
A Type System
for the Jolie Language

Julie Meinicke Nielsen

Kongens Lyngby 2013
IMM-M.Sc.-2013-0074

Supervised by

PhD Student Associate Professor Associate Professor
Fabrizio Montesi Marco Carbone Nicola Dragoni
The IT University of Copenhagen The IT University of Copenhagen Technical University of Denmark

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2013-0074

Summary UK

The Jolie Language is a general-purpose service-oriented programming language.
Service-oriented programming languages are designed for writing applications to
services in. A service is an entity in a loosely coupled distributed system which
is structured after the Service-Oriented Computing (SOC) paradigm. The focus
of SOC is to separate software engineering from application programming and
therefore are services autonomous entities which communicate by exchanging
messages [MGZ, TCBM06].

In Jolie messages are structured as trees. A variable in Jolie is a path in a
data tree and the type of a data tree is a tree itself. Jolie provides a language
for describing the types that are allowed to be communicated in a network.
Communications are type checked at run-time when a message is received, and
such type checking is not formally defined. The aim of this thesis is to introduce
static type checking to the theoretical foundation of the core fragment of Jolie.

The way of structuring types and handling variables in Jolie creates some chal-
lenges for introducing type checking to Jolie: The type language provided by
Jolie allows a subtree of a tree type to be optional. Equality of types must
therefore be handled with that in mind. Variables are not declared wherefore
the manipulation of the program state must be inferred. Besides the design of
Jolie, SOC itself is also challenging: The ability to specify the type of messages
a service wants to receive does not prevent that an ill-formed service send a
message with a wrong type. It is therefore necessary to formalize run-time type
checking of incoming messages.

The contribution of this thesis is the design of a static type checker for the
core fragment of Jolie. The type checker rejects networks of services in which

ii

a message is sent or received, where the message has a wrong type according
to sender and receivers type specifications. This is formally proved along with
the property that a well-typed network can not reduce to an ill-typed network.
Furthermore the dynamic type checking of incoming messages is described for-
mally.

Summary DK

Jolie er et general-purpose service-oriented programmeringssprog. Service-oriented
programmeringssprog er lavet til at skrive programmer til services i. En service
er en enhed i et løst koblet distribueret system, som er struktureret efter paradig-
met, Service-Oriented Computing (SOC). Fokus i SOC er at separere software
engineering fra applikationsprogrammering, og derfor er services autonome en-
heder som kommunikerer ved at udveksle beskeder [MGZ, TCBM06].

I Jolie er beskeder struktureret som træer. En variabel i Jolie er en sti i et
datatræ, og et datatræs type er selv et træ. Jolie tilbyder et sprog til at beskrive
de typer der må kommunikeres i et netværk. Kommunikation bliver typetjekket
under kørslen når en besked bliver modtaget, og dette er ikke formelt defineret.
Formålet med dette speciale er at introducere statisk typetjek til den teoretiske
understøttelse af kernefragmentet af Jolie.

Den måde typer er struktureret og variabler er håndteret på i Jolie, skaber nogle
udfordringer med hensyn til at indføre typetjek i Jolie: Jolies typesprog tillader
at et eller flere deltræer i en type ikke er obligatorisk for typen. Dette må
tages i betragtning ved håndtering af lighed imellem typer. Eftersom variabler
ikke erklæres skal ændringerne i programtilstanden udledes. Udover designet af
Jolie giver også selve begrebet SOC anledning til udfordring: Muligheden for at
specificere typen af beskeder som en service ønsker at modtage, forhindrer ikke
at en dårligt formuleret service sender en besked med en forkert type. Det er
derfor nødvendigt at formalisere run-time typetjek af indkomne beskeder.

Dette speciale bidrager med et design af en statisk typetjekker til Jolies kerne-
fragment. Typetjekkeren afviser netværk af services hvori der sendes eller mod-

iv

tages beskeder med en forkert type i forhold til afsender og modtagers type-
specifikationer. Dette bevises formelt sammen med den egenskab at et well-
typed netværk ikke kan reducere til et ill-typed netværk. Derudover beskrives
dynamisk typetjek af indkomne beskeder formelt.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis introduces type checking to the theoretical foundation of the core
fragment of the Jolie language, which excludes recursive types, arrays, sub-
typing of basic types, faults and deployment instructions such as architec-
tural primitives. We describe the core fragment of Jolie in chapter 1, while
the complete Jolie language is described in [Jol]. The Jolie Language is a
general-purpose service-oriented programming language. Service-oriented pro-
gramming languages are designed for writing applications to services in. A
service is an entity in a loosely coupled distributed system which is structured
after the Service-Oriented Computing (SOC) paradigm. The focus of SOC is
to separate software engineering from application programming and therefore
are services autonomous entities which communicate by exchanging messages
[MGZ, TCBM06]. In order to support the web services specifications[W3C]
Jolie allows data to be structured in trees where the edges corresponds to e.g.
XML tags and the nodes corresponds to the values of the tags. Jolie provides
a language for describing the types of its messages. In this language a subtree
of a tree type is allowed to be optional. Equality of types must therefore be
handled with that in mind. As a solution we introduce subtyping in 2.3.

The type language is used to declare types for messages allowed to be commu-
nicated through a specific operation for communication [Jol]. Variables are not
declared and the manipulation of the program state must therefore be inferred.
We handled this in the type system which is presented in 3.2.

vi Preface

Besides the challenges from the way of structuring data and handling variables,
the service-oriented computing itself is also challenging: The ability to specify
the type of messages a service wants to receive using an operation does not
prevent that an ill-formed service send a message with a wrong type. It is
therefore necessary to formalize run-time type checking of incoming messages.
We extend the semantics of Jolie with type checking of incoming messages in
2.4.

A static type checker for checking communication will reveal the communication
type errors in a network at compile time. Type errors can therefore be catched
by the programmer instead of by the user. This is a benefit since the programmer
can handle errors beforehand, and since type errors might first show up when
the service is used by many other services. The formally defined type checking
of communication will create the foundation of type checking networks since it
addresses the interaction between services.

This thesis tackles the problem of detecting type errors in service-oriented sys-
tems by the use of the Jolie language.

The contribution of this thesis is the design of a static type checker for the
core fragment of Jolie. The type checker rejects networks of services in which
a message is sent or received, where the message has a wrong type according
to sender and receivers type specifications. This is formally proved along with
the property that a well-typed network can not reduce to an ill-typed network.
Furthermore the dynamic type checking of incoming messages is described for-
mally.

The Jolie language is constructed in three layers: The behavioural layer deals
with the internal actions of a process and the communication it performs seen
from the process’s point if view, the service layer deals with the underlying
architectural instructions and the network layer deals with connecting commu-
nicating services [Mon10]. The thesis follows the layered structure of Jolie when
presenting the syntax and semantics of the Jolie language, the type system and
the properties type preservation and type safety:

Chapter 1 introduces the core fragment of Jolie and presents its syntax. The
tree structure of variables in Jolie is explained and the structure of their
types are presented.

Chapter 2 presents the semantics of Jolie. The dynamic type checking of in-
coming messages is introduced together with subtyping which it makes
use of.

Chapter 3 presents the typing relations and the type system. Furthermore the

vii

type preservation and type safety properties are presented and proved.

Chapter 4 discuss this work and future work.

The appendix A contains the semantics and typing rules presented in this thesis.

Lyngby, 15-July-2013

Julie Meinicke Nielsen

viii

Acknowledgements

I would like to thank my supervisors for the interesting discussions we have had,
and for answering my long lists of questions. I would like to give a special thank
to Fabrizio Montesi for presenting me such an interesting master thesis topic
and for being so enthusiastic that even after having worked with this topic in
half a year I still enjoy the work very much.

I would also like to thank the people in The Programming, Logic and Semantics
Research Department at The IT University for treating me like I was one of
you, and thereby making me feel very welcome. My special thanks go to Ornela
Dardha and Marco Paviotti for interesting discussions about process calculi,
type systems and session types. Second thanks go to Marco Paviotti for letting
me borrow a computer when my own broke down a month before deadline.

Finally, I would like to thank my parents for giving births to me and not regret-
ting it.

x

Contents

Summary UK i

Summary DK iii

Preface v

Acknowledgements ix

1 The Jolie Language 1
1.1 Behavioural Layer . 1

1.1.1 Jolie variables . 3
1.1.2 Types . 4

1.2 Service Layer . 5
1.3 Network Layer . 8

2 Jolie Semantics 9
2.1 Labels . 9
2.2 Dynamic Type Check . 11
2.3 Subtyping . 12
2.4 Semantics Rules . 14

2.4.1 Behavioural Layer . 14
2.4.2 Service Layer . 17
2.4.3 Network Layer . 20

3 Type System for Jolie 23
3.1 Typing Environment . 23
3.2 Typing Rules . 25

3.2.1 Type Checking of the Behavioural Layer 26
3.2.2 Type Checking of the Service Layer 33

xii CONTENTS

3.2.3 Type Checking of the Network Layer 37
3.3 Type Preservation . 39

3.3.1 Inversion of the Typing Relation 40
3.3.2 Structural Congruence . 41
3.3.3 Transition Function . 46
3.3.4 Type Preservation . 49

3.4 Type Safety . 75
3.4.1 Semantics with Errors . 75
3.4.2 Lack of Errors . 76
3.4.3 Type Safety . 81

4 Conclusion 83
4.1 Future Work . 83

4.1.1 Language Extentions . 84
4.1.2 Purpose Extensions . 86
4.1.3 Precision . 87

A Appendix 89
A.1 Semantics . 90

A.1.1 Behavioural Layer . 90
A.1.2 Service Layer . 90
A.1.3 Network Layer . 91
A.1.4 Error Rules . 92

A.2 Type System . 92
A.2.1 Subtyping . 92
A.2.2 Typing Rules at Behavioural Layer 93
A.2.3 Typing Rules at Service Layer 94
A.2.4 Typing Rules at Network Layer 95

Bibliography 97

Chapter 1

The Jolie Language

This chapter provides the necessary background information on the core frag-
ment of the programming language Jolie (Java Orchestration Language Inter-
preter Engine). It is reported from [MGZ, Mon10, MC11, Jol].

Jolie is a service-oriented programming language. A Jolie program consists of
two part: The behavioural part defines a service behaviour, and the deployment
part defines the composition of the service with the rest of the network.

Jolie is build on SOCK [GLG+06] which is a process calculus for modelling
service-oriented systems. This is done by having three layers: The internal
computations of a process and the communication projected to the process is
specified at the behavioural layer, while the underlying description of the com-
munication, architecture and state of the process is described at the service layer.
Communication in a network is described at the network layer [Mon10, MGZ].

1.1 Behavioural Layer

The behavioural layer describes the internal actions of a process and the com-
munications it performs seen from the process’ point of view.

2 The Jolie Language

The statements at the behavioural layer are called behaviours and they are
ranged over by B. Expressions are ranged over by e, channel names are ranged
over by r, operation names are ranged over by o, locations are ranged over by
l and variables are ranged over by x. In this thesis we consider the behaviours
described by the following grammar:

B ::= η (input)
| η (output)
| if(e)B1[else B2] (if)
| while(e) {B} (while)
| B1;B2 (sequence)
| B1 | B2 (parallel)
| x = e (assign)
| 0 (nil)
| [η1]{B1} · · · [ηn]{Bn} (input choice)
| Wait(r, o@l, x) (wait)
| Exec(r, o, x, B) (exec)

η ::= o(x) (one− way)
| o(x)(x’) {B} (request− response)
η ::= o@l(e) (notification)
| o@l(e)(x) (solicit− response)

Communication is available through rules (input), (output) and (input choice).
Input communication can either be unidirectional (one-way) or bidirectional
(request-response). Both stores the input received on operation o in variable
x, but request-response in addition executes behaviour B and reply with the
content of x′. The three actions are done in sequence of request-response are
done in sequence.

The rules for output communication, (notification) and (solicit-response) are the
dual of respectively (one-way) and (request-response). The output communica-
tion rules differs from the input communication rules in that they have an extra
parameter. The location l of the receiving service can e.g. be represented by
an URL. In the full Jolie syntax the extra parameter is an output port instead
of a location. The communication port is specified at the service layer and it
consists of location, protocol, interface and architecture settings. The commu-
nication port is not essential for the purpose of designing a type system, hence
it is omitted. For a detailed description of communication ports see [MGZ].

Each option in an (input choice) consists of a guard η which ranges over input
options and a behaviour B, which is executed if the guard allows it.

1.1 Behavioural Layer 3

The behaviours B-Exec and B-Wait are runtime statements. They were included
in the Jolie language in [MC11]. The versions of them presented here differ
from their versions in [MC11] in the way that they also have the operation as
parameter. We added it since it is needed in section 3.3.4 where we prove the
preservation property for the typing system.

The behaviours (parallel) and (nil) are common concurrent statements. The
first is a construct of two behaviours running in parallel, while the latter is a
construct of doing nothing.

The behaviours (while), (if) and (sequence) are common statements in imper-
ative languages. The brackets around the else-branch in (if) indicates that the
branch is optional.

Since variables in Jolie have tree structure, the (assign) behaviour works different
from common assign behaviours. A variable in Jolie is a path in the variable
tree which it is a part of. The subtree of a path consists of a value (node), and
optional continuations of the path (edges). The (assign) rule assigns a value to
a path without influencing its possible children.

1.1.1 Jolie variables

In Jolie the data structure for a variable is a tree, where the nodes contain
values. Consider for instance the variable named amount, which gets assigned
the value 12:

amount = 12

It is represented as a tree with a single node:

12

A variable can be extended by adding edges to it delimited by a ".":

amount.fruit.apple = 2;
amount.fruit.description = "A kind of food"

The tree for amount now got extended:

4 The Jolie Language

12

"A kind of food"2

apple description

fruit

Note that a node is allowed not to have any value at all.

A variable is a path in a data tree. For instance the data tree for variable
amount.fruit is:

"A kind of food"2

apple description

As described in section 1.1 the assign statement does not changes the children
of the variable it is used at:

amount = 2

The tree for amount:

2

"A kind of food"2

apple description

fruit

1.1.2 Types

A type is a tree, where the nodes contain basic types. A basic type BT can be
one of the following:

BT :: = bool | int | double | long | string | raw | void

1.2 Service Layer 5

Type raw is used for data streams and type void is used for no data. The rest
are standard. The full Jolie syntax also includes the type any which is used for
a basic type which can be any of the basic types.

Jolie trees are ranged over by T . A Jolie tree consists of a basic type and an
optional list of children, CTL:

T ::= BT |BT {CTL}

A list of children consists of a child, CT , and a list of children:

CTL ::= CT CTL

Notice, that a list of children can not be empty. A child of a type tree consists
of an id, a cardinality and a type tree:

CT ::= .idC : T

The cardinality specify a range over allowed number of array elements. In this
fragment of Jolie the following ranges are considered:

C ::= [0, 0] | [0, 1] | [1, 1] | [?]

The last production is a shortcut for [0, 1]. Not specifying a cardinality is a
shortcut for [1, 1], which is the only cardinality allowed for root nodes.

1.2 Service Layer

The service layer contains the structures for handling communication and pro-
gram run. The entities at the service layer are processes and services.

Besides the behaviour a process also consists of a state t and a message queue
m̃:

6 The Jolie Language

P :: = B · t · m̃ | 0 | P | P

We let P range over processes, t range over trees and m̃ range over message
queues. A state is a tree which consists of all the variables in the process,
such that each variable in the process is represented by a path in the state. A
message queue is a FIFO queue of incoming messages. A message is ranged over
by m and has the form (r, o, t), where r is the channel it is received on, o is the
operation it is received as part of and t is the content of the message.

A 0 process is a process that do nothing, has no state and no message queue.
An important semantic difference between a 0 process and a process 0 · t⊥ · ε is
that a 0 process can not receive messages.

A process is part of a service S. Besides processes a service engine also consists
of a deployment D and a behaviour:

S :: = B .D P

A service can have at least one of the roles client and server. The behaviour of
a service in the role of a server is (input choice). The initial form of a service
solemnly in the role of a server is:

∑
i∈J

[ηi]{Bi} .D 0

When processing incoming requests it will spawn processes and run them in
parallel with 0.

The behaviour of a service solemnly in the role of a client is (nil). The service
has the form:

0 .D B · t · m̃

The deployment denoted D contains information about correlation sets for pro-
cesses running by the service and type declarations for operations known by the
service. In [MC11] only the information about correlation sets are known by

1.2 Service Layer 7

a service. We added a typing environment with declarations for operations in
order to be able to extend the Jolie semantics with a dynamic type checker. A
deployment is of the following form:

D = αC · Γ

A correlation set, c is a set of variables which values are used to identify a
process. The aliasing function αC is used to extract information about where in
a message the correlation values for an operation can be found. Correlation sets
are outside the scope of this project. For a detailed description of the concept
see [MC11].

The deployment D consists of type declarations for operations. We assume that
the proceeding of the deployment contains adding the operation type declara-
tions to the typing environment. A typing environment, Γ is a set consisting of
type bindings for variables and operations. While the operation type bindings
are declared in the deployment part, the variable type bindings are inferred dur-
ing type checking of the behavioural part. A type environment has the following
form:

Γ :: = o@l : <T>

| o@l : <T, T>

| o : <T>

| o : <T, T>

| ∅
| Γ,Γ

| · · ·

The structure of an operation type binding is an operation name followed by
either a type (unidirectional communication) or a pair of types (bidirectional
communication). The production Γ,Γ denotes disjoint union of two environ-
ments, while the · · · denotes that one or more productions are omitted. The
omitted production is the form of a variable type declaration. We will explain it
in chapter 3. A type declaration for an operation has the form key : <type>. For
input communication the key is the operation name, while it for output com-
munication consists of both the operation name and a location of the hosting
service. The type is a single type tree for unidirectional communication and a
pair of type trees for bidirectional communication.

8 The Jolie Language

1.3 Network Layer

The network layer describes the structure of a network. A network denoted
N is one or more services running in parallel. We assume that each service is
deployed on a unique location. A service S deployed on a location l is denoted
[S]l and the grammar for N is given below.

N :: = [S]l | νr N | N | N | 0

We kept the 0 production and additional structural congruence rules (presented
in 2.4) from [MC11] even though a service can not be or become 0, because we
otherwise had to make two versions of some of the semantic network rules, in
order to make them work for a network consisting of a single service.

Chapter 2

Jolie Semantics

This chapter explains the semantics of Jolie, which is described in a labelled
transition system. The labels are described in 2.1 and the semantics is presented
in 2.4. We have extended the semantics with a dynamic type check of incoming
messages. The dynamic type check is described in 2.2. It makes use of subtyping
which is described in 2.3. Except for section 2.2 and 2.3, the semantics of Jolie
are reported from [MC11] unless anything else is written. The semantic rules
are reported also in a single table in Appendix A, for reference.

2.1 Labels

The semantics of Jolie are described in a labelled transition system, where µ
ranges over label names. A transition between behaviours can have one of the
following labels:

10 Jolie Semantics

µ :: = x = e

| read t
| νr o@l(e)

| r : o(x)

| (r, o)!x

| (r, o@l)?x

| · · ·

Label x = e denotes the action of evaluating expression e and assign the result to
variable x. Label read t denotes reading the state t of the underlying process.
Label νr o@l(e) denotes sending a expression e through an operation o to a
location l over a fresh channel r. Its dual label r : o(x) denotes storing in a
variable x a message received through an operation o over a channel r. This label
pair is used in unidirectional communication and in first part of bidirectional
communication. In the second part of bidirectional communication is the label
pair, (r, o)!x and (r, o@l)?x used. Label (r, o)!x denotes writing a variable x at
channel r as part of an operation o, while (r, o@l)?x denotes reading a message
from channel r as part of an operation o and storing it in a variable x. The three
dots denotes that the presented productions don’t compose the whole grammar
for µ. The remaining productions are used at transitions between services:

µ :: = · · ·
| τ

| νr o@l(t)

| νr o(t)

| (r, o)! t

| (r, o@l)?t

Label τ represents an internal action. Label νr o@l(t) and νr o(t) corresponds
to respectively νr o@l(e) and r : o(x) . The difference is that t in νr o@l(t)
denotes the tree of the result of the evaluation of expression e in νr o@l(e),
while t in νr o(t) denotes the received message which is going to be stored in
variable x in r : o(x).

Likewise label (r, o)! t and (r, o@l)?t corresponds to respectively (r, o)!x and
(r, o@l)?x. These two pairs of labels differs from their version in [MC11]. The
difference is that the name for the current operation is added as a parameter.
For receiving from an operation the location of the sender is added as well. This

2.2 Dynamic Type Check 11

is done because it is needed in the function sideEffect and in the semantic rules
for transitions labeled error. The function sideEffect updates the typing envi-
ronment with respect to the action denoted by the label. It will be introduced
in section 3.3.3. The semantic rules for transitions labelled error are used in
the proof for the progress property. They will be introduced in section 3.4.1.

2.2 Dynamic Type Check

We have extended the semantic rules at the service layer for receiving a message
with a dynamic type check. The rules affected are S-Corr and S-Start which is
described in 2.4. Recall that a deployment D consists of an aliasing function αC
and an environment Γ, where αC is used to extract information about where in
a message the correlation values for an operation can be found, and Γ contains
type bindings for operations known by the service. This is denoted byD = αC ·Γ.
The dynamic type check compares the type of the input operation with the type
of the message:

D = αC · Γ a(o : <Ti> ∈ Γ ∨ o : <Ti, To> ∈ Γ) ` t : Tt Tt ≤ Ti

where t′ is a message sent through operation o.

The minimal type T of tree t can be assigned to t with ` t : T :

Definition 2.1 We write ` t : T whenever t is a tree and T is a type such
that t has type T and there doesn’t exist a type T ′ such that T ′ < T and t has
type T ′.

The type of the message can be determined without use of an environment:
Since the value of each node in a tree is copied to the tree instead of copying
the pointer, non of the data trees in Jolie contains links, and therefore the type
of a data tree can be determined if the types of its nodes can be determined.

Both definition 2.1 and the dynamic type check makes use of subtyping. Defi-
nition 2.1 uses it to find the minimal type tree of a data tree and the dynamic
type check uses it to compare the type of the input operation with the type of
the received message. We describe subtyping below.

