
Matthias Sebastian Alan Larsen, s103437

Joachim Vestmark Vith Jensen, s103430

Engineering of an Interactive

Game for Teaching Elementary

Mathematics

Bachelor’s Thesis

B.Sc.-2013-27

Matthias Sebastian Alan Larsen, s103437

Joachim Vestmark Vith Jensen, s103430

Engineering of an Interactive

Game for Teaching Elementary

Mathematics

Bachelor’s Thesis

Engineering of an Interactive Game for Teaching Elementary Mathematics,

This report was prepared by

Matthias Sebastian Alan Larsen, s103437
Joachim Vestmark Vith Jensen, s103430

Supervisors

Jeppe Revall Frisvad
Niels Jørgen Christensen

Release date: June, 2013
Category: 1 (public)

Edition: First

Comments: This report is part of the requirements to achieve the Bachelor
of Science in Engineering (BSc) at the Technical University of
Denmark. This report represents 20 ECTS points.

Rights: ©Matthias Sebastian Alan Larsen, Joachim Vestmark Vith Jensen, 2013

Department of Applied Mathematics and Computer Science
Technical University of Denmark
Matematiktorvet
Building 303 B
DK-2800 Kgs. Lyngby
Denmark

www.compute.dtu.dk
Tel: (+45) 45 25 30 31
Fax: (+45) 45 88 26 73
E-mail: compute@compute.dtu.dk

Abstract

When developing an interactive computer game for teaching elementary mathemat-
ics, it should be ensured that the game in fact can be used as teaching material and
it should be sought that it also is motivational. The approach in this thesis has been
to develop a game of high availability, with mathematical problems being presented
differently and with levels of difficulty that both challenge and are not too hard for
the players. The solution has been to engineer a browser based game that teaches
multiplication and addition. In a city seen from above, a garbage truck with a given
capacity should collect trash of given sizes and in given representations. The player
needs to fill the truck completely by clicking on houses with trash, i.e. match the
truck’s capacity with the trash sizes. The level of difficulty adapts to the player’s
mathematical skills based on his or her performance in the game.

i

Preface

As this project has been carried out by a group, we have been working together
as a team with constructive criticism of each other, exchanging ideas, discussing
designs and algorithms, correcting syntax errors etc. This means that everyone has
more or less had a hand in every part of the game and thesis. However:

Matthias Larsen has had the main responsibility of the following parts of the game
and thesis:

• Server-side

Joachim Jensen has had the main responsibility of the following parts of the game
and thesis:

• Client-side

This thesis has a technical focus and only covers the psychology of teaching and
learning superficially and briefly. The game concept presented and designed has
been discussed with and approved by Erik Ottar Jensen, Teacher and Mathematics
Teacher Advisor at Skolen ved Bülowsvej, Frederiksberg, Denmark

The target audience for this project is pupils between the age of 7 and 10, because
this is the group that, in Danish schools, is taught the elementary mathematics
this project is about. The game engineered in this project should be considered a
prototype or proof of concept in the use of digital solutions for teaching.

It is a requirement that the game provides tracking of the player’s performance so
that the skill level of each player can be analysed and evaluated.

iii

Acknowledgements

We would like to express our gratitude to our supervisors Jeppe Revall Frisvad and
Niels Jørgen Christensen for giving us the opportunity to work on this bachelor’s
thesis and for their feedback and guidance through the learning process. Further-
more we would like to thank Michael Rose for his introduction to game design.

Especially we would like to thank Erik Ottar Jensen for his invaluable comments
and engagement during the development of the game concept and giving us the
opportunity to test the game at Skolen ved Bülowsvej, Frederiksberg, Denmark.
The participants of the test have provided us with important data about their user
and learning experience, for which we are truly grateful.

Finally we would like to thank Tobias Løvgren Madsen for taking time to proofread
the thesis.

v

Contents

Abstract i

Preface iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

List of Source code xv

Nomenclature 1

1 Introduction 3

2 Analysis 5

2.1 Mathematical skill . 5

2.2 Gamification . 5

2.2.1 Game concept proposal . 6

2.2.2 Path finding . 6

2.2.3 Generators . 8

2.2.4 Representations . 11

2.2.5 Difficulty . 11

2.2.6 Motivation . 13

2.3 Technical requirements . 15

2.3.1 Client-side . 15

2.3.2 Server-side . 19

3 Design 23

3.1 User module . 23

3.2 Game . 23

3.2.1 Rules . 24

vii

CONTENTS

3.2.2 Graphical User Interface . 24

3.2.3 Gameplay . 27

3.2.4 System . 28

3.3 Database . 32

4 Implementation 35

4.1 Application structure . 35

4.2 Game server . 36

4.2.1 PHP . 36

4.2.2 Node.js . 38

4.3 WebSocket . 44

4.3.1 Socket.IO . 44

4.3.2 Logging . 45

4.4 Game engine . 47

4.4.1 JavaScript and HTML . 47

4.4.2 CSS . 49

4.4.3 Graphical User Interface . 50

4.5 Client and server-side refactoring . 53

4.6 Database . 54

4.6.1 Connection Pooling . 55

4.6.2 Queries . 56

4.6.3 Scalability . 56

4.7 Speed optimizations . 58

4.7.1 JavaScript & CSS minification and combination 58

4.8 Platform Compatibility . 59

4.8.1 Server-side . 59

4.8.2 Client-side . 59

5 Results 61

5.1 Current status and limitations . 61

5.1.1 Known issues . 61

5.1.2 Reflections on implementation 62

5.2 Usability tests . 63

5.2.1 Technical Environment . 63

viii

CONTENTS

5.2.2 Third grade pupils . 64

5.2.3 Second grade pupils . 64

5.2.4 Fourth grade pupils . 65

5.2.5 Reflection on obtained data 65

5.3 Future work . 69

5.3.1 Improved difficulty engine . 69

5.3.2 Improved User Interface . 69

5.3.3 Administrative Performance Monitoring 70

5.3.4 Improved Motivation . 70

5.3.5 Improved Score System . 70

5.3.6 Educational Gaming Platform 70

6 Conclusion 71

References 73

Appendix 77

A Use cases 77

A.1 Moving cursor over and out of house 77

A.2 Clicking on a house . 77

A.3 Changing path of a moving truck . 78

A.4 Clicking on exit . 78

B WebSocket and AJAX timings 81

C World generator 87

D Log analyser 95

E Project plan 103

ix

List of Figures

2.1 Initial graph . 10

2.2 The path . 10

2.3 Removed path . 10

3.1 Truck and road network mockup . 24

3.2 Capacity before trash pick up . 25

3.3 Capacity after trash pick up . 25

3.4 Representation mockup 1 . 25

3.5 Representation mockup 2 . 26

3.6 Representation mockup 3 . 26

3.7 Database Diagram . 33

4.1 Application flow . 35

4.2 Users overview . 37

4.3 Top-down content generation in Node.js 38

4.4 Bottom-up content generation in Node.js 39

4.5 Image Sprite for tiles . 48

4.6 Screenshot of calibration level . 51

4.7 Screenshot of levels with higher difficulty 51

4.8 Screenshot of table representation . 52

4.9 Screenshot of obtained points. Combo included to the right 52

4.10 Database Diagram . 54

5.1 Correctness percentage for games completed by the entire classes . . 66

5.2 A player from 2nd grade experiencing adapting difficulty 67

5.3 A player from 4th grade experiencing adapting difficulty 67

5.4 A player from 2nd grade solving all games perfectly 68

5.5 A player from 2nd grade possibly clicking on random houses 68

xi

List of Tables

2.1 Comparison of platforms and languages for game engines 16

2.2 Comparison of JavaScript Game Engines 17

2.3 Comparison of languages for game server 19

2.4 Comparison of databases . 20

4.1 Time spend sending requests to the server. All numbers are in mil-
liseconds . 44

4.2 Minification and combination benchmarks without output compres-
sion . 58

4.3 Minification and combination benchmarks with output compression 59

xiii

Listings

4.1 The modification to A* that discourages change of direction 37
4.2 Algorithm for calculating statistics for the last 10 games 39
4.3 Algorithm for determining the number of trucks for a course 40
4.4 Algorithm for finding a semi-random representation 41
4.5 Algorithm for spreading trash . 41
4.6 Asynchronous and parallel behavior of Node.js 42
4.7 Crafty Sprite Map . 48
4.8 Crafty truck instantiation . 49
4.9 CSS3 Animation for trash indicator 50
4.10 SQL relations and actions . 55
4.11 MySQL multiple row insert . 56
4.12 MySQL detection of duplicate . 56
B.1 app.js . 81
B.2 index.html . 82
C.1 world.php . 87
D.1 analyser.php . 95

xv

Nomenclature

City A road network with adjacent houses,

Level A world with content defined by the difficulty for a player.

Modern browsers Internet Explorer 9+, Google Chrome 15+, Mozilla Firefox
20+, Opera 12+ and Apple Safari 7+.

Node.js server The running Node.js instance.

Player See ‘user’.

Pupil See ‘user’.

The application The combined system of the PHP and Node.js implementation.

User A person playing the game or using the application.

Viewport The visible area of some content.

World A city generated by PHP.

1

1
Introduction

Teaching can be practised with a lot of different methods such as demonstration,
recitation or memorization. They are all about passing on and applying patterns
and models to the subjects of the teaching. One way of teaching is by making the
pupil learn by playing computer games. The problem is that such computer game
would have to teach correctly, and when dealing with mathematics, it should be
ensured that the right patterns and models are the ones passed on, and that the
pupils should be able to identify the mathematical problems in the game. At the
same time, the game should be motivating.

This is an important topic because mathematics is widely used and helping teaching
the pupils to solve different mathematical problems at a young age would improve
their skills in innovation and problem identification, which are very important in
fields like engineering. It is interesting because it will combine educational material
with digital sources.

Each child is unique in their way of thinking and doing, which means that different
teaching methods will work differently for each child. Some children are fine with
traditional methods of teaching, while these methods have less impact on others.
The game should be able to reach out to and teach as many pupils as possible, but
assuming that every child will like the same game or teaching method is naive.

Combining play with teaching is not a new thing, but because computers are rela-
tively new and because of the low availability of computers in many Danish schools,
using computer games for education is not widely spread. Many existing digital
solutions assume that every child learns the same way and use an instruction-like
teaching method with little or no interactivity from the player.

This thesis describes the processes of engineering of a game which teaches multipli-
cation and addition as well as the results. The key components of the game are that
it is interactive and motivational, that it is able to present a mathematical problem
in different ways, that instruction-like methods are avoided, that the availability is
as big as possible, and finally that every child in the target audience should be able
to play it regardless of his or her mathematical skills.

3

2
Analysis

This chapter describes the considerations and reflections in the earliest stages of the
development process of the game. A game concept is presented and feature ideas
are turned into possible algorithms, while technical requirements and solutions are
evaluated.

2.1 Mathematical skill

Multiplication and addition are both important mathematical skills that are taught
to pupils at a very young age in Denmark. They are important because they form
one half of elementary arithmetic with negation and division forming the other half.
While the study of mathematics covers many branches, elementary arithmetic is
used often and is even required in order to learn and understand other areas of
mathematics, such as algebra. This means that if one does not learn multiplication
and addition, it will be very hard to learn other areas of mathematics, and for a
pupil it means that as time goes by he or she might be left behind in the educational
schedule and need special training.

When teaching any kind of mathematics, the teacher - being a computer or a human
being - need not only to teach the algorithms on how to deal with the problems but
also, with more emphasis, the theories describing the patterns and logical reasoning
behind them.

A classic method is repetition, but it can be dangerous if a pupil successfully applies
his own patterns that does not comply with the correct patterns and rules but
work for some specific problems. This means that he has not fully understood the
mathematics. Different patterns are great if they comply with the correct patterns
because it shows individuality, but the teacher must be careful that the pupil does
not get tunnel vision.

2.2 Gamification

Using digital solutions for teaching is a popular topic which is also being discussed
among politicians. Recently, the current Danish government has released a proposal
for a reform of the public school, which states:

5

CHAPTER 2. ANALYSIS

For at fremme anvendelsen af it i folkeskolen har regeringen afsat en
pulje på i alt 500 mio. kr. i perioden 2012-2015. Puljen skal især bidrage
til at øge anvendelsen af it og sikre bedre brug af digitale læremidler i
folkeskolen. [25].

This is loosely translated to:

In order to promote the use of digital solutions in schools, the govern-
ment allocates a total of DKK 500 million in the period 2012-2015. The
fund will mainly help to increase the use of digital solutions and ensure
better use of digital learning materials in public schools.

This emphasizes that the current Danish government wants digital solutions to be
more present and used in the teaching in Danish public schools.

Teaching multiplication and addition through a game is a tough job. It must be
guaranteed that the mathematics comply with the correct patterns and that the
game actually is educational and able to teach as intended. At the same time,
because it is a game, it needs to be fun and motivational which is even harder to
achieve because of the subjectivity of “fun”.

In order to avoid tunnel visioning of the player and help him or her identifying the
actual problems and applying the correct patterns, the problems met in the game
must be represented differently in a way that is not very predictable. To make the
player progress and further develop his mathematical skill in multiplication and
addition, there have to be an increasing level of difficulty.

All this raises some questions: In what ways can multiplication and addition prob-
lems be represented? How can difficulty be quantified? And most of all, how can
this be translated into a game?

2.2.1 Game concept proposal

The initial concept is a car with a specific capacity in its trunk whose purpose is
to collect or deliver some sort of packages of a given size and quantity. It can be a
postal truck or a garbage truck that drives around a city. The player then need to
make sure that the numbers fit together when collecting or delivering packages, i.e.
solve multiplication and addition problems correctly. The car and city are viewed
from above.

Two questions remain and now even more have arisen: How should the player find
the path to the destinations? How should the content be generated while ensuring
that everything actually match up? And how should the player be rewarded when
solving the problems correctly?

2.2.2 Path finding

The most obvious solution would be to let the player drive the car with the key-
board. This is very interactive and liberating because it gives the player complete

6

2.2. GAMIFICATION

control over the travel from point A to B. However, it can easily shift focus from
the actual educational purpose of the game, both because the player would spend
time on driving around, but also because it can be a distraction to calculate the
shortest paths when the player has to keep track of how to match the car capacity
with packages optimally. Requiring too much interactivity from the player can give
a confusing user experience and lead to worse learning [17].

One of the steps needed to increase the user experience is if such actions are auto-
mated. Letting the game control path finding means that the player himself does
not have to bother finding the shortest path from point A to B. Automated path
finding can be achieved in many ways, but one of the simpler ways is using graph
theory. If the city is looked at as a graph, each house and road cell represent nodes.

There are several algorithms for path finding using graphs, each with advantages
and disadvantages depending on the needs.

2.2.2.1 Breadth-first search

Using breadth-first search (BFS) to search for a node in a graph means that, when
beginning at the root node, all neighbouring nodes will be inspected. For each
inspected node, their neighbouring nodes will be inspected afterwards in turn, and
so forth. The algorithm uses a queue data structure to keep track of which nodes
have been visited and which have not. When the node that is searched for is found,
the operation is successful and inspection stops. Likewise, if all nodes have been
inspected and the operation has not been stopped, it means that the node searched
for does not exist in the graph.

The method can be used to find the shortest path between two nodes in an un-
weighed graph.

2.2.2.2 Depth-first search

Using depth-first search (DFS) to search for a node in a graph means that, when
beginning at the root node, the first neighbour node will be inspected. Then this
node’s first neighbour will be inspected, and so forth. When the node that is
searched for is found, the operation is successful and inspection stops. If the al-
gorithm reaches a node that does not have any successors, it will backtrack to the
first node that have uninspected neighbours and continue the exploration. If all
nodes have been inspected and the operation has not been stopped, it means that
the node searched for does not exist in the graph.

DFS does not necessarily find the shortest path between two nodes, but it finds a
path, if one exists.

2.2.2.3 Best-first search

Best-first search is a strategy used to search in a graph with a given heuristic that
depend on the graph and goal. By using a heuristic made for a specific purpose,
the algorithm can on the way to the goal evaluate the onward search path with

7

CHAPTER 2. ANALYSIS

information gathered up to the currently inspected node. This way, the path will
contain nodes that are determined to be optimal in order to reach the goal.

The method can be used to find the shortest path between two nodes in a weighed
graph.

