachino), (Heat, starring, Robert de Niro)

These triples were transformed to vectors as below

−−−−−−−−−−−−−−−→
Rightous Killstarring =

1
1
1

 −−−−−−−−→
Heatstarring =

0
1
1

 for Brian Dennehy
for Al Pachino
for Robert de Niro

These vectors were then correlated by cosine similarity was to measure the
similarity between the two �lms, regarding the starring relation, and the overall
similarity measure was averaged over all relations.

The precision/recall of a content-based recommender system based on this
method was evaluated to be higher than content-based recommender systems
based on NLP tools. The proposed reason was that the structure in the LOD
gave higher quality vectors, than vectors of extracted keywords from documents.

1.3.2 Mixing NLP with Linked Open Data

The approach in [DNMO+12] works when all products can be identi�ed as LOD
entities, however the Greenlight submissions in this domain are typically very
new and only described on the Web with traditional media.

10 Introduction

The approach in this project is to apply entity disambiguation to automati-
cally pro�le Steam Greenlight submissions with LOD triples from textual de-
scriptions. The Hellman NLP2RDF [HLA12] online demo of entity disam-
biguation with Dbpedia Spotlight [MJGSB11] can map some of the words in
a given text to entities in Dbpedia. For example from the string �- Gorgeous
post-apocalyptic setting� in the description of the Steam Greenlight submis-
sion for �Primordia�, Hellman NLP2RDF �nds the entity http://dbpedia.org/
resource/Apocalyptic_and_post-apocalyptic_fiction. From this result, a
triple like

(Primordia, subject, Apocalyptic and post-apocalyptic fiction)

can then be constructed and used in the similarity measure as shown earlier.
Additionally taxonomies can be used to systematically discover implicit triples.

Entity disambiguation is still a new research area and the implementations are
assumed to improve for higher precision/recall. The similarity measure will be
evaluated against other current approaches for document-document similarity
measures, such as Latent Semantic Indexing [DDF+90] and simple token-vector
correlation.

The aimed functionality of the recommender system is to take as input a list of
Steam game titles and then output a ranked list of Steam Greenlight submis-
sions.

1.4 Practical Details

In this project, data are extracted from the web and processed by local programs.
Rather than combining the extraction and processing into one program, the
project will be split into many small programs and data are stored as XML
�les. Some of the major advantages of using XML �les compared to using a
relational database are

1. The data is plain text and easy to modify

2. It is not necessary to manage a separate server with a database

3. The data is easy to copy and move for testing purposes

4. Many common programming languages have libraries for writing and query-
ing XML �les

http://dbpedia.org/resource/Apocalyptic_and_post-apocalyptic_fiction
http://dbpedia.org/resource/Apocalyptic_and_post-apocalyptic_fiction

1.5 Evaluation Methods 11

Appendix A shows an overview of the used XML tags and a demonstration of
the usage.

1.5 Evaluation Methods

In this thesis I evaluate the quality of the similarity measure and the quality
of the recommender results. The reason for evaluating the similarity measure
separately is that the recommender system may try to achieve diversity rather
than the high similarity, but this also requires a strong similarity measure.
Both evaluations retrieves and handles test data automatically rather than being
based on human inquiries.

The similarity measure returns a numeric value for the similarity between two
games, hence a ranking of similarity can be produced for a �xed game. I eval-
uate the average precision of this ranking, where the relevant games are the
Steam games classi�ed as similar by humans. I use the freely available human
classi�cation at the website www.giantbomb.com, which is maintained by the
community of users in the website. For example for the Steam Greenlight game
�Primordia�, there are six of the similar games which can be bought in Steam.
I then compute the average precision of the similarity measure of �Primordia�
pro�led as a Steam Greenlight submission. These classi�cations are generally
only available for released games, which is why I only consider the released
games in Steam Greenlight for the evaluation.

The recommender system returns a ranking of Steam Greenlight submissions
and I evaluate the ranking based on purchases of released Steam Greenlight
games. I consider the users who bought the game to �like� the game and should
be recommended it by the recommender systems, which allows me to evalu-
ate the average precision. At the time of writing there are 12 released Steam
Greenlight games.

1.6 Problem De�nition

This project considers the problems in content-based recommender systems in
the domain of Greenlight submissions and implementing a demo recommender
system.

The problems that are addressed in the project are to

www.giantbomb.com

12 Introduction

1. Pro�le products (Steam games and Greenlight submissions).

2. Measure similarity between products.

3. Extract user pro�les.

4. Recommend the products (Greenlight submissions) for a given user pro�le.

1.7 Expected Results

I expect the structured data to be more precise than the extracted keywords,
even though they are based on NLP-tool results. The taxonomies should allow
the system to �lter out large amounts of irrelevant data and incorrect results
from the NLP-tools, which should increase the precision of the similarity mea-
sure signi�cantly.

The results are limited by the coverage of the Steam games as LOD though and
games with only generalized data (close to the root in the taxonomies) can lead
to noise.

1.8 Report Structure

Chapter 2 presents the similarity measures based on NLP in detail and chapter 3
presents the similarity measure based on LOD and NLP in detail. Chapter 3
also presents the recommender system which apply the LOD-based similarity
measure. Chapter 4 presents the evaluation of the presented methods with
results and discussion. Chapter 5 concludes the report.

Chapter 2

Pure NLP Approaches

In this project, the similarity measure based on Linked Open Data is compared
with similarity measures based on keywords extracted from documents with
more conventional methods. Here the items are pro�led from their documents
with keywords in a term-document matrix as introduced in section 1.2.1. The
�rst method is by simple vector correlation using the term-document matrix
directly as introduced in section 1.2.2 and the second method is by using Latent
Semantic Indexing (LSI) as introduced in section 1.2.3.

Assuming that the games and their descriptions are already available, the pro-
cess of computing similarity with keywords in both methods can roughly be split
into the following steps

1. Construct term-document matrix as presented in chapter 1 from item
documents

2. Compute similarity between items using the term-document matrix.

Section 2.1 shows the algorithms for computing the matrix in steps 1 which is
used in both similarity measures. Step 2 is then done by using either simple
vector correlation or LSI. Section 2.2 shows the algorithms for the simple vector
correlation similarity measure and section 2.3 shows the algorithms for the LSI
based similarity measure.

14 Pure NLP Approaches

Variable Type De�nition
num number
id string
doc string
token string
profile token => num

Function Name Input Type Output Type
stopWords() N/A token list

tokenFrequncies(d) doc profile

tfVectors(ds) id => doc id => profile

dfs(tfVs) id => profile token => num

tfidfVectors(ds) id => doc id => profile

Table 2.1: The variable and function type speci�cation for computing the
term-document matrix with TF-IDF values.

2.1 Term-Document Matrix

As introduced in 1.2.1, the value at position (i, j) in a term-document matrix is
non-zero if term i is present in document j and zero otherwise. In this project
the term-document matrix contains TF-IDF values as de�ned in section 1.2.1.
The term-document matrix can be computed o�ine from the similarity measure
but when using TF-IDF, the matrix must be updated whenever a new item is
added.

The term-document matrix is computed in a functional style by using several
smaller functions with input and output but no side-e�ects. PHP is not a very
strongly typed language, but the functions are implemented according to the
type speci�cations shown in table 2.1.

The overall approach to computing the TF-IDF term-document matrix is to �rst
compute the TF term-document matrix and then multiply each element with the
corresponding IDF value. The function stopWords() returns the list of words
considered as stop-words and not tokens. The function tokenFrequencies(d)

tokenizes a document d to a vector with the number of occurrences of each token
in d. Tokens that occur in the list returned by stopwords() are ignored. The
function tfVectors(ds) shown in �gure 2.1 computes the TF term-document
matrix for the list of documents ds. The function dfs(tfVs) shown in �gure
2.2 computes the document frequency of each token that occur in the term
frequency vectors tfVs. The function tfidfVectors(ds) shown in �gure 2.3
computes then computes the TF-IDF term-document matrix for the documents
ds where only the non-zero elements explicitly stated.

2.1 Term-Document Matrix 15

function tfVectors(ds (id => doc)){

let tfVs := empty dictionary

foreach (id ,d) in ds{

let tokenVector := tokenFrequencies(d)

let l := sum(tokenVector)

foreach (token ,v) in tokenVector

tokenVector[token] := v/l

tfVs[id] := tokenVector

}

return tfVs

}

Figure 2.1: This function computes the term-document matrix with TF val-
ues for the given documents ds. A document d is tokenized by
tokenFrequencies(d) by to a token vector with the number of
occurrences of the token in the document. The term-vector of
d is then achieved by dividing each element with the sum of all
occurrences in the token vector.

function dfs(tfVs (id => profile)){

let dfs := empty dictionary

foreach (_,tokenVector) in tfVs{

foreach (token ,_) in tokenVector{

let u := dfs[token]

if (u = null) then

dfs[token] := 1

else

dfs[token] := u+1

}

}

return dfs

}

Figure 2.2: The document frequency of each term in tfVs is computed by
iterating over all vectors and counting the number of occurrences.
The underscore character _ denotes an anonymous variable.