12 Jolie Semantics

2.3 Subtyping

The dynamic and the static type checking make use of subtyping after the
principles that a type is a subtype of another type if it is described by the other
type. Consider for instance the type t0:

type t0 : int { .x:string .y:bool }

It is a subtype of t1:

type t1 : int { .x[0,1]:string .y:bool }

So is t2:

type t2 : int { .y:bool }

Furthermore each type is a subtype of itself.

We use ≤ as the subtyping relation, and we have described this relation with
some typing rules. We assume that the abstract syntax trees which the typing
rules are applied at, are optimized such that the cardinality [0, 0] doesn’t occur in
any part of the trees, and such that cardinality shortcuts are written completely.

The subtyping relation between trees is described by ST-T.

(ST-T) BT1≤BT2 CTL1≤CTL2
BT1{CTL1}≤BT2{CTL2}

A tree is a subtype of another tree if its basic type is a subtype of the other
trees basic type and if its list of children are a subtype of the other tree’s list of
children. The subtyping relation between basic types is described by ST-BT.

(ST-BT) BT1=BT2
BT1≤BT2

The subtyping relation between lists of children is described by ST-CTL.

(ST-CTL)

dom(CTL1) ⊆ dom(CTL2)

∀x ∈ dom(CTL2) . CTL2(x) =< C2, T2 > ∧
CTL1(x, T2) =< C1, T1 > ∧C1 ≤ C2 ∧ T1 ≤ T2

CTL1≤CTL2

2.3 Subtyping 13

The first premise of ST-CTL ensures that CTL1 doesn’t have any children which
CTL2 doesn’t have. The second premise extract information about the cardi-
nality and tree of each child in the two lists and apply the subtyping relation
on these retrievals. The information of a child in list CTL2 is extracted using
the function

CTL(x) =

{
< C, T > if xC : T ∈ CTL
undefined otherwise

(2.1)

An id x applied on a list CTL returns the cardinality and tree type of the element
with id x. It is not defined if x is not an element in CTL. In the premise the
function is only used in a space where it is defined, because of the form of the
forall condition.

The information of a child in list CTL1 in the second premise is extracted using
the function

CTL(x, Td) =

{
< C, T > if xC : T ∈ CTL
< [0, 0], Td > if x /∈ CTL

(2.2)

It is defined as the previous function except that it takes as argument a default
type tree which it returns together with cardinality [0, 0] in case it is called with
an id which is not in the list of children. That way e.g. t2 ≤ t1 from the above
example is typable.

The subtyping relation between cardinalities is described by ST-CTL.

(ST-C) MIN2≤MIN1 MAX1≤MAX2
[MIN1,MAX1]≤[MIN2,MAX2]

A cardinality is a subtype of another cardinality if its range is contained in the
range of the other cardinality.

The rule ST-T doesn’t catch all trees. The rule ST-BT-T catches the case where
the subtype doesn’t have a list of children. ST-BT-T is a rewriting of ST-T and
ST-CTL. Another solution is to view the missing list of children as an empty
list. This solution is not chosen because it will create ambiguity since make
BT1 ≤ BT2 typable by both ST-T and ST-BT.

14 Jolie Semantics

(ST-BT-T) BT1≤BT2 ∀x∈dom(CTL) . CTL(x)=<C,T>∧[0,0]≤C
BT1≤BT2{CTL}

The case where the subtype doesn’t have a list of children but the subtype do is
not considered, because of the assumption that all nodes with cardinality [0, 0]
are removed.

2.4 Semantics Rules

Recall that Jolie is structured in a behavioural layer, a service layer and a
network layer. In this section we present the semantic rules for the statements
in Jolie ordered after the layers.

2.4.1 Behavioural Layer

The semantic rules for behavioural statements are described below.

Structural Congruence

(B-Struct)
B1≡B2 B2

µ−→B′
2 B′

1≡B
′
2

B1
µ−→B′

1

where structural congruence is defined as follows:

Definition 2.2 (Structural Congruence Rules at Behavioural Layer)

(B1 | B2) | B3 ≡ B1 | (B2 | B3)

0;B ≡ B

B1 | B2 ≡ B2 | B1

B | 0 ≡ B

Branches The premises of the semantic rules for the statements (if) and
(while) uses notation which requires explanation before presenting the rules:

2.4 Semantics Rules 15

The function x(t) takes a variable path x and a data tree t and returns the
subtree of x in t. It is formally defined in [MC11, p. 5] as:

Definition 2.3

x(t) =


t if x = ε

x′(t′) if x = a.x′ and a is an edge from the root of t to t’s subtree t′

t⊥ if x = a.x′ and there is no edge a from t to a subtree t′

(2.3)

where ε denotes the empty sequence and t⊥ a tree with a single node with
undefined value.

Since the variables of a process are represented as paths in the state of the
process, the function x(t) can be used to look up variables in the state. This is
used in the function which evaluates an expression on its state:

Definition 2.4 We write e(t) = t′ where e is an expression, t is a state and
t′ is a tree such that t′ is the result of the evaluation of e in which each variable
in e are looked up in the state t.

(B-If-Then) e(t)=true

if(e)B1 else B2
read t−−−−→B1

(B-If-Else) e(t)=false

if(e)B1 else B2
read t−−−−→B2

(B-Iteration) e(t)=true

while(e){B}
read t−−−−→B;while(e){B}

(B-No-Iteration) e(t)=false

while(e){B}
read t−−−−→ 0

The semantic rules for the while and if statements are standard. The premise
requires evalution of the loop condition given the state read in the transition.

(B-Choice)
j∈J ηj

µ−→B′
j∑

i∈J [ηi]{Bi}
µ−→B′

j ;Bj

Rule B-Choice describes what happens when a guard is taken. The guard is
executed in sequence with the body of the chosen branch. In the premise the
guard is evaluated one step. This is done because the called service needs to
synchronize with the caller service by the label. That way the choice of branch
is made by the caller. The synchronization is described in section 2.4.3.

16 Jolie Semantics

Parallel and Sequence

(B-Seq)
B1

µ−→B′
1

B1;B2
µ−→B′

1;B2

(B-Par)
B1

µ−→B′
1

B1 | B2
µ−→B′

1 | B2

The semantic rules for the parallel and sequence statements are standard.

Assignment

(B-Assign) x = e x = e−−−→ 0

The assignment action is performed in the transition.

Communication

(B-SolResp) o@l(e)(x) νr o@l(e)−−−−−−→ Wait(r, o@l, x)

(B-Notification) o@l(e) νr o@l(e)−−−−−−→ 0

(B-ReqResp) o(x)(x’) {B} r:o(x)−−−−→ Exec(r, o, x’, B)

(B-OneWay) o(x) r:o(x)−−−−→ 0

(B-Wait) Wait(r, o@l, x)
(r,o@l)?x−−−−−−→ 0

(B-Exec) B
µ−→B′

Exec(r,o,x,B)
µ−→ Exec(r,o,x,B′)

(B-End-Exec) Exec(r, o, x,0)
(r,o)! x−−−−−→ 0

Rule B-Notification and B-OneWay describes that the unidirectional commu-
nication statements finish after having taken their send or receive transition.
Rule B-SolResp and B-ReqResp describes that the bidirectional communication
statements transform to runtime statements after having taken first transition
in the communication. The statement solicit-response transforms to the state-
ment wait. It finish using rule B-Wait when the reply from the called service is
received. Its dual statement request-response transforms to the statement exec.
In rule B-Exec the behaviour part of the request-response statement is executed.

2.4 Semantics Rules 17

Rule B-End-Exec describes that when the behaviour part is fully executed, the
reply is sent to the caller service.

2.4.2 Service Layer

The semantic rules at the service layer are described below. The service layer
can be seen as two layers since it consists of both processes and service engines.
At the process level of the service layer messages are read from a message queue,
while they are put into the message queue at the service level.

As we are going to see i S-Assign, S-Get and S-Start then each time a variable
is altered, the nodes from the assigned data tree is copied to the variables data
tree. Therefore non of the data trees in Jolie contains links.

Communication

(S-Send) B
νr o@l(e)−−−−−→B′

B·t·m̃
νr o@l(e(t))−−−−−−−→B′·t·m̃

When an expression is sent using B-Notification or B-SolResp, the service layer
takes care of evaluating the expression on the state to a data tree by rule S-Send.
This is done by the function e(t) in the label of the transition in the conclusion
of S-Send. Recall that we write e(t) = t′ where e is an expression, t is a state
and t′ is a tree such that t′ is the result of the evaluation of e in which each
variable in e are looked up in the state t.

Recall that we are looking at a fragment of Jolie without communication ports.
Since locations are used directly instead of being part of an communication port,
we have removed the lookup of the location in the state from the rules presented
in [MC11].

From S-Send we know that sending a message influences the process part of the
service layer. It does not influences the service part of the service layer since it
does not require spawning a process or putting a message in the message queue.
Therefore S-Send-Lift is a lifting rule. We have added it to the semantics as
part of this master thesis.

(S-Send-Lift) P
νr o@l(t)−−−−−→P ′

B.DP
νr o@l(t)−−−−−→B.DP

′

18 Jolie Semantics

The actions performed by a service when receiving a message are defined in
the semantic rules S-Start and S-Corr. Which of the semantic rules applies
for receiving a message depends on whether the received message correlates
with any running process. We say that a message t′ received for operation o
correlates with a state t if the values of the correlation set of t′ equals the values
of the corresponding correlation set in t. Recall that a deployment D consists
of an aliasing function αC and an environment Γ, where αC is used to extract
information about where in a message the correlation values for an operation
can be found, and Γ contains type bindings for operations known by the service.
This is denoted by D = αC · Γ. We write t′, o `αC t when t′ correlates with
the process represented by t and t, o 0αC P when it does not.

(S-Corr)
D=αC ·Γ t′,o `αC t (o:<Ti>∈Γ∨ o:<Ti,To>∈Γ) `t′:Tt′ Tt′≤Ti

B.DP | B′·t·m̃
νr o(t′)−−−−−→B.DP | B′·t·m̃::(r,o,t′)

(S-Start)
D=αC ·Γ t,o 0αCP B

r:o(x)−−−→B′ t′=init(t,o,αC) (o:<Ti>∈Γ∨ o:<Ti,To>∈Γ) `t′:Tt′ Tt′≤Ti

B.DP
νr o(t)−−−−→B.DP | B′·t⊥←xt←csetst′·ε

init(t, o, αC) =


t⊥ �p1 f(p1)(t) . . .�pn f(pn)(t) if αC(o) = ({p1, . . . , pn}, f)
t⊥ if o /∈ Dom(αC)
undefined otherwise

From the form of S-Corr we can see that when a received message correlates,
it is added to the message queue of the correlating process. We can see from
the form of S-Start that if a received message does not correlate, a new process
is started. The spawned process is initialized with an empty queue, a state
containing only the received message and correlation set, and the behaviour of
the service after it is evaluated one step (the first step is used to synchronise
with the sending of the message).

Recall that a variable is a path in the state. The creation of the state for the
new process is done by updating the path csets in the message t with the
correlation variables stored in t′. A tree with a single node with empty value
denoted t⊥ is then updated with a path x with the value of the result of the
update of the message t. This is denoted by t⊥ ←x t←csets t

′.

Our type system relies on a dynamic type check to ensure that messages re-
ceived through a specific operation fulfills the requirements specified in the type
declaration for the operation. Recall that we have added a dynamic type check
denoted by ` t′ : Tt′ and Tt′ ≤ Ti to S-Corr and S-Start, where ` t′ : Tt′ assigns
to t′ the minimal type of t′. The dynamic type check ensures that the type of a

2.4 Semantics Rules 19

received message is a subtype of the input type declaration of the operation it
is received through. Our dynamic type checking captures the one implemented
in the interpreter of Jolie [Mon10].

(S-Get) B
r:o(x)−−−→B′

B·t·(r,o,t′)::m̃
τ−→ B′·t←xt′·m̃

A message is read from the message queue by the process in rule S-Get. Since a
variable is a path in the state, the assignment of the message t′ to the variable
x is done by updating path x of the state t with the message. This is denoted
by t←x t

′.

(S-Exec) B
(r,o)! x−−−−→B′

B·t·m̃
(r,o)! x(t)−−−−−−→B′·t·m̃

The response in a bidirectional communication is sent through a shared channel.
The variable which is going to be sent is evaluated on the process state to a data
tree. This is described by rule S-Exec which in [MC11] is called S-SR.

(S-Exec-Lift) P
(r,o)! t−−−−→P ′

B.DP
(r,o)! t−−−−→B.DP

′

(S-Wait-Lift) P
(r,o@l)?t−−−−−→P ′

B.DP
(r,o@l)?t−−−−−→B.DP

′

When a connection is established through a shared channel, correlation is not
used. Therefore the semantic rules for the second part of a bidirectional com-
munication at the service engine level are lifting rules. They are added to the
semantics as part of this master thesis.

(S-Wait) B
(r,o@l)?x−−−−−→B′

B·t·m̃
(r,o@l)?t′−−−−−−→B′·t←xt′·m̃

When a message is received as part of a solicit-response it is read directly from
the shared channel which it is received over. The state is updated the same way
as in S-Get. This is described by rule S-Wait which in [MC11] is called S-RR.

Other State Accesses

20 Jolie Semantics

(S-Assign) B
x = e−−→B′

B·t·m̃
τ−→B′·t�xe(t)·m̃

Except for input communication a variable can also be altered as part of an
assignment. This is described in S-Assign. Recall that e(t) evaluates expression
e by looking up its variables in state t. The variable x is assigned the root node
of the result of e(t) by updating path x in the state with the root of the result
of e(t). This is denoted by t�x e(t).

(S-Read) B
read t−−−−→B′

B·t·m̃
τ−→B′·t·m̃

The rule S-Read describes the read of a process state. Since it is only a read
neither the state nor the message queue is altered.

Parallel Processes and Internal Actions

(S-Tau) P
τ−→P ′

B.DP
τ−→B.DP

′

The service engine rule S-Tau is a lifting rule. It is added as part of this master
thesis.

(S-Par)
P1

µ−→P ′
1

P1 | P2
µ−→P ′

1 | P2

Parallelization of processes is described in rule S-Par. This rule is standard. It
is added as part of this master thesis.

2.4.3 Network Layer

The semantic rules for networks are described below.

N-Struct

(N-Struct)
N1≡N2 N2

µ−→N′
2 N′

1≡N
′
2

N1
µ−→N′

1

2.4 Semantics Rules 21

where structural congruence is defined as follows:

Definition 2.5 (Structural Congruence Rules at Network Layer)

(N1 | N2) | N3 ≡ N1 | (N2 | N3)

N1 | N2 ≡ N2 | N1

N | 0 ≡ N

if r /∈ fn(N2): ((νr)N1) | N2 ≡ (νr)(N1 | N2)

N-Comm

(N-Comm)
S1

νr o@l2(t)−−−−−−→S′
1 S2

νr o(t)−−−−→S′
2 r/∈cn(S1)∪cn(S2)

[S1]l1 | [S2]l2
τ−→ νr ([S′

1]l1 | [S′
2]l2)

The rule N-Comm describes a unidirectional communication or the first part of
a bidirectional communication. Its premises make sure that the service at the
receiver location receives the message and that the setup of a shared channel is
done with a channel which name is not already used in any of the concerned
services.

N-Response

(N-Response)
S1

(r,o@l1)?t−−−−−−→S′
1 S2

(r,o)! t−−−−→S′
2

νr ([S1]l1 | [S2]l2)
τ−→ [S′

1]l1 | [S′
2]l2

The rule N-Response describes the second part of a bidirectional communication
which is done through the shared channel setup in the conclusion of N-Comm.

In both N-Comm and N-Response we see that the communication between two
services is seen as an internal action for the rest of the network.

N-Tau and N-Par

(N-Tau) S
τ−→S′

[S]l | N
τ−→ [S′]l | N

(N-Par)
N1

µ−→N′
1

N1 | N2
µ−→N′

1 | N2

22 Jolie Semantics

The rules N-Tau and N-Par are standard and describe that the change of a part
of a network applies to the whole network.

N-Restriction

(N-Restriction) N
τ−→N′

νr (N)
τ−→ νr (N′)

The rule N-Restriction is standard and describes that the change of a network
also applies to the restricted network. The rule is added as part of this master
thesis.

Chapter 3

Type System for Jolie

This chapter presents the static type system. The typing environment is pre-
sented in 3.1, the typing rules are presented in 3.2 and the properties type
preservation and type safety are presented in respectively 3.3 and 3.4. Notice,
that the subtyping rules are presented in 2.3 since they are used by the dynamic
type check. All the typing rules are reported also in a single table in Appendix
A, for reference.

The type system follows a simple principle: Recall that variables in Jolie are not
declared. Alternation of a type tree by extending it is therefore not considered
a type error. Thereby is alternation of a node in a type tree considered a type
error.

3.1 Typing Environment

Recall that a typing environment, Γ is a set consisting of type bindings for
variables and operations. The typing environment has different purposes at the
different layers. At the behavioural layer it is used for operation type bindings
declared in the deployment part of the process and for variable type bindings
inferred in the behavioural part of the process. At the service layer it is used

24 Type System for Jolie

for operation type bindings declared for the service, while at the network layer
it is used for operation type bindings declared for the network.

A type environment is at the following form:

Γ :: = o@l : <T>

| o@l : <T, T>

| o : <T>

| o : <T, T>

| x : T

| ∅
| Γ,Γ

We remind that a type declaration for an operation has the form key : <type>.
For input communication the key is the operation name, while it for output
communication consists of both the operation name and a location of the hosting
service. The type is a single type tree for unidirectional communication and a
pair of type trees for bidirectional communication.

The type declaration for a variable has the form x : T where x is the root of a
variable path and T is the type of x. We assume that operations and variables
are not allowed to have the same name. This assumption is made solemnly
because the typing environment is a set, and therefore the key must be unique.
The assumption can for instance be realized by adding a character which a
developer can not type to either each variable name or to each operation name.
It is omitted from this thesis for clarity.

We use the standard set operations key ∈ Γ and key : type ∈ Γ for detecting
whether respectively a key and a binding is member of an environment. Since
the key of a type declaration for a variable is the root of the variable, and the
subsequent part of the variable and its type binding is part of the type tree for
the root, we use the following shortcuts for looking up variable type bindings in
an environment Γ:

x ∈ Γ =

{
true if r(x) : T is a type binding in Γ ∧ x ∈ T
false otherwise

(3.1)

x : T ∈ Γ =

{
true if r(x) : T ′ is a type binding in Γ ∧ x : T ∈ T ′

false otherwise
(3.2)

3.2 Typing Rules 25

in which we write r(x) for the root edge of path x:

Definition 3.1 (Root of a Path) r(x) = a iff a.x′ = x.

where x and x′ are paths and a is an edge.

The functions x ∈ Γ and x : T ∈ Γ make use of the function x : T ∈ T ′. Let
T and T ′ be two types and x and x′ be two variables, where x′ is the part of x
excluding its root. We write x : T ∈ T ′ when x′ is a path in T ′ with the subtree
T :

x : T ∈ T ′ =


true if r(x) = x

true if r(x) 6= x ∧ x = r(x).x′ ∧ x′ is a path in T ′

pointing to the subtree T
false otherwise

(3.3)

Note that if x only consists of one edge x : T ∈ T ′ = true since the root of a
variable is not part of its type.

Similarly we write x ∈ T when x′ is a path in T :

x ∈ T =


true if r(x) = x

true if r(x) 6= x ∧ x = r(x).x′ ∧ x′ is a path in T
false otherwise

(3.4)

For the dual function of x ∈ Γ we write x /∈ Γ when there exists no type bindings
for x in Γ:

Definition 3.2 x /∈ Γ = @T. x : T ∈ Γ

Furthermore are o /∈ Γ, o@l /∈ Γ and x /∈ T defined similar.

3.2 Typing Rules

The structure of the type system follows the layers of Jolie. The typing rules
are therefore presented in the layers.

26 Type System for Jolie

3.2.1 Type Checking of the Behavioural Layer

The statements at the behavioural layer are called behaviours. If a behaviour
B is typed with respect to an environment Γ and updates Γ to Γ′ during type
checking we write Γ `B B . Γ′. The judgement has form of a Hoare triple such
that the update of an environment can be distributed to other parts of the type
checking tree, than a possible subtree of the conclusion where it is added. A
difference from the normal use of a Hoare triple is that the invariant is at the
right side instead of the left side.

The following rules are used for type checking behaviours:

T-Nil The typing rule for a nil behaviour is an axiom. In the conclusion the
typing environment is not changed, since the nil statement doesn’t affect the
typing environment.

(T-Nil)
Γ`B 0 .Γ

T-If-Then-Else The rule for typing an if statement is standard: An if state-
ment is typable if its condition has type bool, and if the type checking of its
branches perform the same updates to the environment. We require the branches
to perform the same updates because we do not know which branch will be taken.

(T-If-Then-Else) Γ` e:bool Γ`B B1 .Γ′ Γ`B B2 .Γ′

Γ`B if(e)B1 else B2 .Γ′

In Jolie the else part is optional. To avoid writing too many similar typ-
ing rules we have omitted it here, because it is syntactic sugar for the case
if(e)B1 else 0.

The premise Γ ` e : bool requires that expression e is type checked against type
textttbool. In general, we write Γ ` e : T when the result of the evaluation of
expression e under type environment Γ has minimal type T .

T-While The rule for typing a while statement is standard: A while statement
is typable if its condition has type bool, and if type checking its body has no
influence on the typing environment.

3.2 Typing Rules 27

(T-While) Γ` e:bool Γ`B B .Γ
Γ`B while(e){B} .Γ

Above, we require that the body of the while loop does not change the typing of
variables because we do not know whether the body will be executed at all, and
for how many times. We also require that expression e is type checked against
type textttbool.

T-Choice The rule for typing a choice statement is standard: A choice state-
ment is typable if the type checking of all its branches perform the same updates
to the environment.

(T-Choice)
∀j∈J . Γ`B ηj ;Bj .Γ′

Γ`B
∑
i∈J [ηi]{Bi} .Γ′

Above, we require that the choice options perform the same updates to the
environment since we do not know at compile time which option is chosen.

In the premise the guard and the body is rewritten as sequential because, both
are being executed in sequence according B-Choice.

T-Par A parallel behaviour is typable if each of its threads are well typed and
if the updated environments from type checking its threads with respect to two
disjoint environments are disjoint.