2.2.2.4 Method Comparison

While it is not crucial to find the shortest path from a car’s current position to a
house, it should be ensured that an actual path is found. To make the car movement
more realistic, it should not be possible to drive through a house, even if this would
be the shortest path to a destination. However, it should of course be possible to
visit a house, i.e. inspect a house node. Both BFS and DFS algorithms fall short
on this requirement, while a best-first algorithm such as A* can fulfil it.

A* finds a shortest, least-cost path between two nodes in a weighed graph. Because
it evaluates the weighs during the search, it can find the path with the lowest
expected total cost. Along the way, it keeps a sorted priority queue of alternative
paths to take. This way, the cost of visiting a house can be set to be very high,
making it inefficient to drive through it compared to taking an alternative path
around it. Therefore, it can be ensured that a house should only be visited if it is
the goal. Moreover, it can support different types of roads, e.g. highways and dirt
tracks, where the former should be preferred over the latter.

2.2.3 Generators

The city would consist of a road network and an arbitrary number of houses. Houses
should be able to contain packages of a given size in a given representation, and an
arbitrary number of cars with a given capacity and representation should be able to
either collect or deliver the mentioned packages to the houses. All these arbitrary
numbers need to match up in the end.

2.2.3.1 Roads

The road network would need to have at least one start cell and one exit cell for
the cars to enter and leave the game when appropriate. Other than that the road
network does not depend on the other content in the game. It can be generated
completely at random, with a seed or a predefined template that matches the
difficulty.

A completely random road network will make the game less repetitive if playing the
same level of difficulty more than once. A seed would make it possible to get the
same road network again. While a randomly generated road network and a road
network from a template both can be said to be finite, the latter is the most because
it requires a predefined, finite set of combinations that is most likely smaller than
the set a random generator could create.

The system should guarantee that all the roads in the network are connected, and
that a start cell and an exit cell can be reached.

8

2.2. GAMIFICATION

One method to create the road network is to start by initializing a world of a given
size X by Y and setting all cells to grass. A start and exit cell should then be
selected, either randomly or statically. An A* algorithm could then be used to
create a road network that connects the start and exit cells. If a more maze-like
network is wanted, a DFS algorithm could be used.

2.2.3.2 Houses, Packages and Cars

Houses, packages and cars cannot, like the road network, be generated completely
at random because they depend on each other. There cannot be more packages
than houses, because where should they then be put? In order to win the game,
there should be enough packages for each car. Also, cars should be able to reach
houses, therefore the houses have to be placed only adjacent to roads.

The following statements must be ensured when generating content:

• There has to be at least one car

• The number of houses must be at least the number of cars

• The number of packages must be at least the number of houses

• The accumulated size of packages must at least correspond to the accumulated
car capacities

• The car capacity must have a perfect fit with one or more packages

The first statement might seem obvious, but that does not make it less important. If
an algorithm does not have this base rule, all the other statements become flawed
because the constraints are then inadequate to ensure that the game logic is as
intended, and thus the game will be left with errors. The list guarantees that no
matter how many cars, houses and packages that are generated, and no matter how
big the various car capacities and the packages’ sizes are, it is possible to win the
game, because the content match up.

There are two ways to follow the list, either top-down or bottom-up. Top-down
means that initially some content is generated and thereafter adjusted to fit, and
bottom-up means that content is generated for an accurate fit. It is much like a
box, where a top-down method tries to stuff some content in it to fit the size, and
a bottom-up method will build the box in the size needed. While the latter might
be the easiest to configure to actually follow the list, it often comes to down to
performance when choosing the algorithm.

A top-down method is to create houses and packages first, and then use a network
flow graph to do the initial car generation.

A number range for the current level starts from n and ends in m. The flow graph’s
sink should at maximum accept m, forcing all combinations to stay within the range
of the game.

An example of a graph with the packages of sizes: [5, 6, 9, 10], given n = 4, m = 11
can be seen on figure 2.1

9

CHAPTER 2. ANALYSIS

start

5 6

9 10

m

sink

Figure 2.1: Initial graph

start

5 6

9 10

m

sink

Figure 2.2: The path

start

9 10

m

sink

Figure 2.3: Removed path

As one can see, all package sizes are represented by a node, and visiting a node
costs the node’s value. When a path is found between start and sink, for instance
like the one shown in figure 2.2, these nodes would be ‘used’ and the nodes and
their corresponding edges would be removed from the graph as shown in figure 2.3.

Given m = 11, this will eventually result in the following set for the cars: [[5, 6], 9, 10],
thus resulting in three cars, of which two can contain one package and one car can
contain two packages. If the number of sets would come too close to the number of
packages, i.e. each car would only have one package, the algorithm should merge
some of the cars resulting in fewer cars that could contain multiple packages.

The merging would be done in the following manner: Take the smallest and largest
car in the set, merge the two, and remove them from the set. Keep doing this until
there is either no more cars left in the set, or the number of cars is satisfying.

A bottom-up method would be to determine the number of cars initially and then
calculate their capacities. For each car capacity, some trash should be generated in
different package sizes, and finally houses should be generated for each package.

As seen, the first method is much more complex than the second method and in
a worst case scenario, all cars could be removed if no safety was created. On the
other hand, the second method might be slower performance wise.

Instead of inserting all packages in the game from the start, they could pop up
over a time period – and perhaps disappear again. This could increase the number
of packages for each game as they could then spawn in the same house. It rises a
problems for the player though: how can he be certain that the present packages are
the right packages for the car? Should the player really wait for the right packages
to spawn?

10

2.2. GAMIFICATION

2.2.4 Representations

Each car and package should have a representation of their value. This represen-
tation could be a table, figures, a simple equation or just the actual number.

It is important that it varies, so that the pupil will be taught that values are
different from and do not rely on numbers, and that a number in fact just is a
representation of a value. Other representations of the same value are equally
correct, and by displaying different representations, the game will force the pupil
to apply mathematics to them in order to solve the problem.

2.2.5 Difficulty

Quantifying difficulty in a game can be done by introducing levels, where a higher
level corresponds to an increased difficulty. A predefined set of levels, referred to
as static levels, is most common, but it has only one learning curve implying that
each pupil should learn equally much. This curve might be steep for some, while
others are not challenged at all. Therefore the difficulty could also be based on
each pupil’s skill and adapt to it.

But how can the game introduce difficulty? What present parameters can be
tweaked?

2.2.5.1 Parameters

The difficulty could be quantified with the following variable parameters:

• Number of houses

• Number of packages

• Number of cars

• Package size and spread

• Car capacity

• Package and car representation

A lower or higher number and different representations would thus give a lower or
higher level of difficulty. For static levels, the parameters would get exact values for
each level, but with dynamic levels it would be more tricky. On what basis should
the parameters be tweaked?

2.2.5.2 Static levels

Developing static hard-coded levels would be the easiest option, and they would go
well together with world templates generated in advance. As mentioned earlier, this
would defeat the purpose of assisting children in developing their skills individually

11

CHAPTER 2. ANALYSIS

because of the uniformity of progression steps. Static levels also indicate that the
game, and thus the mathematical learning, has an ending, because they are finite.

2.2.5.3 Dynamic levels

Instead of having hard-coded levels that are the same for everyone, the difficulty of
the game could be based on the player’s skills.

An intelligent engine that can quantify the difficulty and provide variables for a level
by looking at how the player has performed, e.g during the latest X games, would
have to be created. This way the system would attempt to challenge the players
individually and work much like a personal trainer by adapting the difficulty to
their skills.

In a press release from The Ministry of Children and Education in Denmark, con-
cerning the use of digital solutions in education, it is stated that:

The purpose of digital solutions is to improve education for all pupils
regardless of their level of skills and competences, and work as a method
of including and maintaining as many pupils as possible in everyday
education. This can be achieved by using for instance elements from
computer games as digital teaching tools, to motivate the pupils while
adapting the level of difficulty after individual level of skill and need
[24].

Which is exactly what dynamic levels would add to the game. Such an intelligent
engine does, however, raise some questions:

• Should it be possible to repeat a level?

• Should it be possible to choose between levels?

• How should the teacher see which level the player are at?

• Should the levels be generated on-the-fly?

• Should there be some static levels and content that act as a base for the
levels?

• Should a teacher be able to modify these parameters for a class?

Also, while the parameters to tweak difficulty have already been outlined, how
should the system tweak them? Some data would need to be logged such that the
parameter values can be calculated. The logged data could be used to find out how
the player performed in the X latest game or X best games. In order for the system
to get some initial data about the player’s skills, the first few games should be used
for calibration.

The parameters could be set by calculating on the following data from previously
played levels:

12

2.2. GAMIFICATION

• Number of total perfect fills

• Highest number of consecutive perfect fills (combos)

• Number of broken combos

• Number of cars

• Number of packages

• The range of numbers of which is used on a given level (number range)

• Representations

• Correctness of each representation

• Time consumption

If the levels are dynamic, limiting the world size would indirectly set an upper limit
on the highest possible difficulty. Options as to how the world should be sized is
something that should be explored and considered if working with dynamic levels.

One of the things that could be done to scale the world is changing the cell sizes.
Decreasing the cell size would allow more cells to fit into the same space, thus
creating a bigger world. This could become a problem when the world gets too big
or if some of the players do not have a great sight.

Another way to counter the problem is drag-based expansion as seen in games such
as Civilization[34], Sim City[15] and Age of Empires[33]. They keep the cell size
and viewport constant but has a bigger world than the viewport. This allows the
player to drag other areas of the world into the viewport. However, this would hide
some content on the screen and might confuse the player as to where to find the
right packages.

2.2.6 Motivation

When I watch children playing video games at home or in the arcades, I
am impressed with the energy and enthusiasm they devote to the task.
. . . Why can’t we get the same devotion to school lessons as people
naturally apply to the things that interest them? [23]

The most challenging part of creating a game is to make it entertaining enough to
keep the users playing it. Having a single quest line without any branches or side
quests, thus a very simple story line in the game, will often not be played for very
long because the player is not challenged enough due to either the simplicity of the
quest and story line or because the user is not free enough to make his own choices
hence not giving the player a feeling of controlling the game.

More and more games have implemented side quests, providing a more free world
allowing the user to move more freely around than previously and not chained as
much to a single quest line.

13

CHAPTER 2. ANALYSIS

When people are intrinsically motivated to learn, they not only learn
more, they also have a more positive experience [6].

A few techniques exist today that can help increase the longevity of a game and
motivate users to play it, thus increase the learning experience. Some of these
techniques are discussed in the following sections.

2.2.6.1 Points

An essential part of a video game is the points and some sort of highscore or leader-
board. Humans are natural competitors and most love to win. While this should be
an educational game, giving points for completed games can be a very difficult task.
It is important that every pupil is learning something without being discouraged
by a poor score because he or she is having difficulties with the mathematics. If
a class were to have an autistic pupil, he or she could be teased by his enormous
score if he was the only one in the class in his bracket, say 100% above second
place. Likewise, pupils that perform worse than the majority could be easy targets
for teasing.

Giving scores for each completed game while encouraging further play and limit-
ing the chance of potential teasing in a class can prove to be a difficult task and
something that should be handled very delicately.

One way to solve this could be to calculate the score for a game based on the
pupil’s prior games and skills and giving something that indicates the pupil’s level
compared to when he or she started. Another way could be to grade the game
based on a relative score for the best solution for a given level.

Points are also a great way to keep the users entertained and one technique that does
that very good is streaks or combos like the ones seen in games like Guitar Heros[14].
Building up a combo or streak encourages the player to pay more attention to the
game to avoid losing the extra bonus points such a streak would give.

2.2.6.2 Achievements

As already mentioned, keeping the players entertained is key to a popular game
which in this case should increase the learning. Another way to increase the addic-

tion to a game is through achievements.

Achievements can be disguised as many things. The most common forms are tro-
phies, badges, awards, stamps and medals and can be used to unlock special content.
They do not have a direct impact on the main goal of the game, and the main goal
does not depend on achievements.

They are used to increase the longevity of a game and to provide players with
an option to explore more of game than its main story line. Unlike secrets that
traditionally provide the player with some sort of benefit, e.g. by making the game
easier, achievements normally provide no such thing.

Adding achievements to the game would allow players to not only compete on a

14

2.3. TECHNICAL REQUIREMENTS

score, which explained in section 2.2.6.1, can pose as a bad idea, but also compete
on who completed the most achievements or even a specific achievement.

Appropriate achievements could be perfectly fill X cars, remove X packages from

the city, Overfill X cars, Complete X cities all of which could motivate the players
to compete, not on an intellectual level but instead on game completions which
in turn would increase the chances of the players increasing their own knowledge
individually.

2.3 Technical requirements

When implementing the game, it will have some technical requirements. How
should the players, their scores and relevant data in general be kept track of? On
what platform should the game be deployed? How can schools easily make the
game available to their pupils?

Availability is the key concern when answering these questions. The game should
be able to reach out to as many potential players as possible. Today, schools often
provide computers and internet access to their pupils as digital teaching material
already is becoming more and more popular.

Mostly, pupils do not have elevated privileges on the provided computers, which
is great security wise, but may be a problem for the game, because it means that
they are not allowed to install it locally. It would again mean that the game would
have to be white-listed by each school, which can be a long process and limit the
availability greatly. Hosting the game on a centralized platform instead would
overcome these problems, but it would of course still be up to each school if they
want to make use of it.

Because internet access is already provided by many schools, it would be an obvious
choice to make the game browser based. The next sections will in detail outline
possible software that can be used to meet the technical requirements.

2.3.1 Client-side

The client-side of the game describes the operations that are performed on the
client, i.e. the player’s computer. It includes the front end which provides a graph-
ical user interface that the player can interact with.

2.3.1.1 Graphical User Interface

The graphical user interface should be easy for the player to understand. Relevant
information should be displayed properly in a way that does not lead to confusion.
For the best user experience, the content should be presented as intended, i.e.
houses should be shown as houses and it should be easy to identify interactive
content.

15

CHAPTER 2. ANALYSIS

2.3.1.2 Game engine

An existing game engine can be used to shorten the development time of the game
as it probably will take longer to build an engine specific for the game. Before
comparing potential game engines, programming languages and software platforms
must be assessed to reduce the huge list of game engines available. Table 2.1 shows
a comparison of platforms and languages for game engines.

Table 2.1: Comparison of platforms and languages for game engines

Software/Language Level of knowledge Support

Adobe Flash Medium 3rd party plugin

JavaScript High In browser, enabled by default

Microsoft Silverlight Low 3rd party plugin

WebGL Low In browser, but often disabled

Microsoft Silverlight and Adobe Flash are both big players in the field of embedding
video, audio and games in websites, but since the release of HTML51 that intro-
duced the ability to watch video and listen to audio (although still in very limited
formats) on a website without any plugin, both are becoming less popular. The of-
ficial Adobe Flash plugin has often been criticized because of severe security flaws,
and while the desktop version is still being developed, Adobe focuses on HTML5 in
the mobile version and has released a ‘Flash to HTML5’ conversion tool[36][19]. A
new major version of Silverlight is not on the current official roadmap of Microsoft
and rumours are that the current version is the last[9]. Moreover, Microsoft states
that its support life cycle for the current version of Silverlight will end no later than
2021[21].

Most modern browsers come with a bundled JavaScript engine to interpret and
execute JavaScript in websites. The engines perform and execute differently, which
can change the behaviour of a script across browsers. Therefore, even though it is
widely supported, the script should be tested in the given browsers to verify that
it is interoperable. WebGL is a JavaScript API2 for rendering GPU3 accelerated
2D and 3D graphics in the HTML5 canvas element, but even though it is cross-
platform, it is only supported by modern browsers and often only experimental or
partial. Internet Explorer only supports WebGL from version 11 and onwards.

While Adobe Flash and Microsoft Silverlight are still superior in rendering 3D
graphics compared to JavaScript, their already mentioned disadvantages combined
with the fact that they require a third party plugin has resulted in JavaScript being
chosen. Past experience with JavaScript and because of its support makes it the
best candidate.

There are many free JavaScript game engines and table 2.2 only names a few that
are popular and seem appropriate for this project with their relevant features.

* Unity3D[35] Free uses its own variety of JavaScript and requires a plugin to be
executed in the browser.