16 Pure NLP Approaches

function tfidfVectors (ds (id => doc)){

let tfs := tfVectors(ds)

let dfs := dfs(tfs)

let D := #ds

let tfidfVectors := empty dictionary

foreach (id ,termVector) in tfVs{

let tfidfVector := empty dictionary

foreach (token ,tf) in termVector{

let c := dfs[token]

let df := log (D / c)

tfidfVector[token] := tf*df

}

tfidfVectors[id] := tfidfVector

}

return tfidfVectors

}

Figure 2.3: The term-document matrix with TF-IDF values is computed by
�rst-computing the term-document matrix with TF values and
then multiplying each element with the IDF value for the corre-
sponding term.

For convenience, the Steam games and Greenlight submissions are stored in
separate term-document matrices. Figure 2.4 shows an example of how a column
in the Steam term-document matrix is stored as XML.

2.2 Simple Vector Correlation

In simple vector correlation, the column vectors of the term-document matrix
are used directly for computing sim(−→u ,−→v) as introduced in 1.2.2.

Given the term-document matrices in �gure 2.5 as input, it is straightforward to
implement the similarity measure in PHP using the functions speci�ed in table
2.2. The function sim(u,v) shown in 2.6 computes the sim(−→u ,−→v) for two given
pro�les u and v. The function topSim(title,steam) shown in 2.7 computes
the similarity ranking for a given Greenlight submission title against all game
pro�les in steam.

2.2 Simple Vector Correlation 17

Steam Machinarium . . .
machinarium 0.156
award-winning 0.023

...
...

<steam>
<game>

<uri>ht tp : // s t o r e . steampowered . com/app/40700/? snr=1
_7_7_230_150_36</uri>

<t i t l e>Machinarium</ t i t l e>
<description>About the . . .</description>
<keyword word="machinarium" value=" 0.156 "/>
<keyword word="award−winning" value=" 0.023 "/>
. . .

</game>
. . .

</steam>

Figure 2.4: The term-document matrices with TF-IDF values are stored as
XML �les. Each <game> element corresponds to a column vector
in the matrix, with only the non-zero elements explicitly stated.

Machinarium machinarium 0.156

.

.

.

.

.

award-winning

Primordia adventure

tradition

0.00674

.

.

.

.

.

Greenlight Term-Document Matrix

Steam Term-Document Matrix

0.0234

steamKeywords.xml

greenlightKeywords.xml

0.0147

Figure 2.5: Input for the simple vector correlation. Each XML �le de�nes a
term-document matrix which is loaded into a separate dictionary
in PHP as shown. The datatype for each dictionary is id =>

profile where a profile is a column vector of a term-document
matrix.

18 Pure NLP Approaches

Function Name Input Type Output Type
sim(u,v) (profile,profile) num

topSim(title,steam) (profile,id=>profile) id priority queue

Table 2.2: The function type speci�cation for the simple vector correlation
similarity measure.

function sim(u (profile), v (profile)){

let vDu := 0

foreach (word ,x) in u{

let y := v[word]

if (y != null)

vDu := vDu + x*y

}

return vDu / (sqrt(sum(u)) * sqrt(sum(v)))

}

Figure 2.6: Vectors are correlated by their cosine similarity. The returned
value is always positive as there are no negative TF-IDF values.

function topSim(title (profile), steam (id=>profile)){

let ranking := empty priority queue

foreach (steamTitle ,steamProfile) in steam{

let v := sim(title ,steamProfile)

ranking := insert(steamTitle ,v,ranking)

}

return ranking

}

Figure 2.7: For the evaluation, the games in steam are stored in a priority
queue ordered by their similarity to title.

2.3 Latent Semantic Indexing 19

2.3 Latent Semantic Indexing

As introduced in section 1.2.3, Latent Semantic Indexing also uses the term-
document matrix and cosine similarity but rather than using the column vectors
directly, the matrix A is pre-processed by Singular Value Decomposition (SVD)
which approximates it into a product Ak of three smaller matrices Sk, Σ and
UTk .

Ak = SkΣkU
T
k

The row vectors in UTk are then the document pro�les which can be correlated
by cosine similarity.

Rather than implementing SVD from scratch I use the Java based Lingpipe
library which also has an online tutorial with source code for how to apply
the library for an LSI based term-document similarity measure. In the tutorial
program SVD is applied to a demo term-document matrix and given a list of
terms as program arguments it will compute the query vector for those terms
as shown in section 1.2.3 and print the results for that query.

In this project, the tutorial source code is wrapped inside the class Lsi speci�ed
in table 2.3. There are no major changes to the source code from the tutorial
other than the results are returned rather than just printed. The Lsi class is
instantiated with a given term-document matrix which is then processed by SVD
in Lingpipe. After instantiation, the class can be queried with query(terms)

where terms is a list of terms to get a dictionary with the document similarities
for that query. The output dictionary typically looks like below

query(

adventuretradition
...

) =

Machinarium 7→ 0.5

Aura: Fate of Ages 7→ 0.2
Half-life 7→ 0.15

...

Given the data shown in �gure 2.8 as input, the program in the class steamSimilarity
instantiates the Lsi class with the Steam term-document matrix and then uses
the Greenlight term vectors as input for query(terms).

20 Pure NLP Approaches

Machinarium machinarium 0.156

.

.

.

.

.

award-winning

Primordia adventure

tradition
.
.
.

.

.

Greenlight Term Vectors

Steam Term-Document Matrix

0.0234

steamKeywords.xml

greenlightKeywords.xml

Figure 2.8: Input for the latent semantic indexing. The Steam term-document
matrix is loaded as in section 2.2 and is processed with SVD us-
ing the Lingpipe library. The columns in the Greenlight term-
document matrix are used as query vectors.

Lsi
Type Name
double[][] TERM_DOCUMENT_MATRIX

String[] TERMS

String[] DOCS

SvdMatrix matrix

double[] scales

double[][] termVectors

double[][] docVectors

Lsi(String[] terms, double[][] tdm, String[] docs)

Map<String,Double> query(String[] terms)

Table 2.3: Speci�cation of Lsi class for term-document similarity measuring.
The constructor applies SVD to the input matrix using the Lingpipe
library class SvdMatrix. The SvdMatrix class constructor parame-
ters are not shown here and they are generally tuned to a particular
case using empirical methods.

Chapter 3

Linked Open Data
Approach

In the previous chapters, the similarity measure was based on extracting im-
portant keywords from documents using TF-IDF. It was also seen that words
like �Adventure� which are quite common get a low TF-IDF score even though
they are quite relevant to describing the game. Rather than using TF-IDF, en-
tity disambiguation is used to identify words from documents in the LOD and
the taxonomies are used to specify a vocabulary for the similarity measure. As
presented in [DNMO+12], one of the advantages of using such structured data
rather than just keywords are that the taxonomies can be used to �nd indirect
links between entities.

Assuming that the Steam games and Greenlight submissions are already avail-
able, the process of computing similarity using with LOD can roughly be split
into the following steps

1. Pro�le Steam games with LOD

2. Pro�le Greenlight submissions with LOD

3. Automatically optimize the pro�les using the taxonomies of the LOD

4. Compute similarity using the algorithms and formulas in [DNMO+12]

22 Linked Open Data Approach

The data in step 1 and step 2 will be referred to as raw data, since there has
been no attempt at �ltering out noise or other improvements at that point.
The challenge in these steps is to extract LOD data using the available seman-
tic web applications. The challenge in step 3 is to analyse the raw data and
automatically optimize it so that it can be used in step 4 with no additional
processing. Thus step 1-3 is preprocessing and only step 4 is used online by the
recommender system.

The implementation is in PHP as it by default provides a big library of functions
for extracting data from the web and handling of XML documents. To simplify
the implementation in this project, a small custom library was written to wrap
around the most commonly used functions. Despite PHP not being a functional
language, the code is written in a functional style in that there are no mutating
objects or other side e�ects and as such the functions are de�ned according to
a given type speci�cation. The functional style makes it easy to debug the code
by testing the functions individually.

In Section 3.1, the data in Dbpedia is analysed in order to �nd a �tting way
of handling and storing the data in the implementation. Section 3.2 shows how
the raw data in step 1 and 2 are extracted and represented in PHP. In section
3.3, the raw data is analysed in order to identify implement a pipeline which
automatically optimizes the data in step 3 and section 3.4 presents the imple-
mentation of step 4 and the recommender system which applies the similarity
measure.

3.1 Analysis of Dbpedia Data

The triple space of RDF data is commonly illustrated as a three dimensional
matrix, where each two-dimensional slice corresponded to a single property,
with triple subjects in the rows and triple objects in the columns. The value at
(is, jo, kp) is a positive real number if the triple (s, p, o) occurs in the dataset and
zero otherwise. In [DNMO+12] they considered a subset of the Dbpedia triple
space de�ned by a set of properties as illustrated in �gure 3.1 with TF-IDF
based values.

A column vector j in a slice matrix p is then the pro�le of the corresponding
�lm mj with respect to the property p. Rather than specifying the full column
vectors, which are often very large due to sparse slice matrices, the vectors can
be speci�ed in terms of only the non-zero elements.