(T-Par)
Γ1 `B B1 .Γ′

1 Γ2 `B B2 .Γ′
2 Roots(Γ′

1)∩Roots(Γ′
2)=∅

Γ1,Γ2 `B B1 | B2 .Γ′
1]Γ′

2

We write respectively Γ,Γ′ and Γ]Γ′ for the disjoint union of two environments
Γ and Γ′. In the conclusion of T-Par we require the respectively Γ1 and Γ2 and
Γ′1 and Γ′2 to be disjoint in order to avoid dependencies in B1 and B2. The
disjunction goes for whole variable trees insted of just for paths as expressed in
the premise Roots(Γ′1)∩Roots(Γ′2) = ∅. We write Roots(Γ) for the set containing
the root edge of each variable in an environment Γ:

Roots(Γ) = {r(x)|x : T ∈ Γ}

Notice, that Roots(Γ) does not contain operations, since an operation is not a
path. The premise Roots(Γ′1) ∩ Roots(Γ′2) = ∅ sets the requirement that this

28 Type System for Jolie

rule can only be applied to behaviours which environments are splitted such
that there exists no overlap in the splitted environments, neither in the two
environment parts that the behaviour is typed with respect to (Γ1 and Γ2), nor
in the two resulting environment parts (Γ′1 and Γ′2). The disjunctions goes for
whole variables and not only parts of variables to avoid situations where one
thread relies on a variable to have a given structure, while the other thread alters
the structure of the variable. For instance if o@l(e) | x.b = 4 where o@l : <T>
and T : int{.b[0, 1] : string}.

The requirement that the environments which the behaviours are type checked
with respect to, must be disjoint are implicit in Roots(Γ′1)∩Roots(Γ′2) = ∅ since
a type binding can never be removed from the environment according to the
form of the typing system and the transition function sideEffect which will be
defined in 3.3.3 (definition 3.12).

T-Seq A sequence statement typed with respect to an environment is typable
if its first component is typable with respect to the environment and its second
component is typable with respect of the update of the environment performed
by the first component. The update of the environment performed by the se-
quence statement is the update performed by the second component with respect
to the update performed by the first component.

(T-Seq) Γ`B B1 .Γ′ Γ′ `B B2 .Γ′′

Γ`B B1;B2 .Γ′′

T-Notification A notification statement is typable if the environment con-
tains type information for the operation and if its expression is typable and has
a type which is a subtype of the type of the operation. Since sending an expres-
sion doesn’t provide any changes to the type environment, the type environment
it not updated.

(T-Notification) o@l:<To>∈Γ Γ` e:Te Te≤To
Γ`B o@l(e) .Γ

The typing rule for notification ensures that what is send shall always be defined.
The small letter used in combination with T is solemnly to help the reader
remember what the different type trees are bound to. It does not specify the
form of the type tree, nor whether two type trees are equal.

3.2 Typing Rules 29

3.2.1.1 Alternation of the typing environment

The assign statement, the input and output statements and the wait statement
update the typing environment. The typing rules for each of these statements
follows the same structure: Assignment of variables which has no type binding
in the typing environment is typed by a rule with "New" in its name, while
assignment of variables which types are not changed is typed by a rule with
"Exists" in its name. That way the type system ensures that a statement in
which the basic type of a variable is altered, is not typable.

The updates of the typing environment are performed by the function upd which
makes use of the function addPath to add a path to a variable in the typing
environment. The function addPath makes use of the function addChild to
extend a path with a child. We follow the chain of dependencies and describe
the three functions starting with addChild :

Recall that r(x) denotes the root edge of path x. The function addChild takes
a type T and a type binding x : Tx consisting of a path x and a type Tx. It
adds path x with type Tx to path p(x) in T .

Definition 3.3 (addChild)

addChild(T, x : Tx) = T ′ where ∀x′ ∈ T . x′ ∈ T ′ and x : Tx ∈ T ′

The function is undefined if

x : T ′x ∈ T where T ′x 6= Tx

and if
p(x) /∈ T ∧ p(x) 6= r(x)

where we let p(x) denote the path to the parent of the node pointed to by x:

Definition 3.4 (Parent of a Path) We write p(x) for a function which
takes a path x and returns the path without its leaf. If x is root ⊥ is returned.

When a variable is given a value, where one or more predecessors of the variable’s
path haven’t been given any value, the predecessors get the type void. The
function addPath takes a path x and two types T and Tx. It steps through x
from its leaf a and builds up the type tree for x, where the leaf of x gets type
Tx and the missing predecessors get type void. When it reaches an existing
predecessor of x it connects the builded tree to the predecessor using addChild.

30 Type System for Jolie

Definition 3.5 (addPath)

addPath(T, x, Tx) =


addPath(T, p(x) : void{.a : Tx}) if p(x) /∈ T ∧ x = p(x).a

addChild(T, x : Tx) if p(x) ∈ T
undefined otherwise

(3.5)

The function upd takes as input an typing environment Γ, a variable x and a
type Tx. It updates the part x of Γ with type Tx. The form of the output differs
regarding the form of Γ: If the root of variable x is in Γ, then the root is bound
to a type tree representing x with type Tx and in which all missing predecessors
of x are assigned type void. This type tree is built by addPath. If the root of
x is not in Γ and if x is not the root of itself, a similar type tree is build up by
addPath but instead of building of an existing type tree, a new consisting of a
single node with type void is used. If x is an edge to a root node, and if it is
not in Γ, the type Tx is assigned directly to x without use of help functions.

Definition 3.6 (upd)

upd(Γ, x, Tx) =


Γ[r(x) 7→ addPath(Tr(x), x, Tx)] if r(x) : Tr(x) ∈ Γ

Γ[r(x) 7→ addPath(void, x, Tx)] if r(x) /∈ Γ ∧ r(x) 6= x

Γ[x 7→ Tx] if r(x) /∈ Γ ∧ r(x) = x

(3.6)

T-Assign-New An assign statement for which the environment doesn’t con-
tain type information for the variable, is typable if the expression can be type
checked against a type under the environment. The corresponding update of
the environment is performed by upd.

(T-Assign-New) Γ` e:Te x/∈Γ
Γ`B x = e . upd(Γ,x,bt(Te))

Recall from the semantics that S-Assign only assign the value of the root node
of a data tree to a variable. We call the value of a node in a type tree for the
basic type of the node. The basic type of a type tree is the basic type of its root
node. In T-Assign-New the typing environment is updated with the basic type
of the type of the expression. This is denoted by bt(Te).

T-Assign-Exists An assign statement for which the environment contains
type information for the variable, is typable if the expression with respect to

3.2 Typing Rules 31

the environment can be type checked against a type which basic type equals the
basic type of the type tree bound to the variable in the environment.

(T-Assign-Exists) Γ` e:Te x:Tx ∈Γ bt(Te)=bt(Tx)
Γ`B x = e .Γ

Only the basic type is considered since only the root node of the data tree is
assigned in an assign statement.

T-OneWay-New An one way statement for which the environment does not
contain type information for the variable, is typable if the environment contains
type information for the operation. The corresponding update of the environ-
ment is performed by upd. The variable is assigned the type of the operation.

(T-OneWay-New) o:<Ti>∈Γ x /∈Γ
Γ`B o(x) . upd(Γ,x,Ti)

T-OneWay-Exists An one-way statement for which the environment con-
tains type information for the variable, is typable if the environment contains
type information for the operation and if the operation type is a subtype of the
variable type. Since the variable already has an declaration in the type environ-
ment, there is no need to update the environment with the same declaration.

(T-OneWay-Exists) o:<Ti>∈Γ x:Tx ∈Γ Ti≤Tx
Γ`B o(x) .Γ

Reading whole data trees into variables raises the possibility to read a data tree
which type has paths which extend the variable type and paths which don’t.
This behaviour is not wished in Jolie and the type system avoids it by only
allowing a data tree to be read into a variable tree if the data tree is a subtype
of the variable tree.

T-SolResp-New and T-SolResp-Exists Since the evaluation of a solicit-
response statement first send a message and thereafter receives a message, the
typing rules for a solicit-response statement have the same premises as the rules
for notification and one-way, and for the same reasons.

(T-SolResp-New) o@l:<To,Ti>∈Γ Γ` e:Te Te≤To x /∈Γ
Γ`B o@l(e)(x) . upd(Γ,x,Ti)

32 Type System for Jolie

(T-SolResp-Exists) o@l:<To,Ti>∈Γ Γ` e:Te Te≤To x:Tx ∈Γ Ti≤Tx
Γ`B o@l(e)(x) .Γ

T-ReqResp-New and T-ReqResp-Exists Since the behaviourB of a state-
ment o(x)(x’) {B} is executed between two communications, it must be ty-
pable with respect to Γ updated with the change performed by the first commu-
nication. Furthermore the type binding for the variable to be send in the second
communication is looked up in the resulting environment of the type checking
of B. The rest of the request-response rules are similar to the typing rules for
one-way and notification and for the same reasons.

(T-ReqResp-New)
o:<Ti,To>∈Γ x /∈Γ upd(Γ,x,Ti)`B B .Γ′ x′:Tx′∈Γ′ Tx′≤To

Γ`B o(x)(x’) {B} .Γ′

(T-ReqResp-Exists)
o:<Ti,To>∈Γ x:Tx ∈Γ Ti≤Tx Γ`B B .Γ′ x′:Tx′∈Γ′ Tx′≤To

Γ`B o(x)(x’) {B} .Γ′

3.2.1.2 Type Checking of Run-Time Statements

Each of the bidirectional communication statements evaluates to a run-time
statement when performing the first communication. As a consequence the
type checking of the corresponding run-time statement is similar to the type
checking of the part of the communication statement which excludes the first
communication.

T-Wait-New and T-Wait-Exists Recall from the semantics that a request-
response statement after a step of evaluation becomes a wait statement. Since
the step of evaluation handles the sending of a message, the type checking of
a wait statement is similar to the type checking of the second communication
performed by a solicit-response.

(T-Wait-New) o@l:<To,Ti>∈Γ x /∈Γ
Γ`B Wait(r,o@l,x) . upd(Γ,x,Ti)

(T-Wait-Exists) o@l:<To,Ti>∈Γ x:Tx ∈Γ Ti≤Tx
Γ`B Wait(r,o@l,x) .Γ

T-Exec Recall from the semantics that a request-response statement after a
step of evaluation becomes an exec statement. Since the step of evaluation
handles the receiving of an incoming message, the type checking of an exec

3.2 Typing Rules 33

statement i similar to the part of type checking a request-response statement
which type checks the behaviour and the variable which is going to be send as
response. Hence, the rules are similar.

(T-Exec) o:<Ti,To>∈Γ Γ`B B .Γ′ x:Tx∈Γ′ Tx≤To
Γ`B Exec(r,o,x,B) .Γ′

3.2.2 Type Checking of the Service Layer

We will for a moment break the topdown approach and present typing of services
before presenting typing of processes. This is done since typing of services reveal
some knowledge of the content of the typing environment which we use in the
typing rules for processes.

3.2.2.1 Type Checking of Services

Recall that a service S has the form:

S :: = B .D P

for a behaviour B, a deployment D and a process P . We writeΓ `S S if a
service S is typed with respect to a typing environment Γ. The following rule
is used for type checking services:

T-Service A service is typable with respect to an environment if its behaviour
and process is typable with respect to the environment and if the environment
consists of the operation type bindings known by the service.

(T-Service) D=αC ·Γ Γ`BSL B .Γ′ Γ`P P
Γ`S B.DP

Recall that a deployment D consists of an aliasing function αC and an environ-
ment Γ, where αC is used to extract information about where in a message the
correlation values for an operation can be found, and Γ contains type bindings
for operations known by the service. Premise D = αC · Γ makes the restriction
that the behaviour and the process of a service is typed with respect to the
operation type declarations known by the service. The typejudgements used in
premise Γ `BSL B . Γ′ and Γ `P P are described in the two following sections.

34 Type System for Jolie

Since the behaviour is replicated when spawning processes it is not typed with
respect to an environment which contains variable type bindings.

3.2.2.2 Type Checking of Service Layer Behaviours

The behaviour B of a service B .D P can be either a choice or a 0 according to
the grammar defined in [MC11]. It is therefore not a problem not knowing which
branch of a choice is chosen, and thereby how the environment looks since the
environment is not further used. Therefore we can let the type system accept a
brighter amount of programs and this is the reason we have made a new typing
relation instead of reusing `B . The form of a judgement for typing behaviours
at the service layer is Γ `BSL B . Γ′ for a behaviour B and two environments
Γ and Γ′.

As discussed above the following two rules are the only ones needed for typing
behaviours at the service layer:

T-BSL-Nil The typing rule for a nil behaviour is an axiom.

(T-BSL-Nil)
Γ`BSL 0 .Γ

T-BSL-Choice A choice behaviour is typable with respect to a typing envi-
ronment Γ if the resulting typing environments from type checking the branches
do not contain two different type bindings of the same variable.

(T-BSL-Choice)
∀j∈J . Γ`B ηj ;Bj .Γj @Tk,Tl . x:Tk ∈

⋃
Γj ∧ x:Tl ∈

⋃
Γj ∧Tk 6=Tl

Γ`BSL
∑
i∈J [ηi]{Bi} .

⋃
Γj∈J

As discussed above a choice behaviour at the service layer can not be part of
a sequence or a parallel behaviour and thereby is the resulting environment of
evaluating a choice behaviour not further used.

3.2.2.3 Type Checking of Processes

Recall that a process either consists of other processes in parallel or of a be-
haviour, a state and a message queue or is the nil process:

3.2 Typing Rules 35

P :: = B · t · m̃ | 0 | P | P

We write Γ `P P if a process P is typed with respect to an environment Γ.
From the typing rules for services we know that Γ only contains type bindings
for operations.

The following rules are used for type checking processes:

T-Process-Nil The typing rule for a nil process is an axiom.

(T-Process-Nil)
Γ`P 0

T-Process-Par A parallel process is typable with respect to an environment
if each of the processes it consists of is typable with respect to the environment.

(T-Process-Par) Γ`P P1 Γ`P P2
Γ`P P1 | P2

The service has knowledge of operation type bindings and therefore is that
knowledge accessible for all of the service’s processes. Since the knowledge of
variable type bindings is internal in a process T-Process-Par does not require
disjoint union of the environment which P1 and P2 is typed with respect to.

T-Process A process consisting of a behaviour B, a state t and a message
queue m̃ is typable with respect to a typing environment Γ if each of its compo-
nents are typable with respect to the same environment union an environment
Γ′ which does not contains type bindings for operations.

(T-Process)
Γ,Γ′ `BSL B .Γ′′ Γ,Γ′ `state t Γ,Γ′ `queue m̃ @o. o@l:<O>∈Γ′ ∨ o:<O>∈Γ′

Γ`P B·t·m̃

The restriction on Γ′ is set by premise @o. o@l : <O> ∈ Γ′ ∨ o : <O> ∈ Γ′ since
we let O denote a type which can either be a type tree or a pair of type trees.
The form of Γ′ ensures that the components of a process are not typed under
a broader knowledge of operation type declarations than the service is. It also

36 Type System for Jolie

ensures that Γ and Γ′ are disjoint since we know from the type checking rule for
services that Γ only contains operation type bindings.

Premise Γ,Γ′ `B B . Γ′′ forces Γ′ to contain type information for variables
known by the process. This will be clear when we present type preservation for
behaviours in 3.3.4.

A state t′ is typed with respect to a typing environment Γt′ when the type for
each of the root variables in Γt′ is a supertype to a variable with the same name
in t′ (1) and when each of the root variables in t′ has a type binding in Γt′ (2).

Definition 3.7 (Type Checking of a State) We write Γt′ `state t′

if and only if

1. ∀a : Ta ∈ Roots(Γt′). ` a(t′) : T ∧ T ≤ Ta

2. ∀a ∈ Roots(t′). a ∈ Roots(Γt′)

where a ranges over edges, T and Ta are types, Γt′ is an environment and t′ is
a process state.

Note that the typing information for operations are excluded from the definition
since an operation name is not a path.

Recall that we write Roots(Γr) for the set containing the root edge of each
variable in an environment Γr:

Roots(Γr) = {r(x)|x : T ∈ Γr}

Notice, that Roots(Γ′t) does not contain operations, since an operation is not a
path. By the form of the typing rules for behaviours which alternates the typing
environment and by the form of Roots(Γr) we know that in 1 a is the first edge
in a variable name, and Ta is the type tree for a. Recall that the minimal type
T of tree t′′ can be assigned to t′′ with ` t′′ : T . In 1 each variable in a state is
compared by its whole structure with the type binding from the environment.

We write Roots(tr) for the set containing the root edge of each variable in a
state t:

Roots(tr) = {r(x′)|x is a path in tr ∧ x = r(x).x′}

3.2 Typing Rules 37

where x and x′ are paths and tr is a state. Since the state consists of a empty
node which childrens are variables in the state, the root of a path x in tr is cut
off in order to find the root of the variable of path x. By the form of Roots(tr)
and Roots(Γr) we know that by 2 a state is not typable with respect to a typing
environment if it contains one or more variables which first edge does not have
any type binding in the environment.

A message queue m̃ is typed with respect to a typing environment Γm when for
all messages in m̃, the type for the data tree in the message is a subtype of the
required type for the receive operation, with respect to typing environment Γm.

Definition 3.8 (Type Checking of a Message Queue) We write
Γm `queue (rj , oj , tj)j∈J if and only if

∀j ∈ J.(<oj> : Tj ∈ Γm ∨ <oj> : <Tj , T ′j> ∈ Γm) ∧
` tj : T ′′j ∧ T ′′j ≤ Tj

where Γm is a typing environment and T ranges over types, t ranges over data
trees, o ranges over operations and r ranges over channels.

3.2.3 Type Checking of the Network Layer

The statements at the network layer are called networks. We write Γ `N N if
a network N is typable with respecto to a typing environment Γ. The following
rules are used for type checking networks:

T-Network-Nil The typing rule for a nil process is an axiom.

(T-Network-Nil)
Γ`N 0

T-Deployment A service deployet on a location is typable with respect to an
environment if it is typable with respect to a related environment which does
not contain any output operations to the service.

(T-Deployment) Γ`S B.DP l/∈locs(Γ)
{o@l′:<O>∈Γ}∪{o@l:<O>|o:<O>∈Γ} `N [B.DP]l

38 Type System for Jolie

Recall from the typing rules for the network layer that the typing environment
which a service is typed with respect to consists of type declarations for opera-
tions known by the service. Premise Γ `S B .D P restricts Γ to only consist of
operation type bindings.

We write locs(Γl) for the set of locations which appear in operation bindings in
an environment Γl:

locs(Γ) = {l|o@l : <O> ∈ Γ}

Premise l /∈ locs(Γ) restricts Γ to not including self calls, since self calls are not
allowed according to the semantics.

The environment in the conclusion equals the environment in the premises ex-
cept that the keys for the output operation type bindings are converted to same
format as the input operations. We make use of this convertion in T-Network.

T-Network Two networks running in parallel are typable with respect to an
environment if each of them is typable with respect to a subset of the environ-
ment and if

(T-Network)

Γ1 `N N1 Γ2 `N N2

∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1)

∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2)

¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N N1 | N2

We write locs(N) for the set of locations which services in a network N are
deployed at. We let locs(N) be recursively defined:

locs([S]l) = {l}
locs(νr N) = locs(N)

locs(N1 | N2) = locs(N1) ∪ locs(N2)

locs(0) = ∅

Premise ∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1) re-
quires that all calls to a service in the other network has an matching type bind-
ing in the environment which the other network is typed under. It also requires
that a location is unique. Premise ∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l :
<O> ∈ Γ1 ∧ l /∈ locs(N2) is similar.

Since service-oriented architectures are considered open architectures a provider
of an operation might not be a part of the network which is type checked. It

3.3 Type Preservation 39

is therefore necessary also to require whether there exists no type mismatches
between any of the operation declaration in the environments under which the
two parallel networks are typed, in order to union the environments. This is
done in premise ¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)

T-Restriction A restricted network is typable with respect to an environ-
ment if the network is typable with respect to the environment, since channel
restriction has no influence on the type checking.

(T-Restriction) Γ`N N
Γ`N νr N

3.3 Type Preservation

The property that if a well typed statement takes a transition then the resulting
statement is also well typed, is called type preservation. Recall that the type
judgement for behaviours is a Hoare triple consisting of a initial environment,
a behaviour and a resulting environment, where the resulting environment is
the initial environment updated with the changes performed during the type
checking of the behaviour. The type preservation property therefore requires
for behaviours that the resulting environment for a behaviour after it takes a
transition is equal to the resulting environment for the behaviour before it takes
the transition.

We present type preservation theorems for each of the layers in Jolie in 3.3.4.
Before we present the preservation theorems we present a transition function
which is used in the type preservation theorems. The transition function updates
the typing environment with respect to the action of the transition. In order
to address typability before and after a transition it is necessary to specify
a transition function because the semantic of Jolie is described in a labeled
transition system. The transition function is presented in 3.3.3.

Before presenting the preservation theorems we also present the Inversion Lemma
and Structural Congruence Lemmas, which are used in the proofs for the type
preservation theorems. the Inversion Lemma shows that if we have a statement
typed with respect to an environment, then we must also have the premises
necessary to type the statement. It is presented in 3.3.1. The Structural Con-
gruence lemmas show that two structural congruent statements are typable with
respect to the same environment. For behaviours we furthermore require that

40 Type System for Jolie

they also make the same updates to the environment during type checking. The
Structural Congruence Lemmas are presented in 3.3.2.

