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Summary (English)

The goal of the thesis is to present a pipeline for automatic segmenting and
tracking of cells in phase-contrast microscopy image sequences. The result from
such a pipeline is a number of graphs showing the lineage of the cells from
the initial image frame and their development as it progresses over time. The
collected data contain information on position, size and speed of each cell and
also frequency of mitosis for each cell. This is useful for research in stem cells and
the development hereof. This is an essential tool for registering and comparing
the e�ects of di�erent treatments of the cell cultures.

The segmentation and tracking is based on level-set theory and implemented as
a modi�ed version of the active contour formulation as proposed by Chan and
Vese [CV01]. In the active contour model a level set of an implicit function is
used to de�ne the contour. The cells can not merge and therefore the model also
needs to be constrained to avoid the individual segments merge.A cost-function
is constructed which is minimized through a series of iterations between each
frame. The active contour model adapt the contour to the shape and movement
of the cell between each frame.

The model is applied to the dataset for validation purposes and for comparison
of performance . The dataset used is fully manually annotated and therefore
suited for validation and benchmarking.
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Summary (Danish)

Målet for denne afhandling er at præsentere en pipeline til automatisk segmente-
ring og tracking af celler i fase-kontrast mikroskopi billed sekvenser. Resultatet
af en sådan pipeline er en række grafer der viser slægtskab af cellerne fra det
oprindelige billede og dennes udvikling over tid. Fra de opsamlede data kan op-
lysninger om position, størrelse og hastighed for hver enkelt celle samt mistose
frekvensen for hver celle udtrækkes. Dette er brugbart i bla. stamcelle forsknin-
gen og dennes videre udvikling. Dette er et nødvendigt værktøj til at registrere
og sammenligne forskellige behandlinger af celle kulturene.

Segmenteringen og trackingen er baseret på level-set teori og er implementeret
som en modi�ceret version af active contour model, foreslået og beskrevet af
Chan og Vese [CV01]. I active contour model beskrives contouren som et le-
velset af en implicit funktion. Cellerne kan ikke smelte sammen, så derfor skal
modellen også begrænses så den ikke tillader segmenter at smelte sammen. En
kost funktion konstrueres og denne minimeres itterativt mellem hvert billede.
Active contour model tilpasser sig og følger formen og bevægelsen af den enkelte
celle mellem hvert billede.

Modellen afprøves på datasætttet, for at validere modellen og for at sammenligne
resultatet . Datasættet der bruges til validering er fuldt manuelt annoteret og
derfor velegnet til validering og sammenligning af resultater.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis deals with segmentation and tracking of cells in microscopic image
sequences.

The thesis consists of six chapters, followed by an Appendix.

Lyngby, 02-July-2013

John Christian Højland
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Chapter 1

Introduction

Automated microscopy is an increasingly important area of research.Due to the
size of datasets from time lapse imaging of in-vitro experiments it is no longer
feasible to rely on manual annotation. Extraction of useful information from
these image sequences, require robust and reliable algorithms to be developed.
A study by [RBM+11], provides the community with 2 fully manually annotated
data sets, and an automated tracking algorithm which can serve as a benchmark
for for future work. The cell tracking algorithms can roughly be subdivided into
three types of algorithms, according to [MDSvC09] and [PRR10].

• Contour evolution, level sets are one such algorithm.

• Stochastic �ltering, where the Kalman�lter, the Particle �lter and mean
shift tracking belong.

• Segmentation and association. The Hungarian algorithm is an example of
association.

Some of the problems of segmentation and association mentioned in [MDSvC09]
and [PRR10] are a low ability to register mitosis, appearance and disappearance
of cells which cause changes in topology. This is one of the strengths of the
contour evolution and therefore this is the approach that is taken in this thesis.



2 Introduction

1.1 Data

1.1.1 Microscopy

This section is written for those who have no prior knowledge of microscopy. It
is a short explanation of the speci�c techniques used for acquiring the images
in the two datasets.

The name microscope come from ancient Greek and roughly translated mean :
to see small objects . A microscope is used when reproduction ratios higher than
1:1 is needed. Dependent of the objective used in the microscope reproduction
ratios of up to 1500:1 is possible. The lower limit of the resolution, when visual
light is used, is 0,2 micrometers and it is caused by di�raction of the light. In
order to produce high reproduction ratios the objective lens is placed very close
to the specimen, causing the depth of �eld to be very low. In order to be able to
better control the light, an arti�cial light source is used. The illumination shall
be evenly distributed across the specimen, glare free and for most purposes,
visual light with a wide dynamic range.

1.1.1.1 Bright-�eld illumination

Bright-�eld illumination is the most commonly used illumination in optical mi-
croscopy. The light source is usually a tungsten or halogen lamp. The light
passes through its own optical system and is aimed at the specimen from under-
neath. The intensity levels in the resulting image is caused by absorption of the
light by the specimen. Very small cells usually can not absorb much light hence
the resulting contrast is low. The contrast can be improved by staining the
specimen, but the dye might interact with the specimen, especially if it is living
cells. This is an unwanted side e�ect and therefore other noninvasive contrast
enhancement techniques are usually applied.

1.1.1.2 Oblique illumination

Oblique illumination or an-axial illumination is obtained by changing the path
of the light from the light source so that it passes through the specimen at an
angle. The angled light cause the light to be a little brighter on one side of the
sample and a shadow to be cast on the opposite side. This give a slightly better
modeling of the specimen and a sense of depth to the image. It also enhances
the contrast.
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1.1.1.3 Phase contrast

A lot of living biological specimens have no color and are so small that they
are nearly transparent. Normally an image of such specimen will have very low
contrast. The contrast can be enhanced by a phase contrast objective. .The
refraction index is di�erent in the background substance than in the cell. This
cause the light to take slightly di�erent paths through the sample. The resulting
light intensity is almost the same but the phase contrast objective can see the
di�erence in angle and it applies a gray-�lter to lower the intensities from the
light that travels in one direction and leave the rest intact. This increase the
contrast of the image but also typically introduce a halo e�ect to the image.

1.1.2 The data sets

The data provided for this project consist of two separate datasets. The images
of both datasets are acquired using a phase contrast objective lens but are quite
di�erent. The phase contrast objective lens is used for several reasons. One
reason is that adding chemicals such as �orescence to the sample is not wanted,
since it may interact with the sample. Another reason is that it enhances con-
trast in the image especially around the edges of the cells.