Kill_Bill
dcterms:subject⇒

(
KillBill

)
Kill_Bill

genre⇒
(
Fighting

Slasher

)

3.1 Analysis of Dbpedia Data 23

label length date genre

Kill_Bill

Lord_of_
the_rings_(movie)

...

1:90
3:00

1:00Kill Bill

LOTR

... ...

Figure 3.1: Triple space of �lm related RDF. Each slice is a two-dimensional
matrix with triples for the corresponding property. The value at
a given cell is zero if the triple do not exist in the dataset and
non-zero if it exists in the dataset.

The entities in the dcterms:subject vector for an entity e corresponds to the
Wikipedia Categories of the Wikipedia article for e. For example does Kill Bill
have the Wikipedia article http://wikipedia.org/wiki/Kill_Bill and this
article is listed in the single category Kill Bill. This is expressed in Dbpedia
as the triple

dbpedia:Kill_Bill dcterms:subject category:Kill_Bill

The Wikipedia Categories are structured as a directed acyclic graph which forms
a hierarchy of subcategories. For example is the category Kill Bill a subcate-
gory of Martial art films and Films directed by Quentin Tarantino and
has the single subcategory Kill Bill characters. In Dbpedia, the Wikipedia
Category hierarchy has been mapped to the taxonomy de�ned by the skos:broader
relation. For example is the above expressed in Dbpedia as the triples

category:Kill_Bill skos:broader category:Martial_arts_films

category:Kill_Bill skos:broader category:Films_directed_by_...

category:Kill_Bill_characters skos:broader category:Kill_Bill

In [DNMO+12], the authors increased the precision of the similarity measure
by extending the dcterms:subject vector with the conclusions of the rule.

a dcterms:subject b b skos:broader c

a dcterms:subject c

The rationale of this approach is that the taxonomy can be used to perform a
limited form of reasoning to add additional facts. Note that the skos : broader
relations cannot simply be replaced by classic subsumption both because it is
a relation between individuals and not classes and also because the taxonomy

http://wikipedia.org/wiki/Kill_Bill

24 Linked Open Data Approach

is only based on a vague categorization. The YAGO ontology [SKW07] is an
attempt to automatically build a proper subsumption-taxonomy based on the
Wikipedia Categories but at a glance, it su�ers from a few issues regarding game
related data.

1. Outdated data access points

2. Shallow genre taxonomy

Under the assumption that Steam games exists as Dbpedia entities, the method
used for �lms in [DNMO+12] can also be applied for the games to get vectors
such as.

Machinarium
dcterms:subject⇒

Point-and-click adventure games

Adventure games
...

Machinarium

genre⇒
(
Graphic adventure game

)
In this project the Steam games are compared with Greenlight submissions
pro�led by entity disambiguation. The problem in entity disambiguation is to
annotate words in a document with suitable LOD entities. The output of the
entity disambiguation is typically a list of triples as below

[adventure��string scms:means dbpedia:Adventure_game, ...]

This project uses the Hellmann NLP2RDF [HLA12] web demo with the popular
entity disambiguation tool Dbpedia Spotlight [MJGSB11].

Notice that simply disambiguating entities from the text document is not suf-
�cient for applying the similarity measure with LOD as it is also necessary
to identify the relation with the disambiguated entity. As a simple approxi-
mation, the relation is assumed to be dcterms:subject and the triples used
for the pro�le will be the categories of the disambiguated entities. For exam-
ple, if the entity disambiguation for the Greenlight submission Primordia found
dbpedia:Adventure_game which have the following categories in Dbpedia

dbpedia:Adventure_game dcterms:subject category:Adventure_games

dbpedia:Adventure_game dcterms:subject category:Video_game_terminology

dbpedia:Adventure_game dcterms:subject category:Video_game_genres

3.1 Analysis of Dbpedia Data 25

<steam>
<game>

<t i t l e>Machinarium</ t i t l e>
<subject>Category:Point−and−c l i c k adventure games</subject>
<subject>Category:Adventure games</subject>
. . .

</game>
. . .

</steam>

Figure 3.2: Each <game> element de�nes the pro�le vector of one game. The
title of the game is de�ned in the <title> element and the
dcterms:subject related entities are de�ned in the <subject>

element. The other slices are not considered since the Green-
light submissions only are pro�led by the dcterms:subject rela-
tion. The root element shows if the pro�les are for Steam games
(<steam>) or Greenlight submissions(<greenlight>).

then the Primordia LOD pro�le will have these triples

Primordia dcterms:subject category:Adventure_games

Primordia dcterms:subject category:Video_game_terminology

Primordia dcterms:subject category:Video_game_genres

With respect to the triple space shown in �gure 3.1, the Greenlight submissions
will then only have values in the dcterms:subject slice with vectors like below

Primordia
dcterms:subject⇒

Adventure games

Video game terminology

Video game genres
...

Storing these vectors separately allows the data extraction, optimization and
similarity measure separately which is useful both for debugging purposes and
reduces the computation time of the individual parts. For this project, the
vectors are stored as XML �les using a custom scheme as shown in �gure 3.2.
For larger applications it may be more suitable to use relational databases.

It is then simple to represent the vectors in PHP from the XML-�les as dictio-
naries as shown in �gure 3.3 using the default libraries. The dictionaries gives
quick access to the pro�le for any given Steam game or Greenlight submission
given its title. Following the functional style of implementation, the types used

26 Linked Open Data Approach

steamSubjects.xml

greenlightSubjects.xml

Machinarium Subject Category:Point-and-click adven... 1

Category:Adventure_games
.
.
.

.

.
1

Primordia Subject Category:Adventure_games 1

.

.

.

Greenlight Triple Space Data

Steam Triple Space Data

.

.

.

.

Category:Video game terminology

Category:Video game genres

1

1

Figure 3.3: The triple data vectors are restored from the XML �les in PHP as
dictionaries. Although the Steam games are only pro�led in terms
of the slice de�ned by the dcterms:subject relation, the data
structure can also handle vectors from any slice. Each mapped
entity is mapped to a value, which in this case is always assumed
to be 1, for calculating cosine similarity.

Type De�nition
DOM Document Object Model

id string

entity string

prop string

num number

Table 3.1: Types used in the LOD similarity measure.

3.1 Analysis of Dbpedia Data 27

Function Name Input Type Output Type
xmlAsDom(xml) string DOM

dbpediaSparql(query) string DOM

nlp2rdfResults(document) string DOM

dbpediaLinks(rdf) DOM entity list

Table 3.2: Speci�cation of PHP functions for answering SPARQL queries
with Dbpedia. xmlAsDom(xml) parses an XML formatted string
to a DOM object which can modi�ed and queried in PHP.
dbpediaSparql(query) returns a DOM object with the result of
the given SPARQL query.

in this approach are speci�ed in table 3.1.

In [DNMO+12] the authors additionally used the owl:sameAs relation to also
include the triples from Freebase and the �lm dataset LinkedMDB to get ad-
ditional information about each �lm. Although interlinking of datasets is one
of the bene�ts of Linked Open Data, it is not in the scope of this project to
evaluate with combined datasets.

3.1.1 Extracting Data from the Semantic Web

In the shown methods triples are extracted from Dbpedia and the result of the
entity disambiguation are extracted from the Hellmann NLP2RDF web demo.
In this project the PHP functions shown in table 3.2 are written to perform this
extraction in an automatic and comprehensive manner. These PHP functions
only requires the standard libraries of PHP.

In Dbpedia, triples can be accessed with the semantic web query language
SPARQL and the Dbpedia SPARQL endpoint by using the following HTTP
request

http://dbpedia.org/sparql?

default-graph-uri=http://dbpedia.org&

query=query&
format=format

Here query is the SPARQL query encoded for an URL and format is a constant
specifying the format of the output (by default text/html). This request is
wrapped into the PHP function dbpediaSparql(query) which returns a DOM

28 Linked Open Data Approach

object with the result of the given SPARQL query query formatted as XML
which is par.

The Hellman NLP2RDF web demo is typically accessed with a web browser
where the user inputs a document, con�gures the application and press a but-
ton to get the result in the interface encoded as RDF. In the con�guration, the
application can be set up to use Dbpedia Spotlight for disambiguating the re-
sults to Dbpedia entities. Alternatively the application with only the Dbpedia
Spotlight can be accessed with the following HTTP request

http://nlp2rdf.lod2.eu/demo/NIFDBpediaSpotlight?

input-type=text&

nif=true&

input=document

This request is wrapped into the PHP function nlp2rdfResults(document)

which returns a DOM object with the results for the given document document
formatted as RDF. The RDF output typically looks like in �gure 3.4 where the
disambiguated entities are speci�ed with the <scms:means> tag. These entities
are extracted into a list with the PHP function dbpediaLinks(rdf) where rdf
is a DOM with the output from the HTTP request.

3.2 Pro�ling with Raw Data

The data that is extracted from the Semantic Web shown in section 3.1 is in
this project referred to as raw data in the sense that it has not been optimized
in any way. The raw data is expected to contain signi�cant noise, both due to
the informal background of the category taxonomy and because of incorrectly
disambiguated entities. Nevertheless the extraction of this data are the �rst
and second step in computing similarity between Steam games and Greenlight
submissions with the LOD.