1HyperText Markup Language
2Application Programming Interface
3Graphics Processing Unit

16

2.3. TECHNICAL REQUIREMENTS

Table 2.2: Comparison of JavaScript Game Engines

Crafty v0.5.3 EnchantJS v0.6 Sprite.js v1.2.1 Unity3D v4*

Browsers All modern All modern All modern Plugin
Size 107 kb 70 kb 49 kb N/A

Collisions Yes Yes Yes
Events Yes Yes Yes
Entities Yes Yes
Audio Yes Yes Yes
Path finding Yes Yes
Plugins Yes Yes Yes Yes
Physics Yes Yes Yes
WebGL Yes Yes Yes
Time tracking Yes
Sprite map Yes Yes
Touch screen Yes
3D Yes
AI Yes
Lighting Yes

Note that because the engines support plugins, the features in the table might in
fact be supported through one of these. The feature support are taken from the
documentation of each of the engines, and both EnchantJS[8] and Sprite.js[5] have
moved several of the claimed features to plugins, which can explain their small core
sizes - those features are still stated in the list.

When choosing JavaScript, HTML5 is an obvious choice for controlling the layout.
HTML5 introduced a canvas element that allows rendering of shapes and bitmap
images by scripting. The canvas element is raster-based and can be used to dy-
namically generate the graphics in the game. Alternatively, a DOM4 tree, that is
traditionally used for layouts in HTML documents - and which the canvas element
is part of too - can also be used by being manipulated by JavaScript. The DOM
tree consists of all the HTML nodes in the document, and creating HTML5 ele-
ments instead of shapes in a canvas element make it possible to also use CSS5 for
the graphics. CSS3 allows for transitions and animations on HTML elements. A
hybrid of both HTML elements and the canvas element could also be used.

Of the game engines, Unity3D was screened out as the first because of the need
for a third party plugin. Crafty[7] seemed most stable, straightforward and the
best candidate. Because the game should be viewed from above and uses cells, it
would be an obvious choice to make the game tile-based, which enables the ability
to create different tiles for each type of content. The entity support in Crafty will
make it possible to easily implement a component for such tiles.

4Document Object Model
5Cascading Style Sheets

17

CHAPTER 2. ANALYSIS

2.3.1.3 Logging

Logging of data can serve multiple purposes. From a developer’s point of view, logs
can tell if errors are happening and if the same ones keep triggering. Analysing
the logs can help determine if the application contains a bug that triggers a certain
error, or if the system is going to collapse.

A game designer would be able to see if a particular part of a game was used more
than others. This could help discover trends or popular features which could be
used in the next production of a game or to implement or remove features from a
current game by comparing analytic log data from games. A teacher would, in the
case of this type of application, be able to see how each pupil progresses. Watch
the performance of the pupils, their scores, what they do wrong, which parts of the
mathematics they have a hard time with and which parts they find easy.

When it comes to logging events that happen on the client-side it is necessary to
send it to the server for processing. The transmission of log data should be done
asynchronously to avoid affecting the game play. Doing it asynchronously on-the-
fly and not when a game is finished would allow for real time logs for the involved
parties and also to ensure that everything is logged while the game is played, which
would not be the case if logs were submitted after a game, and the client loses the
connection to the server in the middle of the game. Two solutions for asynchronous
communication with a server exist, namely AJAX and WebSocket.

AJAX is an acronym for Asynchronous JavaScript and XML. It is used to ex-
change data between a browser and a server without having to reload a page in the
browser. Because this allows the website content to be manipulated dynamically,
it is widely used to create web applications featuring such functionality. A request
does not necessarily need to be asynchronous, and the data exchange does not need
to use XML.

WebSocket is a technology that provides a bidirectional communication channel
between a browser and a server and is full-duplex, meaning that data exchange can
happen simultaneously both ways. This makes it suitable to enable live content on
a website.

The challenge with cross origin communication is something that could be problem-
atic when AJAX is used, but not with WebSocket. One other important advantage
of WebSocket when comparing to AJAX is the low latency. Lower latency in logging
and other messages between client and server will result in a more smooth experi-
ence when playing the game. Each AJAX call would have to both send and receive
HTTP6 headers for each request, resulting in a lot of unnecessary bandwidth used
which is not the case for WebSockets that only suffer on the initial hand shake, due
to the connection being persistent. The WebSocket protocol uses an event driven
model, whereas AJAX uses polling7 or long polling. However, WebSockets are rela-
tively new, only supported by modern browsers and requires the server to explicitly

6Hypertext Transfer Protocol
7A technique to emulate bidirectional communication between client and server

18

2.3. TECHNICAL REQUIREMENTS

support it too, whereas AJAX is more used and also more supported by browsers8.
Because the game engine already requires a modern browser, WebSockets are clearly
the best candidate for logging.

2.3.2 Server-side

The server-side of the game describes the operations that are performed on the
server. This project will need a game server and a database server. The game
server should provide services in the game and in the web application containing
the game.

2.3.2.1 Game server

The game server is in charge of providing resources and handling requests for the
web application. This could be user authentication and user management as well
as supplying dynamic content for the website. Moreover, it should work as the
back end for the selected game engine by giving necessary content to the client and
process and verify content from the client.

Table 2.3: Comparison of languages for game server

Language Level of knowledge Platform

ASP.NET Medium Windows

PHP High Windows, Linux, OSX

Node.js Low Windows, Linux, OSX

Below is an assessment of the languages mentioned in table 2.3.

PHP and ASP.NET are both well-documented and widely used as back end for
dynamic websites. PHP is installed on more than 2.1 million web servers and used
by over 244 million websites[13], making it the most popular language used on
websites and web applications.

Node.js is a platform built on Chrome’s JavaScript runtime; it is basically server-
side JavaScript, and therefore it has all the same features. Node.js uses an event-
driven, non-blocking I/O model that makes it lightweight and efficient for data-
intensive real-time applications. While it is documented, it is relatively new and
not widely used, though it is gaining popularity[27].

Because of the wide support for and the past experience with PHP, this is the best
candidate for the game server, but because WebSockets are not straightforward
to implement in PHP, Node.js should be used for the logging, which will use this
protocol.

2.3.2.2 Database

For proper data management a database should be used. Due to the large quantity
of data (heavy logging for data analysis) needed by the application to analyse

8As AJAX is a group of different techniques, AJAX support refers to the support of these

19

CHAPTER 2. ANALYSIS

and evaluate user performances, the size of the database can and will increase
very rapidly if the game is played on regular basis, and this should be taken into
consideration when designing it.

The application should also contain user authentication in order to get certain
administration privileges (such as user CRUD9). The database should therefore
also handle data management for users. Another reason for user authentication is
the ability to split users up into classes or groups, such that teachers will be able
to manage and review the performances of the pupils in their respective classes.

Database Level of knowledge Platform

MSSQL Medium Windows

MySQL High Windows, Linux, OSX

Percona Server High Windows, Linux, OSX

NoSQL Low Windows, Linux, OSX

Table 2.4: Comparison of databases

Below is an assessment of the database types mentioned in table ??.

MSSQL is a RDBMS10 from Microsoft and is often paired with ASP.NET. This
is also the only database software of the mentioned that is not free to use. It is the
obvious choice if ASP.NET was chosen for the game server, see section 2.3.2.1, but
it is a huge drawback that it is commercial.

MySQL is one of the most widely-used RDBMSs and is very popular to use as a
database in web applications. It is cross-platform supported and features indepen-
dent storage engines, such as InnoDB. InnoDB provides referential integrity and
transactions. Percona Server is a fork of MySQL, and one of the primary bene-
fits of this over regular MySQL is the stability and performance boost of InnoDB.
Enabling logging on the server will require a high performance database solutions
to cope with the possible amount of log entries inserted per second, and Percona
Server is preferred over MySQL for this.

NoSQL is a database that does not manage data like the relational databases,
but in a more simple model. This can for instance be key-value storage or graph
storage. The original intention of NoSQL was modern web-scale databases, but the
term NoSQL is often thought of as a collection of common characteristics such as:

• Schema-free

• Easy replication support

• Simple API

• Eventually consitent / BASE11

9Create, Read, Update and Delete
10Relational Database Management System
11

Basicly Available, Soft state, Eventually consitency. See [29] for a comparison of ACID and
BASE.

20

2.3. TECHNICAL REQUIREMENTS

NoSQL databases are gaining traction, and the most popular NoSQL database is
MongoDB[4][31], while databases like ‘Cassandra’, ‘Hypertable’, ‘CouchDB’, ‘Dy-
namoDB’ and ‘Redis’ are some of the databases most have heard mentioned due to
their origin from companies like Amazon, Google and Facebook.

MySQL seems most appropriate because of its relational storage, its support and
past experience working with it in PHP.

21

3
Design

Based on the analysis of the conceptual requirements for the game, this chapter
describes a platform-free design. The game design covers the design of the world,
the system and content, the story, the levels and the user interface. A database
design is also described, which is also based on the technical requirements.

3.1 User module

A user management module should be in place and greet the user. Only by logging
in should a player be able to play the game, i.e. the user has to be authenticated.
The application needs to be protected by some access control for multiple reasons:

• Log data is based on users

• Pupils can be categorized into classes or groups

To set up this authentication and authorization, the application would require
users to sign up with some credentials such as username and password. Getting the
pupil’s age would allow for some statistics and perhaps be of benefit if the difficulty
method was expanded to use such information, see section 2.2.5.

When the user module has authenticated the request, the user should be able to
play the game.

3.2 Game

Each week, thousands of garbage trucks drive around the neighbourhoods to collect
trash from the households.

The trucks do not compress the trash when collecting it, and each of them has
space for different amounts. It is very important that the trucks are completely
filled before they drive back to the junk yard, so that there is not too little or too
much trash in them. However, the garbage men do not have an overview of the size
of the trash before actually collecting it and therefore they need the player’s help.

The game is titled “Clean Town” (“Ren By” in Danish).

23

CHAPTER 3. DESIGN

3.2.1 Rules

The player control one garbage truck at a time. Each truck has a given capacity
and starts in the start tile.

The houses in the world have a trash package of a given size, and it is up to the
player to find the packages that fit the truck capacity - it can be one or more
packages.

In order to fill the truck with a trash package, the player must click on the house
with said package.

It is important to pick up the trash packages that fit the truck’s capacity, such that
the truck ends with neither too little nor too much trash. Optimal filling will give
bonus points.

A truck can at any time be driven out if the player wants by clicking on the exit
cell, but a optimally filled truck will drive out automatically.

After a truck has driven to the exit tile, the player gets control of the next one.

The game is won when all garbage trucks have collected garbage and has driven to
the exit tile.

3.2.2 Graphical User Interface

The world is seen from above in a 2/2.5D perspective and is tile based. The different
types of tiles are easy to distinguish and consist of the following: truck, road, house
and grass.

There is a marked start tile and a marked exit tile in the road network where each
truck enters and leaves the game when appropriate. A mockup of the trucks and
road network can be seen in figure 3.1.

Figure 3.1: Truck and road network mockup

24

3.2. GAME

At all times the player should be able to see the capacity and fill of the current
truck in a given representation. A mockup of this can be seen on figures 3.2 and
3.3

Figure 3.2: Capacity before trash pick up Figure 3.3: Capacity after trash pick up

3.2.2.1 Trash indication and representation

Because of the different representations, especially the tables that take up a lot
of space, there is not enough space to show the trash size just above a house, as
shown in figure 3.4. If the size really was to be shown above the house, it could
potentially float off the world, if the house was positioned too close to the border.
A lot of considerations have been taken into account in order to find the golden
mean between showing the size as clear as possible to the player and keeping a good
user experience by not hiding other information or breaking the interface.

Figure 3.4: Representation mockup 1

Instead of letting the player guess which houses contain packages of trash, when

25

CHAPTER 3. DESIGN

not showing the trash size, there should be an indicator saying which houses that
are relevant in the game. This indicator can e.g. be a exclamation mark just above
all the houses with trash. The trash size should then be displayed to the player
when commanded.

Moving the cursor over a house with trash will reveal the size in the given represen-
tation. Displaying it above the house has been ruled out, and displaying it in the
center of the screen is also not possible, because some relevant tiles like the truck
or other houses could then be hidden behind it as seen in figure 3.5.

Figure 3.5: Representation mockup 2

The optimal solution was found to be displaying the size in a so called information
bar when the cursor is moved over a house. This can be seen on figure 3.6.

Figure 3.6: Representation mockup 3

3.2.2.2 Information bar

Many games with a similar perspective as this game contain a bar that shows
relevant information to the player. By dividing the game canvas into small sub-

26

3.2. GAME

canvases, it gives a simple overview of the current status while not stealing focus
from the actual task in the game. The information bar can be attached to each
side of the world, most convenient in either the left or right side, and not take up
too much space.

The relevant information is:

• Representation of the trash size in a given house

• Representation of the fill and capacity of the current truck

• Points (see section 3.2.4.5)

• Remaining trucks

3.2.2.3 Animation

To bring the game to “life”, some movements must exist, and to make it clear what
is going on, transitioning from one state to another must somehow be shown to the
user. This means that the movement of a truck should be displayed as if the truck
is actually driving to its destination, instead of just making it jump from A to B
in a flash. When the player obtains points, it should be clear how he got them and
where they came from.

3.2.3 Gameplay

The interaction in the game is done by simple gestures with the cursor. It does not
require a keyboard to be played.

To see the size of the trash in a given house, the cursor should be moved over said
house, and the size will then be shown in its representation in the information bar.
When moving the cursor away from the house, the shown size will disappear from
the graphial user interface. Moving the cursor over a house without trash or a
house that already has been visited does nothing.

To make the truck collect trash from a house, the cursor should be moved over said
house and then left clicked once. The truck will then drive to the house and upon
visit, the trash will be transferred to truck. Clicking on a house without trash or
a house that has already been visited does nothing - it is not possible to make the
truck drive to such houses.

When a truck is full or overfilled, it will automatically drive to the exit, but clicking
at the exit at any time will make the truck drive to it.

A truck in motion cannot be stopped, but its path can be changed by clicking on
another valid tile, i.e. a house with trash or the exit.

A list of use cases for the game can be found in Appendix A.

27

CHAPTER 3. DESIGN

3.2.4 System

Algorithms in the underlying structure of the game control the functionality. These
algorithms ensure that the game in all cases behaves as specified, that the solutions
to the mathematical problems are correct, and therefore implicitly that the game
can be played and won.

3.2.4.1 Path finding

The path finding of trucks uses an A* algorithm because of the use of a special
heuristic giving superior strength when the nodes in a graph should be treated
differently.

The weighs of the different tile types should be:

• Road: very low

• House: very high

The bigger the span between the sizes are, the less possible for driving through a
house it will be. When working with a grid map where the tiles are squares, as
the game will consist of, each node will have 8 neighbours. Because a truck should
not be able to move diagonally, i.e. only have 4 directions of movement, the path
finding should reflect this. This can be done by using a special distance heuristic,
and the Manhattan distance[26] is just what is needed. It can be seen in equation
3.1, where node is the node currently being inspected and goal is the node that is
searched for. D is the minimum cost from moving from one node to an adjacent
node.

heuristic(node, goal) = D ·
(

|goalx − nodex| +
∣

∣

∣goaly − nodey

∣

∣

∣

) ✞

✝

☎

✆3.1

3.2.4.2 Logging

To get information about how a player performs, some data needs to be logged.
Every time a truck collects some trash, the most relevant data to be logged is:

• Level identifier

• Truck representation

• Truck capacity

• Truck fill before trash pickup

• Truck fill after trash pickup

• Trash size

• Trash representation

28

3.2. GAME

This data is the most critical to make an assessment of how a player performs, i.e.
whether he or she can solve the given mathematical problems.

3.2.4.3 Generation and difficulty

The choice fell on dynamic levels because learning happens in varying paces across
pupils. The difficulty is therefore based on previously played games.

This requires algorithms to calculate the number of trucks, houses and trash, the
capacity of trucks and the size and spread of trash, based on some parameters from
the X latest finished games. The chance of a given representation in a game is also
based on how well the player has solved problems with said representation before.
Because a level of difficulty is based on the player performance in previously played
games, it should be calculated by analysing the log data from these, see section
3.2.4.2.

The first 3 games are meant to calibrate the difficulty; these games will be referred
to as calibration.