The �rst data set contains image sequences of neural progenitor stem cells from
a pig. The images are obtained from a phase contrast microscope and each frame
is divided into 16 sub areas which are stored separately. The sequence contain
1272 images acquired every 5 minutes over a total duration of 106 hours. The
raw data consists of 8-bit gray-scale images with a size of 3200 × 2400 pixels.
Bright �eld illumination is used. A zoomed in example of one of the images is
seen in �gure 1.1

In the image it can be seen that the cells vary a lot in shape and size. Phase
contrast microscopy typically add a halo around the cell which is seen as bright
white areas around the cell body. Neural cells form networks by attaching to
each other with axons, making it much harder to separate each cell in the seg-
mentation. The cells change shape as they move around and they multiply by
mitosis, which is causing a change in typology and is an issue that has to be
addressed. Another challenge is the fact that some cells, as they move around
disappear from the �eld of view while others appear.

The other dataset consist of images from a project performed by the university of
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Figure 1.1: Phase contrast microscopy image of pig neural progenitor cells
(subsection).

L�beck and is made publicly available. This dataset is fully manually annotated
and therefore is well suited for validation and benchmarking. The images show
adult stem cells from the pancreas of a rat. Images were acquired using a phase-
contrast objective lens. The raw image data consist of 12bit gray scale images
with a size of 1376 × 1038 pixels recorded every 15 minutes (refdataA) over a
total of 52 hours. Oblique illumination is used. An example of the images can
be seen in Figure 1.2

Figure 1.2: Phase contrast microscopy image of rat pancreas adult stem cells

From this image it can be seen that the background is unevenly lit, which have
to be taken care of in a preprocessing. The cells compared to the other dataset
are more similar to each other and have a more even shape. They also seem less
attached to each other. All in all this dataset seems to be an much easier task
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and therefore better suited to start with. Together with the fact that the dataset
is fully manually annotated makes it the obvious choice for the implementation
and veri�cation of the automatic segmentation. Later on when the algorithm is
veri�ed and fully functional it can be applied to the other dataset.
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Chapter 2

Theory

This section is primarily based on theory from the book Level Set Methods

and Dynamic Implicit Functions[OF03] and from the scienti�c paper [CV01]
. The theory presented is merged from the sources and ordered to explain the
theoretical model later implemented in this thesis. Only the theoretical concepts
used in the implementation are covered.
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2.0.3 Why Level set metod

As stated in the introduction the cell tracking algorithms can roughly be sub-
divided into three types of algorithms, according to [MDSvC09] and [PRR10].

• Contour evolution, active contours are one such algorithm.

• Stochastic �ltering, where the Kalman�lter, the Particle �lter and mean
shift tracking belong.

• Segmentation and association. The Hungarian algorithm is an example of
association.

Some of the problems of segmentation and association mentioned in [MDSvC09]
and [PRR10] are a low ability to register mitosis, appearance and disappearance
of cells which cause changes in topology. This is one of the strengths of the
contour evolution and therefore this is the approach that is taken in this thesis.

2.0.3.1 Motion in normal direction

If we initially start with a contour that is shaped as a circle and see how this
evolves. A natural direction the circle would evolve would be in the direction
of the gradient. The positive gradient direction will make the circle larger and
the negative gradient direction will make the circle smaller.

Figure 2.1: A section of a circular interface expanding in the normal direction

The gradient of the circle at a speci�c point on the contourφ(x, y) is de�ned as:

grad φ = ∇φ =

(
∂φ

∂x
,
∂φ

∂y

)
(2.1)
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This is a vector in the normal direction, which is perpendicular to the surface of
φ, and in the xy plane this is perpendicular to the tangent direction and hence
perpendicular to the isocontour.

Figure 2.2: A circle with a tangent and gradient

To get the unit normal vector ( ~N) we simply divide by the length of the gradient:

~N =
∇φ
|∇φ|

(2.2)

If formulated as particles the particles will spread out and get further apart as a
function of time or the opposite. This is not desirable when solving the problem
numerically. If the points are to close together it is not possible to calculate a
di�erentiation and if they are to far apart it is very imprecise when interpolating
the contour.

Figure 2.3: Corner expanding in the normal direction

As seen in Figure 2.3 on the left: expanding a corner lead to uneven sample
points. on the right: a smooth contour can evolve to be a sharp corner.Another
problem in the particle approach is �nding out if a pixel is inside or outside the
contour.
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Another approach is to use a level set method. A level describe a function at a
certain function value:

f(φ) = c (2.3)

A levelset is then a set of these solutions, which you can imagine stacked on top
of each other.

Figure 2.4: A plot of he function φ(x, y) and the levelset φ(x, y) = 0 in red

Moving up one dimension from 2D to 3D by displaying the contour as a function
of time enable us to describe the evolution of our 2D contour in this way. As
every time step is constant (unit length) the time and distance can replace
each other which is one reason why the distance function is a good choice for
describing the level set. This provide us with a continuous function that always is
negative at areas inside the contour always positive at areas outside the contour
and zero at the contour. Now making the segmentation is quite easy done by
including the level set of the contour to the inside area and then de�ning the
background as f(φ) > 0 and the foreground as f(φ) <= 0

The evolution of the curve de�ned by the distance function φ at a given speed
F is described by the di�erential equation:

∂φ

∂t
= |∇φ|F, φ(0, x, y) = φ0(x, y) (2.4)
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2.0.4 A curve as an implicit function

When working in two dimensional space, the interface is a curve that separates
the the domain into two areas with nonzero values. It is necessary to constrain
the problem to only address closed curves, but in our case this is later taken
care o� by the Mumford-Shah formulation. As an example the unit circle can
be described as a implicit curve.

φ(x, y) = x2 + y2 − 1 (2.5)

which constitutes the three dimensional implicit function is illustrated in Figure
2.5

Figure 2.5: The implicit function of the unit circle

and by choosing a set equal to zero:

x2 + y2 − 1 = 0 (2.6)

The resulting isocontour is the unit circle. This can be seen in Figure 2.6 where
the unit circle is plotted together with circles where x2 + y2 − 1 = c and
c = -0.5 and 0.5.

To establish a notation for the regions, consider φ(~x) = x2 + y2 − 1 where the
interface is de�ned by the φ(~x) = 0 isocontour
The interior region Ω− is de�ned as Ω− = {φ(~x) | ‖φ(~x)‖ < 1}.
The exterior region Ω+ is de�ned asΩ+ = {φ(~x) | ‖φ(~x)‖ > 1}.
The interface ∂Ω is de�ned as Ω = {φ(~x) | ‖φ(~x‖) = 1}.
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Figure 2.6: Three levelsets of the implicit function φ
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2.0.5 Cartesian grid

When implementing the algorithm the representation have to be discretized,
the location of the interface is not given by neither the explicit or the implicit
discrete representation. The discretized representation only hold information at
a �nite number of sample points and all values in between has to be determined
by interpolation. There are standard procedures for interpolating the contours
in most software packages. The logical choice for how to sample, when dealing
with images is a Cartesian grid which is de�ned as:

{(xi, yj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} (2.7)

The grid are chosen to be uniform in the way that it is equidistantly sampled
and the scale is the same in both x and y direction. Having the same scale in
both direction cause the approximation errors to be the same in both direction.
The Cartesian grid at the same time impose a rectangular domain de�ned by:

D = [x1, xm]× [y1, yn] (2.8)

It is obvious that only points close to the interface is needed for the interpola-
tion, while points far from the interface does not have to be calculated. This
also reduce the computational power and memory usage needed to perform the
calculations without compromising the result.