While it is a challenge to automatically identify the Steam games as Dbpedia
entities, it only needs to be done once for each game. In this section, it is
assumed that the Dbpedia entities for the Steam games are written in XML as
shown in �gure 3.5. It is then simple to query for the categories of the entity
uri with the SPARQL query.

SELECT ?C WHERE <uri> dcterms:subject ?C

3.2 Pro�ling with Raw Data 29

<rdf:RDF>
. . .
<rdf:Description rd f : about=" ht tp : // n lp2 rd f . lod2 . eu/ n i f /

offset_3_12_adventure ">
<rdf:type r d f : r e s o u r c e=" ht tp : // n lp2 rd f . lod2 . eu/schema/ s t r i n g /

Of f s e tBasedSt r ing "/>
<rdf:type r d f : r e s o u r c e=" ht tp : // dbpedia . org / onto logy /

TopicalConcept "/>
<str:anchorOf>adventure</str:anchorOf>
<scms:means r d f : r e s o u r c e=" ht tp : // dbpedia . org / r e sou r c e /

Adventure_game"/>
<str:beginIndex>3</str:beginIndex>
<str:endIndex>12</str:endIndex>
<spotlight:support>958</ spotlight:support>
<spotlight:surfaceForm>adventure</spotlight:surfaceForm>
<spot l ight :of fset>3</ spot l ight :of fset>
<spotlight:similarityScore>0.09329799562692642</

spotlight:similarityScore>
<spotlight:percentageOfSecondRank>−1.0</

spotlight:percentageOfSecondRank>
<spotlight:URI>ht tp : // dbpedia . org / r e sou r c e /Adventure_game</

spotlight:URI>
<spotlight:types>

Freebase : /media_common/media_genre , Freebase : /media_common ,
Freebase : / cvg/cvg_genre , Freebase : /cvg , Freebase : /award/
award_disc ip l ine , Freebase : /award , DBpedia:TopicalConcept

</ spotlight:types>
</rdf:Description>
. . .

</rdf:RDF>

Figure 3.4: Output of Hellman NLP2RDF with Dbpedia Spotlight plugin.
The �rst <rdf:Description> element (not shown here) summa-
rizes the input and the disambiguated substrings. Every other
<rdf:Description> element describes a disambiguated substring,
which is in the shown case for the word �adventure� starting at in-
dex 3 and ending at index 12. The scms:means element shows
that the word was disambiguated as the entity http://dbpedia.

org/resource/Adventure_game and the spotlight pre�xed tags
show some information regarding Dbpedia Spotlight.

http://dbpedia.org/resource/Adventure_game
http://dbpedia.org/resource/Adventure_game

30 Linked Open Data Approach

<?xml version=" 1 .0 " encoding="utf−8"?>
<steam>

<game>
<uri>ht tp : // s t o r e . steampowered . com/app/40700/? snr=1

_7_7_230_150_36</uri>
<t i t l e>Machinarium</ t i t l e>
<description>About the . . . </description>
<dbpediaURI>ht tp : // dbpedia . org / r e sou r c e /Machinarium</dbpediaURI

>
</game>
. . .

</steam>

Figure 3.5: Snipped of steamDbpedia.xml showing how the Steam game
�Machinarium� is listed with a URI in Dbpedia

The PHP function subjects(uri) performs this query with dbpediaSparql(query)
and returns the list of category entities which are then stored as shown in �gure
3.2.

Similarly the Greenlight submissions are pro�led with such vectors but they
must be constructed from human-readable text. For this purpose, the text is
parsed with Hellman NLP2RDF demo with the Dbpedia Spotlight entity disam-
biguation plugin which maps the words in the text to corresponding entities in
Dbpedia. For example, from the text �An adventure in the tradition of Beneath
a Steel Sky� in the submission of �Primordia� the result includes the mapping

adventure⇒ http://dbpedia.org/resource/Adventure_game

This entity will then have dcterms:subject relations into categories, such as
http://dbpedia.org/resource/Category:Adventure_games which are used
as values in the pro�le vector for the submission.

Primordia
subject⇒

(
http : //dbpedia.org/resource/Category : Adventure_games

...

)

Summing up, the raw data for the Greenlight submissions are achieved as follows

1. Extract the description of Greenlight submissions

2. Map each submission to the output of the entity disambiguation

3. Query the Dbpedia sparql endpoint for subjects of each mapped entity.

3.3 Data Optimization 31

Entity Disambigution
Category Profiles

Optimized Entity Disambiguation
Category Profiles 1

Optimized Dbpedia
Category Profiles 1

Optimization Pipeline 1

Dbpedia
Category Profiles

Optimized Entity Disambiguation
Category Profiles 2

Optimized Dbpedia
Category Profiles 2

Optimization Pipeline 2

Evaluation set 1

Evaluation set 2

Figure 3.6: The category vectors extracted from the web and constructed from
the entity disambiguation are post-processed by a pipeline of op-
timization modules in order to reduce the sparsity of the vectors.
The format of the output is the same as the input.

3.3 Data Optimization

With the data from section 3.2 it is now possible to compute similarity between
Dbpedia entities and the documents processed with entity disambiguation. How-
ever the high sparsity in the category vectors remains a problem. This was less
of an issue in [DNMO+12] where other property vectors were included as well,
but when only considering one property the similarity measure can be expected
to perform poorly. This section presents methods for improving the performance
by post-processing the category vectors in pipelines of optimization modules as
shown in �gure 3.6. Each module is designed to work as in individual program
which takes some �les with category vectors as input, process it and write the
resulting category vectors in a new �le as output. The bene�t of this design is
that each module can be tested independently and that it is simple to plug and
unplug modules to get di�erent pipelines.

3.3.1 Category Intersection Modules

The category vectors often contain categories which do not re�ect content but
rather some meta-data. As an example, the category Cancelled Xbox 360

games only states some historical information and is not useful in content-based
recommendation. By removing such categories the vector cardinality is reduced
and may also lower the vector sparsity. The problem is then to de�ne the
categories that re�ects the content which depend on the domain. Since the
two sets of category vectors are made from very di�erent sources, it is also
appropriate to consider them separately.

32 Linked Open Data Approach

The category vectors for the Steam games are de�ned manually by humans
and are hence assumed to generally be �correct�. The categories are often sub-
categories of the video games category which branches out into widely di�er-
ent thematic topics. For example for �Machinarium� there are many categories
which only state some meta-information about the game, such as released plat-
forms and dropped platforms, rather than the content of the game.

Machinarium
dcterms:subject⇒

Point-and-click adventure games

Adventure games

Flash games

Windows games

Linux games

Indie video games

Cancelled Xbox 360 games

Video games developed in the Czech Republic

Art games

Amanita Design games

Mac OS X games

Steampunk video games

Cancelled Wii games

2009 video games

Independent Game Festival winners

Humble Indie Bundle games

The goal is to �lter out categories which are not related to the genre or the
theme of the game.

Machinarium
dcterms:subject⇒

Point-and-click adventure games

Adventure games

Art games

Steampunk video games

By inspecting the skos:broader hierarchy shown in �gure 3.7, the categories
related to genres and themes are found to have the lowest common ancestor
video games by genre. This may seem incorrect depending on the interpre-
tation of a genre and a theme however this is a consequence of the informal
thematic hierarchy.

The categories are extracted from Dbpedia with the simple recursive depth-
�rst graph traversal from a given start node shown in �gure 3.8. The traversal
returns a dictionary with the category names as keys and the corresponding
RDF �les as values. These �les are then stored in a local directory.

The main advantage of this method compared to using a list of stop-categories,
similar to a list of stop-words, is that the categories are structured so it is only

3.3 Data Optimization 33

Genre and theme related
Categories

All Categories

video games
 by genre

video games
_by theme

Adventure
_games

Myst
games

Guild
 Wars

Steampunk
video games

Action
 games

video
 games

works by
 genre

games by
 genre

video game
 hardware

Figure 3.7: The relevant categories are all in the sub-graph from video games

by genre even though it could be argued that themes are not
genres. This is a consequence of the informal semantics in the
relations.

function recursiveDepthFirst(node (string), closed (

string=>dom){

let url := "http :// dbpedia.org/data /"+ node

let dom := xmlAsDom(get(url))

closed[node] := dom

let children := children(node)

foreach (child in children){

if (closed[child] != null) then

closed := recursiveDepthFirst(child ,closed)

}

return closed

}

Figure 3.8: Recursive depth �rst traversal. The closed set is implemented as
an initially empty dictionary which is recursively expanded with
the nodes in the sub-graphs of node. The function do not re-
curse on nodes already in closed. The function get(url) re-
turns the web page in the argument as a string. The function
children(node) returns the nodes of the outgoing edges of node.

34 Linked Open Data Approach

necessary to specify a few categories as starting nodes. The remaining categories
are extracted automatically. The disadvantages of this method are that (i) the
start nodes must be chosen carefully by manually inspecting the hierarchy, and
(ii) the informal semantics can result in undesired categories. Disadvantage (ii)
can be avoided by choosing smaller and speci�c sub-graphs which are typically
more consistent than big and very general sub-graphs.