3.3.1 Inversion of the Typing Relation

We know from the form of the type system that it is unambiguous. We therefore
know that if we have a statement typed with respect to an environment then
we must also have the premises necessary to type the statement:

Lemma 3.9 (Inversion of the Typing Relation)

1. If Γ `B x = e . upd(Γ, x, bt(Te)) then Γ ` e : Te and x /∈ Γ.

2. If Γ `B x = e . Γ then Γ ` e : Te, x : Tx ∈ Γ and bt(Te) = bt(Tx).

3. If Γ `B if(e)B1 else B2 . Γ′ then Γ ` e : bool, Γ `B B1 . Γ′ and
Γ `B B2 . Γ′.

4. If Γ `B
∑
i∈J [ηi]{Bi} . Γ′ then ∀j ∈ J . Γ `B ηj ;Bj . Γ′.

5. If Γ1, Γ2 `B B1 | B2 . Γ′1]Γ′2 then Γ1 `B B1 . Γ′1, Γ2 `B B2 . Γ′2
and Roots(Γ′1) ∩ Roots(Γ′2) = ∅.

6. If Γ `B B1;B2 . Γ′′ then Γ `B B1 . Γ′ and Γ′ `B B2 . Γ′′.

7. If Γ `B while(e) {B} . Γ then Γ ` e : bool and Γ `B B . Γ.

8. If Γ `B o@l(e) . Γ then o@l : <To> ∈ Γ, Γ ` e : Te and Te ≤ To.

9. If Γ `B o@l(e)(x) . upd(Γ, x, Ti) then o@l : <To, Ti> ∈ Γ, Γ ` e : Te,
Te ≤ To and x /∈ Γ.

10. If Γ `B o@l(e)(x) . Γ then o@l : <To, Ti> ∈ Γ, Γ ` e : Te, Te ≤ To,
x : Tx ∈ Γ and Ti ≤ Tx.

11. If Γ `B o(x) . upd(Γ, x, Ti) then o : <Ti> ∈ Γ and x /∈ Γ.

12. If Γ `B o(x) . Γ then o : <Ti> ∈ Γ, x : Tx ∈ Γ and Ti ≤ Tx.

13. If Γ `B o(x)(x’) {B} . Γ′ then o : <Ti, To> ∈ Γ, x /∈ Γ,
upd(Γ, x, Ti) `B B . Γ′, x′ : Tx′ ∈ Γ′ and Tx′ ≤ To.

14. If Γ `B o(x)(x’) {B} . Γ′ then o : <Ti, To> ∈ Γ, x : Tx ∈ Γ,
Ti ≤ Tx, Γ `B B . Γ′, x′ : Tx′ ∈ Γ′ and Tx′ ≤ To.

3.3 Type Preservation 41

15. If Γ `B Wait(r, o@l, x) . upd(Γ, x, Ti) then o@l : <To, Ti> ∈ Γ and
x /∈ Γ.

16. If Γ `B Wait(r, o@l, x) . Γ then o@l : <To, Ti> ∈ Γ, x : Tx ∈ Γ and
Ti ≤ Tx.

17. If Γ `B Exec(r, o, x, B) . Γ′ then o : <Ti, To> ∈ Γ, Γ `B B . Γ′,
x : Tx ∈ Γ′ and Tx ≤ To.

18. If Γ `BSL
∑
i∈J [ηi]{Bi} .

⋃
Γj∈J then ∀j ∈ J . Γ `B ηj ;Bj . Γj

and @Tk, Tl . x : Tk ∈
⋃

Γj ∧ x : Tl ∈
⋃

Γj ∧ Tk 6= Tl.

19. If Γ `P B ·t ·m̃ then Γ, Γ′ `B B . Γ′′, Γ, Γ′ `state t, Γ, Γ′ `queue m̃
and @o. o@l : <O> ∈ Γ′ ∨ o : <O> ∈ Γ′.

20. If Γ `P P1 | P2 then Γ `P P and Γ `P P .

21. If Γ `S B .D P then D = αC · Γ, Γ `BSL B . Γ′ and Γ `P P .

22. If {o@l′ : <O> ∈ Γ} ∪ {o@l : <O>|o : <O> ∈ Γ} `N [B .D P]l then
Γ `S B .D P and l /∈ locs(Γ).

23. If Γ1 ∪ Γ2 `N N1 | N2 then Γ1 `N N1, Γ2 `N N2, ∀o@l :
<O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1), ∀o@l :
<O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2) and
¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2).

24. If Γ `N νr N then Γ `N N .

Proof. The proof follows straightforward from the definition of the type sys-
tem.

�

3.3.2 Structural Congruence

The semantics of Jolie makes use of structural congruence at the behavioural
and the network layer. In order to have type preservation we must also have
that two structural congruent statements are typable with respect to the same
environment. For behaviours we furthermore require that they also make the
same updates to the environment during type checking. Below we present this
formally for the behavioural layer and the network layer.

42 Type System for Jolie

3.3.2.1 Structural Congruence at Behavioural Layer

Recall from definition 2.2 in section 2.4 that the following structural congruence
rules apply at the behavioural layer:

(B1 | B2) | B3 ≡ B1 | (B2 | B3)

0;B ≡ B

B1 | B2 ≡ B2 | B1

B | 0 ≡ B

Two structural congruent behaviours are typable with respect to the same en-
vironment and they make the same updates to the environment during type
checking:

Lemma 3.10 (Structural Congruence for Behaviours)

Let Γ ` B1 . Γ′

If B1 ≡ B2

then Γ ` B2 . Γ′

Proof.

The proof is a case analysis of all the possibilities of B1 and B2 according to
the structural congruence rules for behaviours.

Case (B1 | B2) | B3 ≡ B1 | (B2 | B3)

From the case we have Γ `B (B1 | B2) | B3 . Γ′. Applying the inversion
lemma (lemma 3.9) we know from the form of the typing system that it
is only typable by T-Par:

(T-Par)
Γ1,Γ2 `B B1 | B2 .Γ′

1]Γ′
2 Γ3 `B B3 .Γ′

3 Roots(Γ′
1]Γ′

2)∩Roots(Γ′
3)=∅

Γ1,Γ2,Γ3 `B (B1 | B2) | B3 .Γ′
1]Γ′

2]Γ′
3

(3.7)

Where Γ = Γ1,Γ2,Γ3 and Γ′ = Γ′1]Γ′2]Γ′3. Applying the inversion lemma
on premise Γ1,Γ2 `B B1 | B2 . Γ′1] Γ′2 from this rule it can be seen by
the form of the type system that it is only typable by rule T-Par:

(T-Par)
Γ1 `B B1 .Γ′

1 Γ2 `B B2 .Γ′
2 Roots(Γ′

1)∩Roots(Γ′
2)=∅

Γ1,Γ2 `B B1 | B2 .Γ′
1]Γ′

2
(3.8)

3.3 Type Preservation 43

By premise Roots(Γ′1]Γ′2)∩Roots(Γ′3) = ∅ we have Roots(Γ′2)∩Roots(Γ′3) =
∅ as well as Roots(Γ′1)∩Roots(Γ′3) = ∅. By applying premise Γ2 `B B2 . Γ′2
from 3.8 and premise Γ3 `B B3 . Γ′3 from 3.7 and Roots(Γ′2)∩Roots(Γ′3) =
∅ on T-Par we get Γ2,Γ3 `B B2 | B3 . Γ′2] Γ′3. The thesis follows by
applying Γ1 `B B1 . Γ′1 from 3.8 and Γ2,Γ3 `B B2 | B3 . Γ′2] Γ′3 on
T-Par.

Case B1 | (B2 | B3) ≡ (B1 | B2) | B3

The proof is similar to the proof for case (B1 | B2) | B3 ≡ B1 | (B2 | B3).

Case 0;B ≡ B
From the case we Γ `B 0;B . Γ′. Applying the inversion lemma (lemma
3.9) we know from the form of the typing system that it is only typable
by rule T-Seq:

(T-Seq) Γ`B 0 .Γ′′ Γ′′ `B B .Γ′

Γ`B 0;B .Γ′

Applying the inversion lemma on premise Γ `B 0 . Γ′′ from this rule it
can be seen by the form of the typing system that it is only typable by
rule T-Nil:

(T-Nil)
Γ`B 0 .Γ

From the form of this rule we know that Γ′′ = Γ. We thereby have
Γ `B B . Γ′ by the second premise of 3.3.2.1. The thesis follows by
Γ `B B . Γ′.

Case B ≡ 0;B

From the case we have Γ `B B . Γ′. By T-Nil we have Γ `B 0 . Γ. The
thesis follows from applying Γ `B 0 . Γ and Γ `B B . Γ′ to rule T-Seq.

Case B1|B2 ≡ B2|B1

From the case we have Γ `B B1|B2 . Γ′. Applying the inversion lemma
(lemma 3.9) on Γ `B B1|B2 . Γ′ we know that it can only be typed using
T-Par:

(T-Par)
Γ1 `B B1 .Γ′

1 Γ2 `B B2 .Γ′
2 Roots(Γ′

1)∩Roots(Γ′
2)=∅

Γ1,Γ2 `B B1 | B2 .Γ′
1]Γ′

2
(3.9)

where Γ = Γ1,Γ2 and Γ′ = Γ′1]Γ′2. Since union is commutative, the thesis
follows by swapping the two first premises of 3.9 and apply all premises
to T-Par.

44 Type System for Jolie

Case B2|B1 ≡ B1|B2

The proof is similar to the proof for case B1|B2 ≡ B2|B1.

Case B | 0 ≡ B

From the case we have Γ `B B | 0 . Γ′. Applying the inversion lemma
(lemma 3.9) on Γ `B B | 0 . Γ′ we know that it can only be typed using
T-Par:

(T-Par)
Γ1 `B B .Γ′

1 Γ2 `B 0 .Γ′
2 Roots(Γ′

1)∩Roots(Γ′
2)=∅

Γ1,Γ2 `B B | 0 .Γ′
1]Γ′

2
(3.10)

Where Γ = Γ1,Γ2 and Γ′ = Γ′1] Γ′2. By applying the inversion lemma on
premise Γ2 `B 0 . Γ′2 from 3.10 we know that it can only be typed using
T-Nil:

(T-Nil)
Γ2 `B 0 .Γ2

From the form of T-Nil we know Γ2 = Γ′2. Since Γ1 and Γ2 are disjoint and
since we have Γ1 `B B . Γ′1 then we must also have Γ1,Γ2 `B B . Γ′1]Γ2.

Case B ≡ B | 0

From the case we have Γ `B B . Γ′. By T-Nil we have ∅ `B 0 . ∅. The
thesis follows from applying Γ `B B . Γ′ and ∅ `B 0 . ∅ to T-Par.

�

3.3.2.2 Structural Congruence at Network Layer

Recall from definition 2.5 in section 2.4 that the following structural congruence
rules apply:

(N1 | N2) | N3 ≡ N1 | (N2 | N3)

N1 | N2 ≡ N2 | N1

N | 0 ≡ N

if r /∈ fn(N2): ((νr)N1) | N2 ≡ (νr)(N1 | N2)

Two structural congruent networks are typable with respect to the same envi-
ronment:

3.3 Type Preservation 45

Lemma 3.11 (Structural Congruence for Networks)

Let Γ ` N1 . Γ′

If N1 ≡ N2

then Γ ` N2 . Γ′

Proof.

The proof is a case analysis of all the possibilities of N1 and N2 according to the
structural congruence rules for networks. The proofs for the cases are similar to
the proofs for their corresponding cases at the behavioural layer (see the proof
for Lemma 3.10). The cases not represented at the behavioural layer are proved
below:

Case ((νr)N1) | N2 ≡ (νr)(N1 | N2)

From the case we have Γ `B ((νr)N1) | N2 . Γ′. Applying the inversion
lemma (lemma 3.9) on Γ `B ((νr)N1) | N2 . Γ′ we know that it can
only be typed using T-Network:

(T-Network)

Γ1 `N (νr)N1 Γ2 `N N2

∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs((νr)N1)

∀o@l : <O> ∈ Γ2 where l ∈ locs((νr)N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2)

¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N ((νr)N1) | N2

(3.11)

Applying the Inversion Lemma on premise Γ1 `N (νr)N1 we know that
it can only be typed using T-Restriction:

(T-Restriction) Γ`N N1
Γ1 `N (νr)N1

(3.12)

Recall that we write locs(N) for the set of locations which services in a
network N are deployed at and that locs(N) is recursively defined:

locs([S]l) = {l}
locs(νr N) = locs(N)

locs(N1 | N2) = locs(N1) ∪ locs(N2)

locs(0) = ∅

We therefore have locs(νr N) = locs(N). By premise ∀o@l : <O> ∈
Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs((νr)N1) and ∀o@l :

46 Type System for Jolie

<O> ∈ Γ2 where l ∈ locs((νr)N1). o@l : <O> ∈ Γ1∧ l /∈ locs(N2) from 3.11
we know

∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1)

∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2)

By applying premise Γ `N N1 from 3.12 and premise Γ2 `N N2 and
¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧ O1 6= O2) from 3.11 and 3.13 to
T-Network we get Γ1 ∪Γ2 `N N1 | N2. The thesis follows from applying
Γ1 ∪ Γ2 `N N1 | N2 to T-Restriction.

Case (νr)(N1 | N2) ≡ ((νr)N1) | N2

The proof for this case is similar to the proof for its symmetric case.

�

3.3.3 Transition Function

The type preservation property address typability of statements before and after
the given statement takes a transition. Since actions are performed during
the transitions in a labeled transition system, we therefore define a transition
function which updates the environment with respect to the action performed.

Let B and B′ be two behaviours and let µ be a label. Consider the case B µ−→
B′, and let B be typed with respect to Γ and B′ be typed with respect to Γ′.
The relation between Γ and Γ′ is defined as the side effect of µ. It is described
in the function sideEffect :

3.3 Type Preservation 47

Definition 3.12 (sideEffect)

sideEffect(µ,Γ) =



Γ if µ = x = e and Γ ` e : Te

and x : Tx ∈ Γ and bt(Te) = bt(Tx)

upd(Γ, x, bt(Te)) if µ = x = e and Γ ` e : Te

and x /∈ Γ

Γ if µ = (r, o@l)?x and o@l : <To, Ti> ∈ Γ

and x : Tx ∈ Γ and Ti ≤ Tx
upd(Γ, x, Ti) if µ = (r, o@l)?x and o@l : <To, Ti> ∈ Γ

and x /∈ Γ

Γ if µ = r : o(x) and x : Tx ∈ Γ

and (o : <Ti> ∈ Γ ∨ o : <Ti, To> ∈ Γ)

and Ti ≤ Tx
upd(Γ, x, Ti) if µ = r : o(x) and x /∈ Γ

and (o : <Ti> ∈ Γ ∨ o : <Ti, To> ∈ Γ)

Γ if µ = read t
Γ if µ = νr o@l(e) and Γ ` e : Te

and (o@l : <To> ∈ Γ ∨ o@l : <To, Ti> ∈ Γ)

and Te ≤ To
Γ if µ = (r, o)!x and x : Tx ∈ Γ

and o : <Ti, To> ∈ Γ) and Tx ≤ To
undefined otherwise

(3.13)

For understanding the first case recall that we write Γ ` e : T when the result
of the evaluation of expression e under type environment Γ has minimal type T
and that we write bt(T) for root node of a type T omitting the type information
of the children.

For understanding the second case recall also that the function upd takes as
input an typing environment Γ, a variable x and a type Tx. It updates the part
x of Γ with type Tx. The form of the output differs regarding the form of Γ: If
the root of variable x is in Γ, then the root is bound to a type tree representing
x with type Tx and in which all missing predecessors of x are assigned type
void. This type tree is built by addPath. If the root of x is not in Γ and if x
is not the root of itself, a similar type tree is build up by addPath but instead
of building of an existing type tree, a new consisting of a single node with type
void is used. If x is an edge to a root node, and if it is not in Γ, the type Tx is

48 Type System for Jolie

assigned directly to x without use of help functions.

upd(Γ, x, Tx) =


Γ[r(x) 7→ addPath(Tr(x), x, Tx)] if r(x) : Tr(x) ∈ Γ

Γ[r(x) 7→ addPath(void, x, Tx)] if r(x) /∈ Γ ∧ r(x) 6= x

Γ[x 7→ Tx] if r(x) /∈ Γ ∧ r(x) = x

(3.14)

Recall that when a variable is given a value, where one or more predecessors of
the variable’s path haven’t been given any value, the predecessors get the type
void. The function addPath takes a path x and two types T and Tx. It steps
through x from its leaf a and builds up the type tree for x, where the leaf of x
gets type Tx and the missing predecessors get type void. When it reaches an
existing predecessor of x it connects the builded tree to the predecessor using
addChild.

addPath(T, x, Tx) =


addPath(T, p(x) : void{.a : Tx}) if p(x) /∈ T ∧ x = p(x).a

addChild(T, x : Tx) if p(x) ∈ T
undefined otherwise

(3.15)

where r(x) denotes the root edge of path x. The function addChild takes a type
T and a type binding x : Tx consisting of a path x and a type Tx. It adds path
x with type Tx to path p(x) in T .

addChild(T, x : Tx) = T ′ where ∀x′ ∈ T . x′ ∈ T ′ and x : Tx ∈ T ′

The function is undefined if

x : T ′x ∈ T where T ′x 6= Tx

and if
p(x) /∈ T ∧ p(x) 6= r(x)

where we let p(x) denote the path to the parent of the node pointed to by x. If
x is root p(x) = ⊥.

The rest of the cases are understandable with the previous in memory.

The labels in the definition of sideEffect differs into two kinds: Those which
perform a reading action and those which perform a writing action. It can
be seen from the first six cases in sideEffect that during a transition labelled
with a writing action, the environment is updated with type information for the
variable in the label, unless the change did not change the type of the variable.
The next three cases shows that the environment is unchanged when a transition
labelled with a reading action is taken.

3.3 Type Preservation 49

3.3.4 Type Preservation

The property that if a well-typed statement takes a transition then the resulting
statement is also well typed, is called type preservation. Recall that the type
judgement for behaviours is a Hoare triple consisting of a initial environment,
a behaviour and a resulting environment, where the resulting environment is
the initial environment updated with the changes performed during the type
checking of the behaviour. The type preservation property therefore requires
for behaviours that the resulting environment for a behaviour after it takes a
transition is equal to the resulting environment for the behaviour before it takes
the transition. Below we present type preservation theorems for each of the
layers in Jolie.

3.3.4.1 Type Preservation at the Behavioural Layer

Consider a well-typed behaviour B typed with respect to an environment Γ.
Let the type checking of B update Γ to Γ′. Assume there exists a behaviour B′

such that B µ−→ B′. Then there exists an environment Γ′′ which is an update
of Γ with respect to the side effect of label µ, and B′ is typable with respect to
Γ′′ which is updated to Γ′ during the type checking of B:

Theorem 3.13 (Type Preservation for Behaviours)

If Γ `B B . Γ′

and B µ−→ B′

then Γ′′ `B B . Γ′

where Γ′′ = sideEffect(µ,Γ)

Proof.

Assume Γ `B B . Γ′ and B
µ−→ B′. The proof is done by induction on the

derivation of B µ−→ B′.

Case B-If-Then
In this case, we know B = if(e)B1 else B2 for an expression e and
some behaviours B1 and B2:

(B-If-Then) e(t)=true

if(e)B1 else B2
read t−−−−→B1

50 Type System for Jolie

We also know that µ = read t andB′ = B1. Since Γ′′ = sideEffect(read t,Γ) =
Γ by the definition of sideEffect (3.12) we are going to prove that Γ `
B′ . Γ′.

Applying the Inversion Lemma (Lemma 3.9) to Γ `B if(e)B1 else B2 .
Γ′ we know that it can only be typed by rule T-If-Then-Else:

(T-If-Then-Else) Γ` e:bool Γ`B B1 .Γ′ Γ`B B2 .Γ′

Γ`B if(e)B1 else B2 .Γ′

The thesis follows by premise Γ `B B1 . Γ′.

Case B-If-Else The proof is similar to case B-If-Then.

Case B-Par
In this case, we know B = B1 | B2 for some behaviours B1 and B2:

(B-Par)
B1

µ−→B′
1

B1 | B2
µ−→B′

1 | B2

We also know B′ = B′1 | B2.

Applying the Inversion Lemma (Lemma 3.9) on Γ `B B1 | B2 . Γ′ we
know that it can only be typed by rule T-Par where Γ = Γ1,Γ2 and
Γ′ = Γ′1] Γ′2:

(T-Par)
Γ1 `B B1 .Γ′

1 Γ2 `B B2 .Γ′
2 Roots(Γ′

1)∩Roots(Γ′
2)=∅

Γ1,Γ2 `B B1 | B2 .Γ′
1]Γ′

2
(3.16)

By applying the induction hypothesis to the premise of B-Par, B1
µ−→ B′1,

and premise, Γ1 `B B1 . Γ′1, of T-Par we get Γ′′1 `B B′1 . Γ′1where Γ′′1 =
sideEffect(µ,Γ1). Since it is not possible to remove variables from an envi-
ronment by the form of the type system and SideEffect we know by Γ′′1 `B
B′1 . Γ′1 from the induction hypothesis and by Roots(Γ′1) ∩Roots(Γ′2) = ∅
from 3.16 that Roots(Γ′′1)∩Roots(Γ2) = ∅. Since it is not possible to alter
operations by the form of the type system and SideEffect we also know

Γ′′1 ∩ Γ2 = ∅ (3.17)

From the conclusion of 3.16 we know Γ′1] Γ′2. Since we know Γ′′1 ∩ Γ2 = ∅
and Γ′1] Γ′2 then with Γ′′1 `B B′1 . Γ′1 from the induction hypothesis and
Γ2 `B B2 . Γ′2 and Roots(Γ′1) ∩ Roots(Γ′2) = ∅ from T-Par on B, we can
now apply T-Par on B′:

(T-Par)
Γ′′
1 `B B

′
1 .Γ′

1 Γ2 `B B2 .Γ′
2 Roots(Γ′

1)∩Roots(Γ′
2)=∅

Γ′′
1 ,Γ2 `B B′

1 | B2 .Γ′
1]Γ′

2

3.3 Type Preservation 51

In order for the thesis to follow from the conclusion of this rule, we must
have Γ′′1] Γ2 = sideEffect(µ,Γ). In order to prove that, we first prove
Roots(µ) ⊆ Keys(sideEffect(µ,Γ)), where Keys(Γk) denotes the keys in Γk
for an environment Γk.
Let Roots(e) be the set of roots of variables in an expression e, and let
Roots(µ) be the set of roots of variables in a label µ including roots of
variables from any expressions in µ.
Let a well-typed behaviour B typed under an environment Γ take a tran-
sition labelled µ. Let the transition update Γ to Γ′′. The set of variable
roots in µ is a subset of the set of variable roots in Γ′′.

Lemma 3.14

If Γ `B B . Γ′ and B µ−→ B′

then Roots(µ) ⊆ Keys(sideEffect(µ,Γ))

Proof.

The proof is a case analysis over the labels.