2.0.6 Interpolation

The calculations in the model is based on di�erentials calculated from central
distance approximations, which are linear approximations. If any interpolation
has to be made on these data a bilinear interpolation is su�cient.

Bilinear interpolation Linear interpolation use a straight line to connect
each pixel value. In 2D the linear interpolation is called Bilinear. In the bilinear
interpolation the weighted average of the distances to the four nearest pixel is
assigned to the output image. Î(x̂, ŷ) is the interpolated value in the output
image.See �gure 2.7 for the entitiesdx, dy, I00, I01, I10 and I11
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Figure 2.7: Bilinear interpolation

Then the linear interpolation can be computed as :

Î = I00(1− dx)(1− dy) + I10dx(1− dy) + I01(1− dx)dy + I11dxdy (2.9)

2.0.7 Properties of implicit curves

The implicit representation has some very powerful properties. The interface is
de�ned such that the isocontour where φ(x, y) = 0, the interior region Ω− =
φ(x, y) < 0 and the exterior region Ω+ = φ(x, y) > 0 which make it easy to
determine if any point is inside or outside the interface, simply by determining
the sign of φ.

Numerical interpolation introduce approximation errors in the determination of
φ. This could cause an inside point to be determines as outside or the opposite.
This may sound destructive for the algorithm, but in fact this only cause the
interface to be moved slightly. If the errors are small, as is assumed in most
numerical methods, these errors are minor and can be accepted. From calculus
we know that the errors can be decreased by increasing the number of samples,
but this is not a feasible solution as the size of the problem get larger. A better
approach is to enforce a certain level of smoothness, which make it possible to
numerically approximate the solution with smaller error.
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2.0.8 Signed distance function

The function φ is preferred to be smooth when performing numerical approxima-
tions or sampling by interpolation. There should not be steep or �at gradients
nor any kinks. This can be accommodated by the use of the signed distance
function. The signed distance function accommodates all the needed criterion
for an implicit function and in it self it is a subset of implicit functions. The
signed distance function is de�ned so the exterior region is positive,the interior
region is negative and the interface is zero. An extra condition is imposed to
ensure the step length in the xy-plane is constant and equal to one:

‖∇φ(~x)‖ = 1 (2.10)

A distance function is de�ned as :

d(~x) = min(‖~x− ~xI‖) , ∀ ~xI ∈ ∂Ω (2.11)

This imply that d(~x) = 0 on the boundary where (~x) ∈ ∂Ω. For all other
points the shortest distance can be decided by the steepest decent, which is the
gradient direction. Since d is the Euclidean distance:

‖∇d‖ = 1 (2.12)

This is in general true, but not if the point is equidistant between two clos-
est points on the interface. This is one of the imperfections of the distance
function. However these points are usually not close to the interface. Another
imperfection is a local extrema on the interface where d = 0 that will cause a
kink in the distance function, which again will make it di�cult to approximate
the derivatives near the interface at this point.

Determining the closest point, amount to evaluating a point ~x on the Cartesian
grid and the fact that φ(~x) is the signed distance function together with the
gradient which point in the direction of the closest point ~xC on the interface, it
can be determined by:

~xC = ~x− φ(~x) ~N (2.13)
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2.1 Levelset method

2.1.1 Motion involving mean curvature

The interface should be able to evolve and adapt to shapes in an image and
in order to do that a velocity �eld is necessary. An internal velocity �eld ~V is
imposed which depend on the implicit function φ. Motion by mean curvature is
when the interface moves in the normal direction with a velocity proportional
to its curvature:

~V = −bκ ~N (2.14)

where b is a constant and κ is the curvature for a two-dimensional curve given
implicitly by f(x, y) = 0 is de�ned by:

κ =
fxxfy

2 − 2fxyfxfy + fyyfx
2

(fx
2 + fy

2)
3
2

(2.15)

When b >= 0 the interface moves in the direction of concavity, which will make
a circle shrink to a point and ultimately vanish.

The motion by mean curvature is characterized by

Vn = −bκ (2.16)

The velocity �eld for motion by mean curvature points in the normal direction
and therefore there is not tangential component. The levelset equation look like
this:

φt + Vn ~N · ∇φ = 0, (2.17)

where Vn is the velocity in the normal direction also known as the normal

velocity. Furthermore the gradient point in the normal direction so the unit
normal cancel out in the levelset equation:

~N · ∇φ =
∇φ
‖∇φ‖

· ∇φ =
‖∇φ‖2

‖∇φ‖
= ‖∇φ‖ (2.18)
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The levelset equation reduces to:

φt + Vn · ‖∇φ‖ = 0, (2.19)

And after plugging in the motion by mean curvature,

φt − bκ‖∇φ‖ = 0, (2.20)

and rearranging
φt = bκ‖∇φ‖. (2.21)
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2.2 The model

The model that is used in this thesis is based on an active contour model without
edges suggested by Chan and Vese [CV01]. The Mumford Shah approach to
solving the minimal partition problem is used to create the stopping criterion.

The model in its simplest form need an initial contour, a term that will evolve
the contour in the normal direction and a stopping criterion based on the image
intensities. The model is implemented as a global energy minimization.This is
explained in[Ran05] The �rst term is only based on the initial contour it self and
not the image intensities. This term is called the internal energy. The stopping
criterion is based on the image intensities, and is also called the external energy.
The model evolves the contour through the spacial domain of the image and
minimizes the functional of energy:

Etotal = Einternal + Eexternal (2.22)

Each term is assigned a scaling factor that determine their mutual weight.

Etotal = µ · Einternal + λ · Eexternal (2.23)

as explained in section 2.0.3, the evolving term is a motion by mean curvature,
evolving the contour in its gradient direction and the evolution is curvature
dependent, thus the curvature and the unit normal is needed. These are all
entities based on the gradient of the function φ:

The term that stops the evolution is deduced from image features. In the clas-
sical snake model, it is based on an edge detection. This has the disadvantages:
it is sensitive to noise, there might be "holes" in the edge and the edges might
not have the same "strength" all around the blob. Instead I use a segmentation
based on the Mumford Shah functional.