Following the constraints analysed and noted in section 2.2.3.2, the number of
trucks should be calculated with equation 3.2, where n is the number of played
levels and i is the number of levels being taken into consideration, i.e. there can be
100 played levels, but only the i latest levels are used, thus i ≤ n. ti is the number
of trucks used in the i latest games, and pi is the number of perfect fills in the i

latest level.

t =

2, n < 4 ∨
pi

ci

∈ [0.50; 0.85]
⌈

ti

i

⌉

+ 1,
pi

ti

> 0.85

max

(⌈

ti

i

⌉

− 1, 1

)

,
pi

ti

< 0.50

✞

✝

☎

✆3.2

Thus the number of trucks can be increased or decreased by one in each level, and

only after calibration.
pi

ti

indicates how well the player has scored overall in the

last i levels. The minimum number of trucks to be generated is 1.

(rmin, rmax) defines a range of numbers of which a level can contain. The formula
for determining the range for a given level is shown in equation 3.3.

(rmin, rmax) =

(1, 10), n < 4 ∨
pi

ti

∈ [0.50; 0.85]

(⌈rmin · 1.2⌉ , ⌈rmax · 1.2⌉) ,
pi

ti

> 0.85

(⌈rmin · 0.9⌉ , ⌈rmax · 0.9⌉) ,
pi

ti

< 0.50

✞

✝

☎

✆3.3

The range can be increased by 20% or decreased by 10% after calibration. Note
that as the difficulty gets harder, the range will not only be expanded but also
moved. This way, players at hard difficulties will not be presented with too small
numbers.

29

CHAPTER 3. DESIGN

The capacity of each truck can be calculated like equation 3.4.

c = rand (rmin, rmax)
✞

✝

☎

✆3.4

Each truck must have a perfect fit with some trash, and this trash can be spread
into several packages. The spread of the trash for each truck should be calculated
like equation 3.5.

s =

1, rmin · 2 > c ∨ c < 10

rand

(

1,

⌊

c

rmin

⌋)

, c = 10

rand

(

min

(⌊

c

10

⌋

,

⌊

c

rmin

⌋)

,

⌊

c

rmin

⌋)

, c > 10

✞

✝

☎

✆3.5

When knowing the spread of the trash for a truck, the accumulated size of the pack-
ages should correspond to the truck’s capacity which has already been calculated.
The size of each trash package for a truck should be calculated as shown in equation
3.6. The equation should be iterated s times for each truck, such that s will be
decreased whenever a package size t has been calculated. In the first iteration, max

is equal to c, and for all other iterations, the calculated t will be subtracted from
max.

t =

max, s = 1

rand

(

rmin, rand

(⌊

max

2
± 2

⌋))

, s = 2 ∧ rand(1, 2) = 1

rand

(

rmin,

⌊

max

2

⌋)

, s ≥ 2

✞

✝

☎

✆3.6

The number of houses is the same as the number of trash packages, i.e. there will
not be generated any houses without trash.

The road network is generated completely at random without a known seed, but
the probability of intersections is increased as the difficulty gets harder, creating a
more complex network. Houses cannot be placed beside the borders, as the tiles
here are in a protected area only used to place the start and exit. These will always
be placed in a way so that they face each other, i.e. north and south or east and
west. Their exact locations are random though, so they might not be placed in a
straight line.

The probability that an intersection will be placed at any given spot is given in
equation 3.7.

int = 0.2 +
trucks − 2

30

✞

✝

☎

✆3.7

The probability for 1 truck, i.e. the minimum probability is 0.167 (16.7%). The
equation will increase the intersection probability by 0.1 for every 3 trucks. When
intersection points have been placed, the rest of the road network will be generated.
A* is used for this and also uses the Manhattan heuristic, mentioned in section

30

3.2. GAME

2.2.2.3, because the roads cannot be connected diagonally. The start and exit cells
are also connected to the rest of the road network this way.

3.2.4.4 Representations

The value representations to be used in the game are:

• Basic multiplication equations

• Areas of tables

• Numbers

These are all relevant when dealing with addition and multiplication, and it should
again be stressed out that each of them can represent the same value, which is
important that the pupil understands.

The probability of getting a representation, Pj , should be calculated as shown in
equation 3.8 where R is the possible representations, Rc is the correctness percent-
age of a representation and Rj is the representation for which the probability is
calculated. The correctness percentage of a given representation is found by in-
specting all trucks from the X latest finished levels. If a truck is perfectly filled, the
representations of the trash that this truck has collected will then count as being
correct. Otherwise it will count as incorrect.

Pj =
100

∑

i Ric · (|R| − 1)
·

(

∑

i

Ric − Rjc

)

✞

✝

☎

✆3.8

While
100
∑

i Ric

· Rjc
would increase the probability for a given representation, if the

player was good at solving problems with said representation, equation 3.8 instead
“reverses” the probability. This means that representations with a high percentage
of correctness will have a lower probability of getting picked, and vice versa.

3.2.4.5 Points

Each truck’s capacity represents the maximum amount of points possible when
collecting trash for it - excluding any bonuses there might be.

It would be rather harsh if a player is not granted any points when a truck is
slightly overfilled. When the target audience is young and because the game should
be educational, some compensation for small miscalculations is a good idea to stop
the players from giving up entirely. A way to compensate for miscalculations is to
use some form of normal distribution around the truck’s capacity for calculating
the points. To balance between being harsh and compensating the amount of given
points could decay by 33% for each point away from the truck’s capacity, such that
if a player overfills a truck by 4, 0 points are given. Equation 3.9 shows how points
are calculated.

31

CHAPTER 3. DESIGN

points =

ts, cf + ts ≤ cc

0,
|cc − (cf + ts)|

3
> 1

⌊(

1 −
|cc − (cf + ts)|

3

)

· ts

⌋

,
|cc − (cf + ts)|

3
≤ 1

✞

✝

☎

✆3.9

The variables in equation 3.9 can be read as:

ts = trash size
cc = truck capacity
cf = truck fill

To motivate the player when he solves a problem correctly, it should be possible
to gain combos. Rewarding is a great motivator and encourages the player to keep
trying hard. The combos are increased by one for each problem solved correctly,
and they will multiply any points obtained from a trash package with the current
combo size. I.e. if the player has filled one truck perfectly, the combo will be
increased from one to two, and thus the next points will be multiplied by two.
Combos are reset to one whenever the player solves a problem wrong.

3.3 Database

The database will contain information about users, games and played levels. For
each played game there should be details about trucks, packages, houses, truck
routes and additional log data.

This data can be used to make in-depth analysis of each played game and makes it
possible to even re-watch how the pupil has played.

The database is designed with the structure shown in figure 3.7. This structure is
relational, and thus a RDBMS is needed to implement it.

While each level is unique by its id, the contents of the level, such as trucks and
houses, can be reused to reduce the size of the database. The contents are also
unique in the database, but the same content can be used for more levels. Because
the database is relational, the tables are connected with different relations such as
one-to-one, one-to-many and many-to-many. I.e. an instance in user_games can
have many trucks instances.

games will contain the actual games, i.e. the database can contain more games
than just “Clean Town”. user_games will then contain data about levels played by
the users.

For log data and additional level data, the EAV1 model has been used. This allows
for managing data in a much more flexible way as rows instead of traditionally
in static columns. Because the database can be used to store data from different
types of games, each game - perhaps even each played level - might need to man-
age different data. Instead of having to restructure the database design with new
columns when adding new types of data, it can instead be stored in its own row.

1Entity-attribute-value

32

3.3. DATABASE

Figure 3.7: Database Diagram

However, EAV can lead to heavy, complex queries and should be used sparsely,
which is the why packages, houses, trucks and routes have their own table. One
can argue that EAV is great to manage lots of different types of data, when the
data is not critically needed in the application that uses the data.

33

4
Implementation

The game has been implemented with methods and tools found to be appropriate
based on the analysis, technical requirements and the chosen design. This chapter
outlines the development process and how the actual game ended up by using
different technologies.

4.1 Application structure

Figure 4.1 shows a flow diagram of how the application has been structured tech-
nically when a user wants to play a game.

When a user visits the application in a browser, PHP will generate a login page, on
which the user enters his or her credentials to log in. These are then sent to PHP
that authenticates the user and redirects to another address, where it generates the
game page. Upon visit of this page, the user will automatically request a game
from Node.js. Node.js generates some game content, and some of it is sent to PHP,
which returns a game world to Node.js. The world and content is then sent to the
user, where it will be displayed and is ready to be played. During gameplay, some
log data is sent from the user to Node.js. Most operations in PHP and Node.js
involve some database interaction.

Figure 4.1: Application flow

35

CHAPTER 4. IMPLEMENTATION

4.2 Game server

The game server consists of PHP and Node.js, where the former is mostly used for
the user module and the latter for the actual game logic.

During the earliest stages of implementation of the game server, it became clear
that it was better to use Node.js for an increasing number of tasks instead of PHP.
This was because the server and client should be able to communicate with each
other during the game without the player noticing. WebSockets, implemented with
Node.js, was an obvious choice for this, and it is therefore used for far more than
logging.

4.2.1 PHP

The user module in this application has been coded with PHP. This is because the
prior experience with PHP is extensive and a previously developed drop-in user
management module for FuelPHP provides a great base for the purpose of this
project.

FuelPHP is a simple, flexible, community driven PHP 5.3 web frame-
work based on the best ideas of other frameworks with a fresh start
[10].

FuelPHP uses a HMVC1 pattern and comes with different tools for fast and flexible
development of web applications. Past experience with the framework and the fact
that it takes advantage of the object orientation of PHP has been the main reason
for why it was chosen.

4.2.1.1 Administration

An administration panel has been created to provide management of the users
without having to think of unauthorized use. It also provides a simple overview, as
seen in figure 4.2, and CRUD for the users. The administration panel is built in a
modular way and can be expanded to provide even more information easily.

The user administration is currently utilizing groups which provides some autho-
rization. This can be changed to provide a concept of classes of which some users
can be assigned as teachers, so that the teachers for instance can view statistics
and analysis of the pupils’ performances throughout the game and watch their
individual progress.

It is required that the user has created an account in the application and is logged
in before he is authorized to play the game. This is because the application needs to
identify a player when the game should log information about his or her performance
in a level.

1Hierarchical model-view-controller

36

4.2. GAME SERVER

Figure 4.2: Users overview

4.2.1.2 Generation of road network

The road network is generated by PHP with A* using a Manhattan distance heuris-
tic. The minimum cost for moving from one node to an adjacent node is determined
by the Manhatten distance heuristic, but will be even more expensive if it requires
a change of direction due to an alteration made. This alteration will result in more
straight roads. See listing 4.1 for the alteration.

1 // The g score is the shortest distance from start to current node .

2 // We need to check if the path we have arrived at this neighbor is←֓

the shortest one we have seen yet.

3 $gScore = $node ->g + $neighbour ->cost ;

4
5 // Which direction are we coming from ?

6 $dir = 1;

7 if ($node -> parent != null && $node -> parent ->x == $node ->x) {

8 if ($node ->x == $neighbour ->x) {

9 $dir = 0;

10 } else {

11 $dir = 1;

12 }

13 } else if ($node -> parent != null && $node ->parent ->y == $node ->y) {

14 if ($node ->y == $neighbour ->y) {

15 $dir = 0;

16 } else {

17 $dir = 1;

18 }

19 }

20 if ($neighbour ->cost == Types:: $TYPE_GRASS)

21 // TURN_COST = 5000

22 $gScore += $dir * self :: TURN_COST ;

37

CHAPTER 4. IMPLEMENTATION

Listing 4.1: The modification to A* that discourages change of direction

PHP will also place the generated houses at random places beside the roads, see
appendix C for the full implementation of the world generator, or specifically lines
163-196 for the part that generates houses.

4.2.2 Node.js

The asynchronous nature and event driven design of Node.js provides a good base
for the heavy logging in the application. Because some functionality of the game
was moved to the server, which increased the need for a high performing I/O server,
see section 4.5, Node.js has also been put in place as the central game server.

Node.js allows the use of both AJAX and WebSockets for communication between
the client and the server. AJAX is just HTTP calls, which would obviously be
supported out of the box, and support for WebSockets could come from a Node.js
module such as Socket.IO, see section 4.3.1.

4.2.2.1 House, truck and trash generation

The top-down method for content generation, noted in section 2.2.3.2, proved to
be hard to implement and showed to be rather computational expensive. Instead
the bottom-up method, also noted in 2.2.3.2, was chosen because of its simplicity,
which means that it is easier to ensure that the amount of content match up.

Trucks, trash and houses are generated with Node.js and the algorithm could there-
fore be optimized by its asynchronous and parallel behaviour. Figures 4.3 and 4.4
accordingly show how both the top-down and bottom-up methods would look.

Figure 4.3: Top-down content generation in Node.js

Black bars represent processing, blue bars involve database interaction and green
bars represent transmission over the wire and involves latency. All bars do not cor-
rectly represent time units, but are a rough indication of where and how processing
time is used.

38

4.2. GAME SERVER

Figure 4.4: Bottom-up content generation in Node.js

Besides being a simpler algorithm, the bottom-up method shows to make most use
of the parallel optimization of Node.js.

When a level is being generated, the first part is to determine the number of trucks
on the level by examining the data from the latest 10 games. This is done with the
functions seen on listing 4.2 and 4.3.

1 function getStats (cb) {

2 var stats = [];

3 // Base stats on the last 10 games

4 db. get_stats (sessionMgm . getSessionById (client.id).user_id , 10, ←֓

function (res) {

5 var std = {

6 range: {

7 min: 1,

8 max: 10

9 }

10 };

11
12 var reps = getPossibleRepresentations();

13 for (var i = reps . length - 1; i >= 0; i--) {

14 if (! res. stats.reps [reps [i]]) {

15 res. stats.reps [reps [i]] = {

16 correct : 0,

17 wrong: 0

18 };

19 }

20 };

21
22 // We need 3 games to make stats

23 if (res. length < 5) {

24 return cb(std , res);

25 }

26
27 // If more than 75% of the pickups is perfect .. increase ←֓

39

CHAPTER 4. IMPLEMENTATION

range

28 // If less than 50% of the pickups is perfect .. decrease ←֓

range

29 if (res. total. perfects / res. total.cars > 0.75) {

30 // Increase range by 20%

31 // This will increase the gap between min and max.

32 return cb ({

33 range: {

34 min: Math .ceil (res . stats. range.min *1.2),

35 max: Math .ceil (res . stats. range.max *1.2)

36 }

37 }, res);

38 } else if (res. total. perfects / res. total.cars < 0.50) {

39 // Decrease range by 10%

40 return cb ({

41 range: {

42 min: Math .ceil (res . stats. range.min *0.9),

43 max: Math .ceil (res . stats. range.max *0.9)

44 }

45 }, res);

46 } else {

47 return cb(std , res);

48 }

49 });

50 }

Listing 4.2: Algorithm for calculating statistics for the last 10 games

Listing 4.2 shows that it sums up the amount of correct and wrong solutions the
user has given with different representations before it determines whether or not
it should increase, decrease or stay in the current range of numbers based on how
many perfects fills the user have had in the past 10 games. As seen on line 4, it is
easy to increase the amount of games taken into consideration which would allow
for even more fine tuning of the difficulty.

1 function getCarCount (stats) {

2 var std = 2;

3 // We need 3 games to make stats

4 if (stats. length < 5) {

5 return std;

6 }

7
8 // If more than 85% of the pickups is perfect .. increase cars

9 // If less than 50% of the pickups is perfect .. decrease cars

10 if (stats. total. perfects / stats. total.cars > 0.85) {

11 // Increase cars by one above avg

12 return Math .ceil (stats. total.cars / stats. total. games) + 1;

13 } else if (stats. total. perfects / stats. total.cars < 0.50) {

14 // Decrease cars by one below avg

15 return Math .max(Math .ceil (stats. total.cars / stats. total.←֓

games) - 1, 1);

16 } else {

17 return std;

18 }

19 }

Listing 4.3: Algorithm for determining the number of trucks for a course

Listing 4.3 uses the same technique as listing 4.2 to determine whether or not the

40

4.2. GAME SERVER

number of trucks should be increased, decreased or stay the same. If the trucks
should be increased or decreased it is done by adding or subtracting one from the
average number of trucks from the last couple of games.

After the number of trucks has been determined the trucks and trash are generated
and saved to the database as seen on figure 4.4. When the number of trucks has
been found, each truck is assigned a random capacity within the allowed number
range for current level with the algorithm found in listing 4.4.