Case µ = x = e

From the case we know Roots(µ) = r(x) ∪ Roots(e). From the form
of SideEffect we know that in order for SideEffect to return, there
exists two possibilities for a transition taken with this label:

Subcase SideEffect(x = e,Γ) = Γ

From the for of sideEffect we know Γ ` e : Te and x : Tx ∈ Γ.
By Γ ` e : Te we know Roots(e) ⊆ Keys(sideEffect(x = e,Γ)).
By x : Tx ∈ Γ we know r(x) ∈ Γ from the form of sideEf-
fect. By r(x) ∈ Γ and SideEffect(x = e,Γ) = Γ we know r(x) ∈
Keys(sideEffect(x = e,Γ)).

Subcase SideEffect(x = e,Γ) = upd(Γ, x, bt(Te))

From the for of sideEffect we know Γ ` e : Te. By Γ ` e : Te we
know Roots(e) ⊆ Keys(sideEffect(x = e,Γ)). By the form of upd
we know r(x) ∈ Keys(sideEffect(x = e,Γ)).

Case µ = (r, o@l)?x

The proof is similar to the proof for case µ = x = e.
Case µ = r : o(x)

The proof is similar to the proof for case µ = x = e.

52 Type System for Jolie

Case µ = read t

From the case we know Roots(µ) = ∅. The thesis follows immediately.

Case µ = νr o@l(e)

From the case we know Roots(µ) = Roots(e) and sideEffect(νro@l(e),Γ) =
Γ. From the for of sideEffect we know Γ ` e : Te. By Γ ` e : Te and
sideEffect(νro@l(e),Γ) = Γ we know Roots(e) ⊆ Keys(sideEffect(νro@l(e),Γ)).

Case µ = (r, o)!x

From the case we know Roots(µ) = r(x) and sideEffect((r, o)!x,Γ) =
Γ. From the for of sideEffect we know x : Tx ∈ Γ. By x : Tx ∈ Γ
we know r(x) : Tx ∈ Γ from the form of sideEffect. From r(x) : Tx ∈ Γ
and sideEffect(νro@l(e),Γ) = Γ we know r(x) ∈ Keys(sideEffect(νro@l(e),Γ)).

�

By B1
µ−→ B′1 from the case, Γ1 `B B1 . Γ′1 from 3.16 and Lemma

3.14 we know Roots(µ) ⊆ Keys(SideEffect(µ,Γ1)). Since it is not pos-
sible to remove variables from an environment by the form of the type
system and SideEffect we know by Roots(µ) ⊆ SideEffect(µ,Γ1) and by
SideEffect(µ,Γ1) `B B′1 .Γ′1 from the induction hypothesis and by Roots(Γ′1)∩
Roots(Γ′2) = ∅ from 3.16 that Roots(µ) ∩ Γ′2 = ∅. Since it is not possible
to remove variables from an environment by the form of the type system
and SideEffect we know by Roots(µ)∩Γ′2 = ∅ and by Γ2 `B B2 . Γ′2 from
3.16 that

Roots(µ) ∩ Γ2 = ∅ (3.18)

If two environments Γ1 and Γ2 are disjoint and if the effect of executing a
label µ in the context Γ1, updates Γ1 to Γ′′1 and if the set of roots of the
variables in µ are disjoint to Γ2 then the disjoint union of Γ2 to Γ1 does
not influence the updates performed by executing µ.

Lemma 3.15

If SideEffect(µ,Γ1) = Γ′′1

and Γ1 ∩ Γ2 = ∅
and Roots(µ) ∩ Γ2 = ∅
then SideEffect(µ, (Γ1] Γ2)) = SideEffect(µ,Γ1)] Γ2

3.3 Type Preservation 53

Proof.

The proof is a case analysis over the labels.

Case µ = x = e

Since we know Roots(x = e) ∩ Γ2 = ∅ we know that x /∈ Γ2 and
that Roots(e) ∩ Γ2 = ∅. We therefore know that since we have
SideEffect(x = e,Γ1) = Γ′1 then union Γ2 to the input, does not in-
fluence the branch chosen in SideEffect.

The rest of the cases are similar.
�

Recall we in 3.17 have sideEffect(µ,Γ1)∩Γ2 = ∅ and that Γ = Γ1,Γ2. The
thesis follows by sideEffect(µ,Γ1) = Γ′′1 from the induction hypothesis and
by Γ1 ∩ Γ2, 3.18, sideEffect(µ,Γ1) ∩ Γ2 = ∅ and Lemma 3.15.

Case B-Seq

In this case, we know B = B1;B2 for some behaviours B1 and B2:

(B-Seq)
B1

µ−→B′
1

B1;B2
µ−→B′

1;B2

We also know B′ = B′1;B2. Applying the Inversion Lemma (Lemma 3.9)
to Γ `B B1;B2 . Γ′ we know that it can only be typed by rule T-Seq:

(T-Seq) Γ`B B1 .Γ′′′ Γ′′′ `B B2 .Γ′

Γ`B B1;B2 .Γ′

By applying the induction hypothesis on the premise B1
µ−→ B′1 of B-Seq

and premise Γ `B B1 . Γ′′′ of T-Seq, we get Γ′′1 `B B′1 . Γ′′′ where
Γ′′1 = sideEffect(µ,Γ).
We can now apply T-Seq on B′ with the two premises, Γ′′1 `B B′1 . Γ′′′

from the induction hypothesis and Γ′′′ `B B2 . Γ′ from T-seq used on B:

(T-Seq)
Γ′′
1 `B B

′
1 .Γ′′′ Γ′′′ `B B2 .Γ′

Γ′′
1 `B B

′
1;B2 .Γ′

In order for the thesis to follow from the conclusion of T-Seq applied
on B′ we must have that Γ′′1 = Γ′′. Since Γ′′1 = sideEffect(µ,Γ) and
Γ′′ = sideEffect(µ,Γ) then Γ′′1 = Γ′′.

Case B-Iteration
In this case, we know B = while(e) {B1} for an expression e and a
behaviour B1:

54 Type System for Jolie

(B-Iteration) e(t)=true

while(e){B1}
read t−−−−→B1;while(e){B1}

We also know that µ = read t and B′ = B1; while(e) {B1}. Since Γ′′ =
sideEffect(read t,Γ) = Γ by the definition of sideEffect (3.12) we are going
to prove that Γ `B B′ . Γ′.

Applying the Inversion Lemma (Lemma 3.9) to Γ `B while(e) {B1} . Γ′

we know that it can only be typed by rule T-While:

(T-While) Γ` e:bool Γ`B B1 .Γ
Γ`B while(e){B1} .Γ

Notice that B is only typable for cases where Γ′ = Γ. Therefore we are
going to prove Γ `B B′ . Γ. By premise Γ `B B1 . Γ and the conclusion
Γ `B while(e) {B1} . Γ in T-While applied on B we can now apply
T-Seq on B′:

(T-Seq) Γ`B B1 .Γ Γ`B while(e){B1} .Γ
Γ`B B1;while(e){B1} .Γ

The thesis follows from the conclusion of T-Seq applied on B′.

Case B-No-Iteration
If the last rule in the derivation sequence is B-No-Iteration, then from the
form of this rule, we see that B = while(e) {B1} for an expression e and
a behaviour B1:

(B-No-Iteration) e(t)=false

while(e){B1}
read t−−−−→ 0

We also know that µ = read t and B′ = 0; while(e) {B1}. Since Γ′′ =
sideEffect(read t,Γ) = Γ by the definition of sideEffect (3.12) we are going
to prove that Γ `B B′ . Γ′.

Applying the Inversion Lemma (Lemma 3.9) to Γ `B while(e) {B1} . Γ′

we know that it can only be typed by rule T-While:

(T-While) Γ` e:bool Γ`B B1 .Γ
Γ`B while(e){B1} .Γ

From the conclusion of this rule we have that Γ′ = Γ. Therefore we are
going to prove Γ `B B′ . Γ. The thesis follows from applying T-Nil on
B′ = 0.

Case B-Assign
In this case, we know B = x = e for an expression e and a variable x:

(B-Assign) x = e x = e−−−→ 0

3.3 Type Preservation 55

We also know that µ = x = e and B′ = 0.
Applying the Inversion Lemma (lemma 3.9) on Γ `B x = e . Γ′ we know
that it can be typed by two different rules. We therefore consider each
case:

Subcase T-Assign-New
If Γ `B x = e . Γ′ is typed using T-Assign-New, then we see from the
form of this rule that Γ′ = upd(Γ, x, bt(Te)):

(T-Assign-New) Γ` e:Te x /∈Γ
Γ`B x = e . upd(Γ,x,bt(Te))

By premise Γ ` e : Te and x /∈ Γ from T-Assign-New applied
on B and by label x = e we have that Γ′′ = sideEffect(x = e,Γ) =
upd(Γ, x, bt(Te)) by the definition of sideEffect (3.12). Therefore we
are going to prove that upd(Γ, x, bt(Te)) `B P ′ . upd(Γ, x, bt(Te)).
The thesis follows from applying T-Nil on B′ = 0.

Subcase T-Assign-Exists
If Γ `B x = e . Γ′ is typed using T-Assign-Exists, then we see from
the form of this rule that Γ′ = Γ:

(T-Assign-Exists) Γ` e:Te x:Tx ∈Γ bt(Te)=bt(Tx)
Γ`B x = e .Γ

We are therefore going to prove that Γ′′ `B B′ . Γ. By premise
Γ ` e : Te, x : Tx ∈ Γ and bt(Te) = bt(Tx) from T-Assign-Exists
applied on B and by label x = e we have that sideEffect(x = e,Γ) = Γ
by the definition of sideEffect (3.12). Therefore we are going to prove
Γ `B B′ . Γ. The thesis follows from applying T-Nil on B′ = 0.

Case B-Notification

In this case, we know B = o@l(e) for an expression e and an operation o
at a location l:

(B-Notification) o@l(e) νr o@l(e)−−−−−−→ 0

We also know that µ = νr o@l(e) and B′ = 0. Applying the Inversion
Lemma (Lemma 3.9) to Γ `B o@l(e) . Γ′ we know that it can only be
typed by rule T-Notification:

(T-Notification) o@l:<To>∈Γ Γ` e:Te Te≤To
Γ`B o@l(e) .Γ

From the conclusion of this rule we know that Γ′ = Γ. Therefore we
are going to prove Γ′′ `B B′ . Γ. By the premises of this rule together
with label νr o@l(e) we have that Γ′′ = sideEffect(νr o@l(e),Γ) = Γ by
the definition of sideEffect (3.12). Therefore we are going to prove that
Γ `B B′ . Γ. The thesis follows from applying T-Nil on B′ = 0.

56 Type System for Jolie

Case B-SolResp

If the last rule in the derivation sequence is B-SolResp, then from the form
of this rule, we see that B = o@l(e)(x) for an expression e, a variable x,an
operation o at a location l:

(B-SolResp) o@l(e)(x) νr o@l(e)−−−−−−→ Wait(r, o@l, x)

We also know that µ = νr o@l(e) and B′ = Wait(r, o@l, x). Applying the
Inversion Lemma (Lemma 3.9) to Γ `B o@l(e)(x) . Γ′ we know that it
can be typed by two rules. We therefore consider both cases:

Subcase T-SolResp-New

If Γ `B o@l(e)(x) . Γ′ is typed using T-SolicitResponse-New then
we see from the form of this rule that Γ′ = upd(Γ, x, Ti):

(T-SolResp-New) o@l:<To,Ti>∈Γ Γ` e:Te Te≤To x /∈Γ
Γ`B o@l(e)(x) . upd(Γ,x,Ti)

Therefore we are going to prove Γ′′ `B B′ . upd(Γ, x, Ti).
By premise o@l : <To, Ti> ∈ Γ, Γ ` e : Te and Te ≤ To of this rule
and by label νr o@l(e) we have that Γ′′ = sideEffect(νr o@l(e),Γ) =
Γ by the definition of sideEffect (3.12). Therefore we are going to
prove that Γ `B B′ . upd(Γ, x, Ti). The thesis follows from applying
rule T-Wait-New on Γ `B Wait(r, o@l, x) . upd(Γ, x, Ti) by premise
o@l : <To, Ti> ∈ Γ and x /∈ Γ from T-SolResp-New applied on
Γ `B o@l(e)(x) . Γ′:

(T-Wait-New) o@l:<To,Ti>∈Γ x /∈Γ
Γ`B Wait(r,o@l,x) . upd(Γ,x,Ti)

Subcase T-SolicitResponse-Exists

If Γ `B o@l(e)(x) . Γ′ is typed using T-SolicitResponse-Exists then
we see from the form of this rule that Γ′ = Γ:

(T-SolResp-Exists) o@l:<To,Ti>∈Γ Γ` e:Te Te≤To x:Tx ∈Γ Ti≤Tx
Γ`B o@l(e)(x) .Γ

Therefore we are going to prove Γ′′ `B B′ . Γ.
By premise o@l : <To, Ti> ∈ Γ, Γ ` e : Te and Te ≤ To of this rule and
by label νr o@l(e) we have that Γ′′ = sideEffect(νr o@l(e),Γ) = Γ
by the definition of sideEffect (3.12). Therefore we are going to prove
that Γ `B B′ . Γ. The thesis follows from applying rule T-Wait-
Exists on Γ `B Wait(r, o@l, x) . Γ by premise o@l : <To, Ti> ∈ Γ,
x : Tx ∈ Γ and Ti ≤ Tx from T-SolResp-Exists applied on Γ `B
o@l(e)(x) . Γ′:

3.3 Type Preservation 57

(T-Wait-Exists) o@l:<To,Ti>∈Γ x:Tx ∈Γ Ti≤Tx
Γ`B Wait(r,o@l,x) .Γ

Case B-OneWay
If the last rule in the derivation sequence is B-OneWay, then from the
form of this rule, we see that B = o(x) for an operation o and a variable
x:

(B-OneWay) o(x) r:o(x)−−−−→ 0

We also know that µ = r : o(x) and B′ = 0.
Applying the Inversion Lemma (Lemma 3.9) to Γ `B o(x) . Γ′ we know
that it can be typed by two different rules. We therefore consider both
cases:

Subcase T-OneWay-New
If Γ `B o(x) . Γ′ is typed using T-OneWay-New, then we see from
the form of this rule that Γ′ = upd(Γ, x, Ti):

(T-OneWay-New) o:<Ti>∈Γ x /∈Γ
Γ`B o(x) . upd(Γ,x,Ti)

Therefore we are going to prove Γ′′ `B B′ . upd(Γ, x, Ti).
By premise x /∈ Γ and o : <Ti> ∈ Γ in T-OneWay-New applied on
B and by label r : o(x) we have that Γ′′ = sideEffect(r : o(x),Γ) =
upd(Γ, x, Ti) by the definition of sideEffect (3.12). Therefore we are
going to prove that upd(Γ, x, Ti) `B B′ . upd(Γ, x, Ti). The thesis
follows from applying T-Nil on B′ = 0.

Subcase T-OneWay-Exists

If Γ `B o(x) . Γ′ is typed using T-OneWay-Exists, then we see from
the form of this rule that Γ′ = Γ:

(T-OneWay-Exists) o:<Ti>∈Γ x:Tx ∈Γ Ti≤Tx
Γ`B o(x) .Γ

Therefore we are going to prove Γ′′ `B B′ . Γ. By the premises of
T-OneWayExists applied on B and by label r : o(x) we know that
Γ′′ = sideEffect(r : o(x),Γ) = Γ by the definition of sideEffect (3.12).
Therefore we are going to prove Γ `B B′ . Γ. The thesis follows from
applying T-Nil on B′ = 0.

Case B-ReqResp

If the last rule in the derivation sequence is B-ReqResp, then from the
form of this rule, we see that B = o(x)(x’) {B1} for an operation o, a
behaviour B1 and two variables x and x′:

58 Type System for Jolie

(B-ReqResp) o(x)(x’) {B1}
r:o(x)−−−−→ Exec(r, o, x’, B1)

We also know that µ = r : o(x) and B′ = Exec(r, o, x’, B1). Applying
the Inversion Lemma (Lemma 3.9) to Γ `B o(x)(x’) {B1} . Γ′ we know
that it can be typed by two different rules. We therefore consider each
case:

Subcase T-ReqResp-New

If Γ `B o(x)(x’) {B1} . Γ′ is typed using T-ReqResp-New then we
see from the form of this rule that Γ′ = Γ′′′:

(T-ReqResp-New)
o:<Ti,To>∈Γ x /∈Γ upd(Γ,x,Ti)`B B1 .Γ′′′ x′:Tx′∈Γ′′′ Tx′≤To

Γ`B o(x)(x’) {B1} .Γ′′′

Therefore we are going to prove Γ′′ `B B′ . Γ′′′. By premise
o : <Ti, To> ∈ Γ and x /∈ Γ in T-ReqResp-New applied on Γ `B
o(x)(x’) {B1} .Γ′ and by label r : o(x) we have that Γ′′ = sideEffect(r :
o(x),Γ) = upd(Γ, x, Ti) by the definition of sideEffect (3.12). There-
fore we are going to prove upd(Γ, x, Ti) `B B′ . Γ′′′.
Since sideEffect does not change operations we have by premise o :
<Ti, To> ∈ Γ from T-ReqResp-New applied on Γ `B o(x)(x’) {B1} .
Γ′ that o : <Ti, To> ∈ Γ′′. The thesis follows from applying rule T-
Exec on upd(Γ, x, Ti) `B Exec(r, o, x’, B1) . Γ′′′ by o : <Ti, To> ∈ Γ′′

and premise upd(Γ, x, Ti) `B B1 . Γ′′′, x′ : Tx′ ∈ Γ′′′ and Tx′) ≤ To
from T-ReqResp-New applied on Γ `B o(x)(x’) {B1} . Γ′′′:

(T-Exec)
o:<Ti,To>∈Γ′′ Γ′′ `B B1 .Γ′′′ x′:Tx′∈Γ′′′ Tx′≤To

Γ′′ `B Exec(r,o,x’,B1) .Γ′′′

Subcase T-ReqResp-Exists

If Γ `B o(x)(x’) {B1} . Γ′ is typed using T-ReqResp-Exists then
we see from the form of this rule that Γ′ = Γ′′′:

(T-ReqResp-Exists)
o:<Ti,To>∈Γ x:Tx ∈Γ Ti≤Tx Γ`B B1 .Γ′′′ x′:Tx′∈Γ′′′ Tx′≤To

Γ`B o(x)(x’) {B1} .Γ′′′

Therefore we are going to prove Γ′′ `B Exec(r, o, x’, B1) . Γ′′′.
By premise o : <Ti, To> ∈ Γ, x : Tx ∈ Γ and Ti ≤ Tx of this rule and
by label r : o(x) we have that Γ′′ = sideEffect(r : o(x),Γ) = Γ by
the definition of sideEffect (3.12). Therefore we are going to prove
Γ `B Exec(r, o, x’, B1) . Γ′′′. The thesis follows from applying rule
T-Exec on Γ `B Exec(r, o, x’, B1) . Γ′′′ by premise o : <Ti, To> ∈ Γ,
Γ `B B1 . Γ′′′, x′ : Tx′ ∈ Γ′′′ and Tx′ ≤ To from T-ReqResp-Exists
applied on Γ `B o(x)(x’) {B1} . Γ′:

3.3 Type Preservation 59

(T-Exec)
o:<Ti,To>∈Γ Γ`B B1 .Γ′′′ x′:Tx′∈Γ′′′ Tx′≤To

Γ`B Exec(r,o,x’,B1) .Γ′′′

Case B-Exec

In this case, we know B = Exec(r, o, x, B1) for a channel r, an operation
o, a behaviour B1 and a variable x:

(B-Exec)
B1

µ−→B′
1

Exec(r,o,x,B1)
µ−→ Exec(r,o,x,B′

1)

We also know that B′ = Exec(r, o, x, B′1). Applying the Inversion Lemma
(Lemma 3.9) to Γ `B Exec(r, o, x, B1) . Γ′ we know that it can only be
typed by T-Exec:

(T-Exec) o:<Ti,To>∈Γ Γ`B B1 .Γ′′′ x:Nx∈Γ′′′ Tx≤To
Γ`B Exec(r,o,x,B1) .Γ′′′

From the conclusion of this rule we have that Γ′ = Γ′′′. Therefore we are
going to prove Γ′′ `B Exec(r, o, x, B′1) . Γ′′′.

By applying the induction hypothesis on premise B1
µ−→ B′1 from B-

Exec and on premise Γ `B B1 . Γ′′′ from T-Exec applied on Γ `B
Exec(r, o, x, B1) . Γ′′′, we get Γ′′1 `B B′1 . Γ′′′ where Γ′′1 = sideEffect(µ,Γ).
From B-Exec we know that the label for the premise and for the conclusion
is the same. We therefore have Γ′′ = Γ′′1 .

Since sideEffect does not change operations we have by premise o : <Ti, To> ∈
Γ from T-Exec applied on Γ `B Exec(r, o, x, B1) . Γ′′′ that o : <Ti, To> ∈
Γ′′. The thesis follows from applying T-Exec on Γ′′ `B Exec(r, o, x, B′1) .
Γ′′′ by o : <Ti, To> ∈ Γ′′, Γ′′ `B B′1 . Γ′′′ from the induction hypoth-
esis and premise x : Nx ∈ Γ′′′ and Tx ≤ To from T-Exec applied on
Γ `B Exec(r, o, x, B1) . Γ′′′.

Case B-End-Exec

If the last rule in the derivation sequence is B-End-Exec, then from the
form of this rule, we see that B = Exec(r, o, x,0) for a channel r, an
operation o and a variable x:

(B-End-Exec) Exec(r, o, x,0)
(r,o)! x−−−−−→ 0

We also know that µ = (r, o)!x and that B′ = 0. Applying the Inversion
Lemma (Lemma 3.9) to Γ `B Exec(r, o, x,0) . Γ′ we know that it can
only be typed by T-Exec:

60 Type System for Jolie

(T-Exec) o:<Ti,To>∈Γ Γ`B 0 .Γ′′′ x:Tx∈Γ′′′ Tx≤To
Γ`B Exec(r,o,x,0) .Γ′′′

By applying T-Nil on premise Γ `B 0 .Γ′′′ from this rule we know Γ′′′ = Γ.
Therefore we are going to prove Γ′′ `B 0 . Γ. By premise o : <Ti, To> ∈ Γ,
x : Tx ∈ Γ and Tx ≤ To of T-Exec applied on Γ `B Exec(r, o, x,0) . Γ
and by label (r, o)!x we have that Γ′′ = sideEffect((r, o)!x,Γ) = Γ by the
definition of sideEffect (3.12). Therefore we are going to prove Γ `B 0 . Γ.
The thesis follows from applying rule T-Nil on Γ `B 0 . Γ.