Now in order to explain the stopping criterion Eexternal let us only focus on the
energy of the the stopping criterion Eexternal as in Chan Vese [CV01]. In the
following some de�nitions are used:

∂Ω is the evolving curve in Ω that form a boundary around an open subset ω
(ω ⊂ Ω, ∂Ω = ∂ω)
The inside region is denoted ω−

The outside region is denoted ω+
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When the model is applied to an image u0. The image is formed by two piecewise
constant regions. Then if we consider the �tting term:

F1(∂ω) + F2(∂ω) = +λ1

∫
ω−
|u0(x, y)− c1|2dx dy

+λ2

∫
ω+

|u0(x, y)− c2|2dx dy

(2.24)

It is obvious that if the constants c1 and c2 are taken to be the mean values of
the region ω− and respectively ω+ the minimizer

inf
∂ω
F1(∂ω) + F2(∂ω) ≈ 0 ≈ F1(∂ω0) + F2(∂ω0) (2.25)

is on the boundary of the object in the image.

With the regularizing term added the model look like this:

F (c1, c2, ∂ω) = µ · Length(∂ω)

+λ1

∫
ω−
|u0(x, y)− c1|2dx dy

+λ2

∫
ω+

|u0(x, y)− c2|2dx dy

(2.26)

The equation 2.26 is equivalent to the Mumford-Shah function for segmentation
as in [MS89]:

FMS(u, ∂ω) = µ · Length(∂ω)

+λ

∫
ω−
|u0(x, y)− u(x, y)|2dx dy

+

∫
ω+

|∇u(x, y)|2dx dy

(2.27)
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2.2.1 Divergence

The divergence of a vector �eld div(F ) can also be written ∇ · F , where the
nabla operator give the partiel derivative as in the gradient :

∇ =

(
∂

∂x
,
∂

∂y

)
(2.28)

The divergence is the dot product of the nabla operator and the vector �eld F ,
resulting in :

div F = ∇ · F =

(
∂F

∂x
,
∂F

∂y

)
(2.29)

In the active contour model the divergence is used to calculate the mean cur-
vature. The mean curvature is the divergence of the unit normal vectors along
the curve. As in :

∇ · ~N = ∇ · ∇φ
‖∇φ‖

(2.30)

The divergence come from the conservation laws in physics. The two dimen-
sional version of the divergence theorem is known as Green's theorem in a plane
and acording to [KMS02] is de�ned as:

∮
C

(Pdx+Qdy) =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
(2.31)

Where C is a contour enclosing a region R. P (x, y) and Q(x, y) are function
that are single valued, �nite and continuous inside and on the boundary of R.
Green's theorem in the plane links the surface integral along C to the double
integral over the entire area R.
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In another form it is known as Gauss's law which relate the integral of the
divergence to the �ux:

∫∫
R

(
∂φ

∂x
− ∂φ

∂y

)
dxdy =

∮
W · n ds (2.32)

Where W is the �ux and n is the outward unit normal direction.

2.2.2 Heaviside function

The Heaviside function is used to do calculation on an area, and is de�ned as:

H(φ) =

{
1, if φ ≤ 0

0, if φ > 0
(2.33)

It adds the contour to the inside of the enclosed region.

2.2.3 Delta dirac function

The delta dirac function is used to pick out the contour, from the Heaviside
function as :

δ0(φ) =
d

dφ
H(φ) (2.34)

Having the Heaviside function and the Delta dirac function enable the calcu-
lation of a line as a surface integral of a quantity p(x, t) over the contour ∂ω
as:

∫
R

p(x, t)δ(φ)|∇φ| dx. (2.35)

And also calculation of the area integral of p(x, t) over Ω as:∫
R

p(x, t)H(φ) dx. (2.36)
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This all lead us to the de�nition of the active contour model used in this thesis:

∂φ

∂t
= δ(φ)

[
µ div

(
∇φ
|∇φ|

)
− λ1(u0 − c1)2 + λ2(u0 − c2)2

]
(2.37)



Chapter 3

Implementation

Figure 3.1: Flowchart of the main program
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3.1 Preprocessing

The preprocessing is necessary to bring the images into a state where they can
be segmented properly. The aim is to separate the cells as foreground and the
the rest of the image as background. From the image in Figure 3.2 it is seen
that the background have a varying intensity. It is very light in the top right
side and quite dark in the bottom corners. This has to be corrected for, if a
successful segmentation have to be performed. The reason is that some of the
cells in the darker areas have a lower intensity than the background in some
parts of the lighter areas, which make it impossible to separate the foreground
from the background.

3.1.1 Background equalization

Figure 3.2: Phase contrast microscopy image of rat pancreas adult stem cells

The image in �gure 3.2 has an uneven illumination across the image, especially
the corners are darker. The segmentation is based on intensities and therefore
the illumination has to be corrected. Since the background is fairly even, samples
of the background can be used to construct a linear regression model, describing
the variation in the background as in [?]. When a model is constructed, the
correction for each pixel value can be calculated and subtracted from the original
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image. The linear regression model take the form:

f(X) = β0 +

p∑
j=1

Xjβj . (3.1)

The input vector X = (X1, X2) consist of the manually sampled points from
the background in the image as seen in Figure 3.3

Figure 3.3: Manually sampled image

The nature of light is that it drops o� by the square of the distance and therefore
a polynomial quadratic model in both dimensions is chosen. The X vector
is expanded by the basis expansions: (X1, X2, X

2
1 , X1 · X2, X

2
2 ) to make it a

quadratic function in both dimensions. This give 5 parameters to the model,
plus 1 for calculating the intercept. The parameters of the model is solved as a
least squares problem. The parameters are minimizing the residual sum squared
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of the samples in X:

RSS(β) =

N∑
i=1

(yi − f(xi))
2

=
N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2

(3.2)

In vector notation the equation take the form:

RSS(β) = (y −Xβ)T (y −Xβ). (3.3)

This is a quadratic function which is di�erentiated with respect to β and set
equal to zero to obtain the unique solution:

β̂ = (XTX)−1Xy (3.4)

Now the estimated background correction can be calculated for each pixel po-
sition in the image. Every pixel position is listed in the X vector, the basis
expansions are calculated and then:

ŷ = Xβ̂ = X(XTX)−1Xy (3.5)
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The estimated background correction look like this:

Figure 3.4: Estimated background intencity

The original image is corrected by subtracting the background correction from
it and the intensities are corrected by a histogram stretch:

Figure 3.5: Background corrected image
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3.2 Segmentation

Figure 3.6: Flowchart of the segmentation

Figure 3.6 show a simpli�ed �owchart of the segmentation. The segmentation
have to take the fact that cells do not merge into account and this is done by
evolving the contour with respect only to the local neighborhood of the contour.
This disables the contour from segmenting other objects. Especially the new
cells that may enter through the image boundary will not be segmented, so
a global segmentation needs to be performed after the local segmentation is
�nished evolving.