1 function getRandomRepresentation(number , stats) {

2 var std = 2;

3 // We need 3 games to make stats

4 if (stats. length < 5) {

5 // We dont have all the data

6 if (number == 1) {

7 // 1 will cause fractions if used for x*y format

8 return rand (1 ,2);

9 } else {

10 return rand (1 ,3);

11 }

12 }

13
14 if (number == 1) {

15 // 1 will cause fractions if used for x*y format

16 return rand (1 ,2);

17 }

18
19 // (100/(sum af korrekthed *(antal mulige reps - 1))*(sum af ←֓

korrekthed - korrekthed af rep))

20 var chance = rand (1 ,100) ;

21 var c = 0, tmp = 0;

22 var cp = getPossibleRepresentations(). length - 1;

23 for (var key in stats. stats.reps) {

24 if (key == 'total ')

25 continue ;

26 tmp = (100/(stats. stats.reps . total. correct *(cp))) * (stats.←֓

stats.reps . total. correct - stats. stats.reps [key]. correct←֓

);

27 if (tmp == 0) {

28 return key;

29 }

30 if (chance <= c + tmp) {

31 log("Rep = " + key + " it is", 'rnd ');

32 return key;

33 } else {

34 c += tmp;

35 }

36 };

37 // Should never happen

38 return rand (1 ,3);

39 }

Listing 4.4: Algorithm for finding a semi-random representation

When the trucks is assigned a capacity the algorithm shown in listing 4.5 decides
how many pieces of trash that capacity should be split into. A few rules are set,
as seen in listing 4.5, to ensure that the front end can render some fairly readable
representations of the values.

1 function getTrashCountForCar (car , range) {

41

CHAPTER 4. IMPLEMENTATION

2 // If the range.min is not at least twice as big

3 // you cant split the car

4 // car. capacity also needs to be above 10 before splitting

5 if (range.min * 2 < car . capacity || car. capacity < 10) {

6 return 1;

7 }

8 // 10 is fairly readable when rolling table representation

9 var min = car. capacity > 10 ? 2 : 1;

10 if (min == 2) {

11 // Minimum amount of splits equal which ever is less :

12 // 10% of full capacity or how many range.min packages

13 // car. capacity can contain

14 min = Math .min(

15 Math . floor(car. capacity / 10) ,

16 Math . floor(car. capacity / range.min)

17);

18 }

19
20 return rand (min , Math . floor(car. capacity / range.min));

21 }

Listing 4.5: Algorithm for spreading trash

After the trucks and trash have been generated, the number of houses needed is
known. A request to the PHP world generator is sent with the number of houses
required and the possibility of an intersection, see section 3.2.4.3 for details.

After the world is generated and sent back to the Node.js server, the world is
processed and houses are parsed and saved to the database. Afterwards the world,
trucks, trash and houses are sent to the game engine on the client.

As seen on figure 4.4 ‘DB cars’ and ‘house-trash’ operations are executed in parallel
and ‘DB houses’ and ‘house-trash’ operations are executed in a ‘waterfall’. These
methods of execution are achieved with Node.js’ Async module[20].

The parallel function runs an array of functions in parallel, without waiting until
the previous function has completed while the waterfall method runs the function
in series passing each of the functions result to the next function in the array.

1 async. waterfall ([

2 function (callback) {

3 // Add houses to db

4 async.each (houses , function (item , cb) {

5 db. add_house ({

6 x: item .x,

7 y: item .y,

8 user_games_id : sessionMgm . getSessionById (client.id)←֓

. user_games_id ,

9 index: item . index

10 }, function (data) {

11 houses[data . index]. id = data .id;

12 cb(null);

13 });

14 }, function (err) {

15 sessionMgm . getSessionById (client.id). houses = houses;

16 callback (null , houses);

17 });

18 },

19 function (houses , callback) {

42

4.2. GAME SERVER

20
21 async. parallel ({

22 trash: function (callback) {

23 // Connect houses and trash

24 async.each (trash , function (item , cb) {

25 item . house_id = getHouseForTrash (item , houses);

26 // Add trash to db

27 db. add_trash ({

28 representation : item . representation ,

29 capacity : item .capacity ,

30 house_id : item .house_id ,

31 index: item . index

32 }, function (data) {

33 trash[data . index]. id = data .id;

34 cb(null);

35 });

36 }, function (err) {

37 if (err) {

38 return callback (err);

39 }

40 sessionMgm . getSessionById (client .id). trash = ←֓

trash;

41 callback (null , trash);

42 });

43 },

44 cars : function (callback) {

45 // Save cars to DB

46 async.each (cars , function (item , cb) {

47 db. add_car ({

48 representation : item . representation ,

49 capacity : item .capacity ,

50 user_games_id : sessionMgm . getSessionById (←֓

client.id). user_games_id ,

51 index: item . index

52 }, function (data) {

53 cars [data . index]. id = data .id;

54 cb(null);

55 });

56 }, function (err) {

57 // Error happened

58 if (err) {

59 return callback (err);

60 }

61 sessionMgm . getSessionById (client .id).cars = ←֓

cars ;

62 callback (null , cars);

63 });

64 }

65 },

66 function (err , results) {

67 // results is now equals to: { trash: [..] , cars : [..]}

68 callback (null , null);

69 });

70 }

71],

72 function (err , results) {

73 // Send game data to client

74 client .emit ('world data ', {

75 cars : sessionMgm . getSessionById (client.id).cars ,

76 houses : sessionMgm . getSessionById (client.id).houses ,

43

CHAPTER 4. IMPLEMENTATION

77 trash: sessionMgm . getSessionById (client.id). trash ,

78 world: data

79 });

80 });

Listing 4.6: Asynchronous and parallel behavior of Node.js

4.2.2.2 Path finding

When a user clicks on either a house with trash or the exit tile, the client sends
a request to the server informing the server that the current user would like his
current truck to drive to this particular point.

The server validates parts of the request and then tries to find a path in the graph
representing the level using A*. If a path is found, the server sends the path
information to the client, which in turn instructs the truck to drive via the path.

4.3 WebSocket

After testing performance on WebSockets vs AJAX requests for the logging, Web-
Sockets was a clear winner.

Table 4.1: Time spend sending requests to the server. All numbers are in milliseconds

pickup trash 1 pickup trash 2 house click

Requests WS AJAX WS AJAX WS AJAX

10 3.5 86.4 4.6 80.5 5.2 49.6

100 15.7 2,103.0 12.1 2,334.1 7.8 2,717.1

1000 80.9 425,285.9 69.2 452,712.6 70.8 471,607.4

Table 4.1 shows the time it took sending a number of requests to the server based
on the type of message. The tests were performed by timing how long it took the
client to send 10, 100 and 1000 requests to the server. Each test was repeated 10
times and the table reflects the average time spent per test.

It was found that the size of an AJAX request was 157B while the WebSocket was
just 70B, a 55% size reduction per request.

Simulating a high number of concurrent users sending log data at the same time
from a single machine like this test, may not be entirely accurate, but will give
some indication of the actual performance.

The code used for finding the results from table 4.1 can be found in appendix B.

4.3.1 Socket.IO

Socket.IO is a JavaScript library for Node.js that wraps multiple protocols, but
primarily uses the WebSocket protocol. It is designed to start off with a WebSocket
connection, and if that is not successful, degrade through its fallbacks until it finds
a transport method that works.

44

4.3. WEBSOCKET

Socket.IO supports WebSocket, Adobe Flash sockets, JSONP polling and AJAX
long polling. The benefit of using Socket.IO is that it uses the same event driven
interface for all protocols, such that the developer does not have to worry about
which protocol is actually in use for a given client. This is great for availability,
because, as mentioned in section 2.3.1.3, older browsers do not support WebSockets.

Besides being a wrapper for WebSocket it also provides a lot of other useful features
such as broadcasting to multiple sockets at once, storing data associated with each
client2 and asynchronous I/O.

4.3.2 Logging

The low overhead of messages transmitted over an open WebSocket connection
provides the possibility to log a lot of data without the user ever noticing due to
the very low latency compared to making AJAX requests which, for each request
would require the client to send HTTP headers and log data before waiting for
and receiving HTTP headers confirming whether or not the log data was actually
received by the server.

The application is logging a long list of parameters. For each level, the following is
saved in the user_games table:

• User id

• Start time

• End time

• Amount of perfects

• Amount of combos

• Number range

• Final score

• Status (started, ended)

For each truck, the following is saved in the cars table:

• Representation

• Capacity

• Game id

For each package of trash, the following is saved in the trash table:

• Representation

• Capacity

2Also known as session data

45

CHAPTER 4. IMPLEMENTATION

• Game id

• House id

For each house, the following is saved in the houses table:

• X position

• Y position

• Game id

For each logged event during a level the game id is logged with a timestamp and
saved to the log table. The event can either be a click event, which contains the
following extra information and is saved in the log_eav table:

• Truck id

• Truck position

• Click coordinates

Or a trash pickup event, which contains the following extra information and is saved
to the log_eav table:

• Trash id

• Trash capacity

• Trash representation

• House id

• Truck id

• Truck capacity

• Truck representation

• Truck coordinates

• Truck fill

Most of this logging is used by the algorithms that determine the level of difficulty,
see section 3.2.4.3.

4.3.2.1 Analysis of log data

The massive amount of data saved and log data recorded during a game can be
used to more than determination of the difficulty and inspection of potential errors.
Statistics can be generated to see how a player or a group of players have performed.
Such group could be a school class, where the teacher would be able to observe any
progress or regress either overall or for each pupil. Some of the statistics that the
data is able to provide are:

46

4.4. GAME ENGINE

• Representations

– Number recognition

– Pattern recognition

• Number range

– Multiply tables

• Speed

• Correctness

• Spatial intelligence (more trucks, more trash per truck = a lot to juggle)

4.4 Game engine

The choice of game engine fell on Crafty, because of its lightweightness, ease-of-use,
documentation and features. With Crafty it is possible to create games both with
HTML elements and in the canvas element.

Because of years of prior experience working with HTML and CSS and no experience
with the canvas element, the game has been implemented with the former. Using
HTML for elements and CSS to describe them is great for rapid prototyping.

4.4.1 JavaScript and HTML

In Crafty scenes are used to describe different displays in a game. The scenes used
in this game are main and loading. The loading scene shows a text about the game
being loaded while waiting for the assets to be loaded in the browser and the game
to prepared by the game server. After this, the scene will switch to main, which is
where the action happen.

The entity-model in Crafty makes it possible to create components later to be
instantiated as entities. When working with HTML, an entity is basically just a
node in the DOM tree with some extra properties and functions. The game creates
two custom components: TilePos and Car. Because the game is tile based, each
road, house, truck, start and exit is a tile, i.e. TilePos. The truck needs some
more functionality such as movement and trash management so it also uses the Car
component. Because grass tiles are not used for anything in the game, entities are
not created for them even though the grass is being generated server-side. This
is for better performance because lots of nodes in the DOM tree can slow down a
traverse of it.

When entities are created, HTML elements are injected into the document. For
houses with trash, an element to act as an indicator is injected as a child node
to the tile. Because houses with trash should be able to be described differently
than other houses, an extra CSS-class is appended to the element. When trash is
collected from the house, both the child node and the CSS-class should be removed
from the house. Removing the child nodes and toggling CSS-classes are done with

47

CHAPTER 4. IMPLEMENTATION

jQuery[16]. jQuery is a JavaScript framework and used because of its excellent
documentation.

The graphics for the tiles are made of images. Because Crafty supports image
sprites, all the images are combined into one file as shown in figure 4.5. Each sprite
is defined and managed as seen in listing 4.7.

Figure 4.5: Image Sprite for tiles

1 Crafty. sprite (tileSize , asset_path + 'img/content - sprite .png ', {

2 road_horizontal : [0, 3],

3 road_vertical : [1, 3],

4 road_T : [2, 4],

5 road_down_T : [0, 4],

6 road_left_T : [3, 4],

7 road_right_T : [1, 4],

8 road_x : [2, 3],

9 road_right_up : [0, 5],

10 road_right_down : [3, 5],

11 road_left_up : [1, 5],

12 road_left_down : [2, 5],

13 start_up : [0, 1],

14 start_right : [1, 1],

15 start_down : [2, 1],

16 start_left : [3, 1],

17 end_up : [0, 0],

18 end_right : [1, 0],

19 end_down : [2, 0],

20 end_left : [3, 0],

21 road_end_up : [0, 2],

22 road_end_right : [1, 2],

23 road_end_down : [2, 2],

24 road_end_left : [3, 2],

25 car : [6, 0],

26 house: [3, 3]

27 });

Listing 4.7: Crafty Sprite Map

In figure 4.5 and listing 4.7 it can be seen that there are many different images for

48

4.4. GAME ENGINE

roads, one for each direction and intersection, and that there also is an image for
each direction of the truck. Two images exist for each start and exit tile in each
direction. This is because Crafty can animate between different images - in this
case making the arrows “pulse” back and forth. The same way, the image for the
truck is switched whenever it changes direction in its movement, which is enabled
by the .animate function seen in listing 4.8.

1 car = Crafty .e("TilePos , Car")

2 .attr ({ z: 11 })

3 . tilePos (start.x, start.y, 0, 'car ')

4 . initTrash (data .cars [i])

5 . animate (" walk_left ", 3, 6, 3)

6 . animate (" walk_right ", 2, 6, 2)

7 . animate (" walk_up ", 0, 6, 0)

8 . animate (" walk_down ", 1, 6, 1);

Listing 4.8: Crafty truck instantiation

To the right in the game, an entity for a sidebar is created, as well as one for
capacity, score and garage. The capacity entity shows the capacity of the current
truck, and when the player moves the cursor over a house, it shows the size of the
trash in its representation. So instead of needing space for both truck capacity and
a size of a trash package in different places, they share the same space. The score
entity shows the current score and combos (if any), and when a truck collects some
trash from a house, a new temporary entity is created on top of the house. This
entity shows the points obtained by picking up the trash and it will fly over to the
score entity, where it disappears as the points get updated. The garage entity just
shows how many trucks there are left in the game.

4.4.2 CSS

CSS is used to style everything that is not displayed with images. It makes the
background green (as grass), and it is used to give the sidebar a blue glossy look
with wells for capacity, score and garage. Representations in the capacity entity are
made big and the table representation is checkered to make it easier for the player
to count each table cell. The temporary entity created when points are obtained are
also styled with CSS as a white, round bubble with red text. Because the canvas
element is not used, Crafty itself uses CSS for the entities to make them appear at
the right positions in the game.

The movement of the truck is done with CSS-transitions, which make it float be-
tween each tile instead of jumping, when the tile position is updated with JavaScript.

To bring even more movement into the game, the indicators above the houses
with trash - which of course are styled with CSS as small white bubbles with red
exclamation marks - are animated with CSS. Listing 4.9 shows the snippet of how
to make the indicator jump up and down in the game.

Animating and transitioning with CSS is preferred over JavaScript, because CSS is
native to a browser engine while JavaScript instead is an interpreted language and
will have to modify the properties of a DOM node using timers and loops - this is
not at all optimal for many houses with indicators being animated. Because CSS is
native to a browser, the animations will be optimised which for instance can avoid

49

CHAPTER 4. IMPLEMENTATION

unnecessary calculations and repaints[28][22]. Some browsers even enable hardware
acceleration. Animating with CSS is not supported by older browsers because it
is part of CSS3, which is a drawback on availability, but because the game engine
already requires a modern browser, most animations are implemented with CSS
due to its superior performance compared with animations in JavaScript.

1 .house - trash {

2 [...]

3 transform : translate (0, -15px);

4 animation :jump 1.2s ease infinite ;

5 }

6 @keyframes jump {

7 50% {

8 transform : translate (0, -5px);

9 }

10 }

Listing 4.9: CSS3 Animation for trash indicator

The CSS-class appended to a house with trash is used to make the cursor be
displayed as a pointer when hovering a house. This indicates to the player that
the house is clickable.

4.4.3 Graphical User Interface

The game is 960x576px wide with tiles 48x48px big and contains a world with 15x12
tiles. The sidebar uses the rest of the width. Today, most computers use a screen
resolutions of at least 1366x678px[32][3], so the width, having 28 factors, will fit
both the user’s screen and the contents of the game. 48px, being one of the 28
factors, is chosen because it seems neither too little or too big. There are room for
approx 72 houses in this size, if all should be reachable and when no tiles except
start and exit can be generated near the border.