Case B-Wait

In this case, we know B = Wait(r, o@l, x) for a channel r, a variable x and
an operation o at a location l:

(B-Wait)Wait(r, o@l, x)
(r,o@l)?x−−−−−−→ 0

We also know that µ = (r, o@l)?x and B′ = 0. Applying the Inversion
Lemma (Lemma 3.9) to Γ `B Wait(r, o@l, x) . Γ′ we know that it can be
typed by two rules. We therefore consider both cases:

Subcase T-Wait-New

If Γ `B Wait(r, o@l, x) . Γ′ is typed using T-Wait-New then we see
from the form of this rule that Γ′ = upd(Γ, x, Ti):

(T-Wait-New) o@l:<To,Ti>∈Γ x /∈Γ
Γ`B Wait(r,o@l,x) . upd(Γ,x,Ti)

Therefore we are going to prove Γ′′ `B B′ . upd(Γ, x, Ti).
By premise o@l : <To, Ti> ∈ Γ and x /∈ Γ of this rule and by label
(r, o@l)?x we have that Γ′′ = sideEffect((r, o@l)?x,Γ) = upd(Γ, x, Ti)
by the definition of sideEffect (3.12). Therefore we are going to prove
that upd(Γ, x, Ti) `B B′ . upd(Γ, x, Ti). The thesis follows from
applying rule T-Nil on upd(Γ, x, Ti) `B 0 . upd(Γ, x, Ti).

Subcase T-Wait-Exists
If Γ `B Wait(r, o@l, x) . Γ′ is typed using T-Wait-Exists then we see
from the form of this rule that Γ′ = Γ:

(T-Wait-Exists) o@l:<To,Ti>∈Γ x:Tx ∈Γ Ti≤Tx
Γ`B Wait(r,o@l,x) .Γ

Therefore we are going to prove Γ′′ `B B′ . Γ.
By premise o@l : <To, Ti> ∈ Γ, x : Tx ∈ Γ and Ti ≤ Tx of this rule
and by label (r, o@l)?x we have that Γ′′ = sideEffect((r, o@l)?x,Γ) = Γ
by the definition of sideEffect (3.12). Therefore we are going to prove
that Γ `B B′ . Γ. The thesis follows from applying rule T-Nil on
Γ `B 0 . Γ.

3.3 Type Preservation 61

Case B-Choice

In this case, we know B =
∑
i∈J [ηi]{Bi} for a sum of behaviours ηi and

Bi over i:

(B-Choice)
j∈J ηj

µ−→Qj∑
i∈J [ηi]{Bi}

µ−→Qj ;Bj

We also know that B′ = Qj ;Bj . Applying the Inversion Lemma (Lemma
3.9) to Γ `B

∑
i∈J [ηi]{Bi} . Γ′ we know that it can only be typed by

rule T-Choice:

(T-Choice)
∀j∈J . Γ`B ηj ;Bj .Γ′

Γ`B
∑
i∈J [ηi]{Bi} .Γ′

By applying the Inversion Lemma (Lemma 3.9) to premise Γ `B ηj ;Bj .
Γ′ from this rule we know that it is only typable by T-Seq:

(T-Seq)
Γ`B ηj .Γ′′′ Γ′′′ `B Bj .Γ′

Γ`B ηj ;Bj .Γ′ (3.19)

By applying the induction hypothesis on premise Γ `B ηj . Γ′′′ from
3.19 and premise ηj

µ−→ Qj from B-Choice we know Γ′′′′ `B Qj . Γ′′′

where Γ′′′′ = sideEffect(µ,Γ) by the definition of sideEffect (3.12). Since
the premise and the conclusion of B-Choice shares the same label we have
Γ′′ = Γ′′′′.

The thesis follows from applying T-Seq on Γ′′ `B Qj ;Bj . Γ′ by Γ′′ `B
Qj . Γ′′′ from the induction hypothesis and premise Γ′′′ `B Bj . Γ′ from
3.19.

Case B-Struct

From the form of this rule we know that B = B1:

(B-Struct)
B1≡B2 B2

µ−→B′
2 B′

1≡B
′
2

B1
µ−→B′

1

We also know that B′ = B′1. By applying lemma 3.10 on Γ `B B1 . Γ′

and premise B1 ≡ B2 we have Γ `B B2 . Γ′. Applying the induction
hypothesis on Γ `B B2 . Γ′ and premise B2

µ−→ B′2 we know Γ′′ `B
B′2 . Γ′ where Γ′′ = sideEffect(µ,Γ). Since the congruence relation is
commutative we know B′2 ≡ B′1 from premise B′1 ≡ B′2. The thesis follows
by applying lemma 3.10 on Γ′′ `B B′2 . Γ′ and premise B′2 ≡ B′1 where
Γ′′ = sideEffect(µ,Γ).

62 Type System for Jolie

�

3.3.4.2 Type Preservation at the Service Layer

Type preservation for processes are presented below followed by type preserva-
tion for services.

Type Preservation for Processes
Consider a well-typed process P typed with respect to an environment Γ. As-
sume there exists a process P ′ such that P µ−→ P ′. Then P ′ is also well typed
with respect to Γ:

Theorem 3.16 (Type Preservation for Processes)

If Γ `P P

and P µ−→ P ′

then Γ `P P ′

Proof. Assume Γ `P P and P µ−→ P ′. The proof is done by induction on the
derivation of P µ−→ P ′.

Case S-Read

In this case, we know P = B · t · m̃ for a process consisting of a behaviour
B, a state t and a message queue m̃:

(S-Read) B
read t−−−−→B′

B·t·m̃
τ−→B′·t·m̃

We also know that µ = τ and P ′ = B′ · t · m̃.

Applying the Inversion Lemma (Lemma 3.9) to Γ `P B · t · m̃ we know
that it can only be typed using rule T-Process:

(T-Process)
Γ,Γ′ `B B .Γ′′ Γ,Γ′ `state t Γ,Γ′ `queue m̃ @o. o@l:<O>∈Γ′ ∨ o:<O>∈Γ′

Γ`P B·t·m̃
(3.20)

3.3 Type Preservation 63

Applying theorem 3.13 on premise Γ,Γ′ `B B . Γ′′ from 3.20 and premise
B

read t−−−−→ B′ from S-Read we know Γ′′′ `B B′ . Γ′′ where Γ′′′ =
sideEffect(read t,Γ,Γ′) = Γ,Γ′ by the definition of sideEffect (3.12). Since
we know t′ = t and m̃′ = m̃ by the form of S-Read, the thesis follows from
applying T-Process on Γ `P B′ · t · m̃ by Γ,Γ′ `B B′ . Γ′′ and premise
Γ,Γ′ `state t, Γ,Γ′ `queue m̃ and @o. o@l : <O> ∈ Γ′ ∨ o : <O> ∈ Γ′ from
3.20.

Case S-Send

The proof is similar to the proof for case S-Read.

(S-Send) B
νr o@l(e)−−−−−→B′

B·t·m̃
νr o@l(e(t))−−−−−−−→B′·t·m̃

Case S-Exec

The proof is similar to the proof for case S-Read.

(S-Exec) B
(r,o)! x−−−−→B′

B·t·m̃
(r,o)! x(t)−−−−−−→B′·t·m̃

Case S-Get

In this case, we know P = B · t · (r, o, t′) :: m̃ for a process consisting of a
behaviour B, a state t and a message queue (r, o, t′) ::m̃:

(S-Get) B
r:o(x)−−−→B′

B·t·(r,o,t′)::m̃
τ−→ B′·t←xt′·m̃

We also know that µ = τ and P ′ = B′ · t←x t
′ · m̃.

By applying the Inversion Lemma (Lemma 3.9) to Γ `P B · t · (r, o, t′) ::m̃
we know that it can only be typed by rule T-Process:

(T-Process)
Γ,Γ′′ `B B .Γ′′′ Γ,Γ′′ `state t Γ,Γ′′ `queue (r,o,t′)::m̃ @o. o@l:<O>∈Γ′ ∨ o:<O>∈Γ′′

Γ`P B·t·(r,o,t′)::m̃
(3.21)

Let Γ′ = Γ,Γ′′. By applying the Preservation for Behavioural Layer Theo-
rem (theorem 3.13) on premise Γ,Γ′′ `B B . Γ′′′ from 3.21 and on premise
B

r:o(x)−−−−→ B′ from S-Get we get:

64 Type System for Jolie

If Γ′ `B B . Γ′′′ (3.22)

and B r:o(x)−−−−→ B′

then Γ′′′′ ` B′ . Γ′′′

where Γ′′′′ = sideEffect(r : o(x),Γ′)

From the definition of sideEffect (definition 3.12) we know that there exist
two cases for Γ′′′′:

Subcase Γ′′′′ = Γ′

Lemma 3.17 If Γ `queue (r, o, t′) ::m̃ then Γ `queue m̃.

Proof. The proof follows immediately from definition 3.8. �

By Γ′ `queue (r, o, t′) ::m̃ from 3.21 and by lemma 3.17 we have:

Γ′ `queue m̃ (3.23)

and we know by definition 3.8 that data tree t′ fulfills the require-
ments for operation o defined in environment Γ′:

(o : <Ti> ∈ Γ′ ∨ o : <Ti, To> ∈ Γ′)∧ ` t′ : Tt′ ∧ Tt′ ≤ Ti (3.24)

From the definition of sideEffect (definition 3.12) we know that the
input through operation o is going to be stored in an existing variable,
x, which type is a super type of the declared input type of o:

x : Tx ∈ Γ′ ∧ (o : <Ti> ∈ Γ′ ∨ o : <Ti, To> ∈ Γ′) ∧ Ti ≤ Tx (3.25)

Lemma 3.18 If x : Tx ∈ Γ′ then r(x) ∈ Roots(Γ′)

Proof. The proof follows from the form of the typing system. �

By lemma 3.18 applied on x : Tx ∈ Γ′ from 3.25 we get r(x) ∈
Roots(Γ′).
Since we have Γ′ `state t from 3.21 we know by definition 3.7 that

3.3 Type Preservation 65

r(x) : Tr(x) ∈ Γ′∧ ` (r(x))(t) : T ′ ∧ T ′ ≤ Tr(x) (3.26)

By 3.24 and 3.25 we know Tt′ ≤ Ti ≤ Tx.
Since Tt′ ≤ Tx and T ′ ≤ Tr(x) and r(x) ∈ Roots(Γ′) then by Γ′ `state
t from 3.21 we know by definition 3.7 that

∀a : Ta ∈ Roots(Γ′). ` (a)(t←x t
′) : T ′′ ∧ T ′′ ≤ Ta (3.27)

Since x ∈ Roots(Γ′) we know by Γ′ `state t from 3.21 that

∀a ∈ Roots(t). a ∈ Roots(Γ′) (3.28)

by definition 3.7.
From 3.27 and 3.28 we have

Γ′ `state t←x t
′ (3.29)

The thesis follows from applying T-Process on Γ′ ` B′ .Γ′′ from 3.22
and on 3.23 and 3.29.

Subcase Γ′′′′ = upd(Γ′, x, Ti)

Since no variable type declaration is used from the environment when
typing a message queue with respect to an environment then by
Γ′ `queue (r, o, t′) ::m̃ from 3.21 and by lemma 3.17 we know:

Γ′′′′ `queue m̃ (3.30)

We also know that data tree t′ fulfills the requirements for operation
o defined in environment Γ′ as shown in 3.24.
From the definition of sideEffect (definition 3.12) we know (o : <Ti> ∈
Γ′′′′ ∨ o : <Ti, To> ∈ Γ′′′′). The environment is updated with a new
path x, which gets the same type as the declared type for the input
part of o. If part of the path to the leaf of x is missing, it is created
with type void as basic type for each missing step.
By the definition of sideEffect and 3.24 we know

t′ : Tt′ ∧ Γ′′′′ ` x : Ti ∧ Tt′ ≤ Ti (3.31)

66 Type System for Jolie

By the form of Γ′′′′ and lemma 3.18 we know r(x) ∈ Roots(Γ′′′′).
From r(x) ∈ Roots(Γ′′′′), 3.31, the definition of upd and Γ′ `state t
from 3.21 we know:

∀a : Ta ∈ Roots(Γ′′′′). ` (a)(t←x t
′) : T ∧ T ≤ Ta (3.32)

The difference between Γ′ and Γ′′′′ as well as t and t ←x t
′ is that

path x and its subnodes are added. Therefore we have by Γ′ `state t
from 3.21 that

∀a ∈ Roots(t←x t
′). a ∈ Roots(Γ′′′′) (3.33)

From 3.32 and 3.33 we know Γ′′′′ `state t ←x t
′. The thesis follows

from applying T-Process on Γ′′′′ ` B′.Γ′′ from 3.22 and on Γ′′′′ `state
t←x t

′ and 3.30.

Case S-Assign

In this case, we know P = B · t · m̃ for a process consisting of a behaviour
B, a state t and a message queue m̃:

(S-Assign) B
x = e−−→B′

B·t·m̃
τ−→B′·t�xe(t)·m̃

We also know that µ = τ and P ′ = B′ · t�x e(t) · m̃.
By applying the Inversion Lemma (Lemma 3.9) to Γ `P B · t · m̃ we know
that it can only be typed by rule T-Process:

(T-Process)
Γ,Γ′ `B B .Γ′′′ Γ,Γ′ `state t Γ,Γ′ `queue m̃ @o. o@l:<O>∈Γ′ ∨ o:<O>∈Γ′

Γ`P B·t·m̃
(3.34)

Let Γ′ = Γ,Γ′′. By applying the Preservation for Behavioural Layer Theo-
rem (theorem 3.13) on premise Γ,Γ′ `B B . Γ′′′ from 3.34 and on premise
B

x = e−−−→ B′ from S-Assign we get:

If Γ′ `B B . Γ′′′ (3.35)

and B x = e−−−→ B′

then Γ′′′′ ` B′ . Γ′′′

where Γ′′′′ = sideEffect(x = e,Γ′)

From the definition of sideEffect (definition 3.12) we know that there exist
two cases for Γ′′′′:

3.3 Type Preservation 67

Subcase Γ′′′′ = Γ′

From 3.34 we have Γ′ `queue m̃. Since Γ′′′′ = Γ′ we must also have

Γ′′′′ `queue m̃ (3.36)

From the definition of sideEffect (definition 3.12) we know that x
already exists in Γ′ and that its basic type equals the basic type of
expression e:

Γ′ ` e : Te ∧ x : Tx ∈ Γ′ ∧ bt(Te) = bt(Tx) (3.37)

We therefore have that

T = T ′ where ` r(x)(t) : T ∧ (r(x))(t�x e(t)) : T ′ (3.38)

Since x is an existing path and by 3.38 and by Γ′ `state t from 3.34
we know by definition 3.7 that

Γ′ `state t�x e(t) (3.39)

The thesis follows from applying T-Process on Γ′ ` B′ .Γ′′′ from 3.35
and on 3.36 and 3.39.

Subcase Γ′′′′ = upd(Γ′, x, bt(Tx)

By definition 3.8 we know that when typing a message queue with
respect to an environment no variable type declaration is used from
the environment. We therefore have

Γ′′′′ `queue m̃ (3.40)

From the definition of sideEffect (definition 3.12) we know Γ′′′′ ` x :
bt(Te), where Γ′ ` e : Te ∧ x /∈ Γ′. The environment is updated with
a new path x which gets the basic type of the result of the evaluation
of expression e. If part of the path to the leaf of x is missing, it is
created with type void as basic type for each missing step.
By the form of Γ′′′′ and by lemma 3.18 we know r(x) ∈ Roots(Γ′′′′).
From r(x) ∈ Roots(Γ′′′′), the definition of sideEffect, the definition of
upd (definition 3.6) and Γ′ `state t from 3.34 we have:

68 Type System for Jolie

∀a : Ta ∈ Roots(Γ′′′′). ` a(t�x e(t)) : T ∧ T ≤ Ta (3.41)

The difference between Γ′ and Γ′′′′ as well as t and t �x e(t) is
that path x and all its subnodes are added. Therefore we have by
Γ′ `state t from 3.34 that

∀a ∈ Roots(t�x e(t)). a ∈ Roots(Γ′′′′) (3.42)

From 3.41 and 3.42 we know Γ′′′′ `state t�x e(t). The thesis follows
from applying T-Process on Γ′ ` B′ .Γ′′′ from 3.35 and on Γ′′′′ `state
t�x e(t) and 3.40.

Case S-Wait

The proof is similar to the proof for case S-Get.

Case S-Par

The proof is straightforward because the typing of operations in an envi-
ronment does not change.

�

Type Preservation for Services
Consider a well-typed service S typed with respect to an environment Γ. Assume
there exists a service S′ such that S µ−→ S′. Then S′ is also well typed with
respect to Γ:

Theorem 3.19 (Type Preservation for Services)

If Γ `S S

and S µ−→ S′

then Γ `S S′

Proof. Assume Γ `S S and S µ−→ S′. The proof is done by induction on the
derivation of S µ−→ S′.

3.3 Type Preservation 69

Case S-Corr

In this case, we know S = B1 .D P | B2 · t · m̃ for a behaviour B1, a
deployment part D and a process consisting of a process P and another
process with the behaviour B2, the state t and the message queue m̃:

(S-Corr)
D=αC ·Γ t′,o `αC t (o:<Ti>∈Γ∨ o:<Ti,To>∈Γ) `t′:Tt′ Tt′≤Ti

B1.DP | B2·t·m̃
νr o(t′)−−−−−→B1.DP | B2·t·m̃::(r,o,t′)

We also know that µ = νr o(t′) and S′ = B1 .D P | B2 · t · m̃ :: (r, o, t′).
Applying the Inversion Lemma (Lemma 3.9) to Γ `S B1 .D P | B2 · t · m̃
we know that it can only be typed by rule T-Service:

(T-Service) D=αC ·Γ Γ`BSL B1 .Γ′ Γ`P P | B2·t·m̃
Γ`S B1.DP | B2·t·m̃

(3.43)

Applying the Inversion Lemma (Lemma 3.9) to premise Γ `P P | B2 ·t ·m̃
we know that it can only be typed by rule T-Process-Par:

(T-Process-Par) Γ`P P Γ`P B2·t·m̃
Γ`P P | B2·t·m̃ (3.44)

Applying the Inversion Lemma (Lemma 3.9) to premise Γ `P B2 · t · m̃
from this rule, we know that it can only be typed by rule T-Process:

(T-Process)
Γ,Γ′′′ `B B2 .Γ′ Γ,Γ′′′ `state t Γ,Γ′′′ `queue m̃ @o. o@l:<O>∈Γ′′′ ∨ o:<O>∈Γ′′′

Γ`P B2·t·m̃
(3.45)

Let Γ′′ = Γ,Γ′′′. By premise Γ′′ `queue m̃ from 3.45 and by premise
(o : <Ti> ∈ Γ ∨ o : <Ti, To> ∈ Γ), ` t′ : Tt′ and Tt′ ≤ Ti from S-Corr
we know that Γ′′ `queue m̃ :: (r, o, t′) according to definition 3.8. By
Γ′′ `queue m̃ :: (r, o, t′) and premise Γ′′ `B B2 . Γ′, Γ′′ `state t and
@o. o@l : <O> ∈ Γ′′′ ∨ o : <O> ∈ Γ′′′ from 3.45 we can apply T-Process:

(T-Process)
Γ,Γ′′′ `B B2 .Γ′ Γ,Γ′′′ `state t Γ,Γ′′′ `queue m̃::(r,o,t′) @o. o@l:<O>∈Γ′′′ ∨ o:<O>∈Γ′′′

Γ`P B2·t·m̃::(r,o,t′)

(3.46)

By applying T-Process-Par on premise Γ `P P from 3.44 and on Γ `P
B2 · t · m̃ :: (r, o, t′) from 3.46 we get:

(T-Process-Par) Γ`P P Γ`P B2·t·m̃::(r,o,t′)
Γ`P P | B2·t·m̃::(r,o,t′) (3.47)

The thesis follows from applying T-Service on Γ `P P | B2 · t ·m̃ :: (r, o, t′)
from 3.47 and premise D = αC · Γ and Γ `BSL B1 . Γ′ from 3.43.

70 Type System for Jolie

Case S-Start

In this case, we know S = B .D P for a behaviour B, a deployment part
D and a process P :

(S-Start)
D=αC ·Γ t,o 0αCP B

r:o(x)−−−→B′ t′=init(t,o,αC) (o:<Ti>∈Γ∨ o:<Ti,To>∈Γ) `t′:Tt′ Tt′≤Ti

B.DP
νr o(t)−−−−→B.DP | B′·t⊥←xt←csetst′·ε

We also know that µ = νro(t) and S′ = B.DP | B′ · t⊥ ←x t←csets t
′ ·ε.

Applying the Inversion Lemma (Lemma 3.9) to Γ `S B .D P we know
that it can only be typed by rule T-Service:

(T-Service) D=αC ·Γ Γ`BSL B .Γ′ Γ`P P
Γ`S B.DP

(3.48)

Applying the Inversion Lemma (Lemma 3.9) to premise Γ `BSL B . Γ′

we know that it is typed either with T-BSL-Choice or T-BSL-Nil. Since a
nil behaviour can not take a step of evaluation according to the semantics
B must be a choice behaviour. Therefore can B only be typed using
T-BSL-Choice.

(T-BSL-Choice)
∀j∈J . Γ`B ηj ;Bj .Γj @Tk,Tl . x:Tk ∈

⋃
Γj ∧ x:Tl ∈

⋃
Γj ∧Tk 6=Tl

Γ`BSL
∑
i∈J [ηi]{Bi} .

⋃
Γj∈J

Applying theorem 3.13 on premise Γ `B ηj ;Bj . Γj from this rule and
premise B r:o(x)−−−−→ B′ from S-Start we get Γ′′ `B B′ . Γ′ where Γ′′ =
sideEffect(x = e,Γ). Since Γ only contains operation type information we
know Γ′′ = upd(Γ, x, Ti) by the definition of sideEffect (3.12).

By Γ′′ and premise (o : <Ti> ∈ Γ ∨ o : <Ti, To> ∈ Γ), ` t′ : Tt′ and Tt′ ≤ Ti
from S-Start we have Γ′′ `state t⊥ ←x t ←csets t

′ according to definition
3.7. By Γ′′ we have Γ′′ `queue ε according to definition 3.8.