The category vectors for the Greenlight submissions are constructed automat-
ically from the entity disambiguation and they are expected to have many in-
accurate categories due to incorrectly disambiguated entities. They are also
generally much longer than the Steam category vectors since an entity typically
has multiple associated categories. Rather than intersecting the Greenlight cat-
egory vectors with the genre and theme categories as for the Steam category
vectors, they are intersected with the set of categories that occurs in all Steam
category vectors. The idea is that the Steam category vectors are used as model
for the Greenlight category vectors so that categories which do not occur in any
Steam category vector is completely omitted.

The advantage of this method is that the remaining Greenlight category vec-
tors correlate with at least one Steam category vector. The disadvantage is
that Greenlight categories are sometimes more general than Steam categories
and such otherwise useful categories would be removed with this method. For
example the category Steampunk do not match the category Steampunk video

games and would be removed. Additionally category vectors can end up as
zero-vectors which cannot be compared with anything at all.

The category intersection itself is straight-forward to implement as the function
intersection(cs,dom) where cs is a set of categories and dom is a DOM with
category vectors. The output is dom where the category vectors only contain
the categories in cs. The function is wrapped into two modules.

File Intersection Module(dom,dir)

XML Intersection Module(dom1,dom2)

File Intersection Module(dom,dir) constructs cs from the RDF-�le names
in given directory dir and XML Intersection Module(dom1,dom2) constructs
cs from the set of all categories in the category vectors of dom2. Figure 3.9
shows some examples of input and output of both modules.

3.3.2 Generalizing Categories

Like in [DNMO+12], the skos:broader taxonomy is used to generalize the
categories in the pro�les and discover implicit relations between �lms. The

3.3 Data Optimization 35

Category Vector XML

Category RDF files

Video_games_by_genre.rdf

Video_games_by_theme.rdf

Adventure_games.rdf

Action_games.rdf

Machinarium
 Point-and-click adventure games
 Adventure games
 Flash games
 Independent Games Festival winners
 Cancelled Xbox 360 games
... Machinarium

 Point-and-click adventure games
 Adventure games
 Steampunk video games
 Art games
...

Intersected Category Vector XML

...

Category
Intersection

Category Vector XML

Primordia
 Adventure games
 Video game genres
 Article Feedback 5
 Post-apocalyptic fiction
 ...
...

Machinarium
 Point-and-click adventure games
 Adventure games
 ...

Half-life 2
 Post-apocalyptic video games
 First-person shooters
 ...
...

Category Vector XML

XML Intersection
Module

Primordia
 Adventure games

Intersected Category Vector XML

File Intersection
Module

([Point-and-click adventure games,Adventure games,Post-apocalyptic video games,...],
Greenlight data)

Steam data

Greenlight data

([Video games by genre,Adventure games,Video games by theme,Action games...],
Steam data)

Figure 3.9: Examples of input and output of the
File Intersection Module(dom,dir) and the
XML Intersection Module(dom1,dom2).

36 Linked Open Data Approach

skos:broader is considered as one-step transitive such that for example given
the triples

Machinarium dcterms:subject Steampunk_video_games.

Steampunk_video_games skos:broader Steampunk_games.

the following can be inferred by one-step transitivity

Machinarium dcterms:subject Steampunk_games.

This can be generalized to n-step transitivity and in [DNMO+12] they found
that the best precision was for n = 1.

Intuitively highly specialized categories, such as the brand name categories Myst
and Guild Wars often found in the Steam category vectors, bene�ts from being
generalized to more broader and more common concepts with a higher correla-
tion. On the other hand the method increases the total number of considered
categories as shown in �gure 3.11 which also increases the sparsity of the vectors.

In this project, category generalization is implemented as the module

Broader Module(dom)

which applies one-step transitivity to each category in the category vectors of
dom by querying the DBpedia SPARQL endpoint. Suppose the given triple is
g dcterms:subject c0, then the set of one-step transitive categories of c0 are
de�ned by variable C in the SPARQL query

select C where {<c0> skos:broader C}

For each c ∈ C, the following triples are then added to the pro�les

g dcterms:subject c

To get n-step transitivity, the above is recursively applied to the added subjects
as well. The above method can be viewed as a depth-limited graph traversal in
the skos:broader hierarchy graph. This traversal is straight-forward to imple-
ment as the recursive algorithm depthLimitedRec(node,closed,n) shown in
�gure 3.10.

The Broader Module(dom) queries depthLimitedRec(c0,1,broader(uri)) for
each category c0 in the category vectors of dom. The successor function broader(uri)
returns the result of dbpediaSparql(query) where query is the SPARQL query

select ?C where {<uri> skos:broader ?C}

3.3 Data Optimization 37

function depthLimitedRec(node (entity), closed (entity

=>dom), n (num), children (entity=>entity set)){

closed := union(closed ,{uri})

if (n=0) then

return closed

foreach concept in children(uri)

closed := union(closed ,depthLimitedRec(concept ,

closed ,n-1))

return closed

}

Figure 3.10: The nodes from the recursive calls on the sub-graphs are added
to closed and the algorithm returns closed after recursing on
all children. The children argument is the function which is
used to generate the immediate successors.

The output categories of depthLimitedRec(c0,1,broader(uri)) are then added
to the category vector of c0 as shown in �gure 3.11.

3.3.3 Narrowing Categories

Where Broader Module(dom) generalizes the input category vectors to more
general categories, Narrower Module(dom) is a module for specializing the cat-
egory vectors to more speci�c categories.

In the skos:broader hierarchy it is common that a category for a concept
has sub-categories for the same concept but in di�erent contexts. For example
the category Steampunk for the concept of �Steampunk� has the sub-categories
Steampunk games, Steampunk music, Steampunk literature and others. The
Steam raw data often contain the category dedicated to the context of video
games, which in this case is Steampunk video games which is a sub-category
of Steampunk games. However the Greenlight raw data often contain general
categories such as Steampunk as the LOD entity they are derived from is not
listed in very speci�c categories. The idea behind the Narrower Module is to
replace these general categories with more speci�c categories that matches those
of video games. Another way of addressing this problem would be to increase
the degree of transitivity in the Broader Module but as noted in [DNMO+12]
this will introduce noise in the Steam pro�les. Following the theory that the
manually assigned categories in the Steam pro�les and can be used as a model
for the automatically generated categories in the Greenlight pro�les, the Steam

38 Linked Open Data Approach

Category Vector XML

Machinarium
 Point-and-click adventure games
 Adventure games
 Steampunk video games
 Art games
...

Machinarium
 Point-and-click adventure games
 Adventure games
 Adventure
 Video games by genre
 Steampunk video games
 Science fiction video games
 Steampunk games
 Video games by theme
 Art games
...

Generalized Category Vector XMLRecursive
Traversal

Broader
Module

(c0,MAX DEPTH,broader(uri))

Figure 3.11: Broader Module(dom) adds generalized categories to the cate-
gory vectors in the input. For example for Steampunk video

games the 1-step transitive generalized categories Science

fiction video games, Steampunk games and video games by

theme are added to the vector for �Machinarium�.

pro�les should contain too much noise.

While it is simple to generalize categories by traversing the skos:broader hier-
archy, it is not trivial to specialize categories as it requires additional knowledge
about the context. In addition the skos:broader hierarchy is based on an in-
formal thematic relation which means that even with a known context, formal
logical reasoning may produce unwanted results. A very simple approximation
would be to ignore the context and simply traverse the skos:broader hier-
archy similarly to Broader Module(dom) and then let other modules try to
�lter out incorrect categories. By this method, Narrower Module(dom) queries
depthLimitedRec(c0,1,narrower(uri)) where narrower(uri) returns the re-
sults of the SPARQL query

select ?C where {?C skos:broader <uri>}

to get the 1-step transitive specialized categories of c0. These categories are
then added to the category vector of c0 as shown in �gure 3.12.

3.4 Similarity Measure and Recommender Sys-

tem

The output of the pipeline of optimization modules are used without prepro-
cessing in the similarity measure and recommender system, which lessens the
computation time. The methods for the similarity measure itself and the way it
is applied in the recommender system is as in [DNMO+12]. This section reintro-
duces the methods and presents a few additional choices in the implementation.

3.4 Similarity Measure and Recommender System 39

Category Vector XML

Primordia
 Steampunk
 Puzzles
 Adventure games
...

Primordia
 Steampunk
 Steampunk games
 Steampunk music
 Steampunk literature
 Steampunk conventions
 Steampunk television series
 Steampunk writers
 Steampunk television episodes
 Puzzles
...

Narrowed Category Vector XMLRecursive
Traversal

Narrower
Module

(c0,MAX DEPTH,narrower(uri))

Figure 3.12: Narrower Module(dom) adds specialized categories to the cat-
egory vectors in the input. In this example the 1-step tran-
sitive specialized categories of Steampunk: Steampunk games,
Steampunk music, Steampunk literature and so on are added
to the vector for �Primordia�.