Because of the use of image sprites and CSS, it was easy to replace place-holders
with the final graphics - and it will be easy to switch between different themes. The
current theme was designed with simplicity and usability in mind without loosing
the small details that are treats for the eye.

Figure 4.6 shows how the game looks and indicates the general difficulty presented
to new players during the calibration.

As the level of difficulty is increased, the number of houses, trucks and trash will
too. The number range also follows the difficulty. To the left in figure 4.7 is a game
with slightly higher difficulty, and to the right the difficulty is much higher. In both
figures it can be seen that bogus trash has been generated and/or that the trash
for each truck have been split into more packages.

In figure 4.8 a table representation of a value can be seen. The size of the table
cells are adjusted to the width and height of the table, and the game prefers that
the table cells are square, but it is not always the case due to the limited space.

The bubble that appears when obtaining points can be seen on figure 4.9 flying
from the given house to the points entity. Note that because the trucks in both
games in the figure have been perfectly filled, they are on their way to the exit, and

50

4.4. GAME ENGINE

Figure 4.6: Screenshot of calibration level

Figure 4.7: Screenshot of levels with higher difficulty

51

CHAPTER 4. IMPLEMENTATION

Figure 4.8: Screenshot of table representation

Figure 4.9: Screenshot of obtained points. Combo included to the right

52

4.5. CLIENT AND SERVER-SIDE REFACTORING

a new truck is already driving in. This explains why it seems like the trucks have
not been filled at all; the capacities refer to the new trucks.

4.5 Client and server-side refactoring

In a client-server relationship, certain jobs can be carried out by both and the choice
rely on scalability and security. If a job is carried out by the client, it means that
the server can use less resources and that it will not be hogged, as it potentially
could be if it carried out the same job for all clients. However, without validation,
the server cannot be sure that the client actually did the job as it should - in a
game it means that cheating is possible. On the other hand, the server-side is often
faster to carry out jobs and letting it do most of the heavy lifting means that all
code is executed in one place and in one abstraction level.

The following in the game could be carried out by both the client and server:

• World generation

• Path finding

• Logging

• Database interaction

• Score calculation and tracking

If it were to be done by the client, everything should be validated before processing
it further, which is a time taking task to develop properly. To avoid this, the jobs
were all moved to the server. Path finding is not critical, as the validation could be
as simple as to make a check between timestamps when the truck starts to move and
arrives to its destination, however, some problems arose when trying to implement
A* in a Crafty component, and it was decided to move this job to the server as
well.

This could also be fixed by rewriting the client-side path finding so that it avoided
or worked around the problem that were faced with Crafty, but it would most likely
take more time.

The client is then in charge of rendering the data from the server and deciding
when3 to emit events to the server. This could be done because logging already
was planned to use sockets which is very capable handling many requests, see section
4.3. Besides giving us the benefit of all data flowing through one system so that
all data could be validated on the server-side, it also gathered all the game logic on
the server increasing maintainability.

Moving all logic to the server did present another question: How is performance

affected when the world of all connected clients are stored in memory? For the scope
of this application this might not be a problem, but nonetheless it was something

3Not all click events is emitted. For instance, some checks are done to see if it is a valid event
together with some throttling to prevent the same event from emitting too fast.

53

CHAPTER 4. IMPLEMENTATION

that has to be considered if the application should handle more than a couple of
users at a time.

Redis[30] is a fast key-value store that could be used as a session store4 to move
the session data to another server but still keep the application fast. This would
be a more expensive solution to the problem, but very scalable.

4.6 Database

As the database should be able to handle a large amount of data, it is crucial that
all columns are of correct and optimal data types, e.g. id columns are either int or
bigint and are unsigned. By comparison, unsigned int can take the maximum value
232 − 1(≈ 4.29 · 109) while it for unsigned bigint is 264 − 1(≈ 18.45 · 1018).

Figure 4.10 is a diagram of the database that has been implemented based on the
analysis and design.

Figure 4.10: Database Diagram

Compared to the database design in section 3.3, this implementation is more simple.
route, route_path and user_games_eav have been left out because they would take
too much time to implement. Instead, the data that user_games_eav should contain
will now be inserted in user_games. Because routes are not stored in the database,

4A place to store data about the current session

54

4.6. DATABASE

it will not be possible to watch a replay of a level.

All tables use InnoDB, because this engine make it possible to create SQL5 relations.
This means that if a table has a foreign key (i.e. a key that identifies a row in another
table), one can create actions for what should happen to the rows in the current
table, if the related row in the other table is updated or deleted.

These relations can be seen in the diagram. The relations and actions are stated
by SQL in listing 4.10

1 ALTER TABLE `user_games `

2 ADD CONSTRAINT `fk_user_games_games `

3 FOREIGN KEY (`games_id `) REFERENCES `games ` (`id `)

4 ON DELETE CASCADE ON UPDATE NO ACTION ;

5 ALTER TABLE `user_games `

6 ADD CONSTRAINT `fk_user_games_users1 `

7 FOREIGN KEY (`users_id `) REFERENCES `users ` (`id `)

8 ON DELETE CASCADE ON UPDATE NO ACTION ;

9 ALTER TABLE `cars `

10 ADD CONSTRAINT `fk_cars_user_games1 `

11 FOREIGN KEY (` user_games_id `) REFERENCES `user_games ` (`id `)

12 ON DELETE CASCADE ON UPDATE NO ACTION ;

13 ALTER TABLE `houses `

14 ADD CONSTRAINT `fk_houses_user_games1 `

15 FOREIGN KEY (` user_games_id `) REFERENCES `user_games ` (`id `)

16 ON DELETE CASCADE ON UPDATE NO ACTION ;

17 ALTER TABLE `trash `

18 ADD CONSTRAINT `fk_trash_houses1 `

19 FOREIGN KEY (`house_id `) REFERENCES `houses ` (`id `)

20 ON DELETE CASCADE ON UPDATE NO ACTION

21 ALTER TABLE `log `

22 ADD CONSTRAINT `fk_log_user_games1 `

23 FOREIGN KEY (` user_games_id `) REFERENCES `user_games ` (`id `)

24 ON DELETE CASCADE ON UPDATE NO ACTION ;

25 ALTER TABLE `log_eav `

26 ADD CONSTRAINT `fk_log_eav_log1 `

27 FOREIGN KEY (`log_id `) REFERENCES `log ` (`id `)

28 ON DELETE CASCADE ON UPDATE NO ACTION ;

Listing 4.10: SQL relations and actions

4.6.1 Connection Pooling

At first the Node.js server was connected to the database with a single connection.
This approached worked fine when one player was connected. When another player
started playing, the single connection quickly proved to be insufficient. The entire
system was slowed by the single connection.

Instead of opening one connection per user, the problem was approached differently.
Utilizing a connection pool the application maintains a defined number of database
connections.

The pool monitors the use of each individual connection and closes the connection
if it has been idle for a defined amount of time. When a database connection is
required, the pool is asked to return a connection to the application.

5Structured Query Language

55

CHAPTER 4. IMPLEMENTATION

If a connection is idle and thus available a connection is returned. If however, all
active connections are in use, the pool opens a new connection to the database if it
is allowed to or otherwise waits for a busy connection to free up before returning
that.

Reusing connections with a pool removes some of the overhead of opening and
closing database connections, both resource and time wise, whenever a query needs
to be executed. This is a great both for the heavy logging and the many queries
used when generating levels for many concurrent users, see section 4.6.3.

4.6.2 Queries

Because of the utilization of Node.js’ asynchronous I/O and the use of Async[20]
library a lot of things are being done in parallel, or somewhat close to parallel. This
results in a demand of a few simultaneous database connections in the generation
phase.

If the amount of database connections were to become an issue for the connection
pool explained in section 4.6.1, MySQL’s multiple row insert could be used; see
listing 4.11.

1 INSERT INTO table (keys) VALUES (..) ,(..) ,(..)

Listing 4.11: MySQL multiple row insert

Switching to MySQLs multiple row insert would mean that some of the database
work would have to be rewritten to cache the values that should be inserted and
then execute the single INSERT query after all the data to be inserted has been
processed.

Another way to optimize the queries is to re-use the ID of trucks and houses with the
same attributes as the ones generated for the level to be inserted into the database.

1 $query = mysql_query (" INSERT INTO table (keys , ...) VALUES (values ,←֓

...) ON DUPLICATE KEY UPDATE id = LAST_INSERT_ID (id);");

2 $result = mysql_insert_id ();

3 $result2 = mysql_affected_rows ();

Listing 4.12: MySQL detection of duplicate

Listing 4.12 shows how to achieve the above. After the INSERT query has been
executed, $result will contain the ID if the truck or house of either the inserted
object or the already existing one. $result2 will be an integer between 0 and 2. If
the query did not change anything, the value is 0. Otherwise $result2 will be 1 if
a new object was inserted or 2 if a duplicate was found, nothing was inserted and
only the ID of the existing object was returned.

4.6.3 Scalability

For every click on a house, 3 log queries are executed. When the truck arrives at
a house with trash, an additionally 4 INSERT queries are executed along with 1
UPDATE query.

56

4.6. DATABASE

For the first three calibration games, each game contains two trucks, two houses
and two packages of trash. If one were to get all three games perfect, that is to fill
all trucks to their exact capacity, the server would generate 42 log entries.

3 · 2 · (3 + 4) = 42
✞

✝

☎

✆4.1

At this point, it might not seem like a lot of log entries are being generated, but as
the levels progress so does the logging.

As mentioned above, a log entry is generated for each click and for each trash pick
up. That means the number of log entries can be roughly estimated with a few
assumptions. The accumulated number of trucks generated after n + 3 games can
be found by the formula given in equation 4.2 assuming that all trucks have been
filled perfectly. n notates the number of games after calibration such that C0 is the
accumulated number of trucks generated during calibration.

C0 = 6

Cn = Cn−1 +

1 + Cn−1 +

⌈

Cn−1

3

⌉

3 + n

✞

✝

☎

✆4.2

The accumulated number of trash packages for n + 3 games can be found by the
formula in equation 4.3 where T is the accumulated number of trash packages for
n + 3 games. The trash spread method shown in equation 3.5 shows that the
minimum number of packages a piece of trash can be split into is 1, while the
maximum spread is 10 at worst case.

T = C ·

[

1;
10 · 1.210

1.210

]

= C · [1; 10]
✞

✝

☎

✆4.3

If a player was to do 10 perfect games this would result in 42 trucks following
equation 4.2. Equation 4.4 can be used to find the number accumulated of trash
packages the levels would have.

T = 42 · [1; 10]

= [42; 420]

✞

✝

☎

✆4.4

The worst case scenario results in 420 · 7 = 2, 940 log entries per user, for only the
first ten games. If the game was used in a class of 20 pupils for just the first ten
games, that would result in 20 · 2, 940 = 58, 800 log entries.

unsigned int:
⌊

232 − 1

58, 800

⌋

= 73, 043
✞

✝

☎

✆4.5

unsigned bigint:
⌊

264 − 1

58, 800

⌋

= 313, 720, 137, 307, 985
✞

✝

☎

✆4.6

57

CHAPTER 4. IMPLEMENTATION

If unsigned integers were used for log id, 73,043 classes could play the first ten games
as shown in equation 4.5, while using unsigned bigint would allow vastly more classes
as seen in equation 4.6.

A popular game is often played a lot. If the pupils were to have 50 perfect games,
that would result in the trash count interval [301; 3010] and the number of log entries
in the interval [2107; 21070]. A class of 20 pupils results in 21, 070 · 20 = 421, 400.

Running the numbers again:

unsigned int:
⌊

232 − 1

421, 400

⌋

= 10, 192
✞

✝

☎

✆4.7

unsigned bigint:
⌊

264 − 1

421, 400

⌋

= 43, 774, 902, 880, 184
✞

✝

☎

✆4.8

As seen in equations 4.7 and 4.8 using bigint for the log id is far more scalable than
using int.

4.7 Speed optimizations

On the internet speed is everything[18]. Squeezing out every bit of performance is
an important aspect of web application and even moreso for games.

4.7.1 JavaScript & CSS minification and combination

In order to reduce the number and size of requests in the front end, thus making
the page load faster, a FuelPHP package named Casset6 has been implemented.
This package can minify and combine a selected number of JavaScript and CSS
files and save the results on the webserver, which it only does, if the result files
do not exist when a user visits the application. If they do, these files are fetched
instead - the minification and combination execution is therefore only executed
once. Benchmarks are shown in table 4.2 and 4.3.

Table 4.2: Minification and combination benchmarks without output compression

Raw Combined Combined + Minified
Files Size [KiB] # files Size [KiB] # files Size [KiB] # files

JavaScript 385.9 3 385 1 154 1

CSS 145.6 3 163 1 121 1

As seen when comparing tables 4.2 and 4.3 the size of the JavaScript assets went
from 385.9KB to just 41.2KB, which is a size reduction of 89%.

6A class for managing assets

58

4.8. PLATFORM COMPATIBILITY

Table 4.3: Minification and combination benchmarks with output compression

Raw Combined Combined + Minified
Files Size [KiB] # files Size [KiB] # files Size [KiB] # files

JavaScript 91.2 3 90.1 1 41.2 1

CSS 21.6 3 20.7 1 19.3 1

4.8 Platform Compatibility

The use of PHP, Node.js and MySQL allows the execution of the application on
almost all platforms, because the technologies used are open source and available
on most platforms.

4.8.1 Server-side

Web server Needed in order to run the application.

PHP The web server should support PHP version 5.3+.

MySQL Support for the engine InnoDB is required. The application has been
tested with MySQL 5.1+, which supports this.

Node.js Required to run the game server.

4.8.2 Client-side

JavaScript Required for the game engine to work.

Modern browser Needed for CSS3 animations, CSS3 transitions and WebSocket.

59

5
Results

When the game was being implemented, some choices and limitations had to be
made to meet the deadline. Some were good while others can be improved, and
some even revealed errors. The game was tested by a group of pupils which gave
important information and lead to new ideas.

5.1 Current status and limitations

The application has been developed with flexibility and extensibility in mind. It
is only required to change two areas of the code base to add a new representation;
the controller that selects a representation for an object and the renderer that is in
control of how each representation is displayed in the graphical user interface.

The application structure is relatively modular and allows for new game modes for
the current game or entirely new games. New game modes for the implemented
game could be to increase difficulty in mathematics by implementing differential
and integral equations, cosine and sinus, degree and radian conversion etc.

During the development of the game, a few assumptions have been made, and have
resulted in the following restrictions and limitations by design:

• All users have a limit on the size of the username on 50 characters.

• Also, all passwords has to be at least 4 characters long.

• Trucks do not show representations, even though representations are assigned
to them.

• Time is not used, but is being logged.

• Authentication not used in-game (see the list of known issues in section 5.1.1).

5.1.1 Known issues

Due to lack of time, some issues were not resolved. Most are low priority bugs and
will not be an immediate problem for the player, but there is one fatal error of high
priority. The list is sorted by severity.

61

CHAPTER 5. RESULTS

1. Too many frequent connections will make Node.js crash. This is caused by a
bug in the A* implementation for Node.js’ path finding.

2. The game server does not authenticate a request. It is assumed a valid user
id is given upon connection. This could be fixed by moving the user module
to Node.js.

3. Big values can be unreadable in the graphical user interface if represented by
a table. This can be solved by colouring some table cells that represent 10’s
or 100’s. Alternatively, other representations than tables could be used.

4. When the difficulty is very hard, the player sometimes get easy games with
low values (as low as 1% of the average values in the game just finished).

5. When a truck has collected trash from a house that has two or more neigh-
bouring road tiles, it might drive out on another tile than the one it drove in
from, making it look like it moves through the house. This can be fixed by
forcing the truck to drive out on the same road tile it drove into the house
from.

6. The generation of road network allows an unlimited amount of intersections.
With 32 generated trucks, the probability for an intersection is 1.2. An upper
limit should be set to avoid this.

7. The generation of trucks has no upper limit, so at one point there will be
more houses than there is space for. This can be fixed by calculating the
maximum amount of houses a game can have and make this the upper limit;
each truck would then have to collect one trash package, i.e. they would not
be spread.