3.2.1 Initial segmentation

The active contour model evolves a contour over time hence the model needs to
be initialized with a contour or a cell mask i the �rst time frame. This can be
initialized in di�erent ways each with di�erent pros and cons:

• The active contour model with one level set can be used to make a global
initial segmentation. This make a full automatic segmentation possible.
The down side is that touching cells are segmented as one, which introduce
errors to the model from the start.

• Manual segmentation of the initial frame. Human interaction is what we
try to limit. Now it amounts to manually segmenting only one frame to
assure a good quality.

• A combination of both the global segmentation and human intervention
to correct the for possible errors, which will limit the time spend on the
manual annotation but still ensure the quality.

I chose to simulate the manual annotation by initializing the �rst frame with the
�rst cell mask from the manually annotated validation data. This is to ensure
a good starting point.
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3.2.2 Global segmentation

The global segmentation can be used to produce the initial segmentation, if
wanted. The global segmentation also need an initializer but this could be
automated to pick a small neighborhood with intensities above a threshold,
since we know the foreground is lighter than the background. A subsection of
the size 250× 250 pixels of the dataset is used for testing

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Global segmentation

As seen in Figure 3.7 the global segmentation work �ne as long as the objects are
separable. This is a good segmentation of the �rst frame and a good initializer
for the next frame

The local segmentation keep the individual level sets from merging, but also
make it impossible to segment any new appearing cells from being segmented.
This is why the global segmentation is also needed.

Figure 3.8 top left is the image with the segmented objects grayed out. There
is a light object in the top left that has appeared from the border which is not
segmented by the local segmentation as seen in the top right image. The bottom
left image is after the global segmentation and the object is now segmented and
evolved as seen in the bottom right image.



30 Implementation

(a)

(b) (c)

Figure 3.8: Missed object

The global segmentation is performed after the local segmentation is fully com-
pleted. Now it is assumed that the remaining cells that are not segmented
are new cells. These cells are segmented by the global segmentation and sep-
arated into individual level sets which are renumbered and added to the local
segmentation.

3.2.3 Local segmentation

The local segmentation is necessary to keep the individual contours from merg-
ing. The local segmentation begin by taking a initial cell mask, which is split
into separate level sets. This would take up a lot of memory and be very time
consuming if it was done in the naive way. Instead there is only one level set
but each contour is identi�able from the cell mask and a larger mask is made by
dilation of the initial cell masks. Now each local level set can be developed indi-
vidually while all other level sets are masked out. The level set is still updated
globally which is much faster and use less memory.
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3.2.4 Walk-through

Figure 3.9: Detailed �owchart of the segmentation

The �owchart in Figure 3.12 show the steps the segmentation go through be-
tween each frame. Each step is explained in the following.In order to segment
an entire image sequence these steps have to be performed once for each image
frame.
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The Global segmentation is implemented as an iterative function that can be
called from a main script. It takes an initializer in the form of a cell mask as
input. The cell mask is at time t = 0.

Figure 3.10: Initial cellmask

Each object in the cell mask is numbered individually as seen in Figure 3.10.
From this cell mask the distance function is calculated. This is initially used as
the function φ.

Figure 3.11: Distance function

The distance function is zero where the contour is, positive on the outside and
negative on the inside of the contour. The contour is the result of minimizing
the cost function.
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If the φ function does not change, the contour will stay in the same position. To
evolve the contour the φ has to be changed. This is done iteratively by adding
a force to the φ function.

This is where the iterations begin. To calculate the force several thing are
needed. The Heaviside function is calculated. the Heaviside function is used to
determine which pixels are inside and which are outside the contour. This is
used to calculate the constants c1 and c2 in equation 2.26. These constants are
the mean value of the foreground and the mean value of the background of an
image at time t = 1. The contour it self is added to the set ω− as in:

H(φ) =

{
1, if φ ≤ 0

0, if φ > 0
(3.6)

The Heaviside function is similar to the initial cell mask, but is updated each
iteration, so it is necessary.

Figure 3.12: Heaviside function

Now as in Equation 2.15 the curvature is calculated as:

κ =
fxxfy

2 − 2fxyfxfy + fyyfx
2

(fx
2 + fy

2)
3
2

(3.7)
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3.2.4.1 Numerical di�erentiation

On the Cartesian grid the derivatives can be approximated by the �rst order
accurate forward di�erence:

∂φ

∂x
≈ φi+1 − φi

∆x
(3.8)

as the �rst order accurate backward di�erence:

∂φ

∂x
≈ φi − φi−1

∆x
(3.9)

or as the second order accurate central di�erence:

∂φ

∂x
≈ φi+1 − φi−1

2∆x
(3.10)

Figure 3.13: Curvature

From Figure 3.13 it is seen that the curvature has the highest values near the
contours they get lower and more smooth further from the contours. The reason
the curvature is not smooth is because the resolution of the image. The κ is
very expensive to calculate and since it is a part of the iterations it if performed
many times. There is much to gain from optimizing the κ calculation. Now the
force can be calculated from Equation :

force = µ · κ− λ1(u(x, y)− c1)2 + λ2(u(x, y)− c2)2 (3.11)
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To see an example of the updates of the force, look at Test 2, Figure 4.6 Finally
the force is normalized by dividing by the maximum absolute value of the force
and then the step length dt is used as a multiplier to determine the weight put
on the force as in the update of φ:

φi+1 = φi + dt · force (3.12)

The update of the φ function is di�erent for the local and global segmentations.
In the global segmentation all previously known cells are masked out, so it can
only �nd new appearing cells, where in the local segmentation each cell by turn
is updated while all others are masked out. The iterations are performed until
the stopping criterion is met and the individual segments are evaluated if it still
exist and have an area larger than 50 pixels it is kept and otherwise it is deleted
as noise or debris. The cells are renumbered and for the tracking later it is
registered which cells are mitotic, vanished and which new cells appeared. The
successor of each cell is also registered. These are the cells that features in the
initializer as well as in the �nal cell mask.

3.2.5 Mitosis detection

The mitosis detection can only be reliable if the model is restricted so that the
only way it can split is in case of a mitosis. First the contour is divided into one
individual contour for each cell. Then this contour is restricted by parameters
and by a mask that keep it from segmenting new appearing cells that come into
the image frame. The mask is the contour dilated 2 pixels, which is enough to
ensure the contour to develop freely locally within the mask, but not develop
outside the mask. In this manner the only way the contour can divide into two
is if it happens from within the mask and only the mitosis does that.

