
A GENERIC FRAMEWORK
FOR COMMUNICATION OF

DISTRIBUTED ENERGY RESOURCES
THROUGH A CLOUD-BASED SERVICE

Lasse Dreisig Orda, s040884
Jesper Bach, s072458

July 2013

Informatics and Mathematical Modelling
Technical University of Denmark

IMM-M.Sc.-2013-72

A generic framework for communication of distributed energy resources through a cloud-based
service

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-M.Sc.-2013-72

Summary

Power production has traditionally been very centralized, with large fossil fired combined heat
and power plants carrying the vast majority of the load. In recent years, however, the interest in
renewable energy has spiked and more and more dispersed energy resources (DER) are starting to
appear. In Denmark the government has set an ambitious goal of 50% wind power penetration by
2020 [16], and a complete out-phasing of fossil fuels by 2050.

Because the power grid has to be kept in balance, a multitude of new control schemes are
being researched in order to properly manage the new resources [62]. From a network-technical
perspective, handling connections to a multitude of units constitutes a problem in itself. Not only
does it require a significant amount of server capacity, but obtaining access to all DERs through
firewalls and the like, is a rather daunting task.

By shifting these more tedious tasks to the cloud, the aggregator not only takes a great step
towards true scalability, but also towards increased security. In connecting directly to the cloud,
the aggregator no longer needs to keep sockets open for connecting DERs, effectively distancing
the critical control algorithms from the outside world, leaving this to the cloud.

This thesis covers the development of a cloud-based framework, for receiving incoming
WebSocket connections from DERs allowing for near real-time communication. To handle
multiple DERs raw data, a generic module for each DER unit, allows for various data models
to be mapped into a generic one, based on the well tested IEC 61850 standard. Using a cloud-
based solution greatly aids the aggregators to scale and meet future demands.

The thesis also includes a concept of flexibility provided by iPower-net. The Flexibility Interface is
currently being researched by iPower, and is mapped into the IEC 61850 standard as an additional
logical sub-node. By mapping to the existing standards, no major changes would be needed to
adapt existing systems.

i

Resume

Energi produktionen har traditionelt set været meget centraliseret, med store fossilbaseret varme-
og kraft-værker, som bar størstedelen af belastningen på el-nettet. I de seneste år er interessen for
vedvarende energi, specielt “Distribuerede Energi Ressourcer” (DER), begyndt at dukke mere og
mere op. I Danmark har regeringen sat et ambitiøst mål om at 50% af alt energi skal være baseret
på vindkraft inden 2020 [16], og en komplet udfasning af de fossile brændstoffer skal ske inden
2050.

Da el-nettet gerne skulle holdes i balance, bliver der konstant forsket i mange forskellige
kontrolanordninger, for at hjælpe med styringen af de nye distribuerede ressourcer [62]. Ud fra
et netværks-teknisk perspektiv, så er selv håndteringen af flere enheder et problem. Det kræver
nemlig en betydelig mængde server ressourcer at håndtere den store mængde data og det at åbne
en forbindelse til en DER enhed, igennem firewalls og lignende, kan være en besværlig opgave.

Ved at flytte en række af disse opgaver til skyen, så tager man ikke blot et stort skidt i at gøre
aggregatoren mere skalerbar, men man øger også sikkerheden. Ved at tilslutte direkte til skyen, så
er det ikke længere aggregatoren, som er nødt til at holde en åben forbindelse til de enkelte DERs.
Derved distancerer man kritiske kontrol-algoritmer fra resten af version.

Denne afhandling omhandler udviklingen af et sky-baseret framework, som skal håndtere
indgående WebSocket forbindelser fra DERs. For at håndtere de forskellige typer rå data som
hver DER kan transmittere, så er der blevet udviklet et generisk modul for hver DER enhede, som
konverterer DER data til en generisk data struktur, baseret på IEC 61850 standarden.

Afhandlingen indeholder også et koncept for fleksibilitet, leveret af iPower-net. Det såkaldte
Flexibility Interface er stadig under udvikling af iPower og er brugt her, ved at bliver lagt ind i
IEC 61850 standarden som en ekstra logisk node. Ved at indføre fleksibilitets konceptet til en
eksisterende standard, så kræver det ikke væsentlige ændringer for at få eksisterende systemer til
at indordne sig i det nye koncept.

iii

Preface

This thesis was prepared at the department of Informatics and Mathematical Modeling at the
Technical University of Denmark in fulfillment of the requirements of acquiring an M.Sc. degree
in Computer Science and Engineering.

This M.Sc. Thesis is written by

Jesper Bach Lasse Dreisig Orda
s072458 s040884

Date: July 15, 2013 Date: July 15, 2013

M.Sc-student M.Sc-student
Technical University of Denmark Technical University of Denmark

Thesis advisors:

Bjarne Poulsen Lars Henrik Hansen Anders Bro Pedersen
Associate Professor, Ph.d. Senior Engineer, Ph.d. Ph.d.

DTU Compute DONG Energy DTU Electrical Engineering
Technical University of Denmark Technical University of Denmark

v

Acknowledgement

We would like to thank our advisor Bjarne Poulsen, Associate Professor, Ph.d, DTU Compute,
Technical University of Denmark. Bjarne has consistently kept our motivation high and
encouraged us to put the best work possible into this thesis. He has provided us with an endless
stream of relevant materials, that have brought the quality of the project to a higher level.

Anders Bro Pedersen, Ph.d, DTU Electrical Engineering, Technical University of Denmark. As
an advisor for our project, Anders has continuously provided us with excellent points about the
design and implementation of the prototype. He has been exceptionally helpful whenever we have
had any questions, needed a helping hand with practicalities or his opinion on any written text.

Lars Henrik Hansen, Senior Engineer, Ph.d, DONG Energy. Lars has in the role as an external
advisor, from DONG Energy and the iPower consortium, provided us with a thesis subject, that is
actively being researched and requires an innovative approach using modern technologies. Lars’
impressive ability to keep the big picture and connect all the people from different areas, have
introduced us to multiple people and wide ranging perspectives on the subject of our thesis.

Arne Hedevang, Senior Energy System Architect, DONG Energy. Arne has provided us with
great inspiration to the design of the networking and communication for the project prototype.
Arne and DONG Energy has additionally and generously provided us with an embedded micro-
controller, which has formed the base for the new DER Controller concept, that is introduced with
this thesis.

Chresten Træholt, Associate Professor, Ph.d, CET/DTU Electrical Engineering. Chresten and
DTU PowerLab.dk have provided us with access to a real world distributed energy resource, in
the form of a combined and heat power generator from Senertec.

Carsten Voldstedlund Thuesen, Software Engineer, Dantherm Power; Mads Møller Melchiors,
Project Manager, Dantherm Power and Dantherm Power A/S have kindly provided us with 3
real world Distributed Energy Resources, Dantherm DKµCHPs which have been used as a basis
to develop the prototype in this thesis.

vii

Contents

Summary i

Resume iii

Preface v

Acknowledgement vii

1 Introduction 1
1.1 Motivation . 1
1.2 Project Vision . 1
1.3 Project Description . 2

1.3.1 Stakeholders . 4
1.3.1.1 Supervisors . 4
1.3.1.2 iPower-net.dk . 5
1.3.1.3 Dong Energy . 5
1.3.1.4 Energinet.dk . 5
1.3.1.5 Danish Consumers . 5

1.3.2 Goals . 6
1.3.2.1 DER to Cloud Communication 6
1.3.2.2 Client to Cloud Communication 7
1.3.2.3 Information Model . 7

1.4 Project Scope . 8
1.5 Software Development Methodology . 8
1.6 Risk Analysis . 10
1.7 Report Outline . 12
1.8 Additional Activities . 13
1.9 Chapter Summary . 13

2 Related Work 15
2.1 Smart Grid . 15

2.1.1 Distributed Energy Resources . 16
2.1.2 Direct Control . 16

2.2 Cloud Computing . 17
2.2.1 Cloud Computing Service Models . 17
2.2.2 Software as a Service . 18
2.2.3 Platform as a Service . 18
2.2.4 Infrastructure as a Service . 19
2.2.5 Aspects of Using the Cloud . 20

2.2.5.1 Elasticity . 20
2.2.5.2 Reliability . 20
2.2.5.3 Quality of Service . 20

2.3 Research - State of the Art . 20

ix

x CONTENTS

2.3.1 CENELEC . 20
2.3.1.1 Conceptual Model . 21
2.3.1.2 Reference Architecture . 22

2.3.2 iPower-net.dk . 24
2.3.2.1 WP4 - Control and Market Operation 24

2.3.3 The IEC 61850 Standard . 26
2.4 Chapter Summary . 27

3 Requirements 29
3.1 Use Cases . 29

3.1.1 Use Case : Creating Unit . 30
3.1.2 Use Case : Upload Module & SCL . 30
3.1.3 Use Case : Accessing Unit Data . 30
3.1.4 Use Case : Connect to CloudSolution 30
3.1.5 Use Case : Query Data . 31
3.1.6 Use Case : Post Data . 31

3.2 Functional Requirements . 31
3.3 Non-Functional Requirements . 32
3.4 Requirements Matrix . 32
3.5 Chapter Summary . 33

4 Cloud Analysis 35
4.1 Service Models . 35

4.1.1 Infrastructure as a Service . 35
4.1.2 Platform as a Service . 35
4.1.3 Software as a Service . 36

4.2 Security & Privacy . 36
4.2.1 Intruders . 36
4.2.2 Geographical Data Storage . 36

4.3 Latency Concerns . 37
4.4 Providers . 37

4.4.1 Amazon . 38
4.4.2 Google . 38
4.4.3 Microsoft . 39
4.4.4 The Chosen Provider . 39

4.5 DER Communication . 40
4.5.1 Real-Time Web Technology . 40
4.5.2 Push & Pull Technology . 40

4.6 Cloud Communication . 41
4.7 Chapter Summary . 41

5 Standards Analysis 43
5.1 IEC 61850 . 43

5.1.1 Information Model . 43
5.1.1.1 Naming Convention . 44
5.1.1.2 Functional Constraints . 44

5.1.2 ASCI Services . 44
5.1.2.1 Configuration . 45

CONTENTS xi

5.1.3 Other Features . 45
5.1.3.1 Reporting and Logging . 45
5.1.3.2 SCSM . 45

5.1.4 IEC 61850-7-420 . 46
5.1.5 IEC 61850-80-3 TR . 46

5.2 iPower Flexibility Interface . 47
5.2.1 Flexibility Interface in the Information Model 50

5.3 Chapter Summary . 52

6 Design 53
6.1 System Design . 53

6.1.1 System Coverage . 54
6.1.2 Mapping of the Standards in the Design 55

6.2 Generic Information Model . 57
6.3 Cloud Service Design . 58

6.3.1 Layered Architecture . 59
6.4 Distributed Energy Resource Design . 60

6.4.1 DER to Cloud Communication . 62
6.4.2 Client to DER Communication . 62

6.5 Dynamic Modules . 64
6.5.1 Dynamic Loading . 65

6.6 Storage Design . 65
6.6.1 Model Generated Entities . 66

6.7 Users . 67
6.8 Interfaces . 68

6.8.1 Web Site . 69
6.8.2 RESTful Interface . 70

6.8.2.1 Security in the RESTful Interface 71
6.8.3 XML Web Service . 72

6.8.3.1 Security in the XML Webservice Interface 73
6.9 Chapter Summary . 73

7 Implementation 75
7.1 System Structure . 75
7.2 Implementation of Layered Architecture . 76
7.3 Storage . 77

7.3.1 Unique ID . 79
7.4 Information Model . 81

7.4.1 Working with the Data Tree Structure 82
7.4.2 SCL Parser . 82

7.5 Users . 82
7.6 Modules . 85
7.7 DER Websocket Interface . 87

7.7.1 Inter-process Communication . 88
7.8 Website . 89
7.9 RESTful and XML Webservice Interfaces . 90

7.9.1 Asymmetric Public Key Encryption . 91
7.10 Chapter Summary . 92

xii CONTENTS

8 Testing 95
8.1 Unit Testing . 95
8.2 Integration Testing . 96
8.3 Build System . 97
8.4 Continuous Integration . 99
8.5 Chapter Summary . 99

9 Case Studies 101
9.1 Case study : Dantherm DKµCHP . 101

9.1.1 DER Intermediary . 101
9.1.2 System setup . 101
9.1.3 Output, Configuration and Module . 102
9.1.4 Unit Configuration . 105
9.1.5 Data Retrieval . 105

9.1.5.1 Using the Website . 105
9.1.5.2 Query Interface . 105

9.1.6 Summary . 107
9.2 Case study : BeagleBone Communication . 107

9.2.1 System Setup . 107
9.2.2 BeagleBone . 107

9.2.2.1 BeagleBone Client . 108
9.2.2.2 BeagleBone Module & SCL 109

9.2.3 Data Retrieval . 111
9.2.4 Posting Data . 113
9.2.5 Summary . 114

9.3 Chapter Summary . 114

10 Conclusion 115
10.1 A Revisit of the Project Vision . 115
10.2 Summary of Chapters . 115
10.3 Achieved Goals . 118
10.4 Future Work . 119
10.5 Additional Activities . 121

Appendix 125

A Paper 127

B Abbreviations 135

C Video Presentation 137

D Screenshots 139
D.1 Website . 139
D.2 Web API . 154
D.3 Continuous Integration and Generated Reports 156

E Application Instructions 159

F Class diagrams and Models 167

G Use Cases 173
G.1 Use Case : Create Unit . 173
G.2 Use Case : Login on Website . 173
G.3 Use Case : Upload Module & SCL . 174
G.4 Use Case : Accessing Unit Data . 175
G.5 Use Case : Connect to CloudSolution . 176
G.6 Use Case : Authenticate Unit . 177
G.7 Use Case : Send Raw Data . 178
G.8 Use Case : Query Data . 178
G.9 Use Case : Post Data . 179

H References 181

List of Tables

1.1 Brief overview of the stakeholders for the thesis . 4
1.2 Risk analysis the analysis step . 10
1.3 Risk analysis the development step . 11
1.4 Risk analysis the documentation step . 11

2.1 Flexibility in NIST Domains [11] . 22

3.2 Functional Requirements . 31
3.3 Non-Functional Requirements . 32
3.4 Requirements Matrix . 32

5.1 Example of mapping of Flexibility Interface Block 2 names to the Information Model 50
5.2 References for multiple simple types for FI Block 2 ’Voltage level at Connection Point’ 51

6.1 Overview of chosen standards . 56
6.2 DER Data Structure used for storing in the cloud storage 61
6.3 DER Communication Protocol . 62
6.4 User privileges and roles . 67
6.5 Summary of RESTful mapping from ACSI [63] . 71
6.6 Summary of ACSI methods used in the prototype 72

7.1 DER Websockets Interface Request Paths . 88

xiii

List of Figures

1.1 The current communication model. 2
1.2 The proposed domain. 3
1.3 Top goals of the thesis. 6
1.4 Sub-goals for communication between DER and the cloud. 6
1.5 Sub-goals for communication between client and the cloud. 7
1.6 Sub-goals for the information model. 7
1.7 Project scope. 8
1.8 Unified Process model over time. 9

2.1 Three basic service models for cloud computing. 17
2.2 Software as a Service Model [74] . 18
2.3 Platform as a Service Model [74] . 19
2.4 Infrastructure as a Service Model [74] . 19
2.5 NIST Model with DER Extension [11] . 22
2.6 SGAM Framework [11] . 23
2.7 IEC 61850 Modeling Approach [44] . 26

3.1 Use Case Diagram . 29

5.1 Information Model Hierarchy[40] . 43
5.2 Naming Convention [46] . 44
5.3 The flexibility Interface sits between the aggregator and the DER units[7]. 47
5.4 Flexibility Interface frame blocks[7] . 49
5.5 Example of a flexibility frame[7] . 49
5.6 Mapping of Flexibility Interface to IEC 61850 Information Model 50
5.7 Reference with multiple simple types . 51
5.8 Putting the Information Model together . 52

6.1 Domain model . 53
6.2 System Overview . 54
6.3 Mapping of the standards in the design . 55
6.4 IEC 61850 Data Model[40] . 57
6.5 Generic Information Model[62] . 57
6.6 Components model . 58
6.7 Layered Architecture Model . 59
6.8 DER domain . 60
6.9 DER to Cloud Service Interaction . 61
6.10 Client to DER Communication data flow . 63
6.11 Client to DER Communication sequence . 63
6.12 Dynamic Module Domain . 64
6.13 Storage design . 65
6.14 Snippet of the model used to generate the storage entities 66

xiv

List of Figures xv

6.15 Membership components . 67
6.16 Correlation between client and cloud service . 68
6.17 Website overview . 69
6.18 ACSI in RESTful and XML Webservice interfaces 70
6.19 RESTful interface security . 71

7.1 Cloud Application Components . 75
7.2 Class diagram: Service Layer and Repository Layer Combined 76
7.3 Behavior: Query Information Model using the Service Layer 76
7.4 Class diagram: Storage . 78
7.5 Behavior: Query a user in the storage . 78
7.6 Flow diagram: Generate a unique Id for use with table storage - part 1 79
7.7 Flow diagram: Generate a unique Id for use with table storage - part 2 80
7.8 Class diagram: Information Model . 81
7.9 Class diagram: Users and Membership Providers 84
7.10 Behavior: Using the custom Membership Provider 85
7.11 Class diagram: Modules . 86
7.12 Behavior: Receive data in module and save to storage 86
7.13 Class diagram: DER WebSocket . 87
7.14 Statemachine: DER WebSocket . 88
7.15 Inter-process communication via the Service Bus 89
7.16 Website Web Pages Diagram . 89
7.17 Behavior: Query the information model via the RESTful interface 90
7.18 Behavior: Query the ACSI method GetServerDirectory via the XML Webservice . . 91
7.19 RSA user credentials block . 92

8.1 Build System . 98

9.1 Setup for case study : Dantherm DKµCHP . 102
9.2 BeagleBone . 108
9.3 Communication flow from a VPP to BeagleBone DER Controller 113

C.1 Video Presentation on YouTube . 137

D.1 CloudSolution - News 1 . 139
D.2 CloudSolution - LogOn 1 . 140
D.3 CloudSolution - LogOn 2 . 140
D.4 CloudSolution - LogOn 3 . 141
D.5 CloudSolution - News 2 . 141
D.6 CloudSolution - News 3 . 142
D.7 CloudSolution - Units 1 . 142
D.8 CloudSolution - Units 2 . 143
D.9 CloudSolution - Info 1 . 143
D.10 CloudSolution - Info 2 . 144
D.11 CloudSolution - Create 1 . 144
D.12 CloudSolution - Create 2 . 145
D.13 CloudSolution - Create 3 . 145
D.14 CloudSolution - Create 4 . 146
D.15 CloudSolution - Available Modules 1 . 146

xvi List of Figures

D.16 CloudSolution - Module Information 1 . 147
D.17 CloudSolution - Available Modules 2 . 147
D.18 CloudSolution - Upload Module 1 . 148
D.19 CloudSolution - SCLs 1 . 148
D.20 CloudSolution - SCLs 2 . 149
D.21 CloudSolution - SCLs 3 . 149
D.22 CloudSolution - All Users 1 . 150
D.23 CloudSolution - Create User 1 . 150
D.24 CloudSolution - Create User 2 . 151
D.25 CloudSolution - Units 1 . 151
D.26 CloudSolution - Units 2 . 152
D.27 CloudSolution - Modules 1 . 152
D.28 CloudSolution - Units 3 . 153
D.29 CloudSolution - Units 4 . 153
D.30 CloudSolution - Units 5 . 154
D.31 CloudSolution - Empty . 154
D.32 CloudSolution - Small . 155
D.33 CloudSolution - Full . 155
D.34 Continuous Integration Server: Jenkins . 156
D.35 Code Coverage Report . 157
D.36 Tray Tracker for Jenkins CI Server . 157
D.37 Code API Docomentation . 158
D.38 Code API Docomentation Opened . 158

F.1 Class diagram: Service Layer . 167
F.2 Class diagram: Repository Layer . 168
F.3 Class diagram: Storage . 169
F.4 Model Generated Entities for the Storage . 170
F.5 Class diagram: Users and Membership Providers 171

CHAPTER 1

Introduction

The following chapter will describe the motivation, project description and the scope behind the
project. The description contains an elaboration about the project, the stakeholders and the goals
for the project. Lastly the scope of the project will describe the boundaries of the contents of what
the thesis will cover.

1.1 Motivation

The wish to obtain sustainable energy has been present for many generations. Even though
the electricity consumption in Denmark has decreased over the last years [28], the International
Energy Agency predicts [48] that there will be a 50% increase in world energy consumption, by the
year 2030. With the rapid increase in demand, terms like “Green Energy” or “Renewable Energy”
are becoming more popular. Doing research within the energy industry, particularly within the
green energy segment, is therefore highly motivational.

Being able to contribute to ongoing research and development is, by itself, a driving factor. This
thesis will contribute within the area of the Danish development of the Smart Grid, and the findings
in the prototype might be a part of the final products that are shipped out to the consumers. With
the prevalence and increase of distributed energy resources in the common household, this project
will not only make an impact on software that will run in the industry, but also positively affect
the usability for the consumers, which increases the motivation for doing the thesis.

The cloud platform is becoming very popular within the software industry [27]. The idea of
scaling on-demand, allows the underlying servers to dynamically adjust to the workload, and only
use “what is needed” for the processes. Developing a solution for the cloud, is therefore a step
towards green energy and being able to utilize modern technology, will also keep the motivation
high throughout the thesis.

1.2 Project Vision

The vision of this project is to create a proof-of-concept prototype showing, how multiple
distributed energy resources can send information data in real-time up into the cloud. The cloud
then processes this raw data and generates an information model based on the IEC 61850 data
structure. The cloud should now provide an easy access to each distributed energy resource using
the IEC 61850 standard. Additionally, the vision is to integrate the iPower Flexibility Interface
into the standard, as additional nodes in the IEC 61850-7-420 model.

1

2 CHAPTER 1. INTRODUCTION

1.3 Project Description

The number of Distributed Energy Resources (DER) is growing as farmers are installing windmills
in their fields [68][34], electric vehicles are gaining on the consumer market [67] and photovoltaic
systems are becoming more popular on rooftops [36], due to the investments of photovoltaic
systems in the last year [17] being subsidized by the government. With the increase in numbers
and their geographic location being spread out, they can become a positive part of the power
grid as ancillary services and when multiple DERs are aggregated, they can take part in buying
and selling power on the energy markets. A Virtual Power Plant (VPP) is used to control and
coordinate a group of DERs and the communication is mapped through information standards,
such as the IEC 61850.

Currently the communication model, as illustrated in figure 1.1, is based on the VPP opening the
connection to the individual DERs. This approach is suitable when dealing with e.g. centralized
power plants and well known networks through proprietary dedicated communication lines.
However, as the DERs are placed in many different networks, e.g. at a local farmers house, it
becomes difficult to use the current point-to-point communication model. Where the VPP server
connects to the DER unit, because of routers, firewalls, ISPs and proxies that may block the
communication. End-users often have dynamic IP addresses, which makes it difficult to find the
correct IP addresses, to communicate with the users equipment and the addresses may change over
time. These are issues that are outside the control of the organization that runs the VPP. Using a
cloud-based service, makes it possible for the DERs information to cross network boundaries in a
way, which is well supported by today’s internet structure.

DER

DER I/O
Specific

Interface

DER
Communication

Interface

DER

DER
Communication

Interface

Client

Information Exchange
Model

Specified in
IEC 61850-7-420

DER Information Model
Specified in IEC 61850-7

DER

DER Information
Exchange Model
Specified in IEC

61850-7-420

DER Information
Model

Specified in IEC
61850-7

Message mapping to communication profile
Specified in IEC 61850-8

Firewall / RouterFirewall / Router

Owner Manufacturer
VPP

Figure 1.1: The current communication model.

A VPPs responsibility is to aggregate and control a group of DERs and to collect information about
the DERs in the group. Different parts of this information can be of interest for e.g. manufacturers
and owners. Manufacturers may have hardware on end-users locations that they own or are
responsible for. They can then use this information, to be notified about problems in the equipment
and to find out what the cause of the problem might be. Other parts of the information can be of
interest to the owner, such as energy production, logs, energy overview, controlling the unit etc.
In order to access the information, they have to either collect the information themselves, or the
VPP has to facilitate access to its information. To collect the information individually, requires
communicating with the DER, which includes the same network communication problems, that

1.3. PROJECT DESCRIPTION 3

are present for the VPP.

Solving these issues, using the cloud, see figure 1.2, provides a generic and scalable solution.
The cloud makes it possible to handle the communication issues between the VPP and the DERs
using modern protocols and technologies. Information could be available both as online web
access, which scales perfectly with the could, and data APIs, that can be used by manufacturers to
integrate into their systems.

DERCLOUD

· Information Exchange Model
· IEC 61850 Information Model
· iPower Flexibility Interface Extension
· DER Communication
· Security

Owner

DERDER

DER
Controller

VPP

Manufacturer

Figure 1.2: The proposed domain.

DERs and the VPP are built by different manufacturers and communicates together using the IEC
61850 standard. Currently each DER controller has to contain the full IEC 61850 server logic with
an information model, reporting and logging facilities, the related information exchange model
and services. For some DER units, this does not present a problem, outside of the initial cost of
developing the standard compliant software, but other units such as embedded PLC1 systems, may
not have the facilities to incorporate necessary IEC 61850 services.

This thesis proposes to relocate most of the IEC 61850 server logic into the cloud. This way the
DERs only needs to send raw data to the cloud, which then parses and handles the information
according to the standard information model and services. The cloud then acts as a scalable,
generic and standards compliant aggregator that collects data from DERs and provides it to
external parties such as VPPs, owner and manufacturers. The cloud can support a wide range
of DERs of different complexity. DERs may only be able to stream data in a specific format, they
may need to be polled or they may support a full IEC 61850 standard etc. By having a large part of
the IEC 61850 logic in the cloud, it is possible for manufacturers to build less complex and more
cost-effective DERs, which will bring more DER options to the market and further encourage the
deployment of DERs.

The DER Information Model structure, described in IEC 61850 [44], is the basis for the generic
information model, that are used in the cloud-based service. The iPower Consortium is actively
researching a specification for a service and management oriented information model, called the

1Programmable Logic Controller

4 CHAPTER 1. INTRODUCTION

iPower Flexibility Interface [7]. Using the same principles, CENELEC [11] has also defined a
flexibility concept, that can be used when communicating with DERs.

For this thesis the iPower Flexibility Interface will be mapped into the IEC 61850-7-420 [46] DER
standard structure (as it is a subset of the IEC 61850 standard) as an extension. The information
model is going to be generic, in that it can facilitate the IEC 61850-7-420 information model, the
extended Flexibility Interface version as well as the basic communication structure IEC 61850-7-4
information model [45].

1.3.1 Stakeholders
During the start-up phase of this project, collaboration with multiple people interested in our
project, helped shape the vision of the project. In order to establish a common ground for the
project, defining each stakeholder gave a clear definition of each stakeholder’s point of view. Each
stakeholder has been selected with the purpose, that they have some influence or exposure on the
project. In table 1.1 a brief overview of the stakeholders is shown, where each stakeholder is rated
according to their importance of this thesis.

The tables of stakeholders consists of columns as follows:

Stakeholder Name of the stakeholder
Type Internal or External stakeholder
Exposure How much the stakeholder will be affected by the project
Power The amount of influence the stakeholder has on the project and its success
Urgency How long before the stakeholder’s power will have an effect on the project
Importance How important the stakeholder are for the overall project

Stakeholder Type Exposure Power Urgency Importance
Supervisors Internal • ••• ••• •••
iPower-net.dk Internal ••• •• •• •••
Dong Energy External ••• •• • ••
Energinet.dk External ••• •• • ••
Danish Consumers External •• • • •

Table 1.1: Brief overview of the stakeholders for the thesis

To clarify each stakeholder, a more detailed description will be presented in the following.

1.3.1.1 Supervisors

As the supervisors are guiding the thesis, supplying materials and are a part of the evaluation,
they will be considered an Internal type. They will not be affected by the result of the thesis and
therefore the exposure set to low. On the other hand, they have a lot of influence, as they are a part
of the evaluation and they are guiding the thesis. On that ground, both the power and urgency of
their decisions is set to high. The final importance of the stakeholder are evaluated as high, due to
their position and their impact on the thesis.

1.3. PROJECT DESCRIPTION 5

1.3.1.2 iPower-net.dk

iPower is contributing with a part of the foundation for the thesis with their Flexibility Interface
[7]. Therefore as the thesis will build on this, the iPower as a stakeholder will be considered as
Internal. Also because of this, their exposure, as they will be able to use the results of the thesis
in their production environment and as a part of the Work Package 4 (WP4), will be high. As
the Flexibility Interface is only a part of the thesis, their power on how it will succeed is set to
medium. The same argument can be used for the urgency. The importance is then, due to the high
amount of exposure and the medium of the power and urgency, set to high.

1.3.1.3 Dong Energy

The PowerHub is Dong Energy’s concept of implementing a VPP. The PowerHub communicates
with the DERs through the OPC-UA protocol [72]. Being able to communicate with their test
environment makes Dong Energy an external stakeholder for the thesis. This also set them as a
high exposure, because they will have direct communication with the project prototype. Being
able to communicate with their PowerHub, which is fully functional, will also bring the thesis to a
higher level and therefore the power of the stakeholder, is set to medium. As the stakeholder only
has some influence on the thesis result thus, is not the same as saying their decisions will have
any immediate effect on the thesis, so the urgency will only be set to a minimum. With the high
exposure, medium power and low urgency, the importance of the stakeholder will only result in
medium, as they are not critical for the thesis to succeed.

1.3.1.4 Energinet.dk

Energinet.dk and Dansk Energi have both made contributions, to map out the exciting work of
intelligent power systems [21] and for the smart grid [20] in Denmark. As both companies have
a lot of common ground, they will also be mentioned as a shared stakeholder. Energinet.dk are
operating by directly connecting to each DER or through Dong Energys Power Hub. As the thesis
will allow the stakeholder to connect to each DER through the cloud, they are considered as an
External stakeholder. The same argument can be used when the exposure is determined and it is
therefore set to high. Having multiple stakeholders interact with the project prototype of the thesis,
means that Energinet.dk have some derived influence and is therefore noted as medium power. A
change in Energinet.dk’s decisions will not have an immediate effect on the thesis, so the urgency
for this stakeholder will be set to minimum. The importance is evaluated to be medium, as they
are not critical for the thesis.

1.3.1.5 Danish Consumers

The Danish consumers are set as an stakeholder, because they will be directly interacting with the
DERs. They do not have any real control over the internal structure or have anything to say about
the communication between the VPP and the DER, therefore they are noted as External. As the
owner may need to restart the DER, connect it to a grid location or configure network equipment,
their exposure it set to a medium level. They do not have any influence over, and are not directly
included in, how this thesis will be written, and as such the power and urgency are set to low.
The importance is also set to low, because even though they might be somewhat exposed, it is not
enough to make them important for this thesis.

6 CHAPTER 1. INTRODUCTION

1.3.2 Goals
To clarify the purpose of this thesis, the overall top-goals is to ”Communicate to a DER through
a cloud-based solution” as shown in figure 1.3. To achieve this goal, four sub-goals needs to be
accomplished.

Figure 1.3: Top goals of the thesis.

The first sub-goal is to establish communication between a DER and the cloud (see section
1.3.2.1 on page 6). The next sub-goal is regarding the ’other side of the cloud’, more precisely
the communication between a client and the cloud (see section 1.3.2.2 on page 7). With the
communication related goals defined, the final sub-goals concerns the internal structure of the
cloud, which is regarding the information model (see section 1.3.2.3 on page 7) that contains and
communicates the information data.

1.3.2.1 DER to Cloud Communication

The goal of establishing communication from DER to the cloud has, by itself, two sub-goals, see
figure 1.4.

Figure 1.4: Sub-goals for communication between DER and the cloud.

When data are sent from a DER to the cloud, one goal is to do it using real-time communication.
This is because, with the use of real-time communication, the exchange of data will be instant or
with negligible latency. If an error occur and the operator/VPP needs to e.g. turn off the DER,
time can be a valuable factor. Another sub-goal is to establish security in communication between
the DER unit and the cloud.

1.3. PROJECT DESCRIPTION 7

1.3.2.2 Client to Cloud Communication

In the goal of establishing communication between a client and the cloud, there are four sub-goals,
see figure 1.5.

Client to Cloud

Communication

Security Client Power Hub Virtual Power Plat

Figure 1.5: Sub-goals for communication between client and the cloud.

As with the communication between the DER and the cloud, establishing security is also a sub-
goal for the client to cloud communication. Multiple clients should be able to connect to the cloud.
This includes clients such as unit owners, the PowerHub and a Virtual Power Plant.

1.3.2.3 Information Model

Building the internal information model also requires additional sub-goals, see figure 1.6.

Figure 1.6: Sub-goals for the information model.

One sub-goal is to create an information model, that is based on the IEC 61850 data structures.
The information model-goal includes a sub-goal regarding data exchange. A data exchange model
is used to communicate the data in the information model. In the communication to each DER, a
service management node should be created based on the Flexibility Interface from iPower.

8 CHAPTER 1. INTRODUCTION

1.4 Project Scope

The focus of this thesis is two-part, the first focus area is on the communication between
Distributed Energy Resources (DER) and a Virtual Power Plant (VPP). The second focus area
is on how the iPower Flexibility Inferface model can be integrated and used with the IEC 61850-
7-420 information model. To explore these two subjects, a prototype will be developed that will
facilitate communication with different types of DER units and VPP/aggregator, users and DER
operators.

User/Operator
client

VPP/Aggregator

DER Controller

DER Hardware

User
Communication

VPP/Aggregator
Communication

Communication
Security

iPower Flexibility
Interface

Information Model

Information
Exchange Model

Authentication and
Authorization

DER
Communication

Communication
Security

Figure 1.7: Project scope.

As illustrated in figure 1.7, the development of client applications is outside the scope of the
project, but the communication interfaces used for programmatic access by the user applications
is within the scope. Also a Website that provides some of the functionality expected from
an application client along with additional functionality is within the scope. Developing or
configuration of an existing VPP/aggregator is outside the scope but as with the application
clients, the communication interface for the communication between the VPP/aggregator and the
prototype is part of the scope. The communication for these parts will be encrypted and so the
interface communication security is within the scope of this project.

This thesis is made in collaboration with the iPower consortium, which is actively researching a
method for managing the flexibility of DERs through direct control. The Flexibility Interface and
the related IEC 61850 standard (IEC 61850 information model and information exchange model)
are important parts of the scope.

Having several external DERs communicate with the cloud will be a part of the project. Handling
the DER hardware and I/O is, by itself, outside of the scope, but using multiple DER controllers
to send raw data to the cloud is included. When it comes to sending data from the DERs to
the cloud, DER units will be authenticated and authorized, but encryption is not applied to the
communication. The security model in the project entails authentication and authorization of
users which will be part of the scope.

1.5 Software Development Methodology

As the software development methodology acts as a framework for the development of a software
product, it is important to have an appropriate methodology that fits. Following an iterative and
incremental development approach, is a way to compensate for some of the shortcomings of the
traditional waterfall methodology. The iterative method cycles repeatedly through a design, a build
and a test phase, until the full functionality of the prototype as been achieved. The incremental
model adds functionality to the implementation for each increment of the prototype and the result
of each iteration is a working constituent part of the prototype.

1.5. SOFTWARE DEVELOPMENT METHODOLOGY 9

This methodology is supported by the Spiral Methodology and Unified Process. The Spiral
Methodology, was developed in 1988 and combines the “traditional” waterfall model with
prototyping and aims for large projects, where risk analysis is a very important concern. Unified
Process is an iterative, risk and use-case driven development model that consists of four phases,
see figure figure 1.8:

Inception Estimation of the project vision, time frame and requirements. The inception phase
should be short and has the purpose to decide if the project is feasible.

Elaboration The elaboration phase is mostly about determining the risk factors of the project
and to establish the system architecture. This is done by creating the necessary use case
diagram, along with information models for the system and architecture.

Conception Through the iterations: analysis, design, implementation and test, the system is
constructed and as a result the final product should be ready, along with fully specified
use cases and diagrams of the system.

Transition The final tests are concluded and the system is being deployed to the users.

Figure 1.8: Unified Process model over time.

The decision to use Unified Process is based on two clear advantages. The first one being that
Unified Process is use-case driven. This fits well in with the aspect of having the user in focus
and how this user can benefit from the developed prototype. Another advantage of using Unified
Process in regards to The Spiral Methodology, is that, when having a large project, as this thesis,
that runs over a long period of time, there can be ongoing reviews throughout project period.
This is due to the iterations that it is build upon, but also because of the amount of work, that
is required in producing the documentation. This is very fitting for writing a thesis, but could

10 CHAPTER 1. INTRODUCTION

be a disadvantage if working with smaller project in the industry. In order to develop the core
functionality of the projet, test-driven development (TDD) will be used. By first creating the
underlying tests for a function, a clear definition of what should happen inside the function
is established. This allows for continuous integration systems and developers to have ongoing
reports of the functionality as it is being developed, through tests.

1.6 Risk Analysis

When planning a project, a risk analysis is an important and vital part as it helps identify, where
threats in the project may occur and the estimation of the likelihood, that these threats will
materialize into serious problems during the project.