The output of the pipeline are two XML-�les that looks like below

Listing 3.1: steamSubjects.xml

<steam>
<game>

<t i t l e> Machinarium </ t i t l e>
<uri> ht tp : // steampowered . . . </uri>
<description> About t h i s game: . . . </description>
<dbpediaURI> ht tp : // dbpedia . org / r e s ou r c e /Machinarium

</dbpediaURI>
<subject> Category:Steampunk_video_game </subject>
<subject> Category:Adventure_games </subject>

</game>
. . .

</steam>

Listing 3.2: greenlightSubjects.xml

<greenlight>
<game>

<t i t l e> Primordia </ t i t l e>
<uri> ht tp : //steamcommunity/ g r e e n l i g h t / . . . </uri>
<description> About t h i s game: . . . </description>
<dbpediaURI> ht tp : // dbpedia . org / r e s ou r c e /Adventure_game

</dbpediaURI>
<dbpediaURI> . . . </dbpediaURI>
. . .
<subject> Category:Adventure_games </subject>

</game>
. . .

</greenlight>

Each game element is converted to a pro�le vector by using dictionaries as shown
in �gure 3.13.

40 Linked Open Data Approach

Machinarium Subject Category:SteamPunk_video_game 1

Category:Adventure_games
.
.
.

.

.
1

Primordia Subject Category:Adventure_games 1

.

.

.

.

.

Greenlight

Steam

dcterms:subject Adventure games Steampunk video games
Machinarium 1 1
Primordia 1 0

Figure 3.13: The example data from above XML �le snippet converted to
a pro�le by using dynamic hash-tables. Only the title and
subject tags are used to construct these tables. Since the ap-
proach only considers the dcterms:subject relation, the predi-
cate dictionary always contains a single key, but the data struc-
ture allows multiple predicates to be used if available. The ta-
ble below the �gure shows the data interpreted as presented in
[DNMO+12]. The dictionary representation avoids the problem
with sparsity as 0-elements are omitted.

3.4 Similarity Measure and Recommender System 41

In the similarity measure, simp(i1, i2) denotes the similarity between the LOD

individuals i1 and i2 according to property p. If
−−→
i1, p and

−−→
i2, p are the vectors

of triple objects for i1 and i2 with respect to property p, then

simp(i1, i2) =

−−→
i1, p ·

−−→
i2, p

|−−→i1, p · |
−−→
i2, p|

With the dictionaries of �gure 3.13, the vectors are found by using combined
dictionary operations

−−→
i1, p := lookUp(p, lookUp(i1, d1)) =

(
k1 ⇒ v1

...

)

−−→
i2, p := lookUp(p, lookUp(i2, d2)) =

(
l1 ⇒ w1

...

)
where di is one of dictionaries in �gure 3.13. The dot product is computed by
iterating through ki and summing up vi · wi when ki = li.

In the approach of [DNMO+12], a user pro�le u is a set of tuples (i, v) where
i is an LOD individual and v is either 1 or -1, depending on whether the user
likes or dislikes i. The recommender system then computes an overall relevance−−−−→
r(u, i1) of individual i1 for the user pro�le u by averaging the similarity measure

r(u, i1) =

∑
(i2,v)∈u v ·

∑
p∈P αp∈P ·simp(i1,i2)

|P |

|u|

where P is the set of properties and alphap is a weight for the individual property
p. In this project, the user pro�le u′ is a set of LOD individuals for the games
owned by the user and thus there are no i that the user dislikes. In [DNMO+12]
they consider approaches for choosing values for αp but since there is only one
property in this project, it is set to the constant 1. Taking the above into

consideration, the implemented formula
−−−−−→
r′(u, i1) is simpli�ed to

r′(u′, i1) =

∑
i2∈u′

∑
p∈P simp(i1,i2)

|P |

|u′|

The recommender system uses the function RECOMMEND which takes as input
(i) a user pro�le (ii) the Greenlight titles to recommend from, (iii) a Steam
game dictionary, and (iv) a Greenlight submission dictionary. It then sorts the
Greenlight titles by r′ by using a binary max-heap.

42 Linked Open Data Approach

input: u' (string set), titles (string set),

greenlight_D ((string,(string,(string,integer)))),

steam_D ((string,(string,(string,integer))))

output: ranking (string heap)

RECOMMEND:

let ranking := empty max-heap

foreach t in titles{

let v := r'(u',t,greenlight_D,steam_D)

ranking := insert((t,v),ranking)

}

return ranking

Chapter 4

Evaluation

This chapter presents the evaluation of the work presented in chapter 2 and
3 and discusses the results and further development. Section 4.1 presents the
evaluation data sets and the metric. Section 4.2 presents the evaluation results
and section 4.3 presents the discussion of the project.

4.1 Evaluation Strategy

The evaluation requires two groups of data sets. The �rst group consists of
goal data which the output is evaluated against. These data sets are considered
in the evaluation metric. The second group consists of input data sets with
product pro�les. These data sets are necessary to produce an output given a
user pro�le. This section presents how both groups of data sets are extracted
from the Web and the evaluation metric.

4.1.1 Goal Sets

As outlined in the introduction, both the similarity measures and the recom-
mender system is evaluated by the average precision of the rankings they output.

44 Evaluation

When measuring the average precision of a ranked list, each item in a ranked
list is classi�ed as either relevant or not relevant and the average precision is
high when the relevant items are among the top of the ranked list. Hence the
relevant items must be de�ned for both the similarity measure and the recom-
mender system.

4.1.1.1 Similarity Measure Goal Set

For the similarity measure, the evaluated output is a similarity ranking of Steam
games for a given Greenlight submission. In this case, the relevant items are the
Steam games which are similar to the Greenlight submission. In this project,
such information is extracted from the video game encyclopedia at the website
http://giantbomb.com. This encyclopedia is maintained in a similar way to
Wikipedia but is focused on video games. The available data for each game in
the website are as follows

1. A text description

2. A wikipedia-like �infobox� with semi-structured data

3. Pictures/video

4. �Related pages� with additional data.

Among the �related pages� is a page of similar games where the website users
can enter games that they believe to be similar. The idea is to use the data in
these pages as a human made similarity classi�cation which de�nes candidates
for the relevant items of each Greenlight submission. Among these candidates
only those that satisfy the following requirements becomes relevant items

1. The game must be available in Steam

2. The game must have a corresponding entity in DBpedia

The data set is extracted manually by choosing a set of Greenlight submissions
which occur in the encyclopedia and which have similar games satisfying the
above requirements. The result is a table as shown in table 4.1 which is stored
in an XML �le. Any similar Steam games which were incorrectly mapped to
Dbpedia entities were corrected manually. Although the goal set is rather small,
no other similar data set for this domain was found at the time of writing.

http://giantbomb.com

4.1 Evaluation Strategy 45

Submission title Similar games
Primordia [Machinarium, Gemini Rue, ...]

Table 4.1: Example of the extracted similarity measure goal set. For each
submission title there is a list of similar games.

User Pro�le Relevant items
user 1 [Ace of Spades, Alice: Madness Returns,...] [Primordia, Postal 2]
user 2 [Machinarium,Half-life 2,...] [Primordia]

Table 4.2: Example of the extracted recommender goal set. For each user are
their Steam games (pro�le) and the Greenlight submissions that
they like (relevant items).

4.1.1.2 Recommender System Goal Set

The recommender system in [DNMO+12] was evaluated using MovieLens, a
historical dataset of user ratings for �lm recommender systems. A similar �tting
dataset was not found at the time of writing so instead the goal set is created
semi-automatically from data on the Web. Although the ratings the users can
give in Greenlight are not public data, any given user in Steam can choose
to make their list of purchased games public at http://steamcommunity.com/
id/ID/games where ID is a unique ID for the user. For this evaluation, a
purchase is interpreted as a positive rating so that the user ratings can be
extracted from these lists. The users who bought games from the considered
Greenlight submissions are extracted from the o�cial user group of each game
at at http://steamcommunity.com/games/APP, where APP is a unique ID for
the game. The members of this user group are then available at the web page
http://steamcommunity.com/games/APP/members and they can be extracted
by inspecting the web page with a PHP script. The only extracted users are
those who bought one of the considered Greenlight submissions. In total, the
result is a table as shown in table 4.2 which is stored as an XML �le.

4.1.2 Input Data Sets

The input data are two sets of products, the released products which users may
have rated and the unreleased products that are unknown to the users. Both of
these sets are extracted from the Web and processed so that they can be applied
with the methods presented in chapter 2 and 3.

http://steamcommunity.com/id/ID/games
http://steamcommunity.com/id/ID/games
http://steamcommunity.com/games/APP
http://steamcommunity.com/games/APP/members

46 Evaluation

4.1.2.1 Steam Games

In this project the released products are Steam games. The data set is con-
structed in the following way.