3.3 Tracking

3.3.1 Renumbering

Each cell has to be individually identi�able. This can be achieved by assigning
an individual number to each cell in any frame ie. the number you end with in
the �rst frame, you continue from in the next frame. Another way of numbering
is to assign an individual number to each cell within each frame ie. each frame
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Figure 3.14: Flowchart of the tracking

is numbered individually, each starting from the number one. In the latter the
frame number together with the cell number is a unique identi�er for each cell,
but the number has the extra information on which frame the cell is present,
this is the chosen numbering system. In the �rst cell mask each cell is numbered
from left to right. Each cell mask serve as the initializer for the next frame and
the contours are evolved through the iterations. If a cell is present both in the
initial cell mask and the resulting cell mask from the segmentation, it continues
to the next frame. If a cell vanishes between frames the cell mask will be all zero
and it is deleted, but it is registered so it is possible to detect the track is ending
in the tracking procedure later. Also if a cells area fall below a threshold of 50
pixels it is considered to be debris and is deleted, these are ignored. The cells
that are present both in the initializing cell mask and the �nal cell mask are
renumbered in ascending order beginning from the lowest present cell number.
For the tracking these cells are linked to their renumbered successor.

3.3.2 Tracking paths

There are two states of a cell, it could be an already known cell, from the previous
frame or it could be a new appearing cell. The new cell is either appearing from
outside the frame or from through mitosis. The cells can continue to the next
frame or they can end, either from mitosis or from going outside the frame.

The path tracking does not need the images any more, but the needed informa-
tion is taken from the Save Matrix (SM). The Save Matrix is in fact a struct
where all the informations from the segmentation is saved. See Appendix 1 for
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details.

3.3.2.1 Known paths

The paths that existed in the previous frame and still exist are saved to the
work matrix. These cells have status = 1.This is performed simultaneously for
all entries in a vectorized code.

3.3.2.2 Ending paths

The paths that existed in the previous frame but has disappeared have a status
= 512. They are saved to the Save Matrix with start frame, end frame, cell
numbers and with children = 0. The cells are deleted from the Work Matrix.
Whenever a column is deleted from the work matrix, since the cell number is
the index the remaining cells are automatically renumbered.

3.3.2.3 Branching paths

The paths that have a status = 2 are mitotic. They are saved to the Save Matrix
with start frame, end frame, cell numbers and with children as the numbers
from the successor vector. After saving the paths they are deleted from the
Work Matrix and the two new paths are added at their respective place.

3.3.2.4 New paths

Whenever a new path appear it is added to the Work Matrix
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3.4 Validation

Validation is evaluating the quality of a result. The best way to validate a result
is to compare against a know true solution. This will give an exact knowledge
to the performance of the algorithm. Such a solution is freely provided by
[RBM+11] along with the dataset and the result of the performance of their
algorithm for benchmarking. This sets the standard for how to evaluate and
which measures to compare.

3.4.1 Validation of segmentation

Figure 3.15: Flowchart of the segmentation validation

The result of the segmentation is a cell mask containing all segmented cells,
each with a unique number as seen in Figure 3.16.

The validation of the segmentation amount to ensuring a unique correspondence
between the segmented cells and the true cells. It is not likely a 100% corre-
spondence, so a a measure of su�cient overlap between a segmented cell and the
corresponding true cell is needed. The cell is categorized as correctly detected
if it overlaps one and only one cell in the reference cell mask and the overlap in
both directions exceeds a threshold of 30%. The cells are classi�ed as TP, TN,
FP, FN dependent on their overlap.
where:

• TP is True Positive - Correctly detected cells

• TN is True Negative - No cell exist and no cell is detected - not tested for!

• FP is False Positive - Detected cell that does not exist in the reference

• FN is False Negative - Cell that exist in the reference but is not detected

The True Negative is not tested for, but it can be calculated from the other
entities After implementing the cell validation some tests where performed on a
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Figure 3.16: Fully segmented image, timeframe 200

constructed test set to verify the functionality. Some of these the tests can be
seen in Figures 4.12,4.13 and 4.14. To be sure that the needed performance was
achieved no matter which order the individual tests was performed in, the tests
has been run where the true and detected data was swapped and also where the
segments where numbered in di�erent order. The results where the same for
each pair of test and detection data. The tests covered the 4 possible scenarios:

• One true cell is segmented as one.

• Two true cells are segmented as one.

• One true cell is segmented as two.

• Overlap less than 30% - not detected.

The algorithm test not only for if one true cell is segmented as two, but for if one
true cell is segmented as more than one and the same in the opposite direction.
The detection rate in percent is also calculated from:

detectionrate = 100 · Correctly detected cells
Number of true cells

(3.13)

See section 4.1.5 for examples and tests.
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3.4.2 Validation of tracking

Validation of the tracking begin by assuming the paths are only complete and
valid if they start from a mitosis and also end with a mitosis. If this is not
the case the path is only a fragment of a correct path and can not pass the
validation as it is. A path that start in the �rst frame or end in the last frame
are the exception from this and are also included. It is furthermore assumed
that the paths should be identical to the paths from the true solution. In order
to achieve this, each and every cell in a path should correspond to a unique cell
in the path of the true solution. If only one cell fail, the hole of the path fails,
and is not registered as correct.

The complete paths are picked out from the Save Matrix and one by one checked
for cell correspondence. In the true solution the cells are numbered according to
which path they belong to. The correspondence in the �rst cell is saved and it
is assumed that the rest of the path in the true solution has the same number.
This is veri�ed one cell at a time from the cell masks. The overlap between the
two cells is calculated and the median of the overlap is used to determine the
correspondence, in case of the cells overlap more than one other cell. If all cells
in a path pass the validation, the path is marked as correct.
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Test

Testing is an important part of software development. Testing is a means of
verifying if the software ful�ll the speci�ed requirements. There is always a risk
that the software might be erroneous, but testing reduce this risk. The areas
tested are chosen to verify only the reliability and correctness of the code. Tests
can only show presence of errors. Manual debugging is necessary to determine
the cause of error after it has been detected. Testing should be performed as
soon as possible since the cost will be lower at an early stage of developing the
software both in term of price but also time needed to correct for the found
errors. The following tests performed in this chapter only show a veri�cation
of the speci�ed functionality. Good coding practice has been observed during
implementation, but the focus has been kept on functionality and not so much
on fast execution time.
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4.1 Segmentation

4.1.1 Test 1

Test 1 is performed to see how the algorithm performs with respect to the
initialization and the segmentation it self. A test image with two black square
objects on a white background is constructed and the algorithm is applied to
this image. It is assumed that cells in the RefdataA dataset is overlapping from
one time frame to the next. This is not the only case that is tested for but also:

• Initial contour inside the objects

• Initial contour around the objects

• Initial contour outside the objects

• No segments present

• Initial contour overlapping the objects

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Initial contour inside object

From Figure 4.1 it is seen that the contour is expanding to segment not only
the left object but over time the external force make it move beyond the white
background, till it �nally segments both objects. Individual contours are colored
with di�erent colors, so since the two contours are the same color they belong
to the same contour. This is a good feature for an initial segmentation where
all objects should be found in an image and also for a global search for new
appearing segments.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Initial contour around segments