Before determining the potential threats, the project will first be divided into a few important steps
and each of theses steps will then be analyzed individually. This helps to avoid generalizing the
threats for the whole project, as there is a lot of aspects to take into account, when making the
analysis.

The first step is the analysis step, where the project description is being developed and analyzed.
As this is the “foundation” of the thesis and all further work will rely on this, is it definitely an
important step. The second step to look at, is the development step, where the prototype is being
developed. The importance here lies in, that the development will result in the prototype which is
an important part of the project. The last step is the documentation step, where the prototype will
be developed and the report constructed. As the thesis in the end will be evaluated on this report,
this is also an important step.

Moving on to the analysis of each step, the following tables shows the threats in the step and the
corresponding description of the threat and its threat estimation on a scale from 1 to 10. The threat
estimation is an expression of how likely the risk is to occur and how much of an impact the risk
have.

Analysis Step

Threat Description Estimate

Human When analyzing the project, the thesis will depend on other people’s
input in order to determining the more specific project description.
These people will often have completely different perspective and
basis for being interested in the project and its findings.

9

Technical Going into the analysis, a completely new technical topic has to
be analyzed in order to write the project description. This may be
extensive and exhausting, as it is important to understand the details.

7

Time The time to read and write the first draft of the thesis might not be
essential, but as time always is a risk it is worth considering.

3

Table 1.2: Risk analysis the analysis step

1.6. RISK ANALYSIS 11

Development Step

Threat Description Estimate

Human During the development of the prototype, only two people will
be developing on the prototype. If illness or injury occur, the
manpower could be a threat.

7

Operational Developing the prototype, certain access may be difficult to obtain
or be limited. This could for example be the ability to access and
develop for the cloud.

9

Financial When testing the prototype in a cloud, it often cost money to
deploy and run. As the thesis is not being financed, this could
be a threat for the deployment of the prototype.

4

Time Being a large step, the time for developing the prototype may be a
threat as the thesis of course is on a deadline.

7

Technical Not knowing how to develop to the cloud and being able to comply
with the standard may be a threat.

6

Collaboration Multiple people developing on a prototype can be done in
many different ways. The risk that the people developing the
prototype works in different ways, could be threat for the people
collaborating on the prototype.

3

Table 1.3: Risk analysis the development step

Documentation Step

Threat Description Estimate
Human As with the development step, having limited manpower can be a

threat if illness or injury occur.
7

Time The documentation step may run parallel with the development
step, but when the development step has finished, more time is
needed in order to complete the documentation step. Therefore
the time threat for the documentation step compared to the
development step more important.

10

Technical Documenting the models and the being able to describe the
underlying technologies can be difficult and it is important to get
this right.

8

Collaboration When writing documentation, it is important, even though
different people are writing, to carry out a uniform language and
writing style. This can be a risk as no one write identically and it
can be distracting for the reader.

6

Execution The expectations for the final documentation and report might be
different for each individual. This is a risk for the documentation
step as one person might not think this it is “important” to write or
simply just do not care.

9

Table 1.4: Risk analysis the documentation step

12 CHAPTER 1. INTRODUCTION

With the estimate for each step defined, the project can now proceed with each step’s threat in
mind.

1.7 Report Outline

To give a brief overview of the contents in the report, the following contains a report outline of the
chapters along with a small description of each chapter.

Related Work
The thesis is based on ongoing and state-of-the-art research and technologies. The related
work chapter will look into some of these concepts and give definitions of some of the
more importants concepts. This includes the definition such as CENELEC, Smart Grid,
Distributed Energy Resources and Cloud Computing.

Requirements
From the introduction of the chapter and the related work, the requirements chapter will
present six use cases that the system will be primarily build to handle. From these the
chapter will present functional and non-functional requirements.

Cloud Analysis
The Cloud Analysis chapter elaborates on which service model the prototype should use and
some of the concerns regarding using the cloud. Three different providers will be analyzed
in order to determine which provider should be used. At last the chapter will analyze the
different communication aspects of the cloud and which technology should be used.

Standards Analysis
The Standards Analysis chapter will elaborate on how IEC 61850 standard and the iPower
Flexibility Interface can be used together in the cloud application prototype.

Design
The Design chapter presents the design aspects on the prototype. It provides a domain
model for the whole prototype and a more detailed system overview for the cloud solution.
From this, each part of the system will be designed in different sections. This includes the
information model, cloud service design, dynamic modules, storage design, users and the
different interfaces.

Implementation
As the design chapter presents the design aspect of the prototype, the Implementation
chapter explains exactly how the prototype is build and how it has been implemented.

Testing
The Test chapter elaborates on how the the prototype is tested, what testing methods are
used and what benefits were gained from using these testing methods.

Case Studies
Two different case studies will be reviewed to show, that the prototype can handle the
requirements and goals that was set in the introduction chapter and requirements chapter.

Conclusion
To round off the thesis, a conclusion will be drawn from the vision of the project and

1.8. ADDITIONAL ACTIVITIES 13

summaries from each chapter throughout the report. Finally relevant future work will be
discussed.

1.8 Additional Activities

During this thesis, the students took part in additional activities directly related to the subject of
the thesis.

Paper
A paper titled: ’Utilizing a Flexibility Interface for Distributed Energy Resources
Through a Cloud-Based Service’ was written and submitted to the IEEE SmartGridComm2

international conference on smart grid communications in Vancouver, Canada, 21-24
October 2013.

The paper can be found in appendix A. The focus of the paper is on how the IEC 61850
standard [44] can be used with the CENELEC reference architecture [11] to utilize the
iPower Flexibility Interface [7] with a cloud solution architecture.

Microsoft ImagineCup
During the development of this thesis, the students participated in the Microsoft
ImagineCup3 competition. As part of the ImagineCup competition, a video presentation
of the project was created (see appendix C) and has been uploaded to YouTube4:

http://www.youtube.com/watch?v=lRerrlKCDXI

The focus of the competition was primarily on the Microsoft Azure Cloud Platform
architecture and the communication of the DERs and the cloud.

Additionally an user guide on how to use the prototype was written, see appendix E. This
user guide can be followed to try out most of the functionality of the Web Interface and the
RESTful WebApi interface.

iPower Research - Work Package 4
The students of this thesis have participated in two meetings concerning the Work Package
4 of the iPower research project. This thesis is created in collaboration with iPower and the
subject of the thesis handles multiple objectives of the Work Package 4, such as WP4.9 -
Flexibility Interface and WP4.7 - Demonstration.

1.9 Chapter Summary

With a lot of motivation, the project description and project scope has been defined for this thesis.
The overall goal of the thesis has been defined to create a prototype, that can “Communicate to a
DER through a cloud-based solution”. In order to do this, certain sub-goals needs to be achieved.
In collaboration with iPower, a flexibility interface is also to be integrated with the IEC 61850
standard, this should be done as additional nodes to the sub-standard IEC 61850-7-420. With this,
a clear vision on the final prototype and thesis has been made, along with a risk analysis to specify
certain threats during the project phase.

2http://sgc2013.ieee-smartgridcomm.org/content/ieee-smartgridcomm
3Microsoft ImagineCup http://www.imaginecup.com
4Short URL to the video (Case sensitive): http://goo.gl/7O4Zf

http://www.youtube.com/watch?v=lRerrlKCDXI
http://sgc2013.ieee-smartgridcomm.org/content/ieee-smartgridcomm
http://www.imaginecup.com
http://goo.gl/7O4Zf

CHAPTER 2

Related Work

In the following chapter, some of the concepts related to the thesis and current ongoing research
will be investigated. Initially the concept of Smart Grid and Distributed Energy Resources will
be explained, following the concept of cloud computing, along with the different types of service
models. Lastly the, current state of the art research in standards and in the cloud is investigated.

2.1 Smart Grid

The use of the term Smart Grid, has in the last couple of years been used in a wide variety of
contexts, but one definition given by European Technology Platform is

A Smart Grid is an electricity network that can intelligently integrate the actions of
all users connected to it - generators, consumers and those that do both - in order to
efficiently deliver sustainable, economical and secure electricity supplies. [32]

This definition says that the Smart Grid is an intelligent “modernized” electrical grid, that are
adapted to control renewable energy sources. This can be both sources that are producing
electricity, sources that consume electricity or do both. In contrast to an “old fashioned network”,
a smart grid is a decentralized grid, where multiple distributed energy resources delivers power
independently to the grid and is then controlled through a virtual power plant. International
research shows that the implementation of Smart Grid, would make for a more reliable power
grid, that are both efficient and economical [19]. Some of the functional advantages are [1] [32]

• Increased stability in the power grid

• Reduced utility prices

• Allows for real-time pricing to customers

• Improved load management

• Increased robustness

• Sensing and measurement technologies

• Automated communication between the components in the grid

• Increased utilization without expanding

Smart Grid does not only improve on the functionality, but it also has advantages for the
environment, as it is more energy efficient (allows for customers to shift electricity consumption

15

16 CHAPTER 2. RELATED WORK

to non-peak hours) and with the use of sustainable energy resources [23] [79]. It would over time
make the power market more clean (non-polluting), as the power producers are using sustainable
energy resources to power the grid. Smart Grid also supports electric vehicles, where the surplus
energy could be supplied back to the grid (V2G).

2.1.1 Distributed Energy Resources
An important part of the Smart Grid is, that it supports a wide-range of distributed energy
resources. These can be placed anywhere from a local farm, to the rooftop of private citizens
houses in the city. They can be flexible consumption units (e.g. cooling systems or electric
vehicles) or production units (e.g. photo voltaic, wind turbines) that can contribute power to the
local building or to the power system. One key factor, with the use of distributed energy resources,
is that they do not produce or consume power in a constant manner. E.g. a solar panel primarily
produce power on a clear day. On a cloudy day, the production level might not be enough to
supply a house and certainly not, to provide to the grid. A single unit can therefore not replace a
traditional single centralized power plant. By aggregating multiple units, they can each provide
a small amount of flexibility, and a virtual power plant can then place a single united bid for all
units into the power market. This is necessary as a bid into the danish market requires a minimum
guaranty of 300kW [18].

2.1.2 Direct Control
Controlling a distributed energy resource can be done using two approaches called direct control
and indirect control [7][66]. Direct control is when an aggregator send controls signals to a DER
unit to directly control operation. The aggregator demands that the DER unit must start producing
an amount much power and the DER unit does this.

Indirect control is when an aggregator send informational signals, such as price signals, to the
DER unit. The DER units itself decides, based on the signals, from the aggregator when, how and
if the DER will produce the requested power.

The communication may be one-way or two-way depending on, how the aggregator and DER is
able to communicate. In direct control one-way communication would require the aggregator to
query the DER unit for its status continuously. In two-way communication it would allow the
DER to update the aggregator as needed. In indirect control, when referring to the case where
an aggregator primarily sends price signals to the DER unit, two-way communication would be
needed to enable the DER to send feedback to the aggregator, which in turn would be able to
adjust its DER portfolio accordingly.

An example of indirect control and where the communication is initiated by the DER unit instead
of the aggregator, could be an electric car that polls the price signals from all the local power
providers. If the electric car was driven to a foreign country and was controlled by direct control,
then the controller would have to identify where the car is located, query the power providers in
that region and then communicate the price signals to the car. These steps all comes with some
probable communication problems. As an alternative, the electric car itself could poll the prices
from all the local power providers in the region and figure out the best price.

This thesis builds upon the work of iPower and their Flexibility Interface[7], and will only explore
the concept of direct control, between the distributed energy resources and a virtual power plant.

2.2. CLOUD COMPUTING 17

2.2 Cloud Computing

Cloud computing consists of several hardware and software resources, dynamically providing
the needed configurations for the servers. The cloud can be a setup of both physical and virtual
machines and often includes resources such as a Storage Area Network (SAN) etc.

Within the definition of cloud computing [61], is not only the underlying servers, but also the
applications/services that are being provided through the Internet. Depending on the business
model of the cloud provider, different services can be available.

2.2.1 Cloud Computing Service Models
Just like a normal computer, the cloud also has three “basic” layers of computing, see figure
2.1 [9]. At the lowest layer, you have access to the hardware of the computer, including its
processor(s), memory etc. This layer is called the infrastructure layer. In the middle, an operating
system is running and interacting with the computer hardware - this layer is the platform layer. On
top, third-party applications are running on the OS and the layer is therefore called the software
layer [65].

Figure 2.1: Three basic service models for cloud computing.

As mentioned, the cloud uses the same approach, and offers three different types of service models
[37]. Each service model has some key differences and “limitations” for the customer.

18 CHAPTER 2. RELATED WORK

2.2.2 Software as a Service
The service model shown in figure 2.1 is Software as a Service, also known as SaaS [74]. The
service model lets you provide a complete business application to the costumer over the web. As
web technologies have advanced dramatically in recent years, applications that normally runs on
the costumers desktop, can now be executed directly in a browser. As the application is hosted in
the cloud, running in a “foreign” environment from the customers points of view, all maintenance
and often configuration are very restricted and should sometimes just be used right out of ’the
box’.

Figure 2.2: Software as a Service Model [74]

Examples of a SaaS “application” could be Microsoft’s OneNote1. Originally, the application was
a part of the Office Suite, but Microsoft created a OneNote Web App2 where the user can access
and edit their OneNote documents, like it was just a normal application.

2.2.3 Platform as a Service
Where SaaS is only for users who should use a provided application, Platform as a Service (PaaS)
[74], figure 2.3, goes a bit deeper and provides the users with a stable online environment, where
they can build and deploy web application. As the application is deployed to the cloud’s operating
system, it automatically begin to allocate the required resources such as network resources,
memory access or processing power.

1Microsoft OneNote: http://office.microsoft.com/en-us/onenote/
2OneNote Web App: http://www.microsoft.com/office/rm/onenotewebapp.aspx

http://office.microsoft.com/en-us/onenote/
http://www.microsoft.com/office/rm/onenotewebapp.aspx

2.2. CLOUD COMPUTING 19

Figure 2.3: Platform as a Service Model [74]

Windows Azure or Amazon EC2 are both examples of PaaS providers, where the costumer can
deploy web application, that offer scalability, security and access control.

2.2.4 Infrastructure as a Service
The last service model in cloud computing, is Infrastructure as a Service (IaaS) [74], depicted in
figure 2.4. Here the costumer is provided with administrative access to some of the fundamental
resources on the system. This could be direct access to processor, memory or network adapters.
Granting access to these resources allows the costumer to run other operating systems on the
provided hardware, but the customer is not responsible for housing or maintaining the hardware.

Figure 2.4: Infrastructure as a Service Model [74]

As the customer can manage and change even the operating system running on the hardware, the
capabilities of IaaS are extensive. It allows companies to handle and manage servers and with the
benefits of the cloud architecture, the servers can dynamically be scaled if more are needed.

20 CHAPTER 2. RELATED WORK

2.2.5 Aspects of Using the Cloud
When using cloud computing, the following aspects are core features that defines the basis in
cloud computing [10].

2.2.5.1 Elasticity

The capabilities of the underlying infrastructure to change and adapt to certain requirements is
one of the essentials features of the cloud. Being able to scale and handle multiple numbers of
instances running concurrently or dynamically allocate resources to meet a needed workload.

2.2.5.2 Reliability

Reliability is not only to guarantee an uptime of nearly 24/7 on the data centers (availability). It
also includes running a system with no loss of data, an isolated code execution process etc.

2.2.5.3 Quality of Service

As in many business cases, certain quality of services must be a guarantee. For cloud computing
this could be response time, throughput or latency.

2.3 Research - State of the Art

As the previous section was a short introduction to some of the topics of this thesis, the following
section goes a bit deeper with “State of the Art” research. First it elaborates on the CENELEC
rapport for Smart Grid [11]. With this in mind, the iPower-net (the collaborating partner of the
thesis) and the work associated with Work Package 4 (WP4) 2.3.2.1 will be briefly looked at, as
well as the IEC 61850 standard.

2.3.1 CENELEC
Standardization of Smart Grid [22] includes many committees, pilot- and research-projects, that
work both on a national level, but also on a larger international level. In November 2012,
CENELEC - a Smart Grid Coordination Group (SG-CG) Reference Architecture Working Group
(SG-CG/RA) - had been assembled to focus on certain aspects of the Reference Architecture
[12][11]:

• Means to communicate, in a common view and language about a system context, not only
in the SG-CG but also with industries, customers and regulators.

• Integration of various existing state-of-the-art approaches into one model with additional
European aspects.

• Methods to serve as a basis to analyze and evaluate alternative implementations of an
architecture.

• Support for planning the transition from an existing legacy architecture to a new smart grid-
driven architecture.

• Criteria for properly assessing conformance with identified standards and given interoper-
ability requirements.

2.3. RESEARCH - STATE OF THE ART 21

For this thesis, especially the first point of “communicating in a common view and language” is
an important part, as the development of a flexible interface into a well known standards.

2.3.1.1 Conceptual Model

Before the Reference Architecture can be defined, an underlying conceptual model (domain
model) has to be created. CENELEC’s conceptual model is based on previous models such as
the National Institute of Standards and Technology (NIST) Conceptual Model [59]. The NIST
Conceptual Model is a high-level framework for Smart Grid and it defines seven different domains
[12]:

• Bulk Generation

• Transmission

• Distribution

• Customers

• Operations

• Markets

• Service Providers

With notion on how each domain is connected to the others and how the communication and
electrical flow are interrelated.

As the trend today is still to become more decentralized, regarding power supplies [78], an
extension has been made to the NIST model (see figure 2.5), in order to integrate distributed
energy resources. That extension is made due to the following reasons [12]:

• Distributed Energy Resources require a new class of use cases.

• In order to comply to future anticipated regulations and legislations explicit distinction of
Distributed Energy Resources will be required.

• Distributed Energy Resources represent the current situation.

• A consistent model requires clear criteria to separate the new DER Domain from the existing
Domains, especially from Bulk Generation and the Customer Domains.

22 CHAPTER 2. RELATED WORK

Figure 2.5: NIST Model with DER Extension [11]

As a part of this new integration, the M490 Working Group3 introduced the concept of flexibility.
The flexibility combines the model, consumption, production and storage into one flexibility
entity. This allows for more flexibility in the NIST Model, and support future demand-response
use cases, as non-IT users would be able to create use cases, that could more easily be
implemented. Table 2.1 shows the NIST Domains, where the flexibility concept could be applied.

Domain Market Grid Flexibility
Markets •
Bulk Generation •
DER •
Customer •
Transmission •
Distribution •
Operations • • •
Service Provider • • •

Table 2.1: Flexibility in NIST Domains [11]

2.3.1.2 Reference Architecture

An important part of the Reference Architecture, is that it is based on existing materials, such as
the NIST Conceptual Model and the GridWise Architecture Council [59][33]. The Smart Grids
Architecture Model (SGAM) framework [11] consists of five layers, that have been abstracted
from the Joint Working Group4 recommendations, where the architecture is divided into four
layers.

3SG-CG/RA and SG-CG/SP
4CEN, CENELEC and ETSI Activity

2.3. RESEARCH - STATE OF THE ART 23

The five layers are as follows:

• Business Layer

• Functional Layer

• Information Layer

• Communication Layer

• Component Layer

The intention of this abstraction model, is to represent the information management zones where
interactions are identified.

Implementing a flexibility interface that follows the presented criteria in the specification of
Conceptual Model, will be subject to the Information Layer and the Communication Layer.
The Information Layer is described as the information, which is being exchanged between the
components, using an underlying common data model. It also includes the semantics for functions
and services for the communication. The Communication Layer is defined as a layer for describing
the protocols and the technology for the interoperability between each component.

Figure 2.6: SGAM Framework [11]

24 CHAPTER 2. RELATED WORK

From these two layers, a formal Information Architecture can be presented, that integrates the data
management and the interfaces needed. As far as integration technology concerns, CENELEC
prefers a SOA solution [5], as it integrates the technical concepts of enterprise application
integration with the organizational embedding. Nevertheless, with more decentralized systems,
also a standard for communication is needed, so different vendors can communicate with each
other. CENELEC presents the IEC 62541 OPC-UA [47], a SOA-based approach for data exchange
between each domain and zones in figure 2.6. CENELEC does not recommend any specific
standards for how the data is stored and accessed in the Data Model, but existing standards such
as the IEC 61850 [44] are the most prominent data models.

2.3.2 iPower-net.dk
iPower is a collaboration of 32 partners, universities, research institutions and industrial
companies. With the department of Electrical Engineering at the Technical University of Denmark
being the coordinator, it has focus on research and innovation of Smart Grid. It strives to develop a
tool for intelligent control of decentralized power consumption and production, in order to manage
lots of flexible consumption units [71]. The project is divided into seven different Work Packages
(WP), where each WP is focused on a specific part of Smart Grid:

• WP1 Domestic Demand Response

• WP2 Industrial Demand Response

• WP3 Distribution Grid Operation

• WP4 Control and Market Operation

• WP5 Socio-economic and Investor Evaluation

• WP6 Consumer Behaviour

• WP7 Information Sharing Platform

This thesis contributes to parts of WP4.

2.3.2.1 WP4 - Control and Market Operation

Each Work Package by itself is divided into multiple subcategories. WP4, for example, is divided
into[71]:

• WP4.0 Control and Market Operation
Management activities in WP4 and related activities in iPower in general.

• WP4.1 Information platform for simulations IPFORIS
The purpose of this task is to establish a technical platform where iPower participants can
up- and down-load data for analysis and simulations.

• WP4.2 Flexibility clearing house platform FLECH
Data in IPFORIS is shaped around a DSO market place (a clearing house platform), where
the DSOs can request and procure local flexible generation and demand response services.

2.3. RESEARCH - STATE OF THE ART 25

• WP4.3 Simulation-based evaluation of Control Services
The purpose of this task is to identify, implement and test methods for validation of
control services to be delivered by distributed energy resource (DER), on the request of
an aggregator.

• WP4.4 Direct control
The overall goal is to develop and demonstrate a VPP for control of a large portfolio of
flexible consumers towards the current markets and future DSO markets.

• WP4.5 Direct and indirect control in distribution grid
The purpose of this task is to integrate and evaluate direct control and indirect control
policies for demand side management using VPP technology, considering also distribution
grid operation constraints.

• WP4.6 Forecasting
Models and concepts facilitating indirect control policies, included in the deliverable
“Flexibility Interface - Indirect Control by Prices” by Tryggvi Jónsson from DTU Compute.

• WP4.7 Demonstration
The purpose of this task is to demonstrate the solutions developed in WP4 – Control and
Market Operation. The purpose is not to demonstrate individual flexibility solutions on a
consumer unit level, but rather to demonstrate how the units would respond collectively in
an energy system context to provide flexibility services. Larger/full-scale demonstration
will often require more competences which exceeds iPowers frame, and in some situation
specialized resources and/or systems cannot be committed on a long time horizon.
Demonstrations plans are developed along with the new learning’s, and coordinated with
the WPL.

• WP4.8 Operational scenarios
Generation and documentation of operational scenarios. An Operational Scenario describes
a specific power system’s service. Relevant for demand response is connecting existing and
new actors in the power system in terms of responsibility, functionality and information
flow. This description spans across relevant market rules & regulations and operation
procedures. Standard diagrammatic representations are employed to support a formally
rigid scenario definition where useful.

• WP4.9 Flexibility interface
Definition of a common flexibility interface defining the information flow between a set
of control policies (indirect or direct) and surrounding entities (i.e., consumer, DSO, TSO,
other service providers).

This thesis specifically is a part of the WP4.9 as it defines/implements a flexibility interface
previously created by another contributor to WP4. As it also implements a part of the
“Demonstration” Work Package (WP4.7).

26 CHAPTER 2. RELATED WORK

2.3.3 The IEC 61850 Standard
The IEC 61850 standard [44] is designed to allow for interoperability between different devices
in power substations environments, as well as allowing for future extensions and communication
technologies.

The standard consists of several sub parts, each covering and explaining its own area in fine detail.
The main sub part of focus in this project is the IEC 61850-7-420 standard sub part [46], which
the iPower Flexibility Interface [7] will be mapped into. The IEC 61850-7-420 builds upon the
basics of the IEC 61850 standard and an analysis of the related sub parts is needed.

Figure 2.7: IEC 61850 Modeling Approach [44]

Figure 2.7 is an illustration of how some of the common parts in the IEC 61850 standard fits
together and the areas they cover. The figure depicts a Virtual World of a typical power substation
and how the individual components are modeled using the IEC 61850 standard. The yellow plane
represents the mapping from the physical substation environment to the logical data model.

The IEC 61850 standard covers many features, some of the more common are [62]:

Key features

• Object oriented data model containing devices, nodes, data, services etc.

• An object naming scheme to allow for easier familiarization

• Predefined names for data-classes

2.4. CHAPTER SUMMARY 27

• A common XML-based substation configuration syntax called SCL

• Self-describing devices

Other benefits

• SCL is used for both configuration and for specifying requirements

• Costs are lowered due to easier hardware implementation

• Increased expandability for example by using TCP/IP

In addition to the IEC 61850, there exists other closely related standards such as the IEC 61400-25
standard, which handles wind turbine communication.

2.4 Chapter Summary

The thesis is based on many different concepts, from the electrical world of the Smart Grid and
distributed energy resources to modern cloud computing. The Smart Grid is the “goto” concept,
when talking about the electrical grid of “tomorrow”. It can intelligently aggregate distributed
energy resources, such as wind turbines and electric vehicles through a virtual power plant, whom
then can make a bid into the danish market.

The Smart Grid is a state-of-the-art grid, where standardization is still under development.
Organizations such as CENELEC defines certain aspects on how the Smart Grid should be
built, this includes the architecture, information model and standards, such as IEC 61850. They
introduces the concept of flexibility, when communicating with distributed energy resources, but
exact standard implementation is still an ongoing topic. A part of the thesis is to collaborate with
iPower-net and implement their definition of flexibility into existing standards.

To handle the electrical grid of “tomorrow”, a new concept of communication will also be
introduced. Cloud computing is a new concept, where the underlying computational resources are
spread out throughout the world. It is a green way to get computational power, that is accessible
for all computers with an internet connection. It is a very reliable and elastic platform, that allows
scaling of resources when needed and provides a guaranty for quality of service.

CHAPTER 3

Requirements

As the Unified Process methodology is a use-case driven and architecture-centric methodology,
analyzing how the system should function, is an important part of the process. In order to do so,
a list of functional requirements should describe what the system should do, and a list of non-
functional requirements should describe how the system should do it. To get these requirements,
a number of use-cases will be created and the requirements will then be derived from these.

3.1 Use Cases

In this section, six use cases will be introduced, a more detailed view is shown in the appendix.
Two use cases are for the communication for a farmer into the web module, two use cases are for a
customer communicating through a web API and one use case for the connectivity of a distributed
energy resource to the cloud.

All of the use cases has been gathered in a use case diagram, see figure 3.1.

Figure 3.1: Use Case Diagram

29

30 CHAPTER 3. REQUIREMENTS

The diagram in figure 3.1 shows the CloudSolution as the largest part of the system, with three
subsystems.

Web Module
The web module is a web page where the user is presented with a user friendly interface.
The site is created for specific purposes, such as creating units, uploading modules etc.,
where the user friendly interface should make simple operations more easy.

Web API
In the subsystem Web API a user can retrieve and access data based on queries. Contrary to
the web module, the web APIs functionally is larger, but more cumbersome to use.

Socket Connection
For communication between units and the CloudSolution, a socket system that handles
communication is needed.

The system Dantherm DKµCHP is an actual machine that a user is operating, but while the user
is operating the system it interacts and uses certain parts of the system and it is therefore included
in the diagram.

Two actors are illustrate on the diagram. First is the Farmer, who connects a unit into the system.
On the other side, a Customer is accessing data in the system. Taxonomy for the system is
neglected, but the Farmer is inherit from the Customer user.

Each of the primary use cases is described in the following section, a more elaborated description
can be found in appendix G.

3.1.1 Use Case : Creating Unit
The first use case (see G.1) is a customer (e.g. a farmer) that logs into the CloudSolution and from
here creates a new unit with a default module. As a result of the use case, the farmer retrieves a
unit ID and a password associated with the unit.

3.1.2 Use Case : Upload Module & SCL
The second use case (see G.3) is also for a customer (e.g. a farmer), who this time logs into the
CloudSolution and then uploads a new module. He is doing this on a specific module page and
are also uploading an associated SCL configuration file. At last the farmer locates the unit on the
unit-page and changes the module that the unit is using to the new module.

3.1.3 Use Case : Accessing Unit Data
A customer logs into the website and here accesses the units page in this use case (see G.4). The
customer can here get an overview of all data posted by the unit into the system.

3.1.4 Use Case : Connect to CloudSolution
In this use case (see G.5) a farmer enters the needed information for a unit. This could be a unit
ID and its password. With this, the unit first connects and authenticates with the cloud and then,
using a different WebSocket, sends the raw data to the cloud.

3.2. FUNCTIONAL REQUIREMENTS 31

3.1.5 Use Case : Query Data
In this use case (see G.8), the customer can access data for a specific unit. Doing so, the customer
has to know the units ID and has to have permissions to access the data. Also if these criteria are
satisfied, the customer can either access data through a web API or by using the web module.

3.1.6 Use Case : Post Data
The last use case (see G.9) is a customer that has to post data value to a unit. In order to do so, the
customer has to know the units ID and have the needed permissions. Using the the web module,
the customer can post predefined commands to a unit, such as On, Off or Reboot. But using the
web API, and giving a specific path to a variable, the customer can set a value on the unit.

3.2 Functional Requirements

With the use cases describing how the system will be used, the functional requirements can be
derived from these and the Project Goals (see section 1.3.2). These are used to describe what the
final system should do.

Req 1 Authentication and authorization of users
The cloud application must support multiple users, who can be authenticated and authorized.

Req 2 Different access level
The cloud application must support different levels of users. These privileges takes the form of
user roles.

Req 3 Generic data handling
Data that are being transferred to the cloud from a DER must be handled in a generic manner.

Req 4 Query data information
Information from DERs must be available through a query interface.

Req 5 DER data history
The cloud application must provide a website, where posted data from each DER can be viewed.

Req 6 DER Management
DER operators must be able to create and manage DER units.

Req 7 Send Commands
DER operators must be able to send commands through the query interfaces to the DER units.

Req 8 Communication should use the IEC 61850 standard
The information model used when transferring data must be based on the IEC 61850 standard.

Req 9 Providing a flexibility interface into the IEC 61850 standard
The IEC 61850 information model must be extended to handle a flexibility interface.

Table 3.2: Functional Requirements

32 CHAPTER 3. REQUIREMENTS

3.3 Non-Functional Requirements

The Non-functional requirements describes the qualities or constraints of the prototype. Where the
functional requirements describes what the prototypes should do, the non-functional requirements
describes how the prototype should be. The non-functional requirements is listed as a brief
description.

Req # Non-Functional Requirement
Req 1 All communication with clients/users and the cloud application should use open web

standards
Req 2 The communication should be secured with appropriate security for the respective

communication interfaces
Req 3 The communication between the cloud and DER units should be near real time and

facilitate two-way communication
Req 4 The system must be able to scale to match the hundreds of thousands of potential DER

units that will be connected
Req 5 The storage must be able to hold a minimum of two years worth of data for each DER

unit

Table 3.3: Non-Functional Requirements

3.4 Requirements Matrix

The requirements matrix correlates the functional requirements with the use cases which helps to
ensure that the functional requirements are covered by the use cases and that the use cases are
covered by the functional requirements. This ensures that no use case or functional requirement
exists without a relation to the other.

Use case Functional Requirements
1 2 3 4 5 6 7 8 9

Creating Unit • • •
Upload module & SCL • • •
Connect to CloudSolution • • •
Authenticating Unit •
Send Raw Data • • • •
Query Data • • • • • •
Accessing Unit Data • • •
Post Data • • •

Table 3.4: Requirements Matrix

3.5. CHAPTER SUMMARY 33

3.5 Chapter Summary

Six use cases has been created in order to define the primary functionality of the prototype. From
the use cases and the project goals, functional and non-functional requirements have been created.
These requirements defines what the system should do and how it should do it. To ensure that each
of the functional requirements are accounted for, a requirement matrix shows the relation between
the functional requirements and the use cases.

CHAPTER 4

Cloud Analysis

When using cloud technologies a lot of aspects has to be considered. This is because the cloud
does raise some concerns regarding security, data localization, latency, failure and so on. In the
following chapter, a look into what kind of service model (as described in chapter 2.2) is needed,
for the solution to be deployed.

4.1 Service Models

As previously stated, the three kinds of service models is created using a layered architecture, in
the same way as a normal PC is. When choosing a service model, each of them has their benefits
and disadvantages.

4.1.1 Infrastructure as a Service
First looking at the “bottom” with IaaS, the immediate benefits are that one has full control over
the hardware and can dynamically scale up or down, when the applications needs it. In the Smart
Grid world, this could be a very useful thing, especially with the growth in distributed energy
resources, the amount of connections it has to handle needs to scale rapidly, e.g. during work
hours to handle the extra load. As the connections itself might have a small linear slope in
growth, the data transmitted from the units into the cloud has a much larger growth and occur
more rapidly as data are produced. As Smart Grid is not only a local grid, but an international
grid, it is also important to have an infrastructure that allows communication from all parts of the
world, without having to go all the way around the world, in order to communicate with a server.
IaaS supports multiple tenants and this allows for multiple access to one cloud instance, but it also
allows for connectivity between multiple cloud-farms using private communication channels [74].
This should allow regional connection, so a photo voltaic cell can connect to a regional data center
instead of a server being hosted far away. This should help with the communication latency. Some
of the disadvantages with the use of IaaS is, that one largely depends on the vendor’s capabilities.
As all hardware are hosted at the vendor, the customer looses control, and the vendor has the right
to turn off and on the server, possibly even without giving notice.

4.1.2 Platform as a Service
Following IaaS is PaaS, where the OS is given. Using PaaS makes the development team relatively
vendor locked, as the team has to develop applications for a specific operating system, using a
specific technology. If the team had to change cloud provider, the complete application might
have to be rewritten. Hosting the application in PaaS does come with some benefits [49]. It do
minimizes the maintenance for the application by allowing scalability, configuration and fail-over.

35

36 CHAPTER 4. CLOUD ANALYSIS

Hosting the application in multiple cloud farms also allows for regional connectivity which is
often supported directly from the vendor.

4.1.3 Software as a Service
One of the biggest advantages of SaaS is the use of the scalability [70]. Only running small
application in the cloud, moving an instance to a less demanding location does not require as
much as it would to relocate a PaaS instance. Using SaaS application is also very user friendly,
but does have some of the same issues with application development as PaaS have. Being locked
to the vendors technology is not the only disadvantage, because the customer has no control over
what else is hosted on the server instance that the application is running on.

4.2 Security & Privacy

Using the cloud does raise many concerns for companies. Especially the security and privacy can
be a deciding factor, when the consumers are thinking of moving towards the cloud. Hence it
is important to identify which security risk and privacy issues that may be associated with using
cloud computing. Many of these issues have already been identified [8] [69], but certain aspects
still needs to be considered.

4.2.1 Intruders
Having data stored on a foreign server does raise some security issues with companies, trying
to move their data into the cloud, as all security systems data stored in a public cloud can be
compromised. In the last couple of years several companies have had major hacker attacks,
recently CSC1 in Denmark had a break-in, where a huge amount of CPR-number were stolen.
As the cloud is running in multi-tenanted system, business competitors might share the same
underlying hardware and a failure in the security paradigm, might expose vital data to the
competitor.

4.2.2 Geographical Data Storage
When storing data in the cloud, the physical location of the machines storing the data, might not be
straightforward to localize. Vendors might have certain regional data centers located in different
countries and on different continents. So when a company stores data in the cloud storage, the
actual data might not be stored in the customers country, but in a foreign country. This raises
privacy issues on who can access the stored data. In the US, the USA Patriot Act (the “Uniting
and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct
Terrorism Act of 2001”) makes it possible for the US government to access any data stored within
the US [60]. So if an European country stores its data, it has to ensure that the data is being stored
within the boundaries of the EU, as the European Data Protection [13] protects European countries
with their data’s privacy. Microsoft’s U.K. managing director Gorden Frazer, says that Microsoft
can not guarantee that EU-stored data, would be held within EU-based data centers and not leave
the European Economic Area under any circumstances [75]:

“Microsoft cannot provide those guarantees. Neither can any other company.”

1CSC: http://www.csc.com/dk

http://www.csc.com/dk

4.3. LATENCY CONCERNS 37

This has also been researched [35] and the findings shows [50], that merely avoiding a US based
cloud service provider does not solve the problem of avoiding the Patriot Act. Recently leaks from
National Security Agency has also indicated that their PRISM program gives the US government
access to multiple cloud based services’ data without the acknowledgment of the users [76].

These are all great concerns when creating a cloud based solution for Smart Grid. Should
the intelligent application be running in a public cloud? or maybe a privately hosted cloud is
necessary. For this thesis, this is not of any important concern, as it is only a proof-of-concept, but
these facts are important when moving on to a larger scale and production.

4.3 Latency Concerns

When talking about cloud computing, the communication from the local computer to the data
centers hosting the cloud, is in general unknown. One just connects to a URL and is then routed
to the closest data center (geographically speaking). It might not be so important for a consumer
if a site is shown in 0.13 seconds, because it is hosted in a county nearby, or it takes 3.7 seconds,
because it is hosted in a country on the other site of the globe. Using real-time communication or
when data is required instantly, this might be a concern when choosing to go into the cloud.