1. Steam game titles and descriptions are extracted from the Web.

2. Each title is mapped to the corresponding Dbpedia entity ex.

Machinarium 7→ http://dbpedia.org/resource/Machinarium

For step 1, the titles and descriptions are extracted by crawling the Web-based
store of Steam games. Every game in Steam has an HTML web page in http:

//store.steampowered.com which contains the title and a description of the
game. Links to these web pages are found by using the �search� feature of the
Steam store for all video games and then parsing the resulting HTML web pages
for the links of each title. Only the games available for Windows are considered
as they make up the majority of the titles. This method only uses the freely
available data from Steam although some games are skipped as their web page
require an additional age check. The data set is stored in an XML �le as below

Listing 4.1: steamDescriptions.xml

<?xml version=" 1 .0 " encoding="utf−8"?>
<steam>

<game>
<uri>ht tp : // s t o r e . steampowered . com/app/40700/? snr=1

_7_7_230_150_36</uri>
<t i t l e> Machinarium <t i t l e>
<description> About t h i s game: . . . </description>

</game>
. . .

</steam>

For step 2, the method used in [DNMO+12] is applied. Every DBpedia in-
dividual has a rdfs:label property which de�nes a human-readable name of
the entity in di�erent languages. These labels are compared with the titles by
their Levensthein distance to �nd the most �tting DBpedia entity. The entity-
label pairs of video games are extracted from the DBpedia SPARQL endpoint.
Since Steam mostly contain games for the Windows platform a large amount
of entities can be skipped by including a restriction of the computingPlatform
property to Microsoft Windows.

select ?uri ?label where {

http://store.steampowered.com
http://store.steampowered.com

4.1 Evaluation Strategy 47

uri label
http://dbpedia.org/resource/StarCraft StarCraft
http://dbpedia.org/resource/Trine_(video_game) Trine (video game)
http://dbpedia.org/resource/Machinarium Machinarium

Table 4.3: Example of extracted entity-label pairs from DBpedia.

<?xml version=" 1 .0 " encoding="utf−8"?>
<steam>

<game>
<uri>ht tp : // s t o r e . steampowered . com/app/40700/? snr=1

_7_7_230_150_36</uri>
<t i t l e>Machinarium</ t i t l e>
<description>About the . . . </description>
<dbpediaURI>ht tp : // dbpedia . org / r e sou r c e /Machinarium</dbpediaURI

>
</game>
. . .

</steam>

Figure 4.1: steamDbpedia.xml

?uri a dbpedia-owl:VideoGame.

?uri rdfs:label ?label.

?uri dbpedia-owl:computingPlatform dbpedia:Microsoft_Windows.

FILTER langMatches(lang(?game), "EN").

}

The result of this SPARQL query from DBpedia is an XML encoded table as
shown in table 4.3. For this evaluation, the best matching pair for a given game
title is found by a simple all-pair comparison. Since the label often has the for-
mat �title (video game)�, the algorithm measures the Levensthein distance both
with and without � (video game)� appended to the game title. Unfortunately
many of the extracted game titles contain non-ASCII symbols or have an ap-
pended text such as �: Steam Edition� which lowers the precision of the method
signi�cantly. To increase the precision, the games where the best match exceeds
a given limit are not mapped to an entity. Afterwards the games that occur in
the goal data are corrected manually and the games that are not mapped to an
entity are completely removed from the data set. The �nal data set is stored
in an XML-�le as shown in �gure 4.1. Note that the data set contains all data
necessary for both the method of chapter 2 and the method of chapter 3. This
ensures that both methods are evaluated with the same input data.

http://dbpedia.org/resource/StarCraft
http://dbpedia.org/resource/Trine_(video_game)
http://dbpedia.org/resource/Machinarium

48 Evaluation

4.1.2.2 Greenlight Submissions

The second set of input data are the unreleased products which do not have
corresponding LOD entities. In this project these products are the Greenlight
submissions and as these are not part of the Steam store they are not extracted
with above methods. The data set is extracted by manually �nding a set of
submissions which can be evaluated with the goal data. For the evaluation,
the recommender system only recommends among the Greenlight submissions
released as Steam games as the goal set covers these games. These games have a
web page in the Steam store but since the recommender system is target towards
unreleased games, the evaluation considers only the textual description from the
Greenlight submission.

In this evaluation the submissions of 11 released Greenlight games were ex-
tracted by parsing their HTML web-pages with PHP. The resulting XML-�le
was then used in the pro�ling as presented in chapter 3.

Listing 4.2: greenlightDescriptions.xml

<?xml version=" 1 .0 " encoding="utf−8"?>
<greenLight>

<game>
<t i t l e>primordia</ t i t l e>
<uri>ht tp : //steamcommunity . com/ s h a r e d f i l e s / f i l e d e t a i l s /? id

=108108057</uri>
<description>An adventure in the t r a d i t i o n o f . . .</description>

</game>
. . .

</ greenLight>

4.2 Results

Below are tables with the results of the evaluation and in-depth explanations of
the evaluation methods. Table 4.4 and 4.5 show an overview of the evaluation
data constructed with the methods from section 4.1. The full evaluation datasets
are in the appendix.

Table 4.6 shows the average precision of each of the evaluated similarity measures
and table 4.7 shows the average precision of the recommender system with both
LOD-based similarity measures.

4.2 Results 49

Data set Quantity
Steam games 644 games
Greenlight submissions 12 submissions

Table 4.4: Input data sets.

Submission # Similar games # Users
Primordia 6 9
Postal 2 0 29
Waking Mars 1 27
Miner Wars 2081 0 23
Towns 5 35
Fly'n 3 28
AIE 2 9
Miasmata 9 22
Giana Sisters 2 28
Air Buccaneers 4 29
Forge 6 35
Mcpixel 0 27
Total 38 287∗

Table 4.5: Goal data sets. ∗Notice that some users bought more than one of
the evaluated Greenlight submissions.

Title TD-Matrix LSA LOD 1 LOD 2
Primordia 0.032 0.020 0.089 0.032
Postal 2 N/A N/A N/A N/A
Waking Mars 0.001 0.005 0.002 0.003
Miner Wars 2081 N/A N/A N/A N/A
Towns 0.015 0.012 0.034 0.006
Fly'n 0.007 0.018 0.048 0.032
AIE 0.021 0.009 0.073 0.034
Miasmata 0.095 0.018 0.023 0.053
Giana Sisters 0.034 0.006 0.103 0.026
Air Buccaneers 0.073 0.008 0.012 0.006
Forge 0.048 0.012 0.007 0.01
Mcpixel N/A N/A N/A N/A
Overall Average precision 0.036 0.012 0.043 0.022

Table 4.6: Evaluation results for the similarity Measure.

50 Evaluation

Title LOD1 LOD2
Primordia 0.3 0.29
Postal 2 0.1 0.09
Waking Mars 0.36 0.35
Miner Wars 2081 0.12 0.1
Towns 0.11 0.12
Fly'n 0.9 0.87
AIE 0.22 0.18
Miasmata 0.23 0.21
Giana Sisters 0.28 0.23
Air Buccaneers 0.15 0.15
Forge 0.44 0.69
Mcpixel 0.17 0.13
Overall Average Precision (by user) 0.28 0.30

Table 4.7: Evaluation results for the recommender system.

4.3 Discussion

In this section the results from section 4.2 are evaluated and possible improve-
ments to the methods are discussed.

4.3.1 Dataset Evaluation

Since the datasets used for the evaluation were created for this project it is nec-
essary to discuss their reliability. The similarity measure goal set is constructed
semi-automatically from the similarity classi�cations made by the users of the
Web page http://giantbomb.com. Given that the Web site is maintained by
the whole community of users the accuracy should be similar to that of a site like
http://wikipedia.com. The extracted dataset su�ers from sparseness however
as seen in table 4.5 where some submissions only have a few similar games. One
way to reduce the sparseness would be to automatically extend the dataset
with a transitivity rule for similarity and a heuristic based on some of the other
features in the dataset. For example, given that sim(A,B) and sim(B,C), tran-
sitivity would generate a candidate sim(A,C) which would then be validated
by a heuristic method.

The recommender system goal set is also constructed semi-automatically by
extracting data from the Web however it has some issues as well. Despite
evaluating 644 user pro�les, many of the users only purchased one or two of

http://giantbomb.com
http://wikipedia.com

4.3 Discussion 51

the 9 evaluated Greenlight submissions. Combined the low number of evaluated
Greenlight submissions the recommender goal set is rather sparse. Secondly the
data relies on the assumption that a purchase equals a positive user rating which
has not been validated. A di�erent approach to construct a goal set would be
to generate a number of user pro�les and then identify the relevant items for
each of the generated user pro�les.

4.3.2 Result Evaluation

Despite the discussed weaknesses of the evaluation datasets, the results do show
some trends to be observed. With respect to the similarity measure evaluation,
the LOD approach with short post-processing performs overall slightly better
than the simple baseline approach with term-document vector correlation. Sur-
prisingly the LSA based similarity measure performs worse than the simple
term-document vector correlation. Potential causes may be

Bad query vectors The words used to form query vectors for the Green-
light submissions are computed separately from the Steam game term-
document matrix. This is di�erent from the LSA example in the intro-
duction where the words were the document-vector of the document.

Suboptimal Lingpipe settings Besides the number of desired singular val-
ues, the Lingpipe library for performing SVD requires several settings to
be set. For this evaluation the number of singular values were 2 and the
remaining settings were found by empirical testing.