In Figure 4.2 the initial contour is around the segments and it is seen that the
algorithm adapts and segment both objects.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Initial contour outside segments

Figure 4.3 show that if the initial contour is not overlapping with the objects
at all, but there is a signi�cant di�erence in the mean values of the foreground
and back ground, the area inside the contour is taken to be the foreground and
segmented accordingly. This situation will in practice not happen.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: No segment present

It is seen from Figure 4.4 that in the case where there is no signi�cant di�erence
in the mean value of the outside and the inside of the contour, only the internal
force will act upon the contour and this will make it evolve in the negative
normal direction, causing the contour to shrink and ultimately vanish.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Initial contour overlapping segment

The �nal images of test 1 seen in Figure 4.5 Show the normal case were the
initial contour is overlapping with the object and this work �ne, the overlapped
object is segmented but also the other object which should be segmented by
another individual contour. The algorithm needs to be re�ned to accommodate
this.
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4.1.2 Test 2

Figure 4.6: Initial states of test 2

Figure 4.6 top left, show the test image that was constructed for this test. There
are three objects an oval with gaussian blurred edges to test if the model work
without sharp edges. There is a circle with sharp edges and the third object has
an outline that is not smooth.
The top right image show the initial mask, that will be evolved. The two bottom
images are the same, they show that the initial state of the function φ is the
distance function it self.

Figure 4.7 show the evolution of the function φ and the image force that it is



46 Test

(a) (b) (c)

(d) (e) (f)

Figure 4.7: φ and force evolved over time

updated with each iteration. It is seen that the force get stronger and stronger
over time. Each pixel in all the objects, in the test image have the same intensity
and hence the same force is added to these pixels. The segmentation is a result
of the distance function and the force added each iteration, so the di�erence in
when the di�erent objects are segmented is due to the distance function.

The segmentation work well in the oval shaped object with blurred edges, the
circle and also in the last object with a non smooth outline.

4.1.3 Test 3

The algorithm has been re�ned so that it can evolve several contours indepen-
dently. Now it should be tested for if this is the case. This is also performed
on the same test image. Now the contour is assigned a di�erent color for each
seperate segment. Now the initial mask that is evolved is placed in the oval
shaped object.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Initial contour overlapping segment

4.1.4 Test 4

The fact that two cells can not merge, but need to be kept separate if they
occasionally touch should be tested for.

The two test images used are again black and white images, one with a large
square and one where the large square is divided into two smaller squares as
seen in Figure 4.9

Figure 4.9: Flowchart of the segmentation validation

At �rst the contour is initialized with a contour around the two squares and
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the active contour model is applied to the image with the big square to see if
the contours merge. Instead of displaying the outline of the contour, the whole
segmented area is displayed. This is less demanding computations since the
Heaviside function is used and the Heaviside function is already calculated in
the active contour model.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Test for merge

It is seen from �gure 4.10 that even though the two contours share the same
area they do not merge.

Now the next test if to see if the contours can split again after they have touched.
For this test the previous segmentation is used for the initializer and the active
contour model is aplied to testimage with two squares.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: test for split

As seen in Figure 4.11 the contours split nicely again. This is a simple case and
it can be expected that if the two objects are moved or rotated while touching,
the result will not be so good.

Now the basic required properties have been tested and veri�ed, now the active
contour model can be applied to the real dataset.
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4.1.5 Validation of segmentation

The following tests each show four images. The top left image show the reference
data. The bottom left show the detected cells. The top right is the overlap
between the reference and detected cells. The bottom right is overlap between
the true reference with deletion and the validated correct detected cells with
the number of errors in the title. The last image show only the correct detected
cells all other have been deleted.

4.1.6 Test 5

Figure 4.12: Segmentation Validation Test 5.

Figure 4.12 show a test for overlap less than 30 %. The left detected segment
is not overlapping the true reference segment and cause a FP error. The true
segment is therefore not segmented and cause a FN error. The other segments
overlap more than 30% in both directions and are accepted as correctly seg-
mented and cause a TP. The acceptance rate is 66.66%
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4.1.7 Test 6

Figure 4.13: Segmentation Validation Test 6.

Figure 4.13 show a test for when two true cells are segmented as as one. The
right detected cell is overlapping two cells and cause an FP error and is deleted.
The two right true cells are then not detected and cause two FN errors and
are deleted. The remaining cell is correctly detected and cause a TP. The
acceptancerate is 33,33%.
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4.1.8 Test 7

Figure 4.14: Segmentation Validation Test 7.

Figure 4.14 show a test for both two cells detected as one and one cell detected
as two. The middle true cell is overlapped by two and cause one FN error. The
two detected cells both overlap two and cause two FP errors. The three of then
are deleted and the two remaining true cells are not segmented so they cause
two FN errors. The detectionrate is 0% hence there are no TP.
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4.1.9 Test 8

Figure 4.15: Segmentation Validation Test 8.

Figure 4.15 show a test on a subset of the RefdataA dataset. There are three
segments that are deleted because they are on the image border and smaller
than 50 pixels. They are of cause registered as FN errors.The cells in question
are marked with black arrows. The test was run several times on di�erent time
frames and in general most of the cells are correctly segmented. I did not �nd
any errors from manual inspections. This is an indicate that the segmentation
is quit good, but it makes it di�cult to test the validation with the RefdataA
data set. It was a better choice to use the arti�cial dataset from the previous
to test the validation.
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4.2 Results

4.2.1 segmentation

The results from the validation of the segmentation are summed up in a calcu-
lation of the detection rate:

detectionrate = 100 · Correctly detected cells
Number of true cells

(4.1)

The detection rate is the accumulated detection over all 209 image frames. The
resulting detectionrate is :

Accumulated detection rate = 87,76%.

This is quite low compared to the benchmark which is above 95%

One reason this is low is the validation criterion which say that a cell can only
overlap one and only one cell. This is not possible when cells are allowed to
touch without merging the overlap will sometimes be violated and count as an
error. And also when they split again after touching some times a small fraction
of one segment is still attached to the other segment, which again violate the
validation criterion.

Figure 4.16: Overlap error

As seen in �gure 4.16 at the arrow, two cells are touching with only a small
overlap. This is enough for the validation to cause both of the cells to be
erroneous and the two remaining true cells are hereby not segmented and they
cause another two errors. One small overlap cause four errors. This is not good
for the detection rate.

Allowing cells to touch was one of the improvements compared to the bench-
mark, but the validation criteria are not favoring this.
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4.2.2 Tracking

The result of the tracking is also summed up in a detection rate:

detectionrate = 100 · Correct complete paths
complete paths

(4.2)

The calculate detection rate was at �rst 0%, this after thorough investigation
turned out to be caused by a missing correspondence in the time of detection
of mitoses. The true data is produced by a threshold by otsu's method and
afterwards the cells are eroded. This sometimes cause otherwise connected cells
to split into two separate cells. An example can be seen in the following �gures.