4.4 Providers

As previously stated in section 4.1.2, by using and developing to a public cloud, the customer
can be “vendor locked”. Using the high level layer of SaaS, the customer can import and export
the data between different cloud services if needed. If the customer is developing an application
to the PaaS layer of a vendor’s cloud, and later has to move the data to another vendor. The
customer might have to set a time slot for migration of data resulting in downtime. The application
might also be developed for the specific platform/framework that the vendor is using, so a new
application has to be rewritten when the applicaion is moved to another vendor. At the lowest
layer, IaaS, each virtual server might be able to be moved from one vendor to another, but this does
require huge amount of data to be transferred and in a real-life scenario, might not be possible.

As the thesis is to facilitate a prototype, using the IaaS model would require to much work,
compared to the value of the solution in the end. Because, as it is a prototype, portability is
not a required goal. The SaaS model is a very restricted/small layer and as the SaaS provider
has to provide functionality to support communication, data handling etc, the SaaS model is too
limited for this solution. This leaves the PaaS model, it allows specific applications to run and the
ability to handle communication between the users and the distributed energy resources.

There exists many PaaS providers, but only the three largest cloud providers will be examined.

38 CHAPTER 4. CLOUD ANALYSIS

4.4.1 Amazon
The first company to enter the cloud marked was Amazon in 2006 with the Amazon Web Services
(AWS) [4]. As a pioneer in the cloud field, Amazon offers a number of different cloud services,
such as [3][2]:

Elastic Compute Cloud (EC2)
EC2 is a web service that provide computational capacity in the cloud. Is is designed for
developers and system administrators to get easy access to scalable computational power.
Through a web service interface the customer can configure the system and allocate the
required resources. It supports both Windows, Linux and other types of virtual machines,
that can be requested when needed.

Virtual Private Cloud (VPC)
VPC is a private cloud that is isolated from the rest of the AWS cloud. The customer have
control over the private cloud resources, including the virtual network environment.

Simple Storage Service (S3)
S3 is a Amazon’s dedicated file storage service, primarily used to host binaries.

DynamoDB
Highly scalable and fault-tolerant managed NoSQL cloud databases.

Relational Database Service (RDS)
Is a managed MySQL and Oracle database that has automated backup and replication.

Simple Queue Service (SQS)
Reliable and scalable queue service, for storing messages, for communication between
instances, e.g. EC2.

Simple Notification Service (SNS)
SNS is a web service that makes is possible to send notifications from the cloud. It is highly
scalable and very cost efficient to publish messages from an application, running in the
cloud, and deliver the message to subscribers.

4.4.2 Google
Google is knows for providing different cloud services to its users. This could be GMail, Google
Docs, Google Reader or even YouTube [30]. In 2008 they launched Google App Engine (GAE)
[29], which today is leading in the Java and Python PaaS public cloud. Some of the services that
are included in GAE is [31]:

Instances
Fully manageable sandboxes (not virtual machines), that can be used as computational
resource to host applications.

Backends
For instances that require more computational resources. Up to 1GB of memory and 4.8GHz
of processing power more than normal instances. It is primarily used for background
processing.

4.4. PROVIDERS 39

Cloud SQL
Is a fully managed MySQL database with high availability and multiple data replication
centers.

Blob store
Used to stores binary file/blobs that can be accessed through a restful API.

4.4.3 Microsoft
In 2010 Microsoft entered that public cloud with Windows Azure [53]. It provides a rich PaaS
platform that is mainly focused towards the .NET developers, but also supports JAVA, PHP and
Node.JS for API connectivity. Like AWS and GAE, Windows Azure also includes different
services [54]:

Azure Compute
Enables the customer to instantiate instances or services as needed. This could be complete
virtual machines running Windows Server or Linux OS, or even services as a simple web
site or a cloud service. An instance can contains multiple roles for different purposes. E.g.
a Web Role for hosting Web Application or Windows Communication Foundation services,
or a Worker Role for background long-running computations.

Azure Storage
The Azure storage facilities includes many different kinds of storage capabilities.

Azure Table Storage
A highly scalable distributed cloud database used to store structured data in a NoSQL
datastore. It is used when storing TBs of data with datasets, that do not require
complex joins or stored procedures.

Azure Blob Storage
Used to store large amount of unstructured data, normally used for storing documents,
images etc.

Azure SQL Storage
The SQL Storage uses a full Microsoft SQL Server to host a SQL datastore primarily
used when needing a scalable relation database.

Azure Messaging
Azure provides the means for communicating between instances through the Azure Service
Bus, or a more general message queue in Azure Queues.

4.4.4 The Chosen Provider
The providers do have many similarities and choosing one over the others can be difficult. There
are certain aspects of each provider that are preferable, AWS is well established, documented and
has SNS; GAE is free to use; Azure handles the newest .NET framework, Message Queue, is a
relatively new player, but as the .NET framework is very preferable to develop in, the GAE is not
an option. The choice between AWS and Azure falls on Azure as it is from Microsoft and fully
integrated with Visual Studio and the newest .NET framework. Furthermore, developing using
Azure allows access to compete in Microsoft ImagineCup 20132 and this gives a (limited) 1 year

2Microsoft ImagineCup: http://www.imaginecup.com

http://www.imaginecup.com

40 CHAPTER 4. CLOUD ANALYSIS

access to the Azure Platform. Regarding the latency concerns, then Microsoft has data centers in
three major regions: Asia, Europe & United States. In Europe one is located in Ireland and one in
the Netherlands. This should limit the latency as connectivity from each Danish distributed energy
resource only has communicate to one of the two countries.

4.5 DER Communication

In order to establish communication between the distributed energy resources and the cloud,
certain aspects has to be considered. With the “problems” (see section 1.3) that arise when shifting
to the Internet as a communication media, instead of proprietary data lines, the virtual power plant
can no longer directly communicate with each unit. This would for example require each user
to open ports in their firewall (might even be impossible, if the unit is located inside a corporate
network) and the virtual power plant to have an IP-address of unit it has to connect to. In order to
handle some of these issues, reversing the communication path, so that each unit connects to the
cloud, would solve these issues. The cloud solution has a static IP-address, so every unit, as long
as they have Internet connection, can connect to the cloud.

With the units connecting to the cloud, different technologies can be used for this connectivity.

4.5.1 Real-Time Web Technology
There exists many kinds of technologies that can be used for two entities to connects to each other.
Using Azure as cloud provider, Windows Communication Foundation3 (WCF) is a “normal”
technology to use when talking about Microsoft technologies. WCF uses web services to establish
this connection, unfortunately web services do not support real-time communication. WCF has
extended the normal web service to WS-Duplex. This allows for real-time communication, but
it also limits the usage to Microsoft clients using the WCF. Azure supports connections for
WebSockets, which provides a full-duplex communication channel (allows for communication
in both ways simultaneously) through a single TCP socket. Using WebSocket do have some
challenges, as it is a very new standard and some operating systems (e.g. Windows 7) do therefore
not natively support WebSockets. Fortunately, many implementations exists for WebSockets, and
as long as it comply with the RFC 6455 standard [24], the clients can run any operating system or
implementation they want to.

4.5.2 Push & Pull Technology
Saying that the connection has been establish between the unit and the cloud, how will the cloud
know when the unit has produced new information? To determine so, two different technologies
of “request for transaction” will be considered.

The first transaction is ’pull technology’ [73], where the client (the cloud) is sending a request
to the server (the unit), requesting for data. The server then make a response to the request in a
synchronized fashion. This kind of technology is used when e.g. requesting for a web page or
requesting mails from a POP3 account.

The other transaction is ’push technology’ [73]. Here the client (the unit) subscribes to a server
(the cloud), and when information is ready at the client side, it pushed the information up to the

3WCF: http://msdn.microsoft.com/en-us/library/ms731082.aspx

http://msdn.microsoft.com/en-us/library/ms731082.aspx

4.6. CLOUD COMMUNICATION 41

server, which then can act on the inputs. This technology is used in e.g. instant messaging or
newsletters, where information is produced and then pushed onto a server.

Both technologies have their use, but in the scenario of communication between a distributed
energy resource and the cloud, push technology is preferable. This allows units to send data
as soon as it has been generated, maintaining the real-time property for the distributed energy
resource communication. It also lines up with the connection path of the unit connecting to the
cloud.

4.6 Cloud Communication

Certain possibilities are available for communication into the cloud. For a virtual power plant an
API should be provided, so that it can communicate in a programmable fashion. For a normal
user, a web site for handling the distributed energy resources might be preferred, as the normal
user could be a normal farmer with little to no IT knowledge.

4.7 Chapter Summary

Each of the different service models have different advantages and disadvantages. The
IaaS offers full control over the underlying hardware, but requires a lot more technical
knowledge/management. PaaS is relatively vendor locked, but it minimizes maintenance and
allows for scalability. SaaS is very scalable, but it does limit the development capabilities. The
PaaS service model has been chosen as the correct layer that the solution will be developed for. It
handles scalability and does not require hardware maintenance, and as it is only a prototype, the
vendor lock is not a problem.

The three largest PaaS providers on the market (Amazon, Google and Microsoft) has many
similarities, but the Azure platform has been chosen due to the .NET framework and the 1
year access through Microsoft ImagineCup. When communicating with the cloud from a DER,
WebSockets with push technology for transactions has been chosen as the ideal solution, as it
allows for duplex real-time communication and it is the DER that connects to the cloud.

CHAPTER 5

Standards Analysis

This chapter will analyze the details of the IEC 61850 standard and the iPower Flexibility
Interface. The analysis will show, how the two standards can be used together, in order to be
used in the cloud application prototype.

5.1 IEC 61850

The IEC 61850 standard [44] has successfully withstood the test of time and is well tested [51].
The Standard provides a data model designed to represent substations and each sub component
within, along with functionality to inspect the data model and communicate this data to the clients.

5.1.1 Information Model
The information model in the IEC 61850 standard is designed using a layered hierarchy and is
modeled like a tree structure, see figure 5.1.

Figure 5.1: Information Model Hierarchy[40]

43

44 CHAPTER 5. STANDARDS ANALYSIS

The logical device (LD) is a sub component of the physical device and is composed of multiple
logical nodes. Each logical node (LN) holds a predefined number of data objects and each
represents a specific function of the device. In each data object (DO) a predefined name of
the associated logical node and their type or format is defined using a common data class. The
Common Data Classes (CDC) is a set of standard data types and predefined common attributes.
Each predefined common attribute, can be reused in different objects and contains more common
attributes or standard data types.

5.1.1.1 Naming Convention

To access a data object within the information model, the model (figure 5.2) can be thought of as
a tree like structure, where the root is the logical device. As each of the objects in the structure
has an associated ObjectName, IEC 61850-7-2 states that the path of the data object can be
referenced as follows[40]:

Figure 5.2: Naming Convention [46]

This makes for a clear and unambiguous path to each object in the information model.

5.1.1.2 Functional Constraints

The IEC 61850-7-2 standard [40] describes a filtering mechanism referred to as Functional
Constraints (FC). In the standard there are defined 18 different functional constraints. These
functional constraints are defined on every Data Attribute and are used to divide the Data
Attributes into categories, see Annex B in IEC 61850-7-3 [41] for a table listing of functional
constraints. When adding a functional constraint to a data model reference, only the data attributes
matching the functional constraint are returned. E.g. adding the functional constraint MX to a
reference, would only return Data Attributes containing analogue measurement values.

5.1.2 ASCI Services
Abstract Communication Service Interface (ACSI) is an interface defined in the IEC 61850-7-2
standard sub part and describes how the data model can be accessed, to read and update data,
logs and more. The ACSI interface was designed to provide an abstract interface, across any
communication protocol used to transport the information.

The ACSI interface consists of a set of methods, that enables a client to retrieve directory listings
containing the logical devices, logical nodes and data objects. There are methods to drill into
the model and retrieve and update specific sets of data objects and data attributes. Functional
constraints can be defined as arguments to these methods, in order to filter the returned list of
objects.

When for example a set of data attributes, from a data object of interest, needs to be located
and fetched from the data model. A call to GetServerDirectory would return a listing of the
logical devices on a unit and after inspecting this list, a call to GetLogicalDeviceDirectory on
a specific logical device node would return the list of logical nodes in that device on the unit.

5.1. IEC 61850 45

GetNodeDirectory would then be used to get a list of the data objects, logs, reports etc. contained
within a logical node and GetDataValues could be used to fetch the set of data attributes.

5.1.2.1 Configuration

Substations are configured using an XML file format, defined in the IEC 61850 standard,
called Substation Configuration Language (SCL), which describes the various components within
the unit. The SCL configuration describes general unit information and how the components
communicate etc., but most importantly for this project, is the description of the information
model, containing the data of the unit, which is to be communicated to the cloud application.

5.1.3 Other Features
The IEC 61850 standard describes additional features, which are of less interest with regards to
this project. The features are briefly described here.

5.1.3.1 Reporting and Logging

The IEC 61850 describes an event mechanism for reporting and logging. A client can subscribe
to a defined set of events and when the conditions for the event is triggered, a report is sent to the
client. Reports comes in two types, a buffered and an unbuffered format. The unbuffered report is
not stored anywhere, but is sent as soon as the event is triggered.

The buffered report is a mechanism to filter and group the events and can for example help avoid
a large number duplicates being sent to a client, caused by a continuously triggered event. A
buffered report is defined by the set of trigger conditions and a time interval, that defines how long
the report should be buffered for, before being sent. When the time interval has passed, only the
most recent report is then sent to the client.

Logs are similar to reports and uses the same mechanism for event triggering, which then writes a
log entry. Logs are not sent to the client but stored locally on the unit.

5.1.3.2 SCSM

The ACSI interface is protocol agnostic, it simply defines a set of methods that are used to
manipulate the data model. When a client, using any communication protocol, needs to exchange
information with the ACSI interface, the data communication needs to be mapped between the
protocol and the ASCI interface. A Specific Communication Service Mapping (SCSM) is used to
describe the specific mapping of a communication protocol, to support the ACSI interface.

Only a few SCSM mapping exists for the IEC 61850 standard, the best known is the MMS
protocol. The MMS protocol and similar protocols are not of interest for use with the prototype
in this project, but interesting work is continuously done on more modern protocols, by research
groups and industry consortia.

46 CHAPTER 5. STANDARDS ANALYSIS

5.1.4 IEC 61850-7-420
As part of the IEC 61850 standard, the IEC 61850-7-420 [46] sub part describes the basic
communication structure for distributed energy resources. The standard is specifically designed
for DER units such as photovoltaics, fuel cell systems, combined heat and power generation
systems and reciprocating engines. The standard allows for communication, not only locally
between DER units and the management systems, but also between a complete DER plant and
the operators or aggregators. The information model in IEC 61859-7-420 primarily utilizes the
existing information model associated with the IEC 61850 standard, but extends it with some
DER-specific logical nodes.

5.1.5 IEC 61850-80-3 TR
The IEC 61850-80-3 TR standard sub part [43] is a draft, in which ongoing research efforts are
done, to describe how modern communication technologies can be used with the IEC 61850
standard. The draft covers the initial domain of substation automation and includes a new extended
scope that has been introduced to the IEC 61850 standard. The new scope covers the following
domains [43]:

• PV-Inverters

• Hydro and Thermal generation

• Wind farms

• Combined Heater and Power

• Smart Customers

• E-Mobility

• Virtual Power Plants (VPP) and Micro Grids

• Feeder Automation

The IEC 61850-80-3 TR gives an overview of how modern Web Services technologies can be
mapped to the ACSI interface. The technologies discussed are:

• OPC-UA

• RESTful services over WebSockets

• XML Webservices

• XMPP

The draft in its current state describes use cases for the communication exchange with the systems
listed in the domain scope and how they interact with the ACSI interface.

5.2. IPOWER FLEXIBILITY INTERFACE 47

5.2 iPower Flexibility Interface

The Smart Grid Reference Architecture [11] as described by CEN-CENELEC-ETSI introduces
the flexibility concept where consumption, production and storage are grouped together as an
entity and ranked alongside entities, like the power grid and power markets. It is expected, that
the flexibility concept will satisfy future requirements to support use-cases, where more flexibility
is needed, than what the current rigid standards provide. The flexibility model should enable
maximum reuse of the results derived from the models, defined in the current standards. The
iPower project [71] has designed an information model of this concept in the form of the iPower
Flexibility Interface [7].

The iPower Flexibility Interface is an information model designed for Direct Control of
Distributed Energy Resources (DER). The flexibility interface provides a management-oriented
approach for communicating the flexibility of DERs to e.g. an Aggregator or a Virtual Power
Plant.

DERs consists of power production units such as wind turbines, photovoltaics or flexible
consumption units, such as heating and cooling systems or electric vehicles. The flexibility
interface addresses the communication of the flexibility, the characteristics, that a DER exposes,
between an aggregator or virtual power plant and the DER. An aggregator manages multiple
DERs, in order to provide an accumulated response of power production or consumption. This
enables an aggregator to buy or sell power on the energy markets or support the power grid as
ancillary services.

DERs are equipped with local controllers and are able to operate autonomously. When the
DERs are connected to an aggregator, they are able to alter their consumption/production of
active/reactive power in response to signals from the aggregator. The flexibility of a DER,
describes the capabilities of the unit, operation costs and schedules. For example, a DER may
have to prioritize local needs for power, and would be unable to meet a request for power from the
aggregator, but other DERs may be able to fulfill this request. The flexibility interface describes
how to communicate this information to the aggregator or virtual power plant.

Aggregator or
Virtual Power Plant

Controller1

DER1

Controller2 Controllern. . .

DER2 DERn
. . .

Flexibility Interface

Figure 5.3: The flexibility Interface sits between the aggregator and the DER units[7].

48 CHAPTER 5. STANDARDS ANALYSIS

The iPower flexibility interface supports a direct control setup, between the DERs and the
aggregator. Direct control refers to a setup where an aggregator dictates the actions of a DER
unit for example by telling the unit to produces this much energy and is facilitated by a two-way
communication between the aggregator and the DER. The DERs reports their local flexibility to
the aggregator and the aggregator controls the DERs based on this information. The flexibility
interface, as illustrated in figure 5.3, is situated between the aggregator/virtual power plant and the
DERs.

The following is a selection of the characteristics described in the iPower Flexibility Interface:

• Geographical location
The location of a DER in the power grid is important in the case, where the DER supports the
grid as an ancillary service.

• Local control or remote control
In the case, where the DER is part of the primary frequency reserve for the power grid, the
DER must measure the grid frequency locally and a local control loop, determines if the unit
should activate. In the case of the DER being in secondary, tertiary or manual reserves, the
DER could be activated using remote signals.

• Combined deliveries
DERs can be either pure consumption units, pure productions units or a combined
consumption and productions units. It is therefore important to be able to distinguish between
these types of units.

• Active/reactive power
Both the active and reactive power is required to be communicated to the aggregator, in order
for the aggregator to properly place bids on the power markets.

• Limitations
Limitations of the DER includes power consumption/production levels and frequency levels.
(how many times, given an interval, is it feasible to have the energy level go up and down.)

• Tracking
The ability to track a given remote power reference or to track a planned power schedule.

• Runtime
Minimum and maximum runtime. E.g., a unit must run for at least 30 min when started.

• Downtime
Minimum and maximum downtime. E.g., when a unit is turned off, it must be turned off for
at least 1 hour.

• Cost
The aggregator needs to know the cost associated with the active/reactive power production
cost, energy level dependent cost, unit start-up cost, unit shutdown cost for discrete power
units: cost depending on the number of power level changes and flexible activation time costs.
(E.g. the later the activation, the higher the cost).

• Contracts
For an aggregator to be able to manage a DER, some contract or agreement exists between the
aggregator and the DER. This is communicated through the flexibility interface.

5.2. IPOWER FLEXIBILITY INTERFACE 49

The information model of the flexibility interface is based on these characteristics, and is divided
into a number of flexibility blocks, which form the basis of the flexibility interface. In figure 5.4,
a graphical overview of the flexibility blocks is presented.

Block 1:
Type [M]

1. DER Name
2. DER Type

Block 2:
Electrical Connection Point [M]

1. Geographical connection point
2. Voltage level at connection
point

Block 3:
Status [M]

1. DER Status
2. Remote control error
3. Remote control enabled

●
●
●

Block 4:
Active Power Production [O]

1. Remote control enabled,
reference tracking
2. Remote control, shedule tracking
3. Allow remote control, reference
tracking

Block 5:
Primary Frequency Control [O]

1. Remote control enabled,
continuous primary frequency
reserve
2. Remote control enabled, discrete
primary frequency reserve
3. Allow control enabled, continuous
primary frequency reserve

Block 6:
Flexible Startup Time [O]

1. Remote control enabled, flexible
startup time
2. Allow control enabled, flexible
startup time
3. Active and reactive power profiles

●
●
●

●
●
●

●
●
●

Block 7:
Energy Storage [O]

1. Storage dynamics
2. Storage dynamics, time varying
3. Stored energy

Block 8:
Log [O]

1. Enable logging
2. Name and data
3. Pointer to attribute that should
be logged

Block 9:
Cost [O]

1. Enable costs
2. Cost function

●
●
●

Figure 5.4: Flexibility Interface frame blocks[7]

A flexibility model of a specific DER is constructed, by using the relevant blocks to describe its
flexibility. This concept is shown in figure 5.5 and illustrates an information model of a single DER
unit, constructed by a collection of blocks comprising the DERs flexibility information model. In
the figure, the flexibility information model consists of n blocks, each block being comprised by
a number of attributes containing the actual data. The specific flexibility information model for a
device is known as a flexibility frame.

Block 1:
Type [M]

1. DER Name
2. DER Type
3. Contract type

Block 2:
Electrical Connection Point [M]

1. Geographical connection point
2. Voltage level

Block n:
Active Power Production [O]

1. Active power control possible
2. Active power schedule possible
3. Active power schedule horizon

●
●
●

●
●
●●

●
●

●●●

Figure 5.5: Example of a flexibility frame[7]

In a flexibility frame, some blocks are mandatory and some are optional, denoted in the figure
with [M] for mandatory and [O] for optional.

50 CHAPTER 5. STANDARDS ANALYSIS

5.2.1 Flexibility Interface in the Information Model
The work with the Flexibility Interface (FI) done in [7] provides a modeling of the FI concept
that are compatible with the IEC 61850 data model. The FI can be suitably inserted into the IEC
61850 standard, as an extension to the IEC 61850-7-420 standard sub part.

As the FI data model is based on the IEC 61850 data model, the information model in the prototype
is able to handle the FI with no additional modification. The work done in [7] only concerns
the modeling of the FI data model and in order to use the FI in the information model and the
prototype, the FI needs to equipped with a base reference and the contents in the FI blocks needs
to be mapped to reference names that can be used in the data model, such that the data can be
referenced. In figure 5.6, is an example of how the FI Block 1 is mapped to the data model.

Block 1:
Type [M]

1. DER Name
2. DER Type

Logical Node
FLEX

Data Object
Type

Data Attribute
DERName

Data Attribute
DERType

Data Type
Unicode255

Data Type
INT32

Figure 5.6: Mapping of Flexibility Interface to IEC 61850 Information Model

For the mapping designed in this thesis, the FI Blocks are placed under a Logical Node called
FLEX. This design means that FI Blocks can now be referenced using:

<Logical Device> \ FLEX . <FI Data Object> . <FI Data Attribute>

For example, referencing the FI Block 1 DER Name would look like this:

<LD>\FLEX.Type.DERName

The contents of the FI Blocks have long names with spaces in them etc. that will not work with
the data model. As the FI [7] leaves the specifics of the names open, the names are mapped to
abbreviated names in a single word.

Flexibility Interface Block 2 Names Abbreviated Name Reference
Electrical Connection Point \FLEX.Ecp
Geographical connection point \FLEX.Ecp.GeoConPnt
Voltage level at connection point \FLEX.Ecp.VolConPnt

Table 5.1: Example of mapping of Flexibility Interface Block 2 names to the Information Model

Table 5.1 is an example of how the FI Block 2 is mapped to names with references, that can be
used in the Information Model. The name of Block 2 is: Electrical Connection Point and is a Data

5.2. IPOWER FLEXIBILITY INTERFACE 51

Object which means that is contains a number of Data Attributes. The Ecp is a top level Data
Object and is referenced directly below the base reference for the FI, which is: \FLEX.Ecp. The
contents in the FI Block are then referenced below this Ecp Data Object.

Additionally as with the IEC 61850 data model, Data Attributes such as the ’Voltage level at
Connection points’ in FI Block 2, may be extended with data attributes for multiple simple types
e.g. Integer or Float. In the IEC 61850 standard, basic Data Objects have Data Attributes with
multiple simple types exposed as Data Attributes, referenced below the Data Attribute containing
the value, as depicted in figure 5.7. (Described in IEC 61850-7-1 [39] section 6.4.3)

Data Object
< Group > Data Attribute

< Value >

Logical Node
< Section >

Data Attribute
mag Data Attribute

i
Data Type

INT32

Data Type
FLOAT32

Data Attribute
fE.g. LD\Section.Group.Value.mag.f

Figure 5.7: Reference with multiple simple types

When the values in the FI are mapped to contain multiple simple types, as in the IEC 61850 data
model, the FI Block 2 ’Voltage level at Connection Point’ would be extended with the references
listed in table 5.2.

Type Reference
Float \FLEX.Ecp.VolConPnt.mag.f
Integer \FLEX.Ecp.VolConPnt.mag.i

Table 5.2: References for multiple simple types for FI Block 2 ’Voltage level at Connection Point’

The ’mag’ part in the reference refers to the way the value is sampled and is relevant for measured
values. (The voltage level is a measured value.) There are many other types of values in the IEC
61850 standard, see [39]. Value types related to the ’mag’ value includes: instMag for instantly
measured, subMag for substituted values and dbMag for deadbanded values. In this example the
reference uses ’mag’ which is a value that is updated every time the ’instMag’ value changes to a
different value.

When the IEC 61850 data model and the Flexibility Interface data model is put together in the
Information Model, as illustrated on figure 5.8, the result is a tree structure that starts with the
Logical Device and then contains a number of Logical Nodes.

52 CHAPTER 5. STANDARDS ANALYSIS

LLN0

LPHD

FLEX

Etc...

Data Object

Data Attribute

Data Object

Data Attribute

Logical
Device

...

......

Figure 5.8: Putting the Information Model together

The Logical Node LLN0 is a mandatory node in the IEC 61850, called Logical Node Zero (See
[45] section 5.3.4), that represents common information about the logical device itself. The LPHD,
called Physical Device Information, (see [45] section 5.3.2) is an example of another node. The
LPHD represents information about the physical device. The Logical Node for the Flexibility
Interface resides on the same level in the tree as the other Logical Nodes in the IEC 61850 standard.

5.3 Chapter Summary

This chapter has described the IEC 61850 standard and information model. The data in the
information model can be referenced using a well defined naming scheme, which allows for a
complex data structure. The information model can be inspected using the ASCI interface and the
queries can be filtered, using functional constraints.

The iPower Flexibility Interfaces utilizes a service oriented approach, to describe the flexibility
provided in DER units. Adding the Flexibility Interface as an additional Logical Node to the IEC
61850-7-420 standard, allows the flexibility concept to be exposed through the existing IEC 61850
standard.

CHAPTER 6

Design

This chapter describes the design of the prototype. Based on the findings from the analysis, the
design will elaborate from a high level perspective and into the detailed design decisions.

6.1 System Design

An overview of the domain is illustrated in figure 6.1. The contents of the model will be broken
down and explained in the following. The prototype solution have three main points, where
interaction with the system can occur: the users can access the system via the Web Site running in
the cloud, applications such as a VPP can access the system via either a RESTful interface or an
XML Webservice and DER controllers can connect to the system through WebSockets. Each entry
point is depicted with an actor icon on the domain model. The prototype explores and combines
different types of security aspects to authenticate and authorize users with the system and secure
the communication. At each of the three entry points, the system is secured with different security
measures, that fulfill the requirement for securing the given type of interface. The security is
centered around the concept of users and user roles. The security related details are discussed in
sections 6.4, 6.7 and 6.8.

Generic
Information

Model

User

Power Plant
Virtual

CLOUD

Flexibility
Interface

IEC 61850

Distributed Energy
Resources

DER
Controller

DER
Modules

SCL Config

Web Site

Storage

RESTful
Interface

XML Web
Service

Interface

Role based Security

Communication Security

Authentication and
Authorization

Web Sockets

(CHP, Photovoltaics, Windturbine)

Figure 6.1: Domain model

53

54 CHAPTER 6. DESIGN

The concept of dealing with DER-to-cloud communication embraces the idea, that the DER
controller should be a basic computing unit, which transmits the raw data that it collects, through
lightweight and language neutral Websockets, directly to the cloud service. As a DER unit is
created in the system, a custom module must be provided and assigned to the DER unit. The
Module is able to handle the raw data from the DER unit and transform it into a generic data
structure, that the cloud service can use. The provided module is automatically and securely
loaded, as the DER connects to the cloud service. When the module has transformed the received
data, it is persisted in the cloud storage, where clients are able to query it. This is described in
sections 6.4 and 6.5.

The cloud solution is designed as a multi-tenant cloud application, that is based on the Microsoft
Azure cloud computing platform1. Using the Website, a user can create and manage DERs, get an
overview of the data accumulated on the DERs and perform basic queries. The RESTful service
and XML Webservice can be used to perform a wide range of queries, and enables programmatic
and automated access from other systems, described in section 6.8.

The central elements for the cloud solution, is the distributed storage and the generic information
model. The distributed storage, which is very scalable, enables persistence of large amount of
data and can handle the transfer of these data from many distributed DERs simultaneously, see
section 6.6. The generic information model, described in section 6.2, is designed to handle the
IEC 61850 data model, future additions and extensions to the standard as well as the iPower
Flexibility Interface. When an instance of an information model is requested, the model is built
using an SCL configuration, which is supplied by the operator of the specific DER unit.

6.1.1 System Coverage
The prototype is developed as a proof of concept, to test the viability of the subject of the thesis.
The system prototype, illustrated in figure 6.2, gives an overview of the main components of the
system and also the scope that the prototype is designed to cover.

System Prototype

DER Controller DER Units
CHP

Wind turbines
Photovoltaic cells

Clients
Users

VPP/Aggregator

Cloud Service

Cloud Platform

Interfaces
Website

XML Webservice
RESTful interface

WebSockets

Information Model
IEC 61850

iPower Flexibility Interface

Embedded DER Controller

CommunicationCommunication I/O

Custom DER Modules

Data Storage

Figure 6.2: System Overview

The system consists of two main components and the communication interfaces they provide.
The Cloud Service is a cloud based system and the DER Controller, which is mainly running on
an embedded controller close to the DER Units. The Cloud Service can be broken down into

1Windows Azure: http://www.windowsazure.com/en-us/home/features/overview

http://www.windowsazure.com/en-us/home/features/overview

6.1. SYSTEM DESIGN 55

its different parts: interfaces for interaction with the service, data model, DER modules and the
storage where data from the DER Units is stored.

The components and communication interfaces are described in the following sections.

6.1.2 Mapping of the Standards in the Design
In a substation environment interoperability and communication is needed between the different
devices; the IEC 61850 standard was designed to solve this task and handle future changes in
technologies. Figure 6.3 gives an overview of how the IEC 61850 standards fits with the design of
the prototype. A short description of each standard is given in table 6.1 below. The different parts
of the system utilizes different parts of the IEC 61850 standard in order to provide interoperability
with other systems. Some of the standards used, are currently in a drafting stage as the usage of
modern web technologies are continuously being researched.

Client

Information Exchange
Model

Specified in IEC 61850-7-
420 and IEC 61850-7-10

DER Information Model
Specified in IEC 61850-7

and iPower

CLOUD

DER Information Model
Specified in 61850-7

iPower Flexibility Interface
As extension to 61850-7-420

Web Sockets
Interface

Information Exchange Model
Specified in IEC 61850-7-2 and

IEC 61850-7-10

Information Exchange Model
Specified in IEC 61850-80-3 TR

XML Web Service

RESTful Interface
Message mapping through

XML/JSON
Specified in IEC 61850-80-3 TR

Message mapping through
XML WebService

Specified in IEC 61850-7-10

 DER

DER
Communication

Interface

DER I/O Specific
Interface

W
e

b
So

ck
e

ts

R
ea

l-
ti

m
e

co
m

m
u

n
ic

at
io

n

Figure 6.3: Mapping of the standards in the design

A client accessing the system usually has its own implementation of a data model, that can handle
the data in which the client is interested. The client would as well contain an information exchange
model that can be used to communicate with a DER or the cloud solution. The system has two
interfaces facing the client applications: a RESTful interface and an XML Webservice. The
standards used to design these interfaces are described in the IEC 61850-7-10, IEC 61850-7-2
and IEC 61850-80-3 TR. Any client that is compatible with these standards and have support for
XML Webservices or RESTful API, can communicate with the cloud solution prototype.

56 CHAPTER 6. DESIGN

The cloud service is based around a generic information model that is designed to handle the IEC
61850 data model. Because the information model is generic, it can handle future extensions to
the standards and is able to handle the actively researched iPower Flexibility Interface.

DER-to-cloud is a new concept and is not included in the IEC 61850 standard. There are ongoing
efforts to use modern Web technologies such as the cloud and Webservices, with the IEC 61850
standard and this thesis is a contribution to that process. The DER communication in the system
supports a method of communicating the data from the DER to the cloud service, where the DER
sends its raw data directly to the cloud service, in whatever native format the DER uses. The cloud
service then transforms this data, with the help of a custom module, supplied by the DER user,
into a lightweight structure and saves the data to the cloud storage.

As this concept is not a part of the IEC 61850 standard, a communication protocol for
communication between DERs and the cloud service (see section 6.4.1) has been designed for
this prototype.

IEC Standards Description
IEC 61850 Basic communication structure for substation and feeder equipment [44]
IEC 61850-7-2 Abstract communication service interface (ACSI) [40]
IEC 61850-7-420 Basic communication structure - Distributed Energy Resources Logical

Nodes [46]
IEC 61850-80-3 TR Mapping to Web Services – Requirement Analysis and Technology

Assessment [43]
IEC 61850-7-10 Requirements for web-based and structured access to the IEC 61850

information models [42]

iPower Description
Flexibility Interface Flexibility Interface – Information Modeling for Direct Control [7]

Table 6.1: Overview of chosen standards

The overview of the standard parts used in this prototype (Listed in table 6.1) starts with the basic
IEC 61850, which is a definition of the data model and structure. This is the basis for the generic
information model used in the system, in order to enable clients to query data in a IEC 61850
standard compatible format.

The IEC 61850-7-2 describes the Abstract Communication Service Interface (ACSI) interface,
which defines a service interface for clients to inspect the information model and read and set data.
The ASCI interface abstracts away the detailed parts of the communication protocol used between
clients and the cloud service interface and provides a consistent interface across protocols. The
ACSI interface is exposed through the XML Webservice. The requirements for web based access
using Webservices is discussed in IEC 61850-7-10.

A different way to represent the data is presented by the RESTful interface, which is a resource
based approach [63]. REST [38] is a relatively new technology and is discussed in the draft IEC
61850-80-3 TR.

IEC 61850-7-420 is an extension to IEC 61850 that is concerned with DER units, and in this thesis,
the standard is extended with the iPower Flexibility Interface. The purpose of this extension, is to
enable the generic information model in the prototype, to handle the IEC 61850 standard and the
iPower Flexibility Interface.

6.2. GENERIC INFORMATION MODEL 57

6.2 Generic Information Model

The generic information model is a core part of the prototype. It handles the IEC 61850 data
model, current and future extensions as well as the iPower Flexibility Interface data model. The
information model is based on the previous work in [62] and is designed to be a generic data
structure in order to manage every data class, common data classes and data attribute types defined
in the IEC 61850 data model specification.

The generic information model closely resembles the IEC 61850 data model seen on the left in
figure 6.4 (described in section 5.1.1). The IEC 61850 data model defines a large amount of
Common Data Classes that are re-used as much as possible, in order to build up the contents of
the Data Classes that makes up the Logical Nodes. The design of the generic information model,
seen to the right in figure 6.5, is based on the IEC 61850 data model.

Logical Device

Logical Node

Data Object

Common Attributes

Standard Data Types

Server

1..*

1

1

1

Common Data Classes

1

1

1

0..n

0..n

1..*

1..*

1..*

1..*

1..*

Figure 6.4: IEC 61850 Data
Model[40]

Server

Logical Device

Logical Node

Data Class

Data Attribute

1
1..*

1
1..*

1
1..*

1
0..*

1

0..*

1

0..*

Date Type

1
0..1

Figure 6.5: Generic Information Model[62]

The generic information model can be seen as a data tree consisting of several nodes. The first
node of an information model instance, is the Server Node. The cloud solution is a multi-tenant
system, which means that multiple users can own multiple DER units. Therefore the system
handles many instances of different information models. Any such instance starts with a Server
Node (SN) that represents a physical DER unit.

The Server Node have multiple sub components, called Logical Devices (LD), which can be other
sub systems within the DER unit, different computers, terminals or other systems related to the

58 CHAPTER 6. DESIGN

DER unit. These nodes closely follows the IEC 61850 data model described in section 5.1.1
and so the Logical Devices contains Logical Nodes (LN) that, in the standard are composed of
predefined data classes, common data classes and standard data attribute types. However in this
generic information model, the predefined data objects and common data classes described in the
standard sub part, IEC 61850-7-3 [41], are represented by a generic Data Class (DC) and the
common data attributes are represented by a generic Data Attribute (DA).