Let Γ,Γ′′′ = Γ′′.By applying Γ,Γ′′′ `B B′ . Γ′, Γ,Γ′′′ `state t⊥ ←x

t←csets t
′ and Γ,Γ′′′ `queue ε on T-Process we get:

(T-Process)
Γ,Γ′′′ `B B′ .Γ′ Γ,Γ′′′ `state t⊥←xt←csetst

′ Γ,Γ′′′ `queue ε @o. o@l:<O>∈Γ′′′ ∨ o:<O>∈Γ′′′

Γ`P B′·t⊥←xt←csetst′·ε
(3.49)

By applying on T-process-par premise Γ `P P from 3.48 and Γ `P B′ ·
t⊥ ←x t←csets t

′ · ε from 3.49 we get:

(T-Process-Par) Γ`P P Γ`P B′·t⊥←xt←csetst
′·ε

Γ`P P | Γ`P B′·t⊥←xt←csetst′·ε
(3.50)

3.3 Type Preservation 71

The thesis follows from applying T-Service on B.DP | B′ ·t⊥ ←x t←csets

t′ · ε by conclusion Γ `P P | Γ `P B′ · t⊥ ←x t←csets t
′ · ε from 3.50 and

premise D = αC · Γ and Γ `BSL B . Γ′ from 3.48:

(T-Service) D=αC ·Γ Γ`B B .Γ′ Γ`P P | Γ`P B′·t⊥←xt←csetst
′·ε

Γ`S B.DP | B′·t⊥←xt←csetst′·ε

Case S-Send-Lift

If the last rule in the derivation sequence is S-Send-Lift, then from the
form of this rule, we see that S = B.D P for a behaviour B, a deployment
part D and a process P :

(S-Send-Lift) P
νr o@l(t)−−−−−→P ′

B.DP
νr o@l(t)−−−−−→B.DP

′

We also know that µ = νr o@l(t) and S′ = B .D P ′. Applying the
Inversion Lemma (Lemma 3.9) to Γ `S B .D P we know that it can only
be typed by rule T-Service:

(T-Service) D=αC ·Γ Γ`BSL B .Γ′ Γ`P P
Γ`S B.DP

(3.51)

Applying theorem 3.16 on premise Γ `P P from 3.51 and premise P νr o@l(t)−−−−−−→
P ′ from S-Send-Lift we get Γ `P P ′. The thesis follows from applying
T-Service on Γ `S B .D P ′ by Γ `P P ′ and premise D = αC · Γ and
Γ `BSL B . Γ′ from 3.51.

Case S-Exec-Lift

The proof is similar to the proof for case S-Send-Lift.

Case S-Wait-Lift

The proof is similar to the proof for case S-Send-Lift.

Case S-Tau

The proof is similar to the proof for case S-Send-Lift.

�

72 Type System for Jolie

3.3.4.3 Type Preservation at the Network Layer

Consider a well-typed network N typed with respect to an environment Γ. As-
sume there exists a network N ′ such that N µ−→ N ′. Then N ′ is also well typed
with respect to Γ:

Theorem 3.20 (Type Preservation for Networks)

If Γ `N N

and N µ−→ N ′

then Γ `N N ′

Proof. Assume Γ `N N and N µ−→ N ′. The proof is done by induction on
the derivation of N µ−→ N ′.

Case N-Comm

In this case, we knowN = [S1]l1 | [S2]l2 for service S1 and S2 with locations
respectively l1 and l2:

(N-Comm)
S1

νr o@l2(tM)−−−−−−−−→S′
1 S2

νr o(tM)−−−−−−→S′
2 r/∈cn(S1)∪cn(S2)

[S1]l1 | [S2]l2
τ−→ νr ([S′

1]l1 | [S′
2]l2)

We also know that µ = τ and N ′ = νr ([S′1]l1 | [S′2]l2). Applying the
Inversion Lemma (Lemma 3.9) to Γ `N [S1]l1 | [S2]l2 we know that it can
only be typed using T-Network:

(T-Network)

Γ1 `N [S1]l1 Γ2 `N [S2]l2

∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1)

∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2)

¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N [S1]l1 | [S2]l2

(3.52)

where Γ1∪Γ2 = Γ. Applying the Inversion Lemma (Lemma 3.9) to premise
Γ1 `N [S1]l1 from this rule we know that it can only be typed using T-
Deployment:

(T-Deployment) Γ′ `S S1 l1 /∈locs(Γ′)
{o@l:<O>∈Γ′}∪{o@l1:<O>|o:<O>∈Γ′} `N [S1]l1

(3.53)

3.3 Type Preservation 73

where Γ1 = {o@l : <O> ∈ Γ} ∪ {o@l1 : <O>|o : <O> ∈ Γ}. By applying

theorem 3.19 at premise Γ′ `S S1 from 3.53 and premise S1
νr o@l2(tM)−−−−−−−−→

S′1 from N-Comm we get Γ′ `S S′1. Applying T-Deployment on Γ′ `S S′1
and premise l1 /∈ locs(Γ′) from 3.53 we know Γ1 `N [S′1]l1 . By similar
argumentation we know Γ2 `N [S′2]l2 . Applying Γ1 `N [S′1]l1 , Γ2 `N
[S′2]l2 and premise ∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈
Γ2 ∧ l /∈ locs(N1), ∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈
Γ1 ∧ l /∈ locs(N2) and ¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧ O1 6= O2)
from 3.52 we get:

(T-Network)

Γ1 `N [S′1]l1 Γ2 `N [S′2]l2

∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1)

∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2)

¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N [S′

1]l1 | [S′
2]l2

(3.54)

where Γ1 ∪ Γ2 = Γ. By Γ1 ∪ Γ2 `N [S′1]l1 | [S′2]l2 we can apply T-
Restriction:

(T-Restriction)
Γ`N [S′

1]l1 | [S′
2]l2

Γ`N νr ([S′
1]l1 | [S′

2]l2)

The thesis follows from the conclusion of this rule.

Case N-Tau

In this case, we know N = [S]l | N for a service S, a location l and network
N :

(N-Tau) S
τ−→S′

[S]l | N
τ−→ [S′]l | N

We also know that µ = τ and N ′ = [S′]l | N . Applying the Inversion
Lemma (Lemma 3.9) to Γ `N [S]l | N we know that it can only be typed
using T-Network:

(T-Network)

Γ1 `N [S]l Γ2 `N N

∀o@l′ : <O> ∈ Γ1 where l′ ∈ locs(N). o@l′ : <O> ∈ Γ2 ∧ l′ /∈ locs([S]l)

∀o@l′ : <O> ∈ Γ2 where l′ ∈ locs([S]l). o@l′ : <O> ∈ Γ1 ∧ l′ /∈ locs(N)

¬(o@l′ : <O1> ∈ Γ1 ∧ o@l′ : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N [S]l | N

(3.55)

74 Type System for Jolie

where Γ = Γ1 ∪ Γ2. Applying the Inversion Lemma (Lemma 3.9) to
premise Γ1 `N [S]l from 3.55 we know that it can only be typed using
T-Deployment:

(T-Deployment) Γ′ `S S l/∈locs(Γ′)
{o@l′:<O>∈Γ′}∪{o@l:<O>|o:<O>∈Γ′} `N [S]l

(3.56)

where Γ1 = {o@l′ : <O> ∈ Γ′} ∪ {o@l : <O>|o : <O> ∈ Γ′}. Applying
theorem 3.19 on premise Γ′ `S S from 3.56 and premise S τ−→ S′ from
N-Tau we know Γ′ `S S′.

Lemma 3.21 Operation type declarations in an environment Γ are never
changed. Neither doing a transition nor doing the type checking.

Proof. The proof follows from the definition of sideEffect and the form
of the typing system. �

By Γ′ `S S′, lemma 3.21 and premise l /∈ locs(Γ′) from 3.56 we can apply
T-Deployment:

(T-Deployment) Γ′ `S S′ l/∈locs(Γ′)
{o@l′:<O>∈Γ′}∪{o@l:<O>|o:<O>∈Γ′} `N [S′]l

(3.57)

By lemma 3.21 and {o@l′ : <O> ∈ Γ′} ∪ {o@l : <O>|o : <O> ∈ Γ′} `N [S′]l
and premise Γ2 `N N , ∀o@l′ : <O> ∈ Γ1 where l′ ∈ locs(N). o@l′ : <O> ∈
Γ2 ∧ l′ /∈ locs([S]l), ∀o@l′ : <O> ∈ Γ2 where l′ ∈ locs([S]l). o@l′ : <O> ∈
Γ1∧l′ /∈ locs(N) and ¬(o@l′ : <O1> ∈ Γ1∧o@l′ : <O2> ∈ Γ2∧O1 6= O2) from
3.55 we can apply N-Network on Γ1 ∪Γ2 `N [S′]l | N where Γ = Γ1 ∪Γ2:

(T-Network)

Γ1 `N [S′]l Γ2 `N N

∀o@l′ : <O> ∈ Γ1 where l′ ∈ locs(N). o@l′ : <O> ∈ Γ2 ∧ l′ /∈ locs([S]l)

∀o@l′ : <O> ∈ Γ2 where l′ ∈ locs([S]l). o@l′ : <O> ∈ Γ1 ∧ l′ /∈ locs(N)

¬(o@l′ : <O1> ∈ Γ1 ∧ o@l′ : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N [S]l | N

(3.58)

The thesis follows from the conclusion of this rule 3.58.

Case N-Response

The proof is similar to the proof for N-Comm, except that the rules are
applied in a different order.

Case N-Struct

The proof is similar to the proof for case P-Struct.

3.4 Type Safety 75

Case N-Par

The proof is straightforward because the typing of operations in an envi-
ronment does not change.

�

3.4 Type Safety

The purpose of the type system is to ensure that a message with the wrong type
is never send nor received. We can formalize this to the type safety property:

1. A well-typed statement is also well typed after taking a transition.

2. A well-typed statement can not take a transition labeled error.

The part 1 is called preservation and is presented in 3.3.4. The part of the
type safety property that makes it address the purpose of this type system lays
in the formulation of semantic rules with label error. We formulate them to
present situations that violates the purpose of the type system and we extend
the semantics of Jolie with these rules in 3.4.1. Because the purpose of the type
system is regarding communication the new extention only consists of rules at
the service and network layers. In 3.4.2 we present 2 and in 3.4.3 we collect the
parts and present type safety.

3.4.1 Semantics with Errors

We extend the semantics of Jolie presented in chapter 2 with rules for commu-
niation performed by a network and messages send by a services in which there
is type mismatch. For the receiving of a message the type system relies on the
dynamic type check.

E-Comm Two services running in parallel can take a transition labelled error
if they perform a unidirectional communication or the first part of a bidirectional
communication in which there is a type mismatch between the services’s type
declarations for the operation used.

76 Type System for Jolie

(E-Comm)

D1 = αC · Γ1 (o@l2 : <T1> ∈ Γ1 ∨ o@l2 : <T1, T
′
1> ∈ Γ1)

D2 = α′C · Γ2 (o : <T2> ∈ Γ2 ∨ o : <T2, T
′
2> ∈ Γ2) T1 6= T2

B1 .D1 P1
νr o@l2(t)−−−−−−−→ B1 .D1 P

′
1 B2 .D2 P2

νr o(t)−−−−−→ B2 .D2 P
′
2 r /∈ cn(S1) ∪ cn(S2)

[B1.D1
P1]l1 | [B2.D2

P2]l2
error−−−→ [B1.D1

P1]l1 | [B2.D2
P2]l2

E-Response Two services running in parallel can take a transition labelled
error if they perform the second part of a bidirectional communication in which
there is a type mismatch between the services’s type declarations for the oper-
ation used.

(E-Response)

D1 = αC · Γ1 o@l1 : <T1, T
′
1> ∈ Γ1

D2 = α′C · Γ2 o : <T2, T
′
2> ∈ Γ2 T ′2 6= T ′1

B1 .D1 P1
(r,o@l1)?t−−−−−−→ B1 .D1 P

′
1 B2 .D2 P2

(r,o)! t−−−−→ B2 .D2 P
′
2

νr ([B1.D1
P1]l1 | [B2.D2

P2]l2)
error−−−→ νr ([B1.D1

P1]l1 | [B2.D2
P2]l2)

E-Send-Lift A service can take a transition labelled error if it can send a
message which type is not a subtype of the type declared for the first message
communicated using the operation

(E-Send-Lift)
D=αC ·Γ (o@l:<To>∈Γ∨o@l:<To,Ti>∈Γ) ` t:Tt Tt�To P

νr o@l(t)−−−−−→P ′

B.DP
error−−−→B.DP

E-Exec-Lift A service can take a transition labelled error if it can send a
message which type is not a subtype of the type declared for the second message
communicated using the operation.

(E-Exec-Lift)
D=αC ·Γ o@l:<Ti,To>∈Γ ` t:Tt Tt�To P

(r,o)! t−−−−→P ′

B.DP
error−−−→B.DP

3.4.2 Lack of Errors

In order to ensure that a statement can not in an evaluation take a step labeled
error, we must ensure that it can not take a single step labeled error. We
do this in Lemma 3.22 and 3.23. presented below. The two Lemmas address

3.4 Type Safety 77

the comunication issue at respectively service layer and network layer, since the
purpose of the type system is to ensure that a message with the wrong type is
never send nor received.

The property that a well-typed service can not take a transition labeled error
is described in the following Lemma.

Lemma 3.22 (Lack of Errors at Service Layer)

Let Γ `S B .D P

then B .D P
µ−→ B .D P ′

implies µ 6= error

Proof.

Assume Γ `S S and S µ−→ S′. The proof is done by induction on the derivation
of S µ−→ S′.

We now consider the base cases:

Case E-Send-Lift

If the last rule in the derivation sequence is E-Send-Lift, then from the
form of this rule, we see that S = B.D P for a behaviour B, a deployment
part D and a process P :

(E-Send-Lift)
D=αC ·Γ (o@l:<To>∈Γ∨o@l:<To,Ti>∈Γ) ` t:Tt Tt�To P

νr o@l(t)−−−−−→P ′

B.DP
error−−−→B.DP

We also know that µ = error and S′ = B .D P .
Applying the Inversion Lemma (Lemma 3.9) to Γ `S B .D P we know
that it can only be typed using T-Service:

(T-Service) D=αC ·Γ Γ`BSL B .Γ′ Γ`P P
Γ`S B.DP

(3.59)

From the grammar we know that P can have have three forms. From the
semantics we know that P can not be 0. We therefore consider the two
remaining possibilities:

Subcase P = BP · tP · m̃P

Applying the Inversion Lemma (Lemma 3.9) to premise Γ `P P from
3.59 we know that it can only be typed using T-Process:

78 Type System for Jolie

(T-Process)
Γ,Γ′ `B BP .Γ′′ Γ,Γ′ `state tP Γ,Γ′ `queue m̃P @o. o@l:<O>∈Γ′ ∨ o:<O>∈Γ′

Γ`P BP ·tP ·m̃P
(3.60)

The only semantic rule which can be applied to premise P νr o@l(t)−−−−−−→
P ′ from E-Send-Lift is S-Send:

(S-Send)
BP

νr o@l(e)−−−−−→B′
P

BP ·tP ·m̃P
νr o@l(e(t′′))−−−−−−−−→B′

P
·tP ·m̃P

From the form of S-Send we know that BP takes a step of evaluation
labeled νr o@l(e). In order for BP to take that step and to be well
typed, Γ,Γ′ `B BP . Γ′′ must be typed with either T-SolResp-New,
T-SolResp-Exists or T-Notification. We therefore consider all three
cases:

Subcase T-SolResp-New

If Γ,Γ′ `B BP . Γ′′ is typed using T-SolResp-New then we see
from the form of this rule that Te ≤ To where Te is the type of
the message which is going to be send and To is the type of the
message allowed to be send using the operation:

(T-SolResp-New) o@l:<To,Ti>∈Γ Γ` e:Te Te≤To x /∈Γ
Γ`B o@l(e)(x) . upd(Γ,x,Ti)

Since we have Te ≤ To then we can not have Tt � To where Tt
is the type of the message which is going to be send. Therefore
E-Send-Lift can not be applied to a well-typed Service.

Subcase T-SolResp-Exists

The proof is similar to the proof for subcase T-SolResp-New.
Subcase T-Notification

The proof is similar to the proof for subcase T-SolResp-New.

Subcase P = P1 | P2

Applying the Inversion Lemma (Lemma 3.9) to premise Γ `P P from
3.59 we know that it can only be typed using T-Process-Par:

(T-Process-Par) Γ`P P1 Γ`P P2
Γ`P P1 | P2

Applying the Inversion Lemma (Lemma 3.9) to the premises of this
rule we know that there are three forms of respectively P1 and P2.
For the form P3 | P4 this case loops. For the form 0, the other
processes are investigated. At least one process in the service must

3.4 Type Safety 79

be of the form BP · tP · m̃P according to the semantics. Processes of
this from are investigated in order to find the process which is sending
the message. In that case subcase P = BP · tP · m̃P is followed.

Case E-Exec-Lift

The proof is similar to the proof for case E-Send-Lift.

For the rest of the base cases the proofs are straightforward. As an example we
consider case S-Send-Lift:

(S-Send-Lift) P
νr o@l(t)−−−−−→P ′

B.DP
νr o@l(t)−−−−−→B.DP

′

Since the label is νr o@l(t) it can not be any of the error labels.

There exists no inductive step cases at the service layer.

�

The property that a well-typed network can not take a transition labeled error
is described in the following Lemma.

Lemma 3.23 (Lack of Errors at Network Layer)

Let Γ `N N

then N µ−→ N ′

implies µ 6= error

Proof.

Assume Γ `N N and N
µ−→ N ′. The proof is done by induction on the

derivation of N µ−→ N ′.

We now consider the base cases:

Case E-Comm

80 Type System for Jolie

If the last rule in the derivation sequence is E-Comm, then from the form
of this rule we know that N = [B1 .D1

P1]l1 | [B2 .D2
P2]l2 for two ser-

vices consisting of respectively behaviour B1 and B2, deployment part D1

and D2 and process P1 and P2. The services are running at respectively
location l1 and l2:

(E-Comm)

D1 = αC · Γ1 (o@l2 : <T1> ∈ Γ1 ∨ o@l2 : <T1, T
′
1> ∈ Γ1)

D2 = α′C · Γ2 (o : <T2> ∈ Γ2 ∨ o : <T2, T
′
2> ∈ Γ2) T1 6= T2

B1 .D1 P1
νr o@l2(t)−−−−−−−→ B1 .D1 P

′
1 B2 .D2 P2

νr o(t)−−−−−→ B2 .D2 P
′
2 r /∈ cn(S1) ∪ cn(S2)

[B1.D1
P1]l1 | [B2.D2

P2]l2
error−−−→ [B1.D1

P1]l1 | [B2.D2
P2]l2

We also know that µ = error and N ′ = νr [B1 .D1
P1]l1 | [B2 .D2

P2]l2 .
Applying the Inversion Lemma (Lemma 3.9) to Γ `N [B1.D1

P1]l1 | [B2.D2

P2]l2 we know that it can only be typed using T-Network:

(T-Network)

Γ1 `N [B1 .D1 P1]l1 Γ2 `N [B2 .D2 P2]l2

∀o@l : <O> ∈ Γ1 where l ∈ locs([B2 .D2 P2]l2). o@l : <O> ∈ Γ2 ∧ l /∈ locs([B1 .D1 P1]l1)

∀o@l : <O> ∈ Γ2 where l ∈ locs([B1 .D1 P1]l1). o@l : <O> ∈ Γ1 ∧ l /∈ locs([B2 .D2 P2]l2)

¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N [B1.D1

P1]l1 | [B2.D2
P2]l2

where Γ = Γ1 ∪Γ2. Since we from the form of this rule have ∀o@l : <O> ∈
Γ1 where l ∈ locs([B2 .D2 P2]l2). o@l : <O> ∈ Γ2 ∧ l /∈ locs([B1 .D1 P1]l1),
then we can not have (o@l2 : <T1> ∈ Γ1 ∨ o@l2 : <T1, T ′1> ∈ Γ1) and
therefore E-Comm can not be applied to a well-typed network.

Case E-Response

If the last rule in the derivation sequence is E-Response, then from the
form of this rule we know that N = νr ([B1 .D1

P1]l1 | [B2 .D2
P2]l2) for

two services consisting of respectively behaviour B1 and B2, deployment
part D1 and D2 and process P1 and P2. The services are restricted to
channel name r and they runs at respectively location l1 and l2:

(E-Response)

D1 = αC · Γ1 o@l1 : <T1, T
′
1> ∈ Γ1

D2 = α′C · Γ2 o : <T2, T
′
2> ∈ Γ2 T ′2 6= T ′1

B1 .D1 P1
(r,o@l1)?t−−−−−−→ B1 .D1 P

′
1 B2 .D2 P2

(r,o)! t−−−−→ B2 .D2 P
′
2

νr ([B1.D1
P1]l1 | [B2.D2

P2]l2)
error−−−→ νr ([B1.D1

P1]l1 | [B2.D2
P2]l2)

We also know that µ = error and N ′ = νr ([B1 .D1 P1]l1 | [B2 .D2 P2]l2).
Applying the Inversion Lemma (Lemma 3.9) to Γ `N νr([B1.D1P1]l1 | [B2.D2

P2]l2) we know that it can only be typed using T-Restriction:

3.4 Type Safety 81

(T-Restriction)
Γ`N [B1.D1

P1]l1 | [B2.D2
P2]l2

Γ`N νr ([B1.D1
P1]l1 | [B2.D2

P2]l2)

By applying the Inversion Lemma (Lemma 3.9) to premise Γ `N [B1 .D1

P1]l1 | [B2 .D2
P2]l2 from this rule we know that it can only be typed

by rule T-Network. The rest of this proof is similar to the proof for case
E-Comm.

For the rest of the base cases the proofs are straightforward.