5.1.2 Reflections on implementation

While the game has been implemented satisfactory and acts like described in game
design with only a few known issues and alterations, moving all server-side func-
tionality to Node.js would be a good idea. As already mentioned, during the im-
plementation more and more tasks were moved from PHP to Node.js because of its
superior performance. Even though Node.js has been designed to run in a single
thread, the Cluster module[2] can be used to take advantage of multi-core systems
by launching a cluster of Node.js processes in different threads which will improve
scalability even more. Moving all server-side functionality to one platform would
also increase maintainability and reduce latency. Because of the extensive experi-
ence with PHP and FuelPHP and little-to-nothing with Node.js at the beginning
of this project, it is doubtful that the game and application would have got to
the same status if only the latter was used. If only using Node.js server-side, user
management could be implemented with the Passport module[11] while the web
application and static files could be served using Express[12].

The log data is saved in a EAV-model in the MySQL database, which is highly flex-
ible, but can lead to an anti-pattern and more complex and heavy queries compared
to a relationally-modelled data schema. If not using EAV, one would have to create
tables for each log type, and this could quickly add up. A better approach would

62

5.2. USABILITY TESTS

be to use a NoSQL database such as MongoDB, which gives the same flexibility as
the EAV-model but better query performance.

It is doubtful that using a canvas element for the graphical user interface would
increase performance, and because the graphics have worked flawlessly on every
computer tested, some more than five years old, using HTML5 and CSS3 seemed
not to be a problem. Refactoring functionality between client-side and server-side
is a never-ending topic and the needs will depend on scalability and the hardware
on the server as well as the deemed hardware on the clients.

While the educational subject of the game is addition and multiplication, it has
been developed with extensibility in mind as described in section 5.1. Spelling
could also be added for instance by having the truck carry words such as ‘a’, ‘an’
and ‘the’ with the goal of pairing it with a house that contained a noun. Even
learning new languages could also be an interesting twist, by translating word by
word or even sentences. These ideas for other interactive games are easily supported
by the database. This way, the back end could act like a shared platform for games
used for education.

5.2 Usability tests

Monday 10th of June 2013, the game was played by pupils from three different
classes at Skolen ved Bülowsvej, Frederiksberg, Denmark, which made it possible
to study both quantitative and qualitative how the game was experienced and
played. It were second grade, third grade and fourth grade pupils, which represent
the mid and upper part of the target audience of the game.

Each test was started with a very short introduction to the game, but the rules and
concept were not told. This meant, for all classes, that some pupils needed help
understanding the game while others figured it out right away.

5.2.1 Technical Environment

The application was tested with two setups. Initially, the application was hosted
on Amazon’s AWS1 using EC22 with 615 MiB of memory and one virtual core. For
the database RDS3 was used with 630 MiB memory, both on Amazon’s free tier.

Because of issues with connectivity for the users, the setup was switched to a private
server. This provided 6 physical cores at 3.2 GHz bursting up to 3.6 GHz and 16
GiB dedicated RAM4. This setup decreased the connectivity issues.

All pupils used Google Chrome version 27.0.1453.110 and the internet connection
was measured to 30+/20+ Mbit/s.

1Amazon Web Services
2Amazon Elastic Compute Cloud
3Amazon Relational Database Service
4Random Access Memory

63

CHAPTER 5. RESULTS

5.2.2 Third grade pupils

The first class to test the game was a third grade class. This was the only test
carried out with the AWS setup.

The following were experienced by one or more players:

• Trouble in understanding the mouse gestures

• Not knowing how to drive out the truck if it is not filled and there is no more
trash (i.e. other trucks have been filled improperly)

• The game was too easy

• Progressed in harder difficulty fast

• Waited patiently during the AWS server problems instead of playing another
game also being tested that day

Most of the pupils that figured out the game on their own also started comparing
their score to their neighbour. Due to the nature of the adaptive difficulty, section
3.2.4.3, and the point system, section 3.2.4.5, directly comparing scores does in no
way show how they perform compared to each other.

This problem of competitive behaviour was discussed and one solution to the prob-
lem was to convert the score to some kind of currency that could be used to increase
the longevity of the game by allowing customization to the game.

To embrace the competitive behaviour of the pupils, to keep them playing the game,
a form of score index that indicated their score relative to a max score for their
level and factor in their own progression level could be implemented. The pupils
would then compete with each other by how much they have learned, such that
even the ones that are not good at mathematics can be in the competition.

If such a score index was implemented a fun way to inspire the players could be to
add live updates, so that each time a pupil in the class completes a game, all those
in that class will receive an instant update saying that X just completed a game

with score index Y. Such live updates could even inspire the players even more.

The points for each game could be converted to credits, which the user could use
to buy cosmetics or functionality. Credits coupled with a score index seems like a
good choice to increase the game’s longevity and the pupils’ interest in the game.

5.2.3 Second grade pupils

After the setup was moved to the private server, the tests went better, but some
computers were falling back to long polling when playing the game, while other
computers at the same time could play the game just fine. The computers that fell
back to long polling would show a black screen.

The following were experienced by one or more players:

64

5.2. USABILITY TESTS

• Trouble in understanding the representation display - that both truck and
trash were showed in the same spot

• Trouble in understanding the “current fill / capacity” display of the truck

• Many wanted help from the start

• One half meant the game was too easy, the other half that it was too hard

• Questioned whether the game could be played after school hours

• Trouble in understanding how to make the truck drive

5.2.4 Fourth grade pupils

During this test there were no server problems at all. There were two pupils for
each computer.

The following were experienced by one or more players:

• Kept clicking at the same house even though the truck was moving for it

• Pressed keys corresponding to the values in a trash package as if it would do
something

One of the pupils mentioned that he missed some more interactivity and suggested
that when clicking on a house to instruct the truck to make a pickup, one should
first solve the representation. If the trash for instance was given as an equation
x · y, he proposed that he should type xy before the truck would pick up the trash.

5.2.5 Reflection on obtained data

In the usability tests carried out in the three classes, more than 200 games were
completed which yielded more than 3200 entries in the log_eav table of the database.
This quantitative data can be used for statistics, which can be reflected on together
with the qualitative assessments made in each class. The statistics found in this
section are based entirely on some of the before mentioned log data and are made
with the Log Analyser tool found in appendix D.

The qualitative assessments from the usability tests showed that the game was not
intuitive for all pupils, and that it was too easy for those who understood it right
away. Our own assessment before the tests was that the difficulty engine might
have been made to increase the levels too fast.

Figure 5.1 shows how the three classes performed averagely. Some pupils played
more than six games, but this was the number of games that all pupils got to
play. The qualitative assessment of the pupils showed that many found the game
to be too easy, the figure shows the same – an average correctness percentage of
80-90% is very good – however, six games is not enough to conclude whether the
difficulty engine should be tweaked, but combined with the qualitative assessment,
it is sufficient to conclude that the starting difficulty ought to be at a higher level;

65

CHAPTER 5. RESULTS

Games

Correctness

1 2 3 4 5 6
50

60

70

80

90

100

2nd grade

3rd grade 4th grade

Figure 5.1: Correctness percentage for games completed by the entire classes

it could be modified by setting different ranges for each age or class – or letting the
teacher do it.

Figures 5.2, 5.3 and 5.4 show that the difficulty engine works by generating trucks
and therefore packages of trash based on the player’s performance. The number
range is not visible on the figures, but this adapts as well. In figure 5.2 it can be
seen that the 6th game has an increased level of difficulty, where the player fills no
truck perfectly. In the 7th game, the level of difficulty is therefore decreased again.

Figure 5.3 shows that the player has some difficulties in the first few games, but
catches up – perhaps because we or another pupil told how to play the game. It is
again seen that the number of trucks is decreased whenever the performance is not
(near) perfect and increased when it is.

Figure 5.4 shows a player from the 2nd grade class that performs perfectly, i.e.
solves all mathematical problems correctly. The player pointed out that he or she
did not find the game difficult at all, but quite enjoyable. When asked if he or she
had noticed an increase in the number of houses and trucks and a higher number
range, this was confirmed, but it was not enough to challenge the skill of this player.

In figure 5.5 it is indicated that the player either misses the point of the game
or that he or she just plays with no desire in solving the mathematical problems
correctly. After playing 22 games by clicking on what seems to be totally random
houses, something happens and the rest of the games are played perfectly. It could
be us, a teacher or other pupils telling the player how the mathematical problems
ought to be solved.

In the beginning, the pupils generally had difficulties in understanding the game
concept, which indicates that the gameplay is not fully intuitive. A short intro-
duction to the rules could be shown, but the pupils might skip it if they are able

66

5.2. USABILITY TESTS

Games

Perfects

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4
Actual

Possible

Figure 5.2: A player from 2nd grade experiencing adapting difficulty

Games

Perfects

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

Actual

Possible

Figure 5.3: A player from 4th grade experiencing adapting difficulty

67

CHAPTER 5. RESULTS

Games

Perfects

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4
Actual

Possible

Figure 5.4: A player from 2nd grade solving all games perfectly

Games

Perfects

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

1

2

Actual

Possible

Figure 5.5: A player from 2nd grade possibly clicking on random houses

68

5.3. FUTURE WORK

to – the rules are already present in the application and will be displayed with the
click of a button. While the pupils in general found the played levels very easy,
they found it enjoyable and applauded the combination of play and teaching. Some
pupils wanted more interactivity in the game or wanted secondary objectives while
the truck was driving. Clearly this shows that either click gestures are too little
interactivity, or that the truck drives too slowly – or both.

5.3 Future work

Looking at the results from the usability tests and the implementation itself, there
is clearly room for improvements. Besides fixing the known errors and use differ-
ent technologies for parts of the game, as described in section 5.1, the game and
application show potential for increasing the user and learning experience if some
features are added or changed.

5.3.1 Improved difficulty engine

The difficulty engine could be tweaked to better and faster adapt to the skill level
of each player. Various solutions exist, such as:

• Increase the difficulty faster in levels of lower difficulty

• Make assumptions on the players’ skills based on specific actions

• Use time as a parameter

• Use age or class as a parameter

5.3.2 Improved User Interface

It could be clearer to the player when a combo is obtained and how big it is. A
horizontal or vertical bar that in which small parts will be coloured whenever the
combo increases could be used. In order for the pupil to get more attached to
the content in the game, the city could have a name from a real city in Denmark.
Preferably from a list containing the city names near the player.

Sounds have not been discussed or used in the game, but sound can do as much
impression on the player as the visuals. Crafty support audio through HTML5, and
playing sounds for the truck movement, trash pick up and combo increase would
be a good idea.

The first level could act like a tutorial for how to play the game. This would intro-
duce the concept more actively than just displaying the rules as a text somewhere
in the application.

69

CHAPTER 5. RESULTS

5.3.3 Administrative Performance Monitoring

Expanding the ACL5 for teacher users by giving them control over their respective
classes and pupils would be a good idea. This way the teacher would be able to
get statistics of how a pupil or class performs. The teacher would then be able to
monitor how a player progresses, which gives the teacher a good reason to include
the game in the lessons.

5.3.4 Improved Motivation

As previously described in section 2.2.6.2, achievements are a great motivator. As
the game engine is already logging a lot of data while the game is being played,
implementing achievements should be an easy task that could greatly benefit the
game in the form of increased motivation for the players.

Moreover, the game could indicate whenever the player performs well by showing
encouraging messages and playing specific sounds.

5.3.5 Improved Score System

An algorithm such as B*[1] could be used to calculate the best score possible for a
game. The final score given to the player could then be based on the performance
relative the best possible score in that level.

Because the level of difficulty adapts to each player’s skill, the score system could
also be more global, such that players do not compare their score on a level basis,
but rather on an overall basis. This could be achieved by introducing some sort
of wallet, where points obtained in each level would be converted to some credits
and added to the wallet. Such credits could then be used to unlock new features
or purchase things for the game.

5.3.6 Educational Gaming Platform

As mentioned in section 5.1.2, the application could be used as a platform contain-
ing different games for teaching. Schools and teachers would then have a single
centralized place to visit when wanting to include digital solutions in the teaching
material.

5Access Control List

70

6
Conclusion

An interactive game for teaching elementary mathematics has been engineered suc-
cessfully. The game is about filling garbage trucks with trash from houses such that
the trucks neither end up with too little or too much trash. Only mouse-gestures
are needed in the game, and addition and mulitplication problems are displayed
to the player with different representations, namely basic multiplication equations,
areas of tables and numbers. The player is rewarded with points and bonus points
on correct solutions, and the level of difficulty will adapt to each individual’s skills
by examining log data about the player’s performance from previous levels.

The implementation of the game is browser based and has been developed with
PHP, Node.js, WebSocket, MySQL, JavaScript, HTML and CSS, but the architec-
ture can be simplified by moving the PHP implementation to Node.js, thus running
the server entirely on the latter. MongoDB seems more ideal for a database solution
because of its storage pattern similar to the EAV model used for log data.

Usability tests on second to fourth grade pupils showed that the pupils could identify
the mathematical problems presented to them in the game. The tests also showed
that the game design was not completely intuitive, but once the pupils got the hang
of it, it was an enjoyable experience.

71

References

[1] B*, June 2013. http://en.wikipedia.org/wiki/B*.

[2] Cluster node.js v0.10.12 manual & documentation, June 2013. http://

nodejs.org/api/cluster.html.

[3] Screen resolution statistics, June 2013. http://www.screenresolution.org/.

[4] 10gen Inc. Mongodb, June 2013. http://www.mongodb.org/.

[5] Batiste Bieler. Sprite.js framework, June 2013. https://github.com/

batiste/sprite.js/.

[6] Tom S. Chan and Terence C. Ahem. Targeting motivation – adapting flow
theory to instructional design. Journal of Educational Computing Research,
21(2):151 – 163, 1999.

[7] Crafty. Crafty - javascript game engine, html5 game engine, June 2013.
http://craftyjs.com/.

[8] Ubiquitous Entertainment Inc. / enchant.js Inc. enchant.js - a simple javascript
framework for creating games and apps, June 2013. http://enchantjs.com/.

[9] Mary Jo Foley. A new year, a new microsoft roadmap: Step-
ping up the delivery pace, January 2013. http://www.zdnet.com/

a-new-year-a-new-microsoft-roadmap-stepping-up-the-delivery-pace-7000009402/.

[10] FuelPHP. FuelPHP documentation, 3 2013. http://docs.fuelphp.com.

[11] Jared Hanson. Passport - simple, unobtrusive authentication for node.js., June
2013. http://passportjs.org/.

[12] TJ Holowaychuk. Express - node.js web application framework, June 2013.
http://expressjs.com/.

[13] Andy Ide. Php just grows & grows, January 2013. http://news.netcraft.

com/archives/2013/01/31/php-just-grows-grows.html.

[14] Activision Publishing Inc. Guitar hero, June 2013. http://guitarhero.com/.

[15] Electronic Arts Inc. Simcity official website, June 2013. http://www.simcity.

com/.

[16] jQuery. jQuery documentation, 3 2013. http://docs.jquery.com.

[17] AL Kalet, HS Song, U Sarpel, R Schwartz, J Brenner, TK Ark, and J Plass.
Just enough, but not too much interactivity leads to better clinical skills perfor-
mance after a computer assisted learning module. Medical Teacher, 34(10):833–
839, 2012.

[18] Steve Lohr. For impatient web users, an eye blink is just too long to
wait, February 2012. http://www.nytimes.com/2012/03/01/technology/

impatient-web-users-flee-slow-loading-sites.html.

73

http://en.wikipedia.org/wiki/B*
http://nodejs.org/api/cluster.html
http://nodejs.org/api/cluster.html
http://www.screenresolution.org/
http://www.mongodb.org/
https://github.com/batiste/sprite.js/
https://github.com/batiste/sprite.js/
http://craftyjs.com/
http://enchantjs.com/
http://www.zdnet.com/a-new-year-a-new-microsoft- roadmap-stepping-up-the-delivery-pace-7000009402/
http://www.zdnet.com/a-new-year-a-new-microsoft- roadmap-stepping-up-the-delivery-pace-7000009402/
http://docs.fuelphp.com
http://passportjs.org/
http://expressjs.com/
http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html
http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html
http://guitarhero.com/
http://www.simcity.com/
http://www.simcity.com/
http://docs.jquery.com
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html

REFERENCES

[19] Adobe Systems Software Ireland Ltd. Flash to html5, June 2013. http://

www.adobe.com/dk/products/flash/flash-to-html5.html.

[20] Caolan McMahon. Async utilities for node and the browser, June 2013.
https://github.com/caolan/async.