The Data Class can contain both Data Attributes and/or other Data Classes, which means that the
Data Class can be cyclic defined. Likewise the generic Data Attribute can cyclically contain other
Data Attributes and/or a Data Type (DT). The last Data Attribute which is meant to hold a data
value, (I.e. a DA with no cyclic DA), must then contain a Data Type. A Data Type is a generic
class that defines a generic type, this means that a Data Type can contain any data type that are
provided by the programming language.

This design allows for a generic information model that can handle all the classes and types defined
in the IEC 61850 data model, current and future extensions. The information model can also
handle the iPower Flexibility Interface as this is modeled to be compatible with the IEC 61850
data model.

6.3 Cloud Service Design

The Cloud Service application is based on multiple types of cloud computing processes, which
supports multiple instances of these computing processes, all running in the Azure Cloud Platform.
The design of the Cloud Service is split into different components, see figure 6.6, that each have a
separate responsibility. The central component of the Cloud Service is the Core component. The
Core handles communication between the other components and is responsible for domain logic,
storage and security.

CoreInformation Model

Interfaces

Website

DER Communication
(Websockets)

Modules

BeagleBone /
DACHS Senertech

Dantherm
XML

Webservice
RESTful

interface

Base Module

Figure 6.6: Components model

The Information Model component is special, in that in this design, it is completely self contained,
with no references to any other component. All the logic that works with the data structure
in the Information Model is contained within this component. The goal of this design is to
enable complete re-use of the Information Model and the functionality to work with the model
in other applications. For example, when building a client application, it is possible to re-use this

6.3. CLOUD SERVICE DESIGN 59

component and start working with an Information Model that supports the IEC 61850 standard as
well as the Flexibility Interface straight away.

The Interfaces component contains the the communication interaction points, where the users
and programmatic/automated applications, e.g. a VPP, interfaces with the Cloud Service. The
interfaces all communicates with the Core component in order to authorize users, query and
update the information model. In the case where a client wants to communicate directly with a
DER unit, the communication is passed through the the Core and then to the DER communication
component. This in detailed section 6.4.2.

The DER Communication component handles all communication with the DER Units. The
communication is based on open web standards using WebSockets that can communicate with
WebSocket libraries on a wide range of platforms.

The Modules component is used by both the Core and DER Communication components, however
there is no correlation between the two. The DER Communication uses the specific modules,
which are based on the base module, to communicate with the DER units and the Core uses the
base module to handle the data in a common format.

6.3.1 Layered Architecture
The Cloud Service is logically separated into the layers seen on figure 6.7. The separation of
concerns, facilitates the possibility to add or exchange different implementations of any layer at a
later time. Each layer presents a well defined interface that supports the separation of the layers
and ensures that no layer intrudes on the responsibility of another layer.

Service Layer

Repository Layer

Data Storage Layer

· Authorization
· Web Site
· RESTful Interface
· XML Web Service
· DER Communication

· Business Logic
· Information Model

· Storage API

· Data Access

C
lo

u
d

A
p

p
lic

at
io

n
C

lie
n

t

Interface Layer

Figure 6.7: Layered Architecture Model

The top layer is the Interface Layer and consists of multiple components, which are the interfaces,
that are used to communicate with clients and DER units. The Service Layer is comprised
of groups of functionality. The functionality is called “service methods” and provides access

60 CHAPTER 6. DESIGN

to everything in the application: querying and updating the information model, authorization
and authentication and communication. The Service Layer is where the business logic of the
application is placed. Service methods are able to handle their functionality by communicating
with other service methods, communicating with components such as the DER Communication
component and by retrieving data from the storage.

When data from the storage is needed, the service methods communicates with the Repository
Layer. The Repository Layer is responsible for handling data access to the storage and contains
“repositories” which each handles a specific type of data in the storage. A service method can
make use of a number of repositories in order to fulfill its functionality. A repository uses the Data
Storage Layer to retrieve data from the storage. The repository understands the specifics of how
to query the Data Storage Layer where it retrieves the data and maps it from storage entities to
domain entities which the service methods works with to perform their functionality. The Data
Storage Layer is the specific Storage API provided by the platform of the cloud provider.

6.4 Distributed Energy Resource Design

Figure 6.8 shows an example of a common DER controller (right part) with an embedded IEC
61850 server containing an IEC 61850 data model and exchange model along with the ACSI
interface and an implementation of the MMS protocol. This type of DER controller requires a
full implementation of the IEC 61850 standard on the controller, which is something that the
manufactures, of the different DER units, often cannot provide.

Cloud
WebSocket

Communication

ACSI

IEC 61850
Server

IEC 61850
Datamodel

Hardware I/O

MMS

DER

Photovoltaics

WindtubineCombined Heater and Power

Controller

Figure 6.8: DER domain

Utilizing the cloud to handle the IEC 61850 standard and the communication with clients such as
owners, operators and VPP/aggregator, means that the design of the DER controller can be more
simplistic (left part) as it only needs to be able to communicate with the Cloud Service via internet
Websockets.

6.4. DISTRIBUTED ENERGY RESOURCE DESIGN 61

In this prototype, the DER controllers consists of a communication component, that communicates
with the Cloud Service and a hardware I/O component that interacts with the DER unit itself. The
DER controller has two-way communication with the Cloud Service via Websockets and can
receive commands from the Cloud Service or upload the data from the DER unit.

This design is able to handle many different types of DER units, as the data is uploaded directly
from the DER unit to the Cloud Service. The Cloud Service then handles the raw data as described
in section 6.5.

Figure 6.9 illustrates the data flow from the DER controller to the Cloud Service, where it is saved
in the storage.

CLOUD SERVICE

Storage
WebSockets

Interface
DER

DER I/O
Specific

Interface

DER
Communication

Interface

DER

DER I/O
Specific

Interface

DER
Communication

Interface

 DER

DER
Communication

Interface

DER I/O Specific
Interface

DER Module
Transform
Raw Data

Load DER
Module

Save
Structured Data

Transmit
Raw Data

Figure 6.9: DER to Cloud Service Interaction

When the DER controller wants to upload data to the Cloud Service, it opens a WebSocket
connection to the WebSocket Interface in the Cloud Service, where it authenticates with the Cloud
Service in order to establish the correct user and DER unit subscription to store the data with. As
the data is uploaded to the Cloud Service, the specific module for that DER controller is loaded and
the data is transformed into a general structure that the Cloud Service can handle. The structured
data is finally saved to the cloud storage.

DER Data Structure
Representation of Value Mandatory
Time Stamp Mandatory
Type of Value Mandatory
IEC Reference Mandatory
Description Optional
SI Unit Optional
Multiplier Optional

Table 6.2: DER Data Structure used for storing in the cloud storage

An overview of the general data structure that the raw data is transformed into, is presented in table
6.2. The modules described in section 6.5 is responsible for transforming the raw data uploaded
from the DER controller into this structure and the modules contains the knowledge of how to
extract the data values from the raw data and designating an IEC reference. The important part
of the data structure is the “value representation”, “type of value” and “IEC reference”. The raw

62 CHAPTER 6. DESIGN

value data that is stored in the “value representation” field, is stored as a string representation of
the data value and is restored into the correct data type on retrieval based on the “type of value”
field. The IEC references are defined within the custom DER modules and stored along with the
data in the “IEC reference” field.

6.4.1 DER to Cloud Communication
Transmitting raw data from a DER controller to the Cloud Service is a new concept and in this
prototype, a protocol is designed to facilitate two-way communication between the Cloud Service
and the DER controller. The protocol described in table 6.3, is centered around a command
indicator and a dynamic object that can contain any number of data.

DER Communication Protocol
Command Indicator

0 Default value of an unknown command
1 Command value for creating a new user
2 Value for deleting an existing user
3 Load a module
4 Log in to the Cloud Service
5 Log out of the Cloud Service
6 Transmit raw data to the Cloud Service
7 Transfer a binary module to the Cloud Service
21 Send a custom command
255 Error message

Dynamic Data
Data The data part of the protocol is based on a dynamic object and can contain any

number of data.

Table 6.3: DER Communication Protocol

The DER controller communicates with the Cloud Service using a message that contains a
command indicator, that describes what kind of action should be taken with the data included
in the message. The data part in the message is a dynamic object and can contain any combination
of data. The language used in the WebSocket communication is JSON [15] which easily allows
for any number of data to be appended to the data part.

6.4.2 Client to DER Communication
A client or VPP can send commands directly, via the cloud, to a DER unit that is connected to the
Cloud Service. Figure 6.10 shows the flow of how the command is sent to the DER unit and how
the resulting changes can be read by querying the information model afterward.

The client can use either the RESTful interface or the XML Webservice to send commands to
a DER controller. The Cloud Service uses two different cloud application processes, one is
where the client interfaces resides, called a “Web Role” in Azure Cloud Platform terms. The
other process is where the DER WebSocket communication interface is running, called a “Worker
Role”. These two types of cloud application processes can have multiple instances, distributed out
on multiple machines, which makes up the Cloud Platform. Since the Cloud Service can consist
of multiple instances of both the client interfaces and the DER interface, a DER unit may be

6.4. DISTRIBUTED ENERGY RESOURCE DESIGN 63

CLOUD

DER

Client Interface
WebSockets

Interface

Send
command

Update
model

Inter-
Instance
Comm.

Insta
nce

n+1

Instance
n+2

Instance
n+3Information Model

Update model in storage

Client
Send command

Query results

Figure 6.10: Client to DER Communication data flow

connected to any instance of a DER WebSocket interface. Which one, is unknown to the specific
client interface, used by the client to send a command message. The client interface needs to
find the correct DER WebSocket instance where the DER unit is connected. This is solved using
inter-instance communication between the instances, where the command message is published
by the client interface and picked up by the correct DER WebSocket interface. The command is
then sent to the DER unit.

The design of the components in this prototype, at this point, allows for one-way communication
between the clients and the Cloud Service. As such, the clients initiates action, when ’they’ are
interested in information from the Cloud Service and are given a response at that time. Figure 6.11
illustrates that, as the client requests that a command be sent to a DER unit, the Cloud Service
responds with a reply, stating if the message was successfully sent to the DER unit. This means,
that a reply, does not contain a response with the results of what changes the command may have
caused in the DER unit, but rather whether or not the DER unit has received the message.

Client Cloud Service DER Unit

Send Command

Command Received Status

Send Command

Update Information Model

Query Results in Information Model

Results response

Loop

Loop

Figure 6.11: Client to DER Communication sequence

64 CHAPTER 6. DESIGN

It is the responsibility of the DER unit, after receiving a command message, to react to the
command and perform any changes that the command may specify. These changes can, depending
on the actions performed, be instant or be carried out over time. The expected behavior of the DER
unit, in this design, is that the DER unit continuously updates the information model in the Cloud
Service, with the status of the DER unit. This means that, when a received command results in
changes to the DER unit, these changes are transmitted to the Cloud Service when the DER unit
chooses to perform a update. It is at this point, the client will be able to read the results of the
command sent to the DER unit, by querying the information model in the Cloud Service.

6.5 Dynamic Modules

To execute the concept of having simple DER controllers, that sends raw data directly to the Cloud
Service. A means is needed to handle that raw data and transform it into a general format, that can
be used and stored in the Cloud Service.

Custom modules tailored to the specific DER unit is used to handle the raw data, uploaded by
the DER unit. As shown in figure 6.12, a specific module is based on a Module Interface, that
provides the basic functionality and module API.

Module
Interface

Specific
Module

Application Domain

Module Domain

Model Builder

Model Builder
Interface

Generic
Storage Data

Figure 6.12: Dynamic Module Domain

The individual modules should be able to be developed by a third-party developer. A Builder
Pattern [26] has been used to describe the Model Builder. It uses an instance of the Module
Interface, in order to produce a data structure that is compliant with the general data structure (see
table 6.2). Using the Builder Pattern, the Model Builder disregards how the data is passed into
the Model Builder, as long as it inherit the Module Base. In order to avoid exposing the internal
Model Builder to a third-part developer, a Factory Pattern [26] is used, as it allows the creation of
an object without exposing the internal logic.

To build an instance of the general data structure, in preparation to store the data, the module uses
the Model Builder to insert each Data Attribute extracted from the raw data in the structure. The
specific module and the Model Builder shares an interface, so that the Module Base and Module
Interface can be provided in an external library to developers of custom DER modules. The Model
Builder is a part of the Cloud Service and is inserted into the specific module, when it is loaded,
in the process of uploading data from the DER unit.

6.6. STORAGE DESIGN 65

6.5.1 Dynamic Loading
When a DER connects to the DER WebSocket Interface, the specific module for that DER unit is
dynamically loaded into memory by the Cloud Service. For security reasons this module is loaded
into a different application domain from the Cloud Service itself. It does this using Reflection
and Application Domains2. The specific modules are loaded into each of their own Application
Domain and from here, they can be executed when needed. Placing the modules in each of their
own Application Domain provides every module with a sandbox environment and the possibility
to load and unload each module. As the Module Builder have access to each of the Application
Domains in use by the Specific Modules, it can use the the modules to transform the raw data to
the general data structure, and save it in the cloud storage.

6.6 Storage Design

The storage design is based on a key/value storage model, more precisely the Microsoft Azure
Table Storage. Access to the data in the storage is based on the Repository Pattern [58] which
separates the business logic from the data access logic. The Repository pattern is used by the
Repository Layer.

Accounts News

Roles

SCL
Configs

DER Units UsersDER Data

DER
Modules

*

1..*

* 1

1

1..*

*

1

* 1..*

1

*

*

*

*

*

Figure 6.13: Storage design

The entities and their association in the storage is shown in the conceptual model in figure 6.13.
The associations in the model are depicted in order to show the relations between the entities to
help the reader. The storage is based on a key/value store in which, by the nature of a key/value
store, there does not exist any persisted associations between the entities. Any relations between
entities are handled by the application logic, created when the entities are retrieved from the
storage and then mapped to instances of classes. It is also in the application logic that validation
of constraints between entities takes place.

The model shows, that a DER unit can have multiple DER modules associated, however only one
module can be set as active for a DER unit at a given time. The same DER module can be used
by many DER units, e.g. if multiple DER units of the same type and configuration is connected to
the cloud application.

2http://www.brad-smith.info/blog/archives/500

http://www.brad-smith.info/blog/archives/500

66 CHAPTER 6. DESIGN

The DER data are the data uploaded from the DER units and are specifically tied to one DER unit.
An SCL configuration is also tied to one specific DER unit and a DER unit must have one SCL
configuration defined as active; but can have multiple associated.

An account is used to associate users with the DER units they have access to. A user can be
associated with many accounts and an account can naturally have multiple users. Users can have
many roles and roles can be associated with many users.

News items, shown on the landing page of the website, is associated with the user that created the
news item.

6.6.1 Model Generated Entities
The storage model in the prototype is designed as a model by using a graphical editor, provided
by Visual Studio, which is then transformed into the entities used in the code.

Figure 6.14: Snippet of the model used to generate the storage entities

Figure 6.14 is a snippet of the model from the development tool, Microsoft Visual Studio 2012,
showing a selection of the entities used with the storage.

The Microsoft Azure Table Storage is, at the time of writing, not supported by the Visual Studio
modeling tools and so for this project, customized code generation templates was created. The
templates enables the transformation of the entity model into actual code which can be used with
the Azure Table Storage.

As seen on the model snippet in figure 6.14, which shows that in contrast to the storage design
in figure 6.13, there are no associations modeled. These are not supported and persisted in the
storage and the association between DER and Accounts is only used after the entities have been
retrieved.

6.7. USERS 67

6.7 Users

The interfaces in this prototype all makes use of different security schemes to secure
communication and authenticate users, however all the schemes draws on the same central user
and role based system. The user and role based system is based on the Microsoft .Net Membership
framework [55] with custom extensions to enable the persistence of users and roles in the Azure
Table Storage, which is not directly supported by the .Net Membership framework.

.NET Membership

Storage
Custom

Membership User

Custom
Membership Provider

Custom
Role Provider

Interfaces User Repository

User Service

Service Method

RepositoryAuthentication

Figure 6.15: Membership components

Figure 6.15 shows the components involved with the authentication and authorization of users and
their roles. The different interfaces uses the Membership API to validate and manage users and
roles and the Membership framework in turn uses the Service Layer methods to load and save
user/role data. The Service Methods uses the User- and Role-repository to access the storage. By
using custom provider extensions for the Membership framework, it is possible to use the Azure
Table Storage through the Service Methods and Repositories. Additionally the user entity that
represents the user in the Membership framework can be extended with custom properties.

Three roles are defined in the system, which are assigned different privileges. The privileges are
described in table 6.4.

Privilege Customer Operator Administrator
Create DER unit • •
Assign DER unit to user • •
Upload DER module • •
Assign DER module to DER unit • • •
Create and manage users •
View data on DER units • • •
Upload data via Websockets interface • • •
Query the information model • • •
Update the information model • •
Send commands to the DER unit • •

Table 6.4: User privileges and roles

The role Customer represents the most basic user of the system. The Customer is only allowed to
look up information and query the information model, from DER units that have been assigned to
the Customer. The Customer is also allowed upload data via the WebSocket interface as this role

68 CHAPTER 6. DESIGN

is also assigned to the DER units to use for authorization when authenticating during transmission
of the DER data.

The Operator role has more privileges, which would suit a DER owner or VPP/aggregator that
needs to: query the information model, update the information model and send commands to the
DER unit. The Operator is responsible for assigning the DER units to the different users and can
create the DER units in the system.

The Administrator creates and manages users and have full across all DER units. The
administrator role is meant for the operators of the Cloud Service to assist Operators, Customers
and create new users.

6.8 Interfaces

The RESTful interface and the XML Webservice both uses the same service methods to query
and update the information model. The Website additionally uses more of the service methods
available in the service layer to provide additional information. Figure 6.16 illustrates how a
request coming in on the interfaces is received by the Cloud Service, where it is authenticated,
authorized and accepted by the Cloud Service.

CLOUD

Client

Information Model
Storage

Cloud ServiceRequest

IEC 61850
Data Classes

Common Data Classes
Attribute TypesiPower

Flexibility Interface
Data Model

Instantiate
Model

Fetch Data

Response
XML / JSON

SCL Config

Figure 6.16: Correlation between client and cloud service

In the case where a request for example is a query on the information model, an instance of the
information model is created and filled with data retrieved from the storage. The information
model is built using an SCL (Substation Configuration Language) configuration file (see [62])
that is supplied when the DER unit is created. The SCL configuration file describes the logical
contents of the DER unit. The information model is then queried according to the request and the
result is sent back to the user through the interface used.

6.8. INTERFACES 69

6.8.1 Web Site
The Website is designed using the MVC 4 (Model View Control) pattern [56]. The MVC 4 pattern
separates the Web application into three components: the Model, the View and the Controller. The
Model contains data used in the website and logic to work with this data, the Controller handles
user interaction and uses the Model in response to the user and the View displays the website’s
user interface. In this prototype, the Website has a Model, however this model is only concerned
with the Website logic in order to make the Website work and move data between the pages. The
business logic of this prototype resides in the Service Layer in the Core component (see section
6.3.1).

Figure 6.17 gives an overview of the main parts that make up the Website.

News

Home

Units Modules View Data Users

Figure 6.17: Website overview

• The landing page of the Website is the Home section. The Home section provides a news
stream with information about the site.

• The section Units handles the creation and managing of DER units.

• The section Modules is responsible for updating, assigning and managing the custom DER
Modules for the DER Units.

• The section View Data allows the users of the Website to view detailed information about the
data the DER units have uploaded to the Cloud Service.

• The section Users handles the cration and managing of users that have access to the Website,
RESTful interface, XML Webservice and DER WebSocket interface.

From these design concepts a simple web site can be created to handle the needed functionality.

70 CHAPTER 6. DESIGN

6.8.2 RESTful Interface
The RESTful interface [38] is based on a concept of resource-based access, the object references
in the information model is mapped to be compliant with an URL. Each resource in the data
model is accessed via URL nodes and updated the same way. As the naming convention of the
IEC 61850 standard resembles a URL, changing the . (dot) to a / (slash) would satisfy the URL
requirement[63]. RESTful communication uses the standard HTTP methods such as GET, PUT,
POST and DELETE to manipulate the resources that are exposed through the interface.

This is an example of an object reference for the flexiblity interface node: ECP Voltage Connection
Point.

LogicalDevice\FLEX.Ecp.VolConPnt.mag.f

When the reference is mapped into an URL, it looks like this:

http://hostname/api/unit-id/LogicalDevice/FLEX/Ecp/VolConPnt/mag/f

To retrieve the data using the URL in the example above, a HTTP GET request would be used and
the server would respond with the data object tree, starting from the specified resource in the URL.
To set data, the same URL would be used, but by using a HTTP POST request and submitting the
data to set in the request body.

The RESTful architecture is resource based with an URL scheme to address the data whereas the
ACSI interface uses a set of defined methods to access the data. As the approach to access the data
with the RESTful interface is a different paradigm from the ACSI interface, the ACSI interface is
replaced by the RESTful interface.

Client RESTful Service

XML Webservice

Webservice
ACSI

Interface

REST interface Access to data
model through

the Service
Layer

Figure 6.18: ACSI in RESTful and XML Webservice interfaces

Figure 6.18 shows how the RESTful interface replaces the ACSI interface from the IEC 61850
standard and how the XML Webservice Interface, described in section 6.8.3, makes use of the
ACSI interface.

The approach to map the ACSI method to the RESTful resource based architecture is based on the
ideas described in [63] of which a summary is shown in table 6.5.

6.8. INTERFACES 71

URL Output ACSI equivalent
/ List or hierarchy of all logical devices in

the system
GetServerDirectory
(GetAllDataValues)
(GetDataValues)

/[LD]/ List or hierarchy of all logical nodes within
a device

GetLDDirectory
(GetAllDataValues)
(GetDataValues)

/[LD]/[LN]/ List or hierarchy of all data objects within
a logical node

GetLNDirectory
(GetAllDataValues)
(GetDataValues)

/[LD]/[LN]/[DO]/ List or hierarchy of all data attributes and
child-data objects within a data object

GetDataDirectory
GetDataDefinition
(GetAllDataValues)
(GetDataValues)

/[LD]/[LN]/[DO]/[DA]/ Hierarchy of all child-attributes within a
data attribute

(GetAllDataValues)
(GetDataValues)

Table 6.5: Summary of RESTful mapping from ACSI [63]

6.8.2.1 Security in the RESTful Interface

The RESTful interface is secured using two methods that are not necessarily used at the same time.
Figure 6.19 shows the two options, which are HTTPS between the client and the cloud application
and using public/private key in the form of RSA [14] encryption to secure the login credentials in
the client request.

HTTP Request RESTful Service

HTTPS SecuredRSA encrypted

Request
credentials

Public KeyPublic Key
Private KeyPrivate Key

Figure 6.19: RESTful interface security

The first option is to secure the communication using HTTPS between the client and the cloud
application where the identity is verified by using HTTPS certificates. This is straight forward and
provides adequate security for the communication.

In the case where HTTPS transport security is unwanted or unavailable3, this project also explores
the option of using asymmetric public/private key encryption using the RSA algorithm. The design
is to encrypt the user credentials in the HTTP request using the public key which is then decrypted

3An asymmetric public/private key encryption scheme was used in this project, resulting from both an interest in
the subject and the fact that a valid HTTPS certificate was not available; which leads to a self-singed certificate which
immensely complicates development.

72 CHAPTER 6. DESIGN

in the cloud application using the private key. Using a public key for the request means that
anyone can encrypt requests for the cloud application, but only the cloud application which hold
the private key can decrypt the request.

When only encrypting the user credentials, the communication is susceptible to a form of attack
called Replay-Attack4. An example of a Replay-Attack is when an attacker captures and repeats a
valid data transmission where the encrypted identity is kept but the data content is changed. There
are different methods to safeguard against this, such as using session tokens, random numbers,
one-time passwords, message authentication code (MAC) and timestamping. In this prototype,
timestamping is used to prevent Replay-Attacks.

A timestamp is added to the encrypted credentials and when the request is sent to the cloud
application, the request is only accepted, if the timestamp of the request is within a reasonable
time frame of when it was received.

When using the RSA to encrypt the user credentials without using HTTPS, the body of the request
and the response is sent in clear text. If these needs to be secured, this could be done by for
example providing a symmetric encryption key along with the encrypted credentials which can be
used to encrypt the request body and the response.

6.8.3 XML Web Service
The XML Webservice uses the Simple Object Access Protocol [77] (SOAP) to send and receive
messages over HTTP. The XML Webservice is based on the ACSI interface, as illustrated earlier
in figure 6.18, and defined in the IEC 61850-7-2 standard sub-part [40].

ACSI methods Description
GetServerDirectory A list of all the logical devices available on the DER unit
GetLDDirectory A list of all the Logical Nodes within the Logical Device
GetLNDirectory A list of all the Data Objects within a Logical Node
GetDataDirectory A list of all the Data Attributes and child-Data Objects within a Data

Object
GetDataDefinition A list of all the Data Attributes definitions within a Logical Node
GetAllDataValues Returns all Data Attributes, having the same Functional Constraint,

within a Logical Node
GetDataValues Returns the values of the Data Attribute

Table 6.6: Summary of ACSI methods used in the prototype

The table 6.6 is a summary of the most basic ACSI methods used in the XML Webservice and a
description of the data they return. As the cloud solution is multi-tenant based and provides access
to many DER units, the process of using the ACSI methods requires the client to additionally
inform which DER unit the ACSI queries are performed on.

4Replay-Attack: http://msdn.microsoft.com/en-us/library/aa738652.aspx

http://msdn.microsoft.com/en-us/library/aa738652.aspx

6.9. CHAPTER SUMMARY 73

6.8.3.1 Security in the XML Webservice Interface

The communication in the XML Webservice is secured using the standard security capabilities
provided by the cloud platform and chosen development platform. In this prototype, which
is running on the Microsoft Azure Cloud Platform using .NET and Windows Communication
Foundation, the XML Webservice is secured using per message security [64] [52]. Per message
security uses certificates to ensure the server identification and encrypts each SOAP message,
between the client and the XML Webservice individually, which additionally enables the use of
customized user authentication and authorization (described in section 6.7).

6.9 Chapter Summary

Moving to a cloud-based solution changes a lot of the design aspects, in the existing domain
model of the smart grid. To handle multiple distributed energy resources, each DER connects
(using a controller) to the cloud solution through a WebSocket, allowing for near real-time duplex
communication. Each DER sends the raw data directly up to the cloud, depending on the time
intervals defined in the DER unit. To handle the different raw data structures in the cloud, each
DER has an associated module. The modules could be developed by the DER manufacturers, as
long as they comply with an interface and a general data API for storing the data. The raw data is
processed by the module and then stored in the cloud storage.

The cloud solution architecture is designed as a layered architecture, limiting each layer for
passing layer-specific values, but also provides the means for changes e.g. changing storage type.
When accessing the stored data, a RESTful interface should allow programmable access to query
or update data. The information model of the data is based on the information model found in
the IEC 61850 standard. When making a query in the RESTful interface, the object reference in
the IEC 61850 has been mapped into an URL, by changing the . (dot) to a / (slash). This allows
for easy access to each of the nodes in the information model, and with functional constraints,
it also provides the functionality for making a filtered query. When the data are retrieved from
the storage, it should then (using the SCL associated with the DER module) transform from the
general data structure into an IEC 61850 compliant information model. To handle a more user
friendly access to the stored data, a web site has been designed to handle the user-, DER- and
module-management.

CHAPTER 7

Implementation

This chapter describes how the prototype is implemented based on the design. In favor of
condensing the implementation description, at most one behavior model will be used to illustrate
each section. It will describe the most interesting behavior, which best covers the application
logic. Class diagrams will be minimized and larger versions can be viewed in appendix F.

7.1 System Structure

Figure 7.1 shows the components that makes up the cloud application. The implementation of the
components separates the components into sub projects, mostly class libraries in the form of DLL
files. The components centers around the Core component which provides access to the Azure
Table Storage and enables the components to communicate with each other.

«component»

Web Pages

«component»

Alchemy

«component»

Dantherm
Module

«component»

Core «component»

DACHS
Module

«component»

Website

«component»

Module Base

«component»

WebSockets

«component»

Module
Loader

«component»

Information
Model

«component»

Web API

Figure 7.1: Cloud Application Components

The Website is implemented as an Microsoft Azure Web Role project using the Microsoft MVC
v4 Website template and contains both the RESTful and the XML Webservice interfaces.

The Information Model, as described in the design, is realized as a component with no
dependencies on any other component and the resulting DLL file can be imported into and used by
other .NET project. The Information Model component also contains logic to traverse the data tree
model which means the Information Model component provides both the data model supporting
the IEC 61850 standard and the iPower Flexibility Interface and application logic to work with
the model.

75

76 CHAPTER 7. IMPLEMENTATION

7.2 Implementation of Layered Architecture

The implementation of the service layer and repository layer parts of the layered architecture,
described in the design (section 6.3.1) are illustrated in figure 7.2.

Figure 7.2: Class diagram: Service Layer and Repository Layer Combined

The classes are collapsed in the figure, to provide an overview of the service classes and
repository classes that have been implemented, in order to fulfill the functionality described in
the requirements. However a larger version, with all the details can be seen in the appendix figure
F.1 and F.2

ModuleData RepositoryModuleData Service Module Service TreeDataGetterCaller SCL ServiceUnit Service

List< data values >9:

List< data values >16:

data value14:

DERContext10:

UpdateInformationModel(context)12:

LoadCurrentDERData(context.derId)15: [sample is newer than context]

GetMostCurrentSample(context.derId)13:

BaseClass19:

GetUnit(derid)2:

GetModule(unit.ModuleId)4:

GetSCL(module.SCLId)6:

LoadCurrentDERData(derid)8:

Get(query)17:

Module5:

BaseClass18:

Query(context, query)11:

GetContext(derid)1:

SCL7:

Unit3:

Figure 7.3: Behavior: Query Information Model using the Service Layer

The behavior diagram in figure 7.3, shows an example of the service methods and repository
methods working together to query the information model and retrieve a cloned model of the most
current model stored in the table storage.

7.3. STORAGE 77

The sequence is a two-part process in order to query the information model. The first part retrieves
a DER Context for a given DER unit, specified by providing the GetContext method with an ID of
the DER unit. The DER Context is used to query the information model. The context itself is an
object meant to be used with the service methods and contains the data model of the information
model and the values retrieved from the storage at the time the context was created.

The design idea is, that the context is passed to service methods, which in turn manipulates the
context. Using the context avoids the need to build the data model, and retrieve the full set of
values every time a query is performed.

In the second part of the behavior diagram, where the context is passed to the Query method,
the values are checked against the table storage, and if newer values are found in the storage, the
values are updated to the most current values. When the values have been updated, the query is
performed and the resulting model of the query, is returned as a clone of the data model contained
in the context. Using a clone ensures that the data model in the context will not be changed by
manipulating the returned model.

7.3 Storage

The storage namespace of the cloud application is based on using Entity Contexts (shown in figure
7.4) to access the data entities in the storage. The QueueContext and BlobContext are manually
coded and provides access to Blobs and Queues in the Azure Storage. The ModelContext is auto-
generated using the model generated entities described in section 6.6.1.

The ModelContext provides auto-generated helper methods to create strongly typed Query objects
for querying the storage and some generic methods to perform basic CRUD operations on the data
entities. Any advanced manipulation of the data entities are performed in the repositories, but the
ModelContext provides re-useable methods of the most basic operations. These methods were
developed along with the customized model-to-code translation templates.

All the data entities, depicted to the right in the figure, are designed in the graphical model editor
in Visual Studio and then auto-generated into code. In the design, section 6.6.1, a snippet was
shown of how the data entities are modeled graphically. A full version of the storage data model
used for auto-generation of data entities can be viewed in the appendix in figure F.4. Additionally
the full version of the class diagram, figure 7.4, can be viewed in figure F.3.

Access to the storage starts with the StorageConfiguration class. This class is a static class
that initializes the Azure Cloud Platform framework and sets up auto-cycling of the cloud
application, should the environment variables for the cloud application change. When the
StorageConfiguration has initialized the storage it can be used by the Entity Contexts and
repository classes to access the storage.

The UniqueId class is a class that was implemented to generate unique IDs for use with the Azure
Table Storage. This is described in section 7.3.1.

78 CHAPTER 7. IMPLEMENTATION

Figure 7.4: Class diagram: Storage

StorageConfigurationCalling Service User Repository

ModelContext

Storage Account4:

GetUser(username)1:

new2:

CreateUsersQuery()5:

User7:

GetCloudStorageAccount()3:

DataServiceQuery< users >6:

Figure 7.5: Behavior: Query a user in the storage

7.3. STORAGE 79

The behavior illustrated in figure 7.5, is an example of how to use the User Repository to retrieve
a user, specified by user name, from the storage. The sequence diagram depicts the details down
to the platform API. The GetUser method is called on the User repository, which would normally
happen from a service method. The User Repository then creates an instance of the ModelContext
which uses the StorageConfiguration to initialize the necessary parameters of the ModelContext
in order to access the storage. The User Repository then uses the strongly typed query method of
the ModelContext to perform a query on the storage and finally returns the user if found.

7.3.1 Unique ID
The Azure Table Storage does not support auto incrementing primary keys, so for this prototype
the UniqueId class was implemented. The UniqueId class is able to generate unique IDs globally
for the application and specifically unique IDs for each single table.

The UniqueId can generate reversed chronologically IDs which can be used to add and more
importantly, retrieve entities from the storage in a LIFO manner. This means that entities are
sorted in the storage so that the newest entities are retrieved first. This feature is not supported
by the Azure Table Storage1, but helps to efficiently retrieve the most current DER data when
responding to a query.

The Azure Table Storage is a distributed storage and the application processes that runs in the
cloud are also distributed and can be scaled out to many instances. This is relevant for the UniqueId
class as it uses the storage to centrally keep a count of the unique IDs that have been used. In
order to optimize access to the counter and avoid congestion and deadlocking on the counter, the
UniqueId class reserves itself a range of IDs to use instead of taking a single ID at a time. This
drastically reduces the amount of times the UniqueId has to lock the counter in the Table Storage
as it only needs to do this when it runs out of the IDs it has reserved.

Call
UpdateCounter()

Call
UpdateCounter()

Call to
NextID()

Increase count

Has the last Id in

chunk been

reached?

Is this the

first call?

Yes

Yes

No

No

Return Id

Figure 7.6: Flow diagram: Generate a unique Id for use with table storage - part 1

1http://msdn.microsoft.com/en-us/library/windowsazure/dd135725.aspx

http://msdn.microsoft.com/en-us/library/windowsazure/dd135725.aspx

80 CHAPTER 7. IMPLEMENTATION

As the UniqueId class uses blocks of IDs, this means that the IDs are unique but not continuous.
This is a compromise, made in order to ensure good performance of the UniqueID class.

The operation of the UniqueId class is illustrated in the flow diagrams in figures 7.6 and 7.7. The
flow is covered by two parts as the second part can be called multiple times from the first part but
from different places in the flow.

When a call for a unique id comes, the first check is to see whether this is the first time the
UniqueId class has been used, in which case it has to retrieve the count from the storage and
reserve a new range of IDs. Next is a check for whether the range of IDs assigned to the UniqueId
class has been used up, in which case, a new range must be computed.

Call to
UpdateCounter()

Retrieve count
from storage

Try to save
new count to

storage

Allocate Id
range (test for

MaxValue)

Success,
return to
NextId()

Throw
Exception

Increase retry
count

Has ETag
changed?

Has max
retries been
 reached?

Yes

Yes

No

No

Figure 7.7: Flow diagram: Generate a unique Id for use with table storage - part 2

The flow to retrieve a new range of IDs is described in the second flow diagram and contains a
retry loop to continue to try an get a new range of IDs. The process of getting a new range of IDs is
based on the concept of Optimistic Concurrency [57] as the Azure Table Storage uses Optimistic
Concurrency to manage concurrent access to the storage.

When the current count is fetched from the storage, a new range of IDs is chosen, the count is
updated to match this and the the count is saved back to the storage. If another process have
managed to save their count back to the storage in between, the ETag of the count would have
changed, and saving the new count fails. An ETag is a form of checksum for the collection
of entities that have been fetched from the storage and when the entities are saved back to the
storage, the ETag is compared to the ETag of the same entities in the storage. If the entities in
the storage have been changed, the ETags will not match up. In that case, the new count must be
fetched from the storage and the procedure tried again. This is where the use of blocks of IDs will
help keeping the misses down.

7.4. INFORMATION MODEL 81

7.4 Information Model

The implementation of the Information Model builds upon and further extends the work done in
[62]. The Information Model (figure 7.8) is a tree structured data model that has been closely
modeled after the hierarchical data model defined in the IEC 61850 standard.

The IEC 61850 standard defines a large set of predefined logical nodes and data-classes. All
these classes could have been implemented explicitly, but that would make the system hard to
maintain and develop further as the data model must be extended or changed every time the
standard receives updates and extensions. A generic approach has been taken to develop the
data model as this offers more flexibility and makes is easier to include future extensions to the
standard [62].

Figure 7.8: Class diagram: Information Model

82 CHAPTER 7. IMPLEMENTATION

The implementation of the generic classes, that makes up the Information Model, starts with the
BaseClass which contains a number of attributes that are common to and inherited by all the child
classes. The ServerNode defines the DER unit and contains a number of LogicalDevices which are
the sub-systems of the DER unit and consists of logical systems and physical computing devices
etc. Each device then contains a number of LogicalNodes and DataAttributes.