The results also show that expanding the category vectors with the category
hierarchy do not improve the performance. One of the issues in the expansion
method is that all categories are expanded equally which assumes a certain
equality in the generality among the categories. This is typically incorrect as
categories high in the hierarchy are intended to more general than those lower
in the hierarchy. Intuitively, it is often very speci�c terms that should be gen-
eralized so that they can be compared to other terms. The challenge is then to
estimate the generality of a category which is not trivial when the hierarchy is
not balanced.

With respect to the recommender system evaluation, the short post-processing
performs overall slightly worse than the full post-processing, despite performing
worse as a similarity measure. In �gure 4.2 the results of table 4.6 and 4.7 are
combined to show the relation between similarity performance and recommender
system performance. In several cases the short post-processing gives better

52 Evaluation

Primordia
Waking Mars

Towns
Fly’n

AIE
Miasmata

Giana Sisters
Airbuccaneers

Forge

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

short sim

short recc

full sim

full recc

Figure 4.2: Evaluation results visualized as a bar chart to compare similarity
measure performance against recommender system performance.

similarity measure results than the full post-processing, but the corresponding
recommender system results are barely better and in some cases even worse.
Such a development could signal that improving the similarity measure would
not improve the recommender system performance drastically, however given
the issues in the evaluation data presented above this conclusion may not be
accurate.

4.3.3 Further Method Improvements

As outlined in [RRS11] the qualities of a recommender system goes beyond the
the quality of the recommendations. In particular the interaction between the
recommender system and the user is a major issue which have only lightly been
addressed with the shown web based demo. However this section only discusses
possible improvements to the quality of the recommendations as it has been the
major focus of this project. The improvements are addressed accordingly to the
issues of content-based recommendations introduced in chapter 1.

4.3.3.1 Multiple Properties

In [DNMO+12] they measured an overall improved performance when consid-
ering additional properties beside the categories and that may apply to the
recommender system in this domain as well. In detail, the feature could address
the following issues of content-based recommendation

4.3 Discussion 53

Limited Content Analysis The measured similarity would be an average of
the similarity across all properties and that would reduce any noise from
the category vectors.

Overspecialization It would be possible to make a formalized notion of prod-
uct diversity by using property weights. For example the recommender
system may recommend a product which only matches the user pro�le on
a few important properties.

The problem with this feature is that it requires disambiguation of properties
for the unreleased products which is yet a di�cult challenge.

4.3.3.2 Cross-domain Recommendation

A content-based recommender system with cross-domain recommendation would
be to measure similarity between products of di�erent domains. For example if
the user is known to like books or �lms about a given topic, the recommender
system may recommend video games about that topic. In [HKP+10] the authors
identi�es potential gains and issues of cross-domain recommendation. Cross-
domain recommendation could address the following issues of content-based
recommendation.

Overspecialization The recommender system can get a larger pro�le of the
user and may �nd correlation with new properties from di�erent domains.

New user problem As the recommender system can reuse user ratings from
other domains, the user no longer have to provide user ratings for each
domain.

54 Evaluation

Chapter 5

Conclusion

In this project a content-based recommender system for the given domain has
been evaluated with datasets extracted from theWeb with semi-automatic meth-
ods. The datasets were found to be rather sparse but methods have been pre-
sented to improve upon this issue. The recommender system and the extracted
datasets have been made available on a web-page.

The problem of measuring similarity between products in the domain have been
evaluated with two groups of methods. In the �rst group the problem was
solved by traditional natural language processing methods and products were
only represented as documents. In the second group the problem was solved
by combining natural language processing methods with the data available in
DBpedia. To my knowledge there has not been an attempt at combining natural
language processing and the Linked Open Data in this way before. The method
that performed overall best as a similarity measure belonged to the second group.

The problem of recommending products in the domain have been evaluated
only with the methods in the second group. The results suggest that improving
the similarity measure may not improve the recommender system performance
signi�cantly. A promising extension would be to consider cross-domain recom-
mendation, where the recommended products are compared with products of
di�erent type from di�erent sources on the Web.

56 Conclusion

Appendix A

XML Tags

This appendix is an overview of the XML tags used in the input datasets and
demonstration of the usage.

Tag Meaning
<steam> root for XML �les about Steam games
<greenlight> root for XML �les about Greenlight submissions
<game> an individual Steam game or Greenlight submission
<title> title of the parent <game>
<uri> uri of the parent <game> in Steam or Greenlight
<description> textual about the parent <game> from Steam or Greenlight
<dbpediaURI> uri of a Dbpedia entity related to the parent <game>
<subject> uri of a Dbpedia category related to the parent <game>

<steam>
<game>

<t i t l e> Machinarium </ t i t l e>
<uri> ht tp : // steampowered . . . </uri>
<description> About t h i s game: . . . </description>
<dbpediaURI> ht tp : // dbpedia . org / r e s ou r c e /Machinarium

</dbpediaURI>
<subject> Category:Steampunk_video_game </subject>
<subject> Category:Adventure_games </subject>

</game>
. . .

</steam>

58 XML Tags

Bibliography

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next
generation of recommender systems: A survey of the state-of-the-
art and possible extensions. IEEE Trans. on Knowl. and Data
Eng., 17(6):734�749, June 2005.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data -
the story so far. Int. J. Semantic Web Inf. Syst., 5(3):1�22, 2009.

[BLK+09] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer,
Christian Becker, Richard Cyganiak, and Sebastian Hellmann.
Dbpedia - a crystallization point for the web of data. Web Se-
mant., 7(3):154�165, September 2009.

[Bur07] Robin Burke. The adaptive web. chapter Hybrid web recom-
mender systems, pages 377�408. Springer-Verlag, Berlin, Heidel-
berg, 2007.

[DDF+90] Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. Indexing by latent
semantic analysis. JOURNAL OF THE AMERICAN SOCIETY
FOR INFORMATION SCIENCE, 41(6):391�407, 1990.

[DNMO+12] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Da-
vide Romito, and Markus Zanker. Linked open data to support
content-based recommender systems. In Proceedings of the 8th In-
ternational Conference on Semantic Systems, I-SEMANTICS '12,
pages 1�8, New York, NY, USA, 2012. ACM.

60 BIBLIOGRAPHY

[HKP+10] Benjamin Heitmann, James G. Kim, Alexandre Passant, Conor
Hayes, and Hong-Gee Kim. An architecture for privacy-enabled
user pro�le portability on the web of data. In Proceedings of the 1st
International Workshop on Information Heterogeneity and Fusion
in Recommender Systems, HetRec '10, pages 16�23, New York,
NY, USA, 2010. ACM.

[HLA12] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Towards
an ontology for representing strings. In Proceedings of the EKAW
2012, Lecture Notes in Arti�cial Intelligence (LNAI). Springer,
2012.

[MJGSB11] Pablo N. Mendes, Max Jakob, Andrés García-Silva, and Christian
Bizer. Dbpedia spotlight: shedding light on the web of documents.
In Proceedings of the 7th International Conference on Semantic
Systems, I-Semantics '11, pages 1�8, New York, NY, USA, 2011.
ACM.

[NA11] Axel-Cyrille Ngonga Ngomo and Sören Auer. Limes: a time-
e�cient approach for large-scale link discovery on the web of data.
In Proceedings of the Twenty-Second international joint conference
on Arti�cial Intelligence - Volume Volume Three, IJCAI'11, pages
2312�2317. AAAI Press, 2011.

[RRS11] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to
recommender systems handbook. In Francesco Ricci, Lior Rokach,
Bracha Shapira, and Paul B. Kantor, editors, Recommender Sys-
tems Handbook, pages 1�35. Springer, 2011.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum.
Yago: a core of semantic knowledge. In Proceedings of the 16th
international conference on World Wide Web, WWW '07, pages
697�706, New York, NY, USA, 2007. ACM.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Recommender Systems
	1.2 Products as Documents
	1.2.1 Term-Document matrix
	1.2.2 Simple Vector Correlation
	1.2.3 Latent Semantic Indexing

	1.3 Products as Linked Open Data Entities
	1.3.1 LOD for Content-Based Recommendation
	1.3.2 Mixing NLP with Linked Open Data

	1.4 Practical Details
	1.5 Evaluation Methods
	1.6 Problem Definition
	1.7 Expected Results
	1.8 Report Structure

	2 Pure NLP Approaches
	2.1 Term-Document Matrix
	2.2 Simple Vector Correlation
	2.3 Latent Semantic Indexing

	3 Linked Open Data Approach
	3.1 Analysis of Dbpedia Data
	3.1.1 Extracting Data from the Semantic Web

	3.2 Profiling with Raw Data
	3.3 Data Optimization
	3.3.1 Category Intersection Modules
	3.3.2 Generalizing Categories
	3.3.3 Narrowing Categories

	3.4 Similarity Measure and Recommender System

	4 Evaluation
	4.1 Evaluation Strategy
	4.1.1 Goal Sets
	4.1.2 Input Data Sets

	4.2 Results
	4.3 Discussion
	4.3.1 Dataset Evaluation
	4.3.2 Result Evaluation
	4.3.3 Further Method Improvements

	5 Conclusion
	A XML Tags
	Bibliography