For all the cases in the inductive step the proofs are similar. As an example we
have shown case N-Par:

(N-Par)
N1

µ−→N′
1

N1 | N2
µ−→N′

1 | N2

Applying the Inversion Lemma (Lemma 3.9) to Γ `N N1 | N2 we know that it
can only be typed using T-Network:

(T-Network)

Γ1 `N N1 Γ2 `N N2

∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1)

∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2)

¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N N1 | N2

where Γ = Γ1 ∪ Γ2. The thesis follows from applying the induction hypothesis
on premise Γ1 `N N1 from T-Network applied on Γ `N N1 | N2 and on premise
N1

µ−→ N ′1 from N-Par, since the same label is used in premise and conclusion
of N-Par. �

3.4.3 Type Safety

Type safety is that a well-typed statement is not able to take a step of evalua-
tion labeled error at any point of its evaluation sequence. In section 3.4.1 we
extended the semantics of Jolie with rules labeled error for services and net-
works. The new rules have in common that in order for a service or a network to
take the transition, a message which type violates the type declarations for the
operation it is communicated over must be send. In section 3.4.2 we formulated

82 Type System for Jolie

that a well-typed service or network can not take a transition labeled error.
The Lemmas presented in 3.4.2 can be seen as one step type safety. We will
now extend these Lemmas to an evaluation sequence.

A well-typed network can never take a transition labeled error:

Theorem 3.24 (Type Safety)

If Γ ` N
and N →∗ N ′

then N ′ error9

Proof.

By Lemma 3.23 we know that if a network is well typed, then it can not take
a transition labeled error. By theorem 3.20 we know that if a network is well
typed, then it is also well typed after taking a step of evaluation. Hence the
thesis follows. �

We do not have to state the type safety theorem for services, because it is
implicit in the type safety theorem for networks, since the combination of rule
T-Network and T-Deployment requires that the services in a network are well
typed in order for the network to be well typed.

(T-Network)

Γ1 `N N1 Γ2 `N N2

∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1)

∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2)

¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N N1 | N2

(T-Deployment) Γ`S B.DP l/∈locs(Γ)
{o@l′:<O>∈Γ}∪{o@l:<O>|o:<O>∈Γ} `N [B.DP]l

Chapter 4

Conclusion

type checker rejects networks of services in which a message is sent or received,
where the message has a wrong type according to sender and receivers type
specifications.

We have presented a type system for the core fragment of the Jolie language.
The type system ensures that no message which has a wrong type according
to the corresponding operation type specifications, is send nor received. To the
best of the author’s knowledge this is the first type system for the Jolie language
with that purpose. Our type system guarantees the properties type preservation
and type safety. The type preservation property ensures that if a network is well
typed, then it is also well typed after taking a step of evaluation. The property
type safety ensures that if a network is well typed then it is not able to take a
step of evaluation labeled error at any point of its evaluation sequence.

4.1 Future Work

The future work proposals divides into three main areas: The area language ex-
tensions 4.1.1 considers extending the type system to handle language structures
from other parts of the Jolie language than the core fragment. The area purpose

84 Conclusion

extension 4.1.2 considers extending the purpose of the type system. The area
precision 4.1.3 considers reducing the approximations used in the type checker.

Extensions from the three areas can with benefit be combined.

4.1.1 Language Extentions

This thesis considers a fragment of Jolie which excludes recursive types, arrays,
subtyping of basic types, faults and deployment instructions such as architec-
tural composition. The following future work proposals are about extending the
fragment of Jolie to the full Jolie language.

Recursive Types A future work is to extend this work with recursive types.
This will primarily affect the fundament for the type system such as subtyp-
ing and the question of equality between types. It can be considered whether
the recursive types shall be equi-recursive or iso-recursive, depending on which
requirements for type equality are whished.

Subtyping of Basic Types The full Jolie language has subtyping of basic
types. For instance is int a subtype of long. It can be added by writing the
typing rules specific. The full Jolie language also contains the basic type any,
which can be any of the basic types. It can be handled by adding a typing rule
with the conclusion bt ≤ any.

In the work of adding subtyping of basic types the typing rules for assignment
must then be updated to use the subtyping relation instead of the equality
relation.

Fault handling An interesting extension of this work will be to consider fault
handling, since faults alters the flow of a program.

Deployment Instructions An output port consists of a location, a protocol,
operation type declarations and specifications for architectural compositions.
This work can be extended to handle output ports and their corresponding
settings. Of these settings only smart aggregation [PGG+12] is interesting,
because it works as an proxy which is aware of types.

4.1 Future Work 85

Arrays This work can be extended by adding arrays. In the full Jolie language
each node of a data tree is considered an array. The root node is only allowed
to be an array of exactly one element. Recall the example with the variable
named amount from chapter 1:

12

"A kind of food"2

apple description

fruit

Each node is the first element of an array. It can also be accessed using index
zero:

amount.fruit.apple [0]. origin = "Denmark";
amount.fruit.apple [1] = 6
amount.fruit.apple [1]. origin = "Poland"

The tree of amount.fruit.apple:

2

"Denmark"

origin

The tree of amount.fruit.apple[1]:

6

"Poland"

origin

If an array is assigned more than one step from its current range, the interme-
diate array elements have no values.

Adding arrays doesn’t change much in the definition of a type. Only the car-
dinality is affected. Where the cardinality in the core fragment of Jolie is an
interval which at maximum can range to one, the cardinality of a fragment of
Jolie including arrays allows for higher maxima:

86 Conclusion

C :: = [MIN, MAX]

where MIN and MAX are integers and 0 ≤ MIN ≤ MAX. The cardinality
describes the maximum and minimum allowed number of elements of an array.

Elements of an array are allowed to have different types. How precise this is
handled is a question about approximation. It can be handled by assigning each
element the least supertype of all the types of the array elements. The type
any from the full Jolie language is a supertype of the basic types. It must be
introduced to the language of the type system in order to handle array elements
with different basic types. The introduction of any is described in the Subtyping
of Basic Types proposal.

As an array is extended, its cardinality must be updated too. Since the affected
variable later may occur on either sides in the subtyping relation, it is better
to be precise and update both boundaries in the cardinality, when an array is
updated. Note that it should be considered whether the update of an array is
an extension or an alternation of an already existing array element. This can be
done looking at the cardinality. If it is an extension it shall be considered how
far it is from the maximum array boundary in order to approximately determine
the number of intermediate array elements.

4.1.2 Purpose Extensions

This thesis provides the theoretic foundation of type checking communication.
Since it addresses the interaction between services it creates the foundation of
type checking networks. The following future work proposals are about building
on this foundation.

General Type Checking The aim of this work is to design a type system that
type checks communication. In order achieve this goal the type system is also
able to type check terms not involved in a communication. The type property
proven is only regarding the goal. It can be reformulated to also include general
type checking, e.g. that a condition must have type bool.

Combine with Type System from [MC11] Another interesting direction
is to combine this work with the type system presented in [MC11], which focus
on manipulating correlation sets.

4.1 Future Work 87

Type Checking Data Flows The type system lays the foundation for type
checking networks by checking that there is never send nor receive a message
with the wrong type. By extending it to handle session types [HVK98], data
flows in a network can be type checked.

4.1.3 Precision

The type system makes use of approximations which makes it reject safe net-
works. The approximations in the typing of statements which branches can be
reduced by analyzing the expression and deduce the selected branch. It will not
be duable in all situations, since part of the expression might be input from
another service which output type declaration is not specific. Further precision
in the typing of the parallel statement can be optained by analysing the parallel
behaviours for dependencies.

88 Conclusion

Appendix A

Appendix

90 Appendix

A.1 Semantics

A.1.1 Behavioural Layer

(B-Choice)
j∈J ηj

µ−→B′
j∑

i∈J [ηi]{Bi}
µ−→B′

j ;Bj

(B-Struct)
B1≡B2 B2

µ−→B′
2 B′

1≡B
′
2

B1
µ−→B′

1

(B-SolResp) o@l(e)(x) νr o@l(e)−−−−−−→ Wait(r, o@l, x) (B-Notification) o@l(e) νr o@l(e)−−−−−−→ 0

(B-ReqResp) o(x)(x’) {B} r:o(x)−−−−→ Exec(r, o, x’, B) (B-OneWay) o(x) r:o(x)−−−−→ 0

(B-End-Exec) Exec(r, o, x,0)
(r,o)! x−−−−−→ 0 (B-Wait) Wait(r, o@l, x)

(r,o@l)?x−−−−−−→ 0

(B-Exec) B
µ−→B′

Exec(r,o,x,B)
µ−→ Exec(r,o,x,B′)

(B-Assign) x = e x = e−−−→ 0

(B-Seq)
B1

µ−→B′
1

B1;B2
µ−→B′

1;B2

(B-Par)
B1

µ−→B′
1

B1 | B2
µ−→B′

1 | B2

(B-If-Then) e(t)=true

if(e)B1 else B2
read t−−−−→B1

(B-If-Else) e(t)=false

if(e)B1 else B2
read t−−−−→B2

(B-Iteration) e(t)=true

while(e){B}
read t−−−−→B;while(e){B}

(B-No-Iteration) e(t)=false

while(e){B}
read t−−−−→ 0

A.1.2 Service Layer

The structure of the whole service is omitted where it is irrelevant.

(S-Get) B
r:o(x)−−−→B′

B·t·(r,o,t′)::m̃
τ−→ B′·t←xt′·m̃

(S-Send) B
νr o@l(e)−−−−−→B′

B·t·m̃
νr o@l(e(t))−−−−−−−→B′·t·m̃

(S-Exec) B
(r,o)! x−−−−→B′

B·t·m̃
(r,o)! x(t)−−−−−−→B′·t·m̃

(S-Wait) B
(r,o@l)?x−−−−−→B′

B·t·m̃
(r,o@l)?t′−−−−−−→B′·t←xt′·m̃

(S-Assign) B
x = e−−→B′

B·t·m̃
τ−→B′·t�xe(t)·m̃

(S-Read) B
read t−−−−→B′

B·t·m̃
τ−→B′·t·m̃

A.1 Semantics 91

(S-Corr)
D=αC ·Γ t′,o `αC t (o:<Ti>∈Γ∨ o:<Ti,To>∈Γ) `t′:Tt′ Tt′≤Ti

B.DP | B′·t·m̃
νr o(t′)−−−−−→B.DP | B′·t·m̃::(r,o,t′)

(S-Start)
D=αC ·Γ t,o 0αCP B

r:o(x)−−−→B′ t′=init(t,o,αC) (o:<Ti>∈Γ∨ o:<Ti,To>∈Γ) `t′:Tt′ Tt′≤Ti

B.DP
νr o(t)−−−−→B.DP | B′·t⊥←xt←csetst′·ε

(S-Tau) P
τ−→P ′

B.DP
τ−→B.DP

′

(S-Send-Lift) P
νr o@l(t)−−−−−→P ′

B.DP
νr o@l(t)−−−−−→B.DP

′

(S-Exec-Lift) P
(r,o)! t−−−−→P ′

B.DP
(r,o)! t−−−−→B.DP

′

(S-Wait-Lift) P
(r,o@l)?t−−−−−→P ′

B.DP
(r,o@l)?t−−−−−→B.DP

′

(S-Par)
P1

µ−→P ′
1

P1 | P2
µ−→P ′

1 | P2

init(t, o, αC) =


t⊥ �p1 f(p1)(t) . . .�pn f(pn)(t) if αC(o) = ({p1, . . . , pn}, f)
t⊥ if o /∈ Dom(αC)
undefined otherwise

A.1.3 Network Layer

(N-Comm)
S1

νr o@l2(t)−−−−−−→S′
1 S2

νr o(t)−−−−→S′
2 r/∈cn(S1)∪cn(S2)

[S1]l1 | [S2]l2
τ−→ νr ([S′

1]l1 | [S′
2]l2)

(N-Response)
S1

(r,o@l1)?t−−−−−−→S′
1 S2

(r,o)! t−−−−→S′
2

νr ([S1]l1 | [S2]l2)
τ−→ [S′

1]l1 | [S′
2]l2

(N-Par)
N1

µ−→N′
1

N1 | N2
µ−→N′

1 | N2

(N-Tau) S
τ−→S′

[S]l | N
τ−→ [S′]l | N

(N-Struct)
N1≡N2 N2

µ−→N′
2 N′

1≡N
′
2

N1
µ−→N′

1

(N-Restriction) N
τ−→N′

νr (N)
τ−→ νr (N′)

92 Appendix

A.1.4 Error Rules

(E-Comm)

D1 = αC · Γ1 (o@l2 : <T1> ∈ Γ1 ∨ o@l2 : <T1, T
′
1> ∈ Γ1)

D2 = α′C · Γ2 (o : <T2> ∈ Γ2 ∨ o : <T2, T
′
2> ∈ Γ2) T1 6= T2

B1 .D1 P1
νr o@l2(t)−−−−−−−→ B1 .D1 P

′
1 B2 .D2 P2

νr o(t)−−−−−→ B2 .D2 P
′
2 r /∈ cn(S1) ∪ cn(S2)

[B1.D1
P1]l1 | [B2.D2

P2]l2
error−−−→ [B1.D1

P1]l1 | [B2.D2
P2]l2

(E-Send-Lift)
D=αC ·Γ (o@l:<To>∈Γ∨o@l:<To,Ti>∈Γ) ` t:Tt Tt�To P

νr o@l(t)−−−−−→P ′

B.DP
error−−−→B.DP

(E-Exec-Lift)
D=αC ·Γ o@l:<Ti,To>∈Γ ` t:Tt Tt�To P

(r,o)! t−−−−→P ′

B.DP
error−−−→B.DP

(E-Response)

D1 = αC · Γ1 o@l1 : <T1, T
′
1> ∈ Γ1

D2 = α′C · Γ2 o : <T2, T
′
2> ∈ Γ2 T ′2 6= T ′1

B1 .D1 P1
(r,o@l1)?t−−−−−−→ B1 .D1 P

′
1 B2 .D2 P2

(r,o)! t−−−−→ B2 .D2 P
′
2

νr ([B1.D1
P1]l1 | [B2.D2

P2]l2)
error−−−→ νr ([B1.D1

P1]l1 | [B2.D2
P2]l2)

A.2 Type System

A.2.1 Subtyping

(ST-T) BT1≤BT2 CTL1≤CTL2
BT1{CTL1}≤BT2{CTL2}

(ST-BT) BT1=BT2
BT1≤BT2

(ST-CTL)

dom(CTL1) ⊆ dom(CTL2)

∀x ∈ dom(CTL2) . CTL2(x) =< C2, T2 > ∧
CTL1(x, T2) =< C1, T1 > ∧C1 ≤ C2 ∧ T1 ≤ T2

CTL1≤CTL2

(ST-C) MIN2≤MIN1 MAX1≤MAX2
[MIN1,MAX1]≤[MIN2,MAX2]

(ST-BT-T) BT1≤BT2 ∀x∈dom(CTL) . CTL(x)=<C,T>∧[0,0]≤C
BT1≤BT2{CTL}

A.2 Type System 93

A.2.2 Typing Rules at Behavioural Layer

(T-Nil)
Γ`B 0 .Γ

(T-Assign-New) Γ` e:Te x/∈Γ
Γ`B x = e . upd(Γ,x,bt(Te))

(T-Assign-Exists) Γ` e:Te x:Tx ∈Γ bt(Te)=bt(Tx)
Γ`B x = e .Γ

(T-If-Then-Else) Γ` e:bool Γ`B B1 .Γ′ Γ`B B2 .Γ′

Γ`B if(e)B1 else B2 .Γ′

(T-Choice)
∀j∈J . Γ`B ηj ;Bj .Γ′

Γ`B
∑
i∈J [ηi]{Bi} .Γ′

(T-Par)
Γ1 `B B1 .Γ′

1 Γ2 `B B2 .Γ′
2 Roots(Γ′

1)∩Roots(Γ′
2)=∅

Γ1,Γ2 `B B1 | B2 .Γ′
1]Γ′

2

(T-Seq) Γ`B B1 .Γ′ Γ′ `B B2 .Γ′′

Γ`B B1;B2 .Γ′′

(T-While) Γ` e:bool Γ`B B .Γ
Γ`B while(e){B} .Γ

(T-Notification) o@l:<To>∈Γ Γ` e:Te Te≤To
Γ`B o@l(e) .Γ

(T-SolResp-New) o@l:<To,Ti>∈Γ Γ` e:Te Te≤To x /∈Γ
Γ`B o@l(e)(x) . upd(Γ,x,Ti)

(T-SolResp-Exists) o@l:<To,Ti>∈Γ Γ` e:Te Te≤To x:Tx ∈Γ Ti≤Tx
Γ`B o@l(e)(x) .Γ

(T-OneWay-New) o:<Ti>∈Γ x /∈Γ
Γ`B o(x) . upd(Γ,x,Ti)

(T-OneWay-Exists) o:<Ti>∈Γ x:Tx ∈Γ Ti≤Tx
Γ`B o(x) .Γ

(T-ReqResp-New)
o:<Ti,To>∈Γ x /∈Γ upd(Γ,x,Ti)`B B .Γ′ x′:Tx′∈Γ′ Tx′≤To

Γ`B o(x)(x’) {B} .Γ′

(T-ReqResp-Exists)
o:<Ti,To>∈Γ x:Tx ∈Γ Ti≤Tx Γ`B B .Γ′ x′:Tx′∈Γ′ Tx′≤To

Γ`B o(x)(x’) {B} .Γ′

94 Appendix

A.2.2.1 Run-Time Types at Behavioural Layer

(T-Wait-New) o@l:<To,Ti>∈Γ x /∈Γ
Γ`B Wait(r,o@l,x) . upd(Γ,x,Ti)

(T-Wait-Exists) o@l:<To,Ti>∈Γ x:Tx ∈Γ Ti≤Tx
Γ`B Wait(r,o@l,x) .Γ

(T-Exec) o:<Ti,To>∈Γ Γ`B B .Γ′ x:Tx∈Γ′ Tx≤To
Γ`B Exec(r,o,x,B) .Γ′

A.2.3 Typing Rules at Service Layer

(T-BSL-Nil)
Γ`BSL 0 .Γ

(T-BSL-Choice)
∀j∈J . Γ`B ηj ;Bj .Γj @Tk,Tl . x:Tk ∈

⋃
Γj ∧ x:Tl ∈

⋃
Γj ∧Tk 6=Tl

Γ`BSL
∑
i∈J [ηi]{Bi} .

⋃
Γj∈J

(T-Process-Nil)
Γ`P 0

(T-Process)
Γ,Γ′ `B B .Γ′′ Γ,Γ′ `state t Γ,Γ′ `queue m̃ @o. o@l:<O>∈Γ′ ∨ o:<O>∈Γ′

Γ`P B·t·m̃

(T-Process-Par) Γ`P P1 Γ`P P2
Γ`P P1 | P2

(T-Service) D=αC ·Γ Γ`BSL B .Γ′ Γ`P P
Γ`S B.DP

A.2 Type System 95

A.2.4 Typing Rules at Network Layer

(T-Network-Nil)
Γ`N 0

(T-Deployment) Γ`S B.DP l/∈locs(Γ)
{o@l′:<O>∈Γ}∪{o@l:<O>|o:<O>∈Γ} `N [B.DP]l

(T-Network)

Γ1 `N N1 Γ2 `N N2

∀o@l : <O> ∈ Γ1 where l ∈ locs(N2). o@l : <O> ∈ Γ2 ∧ l /∈ locs(N1)

∀o@l : <O> ∈ Γ2 where l ∈ locs(N1). o@l : <O> ∈ Γ1 ∧ l /∈ locs(N2)

¬(o@l : <O1> ∈ Γ1 ∧ o@l : <O2> ∈ Γ2 ∧O1 6= O2)
Γ1∪Γ2 `N N1 | N2

(T-Restriction) Γ`N N
Γ`N νr N

96 Appendix

Bibliography

[GLG+06] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and
Gianluigi Zavattaro. Sock: a calculus for service oriented comput-
ing. In Service-Oriented Computing–ICSOC 2006, pages 327–338.
Springer, 2006.

[HVK98] Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based
programming. In Programming Languages and Systems, pages 122–
138. Springer, 1998.

[Jol] Jolie. Jolie programming language - official website.
http://www.jolie-lang.org/.

[MC11] Fabrizio Montesi and Marco Carbone. Programming services with
correlation sets. In Service-Oriented Computing, pages 125–141.
Springer, 2011.

[MGZ] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-
oriented programming with jolie.

[Mon10] Fabrizio Montesi. Jolie: a service-oriented programming language.
Master’s thesis, University of Bologna, Department of Computer
Science, 2010.

[PGG+12] Mila Dalla Preda, Maurizio Gabbrielli, Claudio Guidi, Jacopo
Mauro, and Fabrizio Montesi. Interface-based service composition
with aggregation. In ESOCC, pages 48–63, 2012.

[TCBM06] WT Tsai, Yinong Chen, Gary Bitter, and Dorina Miron. Introduc-
tion to service-oriented computing. Arizona State University, 2006.

98 BIBLIOGRAPHY

[W3C] W3C. Web services architecture. http://www.w3.org/tr/ws-arch/.

	Summary UK
	Summary DK
	Preface
	Acknowledgements
	Contents
	1 The Jolie Language
	1.1 Behavioural Layer
	1.1.1 Jolie variables
	1.1.2 Types

	1.2 Service Layer
	1.3 Network Layer

	2 Jolie Semantics
	2.1 Labels
	2.2 Dynamic Type Check
	2.3 Subtyping
	2.4 Semantics Rules
	2.4.1 Behavioural Layer
	2.4.2 Service Layer
	2.4.3 Network Layer

	3 Type System for Jolie
	3.1 Typing Environment
	3.2 Typing Rules
	3.2.1 Type Checking of the Behavioural Layer
	3.2.2 Type Checking of the Service Layer
	3.2.3 Type Checking of the Network Layer

	3.3 Type Preservation
	3.3.1 Inversion of the Typing Relation
	3.3.2 Structural Congruence
	3.3.3 Transition Function
	3.3.4 Type Preservation

	3.4 Type Safety
	3.4.1 Semantics with Errors
	3.4.2 Lack of Errors
	3.4.3 Type Safety

	4 Conclusion
	4.1 Future Work
	4.1.1 Language Extentions
	4.1.2 Purpose Extensions
	4.1.3 Precision

	A Appendix
	A.1 Semantics
	A.1.1 Behavioural Layer
	A.1.2 Service Layer
	A.1.3 Network Layer
	A.1.4 Error Rules

	A.2 Type System
	A.2.1 Subtyping
	A.2.2 Typing Rules at Behavioural Layer
	A.2.3 Typing Rules at Service Layer
	A.2.4 Typing Rules at Network Layer

	Bibliography