The details of the Information Model and the features of the classes are elaborated in the Design,
section 6.2.

7.4.1 Working with the Data Tree Structure
The common ancestral BaseClass enables the system to traverse the data model in a generic way,
from any point in the data model, as all the classes are of the type BaseClass. The prototype is
designed to handle the BaseClass and can therefore handle any sub-set of the data model in the
same way.

The classes TreeDataGetter (mentioned in figure 7.3), TreePopulator and additional classes,
located in the Information Model component, which are based on the work in [62], are used to
manipulate the data model. The TreePopulator is the main class that performs the actual recursive
transversal of the data model. When invoked, it returns a clone of the data model, containing the
elements of interest defined by the supplied arguments. The additional classes used to work on
the data model either uses or are used by this class.

7.4.2 SCL Parser
The SCL Parser class is a recursive descent parser and is used to parse the SCL configurations that
are supplied by the operators of the DER units. The SCL Parser is based on the work done in [62].

The SCL Parser is used to instantiate the data model and does this by parsing an SCL configuration
of a DER unit. An SCL configuration describes the logical devices, logical nodes and data
attributes along with the reference definitions of where the data is located. The SCL additionally
contains a description of the data, multiplies and IEC 61850 data type definitions.

The SCL Parser is used in the prototype to instantiate a data model when a query from a client is
received. This is described in the Design, section 6.8.

7.5 Users

The authentication and authorization of users in this prototype is based on the .NET Membership
framework [55]. It is based on users and roles. Users can have multiple roles and roles can be used
by multiple users. The Membership framework can be used throughout the the API’s provided
by the .NET framework, which includes: Websites, WebServices etc. and programatically
everywhere else.

7.5. USERS 83

The Membership authorization can be made declaratively with many of the .NET API’s and
programatically as needed. Listing 7.1 is an example of how to declaratively define what roles
a user needs to be in, in order to query the information model via the RESTful interface.

1 [HttpGet]
2 [MembershipAuthorize(Roles = "Administrator, Operator, Customer")]
3 public BaseClass ModelQuery([BindCatchAllRoute(’/’)]string[] path, string level = "",

string fc = "")
4 {

Listing 7.1: Example of declarative security

The MembershipAuthorize attribute is actually a custom extension of the Authorize attribute
provided by the .NET framework. The MVC4 Website template is not directly compatible with
the old Membership framework, as Microsoft has created a new simpler and lighter version
of the .NET Membership. However, the new version has been created mainly for the MVC4
Website template and does not support as many of the .NET framework API’s as the old
Membership framework does. As the prototype uses some of the functionality provided by the
older Membership framework such as XML Webservices, the older Membership framework has
been chosen and extended.

Listing 7.2 is an example of how to use the .NET Membership framework programatically to
create a new user, test if the users is assigned to a role, add the user to a role and validate the user.

1 // Create user
2 var password = Membership.GeneratePassword(10, 2);
3 var name = "Test User";
4 var newuser = Membership.CreateUser(name, password);
5
6 // Add user to role
7 if (!Roles.RoleExists("Customer"))
8 Roles.CreateRole("Customer");
9 if (!Roles.IsUserInRole(name, "Customer"))

10 Roles.AddUserToRole(name, "Customer");
11
12 // Retrieve user and validate login
13 var user = Membership.GetUser(name);
14 Membership.ValidateUser(name, password);

Listing 7.2: Example of programatic security

The .NET Membership framework uses a series of Providers to store and retrieve the users, roles
and additional information from different storage solutions. E.g. SQL Database, DB2, ODBC etc.
The Azure Table Storage is not, at this time of writing, supported by the Membership framework
and so custom Membership providers was implemented to support the Azure Table Storage.

84 CHAPTER 7. IMPLEMENTATION

Figure 7.9: Class diagram: Users and Membership Providers

The custom membership providers implemented (see figure 7.9) are the AzureMembershipProvider
which handles the users and the AzureRoleProvider that handles the roles. The AzureMembershi-
pUser is an extension of the user entity provided by the framework and can be used to add custom
attributes to the Membership user which in turn is passed around by the Membership framework
and enables access to the custom attributes using the standard API’methods.

The custom providers uses the UserRepository to store and retrieve the user- and roles-entities. A
fully detailed version of the class diagram can be viewed in the appendix in figure F.5.

7.6. MODULES 85

AzureMembershipProviderMembership Provider

UserRepository

MembershipCaller

[user.IsApproved]

[else]

alt

new4:

GetUser(username)5:

UpdateFailureCount(username, failtype)9:

Boolean10:

CheckPassword(password, user.Salt, user.Password)7:

UpdateLastLogin(username)8:

ValidateUser(name, password)3:

Boolean11:

User6:

ValidateUser(name, password)2:

Boolean12:

ValidateUser(name, password)1:

Figure 7.10: Behavior: Using the custom Membership Provider

The behavior diagram 7.10 illustrates the process of how the .NET Membership validates a
user. The caller uses the Membership method Membership.ValidateUser(name, password) which
checks the application configuration for which provider to use and then delegates the work
to this provider. The provider in this case is the AzureMembershipProvider, which uses the
UserRepository to retrieve the user information from the storage.

The diagram in figure 7.10 ends at the UserRepository, but the rest of the behavior from that point
can be seen in section 7.3 figure 7.5.

7.6 Modules

As described in the Design section 6.5, the custom DER modules is loaded dynamically into
memory as a DER unit connects to the cloud application. In .NET this is achieved by using an
Application Domain to load the module into. The module is running in its own application domain
which is separate from the application domain that the cloud application is running in, for security
reasons and this is dictated by the .NET framework.

For the cloud application to communicate with the module, the module must implement an
interface shared between the two applications. This interface is the IModule (shown on figure
7.11) and it enables the cloud application to call the methods in the module.

These methods, as illustrated in the behavior diagram 7.12, in turn needs to communicate
the DER data back to the cloud application (as described in section 6.5). For this, the
interface IStorageBuilder is used by the cloud application to inject an instance reference of the

86 CHAPTER 7. IMPLEMENTATION

ModelBuilder from the cloud application domain into the module in the module application
domain. The injection of the ModelBuilder reference is done using the Dependency Injection
pattern [25], through Setter Injection.

Figure 7.11: Class diagram: Modules

The StorageBuilder contains two methods: The AddValue is used to add one primitive data
attribute consisting of a data value, data model reference, sessionid and additional information.
The Commit method is used after all the values has been added to commit the data collection to
the storage.

ModuleDataService

StorageBuilder

DataHandler Module

[while(data)]

loop

SanityCheck(data)5:

new7:

SaveModuleData(entities)8:

SetBuilder(storagebuilder)2:

ParseData(data)3:

new StorageBuilder(id)1:

AddValue(data)4:

Commit()6:

Figure 7.12: Behavior: Receive data in module and save to storage

The behavior diagram 7.12 describes how the DataHandler, running in the cloud application,
interacts with a module running in the module application domain. The DataHandler is a class in
the DER Websockets interface that handles the communication with the DER Units.

7.7. DER WEBSOCKET INTERFACE 87

When the DataHandler loads a module it create an instance of the ModelBuilder and injects it into
the module. It then passes the raw data to the module which in turn parses the raw data and adds all
the data values to the StorageBuilder. Finally the module calls Commit on the StorageBuilder and
the now structured data is sent to the ModuleData Service which uses the ModuleData Repository
to save the data in the storage.

7.7 DER Websocket Interface

The DER Websocket interface communicates with the DER units through the use of open Web
standards WebSockets [24]. The DER WebSocket interface (depicted in figure 7.13) is based on
an Azure Worker Role, which is a cloud process without an User Interface.

Figure 7.13: Class diagram: DER WebSocket

The WebSockets are based on the Alchemy WebSocket Library2. The Alchemy library provides
WebSockets server and client for .NET and a client for JavaScript. The library officially supports
hybi-00, hybi-10, hybi-17, and the official RFC6455 [24], which means that it possible to
communicate with the WebSockets from any language and platform.

2Alchemy WebSockets: http://alchemywebsockets.net/

http://alchemywebsockets.net/

88 CHAPTER 7. IMPLEMENTATION

The DER WebSocket Interface creates two WebSockets: ConnectionHandler and Commnication-
Handler that each handles a separate concern, as described in table 7.1.

Request Path Description
/connection Handles creation of DER users and uploading of DER Modules
/communication Handles uploading of DER data from DER units.

Table 7.1: DER Websockets Interface Request Paths

A WebSocket has a “Request Path” that indicates to the WebSocket what the intention of client is.
The statemachine in figure 7.14 illustrates how the DER WebSocket Interface handles incoming
data from the DER units.

OnReceive [RequestPath == "connection"]

OnReceive [RequestPath == "communication"]
[Type == TransferModule]

[Type == CreateUser]

[Type == DataTransfer]

[Type == DeleteUser]

[Type == LoadModule]Listening on two
Websocket

Servers

Delete DER User

Transfer DataLogin User

Transfer DER
Module

Deserialize
message.

Disconnect
User

Load DER
Module

Create DER
User

Deserialize
message

Connect User

/ SendResponse

[Type == Login]

/ SendResponse

/ SendResponse

/ SendResponse
/ SendResponse

OnDisconnect

OnConnected

Figure 7.14: Statemachine: DER WebSocket

Based on the request path the interface breaks out into separate paths. If the request path is
connection the client can now create new DER users, delete DER users, upload DER modules to
the cloud application and load modules into memory.

If the request path is communication the client must first authenticate with the cloud application
in order to tell the interface which DER user is connecting and which DER unit to store the data
with. The client can then upload the data from the DER unit to the cloud application.

7.7.1 Inter-process Communication
The RESTful and the XML Webservice interfaces are implemented as a distributed Azure Web
role process and the DER WebSocket interface is an Azure Worker role process. The two
roles runs in different processes and can consist of many instances. This consequence is that
the RESTful/XML Webservice interface process does not know which instance of the DER
WebSocket interface process a given DER unit may be connected to.

The solution, illustrated in figure 7.15, is to use the Azure Service Bus to relay the communication
from the RESTful/XML Webservice interfaces to the DER WebSocket interface.

7.8. WEBSITE 89

Azure
Service

Bus

Azure
Service

Bus

Message
Service

Communication
Repository

DER
Websocket
Interface

AddMessage() Send() GetMessage()

Figure 7.15: Inter-process communication via the Service Bus

When for example, a command to a DER is received on the RESTful interface, the message is
passed to the Message Service, which in turn uses the Communication Repository. The message
is handed to a repository because the Service Bus and the Azure Queues that are used are part of
the Azure Storage namespace. The Communication Repository sends the message to the Service
Bus.

Every instance of the DER WebSocket interface processes is subscribed to the Service Bus and
when a message arrives for a DER unit, that is connected to a given DER WebSocket interface,
the message is fetched from the Service Bus and sent to the DER unit.

7.8 Website

The Website enables DER owners and DER Operators to configure their DER units, add new DER
units, upload different DER Modules and configurations, select the active configuration and view
information about the DER data their DER units have uploaded to the cloud application so far.

About

Management

Index News Show News Users

Module

Home

Account

Index Module SCLs Upload

CreateUser Modules News PostNews

UnitInfo

Units

User

Users

ChangePassword LogOn ResetPassword UserInfo

Default Page

Figure 7.16: Website Web Pages Diagram

Figure 7.16 shows the Web page hierarchy of the Website. The details of the functionality of the
Website has been described in the Design section 6.8.1.

The Website is built as an Azure Web role process, which is similar to a worker role except that
the web role has a user interface. The user interface of the Website Web role is based on the
Microsoft MVC v4 website template and provides the new Microsoft Web API which makes it

90 CHAPTER 7. IMPLEMENTATION

straight forward to build RESTful services. The RESTful interface in this prototype is based on
the Web API.

Screenshots of the Website can be enjoyed in appendix D.

A user guide has been written, that walks through the usage and functionality of the Website. The
user guide can be viewed in appendix E.

7.9 RESTful and XML Webservice Interfaces

The RESTful and XML Webservice interfaces are both implemented in the Website component.
The RESTful interface is built on the Web API which is a part of the ASP .NET Web framework
and the implementation follows the description of the design in section 6.8.2.

ModuleDataService

QueryControllerEvent caller

context4:

model6:

GetContext(derId)3:

new2:

Query(context, querypath, fc, level)5:

model7:

ModelQuery(path, level, fc)1:

Figure 7.17: Behavior: Query the information model via the RESTful interface

Figure 7.17 illustrates the behavior of the RESTful interface when a query request is received.
After the request has been authenticated and authorized, the request details are sent to the
QueryController which build a query object that can be sent to the ModuleData Service. As with
the behavior described in figure 7.3, a DER Context is retrieved and then the query is performed.
The resulting cloned model containing the requested data is returned to the client.

The response is output in either XML or JSON based on the request header in the client request.
The client can specify whether the response should be in XML or JSON. For the prototype the
XML output has been customized with the use of a custom XML Serializer. This way the XML
output is structured in a layout that closely resembles the data model specified in the IEC 61850
standard.

7.9. RESTFUL AND XML WEBSERVICE INTERFACES 91

ModuleDataService

ServiceClient

context4:

model6:

GetContext(derId)3:

new2:

Query(context, querypath, fc, level)5:

List< logical devices >7:

GetServerDirectory(derid)1:

Figure 7.18: Behavior: Query the ACSI method GetServerDirectory via the XML Webservice

Figure 7.18 shows the behavior of the XML Webservice when the ACSI method GetServerDi-
rectory is called. The method is called on the class called Service which implements the basic
functionality of the ACSI interface, which in turn build a query object and uses the ModuleData
Service to perform the query. The resulting model is returned to the Service (ACSI interface) and
then returned to the client.

7.9.1 Asymmetric Public Key Encryption
The RESTful interface supports asymmetric private/public key encryption of the user credentials
in query requests using the RSA algorithm. An overview of the usage of the RSA functionality is
described in the Design section 6.8.2.1, this section only describes the implementation details.

When creating a query that requires authentication, the RESTful interface expects the user
credentials to be sent via Basic HTTP Authentication where the password is encrypted using
the public key. The RESTful service then decrypts the password and validates the user.

To use Basic HTTP Authentication, the request must contain the following HTTP header:

Authorization: Basic username:password

The Replay-Attack prevention is achieved by packing a timestamp and the password into the
password part and encrypting it with the public key:

Authorization: Basic username:[timestamp|password]

The timestamp and password are base64 encoded, then encrypted with the public key and hex
encoded. Finally the username and packed-password are base 64 encoded. This block is illustrated
in figure 7.19.

92 CHAPTER 7. IMPLEMENTATION

Authorization: Basic username : Timestamp|password

Base64 encoded
RSA encrypted
Hex encoded

Base64 encoded

Figure 7.19: RSA user credentials block

When the username and packed-password block arrives at the cloud application the packed-
password part is decrypted and separated. The timestamp is checked for whether it is current
enough to be accepted and then the user and unpacked password is validated with the Membership
framework. This security scheme can be used by any type of client, as long as the username,
password and timestamp are packed and encoded in the correct order. For this prototype a
JavaScript client was developed to test the RSA encrypted user credentials.

In this implementation, only the timestamp and the password are encrypted and that is enough to
securely send the user credentials to the cloud application and prevent Replay-Attacks. It would
be possible to additionally secure the body content of the request, using the same encryption
approach. An alternative idea would be, to encrypt the body with a symmetric algorithm such as
AES and pack the key with the timestamp and password.

7.10 Chapter Summary

From the initial design, each of the components have been implemented in the .NET framework.
The final solution consists of a Web Role, running the MVC 4 based web site, an XML Webservice
and the RESTful interface, through the Web API in the .NET framework. The DER WebSocket
Interface is implemented as a Worker Role. The solution is centered around the Core that is built
using multiple components to implement the layered architecture design.

To handle the raw data from the DERs, the Azure Table Storage is used, as this allows for a
distributed storage solution. It raised some problems with querying data, as the Azure Table
Storage does not support auto incrementing primary keys and sorting when querying, but this was
solved by implementing the UniqueId class. When querying data, the transformation from raw
data into an IEC 61850 compliant information model is accomplished by using an SCL parser. The
parser instantiates a data model based on the provided SCL configuration file and then populates
and returns a DER Context with the data model and with the most recent DER data, fetched from
the storage.

Saving DER data to the storage, using a general data structure, is accomplished by providing two
interfaces. The module uses IModule as base and gets a reference to an IStorageBuilder instance
injected by the cloud application. Using the provided methods from the storage builder, the
modules builds a list of generic values, using a string representation of the values and a description
of the data type that should be used to restore the data value.

7.10. CHAPTER SUMMARY 93

To transfer the DER data to the cloud, the Alchemy WebSocket library has been used to handle
the connectivity. Besides having support for the official RFC6455 standard for WebSockets, the
library handles issues, such as Windows 7 not having native support for WebSockets. Two sockets
is used in the prototype, one provides functionality to create DER users and upload DER modules.
The other provides functionality for transmitting the raw DER data to the cloud application. Both
sockets have functionality to authenticate and authorize the user before the rest of the functionality
can be used. When communicating from a client to a DER unit, a message is sent through
the Azure Service Bus, and using the two-way communication provided by the WebSocket, it
is passed to the DER unit.

CHAPTER 8

Testing

This chapter describes the testing methods used for the development of the prototype to ensure the
correctness of the implementation of the design. The validation of the functionality described in
the requirements is described in the Case Studies chapter.

8.1 Unit Testing

Unit testing is used to individually test the smallest possible parts of program components together
with their associated data. Unit tests are isolated tests meant to show that the individual code parts
are behaving correctly.

In this project unit tests have been used for the following purposes:

Quick debug turnaround
When developing applications for the Azure cloud, the Azure SDK is used to emulate the
cloud platform where the application processes run and the Azure Storage where the data
is stored. The turnaround for debugging code with the Azure SDK can be lengthy as the
code must be re-deployed every time a debugging session is started. By utilizing a unit
test framework, it is possible to write test cases to test an isolated unit of code, and then
develop the actual code. When using the unit test framework to run and debug the code, the
re-deployment can be avoided in many cases, providing a quick turnaround with regards to
debugging time and the unit test can further be used as an integration test in the testing phase.
This approach to writing code is also a concept used with Test-Driven Development[6].

Find problems early
As mentioned above, multiple unit tests have been written using the Test-Driven
Development (TDD) approach. In TDD unit tests are created before the code logic is
written, the tests contains assertions that describes what the code is expected to do. The
code is written and then, when the tests pass, the code is considered complete. As the code
base grows, the same unit tests are run against the code continuously and if the unit tests
fails, it is considered a bug in the changed code.

Facilitates changes
One of the most cherished consequences of unit testing is the ability to refactor code at a
later date, with confidence that the code still functions correctly. When changes to the code
base is introduced during development, the unit tests can be run to ensure the existing code
still works as intended and during refactoring, the unit tests will show if changed methods
still produces the expected results.

95

96 CHAPTER 8. TESTING

Simplifies integration
Unit testing simplifies integration testing with external components. When changes are
made to external components, such as the DER Controllers, it is important to test whether
the application code is still able to communicate with the external components correctly.
This would normally be a manual process, however testing the integration of these
components can be simplified by automatic unit testing.

Unit testing comes in different frameworks, the unit testing framework used in this project is the
NUnit Unit-Testing framework for .NET1. This framework was chosen as it provides a preferred
assertion scheme over the built in test framework provided by Visual Studio and also provides
extra functionality used in section 8.4.

Unit testing typically follows these three steps:

1. Initialize the test by preparing associated data and dependencies.

2. Run the section of code that is to be tested.

3. Assert the properties of the results.

Unit tests should be short, isolated and run quickly, which is often achieved by mocking the data
and dependencies that the tested code uses. A mocking framework, such as moq2, can be used to
substitute classes with dummy classes, called mocks. When mocking classes, they are separated
from the rest of the code and supplies the tested code with dummy data. It can also be used to
simulate data from parts of the application that has not been developed yet or data from external
components, such as databases, which can be slow or may not be available locally.

8.2 Integration Testing

Integration testing is used to verify functionality- and performance-requirements of major
components and identify problems that arises when these components are coupled together. The
major components of this project that must integrate consists of:

Cloud Application
The cloud application is the main component and interacts with both clients through the
RESTful interface, XML Webservice interface, the Azure Cloud Platform and the DER
Controllers. Of the many points in the code where integration testing takes place, the major
ones are where the cloud application communicates with the other components and each
time data from the Azure Storage is used.

DER Controllers
The DER Controllers integrates with the cloud application at one end and the DER hardware
unit at the other end. They may also need to integrate with a storage for configuration and
application data.

1NUnit: http://www.nunit.org
2moq: http://code.google.com/p/moq

http://www.nunit.org
http://code.google.com/p/moq

8.3. BUILD SYSTEM 97

Azure Cloud Platform
The Azure Cloud Platform is a component in the form of the platform APIs and the Azure
Storage which contains the data of the cloud application. The Azure Storage is heavily
integrated in the cloud application as much of the functionality operates on the data stored
within.

When creating a unit test with NUnit in .NET the class must simply be marked with the TestFixture
attribute and the test case marked with Test in order to let the testing framework know about the
unit tests.

1 [Test, Category("Integration")]
2 public void InstantiateModelAndPopulateFromTableStorage()
3 {

Listing 8.1: Example of an Integration Test Declaration

The unit test can be categorized by appending a category to the Test attribute as shown in listing
8.1. This was be used to separate the normal unit tests from the integration tests.

Whereas the unit testing verifies the correctness of the code in each component the integration
test verifies that the components functions correctly when put together. The integration tests sums
up the unit tests and verifies the functionality of the system as a whole and enables the next step
of validating the functionality of the requirements specification. For this project the validation
testing is done in the form of case studies, described in chapter 9.

8.3 Build System

To enable automated testing for this project (section 8.4) and the ability to generate additional
artifacts such as code documentation and code metrics, a build system was implemented. The
backbone of the build system are the unit tests and the build framework. The unit tests provides
the input for large parts of the generated results and the build framework brings the operations
together in a component where they are easily accessed and can be automated.

In this project, the build system is based on the NAnt build tool for .NET3 with some dependencies
on the built-in build framework MSBuild, provided with Visual Studio. The model in figure 8.1,
shows the basic build files that make up the build system along with a selection of the main
build targets that the build system provides. A build target describes the operation that should be
performed on the code base.

Default
This is the starting point of the build system, it is the default build file and it includes and
enables the usage of all the other build files.

Settings
The settings contains the global settings for the build system such as the base directory,
source code directory, build configuration and tools directory. These settings are used
extensively throughout the build system to reference the directories containing the software
and code. The tools directory is where all the tools needed are found, the build system
makes use of a large collection of external tools to provide unit testing, code coverage, code
documentation etc.

3NAnt: http://nant.sourceforge.net

http://nant.sourceforge.net

98 CHAPTER 8. TESTING

+Test()
+Test.Integration()
+Coverage()
+FindDuplication()
+CheckCodeStyle()
+CheckCodeProblems()
+CheckCyclomaticComplexity()

Unit Test

Summary
Title
Copyright
Style

Sandcastle.settings

DownloadTool()

Download

Clean()
Compile()

Build

+CreateSchema()
+FindTodo()

Essentials

+Document()

Sandcastle

Base.dir
Build.dir
Srouce.dir
Tools.dir
Solution

SettingsDefault

Figure 8.1: Build System

Build
The build file is responsible for building the project solution and cleaning the source code
directories both before and after a build. It is important to clean output directories between
builds depending on the operation to avoid cross pollution between builds.

Unit Test
The unit test build file handles unit testing, integration testing, code coverage and generation
of various reports etc.

Sandcastle
Sandcastle is a rather large tool that provides API documentation of the code. It uses
the XML comments in the code to create the documentation. Examples of the API
documentation can be seen in the appendix figure D.37 and D.38.

Download
The collection of tools in the build system takes up well above 800 MB of space when
unpacked. The idea of a build system is to commit it to an version control system alongside
with the source code, so the build system is always available when the code is checked out.
This build file handles automatic downloading of the tools when an operation is called the
first time.

Essentials
The essentials provides ancillary functionality to the build system, such as generating a
report of Todo’s found in the source code and generation of an IntelliSense schema for
visual studio to enable editing of the build system files etc.

8.4. CONTINUOUS INTEGRATION 99

The primary way to use the build system is through the commandline. This is an example of how
to compile and run unit tests on the project:

nant compile test

This command cleans the output directories, compiles the project defined in the settings and uses
NUnit to run the unit tests on the project. (nant test can be used for shorthand) An overview
of the targets available along with a summary can be viewed by running: nantwith no arguments.

8.4 Continuous Integration

When using TDD and having multiple people developing on the same project, it can often lead
into integration problems. To handle this, a continuous integration (CI) environment can be setup.
CI is used to streamline the building process of a development solution. Whenever a developer
has checked in code to the version control system, the CI server pulls down the latest version and
runs a set of scripts. This can include the ability to run the unit tests created using TDD or even
create deployment ready executables.

The build system, described in section 8.3, is used to facilitate automated testing of the project
and for the development of this project, a Jenkins CI4 server has been setup in an Azure Server
instance. The Jenkins CI provide a user friendly environment, with a web site, to help manage and
show the project solutions added on the server, this can be seen in figure D.34. When the Jenkins
CI checks out any newly committed code, the operations provided by the build system, is used to
run unit tests and integrations tests. Jenkins CI also has a local application, that runs on e.g. the
developers machine and can track the build status of any given solution, shown in figure D.36.
Using CI with the build system it is possible to generate a variety of reports, for example a code
coverage report to show the amount of code covered by unit testing. As figure D.35 shows, the
code coverage for the assembly Core, which is part of the cloud application project, is at 26.6%.

8.5 Chapter Summary

This chapter described how the system has been tested throughout project and the methods used.
The validation of the requirements is conducted through the usage of case studies, which is
described in chapter 9.

The unit tests and integration tests have been used to make the development process more effective
and ensure the reliability of existing functionality, as changes are introduced into the code. The
build system has enabled automatic testing with the use of continuous integration and can generate
of a variety of reports.

4Jenkins CI: http://jenkins-ci.org

http://jenkins-ci.org

CHAPTER 9

Case Studies

Throughout the project, the use cases, the goals and the requirements have been the foundation of
the development of the prototype. As the previous chapter handled the testing of the solution, the
following chapter will show how two implemented case studies are established, each containing
one or more of the defined use cases.

9.1 Case study : Dantherm DKµCHP

In the first case study, a demonstration of how to utilize a running Dantherm DKµCHP with the
Cloud Service will be explained. This will include the setup, configuration and the development
of the module for the µCHP. The Dantherm DKµCHP is a distributed energy resource located on
an unknown address and only delivers an XML feed with the most current values. This makes
for some limitation, such as direct control of the DER. To handle this, a DER Intermediary is
introduced for legacy units.

9.1.1 DER Intermediary
The DER Intermediator is a separate cloud application that opens the communication with the
DER unit, as it is done using the current convention (see figure 1.1) for DER communication. It
then transmit the data to the Cloud Service via the WebSocket Interface in the Cloud Service. The
application also runs in the cloud, but is a separate application from the Cloud Service.

The DER Intermediator is able to support a wide range of communication methods in order to
fetch the data from any DER unit. It could be via FTP to fetch log data uploaded from a simple
DER controller, using a proprietary communication protocol supported by a specific brand of DER
units or via a Web server where a DER unit has exposed its data via an XML feed.

9.1.2 System setup
As mentioned, the Dantherm DKµCHP is a fully running machine, located on a remote location,
so there is no physical access to the machine. All that is provided is an XML feed through a web
page, that is continuously updated with data from the machine. As no physical contact is possible,
a local DER controller cannot be attached to the machine. Therefore, a “simulated” controller or
“intermediator” is created, as shown on figure 9.1.

101

102 CHAPTER 9. CASE STUDIES

Figure 9.1: Setup for case study : Dantherm DKµCHP

The intermediator first connects and authenticate the associated unit with the Cloud Service. When
it is authenticated, it requests the XML feed from the unit and sends it directly into the cloud using
the communication WebSocket. When the data is sent, it waits for a confirmation that the data has
been retrieved from the Cloud, then waits for 10 seconds to redo the procedure by requesting
the XML feed again and sending it. In this setup, the intermediator represents a “normal” DER
controller, it is just located elsewhere.

9.1.3 Output, Configuration and Module
The XML feed from the unit consists of 8 different values:

1 <Response>
2 <Terminal>
3 <Name>Gas input power (W)</Name>
4 <Value>2750.134491</Value>
5 </Terminal>
6 <Terminal>
7 <Name>Electrical input power (W)</Name>
8 <Value>113.500000</Value>
9 </Terminal>

10 <Terminal>
11 <Name>Thermal output power (W)</Name>
12 <Value>1722.240000</Value>
13 </Terminal>
14 <Terminal>
15 <Name>Electrical output power (W)</Name>
16 <Value>951.200000</Value>
17 </Terminal>

9.1. CASE STUDY : DANTHERM DKµCHP 103

18 <Terminal>
19 <Name>System State</Name>
20 <Value>Operation</Value>
21 </Terminal>
22 <Terminal>
23 <Name>Control Mode</Name>
24 <Value>4</Value>
25 </Terminal>
26 <Terminal>
27 <Name>Load point (\%)</Name>
28 <Value>100</Value>
29 </Terminal>
30 <Terminal>
31 <Name>System Running?</Name>
32 <Value>1</Value>
33 </Terminal>
34 </Response>

From this, the SCL can be constructed, using the logical nodes definitions found in IEC 61850-7-
420 standard and the IEC 61850-7-4 standard.

1 <IED name="DNTHRM1">
2 <AccessPoint name="S1">
3 <Server>
4 <Authentication/>
5 <LDevice desc="Dantherm DER unit" inst="DNTHRM1">
6 <LN0 lnClass="LLN0" inst="" lnType="LLN0a" />
7 <LN lnClass="Terminal" inst="" lnType="TERM">
8 <DOI name="GasInput"/>
9 <DOI name="ElectricalInput"/>

10 <DOI name="ThermalOutput"/>
11 <DOI name="ElectricalOutput"/>
12 <DOI name="SystemState"/>
13 <DOI name="ControlMode"/>
14 <DOI name="LoadPoint"/>
15 <DOI name="SystemRunning"/>
16 </LN>
17 </LDevice>
18 </Server>
19 </AccessPoint>
20 <DataTypeTemplates>
21 <LNodeType id="TERM" lnClass="Terminal">
22 <DO name="GasInput" type="GasInput" />
23 <DO name="ElectricalInput" type="ElectricalInput" />
24 <DO name="ThermalOutput" type="ThermalOutput" />
25 <DO name="ElectricalOutput" type="ElectricalOutput" />
26 <DO name="SystemState" type="SystemState" />
27 <DO name="ControlMode" type="ControlMode" />
28 <DO name="LoadPoint" type="LoadPoint" />

104 CHAPTER 9. CASE STUDIES

29 <DO name="SystemRunning" type="SystemRunning" />
30 </LNodeType>
31 <DOType id="GasInput" cdc="GasInput">
32 <DA name="instMag.f" fc="MX" bType="FLOAT32" />
33 </DOType>
34 <DOType id="ElectricalInput" cdc="ElectricalInput">
35 <DA name="instMag.f" fc="MX" bType="FLOAT32" />
36 </DOType>
37 <DOType id="ThermalOutput" cdc="ThermalOutput">
38 <DA name="instMag.f" fc="MX" bType="FLOAT32" />
39 </DOType>
40 <DOType id="ElectricalOutput" cdc="ElectricalOutput">
41 <DA name="instMag.f" fc="MX" bType="FLOAT32" />
42 </DOType>
43 <DOType id="SystemState" cdc="SystemState">
44 <DA name="stVal" fc="ST" bType="Unicode255" />
45 </DOType>
46 <DOType id="ControlMode" cdc="ControlMode">
47 <DA name="stVal" fc="ST" bType="INT32" />
48 </DOType>
49 <DOType id="LoadPoint" cdc="LoadPoint">
50 <DA name="stVal" fc="MX" bType="INT32" />
51 </DOType>
52 <DOType id="SystemRunning" cdc="SystemRunning">
53 <DA name="stVal" fc="ST" bType="INT32" />
54 </DOType>
55 </DataTypeTemplates>
56 </IED>

With the SCL describing the structure of the unit (seen from the XML feeds point of view), the
module to handle the raw data, also needs to be created. To do so, an assembly based on the
ModuleBase class library project, with a class inheriting the IModule interface is created. The
function ParseData (see section 7.6) takes in the raw string, and using the built-in XDocument
class, it parses through each node. For each node it calls the AddValue on the instantiated
StorageBuilder. This creates an internal dictionary with a collection of values in the cloud
solution, that can then be passed into the Table Storage. As an example for adding data to the
storage builder, the value of the “Gas input power” is added with the following line:

1 storageBuilder.AddValue(node.Element("Value").Value,
DataTypeEnum.FLOAT32, "Terminal.GasInput", "Terminal.GasInput
.instMag.f", "Gas input power", SIUnit.Watt, Multiplier.Kilo)
;

9.1. CASE STUDY : DANTHERM DKµCHP 105

9.1.4 Unit Configuration
When the module and the SCL configuration file have been created, the files can be uploaded into
the cloud solution and a unit can be created. This is done through the web page (figure D.1),
by authenticating with a user and navigating to the “Upload Module” page (figure D.18). The
module is given the name “Standard.DKuCHP” and the version number 1.0. Then the selected
SCL configuration file is input with the version number 1.0.

When the information is posted to the web site, the unit can be created on the “Create Unit” page
(figure D.13). “Dantherm Unit 2” is used as the unit name.

The module is selected from the drop down box, and the information is then posted. This allows
the user to view the new ID and password associated with the unit (figure D.8):

Unit ID: 9223372036854775607
Password: 11Tv9q|uWx)Hq64:+dW##H:]]R3S1@aEwc@fd+;6=/WJT@l[sqxQK@7g&o|s_wJ

These values are then configured in the intermediator, which then connects to the cloud,
authenticates, retrieves the feed from the DER unit and sends it to the cloud.

9.1.5 Data Retrieval
With the unit and the intermediator running and posting data to the cloud, the data can be retrieved
through different interfaces. A user with the following credentials can be used: Username: user1
Password: password1

9.1.5.1 Using the Website

To view the posted data on a web page, the unit is simply found in the user’s list of units (figure
D.7). On the right side the “View Data” is click-able and navigates to a new page (figure D.29),
where all the posted data can be viewed by session ID listed after most current time stamp.
Accessing one of the sessions (figure D.30), shows all of the stored information in a simple view.

9.1.5.2 Query Interface

Another way is for the user to go through the Web API and query data using a RESTful interface.
To do this, the unit is queried by following the notation described in section 6.1.2. As an example,
a query to get the complete information model, would look like this:

http://cloudsolution39.cloudapp.net/api/query/9223372036854775607

The query returns an IEC 61850 compliant information model in XML:

1 <Server>
2 <LD Name="DNTHRM1" Ref="DNTHRM1">
3 <LN Name="LLN0" Type="LLN0" Ref="DNTHRM1/LLN0" />
4 <LN Name="Terminal" Type="Terminal" Ref="DNTHRM1/Terminal">
5 <DO Name="GasInput" Type="GasInput" Ref="DNTHRM1/Terminal.

GasInput">

106 CHAPTER 9. CASE STUDIES

6 <DA FC="DC" Name="instMag.f" Type="FLOAT32" Ref="DNTHRM1/
Terminal.GasInput.instMag.f">0.000000</DA>

7 </DO>
8 <DO Name="ElectricalInput" Type="ElectricalInput" Ref="

DNTHRM1/Terminal.ElectricalInput">
9 <DA FC="DC" Name="instMag.f" Type="FLOAT32" Ref="DNTHRM1/

Terminal.ElectricalInput.instMag.f">47.500000</DA>
10 </DO>
11 <DO Name="ThermalOutput" Type="ThermalOutput" Ref="DNTHRM1/

Terminal.ThermalOutput">
12 <DA FC="DC" Name="instMag.f" Type="FLOAT32" Ref="DNTHRM1/

Terminal.ThermalOutput.instMag.f">0.000000</DA>
13 </DO>
14 <DO Name="ElectricalOutput" Type="ElectricalOutput" Ref="

DNTHRM1/Terminal.ElectricalOutput">
15 <DA FC="DC" Name="instMag.f" Type="FLOAT32" Ref="DNTHRM1/

Terminal.ElectricalOutput.instMag.f">-34.500000</DA>
16 </DO>
17 <DO Name="SystemState" Type="SystemState" Ref="DNTHRM1/

Terminal.SystemState">
18 <DA FC="DC" Name="stVal" Type="Unicode255" Ref="DNTHRM1/

Terminal.SystemState.stVal">Safelock</DA>
19 </DO>
20 <DO Name="ControlMode" Type="ControlMode" Ref="DNTHRM1/

Terminal.ControlMode">
21 <DA FC="DC" Name="stVal" Type="INT32" Ref="DNTHRM1/Terminal.

ControlMode.stVal">4</DA>
22 </DO>
23 <DO Name="LoadPoint" Type="LoadPoint" Ref="DNTHRM1/Terminal.

LoadPoint">
24 <DA FC="DC" Name="stVal" Type="INT32" Ref="DNTHRM1/Terminal.