Figure 4.17: Validation problem, timeframe 29

Figure 4.17 show the two segments at the arrow are completely separated at
time frame 29. Figure 4.18 is a zoom in on these cells and their progression over
time, and the segmentation. The question is when to register the mitosis ?.
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Figure 4.18: Validation problem

Figure 4.18 show the segmentation seperates the two cells and register the mi-
tosis at timeframe 31, but the cells are still connected by an axiom. Detecting
the mitoses is a problem.

To see if this would improve on the detectionrate a simple solution was to not
validate the last two cells in a path. This immediately gave the result:

Detectionrate = 39.62%

This indicate that the error was correctly identi�ed, but less than 40% is nor a
good result. The remaining correct paths where investigated and the common
error was the path was followed nicely to a certain point and then it suddenly
changed to another path and continued from here on. This indicate a problem
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in the numbering of the cells. The implementation was thoroughly checked but
no software bugs found. It turned out that objects with an area less than 50
pixels are deleted since they are assumed to be debris. Occasionally a cell shrink
to a size below the threshold, and is deleted, but not registered as ending. This
cause the cells to be renumbered wrongly and all the paths with a higher number
going through this time frame are corrupted.

A solution to this problem could be to handle the deletion of the debris more
intelligently or to number cells di�erently.
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Chapter 5

Conclution

The purpose of this thesis was to construct a pipeline for segmentation and
tracking of cells in microscopic images. This part was completed, but it is
obvious from the results, that it does not perform to the required level of per-
formance. This is due to several implications in the approach and also in the
complexity of the dataset.

The segmentation performs better than the benchmark, and this was expected,
since the segmentation in the benchmark was done by a simple threshold per-
formed by Otsu's method. The active contour model have the advantage of
physically being able to link two frames together to perform the segmentation,
which improve the result. This also provide a smooth way of tracking the cells,
which has an elegant continuous mathematical formulation that can be proved.

One approach that proved not to be good was the unconditional deletion of
debris. A size restriction by a threshold of 50 pixels was used to determine if
an object was a small cell fragment or debris. This was how the debris was
handled in the benchmark. It turned out that in some cases a cell could be
deleted unintentionally if it moves upwards and go out of focus or if the light
intensity is low. this combined with the strategy of renumbering the cells in each
frame led to the wrong renumbering of some of the cells. The implications of
this where wide spread, and the cost a large reduction in the measured correct
classi�ed paths.
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Tracking of the cells are naturally performed by the active contour model, since
it evolves from a cell in one frame to a cell in the the next frame. This provide
the linkage between the cells in each frame. The results could not be measured
exactly, but manual inspections of the erroneous paths show that most often the
correct cells are linked but the numbering is wrong. This again imply that the
renumbering strategy was a bad approach, but the active contour model live up
to the standard.

Major forces of the active contour model is it's ability to register changes in
topology. Mitosis, appearance and disappearance of cells are easily captured by
the model and are fairly easy to detect. However validating the mitoses proved
to be more di�cult than �rst assumed. The cells are partially connected in the
stages after mitosis and deciding when to separate the new cells was an issue.

The validation procedure was implemented and it serve as a measure of the
quality of the segmentation and tracking. Unfortunately the results are not
true, but a�ected by the unintentional renumbering of cells. The segmentation
was tested for position and overlap compared to the benchmark but not for the
numbering. The tracking is only tested in the validation procedure so the errors
was unnoticed till the end of the project and only captured in the validation
procedure

The true data supplied has been produced by thresholding and morphological
operators that some time separate connected cells . The active contour model
segments the data di�erently, and does not use the morphological operators, so
the occurrence of a mitosis is not registered in the same time frame. This was
an issue that had to be addressed and a workaround was introduced.

A chain is only as strong as its weakest link.
Since the renumbering failed it was not possible to validate the solution properly
with a valid result.

The analysis done on the errors do not indicate any problems regarding the use
of the active contour model, so it is recommended that the model is developed
further. The active contour model show great potential in the tracking if the
numbering of the cells can be corrected or the numbering procedure changed.
The mitosis detection is also quite good, but again this could not be quantita-
tively determined by the validation procedure because of the errors.
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Future work

The future work is �rst and foremost to handle the errors pointed out in the
previous chapters.

A new validation procedure should be developed, that favors the features of the
active contour model.

When the pipeline is fully functional, the parameters should be tweaked to an
optimum. This could be obtained by running the pipeline for di�erent values of
parameters to get an estimate to where to start. A real optimization procedure
for adjusting the parameters could also be developed. This will enhance the
performance.

Some of the procedures from the segmentation association techniques could link
the paths fragments, the fragments could be combined into complete paths,
hereby improving the tracking.
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Chapter 7

Appendix1

7.1 Structures

7.1.1 Track_data

The segmentation is completed and the resulting data is saved in the struct
track_data. The struct provides a logical and easy access to the data for per-
forming the tracking.

Figure 7.1: Track_ data struct

The �rst "layer" of the Track_data struct also contain information on image
size and the �rst and last timeframe. The struct cell contain the segmented
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data for each timeframe as seen in Figure 7.2

Figure 7.2: Track_data.cell

The track_data.cell structs contain the actual cell masks, the centroid of each
cell, no. of cells and their status and most important for the tracking their
successor, which is linking the cells between the current timeframe and the next
timeframe.

7.1.1.1 status

The status is determined during the tracking and has to be accumulated and
updated on the path level. The statuses are as follows:

int value status-�ag
0 empty path, not tracked
1 path
2 mitosis
4 border begin
8 border end
16 NOT USED
32 corrected
64 ending
128 beginning
256 lost begin
512 lost end
1024 coupled
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7.1.2 Work matrix

During the segmentation the cells in each timeframe was renumbered and this
has to be taken into account in the tracking. The work matrix is therefore
created iteratively one timeframe at a time. When ever one complete track
is present it is saved to the save matrix and deleted from the work matrix to
accommodate the renumbering. a matrix is used since it �ts the format of the
data with time as rows and cell numbers (tracks) as columns. The iterative
approach take up less memory and enable that a full column containing a path
can be deleted.

Figure 7.3: True data,Segmentation, overlap and validated with overlap

From Figure 7.3 it can be seen that the paths represented by cell 2 and 3 are
deleted and also the path from row 1 to row 8 in the third column is deleted
and saved in the save matrix. This path is the �rst path in the save matrix in
Figure 7.4
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7.1.3 Save matrix

The save matrix is actually a cell array. The cell array allow for each cell to
be of di�erent size and type.It holds the time_begin, time_end, cell id's and
children of the paths.

Figure 7.4: The �rst 20 rows of the save matrix
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