LoadPoint.stVal">0</DA>
25 </DO>
26 <DO Name="SystemRunning" Type="SystemRunning" Ref="DNTHRM1/

Terminal.SystemRunning">
27 <DA FC="DC" Name="stVal" Type="INT32" Ref="DNTHRM1/Terminal.

SystemRunning.stVal">0</DA>
28 </DO>
29 </LN>
30 </LD>
31 </Server>

9.2. CASE STUDY : BEAGLEBONE COMMUNICATION 107

9.1.6 Summary
The previous case study includes multiple use cases defined in the requirements chapter. It shows
how to create a unit, upload a module and SCL configuration file , accessing unit data, connecting
to the cloud and how to query data. Moreover, it shows that the system fulfills the functional
requirements.

As only 8 data point was available for the DER, the case study do not show how to view the
flexibility interface as it is not supported by the DER. Furthermore, it is not possible to post data
to the DER, as it is only an intermediator and not a real DER controller.

When querying the data in the cloud, it goes directly into the Azure Table Storage and retrieves
the latest data set. It is currently not supported to make a “direct retrieval” from the unit, but as
the unit is posting data in real-time to the cloud, this should not be a problem.

9.2 Case study : BeagleBone Communication

The second case study will show, how a BeagleBone1, running Angstrom Linux on an embedded
micro-controller, can be connected to the cloud acting as a DER Controller. Showing that an
embedded micro-controller can connect to the Windows Azure platform, and communicate with a
Microsoft technology using a Linux based system, is important, as is it demonstrate that there are
no limits as to who can connect. A micro-controller based DER controller is a common scenario,
with benefits like being able to run with a very low power consumption.

9.2.1 System Setup
The BeagleBone has capabilities to attach boards such as serial board, in order to establish
communication between the embedded micro-controller and a foreign unit (e.g. a DER). In
the following setup, the BeagleBone will only generate simple values at random, to illustrate a
connected DER unit. The programming language used will be Python, as it can run natively on
the BeagleBone and is a widely used programming language.

The BeagleBone DER Controller has been created to support the iPower Flexibility Interface, and
relevant parts of the information model simulated in the Beaglebone, are exposed through the
iPower Flexibility Interface.

9.2.2 BeagleBone
The BeagleBone consists of two boards:

Top Board
On the top board two light bulbs are located, along with two buttons.

Bottom Board
On the button board, three small light bulbs are located.

This can be seen in figure 9.2, where the actual BeagleBone is shown.

1BeagleBone: http://beagleboard.org/bone

http://beagleboard.org/bone

108 CHAPTER 9. CASE STUDIES

Figure 9.2: BeagleBone

9.2.2.1 BeagleBone Client

To establish the communication from the BeagleBone to the cloud, four Python modules have
been created:

Main.py
This is the main executable of the Python application. It setup the environment using the
remaining python modules.

HardwareIO.py Handles the light state of each of the light bulbs on the board. It does so through
direct communication with the system path, for example:

open("/sys/devices/platform/leds-gpio/leds/beaglebone::usr1/brightness", ’w’).write("1")

would turn on the light and one of the LED’s on the bottom board. The modules also starts
a thread running the pollButtons function in ButtonsAndLights.py.

WebsocketClient.py
Establishes the connection to the cloud through an imported WebSocket library. It opens
a WebSocket and runs in a continuous loop, posting data to the cloud. To connect
the BeagleBone to the Cloud Service, only a little Python code is needed. Using PyPI
WebSocket client2 a connection is established, by entering the following code:

1 ws = websocket.WebSocketApp(ws://cloudsolution39.cloudapp.net
:10101/communication)

2 ws.run_forever()

2Python WebSocket library: http://pypi.python.org/pypi/websocket-client

http://pypi.python.org/pypi/websocket-client

9.2. CASE STUDY : BEAGLEBONE COMMUNICATION 109

With the connection established, posting data is accomplished by the sending a DataTransfer
command (Type:6) on the connection, along with the ID and the raw data in a JSON query.

1 ws.send(’{"Type":6,"Data":{"ID":"cf6cc8e9-df8b-4f05-8bf2-405
c06a15a44","Raw":"test data"}}’)

ButtonsAndLights.py
The modules3 helps establish communication with the button on the top board and for
turning on the lights on the top board.

With the established connection, the raw data is transmitted using the following encoding:

dataid:value | dataid:value | ... | dataid:value | crc(md5)

The first part of the raw data string, consists of multiple sets of an unique data ID and its value,
separated by a ’:’. Each of the data sets is separated with a ’|’, until the end where an MD5 hash
of the data sets in the data string is added.

9.2.2.2 BeagleBone Module & SCL

To handle the raw string, the module first verifies that the data string (until the last ’|’) has the
correct MD5 hash. This will verify, that the data has been transmitted correctly and the parsing
can continue. The parser splits the raw data string and using the StorageBuilder and the data
are passed into the AddValue function. At last, the added values are committed to the storage and
the parser has completed its job.

To interpret the data from the BeagleBone, the following SCL configuration file has been created:

1 <IED name="BBDERC1">
2 <AccessPoint name="S1">
3 <Server>
4 <Authentication/>
5 <LDevice desc="Flexibility DER unit" inst="BBDERC1">
6 <LN0 lnClass="LLN0" inst="" lnType="LLN0a" />
7 <LN lnClass="FLEX" inst="" lnType="FLEXa">
8 <DOI name="Type"/>
9 <DOI name="ECP"/>

10 <DOI name="Status">
11 <DAI name="AllowRemCtrl">
12 <Val>1</Val>
13 </DAI>
14 <DAI name="ActivateRemCtrl">
15 <Val></Val>
16 </DAI>
17 </DOI>
18 </LN>
19 <LN lnClass="Light" inst="" lnType="LIGHT">
20 <DOI name="TopBoard" />

3http://www.gigamegablog.com/2012/03/16/beaglebone-coding-101-buttons-and-pwm/

http://www.gigamegablog.com/2012/03/16/beaglebone-coding-101-buttons-and-pwm/

110 CHAPTER 9. CASE STUDIES

21 <DOI name="BottomBoard" />
22 </LN>
23 </LDevice>
24 </Server>
25 </AccessPoint>
26 </IED>

With the data types:

1 <DataTypeTemplates>
2 <LNodeType id="LIGHT" lnClass="Light">
3 <DO name="TopBoard" type="TopBoard" />
4 <DO name="BottomBoard" type="BottomBoard" />
5 </LNodeType>
6 <DOType id="TopBoard" cdc="TopBoard">
7 <SDO name="Left" type="StatusValue" />
8 <SDO name="Right" type="StatusValue" />
9 </DOType>

10 <DOType id="BottomBoard" cdc="BottomBoard">
11 <SDO name="Left" type="StatusValue" />
12 <SDO name="Middle" type="StatusValue" />
13 <SDO name="Right" type="StatusValue" />
14 </DOType>
15 <DOType id="StatusValue" cdc="StatusValue">
16 <DA name="StVal" fc="ST" bType="INT32" />
17 </DOType>
18 <LNodeType id="FLEXa" lnClass="FLEX">
19 <DO name="Type" type="FLEXType"/>
20 <DO name="ECP" type="ECP"/>
21 <DO name="Status" type="FLEXStatus"/>
22 </LNodeType>
23 <DOType id="FLEXType" cdc="FLEXType">
24 <DA name="DERName" fc="DC" bType="Unicode255"/>
25 <DA name="DERType" fc="DC" bType="Unicode255"/>
26 </DOType>
27 <DOType id="ECP" cdc="ECP">
28 <DA name="GeoConPnt" fc="CF" bType="Unicode255"/>
29 <SDO name="VolConPnt" type="VolConPnt"/>
30 </DOType>
31 <DOType id="VolConPnt" cdc="VolConPnt">
32 <DA name="mag.f" fc="MX" bType="FLOAT32"/>
33 <DA name="mag.i" fc="MX" bType="INT32"/>
34 </DOType>
35 <DOType id="FLEXStatus" cdc="FLEXStatus">
36 <SDO name="DERStatus" type="StatusValue"/>
37 <SDO name="RemCtrlErr" type="StatusValue"/>
38 <SDO name="RemCtrlEnabled" type="StatusValue"/>
39 <DA name="AllowRemCtrl" fc="CO" bType="INT32"/>
40 <DA name="ActivateRemCtrl" fc="CO" bType="INT32"/>

9.2. CASE STUDY : BEAGLEBONE COMMUNICATION 111

41 </DOType>
42 </DataTypeTemplates>

The important parts in the SCL configuration file, are the three flexibility nodes, configured under
the FLEX logical node. The FLEX node includes: Type, ECP (Electrical Connection Point) and
Status. If more information was required, the FLEX logical node would simply be extended
with more data objects. In addition to the FLEX logical node, the logical node Light has been
configured. The Light node consists of a data object for each of the two boards and contains the
status values of each led on the board.

9.2.3 Data Retrieval
As with the previous case study, information from the BeagleBone DER Controller is stored in the
Azure Table Storage. Accessing the data is therefore retrieved in the same way, through the web
page or the RESTful interface. An example of a response for a RESTful query, can be seen in the
following listing:

1 <Server>
2 <LD Name="BBDERC1" Ref="BBDERC1">
3 <LN Name="LLN0" Type="LLN0" Ref="BBDERC1/LLN0"/>
4 <LN Name="FLEX" Type="FLEX" Ref="BBDERC1/FLEX">
5 <DO Name="Type" Type="FLEXType" Ref="BBDERC1/FLEX.Type">
6 <DA FC="DC" Name="DERName" Type="Unicode255" Ref="BBDERC1/

FLEX.Type.DERName">BeagleBone DER Controller</DA>
7 <DA FC="DC" Name="DERType" Type="Unicode255" Ref="BBDERC1/

FLEX.Type.DERType">Python based prototype DER Controller<
/DA>

8 </DO>
9 <DO Name="ECP" Type="ECP" Ref="BBDERC1/FLEX.ECP">

10 <DO Name="VolConPnt" Type="VolConPnt" Ref="BBDERC1/FLEX.ECP.
VolConPnt">

11 <DA FC="MX" Name="mag.f" Type="FLOAT32" Ref="BBDERC1/FLEX.
ECP.VolConPnt.mag.f">413</DA>

12 <DA FC="MX" Name="mag.i" Type="INT32" Ref="BBDERC1/FLEX.ECP
.VolConPnt.mag.i">413</DA>

13 </DO>
14 <DA FC="CF" Name="GeoConPnt" Type="Unicode255" Ref="BBDERC1/

FLEX.ECP.GeoConPnt">0000000x11111111/abcdefg</DA>
15 </DO>
16 <DO Name="Status" Type="FLEXStatus" Ref="BBDERC1/FLEX.Status"

>
17 <DO Name="DERStatus" Type="StatusValue" Ref="BBDERC1/FLEX.

Status.DERStatus">
18 <DA FC="ST" Name="StVal" Type="INT32" Ref="BBDERC1/FLEX.

Status.DERStatus.StVal">1</DA>
19 </DO>
20 <DO Name="RemCtrlErr" Type="StatusValue" Ref="BBDERC1/FLEX.

Status.RemCtrlErr">

112 CHAPTER 9. CASE STUDIES

21 <DA FC="ST" Name="StVal" Type="INT32" Ref="BBDERC1/FLEX.
Status.RemCtrlErr.StVal">0</DA>

22 </DO>
23 <DO Name="RemCtrlEnabled" Type="StatusValue" Ref="BBDERC1/

FLEX.Status.RemCtrlEnabled">
24 <DA FC="ST" Name="StVal" Type="INT32" Ref="BBDERC1/FLEX.

Status.RemCtrlEnabled.StVal">1</DA>
25 </DO>
26 <DA FC="CO" Name="AllowRemCtrl" Type="INT32" Ref="BBDERC1/

FLEX.Status.AllowRemCtrl">1</DA>
27 <DA FC="CO" Name="ActivateRemCtrl" Type="INT32" Ref="BBDERC1

/FLEX.Status.ActivateRemCtrl">0</DA>
28 </DO>
29 </LN>
30 <LN Name="Light" Type="Light" Ref="BBDERC1/Light">
31 <DO Name="TopBoard" Type="TopBoard" Ref="BBDERC1/Light.

TopBoard">
32 <DO Name="Left" Type="StatusValue" Ref="BBDERC1/Light.

TopBoard.Left">
33 <DA FC="ST" Name="StVal" Type="INT32" Ref="BBDERC1/Light.

TopBoard.Left.StVal">0</DA>
34 </DO>
35 <DO Name="Right" Type="StatusValue" Ref="BBDERC1/Light.

TopBoard.Right">
36 <DA FC="ST" Name="StVal" Type="INT32" Ref="BBDERC1/Light.

TopBoard.Right.StVal">1</DA>
37 </DO>
38 </DO>
39 <DO Name="BottomBoard" Type="BottomBoard" Ref="BBDERC1/Light.

BottomBoard">
40 <DO Name="Left" Type="StatusValue" Ref="BBDERC1/Light.

BottomBoard.Left">
41 <DA FC="ST" Name="StVal" Type="INT32" Ref="BBDERC1/Light.

BottomBoard.Left.StVal">1</DA>
42 </DO>
43 <DO Name="Middle" Type="StatusValue" Ref="BBDERC1/Light.

BottomBoard.Middle">
44 <DA FC="ST" Name="StVal" Type="INT32" Ref="BBDERC1/Light.

BottomBoard.Middle.StVal">0</DA>
45 </DO>
46 <DO Name="Right" Type="StatusValue" Ref="BBDERC1/Light.

BottomBoard.Right">
47 <DA FC="ST" Name="StVal" Type="INT32" Ref="BBDERC1/Light.

BottomBoard.Right.StVal">1</DA>
48 </DO>
49 </DO>
50 </LN>
51 </LD>

9.2. CASE STUDY : BEAGLEBONE COMMUNICATION 113

52 </Server>

As it can be seen, the two boards on the BeagleBone each have their Data Object. The first
(TopBoard) contains two lights, where the status of the left light bulb is 1 and the right is 0. The
second board contains three light bulbs, where the left is 0 and the other two are 1. The flexibility
interface has its own logical node, where three Data Objects are available.

9.2.4 Posting Data
In the case where e.g. a VPP wants to send a control command via the RESTful interface, the
VPP would issue a HTTP POST request to the cloud service. As the cloud service is a distributed
application running in multiple data centers, the cloud service has to route the message to the
correct server instance, where the DER is located. As figure 9.3 shows, the POST command
is routed through the Inter-instance communication and then through the duplex WebSocket
connection, down to the BeagleBone DER Controller.

Figure 9.3: Communication flow from a VPP to BeagleBone DER Controller

Sending a post request to turn on the light at Light.BottomBoard.Left, would be as follows:

POST /api/query/9223372036854775207/BBDERC1/Light/BottomBoard/Left
Host: 168.63.148.192
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
X-Requested-With: XMLHttpRequest
Content-Length: 25
Connection: keep-alive
Pragma: no-cache
Cache-Control: no-cache

{ "value" : "1" }

The post is transmitted through the cloud service, directed into the correct server instance and then
sent the to BeagleBone DER Controller. The response given to the post request, is a confirmation
that the message has been received by the DER Controller. To verify that the control value has
been set, the change can be found in the next update of the information model in the cloud, as
described in section 6.4.2.

114 CHAPTER 9. CASE STUDIES

9.2.5 Summary
The previous section showed how an embedded micro-controller, running a Linux operating
system can connect and use the cloud solution. Using a BeagleBone to represent a DER Controller,
simulating connectivity with a DER, the flexibility interface has been implemented as an extension
to the IEC 61850 standard. Running an application (written in Python) on the BeagleBone, a
connection has been established to the cloud through a WebSocket and (randomized) data is
transmitted. With the connection open, it is possible to send a HTTP Post command, through
the cloud, down to the DER Controller, in order to turn on/off a LED on the BeagleBone.

9.3 Chapter Summary

With two case studies, each showing different perspective of the implementation, all of the use
cases, described in section 3.1, have been carried out.

For the first case study of a Dantherm DKµCHP, the use cases “Creating Unit”, “Upload Module
& SCL”, “Accessing Unit Data” and “Connect to CloudSolution” have been the primary focus.
Showing how a legacy DER can be connected with the cloud and then present its content. Either
through a website or through a RESTful interface.

The second case study focuses on how to implement a DER Controller, based on the new DER-
to-cloud concept, on an embedded micro-controller. Using a BeagleBone, it is shown how to
simulate a DER connected to a DER hardware unit, posting data to the cloud service, accessing
the data as a client and sending commands to the DER Controller. The focus of this case study
was primarily the use case “Query Data” and “Post Data”, including the implementation of the
iPower Flexibility Interface.

CHAPTER 10

Conclusion

In the following, the thesis will be concluded. The project vision will be revisited from section
1.2 and the goals from section 1.3.2, in order to conclude if the goals have been fulfilled. From
this, the implementation of the prototype, results of the case studies and some of the future work
and ideas that could be implemented in the project at a later date, will be discussed.

The chapter then completes the thesis by looking into the work that have been conducted
concurrently with the thesis and the remarks given by iPower, regarding the thesis contribution
to Work Package 4.

10.1 A Revisit of the Project Vision

The vision of the thesis was to create a proof-of-concept prototype, that would show how multiple
distributed energy resources could communicate in real-time up to a cloud. The cloud then
processes the data from the distributed energy resources and provides easy access to the data,
using the IEC 61850 standard as an information model, which includes the iPower Flexibility
Interface implemented as additional nodes to the IEC 61850-7-420 standard sub part.

10.2 Summary of Chapters

The overall goal of the thesis has been defined in the project description and is to create a
prototype, that can “Communicate to a DER through a cloud-based solution”. In order to do
this, certain sub-goals needs to be achieved. In collaboration with iPower, a flexibility interface is
also to be integrated with the IEC 61850 standard, this should be done as additional nodes to the
standard sub part described in IEC 61850-7-420. With this, a clear vision on the final prototype
and thesis have been made, along with a risk analysis to specify certain threats during the project
phase.

The thesis is based on many different concepts, from the electrical world of the Smart Grid and
distributed energy resources to modern cloud computing. The Smart Grid is the “goto” concept,
when talking about the electrical grid of “tomorrow”. It can intelligently aggregate distributed
energy resources, such as wind turbines and electric vehicles through a virtual power plant, which
then can make a bid into the danish market.

The Smart Grid is a state-of-the-art grid, where standardization is still under development.
Organizations such as CENELEC defines certain aspects on how the Smart Grid should be built,
including the architecture, information model and standards, such as IEC 61850. They introduces
the concept of flexibility, when communicating with distributed energy resources, but the exact
standard implementation is still an ongoing topic. A part of the thesis is to collaborate with
iPower-net and implement their definition of flexibility into existing standards.

115

116 CHAPTER 10. CONCLUSION

To handle the electrical grid of “tomorrow”, a new concept of communication will also be
introduced. Cloud computing is a new concept, where the underlying computational resources are
spread out throughout the world. It is a green way to get computational power, that is accessible
for all computers with an Internet connection. It is a very reliable and elastic platform, that allows
scaling of resources when needed and provides a guarantee for quality of service.

Six use cases have been created in order to define the primary functionality of the prototype. From
the use cases and the project goals, functional and non-functional requirements have been created.
These requirements defines what the system should do and how it should do it. To ensure that each
of the functional requirements are accounted for, a requirement matrix shows the relation between
the functional requirements and the use cases.

The analysis of the cloud showed that each of the different service models have different
advantages and disadvantages. The IaaS offers full control over the underlying hardware, but
requires a lot more technical knowledge/management. PaaS is relatively vendor locked, but
it minimizes maintenance and allows for scalability. SaaS is very scalable, but it limits the
development capabilities. The PaaS service model has been chosen as the correct layer that the
solution will be developed for. It handles scalability and does not require hardware maintenance,
and as it is only a prototype, the vendor lock is not a problem.

The three largest PaaS providers on the market (Amazon, Google and Microsoft) have many
similarities, but the Azure platform has been chosen due to the .NET framework and the 1
year access through Microsoft ImagineCup. When communicating with the cloud from a DER,
WebSockets with push technology for transactions have been chosen as the ideal solution, as it
allows for duplex real-time communication and it is the DER that connects to the cloud.

The analysis of standards described the IEC 61850 standard and the information model. It was
shown how the data, in the information model, can be referenced using a well defined naming
scheme, which allows for a complex data structure. The information model can be inspected
using the ASCI interface and the queries can be filtered, using functional constraints.

The iPower Flexibility Interfaces utilizes a service oriented approach, to describe the flexibility
provided in DER units. Through the analysis of the standard and the proposed flexibility concept,
the Flexibility Interface was added as an additional Logical Node to the IEC 61850-7-420 standard,
allowing the flexibility concept to be exposed through the existing IEC 61850 standard.

Moving to a cloud-based solution changes a lot of the design aspects, in the existing domain
model of the smart grid. To handle multiple distributed energy resources, each DER connects
(using a controller) to the cloud solution through a WebSocket, allowing for near real-time duplex
communication. Each DER sends the raw data directly up to the cloud, depending on the time
intervals defined in the DER unit. To handle the different raw data structures in the cloud, each
DER has an associated module. The modules could be developed by the DER manufacturers, as
long as they comply with an interface and a general data API for storing the data. The raw data is
processed by the module and then stored in the cloud storage.

The cloud solution architecture is designed as a layered architecture, limiting each layer for
passing layer-specific values, but also providing the means for changes e.g. changing storage
type. When accessing the stored data, a RESTful interface should allow programmable access to

10.2. SUMMARY OF CHAPTERS 117

query or update data. The information model of the data is based on the information model found
in the IEC 61850 standard. When making a query in the RESTful interface, the object reference
in the IEC 61850 has been mapped into an URL, by changing the . (dot) to a / (slash). This allows
for easy access to each of the nodes in the information model, and with functional constraints,
it also provides the functionality for making a filtered query. When the data are retrieved from
the storage, it will then (using the SCL associated with the DER module) transform from the
general data structure into an IEC 61850 compliant information model. To handle a more user
friendly access to the stored data, a web site has been designed to handle the user-, DER- and
module-management.

From the initial design, each of the components have been implemented in the .NET framework.
The final solution consists of a Web Role, running the MVC 4 based web site, an XML Webservice
and the RESTful interface, through the Web API in the .NET framework. The DER WebSocket
Interface is implemented as a Worker Role. The solution is centered around the Core that is built
using multiple components to implement the layered architecture design.

To handle the raw data from the DERs, the Azure Table Storage is used, as this allows for a
distributed storage solution. It raised some problems with querying data, as the Azure Table
Storage does not support auto incrementing primary keys and sorting when querying, but this was
solved by implementing the UniqueId class. When querying data, the transformation from raw
data into an IEC 61850 compliant information model is accomplished by using an SCL parser. The
parser instantiates a data model based on the provided SCL configuration file and then populates
and returns a DER Context with the data model and with the most recent DER data, fetched from
the storage.

Saving DER data to the storage, using a general data structure, is accomplished by providing two
interfaces. The module uses IModule as base and gets a reference to an IStorageBuilder instance
injected by the cloud application. Using the provided methods from the storage builder, the
modules builds a list of generic values, using a string representation of the values and a description
of the data type that should be used to restore the data value.

To transfer the DER data to the cloud, the Alchemy WebSocket library has been used to handle
the connectivity. Besides having support for the official RFC6455 standard for WebSockets, the
library handles issues, such as Windows 7 not having native support for WebSockets. Two sockets
is used in the prototype, one provides functionality to create DER users and upload DER modules.
The other provides functionality for transmitting the raw DER data to the cloud application. Both
sockets have functionality to authenticate and authorize the user before the rest of the functionality
can be used. When communicating from a client to a DER unit, a message is sent through
the Azure Service Bus, and using the two-way communication provided by the WebSocket, it
is passed to the DER unit.

To test the system, unit tests and integration tests have been used to make the development process
more effective and ensure the reliability of existing functionality, as changes are introduced into
the code. The build system has enabled automatic testing with the use of continuous integration
and can generate of a variety of reports.

118 CHAPTER 10. CONCLUSION

With two case studies, each showing different perspective of the implementation, all of the use
cases, described in section 3.1, have been carried out.

For the first case study of a Dantherm DKµCHP, the use cases “Creating Unit”, “Upload Module
& SCL”, “Accessing Unit Data” and “Connect to CloudSolution” have been the primary focus.
Showing how a legacy DER can be connected with the cloud and then present its content. Either
through a website or through a RESTful interface.

The second case study focuses on how to implement a DER Controller, based on the new DER-
to-cloud concept, on an embedded micro-controller. Using a BeagleBone, it is shown how to
simulate a DER connected to a DER hardware unit, posting data to the cloud service, accessing
the data as a client and sending commands to the DER Controller. The focus of this case study
was primarily the use case “Query Data” and “Post Data”, including the implementation of the
iPower Flexibility Interface.

10.3 Achieved Goals

To conclude on the project vision and the project description, the goal “Communicating to a
DER through a Cloud-Based solution” was created as a top goal for the thesis. To achieve this
goal, three different sub goals first had to be achieved.

The first sub goal is “DER to Cloud Communication” and has been achieved by establishing
real-time communication and security in the communication. Using a WebSocket, as a
connection method between the distributed energy resource and the cloud, providing near real-
time communication and following the RFC 6455 standard for the WebSocket protocol, allows
for OS independent units to connect to the cloud. Basic security in the communication has
been implemented, where a unit authenticates using a simple handshake and is then authorized
to transfer raw data to the cloud.

The second sub goal is “Client to Cloud Communication” and it has four sub goals. Two
of these goals are client specific, where special implementation was needed for each client.
Connectivity for a Virtual Power Plant requires a programmable API, that can be queried whenever
the virtual power plant needs to. To handle this, a RESTful interface and an XML Webservice was
implemented. In the RESTful interface an object reference in the information model, is accessed
by mapping the reference into an URL. By adding functional constraints to the reference, it is
possible to add a filter to the query. Using the XML Webservice provides access to a basic ACSI
interface. The sub goal of establishing a connection with the Dong PowerHub has not been met,
but as the importance of the stakeholder, Dong Energy, is only medium, this is not critical for the
overall project. For handling the sub goal of generic client access, a web site has been created,
that enables the clients to create units, upload modules and even view the raw data. All of the
communication is based on a user and role-based authentication system, the RESTful interface has
support for RSA public key encryption and the XML Webservice uses ’per message encryption’,
thus the sub goal of communication security has also been met.

10.4. FUTURE WORK 119

The third and last sub goal is “Information Model” which specifies that each distributed energy
resource should be able to provide an information exchange model that is based on the IEC 61850
model. More than that, it should also include a notion of flexibility as described in the iPower
Flexibility Interface. To handle multiple distributed energy resources, that sends different types
of raw data to the cloud, a generic module based system has been implemented, allowing each
unit to transform the raw data and save it in the cloud storage. When querying the data from the
cloud storage, each module has an associated SCL configuration, that represents the unit’s internal
components. Using the IEC 61850 information model with the flexibility concept, from iPower,
which is added as an additional logical node, a response to a query is formatted in JSON or XML
is created and returned as the reply.

Although one goal was not satisfied, the overall goal of “Communicating a DER through a
Cloud-Based solution” has been fulfilled and the implementation of the prototype was created
successfully. To test the implementation of the prototype and to ensure that the use cases in
section 3.1 and requirements in section 3.2 have been satisfied, two case studies have been carried
out. The first case study enables a Dantherm DKµCHP, as a legacy unit, to connect to the cloud.
Using an intermediator, it connects to the cloud service, then it pulls data from the µCHP unit and
transmits it to the cloud. The case study’s primary focus is on four of the use cases and thereby
also on the majority of the functional requirements. The second case study focuses on how to
implement a DER Controller, based on the new DER-to-cloud communication concept, on an
embedded micro-controller. Using a BeagleBone, it is shown how to simulate a DER connected
to a DER hardware unit, posting data to the cloud service, accessing the data as a client and
sending commands to the DER Controller. The focus of the last case study was primarily on
the last two use cases and thereby fulfilling the remaining functional requirements, including the
implementation of the iPower Flexibility Interface.

10.4 Future Work

The project has fulfilled the main goal, that was set forth at the beginning of the thesis. One of
the sub goals, the Dong PowerHub integration and several interesting ideas, that were discovered
along the way, have been left incomplete. The sub goal and the new ideas includes:

Reporting and logging
Reporting and logging is an interesting part of the IEC 61850 and covers buffered/un-
buffered reports and logs (logs are stored on the local unit). Bringing the reports into the
communication with the cloud, and adding support for the data structures needed to handle
the reports, is definitely doable with the current architecture in the cloud application. When
moving forward from the prototype, being able to support the reporting mechanism, would
be an expected aspect of a full implementation of the IEC 61850 standard. If the logs stored
locally on the DER units is brought into the cloud, it would facilitate a new way of using
and accessing the log data. As DER units often have limited storage capabilities, logs are
only kept for a limited time. Moving to the cloud, the scalable storage offered by the cloud
providers, enables extended storage of the logs for a longer period of time.

120 CHAPTER 10. CONCLUSION

Larger scale distributed testing
Expanded testing would help test the feasibility of the cloud service and clarify the
limitations with regards to latency and throughput. The selection of DER units used during
the development of the prototype was fairly limited, and testing on a larger scale, with
units geographically distributed around the world would give a realistic perspective of
communication latencies.

Utilization of new services made available with the use of the cloud
By making the DER data accessible in the cloud, it is possible to use the data in new ways,
other than simply controlling the DER units from an VPP/aggregator. As the cloud holds
data from many DER units, a variety of statistics and behavior patterns can be drawn from
the data. Manufactures could pull operating/fault statistics from all of their units, DER
owners could compare their DER’s efficiency with the general DER in the power grid and
energy production patterns of DER units could be used by manufactures to improve their
DER design. There are a lot of possibilities and innovative ways to make use of the collected
data, which would be valuable for future work.

Dong PowerHub
A sub goal for the project was to interface with the Dong PowerHub, with the time allotted
for this project, this integration has been left for future work. The Dong PowerHub supports
OPC-UA as the communication protocol, and the design and implementation of a new OPC-
UA communication interface is needed. Implementing support for the Dong PowerHub
would enable the DER units to be connected to and managed by a real world virtual power
plant.

Communication security between DER and cloud
In this project, the communication between the DERs and the cloud service is secured using
the user and role-based system and the connection is done through lightweight WebSockets.
Based on the fact that many types of DER units are small computing units, an encryption
scheme was not applied to the communication. Future work should explore the possibility
to apply encryption to the communication, for example using public and private keys or a
token based system.

Extended response when communicating from a client to a DER
Currently when a command is sent to a DER, the response only confirms that the message
has been received, as described in section 6.4.2. An useful extension to this, would be to
enable the DER to reply to a command with a detailed response, for example containing the
direct results of the command. The protocol described in section 6.4.1 could be extended to
support this.

Two-way communication between the client and DER
As mentioned above, a future use case would be to enable a more detailed communication
with a DER from a client via the cloud service. Further expanding on this, a future idea,
would be to enable two-way communication with the DER unit to and from the client via
the cloud service. The framework and DER communication protocols used by the prototype
was designed with this future ind mind, and could be developed further to support this.

10.5. ADDITIONAL ACTIVITIES 121

Communication initiated from the DER to a client
Facilitating the detailed response and two-way communication is based on the assumption,
that the clients will initiate the connection to the DER units, as the DER units are usually
connected to the cloud service all the time and the clients only connects to the cloud
service as needed. An idea for future work, would be to allow the DER units to initiate
the connection and send information to the clients trough the cloud service. The DERs
are currently connected to the cloud service using a two-way connection, providing near
real-time communication. Sending a message from the DER unit, via the cloud service to a
client, that is not connected to the cloud most of the time, would require some form of push
or extended poll technology to bridge the connection gap between the client and the cloud
service.

10.5 Additional Activities

During the project period, the concept of the thesis has drawn a lot of attention. Through
Microsoft ImagineCup, the thesis has reached a regional final in the Windows Azure competition.
A paper has been written and submitted to the IEEE SmartGridComm 2013 in Vancouver
and is already referenced by the iPower platform manager Rasmus Villefrance and the Danish
Technological Instutute, by Søren Østergaard Jensen, who is researching how to add the flexibility
concept into building construction, rooted in the Smart Grid. Two presentations of the thesis
and its implementation have been presented to the iPower consortium, one at DTU and one at
RISØ. The external supervisor iPower and DONG Energy, Lars Henrik Hansen, has made the
following endorsement (next page) about the thesis, regarding the paper presentation at the IEEE
SmartGridComm.

filr[:r
energu

Til hvem det måtte vedrøre DONG Energy ufi nd Porer AIS
Nesa A116 1

2820 Gentofte

Danmark

Tf. +45 99 55 11 11

Fax +45 99 55 10 45

wrrrir/.dongenergy.dk

CVR-nr. 18 93 66 74

Anbefaling af Jesper Bach og Lasse Ordas kandidatarbeide 24. ma12013

Vores ref. Lars Henrik Hansen

Jesper og Lasse deltager i en aktivitet, som har stor be§dning for dansk industri. Dok' ansvarlis LARHA

Gennem deres kandidatarbejde er de blandt andet aktive i det store nationale projekt hfiå@dongenergy.dk

iPower, hvor de eksempelvis bidrager med vigtigt arbejde inden for udvikling og 'nr' ee55 8168

opbygning af et kommende standardiseret interfiace til integration af DER (disttibuerede

energi ressourcer) enheder, dvs. energiforbrugende/producerende apparater og anlæg

ude i elnettet, hvis driftsfleksibilitet skal gøres anvendelig som en fleksibel ressource i

det fremtidige elsystem. Omtalte interface skulle gerne danne grundlag for en de facto

standard for integration af DER enhedeme og dermed give dansk industri en

konkunencemæssig fordel.

Som opgavestiller til Jesper og Lasse kandidatarbejde er undertegnede meget tilfreds

med de løsninger, som de har valgt at benytte i deres kandidatarbejde. Deres løsning

indeholder en del attraktive muligheder eksempelvis med hensyn til skalerbarhed og

allokering af ressourcer. De har 2 gange deltaget i iPower arbejdspakkemøder, hvor de

har præsenteret fremdriften i deres arbejde. Endvidere har de skrevet artiklen "Utilizing a

flexibilily intertace for distributed eneryy resources through a cloud-based service", med

henblik på at få den optaget i IEEE SmartgridComm 2013 proceedings, hvilket rækker et

godt stykke ud over, hvad man kan forvente iet sædvanligtt kandidatarbejde'

Hverken iPower p§ektet eller DONG Energy har midler til at kunne støtte Jesper og

Lasse i at forelægge resultateme på SmartGridComm konferencen. Undertegnede håber

derfor, at deres ansøgning bliver vel modtaget.

Med venlig hilsen

/ao,A,h*t-
Lars Henrik Hansen

Senioringeniør, Ph.D.

DONG Energy

Side 1/1

Hovsdkdrttr
f*attrak*i53
7000 Frederilia, Dilrmrt

123

Appendix

125

APPENDIX A

Paper

This paper was submitted to the IEEE SmartGridComm international conference on smart grid
communications in Vancouver, Canada, 21-24 October 2013.

The focus of the paper is on how the IEC 61850 standard [44] can be used with the CENELEC
reference architecture [11] to utilize the iPower Flexibility Interface [7] with a cloud solution
architecture.

Conference web page:
http://sgc2013.ieee-smartgridcomm.org/content/ieee-smartgridcomm

127

http://sgc2013.ieee-smartgridcomm.org/content/ieee-smartgridcomm

Utilizing a Flexibility Interface for Distributed
Energy Resources Through a Cloud-Based Service

Lasse Dreisig Orda Jesper Bach Anders Bro Pedersen
M.Sc. M.Sc. Ph.d.

Technical University of Denmark Technical University of Denmark Technical University of Denmark

Bjarne Poulsen Lars Henrik Hansen
Associate Professor, Ph.d. Senior Engineer, Ph.d.

Technical University of Denmark DONG Energy

Abstract—With governments around the world pushing for an
ever increasing shift towards renewable energy production, large
numbers of controllable distributed energy resources are starting
to appear. Already a multitude of proposed control solutions have
seen the light of day, but most are focused solely on the control
itself and not the more practical network- and data management
issues that follows trying to handle such huge portfolios. This
papers covers a cloud based solution to the aforementioned issues,
greatly aiding aggregators scale to meet future demands. It also
includes a flexibility interface that are currently being researched
by iPower, that is mapped to the well tested standard of IEC
61850 as additional sub-nodes. By mapping to existing standards,
no major changes would be needed to adapt existing systems.

I. INTRODUCTION

Power production has traditionally been very centralized,
with large fossil fired combined heat and power plants carrying
the vast majority of the load. In recent years, however, the
interest in renewable energy has spiked and more and more
dispersed energy resources are starting to appear. In Denmark
the government has set an ambitious goal of 50% wind power
penetration by 2020 [1], and a complete out-phasing of fossil
fuels by 2050.

Because the power system has to be kept in balance, a
multitude of new control schemes are being researched in order
to properly manage the new resources [2].

From a network-technical perspective, handling connec-
tions to a multitude of units constitutes a problem in itself. Not
only does it require a significant amount of server capacity, but
obtaining access to all DERs through firewalls and the like, is
a rather daunting task.

By shifting these more tedious tasks to the cloud, the
aggregator not only takes a great step towards true scalability,
but also towards increased security. In connecting directly to
the cloud, the aggregator no longer needs to keep sockets open
for connecting DERs, effectively distancing the critical control
algorithms from the outside world, leaving this to the cloud.

This paper covers the development of a cloud based
framework, for receiving incoming connections from DERs
and mapping their often varying data model into a generic
one based on the well tested IEC 61850. It also includes the
notion of flexibility into IEC 61850 as additional sub-nodes
when communicating with DERs.

II. CENELEC REFERENCE ARCHITECTURE

Standardization of Smart Grid [3] includes many commit-
tees, pilot and research projects, that works both on a national
level, but also on a larger international level. At CENELEC [4]
a Smart Grid Coordination Group (SG-CG) Reference Archi-
tecture Working Group (SG-CG/RA) [5] has been assembled
to focus on certain aspects of the Reference Architecture. This
includes the means to communicate in a more common view
and for integrating various state-of-the-art approaches. Before
visiting the underlying Reference Architecture, the Conceptual
Model is a top layer model that act as a bridge between the
different viewpoints of the Reference Architecture [5].

A. Conceptual Model

More than a century ago, all electrical power supply was
decentralized isolated networks, which developed into a mixed
European centralized network. Within the past fifteen years,
the emergence of Distributed Energy Resources (DER) [6] [7]
has increased and with this, the energy network has become
increasingly more decentralized [5]. Today the trend is still to
become more decentralized [8].

With the integration of DERs into the existing NIST Model
[9], a new “DER” Domain has to be integrated into the existing
model.

Fig. 1. NIST Model with DER Extension [5]

As a part of this new integration, the M490 Working
Group1 introduced the concept of flexibility. The flexibility
combines the model, consumption, production and storage into
one flexibility entity. This should allow for more flexibility
in the NIST Model, and support future demand-response use
cases, as non-IT knowledgeable users would be able to create
use cases, that more easily could be implemented. Table I
shows the NIST Domains, where the flexibility concept could
be used.

1SG-CG/RA and SG-CG/SP

129

Domain Market Grid Flexibility
Markets X
Bulk Generation X
DER X
Customer X
Transmission X
Distribution X
Operations X X X
Service Provider X X X

TABLE I. FLEXIBILITY IN NIST DOMAINS [5]

B. Reference Architecture

An important part of the Reference Architecture, is that it
is based on existing materials, such as the NIST Conceptual
Model [9] and the GridWise Architecture Council [10]. The
Smart Grids Architecture Model (SGAM) framework [5] con-
sists of five layers, that have been abstracted from the Joint
Working Group2 recommendations, where the architecture is
divided into four layers. The five layers are as follows:

• Business Layer
• Functional Layer
• Information Layer
• Communication Layer
• Component Layer

The intention of this abstraction model, is to represent the
information management zones where interactions is identified.

Implementing a flexibility interface that follows the pre-
sented criteria in the Conceptual Model, will be a subject
to the Information Layer and the Communication Layer. The
Information Layer is described as the information, which is
being exchanged between the components using an underlying
common data model. It also includes the semantics for func-
tions and services for the communication. The Communication
Layer is defined as a layer for describing the protocols and the
technology for the interoperability between each component.

Fig. 2. SGAM Framework [5]

2CEN, CENELEC and ETSI Activity

From the two layers, a formal Information Architecture
can be presented, that integrates the data management and the
interfaces needed. As integration technology a SOA solution
[11] is preferred, as it integrates the technical concepts of
enterprise application integration with the organizational em-
bedding. Nevertheless, with the more decentralized systems,
standards for communications is needed. CENELEC presents
the IEC 62541 OPC UA [12], a SOA-based approach for
data exchange between each domain and zones in figure 2.
CENELEC does not recommend any specific standards for how
the data is stored and accessed in the Data Model, but existing
standards such as the IEC 61850 [13] are the most prominent
data models.

III. IEC 61850-7-420 STANDARD

The IEC 61850 standard [13] is a tested standard [14],
that offers a structural data model of a unit and each of
its sub component. As part of the standard the IEC 61850,
the IEC 61850-7-420 [15] describes the basic communication
structure for distributed energy resources logical nodes. This
allows for communication not only locally between DER units
and between the management systems, but also between a
complete DER plant and the operators or aggregators. The
information model of IEC 61859-7-420 primarily utilizes the
existing information model associated with the IEC 61850
standard, but extends it with some DER-specific logical nodes
where it is needed.

A. Information Model

To represent a physical substation environment, figure 3
illustrates the IEC 61850 information model using a layered
hierarchy.

Logical Device

Logical Node

Data Object

Common Attributes

Standard Data Types

Server
1..*

1

1

1Common Data Classes

1

1

1

Name
 ObjectName

 ObjectReference1..*

1..*

1..*

1..*

1..*

1

0..n

0..n

Fig. 3. Information Model Hierarchy [16]

The logical device (LD) is a sub component of the physical
device and is composed of multiple logical nodes. Each logical
node (LN) holds a predefined number of data objects and each
represents a specific function of the device. In each data object
(DO) a predefined name of the associated logical node and
their type or format is defined using a common data class.
Common Data Classes (CDC) is a set of standard data types
and predefined common attributes. Each predefined common
attribute, can be reused in different objects and contains more
common attributes or standard data types.

130

B. Naming Convention

To access a data object within the information model, the
model (as seen in figure 3) can be thought of as a tree like
structure, where the base root is the logical device. As each of
the objects in the structure has an associated ObjectName,
IEC 61850-7-2 states that the path of the data object can be
referenced as follows [16]:

Fig. 4. Naming Convention [15]

This makes a clear and unambiguous path reference for
each object in the information model.

C. New Logical node

For a DER unit or a DER plant, an Electrical Connection
Points (ECP) is needed for defining the properties between one
or more DER units and the electric power system. With the
IEC 61850-7-420 standard, a specific logical node is required
for communication with each ECP. This provides a means
for operating the connectivity for each DER unit, but it also
sets requirements for the communication. The DPST node
[15] provides real-time status and measurements at the ECP,
and communication to and from the ECP, would therefore
be required to be in real-time as well, in order to not loose
functionality in the communication layer.

As an extension to the IEC 61850-7-420, iPower has
created an information model to handle the flexibility requested
from CENELEC.

IV. IPOWER FLEXIBILITY INTERFACE

The iPower project is a collaboration of 32 partners in-
cluding universities, research institutions and companies in the
industry. The project has been granted support from SPIR [17]
- Strategic Platform for Innovation and Research and aims to
develop and grow the use of Smart Grid in the Danish industry.

The Smart Grid Reference Architecture [5] as described by
CEN-CENELEC-ETSI introduces the flexibility concept where
consumption, production and storage are grouped together as
an entity and ranked alongside entities, like the power grid
and power markets. It is expected, that the flexibility concept
will satisfy future requirements to support use-cases, where
more flexibility is needed, than what the current rigid standards
provide. The flexibility model should enable maximum reuse
of the results derived from the models, defined in the current
standards. The iPower project [18] has designed an information
model of this concept in the form of the iPower Flexibility
Interface [19].

The iPower Flexibility Interface is an information model
designed for Direct Control of Distributed Energy Resources
(DER). The flexibility interface provides a management-
oriented approach for communicating the flexibility of DERs
to e.g. an Aggregator or a Virtual Power Plant.

DERs consists of power production units such as wind
turbines, photovoltaics or flexible consumption units, such as

heating and cooling systems or electric vehicles. The flexibility
interface addresses the communication of the flexibility, the
characteristics, that a DER exposes, between an aggregator
or virtual power plant and the DER. An aggregator manages
multiple DERs, in order to provide an accumulated response of
power production or consumption. This enables an aggregator
to buy or sell power on the energy markets or support the
power grid as ancillary services. DERs are equipped with
local controllers and are able to operate autonomously. When
the DERs are connected to an aggregator, they are able to
alter their consumption/production of active/reactive power in
response to signals from the aggregator. The flexibility of a
DER, describes the capabilities of the unit, operating costs and
schedules. For example, a DER may have to prioritize local
needs for power production, and would be unable to meet a
request for power from the aggregator, but other DERs may
be able to fulfill this request. The flexibility interface describes
how to communicate this information to the aggregator or
virtual power plant.

The iPower flexibility interface supports a direct control
setup, between the DERs and the aggregator. Direct control
refers to a setup, where a two-way communication exists
between aggregator and DER. The DERs reports their local
flexibility to the aggregator and the aggregator controls the
DERs based on this information. The flexibility interface, as
illustrated in figure 5, is situated between the aggregator/virtual
power plant and the DERs.

Aggregator
Virtual Power Plant

Controller1

DER1

Controller2 Controllern. . .

DER2 DERn
. . .

Flexibility Interface

Fig. 5. The flexibility Interface sits between the aggregator and the DER
units [19].

The following is a selection of the characteristics described
in the iPower Flexibility Interface:

• Geographical location The location of a DER in the
power grid.

• Combined deliveries DERs can be either pure con-
sumption units, pure productions units or a combined
consumption and productions units.

• Active/reactive power Both the active and reactive power
is required to be communicated to the aggregator, in order
for the aggregator to properly place bids on the power
markets.

• Tracking The ability to track a given remote power
reference or to track a planned power schedule.

• Runtime Minimum and maximum runtime. E.g., a unit
must run for at least 30 min when started.

• Downtime Minimum and maximum downtime. E.g.,
when a unit is turned off, it must be turned off for at least
1 hour.

• Cost The aggregator needs to know the cost associated
with the active/reactive power production, energy level
dependent, unit start-up, unit shutdown for discrete power
units.

131

• Contracts For an aggregator to be able to manage a
DER, some contract or agreement must exist between the
aggregator and the DER. This is communicated through
the flexibility interface.

The information model of the flexibility interface is based
on these characteristics, and is divided into a number of flexi-
bility blocks, which form the basis of the flexibility interface.
In figure 6, a graphical overview of the flexibility blocks is
presented.

Block 1:
Type [M]

1. DER Name
2. DER Type

Block 2:
Electrical Connection Point [M]

1. Geographical connection point
2. Voltage level at connection
point

Block 3:
Status [M]

1. DER Status
2. Remote control error
3. Remote control enabled

●
●
●

Block 4:
Active Power Production [O]

1. Remote control enabled,
reference tracking
2. Remote control, shedule tracking
3. Allow remote control, reference
tracking

Block 5:
Primary Frequency Control [O]

1. Remote control enabled,
continuous primary frequency
reserve
2. Remote control enabled, discrete
primary frequency reserve
3. Allow control enabled, continuous
primary frequency reserve

Block 6:
Flexible Startup Time [O]

1. Remote control enabled, flexible
startup time
2. Allow control enabled, flexible
startup time
3. Active and reactive power profiles

●
●
● ●

●
●

●
●
●

Block 7:
Energy Storage [O]

1. Storage dynamics
2. Storage dynamics, time varying
3. Stored energy

Block 8:
Log [O]

1. Enable logging
2. Name and data
3. Pointer to attribute that should
be logged

Block 9:
Cost [O]

1. Enable costs
2. Cost function

●
●
●

Fig. 6. Flexibility Interface frame blocks [19]

A flexibility model of a specific DER is constructed, using
the relevant blocks to describe its flexibility. This concept is
shown in figure 7 and illustrates the information model of a
single DER unit, constructed of a collection of blocks com-
prising the DERs flexibility information model. In the figure,
the flexibility information model consists of n blocks, each
block being comprised by a number of attributes containing
the actual data. The specific flexibility information model for
a device is known as a flexibility frame.

Block 1:
Type [M]

1. DER Name
2. DER Type
3. Contract type

Block 2:
Electrical Connection Point [M]

1. Geographical connection point
2. Voltage level

Block n:
Active Power Production [O]

1. Active power control possible
2. Active power schedule possible
3. Active power schedule horizon

●●●

●
●
●

●
●
●

●
●
●

Fig. 7. Example of a flexibility frame [19]

In a flexibility frame, some blocks are mandatory and some
are optional, denoted in the figure with [M] for mandatory and
[O] for optional.

A. Flexibility Interface as an extension to IEC 61850-7-420

In order to use the flexibility interface with virtual power
plants in the industry, the interface must be able to be com-
municated using the existing standards for DER management.
The IEC 61850-7-420 [15] standard handles communication
of data from a specific range of DER types defined in the
standard. As IEC 61850-7-420 has a similar conceptual model
compared to the flexibility interface, this makes IEC 61850-7-
420 a logical extension point for the flexibility interface. The
implementation of the flexibility interface, requires a new set
of logical nodes and classes to be added to IEC 61850-7-420,
that can handle the flexibility blocks, but many of the common
data classes can be reused. By implementing the flexibility
interface as an extension to IEC 61850-7-420, it is possible to

provide the flexibility information model as a part of the IEC
61850 [13] information model.

V. COMMUNICATION IN THE CLOUD

To better utilize the increase of decentralized energy net-
works, the communication path between SCADA [20] sys-
tems/VPPs and the DER units has been revisited. Moving
from proprietary dedicated data lines, to modern internet
technologies for the communication, arises network bound-
ary and security issues. With impediments such as firewalls,
routers and dynamic IP addresses, the current situation of
communicating from a server located outside of the network
and accessing a local unit e.g. at a farmers house, has to be
changed. Instead of connecting from outside the network, the
unit now connects from the inside to the server on the outside.
This resolves a lot of the complications mentioned, but it brings
along new criteria for the server to handle multiple connections
and the amount of data that is being sent to the server.

With the cloud [21] becoming more commonly used on
the internet [22] and with the research behind the security [23]
[24], data handling [25] etc., the cloud would be an appropriate
solution for handling the connections and storing the data.

Figure 8 shows a domain model, where the DER unit is
connecting to the cloud. Using a WebSocket, it allows for
real-time communication between the DER unit and the cloud.
This maintains the criteria of the DPST node in the electrical
connection points, as the real-time property between the DER
unit and the server remain intact.

DERCLOUD SERVICE
· IEC 61850 Information Model
· iPower Flexibility Interface Extension
· Information Exchange Model
· Distributed Multi-tenant Capability
· Security

Owner

DERDER

DER
Controller

Manufacturer

VPP

Fig. 8. Domain model

The concept of dealing with DER-to-cloud communication
embraces the idea, that the DER controller should be a basic
computing unit, which transmits the raw data that it collects,
through the lightweight and language neutral WebSockets,
directly to the cloud service. The user that controls the DER
submits a custom module, which is able to handle the raw data
from the DER unit and transform it into a lightweight data
structure, that the cloud service can use. The provided module
is automatically and securely loaded, as the DER connects
to the cloud service. When the data has been transformed,
data monitoring, reporting and logging events and it is then
persisted in the cloud service storage, where clients can query
it. Finally, any additionally defined events triggered by the in-
coming data are handled and dispatched to clients if necessary.

From the view of an application client, the cloud solution
is a multi-tenant cloud service, that has been implemented
using Microsoft Azure3. The cloud service has support for
communicating with the clients such as a VPP, SCADA system
or client monitor applications, through an XML web service

3Windows Azure: Microsoft’s Cloud Platform http://www.windowsazure.
com/en-us/home/features/overview

132

and a web based RESTful interface. The cloud service exposes
two interfaces for a VPP to communicate with using the IEC
61850 standard, mapped onto either the XML web service or
the RESTful interface. Using the XML web service to query
for information about a DER, returns a response using SOAP
XML. The RESTful interface can return a response in either
plain XML or JSON. The response type from the RESTful
interface is determined by what the client has defined in the
accept header in the HTTP request. Figure 9 illustrates the
basic components involved with the communication between
the VPP, DER and the cloud service.

Cloud Service

XML WebService
Preferred

VPP comm
RESTful Service WebSockets

IEC 61850
Information

Model

iPower Flexibility
Interface

Information
Exchange Model

Real-time

Distributed Energy ResourceVirtual Power Plant

Fig. 9. VPP and DER interaction with the cloud

To implement the RESTful interface, which is based on a
concept of resource-based access, the object reference in the
information model is mapped to be compliant with an URL.
Each resource in the data model is accessed via URL nodes
and updated the same way. As the naming convention of the
IEC 61850 standard resembles a URL, changing the . (dot) to
a / (slash) would satisfy the URL requirement [26]. A data
object can then be referenced using the following path:

http://hostname/api/unit-id/device/node/class/attribute
RESTful communication uses the standard HTTP methods
such as GET, PUT, POST and DELETE to manipulate the
resources that are exposed through the interface.

VI. CASE STUDIES

To utilize the Flexibily Interface, it has been implemented
as logical nodes in the IEC 61850 standard. The implemen-
tation is deployed in the cloud and the following two case
studies shows, how to access information on a specified unit
and how to send a control command directly to a DER unit.
As the implementation of the cloud solution is using industry
standard for both the WebSocket and RESTful interface, it is
not limited to certain operating system (OS). In the second case
study an embedded Linux OS is used for the DER controller,
as it does not have the same hardware requirements as e.g.
Windows does.

A. Case Study: Communication with the cloud service

This case study shows, how a VPP and other applications
can query data from a DER unit, using the RESTful interface
provided by the cloud service. The DER unit queried in this
case study is a Dantherm Micro CHP from Dantherm Power4.
To query the RESTful interface, requesting a complete output
of the unit, an HTTP GET request is created on the URL path:

http://hostname/api/<unit-id>
The response is in a format where the data stored in the

cloud service, is mapped into an XML structure that represents

4Dantherm Power http://www.dantherm-power.dk

the IEC 61850 object model standard. A simplified output of
the XML response from the query on the Dantherm Micro
CHP, is shown in listing 1.

1 <Server>
2 <LD Name="DNTHRM1" Ref="DNTHRM1">
3 <LN Name="LLN0" Type="LLN0" Ref="DNTHRM1/LLN0"/>
4 <LN Name="Flexibility" Type="Flexibility" Ref="DNTHRM1/Flex">
5 <DO Name="Type" Type="Type" Ref="DNTHRM1/Flex.Type">
6 <DA FC="DC" Name="Name" Ref="DNTHRM1/Flex.Type.Name">Dantherm CHP</DA>
7 <DA FC="DC" Name="Type" Ref="DNTHRM1/Flex.Type.Type">Micro CHP</DA>
8 </DO>
9 <DO Name="Electrical Connection Point" Type="ECP" Ref="DNTHRM1/Flex.Ecp">

10 <DA FC="CF" Name="Geographical Connection Point" Ref="DNTHRM1/Flex.Ecp.
↪→ GeoConPt">(8018)064514183456789012/452001452174</DA>

11 <DA FC="MX" Name="Voltage Level" Ref="DNTHRM1/Flex.Ecp.VoltageLevel">
↪→ 4000.0000</DA>

12 </DO>
13 .
14 .
15 </LN>
16 <LN Name="Terminal" Type="Terminal" Ref="DNTHRM1/Terminal">
17 <DO Name="GasInput" Type="GasInput" Ref="DNTHRM1/Terminal.GasInput">
18 <DA FC="MX" Name="instMag.f" Ref="DNTHRM1/Terminal.GasInput.instMag.f">

↪→ 70.0000</DA>
19 </DO>
20 <DO Name="ElectricalInput" Type="ElectricalInput" Ref="DNTHRM1/Terminal.

↪→ ElectricalInput">
21 <DA FC="MX" Name="instMag.f" Ref="DNTHRM1/Terminal.ElectricalInput.instMag.f

↪→ ">56.5000</DA>
22 </DO>
23 .
24 .
25 </LN>
26 </LD>
27 </Server>

Listing 1. XML Response from the query to the RESTful interface

The response contains both the Flexibility Interface,
mapped onto the IEC 61850 model and the standard IEC 61850
data objects for this DER unit.

B. Case Study: Communicating from the VPP to a Dachs DER

This case study explores how an application client or VPP
can send control commands to a DER connected to the cloud
service, see figure 10. A BeagleBone5 microcontroller is used
as the DER controller and is connected to a Dachs µCHP
unit from Senertec through a RS232 serial connection. Using
embedded Linux on the BeagleBone, a Python application
communicates with the cloud service through a WebSocket.

Cloud Service

RESTful Service WebSockets

Virtual Power Plant Dachs DER

Inter-instances
communication

DER specific
communication

POST Command

Fig. 10. Communication flow from a VPP to a DACHS DER

In the case where a VPP wants to send a control com-
mand via the RESTful interface, the VPP issues an HTTP
POST request to the cloud service. As the cloud solution
is a distributed application, that can scale to multiple server
instances, the POST request has to be routed to the correct
server instance through inter-instances communication, to the
WebSocket server instance where the µCHP is connected. As
the message arrives at the µCHP controller, it updates the
values on the Dachs µCHP unit. After the data has been
updated on the local µCHP unit, the data model in the cloud
service will be updated when new data is sent from the µCHP
controller to the cloud.

5BeagleBone from http://beagleboard.org/Products/BeagleBone

133

C. Case Study Conclusion

The cases presented in this section shows, how the Flex-
ibility Interface can be utilized as an extension to the IEC
61850-7-420 standard and that the solution that is built using
the cloud, can scale to easily handle large amounts of data,
coming from the many DER units. The solution is based
on a generic implementation of the IEC 61850 information
model, as recommended by CENELEC, and is able to handle
the current IEC 61850 data objects, the Flexibility Interface
object model and future extensions to the IEC 61850 standard.
The data can be accessed using either a RESTful interface or
an XML Web service, which outputs the data in a standards
compliant XML or JSON format.

VII. CONCLUSION

The goal of this paper has been to demonstrate how to
ultilize a flexible interface for distributed energy resources,
following CENELECs recommendation of using the IEC
61850 standard as information model. With the increase in
decentralized energy systems, this paper has shown a cloud-
based solution, where the requirements of real-time communi-
cation from the IEC 61850-7-420 standard has been satisfied
using WebSockets. The prototype is able to handle RESTful
communication from SCADA/VPP, where the information
model is build using IEC 61850 and can be requested through
an intuitive URL. Incorporating the flexible interface in the
existing IEC 61850 information model is accomplished, by
providing additional logical nodes and classes to the infor-
mation model. This result combines the model, consumption,
production and storage into one entity in the IEC 61850
standard. It has the advantages that non-IT knowledgeable
users can create demand-response use cases to describe future
usage requirements.

The advantages of facilitating the communication through
the cloud, allows for a forward-looking, scalable and sustain-
able approach. The clients can access the data of their DER
units securely through various means connection types and
can communicate with the DERs in real-time, as each DER
is connected with the cloud using WebSockets.

The usage of the cloud can be more than just a storage
container for data from the DERs. Moving the services that
a SCADA system and VPP normally would run locally, to a
cloud service, would increases the value potential and add new
possibilities for the services that are delivered to the clients of
the solution.

REFERENCES

[1] Danish Energy Agency, Energy Policy in Denmark.
http://www.ens.dk/Documents/Netboghandel%20-%20publikationer/
2013/Energy%20Policy%20in%20Denmark.pdf, 2012.

[2] A. B. Pedersen and E. B. Hauksson, “Enabling distributed energy
resources in a virtual power plant using iec 61850,” Master’s thesis,
Technical University of Denmark, DTU, 2010.

[3] H. Farhangi, “The path of the smart grid,” Power and Energy Magazine,
IEEE, vol. 8, no. 1, pp. 18–28, 2010.

[4] Cenelec, European Committee for Electrotechnical Standardization.
http://www.cenelec.eu/, 2013.

[5] CEN-CENELEC-ETSI Smart Grid Coordination Group, Smart Grid
Reference Architecture. http://ec.europa.eu/energy/gas electricity/
smartgrids/doc/xpert group1 reference architecture.pdf, 2012.

[6] J. Driesen and F. Katiraei, “Design for distributed energy resources,”
Power and Energy Magazine, IEEE, vol. 6, no. 3, pp. 30–40, 2008.

[7] S. You, “Developing virtual power plant for optimized distributed
energy resources operation and integration,” Ph.D. dissertation, PhD
thesis, Technical University of Denmark, 2011.[2] SENERTEC,” Tech-
nical Documentation CHP unit-DACHS HKA, SENERTEC”, vol. Art.
Nr. 00/4798, 2010.

[8] S. You, F. Marra, and C. Træholt, “Integration of fuel cell micro-
chps on low voltage grid: A danish case study,” in Power and Energy
Engineering Conference (APPEEC), 2012 Asia-Pacific. IEEE, 2012,
pp. 1–4.

[9] NIST, NIST Framework and Roadmap for Smart Grid Interoperability
Standards, Release 1.0. http://www.nist.gov/public affairs/releases/
upload/smartgrid interoperability final.pdf, 2010.

[10] GridWise, Smart Grid Interoperability Maturity Model Summary. http:
//www.gridwiseac.org/about/imm.aspx, 2013.

[11] P. B. Andersen, B. Poulsen, C. Trholt, and J. Ostergaard, “Using service
oriented architecture in a generic virtual power plant,” in Information
Technology: New Generations, 2009. ITNG’09. Sixth International
Conference on. IEEE, 2009, pp. 1621–1622.

[12] International Electrotechnical Commission (IEC), IEC 62541 - OPC
Unified Architecture. http://www.iec.ch/, 2010.

[13] ——, IEC 61850 - Power Utility Automation. http://www.iec.ch/, 2003.
[14] R. Mackiewicz, “Overview of iec 61850 and benefits,” in Power Systems

Conference and Exposition, 2006. PSCE’06. 2006 IEEE PES. IEEE,
2006, pp. 623–630.

[15] International Electrotechnical Commission (IEC), IEC 61850-7-420 -
Communications systems for Distributed Energy Resources (DER) -
Logical nodes. http://www.iec.ch/, 2008.

[16] ——, IEC 61850-7-2 - IEC 61850-7-2: Abstract communication service
interface (ACSI) - Ed.2. http://www.iec.ch/, 2003.

[17] Ministry of Science, Innovation and Higher Education,
SPIR - Strategic Platforms for Innovation and Research.
http://fivu.dk/en/research-and-innovation/councils-and-commissions/
the-danish-council-for-strategic-research/spir, 2013.

[18] A. Troi., About ipower. http://www.ipower-net.dk/About iPower.aspx,
2012, Mar.

[19] B. Biegel, Flexibility Interface Information Modeling for Direct Con-
trol. http://www.ipower-net.dk/∼/media/iPower/Documents/fi.ashx,
2011.

[20] S. A. Boyer, Scada: Supervisory Control And Data Acquisition, 4th ed.
International Society of Automation, 2009.

[21] G. Pallis, “Cloud computing: The new frontier of internet computing,”
Internet Computing, IEEE, vol. 14, no. 5, pp. 70–73, 2010.

[22] Cloud Provider USA, Cloud Computing Statistics and
Predictions for 2012. http://www.cloudproviderusa.com/
cloud-computing-statistics-and-predictions-for-2012/, 2012.

[23] B. R. Kandukuri, V. R. Paturi, and A. Rakshit, “Cloud security issues,”
in Services Computing, 2009. SCC’09. IEEE International Conference
on. IEEE, 2009, pp. 517–520.

[24] D.-G. Feng, M. Zhang, Y. Zhang, and Z. Xu, “Study on cloud computing
security,” Journal of Software, vol. 22, no. 1, pp. 71–83, 2011.

[25] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and
efficient access to outsourced data,” in Proceedings of the 2009
ACM workshop on Cloud computing security, ser. CCSW ’09.
New York, NY, USA: ACM, 2009, pp. 55–66. [Online]. Available:
http://doi.acm.org/10.1145/1655008.1655016

[26] A. B. Pedersen, E. B. Hauksson, P. B. Andersen, B. Poulsen, C. Træholt,
and D. Gantenbein, “Facilitating a generic communication interface to
distributed energy resources: Mapping iec 61850 to restful services,”
in Smart Grid Communications (SmartGridComm), 2010 First IEEE
International Conference on. IEEE, 2010, pp. 61–66.

134

APPENDIX B

Abbreviations

ACSI Abstract Communication Service Interface

AWS Amazon Web Services

CDC Common Data Class

CHP Combined Heat and Power

DER Distributed Energy Resource

DA Data Attribute

DC Data Class

DO Data Object

DT Data Type

EC2 Elastic Compute Cloud

FC Functional Constraints

FI Flexibility Interface

FLEX Flexible note

GAE Google App Engine

GOOSE Generic Object Oriented Substation Events

GSE Generic Substation Events

GSSE Generic Substation State Event

IAAS Infrastructure as a Service

LD Logical Device

LN Logical Node

MAC Message Authentication Code

MMS Manufacturing Message Specification

MVC Model View Controller

NIST National Institute of Standards and Technology

135

136 APPENDIX B. ABBREVIATIONS

PAAS Platform as a Service

RDS Relational Database Service

S3 Simple Storage Service

SAAS Software as a Service

SAN Storage Area Network

SCL Substation Configuration Language

SCSM Specific Communication Service Mapping

SGAM Smart Grids Architecture Model

SG-CG Smart Grid Coordination Group

SG-CG/RA Smart Grid Coordination Group Reference Architecture

SN Server Node

SNS Simple Notification Service

SOAP Simple Object Access Protocol

SQS Simple Queue Service

TDD Test-Driven Development

V2G Vehicle to Grid

VPC Virtual Private Cloud

VPP Virtual Power Plant

WCF Windows Communication Foundation

WP4 Work Package 4

APPENDIX C

Video Presentation

During the development of the prototype for this thesis the students took part of the Microsoft
ImagineCup1 competition with the prototype as a base for participating. As part of the
ImagineCup competition a video presentation of the project was created. As the video presentation
is a part of the competition the focus of the video is on the Microsoft Azure Cloud Platform
architecture.

Figure C.1: Video Presentation on YouTube

The video presentation can viewed here2:

http://www.youtube.com/watch?v=lRerrlKCDXI

1Microsoft ImagineCup http://www.imaginecup.com
2Short URL to the video (Case sensitive): http://goo.gl/7O4Zf (7 OSCAR 4 ZULU foxtrot)

137

http://www.youtube.com/watch?v=lRerrlKCDXI
http://www.imaginecup.com
http://goo.gl/7O4Zf

APPENDIX D

Screenshots

D.1 Website

Figure D.1: CloudSolution - News 1

139

140 APPENDIX D. SCREENSHOTS

Figure D.2: CloudSolution - LogOn 1

Figure D.3: CloudSolution - LogOn 2

D.1. WEBSITE 141

Figure D.4: CloudSolution - LogOn 3

Figure D.5: CloudSolution - News 2

142 APPENDIX D. SCREENSHOTS

Figure D.6: CloudSolution - News 3

Figure D.7: CloudSolution - Units 1

D.1. WEBSITE 143

Figure D.8: CloudSolution - Units 2

Figure D.9: CloudSolution - Info 1

144 APPENDIX D. SCREENSHOTS

Figure D.10: CloudSolution - Info 2

Figure D.11: CloudSolution - Create 1

D.1. WEBSITE 145

Figure D.12: CloudSolution - Create 2

Figure D.13: CloudSolution - Create 3

146 APPENDIX D. SCREENSHOTS

Figure D.14: CloudSolution - Create 4

Figure D.15: CloudSolution - Available Modules 1

D.1. WEBSITE 147

Figure D.16: CloudSolution - Module Information 1

Figure D.17: CloudSolution - Available Modules 2

148 APPENDIX D. SCREENSHOTS

Figure D.18: CloudSolution - Upload Module 1

Figure D.19: CloudSolution - SCLs 1

D.1. WEBSITE 149

Figure D.20: CloudSolution - SCLs 2

Figure D.21: CloudSolution - SCLs 3

150 APPENDIX D. SCREENSHOTS

Figure D.22: CloudSolution - All Users 1

Figure D.23: CloudSolution - Create User 1

D.1. WEBSITE 151

Figure D.24: CloudSolution - Create User 2

Figure D.25: CloudSolution - Units 1

152 APPENDIX D. SCREENSHOTS

Figure D.26: CloudSolution - Units 2

Figure D.27: CloudSolution - Modules 1

D.1. WEBSITE 153

Figure D.28: CloudSolution - Units 3

Figure D.29: CloudSolution - Units 4

154 APPENDIX D. SCREENSHOTS

Figure D.30: CloudSolution - Units 5

D.2 Web API

Figure D.31: CloudSolution - Empty

D.2. WEB API 155

Figure D.32: CloudSolution - Small

Figure D.33: CloudSolution - Full

156 APPENDIX D. SCREENSHOTS

D.3 Continuous Integration and Generated Reports

Figure D.34: Continuous Integration Server: Jenkins

D.3. CONTINUOUS INTEGRATION AND GENERATED REPORTS 157

Figure D.35: Code Coverage Report

Figure D.36: Tray Tracker for Jenkins CI Server

158 APPENDIX D. SCREENSHOTS

Figure D.37: Code API Docomentation

Figure D.38: Code API Docomentation Opened

APPENDIX E

Application Instructions

The Application Instructions is a user guide and introduction document on how to use the Cloud
Service Web Interface and RESTful WebApi Interface developed for this thesis. The Application
Instructions was written as a part of the participation in the Microsoft ImagineCup competition,
that the students of this thesis was a taking part in during the thesis period.

159

Using the WebPage

The primary use of the webpage is for users who have to either access data in a more visual manner or

create new units.

The webpage can be found at the address:

http://cloudsolution39.cloudapp.net/

Three users have been created:

User Password Role

user1 password1 Administrator

user2 password2 Operator

user3 password3 User

And there is two distributed energy resources connected to the solution:

Unit Name Unit Type User Access

DanTherm Unit 1 Combined Head and Power user1, user2

DanTherm Unit 2 Combined Head and Power user1, user3

Units

Under ‘Units’ (http://cloudsolution39.cloudapp.net/Unit) can all distributed energy resources, that the

current logged in user has access to, be viewed. As an overview of the units, the unit’s name, is, password

and access is shown.

These data are needed for connecting a unit to the websocket available at:

Endpoint Usage

cloudsolution39.cloudapp.net:10101 Configuration

cloudsolution39.cloudapp.net:10100 Sending data

Using the configuration endpoint, settings as the module or name can be set.

Using the data endport, the unit can sent raw data to the solution.

For a more detailed view and for editing data, each unit can be accessed by clicking on one of the rows.

Here the unit name can be changed, as the unit name is not unit (only the ID is), the module can be

changed (if a new version is to be used) or the users who can access the unit’s information can be changed

(the current user cannot be removed). Access to simple commands as ‘Shutdown’ or ‘Turn on’ is also

visible. These commands uses the WebApi (see further in this text) to put setting into the unit. As a

precaution, we have disabled this functionality because it is actually two running devices ‘in the other end’.

160

The posted data from the unit can also be access through the ‘Units’ page. At the right side of the page,

‘View Data’ for each unit is available:

Each data set that arrives at the solution is saved in the table storage with the same session id. The ‘View

Data’ page lists the latest 125 entities in a paged page. Accessing one of the session, the table storage is

accessed and the data associated with the session is retrieved. As each unit can have different data points,

the data are shown to the user, using the path in the IEC 61850 standard and the associated value.

Create Unit

Under the menu ‘Units’, a submenu for create new units can be found for users with ‘Operator’ and

‘Administrator’ roles.

Modules

The ‘Modules’ section provides an overview of each available module for the user. The user can download

each module, access more information by clicking on the row or see all available SCL (Substation

Configuration Language) under the ‘Available SCLs’ link.

When accessing a module by clicking on the row, each detail is shown and the user is able to change the

SCL file associated with the module.

Under ‘Available SCLs’ all SCL’s are shown and the user can download each configuration for further

inspection.

Upload Module

Under the menu ‘Modules’, a submenu for uploading modules are visible if ‘Operator’ or ‘Administrator’.

This allows the user to upload a DLL file and a SCL.

Management

The management menu is only available for the ‘Administrator’ role. Here four submenus are shown:

 News

Here the administrator can set the visible news or post a news.

 Users

Access to see all users or create a new user.

 Units

Show all the units in the system.

 Modules

Show all the modules in the system.

161

Using the WebApi RESTful query interface

The application has a RESTful interface that provides access to the data from the DER units. When the data

is queried, it is presented in a structure that is compliant with the IEC 61850 standard. The interface uses

RSA public/private keys to encrypt the authentication credentials of the user logging in, however to enable

you to play around with the query interface easily, we have enabled basic plain text authentication.

The query interface is found at the address location:

http://cloudsolution39.cloudapp.net/api/query

To access the query interface, use these credentials:

User: user1

Password: password1

You are now able to query a DER unit for its data. To query a DER unit you need to know its ID and what

resources to request. Use the following ID and Logical Device:

DER Unit ID: 9223372036854775807

Logical Device: DNTHRM1

The most basic query is to ask for everything on a given ID.

Try using this URL: http://cloudsolution39.cloudapp.net/api/query/9223372036854775807

It will return all data for the DER unit. If you use Internet Explorer, it will most likely be formatted in nice

readable way. However, since we want to view the entire XML DOM tree inclusive data attributes it is

necessary to right click in Internet Explorer and chose “View Source” or use either Firefox or Chrome to play

with the query interface.

162

The query can be filtered using a concept from the IEC 61850 standard called Functional Constraints, which

is a category assigned to each data value. When applying a Functional Constraint, only vaules in that

category is returned. There are quite a lot of defined categories in the IEC 61850 standard. The DER unit in

this example makes use of the following Functional Constraints: ST – Status information and MX –

Measured value.

It is also possible to specify a level depth for the size of the returned data tree. Ie. If a level depth of 2 is

specified, the contents of two child levels down from the parent is returned.

Functional Constraints and level depth is applied to the request using query parameters.

When performing a query, a resource path can be provided in the URL to query into more specific

resources in the available data. In order to define a resource path, a basic understading of the data

structure is needed. The data tree consists of a server node (A DER unit) with a number of logical devices

(Computers or Terminals within a DER unit). Each logical device have a number of logical nodes (Data

categories) which can contain data objects (Data value descriptions). A data object can contain data objects

or data attributes (Container for data value) and data attributes can contain data attributes or data values

(The actual value). This means that data objects and data attributes can be recursively defined.

Server Node - DER unit

 Logical Device - A Terminal within a DER unit

 Logical Device - Another Terminal

 Logical Node - A data category (there a many different categories)

 Data Object - A data description (can contain other data objects recursively)

 Data Attribute - A data value container (can also be defined recursively)

 Data Value - A data value

 Data Attribute - A data value container that contains another data attribute

 Data Attribute - Another data value container

 Data Value - A data value

The reasoning for this data structure is to provide a generic information model that can handle all the

current defined data types in the IEC 61850 standard and future extensions.

The RESTful interface allows for quering into this data structure by providing a path of logical devices, data

objects and data attributes in the URL.

Here we query into the data by using a query path that points to one specific data attribute.

Using this URL:

http://cloudsolution39.cloudapp.net/api/query/9223372036854775807/DNTHRM1/Terminal/ElectricalInp

ut/instMag/f

163

Now let’s try to use a Functional Constraint to filter on the ST category, so only status information is

returned.

Using the URL: http://cloudsolution39.cloudapp.net/api/query/9223372036854775807?fc=ST

Now only the status information values are returned and none of the measured values.

And to return only the MX – measured values, we can filter on the MX category.

Using the URL: http://cloudsolution39.cloudapp.net/api/query/9223372036854775807?fc=MX

164

Finally we can limit the depth of the returned query by using the depth level parameter.

Using the URL: http://cloudsolution39.cloudapp.net/api/query/9223372036854775807?level=0

Returns only the content of the parent.

And using: http://cloudsolution39.cloudapp.net/api/query/9223372036854775807?level=2

Returns a little more details.

The DER units we currently have connected to our cloud application are Read-Only, as they are real DER

units: Combined Heater and Power units (CHP) provided by Dantherm A/S. Sending random commands to

these running machines would be unfortunate and as such, we cannot provide access to updating

resources through the RESTful interface. However, this is what a POST request to update a resource on a

DER would look like. This update request was created using JavaScript to build a JSON based POST request

to the URL: http://cloudsolution39.cloudapp.net/api/update/<der unit>/<resource path> and the body of

the request contains the new data value.

POST Request Response

POST /api/update/<der id>/<path>
Host: 127.0.0.1
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; rv:19.0)
Gecko/20100101 Firefox/19.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
X-Requested-With: XMLHttpRequest
Content-Length: 25
Connection: keep-alive
Pragma: no-cache
Cache-Control: no-cache

{ "value" : "12345.678" }

HTTP/1.1 200 Value accepted
Cache-Control: no-cache
Pragma: no-cache
Transfer-Encoding: chunked
Content-Type: text/plain; charset=utf-8
Content-Encoding: gzip
Expires: -1
Vary: Accept-Encoding

165

The important thing to look at here, is that the POST request sends a data value, using a specific path, to

the RESTful interface and the interface returns with a HTTP response value of 200 OK, which means the

request was successful.

Depending on the type of request and the interval the DER unit uses to communicates with our cloud

service (different commands may prompt different communications intervals), it may take some amount of

time before the result of the command sent to the DER is reflected in a new data query to the interface. Ex.

If a shutdown command is issued to a water boiler type of DER unit, it can take more than 8 hours before

the DER unit is in a turned off state. It would be normal, that the DER unit would have a sequence of states

such as: Running, Shutting Down, Turned Off and would communicate the Shutting Down status

immediately to our cloud service upon receiving a shutdown command.

The following is a sample of links to queries on the RESTful interface that displays different results:

1. http://cloudsolution39.cloudapp.net/api/query/9223372036854775807

- Basic query that displays all data

2. http://cloudsolution39.cloudapp.net/api/query/9223372036854775807/DNTHRM1/Terminal/

- Query the Terminal logical node on the DNTHRM1 logical device

3. http://cloudsolution39.cloudapp.net/api/query/9223372036854775807/DNTHRM1/Terminal?fc=MX

- Query the Terminal logical node and only return values from the category MX

4. http://cloudsolution39.cloudapp.net/api/query/9223372036854775807/DNTHRM1/Terminal/SystemState

- Query for the system state status value on the DNTHRM1 logical device

166

APPENDIX F

Class diagrams and Models

Figure F.1: Class diagram: Service Layer

167

168 APPENDIX F. CLASS DIAGRAMS AND MODELS

Figure F.2: Class diagram: Repository Layer

169

Fi
gu

re
F.

3:
C

la
ss

di
ag

ra
m

:S
to

ra
ge

170 APPENDIX F. CLASS DIAGRAMS AND MODELS

Figure
F.4:M

odelG
enerated

E
ntities

forthe
Storage

171

Figure F.5: Class diagram: Users and Membership Providers

APPENDIX G

Use Cases

G.1 Use Case : Create Unit

Use Case 1 Create Unit

Scope: System-wide

Level: User-goal

Primary Actor: Farmer

Postcondition: A new unit created with a unique ID and a password

Main Success Scenario:

1. Actor logs into the website (see use case “Login On Website”)

1. Redirected to main site

2. Navigate to the ’Create Unit’ page

3. Enter a unit name in the text box

4. Select a module to use

5. Send the post request to create the unit

Extensions:
1.a Unable to log in

5.a Invalid log in data

1. System shows failure message

2. User returns to step 3

G.2 Use Case : Login on Website

Use Case 2 Login on Website

173

174 APPENDIX G. USE CASES

Scope: System-wide

Level: Subfunction

Primary Actor: Customer & Farmer

Preconditions: Actors has a user ID and a Password

Postcondition: User has successfully logged into the website

Main Success Scenario:

1. Actor enters the Website

2. Navigates to the ’Log On’ page

3. Enter the actors user name in the first text box

4. Enter the related password in the second text box

5. Clicks on the ’Log On’ button

Extensions:
5.a Invalid login data

1. System shows failure message

2. User returns to step 3

G.3 Use Case : Upload Module & SCL

Use Case 3 Upload Module & SCL

Scope: System-wide

Level: User-goal

Primary Actor: Customer

Postcondition: Module & SCL uploaded

Main Success Scenario:

G.4. USE CASE : ACCESSING UNIT DATA 175

1. Actor logs into the website (see use case “Login On Website”)

2. Navigate to the ’Upload Module’ page

3. Enter the module name

4. Enter the module version

5. Select the module DLL

6. Enter the SCL version

7. Select the SCL file

8. Upload the files

Extensions:
1.a Unable to log in

1. Redirected to main site

5.a Invalid module file

1. System shows failure message

2. User returns to step 3

7.a Invalid SCL file

1. System shows a failure message

2. User returns to step 3

8.a Module with identical version already exists

1. System shows failure message

2. User returns to step 3

8.b No module file selected

1. Only the SCL is being uploaded

8.b No SCL file selected

1. Only the module is being uploaded

G.4 Use Case : Accessing Unit Data

Use Case 4 Accessing Unit Data

176 APPENDIX G. USE CASES

Scope: System-wide

Level: User-goal

Primary Actor: Farmer

Precondition:

1. Customer has access to the unit

2. The unit has posted data into the cloud

Postcondition: A new module has been added to the system with an
associated SCL

Main Success Scenario:

1. Actor logs into the website (see use case “Login On Website”)

2. Navigate to the ’Units’ page

3. Find the unit in a list of units

4. Accessing the unit

5. Each unit data is shown in a list

Extensions:
1.a Unable to log in

1. Redirected to main site

G.5 Use Case : Connect to CloudSolution

Use Case 5 Connect to CloudSolution

Scope: System-wide

Level: User-goal

Primary Actor: Unit

Precondition: Unit is created in the CloudSolution

Postcondition: Unit is sending data to the cloud

Main Success Scenario:

G.6. USE CASE : AUTHENTICATE UNIT 177

1. Enter ID and Password in the Unit

2. Start authentication

3. Retrieve data from DER

4. Send data

Extensions:
2.a Authentication failed

1. Error message is shown

G.6 Use Case : Authenticate Unit

Use Case 6 Authenticate Unit

Scope: System-wide

Level: User-goal

Primary Actor: Unit

Precondition: Unit has knows the ID and Password

Postcondition: Unit has been authorized to transmit data

Main Success Scenario:

1. Opens a WebSocket with the cloud service

2. Transmit a Login command with ID and Password

3. Retrieve a confirmation from the cloud service

Extensions:
1.a The Socket was unable to open

1. Error message is shown

2.a Authentication failed

1. Error message is shown

178 APPENDIX G. USE CASES

G.7 Use Case : Send Raw Data

Use Case 7 Send Raw Data

Scope: System-wide

Level: User-goal

Primary Actor: Unit

Precondition: Unit has been authorized by the cloud service

Postcondition: Successfully transmitted raw data to the cloud

Main Success Scenario:

1. Opens a WebSocket with the cloud service

2. Transmit raw data and an associated ID

3. Retrieve a confirmation from the cloud service

Extensions:
1.a The Socket was unable to open

1. Error message is shown

2.a An exception was found with the data

1. Error message is shown

2. Transmission is starting over

G.8 Use Case : Query Data

Use Case 8 Query Data

Scope: System-wide

Level: User-goal

Primary Actor: Customer

Precondition:

G.9. USE CASE : POST DATA 179

1. The customer must have authenticated with the interface.

2. A unit must have been created.

3. The customer must have a unit id.

Postcondition: A response in XML or JSON is generated and sent to the
customer.

Main Success Scenario:

1. Enter unit id and IEC reference in request

2. Send request

Extensions:
1.a Add functional constraints to request

1. The response is filtered according to the functional constraints

G.9 Use Case : Post Data

Use Case 9 Post Data

Scope: System-wide

Level: User-goal

Primary Actor: Customer

Precondition:

1. The customer must have authenticated with the interface.

2. A unit must have been created.

3. The customer must have a unit id.

Postcondition: Data is posted to the DER unit

Main Success Scenario:

180 APPENDIX G. USE CASES

1. Enter unit id and IEC reference in request

2. Add values to be updated on the reference to the body of the request

3. Send request

Extensions:
1.a Wrong unit id used in query

1. Error message is shown which states that wrong arguments was supplied
with the request

APPENDIX H

References

[1] Rolf Adam and Walter Wintersteller. What’s So Smart about the Smart
Grid? http://www.strategy-business.com/media/file/leading_
ideas-20080902.pdf, 2008.

[2] Amazon. Building GrepTheWeb in the Cloud, Part 1: Cloud Architectures. http:
//aws.amazon.com/articles/1632, 2008.

[3] Amazon. Architecting for the Cloud: Best Practices. http://media.
amazonwebservices.com/AWS_Cloud_Best_Practices.pdf, 2011.

[4] Amazon. Overview of Amazon Web Services. http://media.
amazonwebservices.com/AWS_Overview.pdf, 2013.

[5] Peter Bach Andersen, Bjarne Poulsen, C Trholt, and Jacob Ostergaard. Using service
oriented architecture in a generic virtual power plant. In Information Technology: New
Generations, 2009. ITNG’09. Sixth International Conference on, pages 1621–1622. IEEE,
2009.

[6] Kent Beck. Test-Driven Development. Addison-Wesley, 2007.

[7] Benjamin Biegel. Flexibility Interface – Information Modeling for Direct Control. http:
//www.ipower-net.dk/~/media/iPower/Documents/fi.ashx, 2011.

[8] BizCloud. BizCloud Overview of Top 10 Security Threats
of Cloud Computing. http://bizcloudnetwork.com/
bizcloud-overview-of-top-10-security-threats-of-cloud-computing,
2011.

[9] IBM Greg Boss, Padma Malladi, Dennis Quan, Linda Legregni, and Harold Hall. Cloud
Computing. www.ibm.com/developerworks/websphere/zones/hipods/,
2007.

[10] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Computing Principles
and Paradigms. Wiley Publishing, 2011. ISBN 9780470887998.

[11] CEN-CENELEC-ETSI Smart Grid Coordination Group. Smart Grid Reference Architecture.
http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/
xpert_group1_reference_architecture.pdf, 2012.

[12] Cenelec. European Committee for Electrotechnical Standardization. http://www.
cenelec.eu/, 2013.

[13] European Commission. Protection of personal data. http://ec.europa.eu/
justice/data-protection/, 2013.

181

http://www.strategy-business.com/media/file/leading_ideas-20080902.pdf
http://www.strategy-business.com/media/file/leading_ideas-20080902.pdf
http://aws.amazon.com/articles/1632
http://aws.amazon.com/articles/1632
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Overview.pdf
http://media.amazonwebservices.com/AWS_Overview.pdf
http://www.ipower-net.dk/~/media/iPower/Documents/fi.ashx
http://www.ipower-net.dk/~/media/iPower/Documents/fi.ashx
http://bizcloudnetwork.com/bizcloud-overview-of-top-10-security-threats-of-cloud-computing
http://bizcloudnetwork.com/bizcloud-overview-of-top-10-security-threats-of-cloud-computing
www.ibm.com/developerworks/websphere/zones/hipods/
http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/xpert_group1_reference_architecture.pdf
http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/xpert_group1_reference_architecture.pdf
http://www.cenelec.eu/
http://www.cenelec.eu/
http://ec.europa.eu/justice/data-protection/
http://ec.europa.eu/justice/data-protection/

182 APPENDIX H. REFERENCES

[14] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001. ISBN 0070131511.

[15] D. Crockford. JavaScript Object Notation. http://www.json.org/ and http:
//www.ietf.org/rfc/rfc4627.txt?number=4627, 2006.

[16] Danish Energy Agency. Energy Policy in Denmark. http://www.ens.dk/
Documents/Netboghandel%20-%20publikationer/2013/Energy%
20Policy%20in%20Denmark.pdf, 2012.

[17] Energihjem.dk. Køb solceller inden det er for sent –
57.000 kr. i tilskud. http://www.energihjem.dk/
kob-solceller-inden-det-er-for-sent-57-000-kr-i-tilskud/,
2012.

[18] Energinet.dk. Ancillary services to be delivered in Denmark - Tender conditions.
http://energinet.dk/SiteCollectionDocuments/Engelske%
20dokumenter/El/8871-11%20v3%20Ancillary%20services%20to%
20be%20delivered%20in%20Denmark%20-%20Tender%20conditions.
%20Valid%20from%203%20October%202012.pdf, 2012.

[19] Energinet.dk and The Danish Energy Association. Smart Grid i Danmark. http:
//energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/
Forskning/Smart%20Grid%20in%20Denmark.pdf, 2010.

[20] Energinet.dk and Dansk Energi. Smart Grid i Danmark 2.0. http://energinet.dk/
SiteCollectionDocuments/Danske%20dokumenter/Forskning/Smart_
Grid_i_DK.pdf, 2011.

[21] Energinet.dk and Dansk Energi. Kortlægning af den danske elbranches Smart Grid
FUD-indsats. http://www.danskenergi.dk/~/media/Smart_Grid/
Kortlaegning%20af%20den%20danske%20elbranches%20Smart%20Grid%
20FUD%20indsats.pdf.ashx, 2011.

[22] H. Farhangi. The path of the smart grid. Power and Energy Magazine, IEEE, 8(1):18–28,
2010. ISSN 1540-7977. doi: 10.1109/MPE.2009.934876.

[23] Global Smart Grid Federation. Smart Grid Definition. http://www.
globalsmartgridfederation.org/smartgriddef.html, 2012.

[24] I. Fette and A. Melnikov. RFC: The WebSocket Protocol. http://tools.ietf.org/
html/rfc6455, December 2011.

[25] Martin Fowler. Inversion of Control Containers and the Dependency Injection
pattern. http://www.martinfowler.com/articles/injection.html, 23
January 2004.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995. ISBN 0-201-63361-2.

[27] Gartner. Forecast Overview: Public Cloud Services, Worldwide, 2011-2016, 2Q12 Update.
http://www.gartner.com/resId=2126916, 2012.

http://www.json.org/
http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://www.ens.dk/Documents/Netboghandel%20-%20publikationer/2013/Energy%20Policy%20in%20Denmark.pdf
http://www.ens.dk/Documents/Netboghandel%20-%20publikationer/2013/Energy%20Policy%20in%20Denmark.pdf
http://www.ens.dk/Documents/Netboghandel%20-%20publikationer/2013/Energy%20Policy%20in%20Denmark.pdf
http://www.energihjem.dk/kob-solceller-inden-det-er-for-sent-57-000-kr-i-tilskud/
http://www.energihjem.dk/kob-solceller-inden-det-er-for-sent-57-000-kr-i-tilskud/
http://energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/El/8871-11%20v3%20Ancillary%20services%20to%20be%20delivered%20in%20Denmark%20-%20Tender%20conditions.%20Valid%20from%203%20October%202012.pdf
http://energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/El/8871-11%20v3%20Ancillary%20services%20to%20be%20delivered%20in%20Denmark%20-%20Tender%20conditions.%20Valid%20from%203%20October%202012.pdf
http://energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/El/8871-11%20v3%20Ancillary%20services%20to%20be%20delivered%20in%20Denmark%20-%20Tender%20conditions.%20Valid%20from%203%20October%202012.pdf
http://energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/El/8871-11%20v3%20Ancillary%20services%20to%20be%20delivered%20in%20Denmark%20-%20Tender%20conditions.%20Valid%20from%203%20October%202012.pdf
http://energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/Forskning/Smart%20Grid%20in%20Denmark.pdf
http://energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/Forskning/Smart%20Grid%20in%20Denmark.pdf
http://energinet.dk/SiteCollectionDocuments/Engelske%20dokumenter/Forskning/Smart%20Grid%20in%20Denmark.pdf
http://energinet.dk/SiteCollectionDocuments/Danske%20dokumenter/Forskning/Smart_Grid_i_DK.pdf
http://energinet.dk/SiteCollectionDocuments/Danske%20dokumenter/Forskning/Smart_Grid_i_DK.pdf
http://energinet.dk/SiteCollectionDocuments/Danske%20dokumenter/Forskning/Smart_Grid_i_DK.pdf
http://www.danskenergi.dk/~/media/Smart_Grid/Kortlaegning%20af%20den%20danske%20elbranches%20Smart%20Grid%20FUD%20indsats.pdf.ashx
http://www.danskenergi.dk/~/media/Smart_Grid/Kortlaegning%20af%20den%20danske%20elbranches%20Smart%20Grid%20FUD%20indsats.pdf.ashx
http://www.danskenergi.dk/~/media/Smart_Grid/Kortlaegning%20af%20den%20danske%20elbranches%20Smart%20Grid%20FUD%20indsats.pdf.ashx
http://www.globalsmartgridfederation.org/smartgriddef.html
http://www.globalsmartgridfederation.org/smartgriddef.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://www.martinfowler.com/articles/injection.html
http://www.gartner.com/resId=2126916

183

[28] Go’Energi. Elproduktion og -forbrug. http://energinet.dk/
DA/KLIMA-OG-MILJOE/Elsektorens-miljoepaavirkninger/
Elproduktion-i-Danmark/Sider/Elproduktion-og-forbrug.aspx,
2012.

[29] Google. Google App Engine. https://developers.google.com/appengine/,
2013.

[30] Google. Google Cloud Platform Overview. https://developers.google.com/
cloud/samples/photofeed/overview, 2013.

[31] Google. Google Cloud Platform. https://developers.google.com/cloud/,
2013.

[32] European Technology Platform Smart Grid. Strategic Deployment Document.
http://www.smartgrids.eu/documents/SmartGrids_SDD_FINAL_
APRIL2010.pdf, 2010.

[33] GridWise. Smart Grid Interoperability Maturity Model Summary. http://www.
gridwiseac.org/about/imm.aspx, 2013.

[34] Erik Hansen and Landbrugnet. Brug for flere vindmøller i landbruget.
http://landbrugsyd.landbrugnet.dk/Artikler/9887/
brug-for-flere-vindmoeller-i-landbruget, 06-02-2012.

[35] Van Hoboken, Joris V. J., Axel Arnbak, and Van Eijk. Cloud Computing in Higher Education
and Research Institutions and the USA Patriot Act. http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=2181534, 2012.

[36] Home.dk. Solceller på taget er ’hot’. http://home.dk/bolignyt/
flere-artikler/juni-2012/solceller-paa-taget-er-%E2%80%
99hot%E2%80%99, 2012.

[37] IBM. Cloud computing service models. http://www.ibm.com/developerworks/
cloud/library/cl-cloudservicemodels/?cmp=dw&cpb=dwcld&ct=
dwnew&cr=dwnen&ccy=zz&csr=021011, 2011.

[38] IBM DeveloperWorks and A. Rodriguez. RESTful Web services: The basics. https:
//www.ibm.com/developerworks/webservices/library/ws-restful,
2008.

[39] International Electrotechnical Commission (IEC). Basic communication structure for
substation and feeder equipment – Principles and models. http://www.iec.ch/, 2003.

[40] International Electrotechnical Commission (IEC). Communication networks and systems in
substations Part 7-2: Basic communication structure for substation and feeder equipment -
Abstract communication service interface (ACSI). http://www.iec.ch/, 2003.

[41] International Electrotechnical Commission (IEC). Communication networks and systems in
substations Part 7-3: Basic communication structure for substation and feeder equipment -
Common Data Classes. http://www.iec.ch/, 2003.

http://energinet.dk/DA/KLIMA-OG-MILJOE/Elsektorens-miljoepaavirkninger/Elproduktion-i-Danmark/Sider/Elproduktion-og-forbrug.aspx
http://energinet.dk/DA/KLIMA-OG-MILJOE/Elsektorens-miljoepaavirkninger/Elproduktion-i-Danmark/Sider/Elproduktion-og-forbrug.aspx
http://energinet.dk/DA/KLIMA-OG-MILJOE/Elsektorens-miljoepaavirkninger/Elproduktion-i-Danmark/Sider/Elproduktion-og-forbrug.aspx
https://developers.google.com/appengine/
https://developers.google.com/cloud/samples/photofeed/overview
https://developers.google.com/cloud/samples/photofeed/overview
https://developers.google.com/cloud/
http://www.smartgrids.eu/documents/SmartGrids_SDD_FINAL_APRIL2010.pdf
http://www.smartgrids.eu/documents/SmartGrids_SDD_FINAL_APRIL2010.pdf
http://www.gridwiseac.org/about/imm.aspx
http://www.gridwiseac.org/about/imm.aspx
http://landbrugsyd.landbrugnet.dk/Artikler/9887/brug-for-flere-vindmoeller-i-landbruget
http://landbrugsyd.landbrugnet.dk/Artikler/9887/brug-for-flere-vindmoeller-i-landbruget
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2181534
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2181534
http://home.dk/bolignyt/flere-artikler/juni-2012/solceller-paa-taget-er-%E2%80%99hot%E2%80%99
http://home.dk/bolignyt/flere-artikler/juni-2012/solceller-paa-taget-er-%E2%80%99hot%E2%80%99
http://home.dk/bolignyt/flere-artikler/juni-2012/solceller-paa-taget-er-%E2%80%99hot%E2%80%99
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/?cmp=dw&cpb=dwcld&ct=dwnew&cr=dwnen&ccy=zz&csr=021011
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/?cmp=dw&cpb=dwcld&ct=dwnew&cr=dwnen&ccy=zz&csr=021011
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/?cmp=dw&cpb=dwcld&ct=dwnew&cr=dwnen&ccy=zz&csr=021011
https://www.ibm.com/developerworks/webservices/library/ws-restful
https://www.ibm.com/developerworks/webservices/library/ws-restful
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/

184 APPENDIX H. REFERENCES

[42] International Electrotechnical Commission (IEC). Communication networks and systems
in power utility automation - Requirements for web-based and structured access to the IEC
61850 information models. http://www.iec.ch/, 2010.

[43] International Electrotechnical Commission (IEC). Communication networks and systems
for power utility automation – Part 80-3: Mapping to Web Services – Requirement Analysis
and Technology Assessment. http://www.iec.ch/, 2012.

[44] International Electrotechnical Commission (IEC). International Electrotechnical
Commission 61850 Standard. http://www.iec.ch/, 2003.

[45] International Electrotechnical Commission (IEC). Compatible logical node classes and data
classes. http://www.iec.ch/, 2003.

[46] International Electrotechnical Commission (IEC). Communication Networks and Systems
for Power Utility Automation for Distributed Energy Resources (DER). http://www.
iec.ch/, 2008.

[47] International Electrotechnical Commission (IEC). IEC 62541 - OPC Unified Architecture.
http://www.iec.ch/, 2010.

[48] International Energy Agency. International Energy Outlook 2011. http://www.eia.
gov/forecasts/ieo/pdf/0484(2011).pdf, 2011.

[49] Blizcloud jason. Understanding the Business Benefits of
Platform as a Service. http://bizcloudnetwork.com/
understanding-the-business-benefits-of-platform-as-a-service,
2011.

[50] Alex C. Lakatos. The USA Patriot Act and the Privacy of Data Stored in the Cloud. http:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=2181534, 2012.

[51] R.E. Mackiewicz. Overview of iec 61850 and benefits. In Power Systems Conference and
Exposition, 2006. PSCE’06. 2006 IEEE PES, pages 623–630. IEEE, 2006.

[52] J.D. Meier, Carlos Farre, Jason Taylor, Prashant Bansode, Steve Gregersen, Madhu
Sundararajan, and Rob Boucher. Improving Web Services Security. Microsoft, 2008.

[53] Microsoft. Windows Azure Cloud Platform. http://www.windowsazure.com/
en-us/, 2013.

[54] Microsoft. Windows Azure Architecture. http://msdn.microsoft.com/en-us/
library/windowsazure/dd163896.aspx, 2013.

[55] Microsoft MSDN Library. Introduction to Membership. http://msdn.microsoft.
com/en-us/library/yh26yfzy%28v=vs.100%29.aspx, 2012.

[56] Microsoft MSDN Library. ASP.NET MVC 4. http://msdn.microsoft.com/
en-us/library/dd381412%28v=vs.108%29.aspx, 2012.

[57] Microsoft MSDN Library. Optimistic Concurrency. http://msdn.microsoft.com/
en-us/library/aa0416cz%28v=vs.71%29.aspx, 2012.

http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/
http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf
http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf
http://bizcloudnetwork.com/understanding-the-business-benefits-of-platform-as-a-service
http://bizcloudnetwork.com/understanding-the-business-benefits-of-platform-as-a-service
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2181534
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2181534
http://www.windowsazure.com/en-us/
http://www.windowsazure.com/en-us/
http://msdn.microsoft.com/en-us/library/windowsazure/dd163896.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dd163896.aspx
http://msdn.microsoft.com/en-us/library/yh26yfzy%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/yh26yfzy%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/dd381412%28v=vs.108%29.aspx
http://msdn.microsoft.com/en-us/library/dd381412%28v=vs.108%29.aspx
http://msdn.microsoft.com/en-us/library/aa0416cz%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa0416cz%28v=vs.71%29.aspx

185

[58] Microsoft MSDN Library. The Repository Pattern. http://msdn.microsoft.com/
en-us/library/ff649690.aspx, 2012.

[59] NIST. NIST Framework and Roadmap for Smart Grid Interoperability Standards,
Release 1.0. http://www.nist.gov/public_affairs/releases/upload/
smartgrid_interoperability_final.pdf, 2010.

[60] Department of Justice. The USA PATRIOT Act: Preserving Life and Liberty. http:
//www.justice.gov/archive/ll/what_is_the_patriot_act.pdf, 2001.

[61] NIST National Institute of Standards and Technology. The NIST Definition of Cloud
Computing. http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf, 2011.

[62] Anders Bro Pedersen and Einar Bragi Hauksson. Enabling distributed energy resources in
a virtual power plant using iec 61850. Master’s thesis, Technical University of Denmark,
DTU, 2010.

[63] Anders Bro Pedersen, Einar Bragi Hauksson, Peter Bach Andersen, Bjarne Poulsen,
Chresten Træholt, and Dieter Gantenbein. Facilitating a generic communication interface
to distributed energy resources: Mapping iec 61850 to restful services. In Smart Grid
Communications (SmartGridComm), 2010 First IEEE International Conference on, pages
61–66. IEEE, 2010.

[64] Steve Resnick, Richard Crane, and Chris Bowen. Essential Windows Communication
Foundation. Addison-Wesley, 2008.

[65] Margaret Rouse. Definition : cloud computing. http://searchcloudcomputing.
techtarget.com/definition/cloud-computing, 2010.

[66] Ahmed Shafiu and Melanie Watts. D4.3: A Working Document on Communication
and Control Requirements. http://www.smart-a.org/D4.3_Comm&Control_
requirements_finalversion.pdf, 2007.

[67] Claus Sonne and Jyllands-Posten. Elbiler på vej mod gennembrud. http://
jyllands-posten.dk/motor/article4730930.ece, 2012.

[68] Projektleder Steen Luk and DLBR Energi Invest. Vindenergi i landbruget. http://www.
dlbr.dk/Produkter/DLBRSpecialraadgivning/DLBREnergiInvest/
2011_11_Vindenergi_i_landbruget.htm, 2011.

[69] La’Quata Sumter. Cloud computing: security risk. In Proceedings of the 48th Annual
Southeast Regional Conference, ACM SE ’10, pages 112:1–112:4, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0064-3. doi: 10.1145/1900008.1900152. URL http:
//doi.acm.org/10.1145/1900008.1900152.

[70] TorchLMS. The Cloud: The Benefits of SaaS. http://torchlms.com/blog/
learning-technology/benefits-of-software-as-a-service, 2012.

[71] A. Troi. About ipower. http://www.ipower-net.dk/About_iPower.aspx,
2012, Mar.

http://msdn.microsoft.com/en-us/library/ff649690.aspx
http://msdn.microsoft.com/en-us/library/ff649690.aspx
http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf
http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf
http://www.justice.gov/archive/ll/what_is_the_patriot_act.pdf
http://www.justice.gov/archive/ll/what_is_the_patriot_act.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://www.smart-a.org/D4.3_Comm&Control_requirements_finalversion.pdf
http://www.smart-a.org/D4.3_Comm&Control_requirements_finalversion.pdf
http://jyllands-posten.dk/motor/article4730930.ece
http://jyllands-posten.dk/motor/article4730930.ece
http://www.dlbr.dk/Produkter/DLBRSpecialraadgivning/DLBREnergiInvest/2011_11_Vindenergi_i_landbruget.htm
http://www.dlbr.dk/Produkter/DLBRSpecialraadgivning/DLBREnergiInvest/2011_11_Vindenergi_i_landbruget.htm
http://www.dlbr.dk/Produkter/DLBRSpecialraadgivning/DLBREnergiInvest/2011_11_Vindenergi_i_landbruget.htm
http://doi.acm.org/10.1145/1900008.1900152
http://doi.acm.org/10.1145/1900008.1900152
http://torchlms.com/blog/learning-technology/benefits-of-software-as-a-service
http://torchlms.com/blog/learning-technology/benefits-of-software-as-a-service
http://www.ipower-net.dk/About_iPower.aspx

186 APPENDIX H. REFERENCES

[72] Twenties. Providing flexibility with a virtual power plant. http://www.
twenties-project.eu/system/files/Deliv_10_2.pdf, 2012.

[73] Kenneth W Umbach. What is" push Technology"? California State Library, California
Research Bureau, 1997.

[74] Anthony T. Velte, Toby J. Velte, and Robert Elsenpeter. Cloud Computing: A Practical
Approach. McGraw Hill, 2010. ISBN 978-0-07-162695-8.

[75] Zack Whittaker. Microsoft admits Patriot Act can access EU-based
cloud data. http://www.zdnet.com/blog/igeneration/
microsoft-admits-patriot-act-can-access-eu-based-cloud-data/
11225, 2011.

[76] Zack Whittaker. PRISM: Here’s how the NSA
wiretapped the Internet. http://www.zdnet.com/
prism-heres-how-the-nsa-wiretapped-the-internet-7000016565/,
2013.

[77] World Wide Web Consortium (W3C). Single Object Access Protocol Specification. http:
//www.w3.org/TR/soap, 2007.

[78] Shi You, Francesco Marra, and Chresten Træholt. Integration of fuel cell micro-chps on low
voltage grid: A danish case study. In Power and Energy Engineering Conference (APPEEC),
2012 Asia-Pacific, pages 1–4. IEEE, 2012.

[79] Alex Yu Zhang. Smart Grid Environmental Benefits. http://www.smartgridnews.
com/artman/publish/article_289.html, 2007.

http://www.twenties-project.eu/system/files/Deliv_10_2.pdf
http://www.twenties-project.eu/system/files/Deliv_10_2.pdf
http://www.zdnet.com/blog/igeneration/microsoft-admits-patriot-act-can-access-eu-based-cloud-data/11225
http://www.zdnet.com/blog/igeneration/microsoft-admits-patriot-act-can-access-eu-based-cloud-data/11225
http://www.zdnet.com/blog/igeneration/microsoft-admits-patriot-act-can-access-eu-based-cloud-data/11225
http://www.zdnet.com/prism-heres-how-the-nsa-wiretapped-the-internet-7000016565/
http://www.zdnet.com/prism-heres-how-the-nsa-wiretapped-the-internet-7000016565/
http://www.w3.org/TR/soap
http://www.w3.org/TR/soap
http://www.smartgridnews.com/artman/publish/article_289.html
http://www.smartgridnews.com/artman/publish/article_289.html

	Summary
	Resume
	Preface
	Acknowledgement
	Introduction
	Motivation
	Project Vision
	Project Description
	Stakeholders
	Supervisors
	iPower-net.dk
	Dong Energy
	Energinet.dk
	Danish Consumers

	Goals
	DER to Cloud Communication
	Client to Cloud Communication
	Information Model

	Project Scope
	Software Development Methodology
	Risk Analysis
	Report Outline
	Additional Activities
	Chapter Summary

	Related Work
	Smart Grid
	Distributed Energy Resources
	Direct Control

	Cloud Computing
	Cloud Computing Service Models
	Software as a Service
	Platform as a Service
	Infrastructure as a Service
	Aspects of Using the Cloud
	Elasticity
	Reliability
	Quality of Service

	Research - State of the Art
	CENELEC
	Conceptual Model
	Reference Architecture

	iPower-net.dk
	WP4 - Control and Market Operation

	The IEC 61850 Standard

	Chapter Summary

	Requirements
	Use Cases
	Use Case : Creating Unit
	Use Case : Upload Module & SCL
	Use Case : Accessing Unit Data
	Use Case : Connect to CloudSolution
	Use Case : Query Data
	Use Case : Post Data

	Functional Requirements
	Non-Functional Requirements
	Requirements Matrix
	Chapter Summary

	Cloud Analysis
	Service Models
	Infrastructure as a Service
	Platform as a Service
	Software as a Service

	Security & Privacy
	Intruders
	Geographical Data Storage

	Latency Concerns
	Providers
	Amazon
	Google
	Microsoft
	The Chosen Provider

	DER Communication
	Real-Time Web Technology
	Push & Pull Technology

	Cloud Communication
	Chapter Summary

	Standards Analysis
	IEC 61850
	Information Model
	Naming Convention
	Functional Constraints

	ASCI Services
	Configuration

	Other Features
	Reporting and Logging
	SCSM

	IEC 61850-7-420
	IEC 61850-80-3 TR

	iPower Flexibility Interface
	Flexibility Interface in the Information Model

	Chapter Summary

	Design
	System Design
	System Coverage
	Mapping of the Standards in the Design

	Generic Information Model
	Cloud Service Design
	Layered Architecture

	Distributed Energy Resource Design
	DER to Cloud Communication
	Client to DER Communication

	Dynamic Modules
	Dynamic Loading

	Storage Design
	Model Generated Entities

	Users
	Interfaces
	Web Site
	RESTful Interface
	Security in the RESTful Interface

	XML Web Service
	Security in the XML Webservice Interface

	Chapter Summary

	Implementation
	System Structure
	Implementation of Layered Architecture
	Storage
	Unique ID

	Information Model
	Working with the Data Tree Structure
	SCL Parser

	Users
	Modules
	DER Websocket Interface
	Inter-process Communication

	Website
	RESTful and XML Webservice Interfaces
	Asymmetric Public Key Encryption

	Chapter Summary

	Testing
	Unit Testing
	Integration Testing
	Build System
	Continuous Integration
	Chapter Summary

	Case Studies
	Case study : Dantherm DKµCHP
	DER Intermediary
	System setup
	Output, Configuration and Module
	Unit Configuration
	Data Retrieval
	Using the Website
	Query Interface

	Summary

	Case study : BeagleBone Communication
	System Setup
	BeagleBone
	BeagleBone Client
	BeagleBone Module & SCL

	Data Retrieval
	Posting Data
	Summary

	Chapter Summary

	Conclusion
	A Revisit of the Project Vision
	Summary of Chapters
	Achieved Goals
	Future Work
	Additional Activities

	Appendix
	Paper
	Abbreviations
	Video Presentation
	Screenshots
	Website
	Web API
	Continuous Integration and Generated Reports

	Application Instructions
	Class diagrams and Models
	Use Cases
	Use Case : Create Unit
	Use Case : Login on Website
	Use Case : Upload Module & SCL
	Use Case : Accessing Unit Data
	Use Case : Connect to CloudSolution
	Use Case : Authenticate Unit
	Use Case : Send Raw Data
	Use Case : Query Data
	Use Case : Post Data

	References