[21] Microsoft. Microsoft support lifecycle, June 2013. http://support.

microsoft.com/lifecycle/?LN=en-us&c2=12905.

[22] Mozilla Developer Network. Using css animations, June 2013. https://

developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_

animations.

[23] Donald A. Norman. Things that make us smart: Defending human attributes
in the age of the machine. page 38, 1993. ISBN 978-0201626957.

[24] Ministry of Children and Education. Digital solutions
strengthen the education of all pupils. Press release, 06 2013.
http://eng.uvm.dk/News/~/UVM-EN/Content/News/Eng/2013/

130405-Digital-solutions-strengthen-the-education-of-all-pupils.

[25] Ministry of Children and Education. Gør en god skole bedre
- et fagligt løft af folkeskolen. PDF, 06 2013. ISBN 978-87-
92985-06-4. http://www.uvm.dk/I-fokus/Goer-en-god-skole-bedre/

Laes-udspillet-Goer-en-god-skole-bedre.

[26] Amit Patel. Heuristics, June 2013. http://theory.stanford.edu/~amitp/

GameProgramming/Heuristics.html.

[27] Q-Success. Usage statistics and market share of node.js for websites, June
2013. http://w3techs.com/technologies/details/ws-nodejs/all/all.

[28] Siddharth Rao. Css3 vs jquery animations, June 2013. http://dev.opera.

com/articles/view/css3-vs-jquery-animations/.

[29] Charles Roe. Acid vs. base: The shifting ph of database trans-
action processing, June 2013. http://www.dataversity.net/

acid-vs-base-the-shifting-ph-of-database-transaction-processing/.

[30] Salvatore Sanfilippo. Redis, June 2013. http://redis.io/.

[31] solid IT. Db-engines ranking - popularity ranking of database management
systems, June 2013. http://db-engines.com/en/ranking.

[32] StatCounter. Screen resolution alert for web devel-
opers, June 2013. http://gs.statcounter.com/press/

screen-resolution-alert-for-web-developers.

[33] Microsoft Studios. Age of empires, June 2013. http://www.ageofempires.

com/.

[34] Inc. Take-Two Interactive Software. Sid meier’s civilization, June 2013.
http://www.civilization.com/.

[35] Unity Technologies. Unity - game engine, June 2013. http://unity3d.com/.

74

http://www.adobe.com/dk/products/flash/flash-to-html5.html
http://www.adobe.com/dk/products/flash/flash-to-html5.html
https://github.com/caolan/async
http://support.microsoft.com/lifecycle/?LN=en-us&c2=12905
http://support.microsoft.com/lifecycle/?LN=en-us&c2=12905
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_animations
http://eng.uvm.dk/News/~/UVM-EN/Content/News/Eng/2013/130405-Digital-solutions-strengthen-the-education-of-all-pupils
http://eng.uvm.dk/News/~/UVM-EN/Content/News/Eng/2013/130405-Digital-solutions-strengthen-the-education-of-all-pupils
http://www.uvm.dk/I-fokus/Goer-en-god-skole-bedre/Laes-udspillet-Goer-en-god-skole-bedre
http://www.uvm.dk/I-fokus/Goer-en-god-skole-bedre/Laes-udspillet-Goer-en-god-skole-bedre
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
http://w3techs.com/technologies/details/ws-nodejs/all/all
http://dev.opera.com/articles/view/css3-vs-jquery-animations/
http://dev.opera.com/articles/view/css3-vs-jquery-animations/
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
http://redis.io/
http://db-engines.com/en/ranking
http://gs.statcounter.com/press/screen-resolution-alert-for-web-developers
http://gs.statcounter.com/press/screen-resolution-alert-for-web-developers
http://www.ageofempires.com/
http://www.ageofempires.com/
http://www.civilization.com/
http://unity3d.com/

REFERENCES

[36] Danny Winokur. Flash to focus on pc browsing and mobile apps; adobe to
more aggressively contribute to html5, November 2011. http://blogs.adobe.

com/conversations/2011/11/flash-focus.html.

75

http://blogs.adobe.com/conversations/2011/11/flash-focus.html
http://blogs.adobe.com/conversations/2011/11/flash-focus.html

A
Use cases

There is one type of actor in the game:

• Player: User logged in

A.1 Moving cursor over and out of house

Actor: Player

Scenario:

• Starts a new game

• Moving cursor over a house with a given trash size

• Trash size displayed to the player in its representation

• Moving cursor out of said house

• Trash size hidden to the player

Alternative scenarios:

1. Clicked house has no trash

• Nothing happens

A.2 Clicking on a house

Actor: Player

Scenario:

• Starts a new game

• Clicks on a house with a trash size matching current truck capacity

• Truck drives to house and collects the trash

77

APPENDIX A. USE CASES

• Full points and a combo bonus are given to player

• Truck drives to exit

Alternative scenarios:

1. Clicked house has too much trash compared to current truck capacity

• Truck drives to house and collects the trash

• Points subtracted a penalty are given to player

• Truck drives to exit

2. Clicked house has too little trash compared to current truck capacity

• Truck drives to house and collects the trash

• Points subtracted a penalty are given to player

3. Clicked house has no trash

• Nothing happens

A.3 Changing path of a moving truck

Actor: Player

Scenario:

• Starts a new game

• Clicks on a house with trash

• Truck drives to house

• Clicks on another house with trash before truck reaches first house

• Path is changed and truck drives to that house instead

Alternative scenarios:

1. Truck reaches first house before second click

• A new path is given when clicking on another house

A.4 Clicking on exit

Actor: Player

Scenario:

• Starts a new game

78

A.4. CLICKING ON EXIT

• Clicks on exit tile

• Truck drives to exit

• Next truck in the garage drives in

Alternative scenarios:

1. There are no trucks in the garage

• Game ends

79

B
WebSocket and AJAX timings

1 var app = require ('express ')()

2 , server = require ('http '). createServer (app)

3 , io = require ('socket.io '). listen(server);

4
5 server. listen (1337);

6
7 // io. configure (function (){

8 // io.set ('log level ', 1);

9 // });

10
11 app.get('/', function (req , res) {

12 res. sendfile (__dirname + '/ index.html ');

13 });

14 app.post ('/ajax ', function (req , res) {

15 res. writeHead (200 , {'Content -Type ' : 'text / plain '});

16 res.end ();

17 });

18
19 io. sockets .on('connection ', function (client) {

20
21 _events = [];

22
23 client .on('dom ready ', function () {

24 client .emit ('start ');

25 })

26
27 // socket .emit (' pickup trash ', {id: getCurrentCar ().id , x: ←֓

getCurrentCar ()._posX , y: getCurrentCar (). _posY}, {}, true);

28 // socket .emit (' pickup trash ', {id: this_car .id , x: this_car .←֓

_posX , y: this_car . _posY}, trash.id);

29 client .on('pickup trash 1', function (var1 , var2 , var3) {

30 if (! _events ['pickup trash 1']) _events ['pickup trash 1'] =←֓

0;

31 // Thank you!

32 _events ['pickup trash 1']++;

33 console .log("Got pickup trash " + _events)

34 });

35 client .on('pickup trash 2', function (var1 , var2 , var3) {

36 if (! _events ['pickup trash 2']) _events ['pickup trash 2'] =←֓

0;

37 // Thank you!

38 _events ['pickup trash 2']++;

39 console .log("Got pickup trash " + _events)

40 });

41

81

APPENDIX B. WEBSOCKET AND AJAX TIMINGS

42 // socket .emit (' house click ', {id: getCurrentCar ().id , x: x, y:←֓

y}, {x: this ._posX , y: this . _posY });

43 client.on('house click ', function (var1 , var2) {

44 console .log("Got house click")

45 if (! _events ['house click']) _events ['house click'] = 0;

46 // Thank you!

47 _events ['house click ']++;

48 });

49
50 client.on('_events ', function (name) {

51 console .log("Got _events ")

52 client .emit ('_events ', _events [name], name);

53 _events [name] = 0;

54
55 client .emit ('start ', name);

56 })

57 });

Listing B.1: app.js

1 <html >

2 <body >

3 <script src ="http :// localhost :1337/ socket .io/ socket.io.js" ></script ←֓

>

4 <script src =" https :// ajax . googleapis .com /ajax /libs / jquery /1.6.4/←֓

jquery.min.js" ></script >

5 <script >

6
7 var count = 1000;

8 var repeats = 10;

9
10 var times = [];

11 var results = {

12 socket: [],

13 ajax : []

14 };

15
16 var socket = io. connect (document . location .href);

17
18 socket.on(' _events ', function (count , name) {

19 var time = new Date () - times[name];

20
21 if (! results . socket[name]) results . socket [name] = [];

22 results . socket [name]. push (time);

23
24 console .log ("["+name +"] " + count + " in " + time + " ms");

25 console .log ("["+name +"] " + (count/time). toFixed (3) + " req/ms");

26 console .log ("["+name +"] " + ((count/ time) *1000). toFixed (3) + " ←֓

req/sec");

27 });

28
29 var requests = 0;

30
31 socket.on(' start', function (name) {

32 if (! name) {

33 console .log('start 1st socket ');

34 // socket .emit (' pickup trash ', {id : getCurrentCar ().id , x: ←֓

getCurrentCar ()._posX , y: getCurrentCar (). _posY}, {}, true);

35 times[' pickup trash 1'] = new Date ();

36 for (var i = 0; i < count; i++) {

37 socket .emit ('pickup trash 1', {id : i, x: i, y: i}, {}, true);←֓

82

// LENGTH: 67, i < 10

38 };

39 socket .emit ('_events ', 'pickup trash 1');

40 } else if (name == 'pickup trash 1') {

41 console .log('start 2nd socket ');

42 // socket .emit (' pickup trash ', {id: this_car .id , x: this_car .←֓

_posX , y: this_car . _posY}, trash.id);

43 times['pickup trash 2'] = new Date ();

44 for (var i = 0; i < count; i++) {

45 socket .emit ('pickup trash 2', {id: i, x: i, y: i}, i); // ←֓

LENGTH : 61, i < 10

46 };

47 socket .emit ('_events ', 'pickup trash 2');

48 } else if (name == 'pickup trash 2') {

49 console .log('start 3rd socket ');

50 // socket .emit (' house click ', {id : getCurrentCar ().id , x: x, y:←֓

y}, {x: this ._posX , y: this . _posY });

51 times['house click'] = new Date () ;

52 for (var i = 0; i < count; i++) {

53 socket .emit ('house click', {id : i, x: i, y: i}, {x: i, y: i})←֓

; // LENGTH: 70, i < 10

54 };

55 socket .emit ('_events ', 'house click ');

56 } else if (name == 'house click') {

57 requests ++;

58 if (requests == repeats) {

59 // And the same for AJAX

60 requests = 0;

61 setTimeout (function () {

62 a1 ();

63 }, 2000); // Wait 2 sec

64 } else {

65 // Start another round

66 setTimeout (function () {

67 socket .emit ('dom ready');

68 }, 1000); // Wait 2 sec

69 }

70 }

71 })

72
73 var c1 = 0, c2 = 0, c3 = 0;

74 function a1 () {

75 console .log(" Start 1st ajax ");

76 c1 = 0;

77 for (var i = 0; i < count; i++) {

78 var start_time = new Date ();

79 var time = 0;

80 $.ajax ({

81 type : "POST ",

82 url : "/ajax ",

83 data : { first: {id: i, x: i, y: i}, second : {}, third: true←֓

},

84 timeout : 10000 ,

85 success : function (data) {

86 var end_time = new Date () ;

87 time += end_time - start_time ;

88 c1 ++;

89 if (c1 == count) {

90 console .log ("[AJAX][pickup trash 1] " + count + " in ←֓

" + time + " ms");

83

APPENDIX B. WEBSOCKET AND AJAX TIMINGS

91 console .log ("[AJAX][pickup trash 1] " + (count/time).←֓

toFixed (3) + " req/ms");

92 console .log ("[AJAX][pickup trash 1] " + ((count/time)←֓

*1000). toFixed (3) + " req /sec");

93
94 if (! results ['ajax ']['pickup trash 1']) results ['ajax←֓

']['pickup trash 1'] = [];

95 results ['ajax ']['pickup trash 1']. push (time);

96
97 // Fire next ajax test

98 a2 ();

99 }

100 },

101 error : function (jqXHR , textStatus , errorThrown) {

102 console .log(' Error: ' + textStatus + " " + errorThrown)←֓

;

103 }

104 });

105 };

106 }

107
108 function a2 () {

109 console .log (" Start 2nd ajax ");

110 c2 = 0;

111 for (var i = 0; i < count; i++) {

112 var start_time = new Date ();

113 var time = 0;

114 $.ajax ({

115 type : "POST ",

116 url : "/ajax ",

117 data : { first: {id : i, x: i, y: i}, second: i },

118 timeout : 10000 ,

119 success : function (data) {

120 var end_time = new Date ();

121 time += end_time - start_time ;

122 c2 ++;

123 if (c2 == count) {

124 console .log ("[AJAX][pickup trash 2] " + count + " in ←֓

" + time + " ms");

125 console .log ("[AJAX][pickup trash 2] " + (count/time).←֓

toFixed (3) + " req/ms");

126 console .log ("[AJAX][pickup trash 2] " + ((count/time)←֓

*1000). toFixed (3) + " req /sec");

127
128 if (! results ['ajax ']['pickup trash 2']) results ['ajax←֓

']['pickup trash 2'] = [];

129 results ['ajax ']['pickup trash 2']. push (time);

130
131 // Fire next ajax test

132 a3 ();

133 }

134 },

135 error : function (jqXHR , textStatus , errorThrown) {

136 console .log(' Error: ' + textStatus + " " + errorThrown)←֓

;

137 }

138 });

139 };

140 }

141

84

142 function a3 () {

143 console .log(" Start 3rd ajax ");

144 c3 = 0;

145 for (var i = 0; i < count; i++) {

146 var start_time = new Date ();

147 var time = 0;

148 $.ajax ({

149 type : "POST ",

150 url : "/ajax ",

151 data : { first: {id: i, x: i, y: i}, second : {x: i, y: i} },

152 timeout : 10000 ,

153 success : function (data) {

154 var end_time = new Date () ;

155 time += end_time - start_time ;

156 c3 ++;

157 if (c3 == count) {

158 console .log ("[AJAX][house click] " + count + " in " +←֓

time + " ms");

159 console .log ("[AJAX][house click] " + (count/time).←֓

toFixed (3) + " req/ms");

160 console .log ("[AJAX][house click] " + ((count/time)←֓

*1000). toFixed (3) + " req/sec");

161
162 if (! results ['ajax '][' house click']) results ['ajax '][←֓

'house click '] = [];

163 results ['ajax ']['house click']. push (time);

164
165 requests ++;

166 if (requests == repeats) {

167 done ();

168 } else {

169 setTimeout (function () {

170 a1 ();

171 }, 1000); // Wait 2 sec

172 }

173 }

174 },

175 error : function (jqXHR , textStatus , errorThrown) {

176 console .log ('Error: ' + textStatus + " " + errorThrown)←֓

;

177 }

178 });

179 };

180 }

181
182 $(document). ready(function () {

183 socket. emit ('dom ready ');

184 });

185
186 function done () {

187 console .log(" Parsing .. ")

188 var types = ['pickup trash 1','pickup trash 2',' house click'];

189 $s = 'type ,size ,' + types.join (',') + "\n";

190 $s += 'socket ,'+ count+',';

191 for (var i = 0; i < types. length; i++) {

192 $s += avg(results . socket [types[i]]) + ',';

193 };

194 // Remove last ,

195 $s = $s . substring (0, $s. length - 1) + "
\n";

196

85

APPENDIX B. WEBSOCKET AND AJAX TIMINGS

197 $s += "ajax ,"+ count+',';

198 for (var i = 0; i < types. length; i++) {

199 $s += avg (results .ajax [types[i]]) + ',';

200 };

201 // Remove last ,

202 $s = $s. substring (0, $s . length - 1);

203 $s += "\n";

204 document . write($s. replace ("\n","
"));

205
206 }

207
208 function avg (times) {

209 var sum = times. reduce(function (a, b) { return a + b });

210 var avg = sum / times. length ;

211 return avg ;

212 }

213
214 </script >

215 <div id=" users">Hello!</ div >

216 <div style=" float:left ; height :250 px; overflow :scroll -y; padding :10 px ;←֓

">

217 <div id=" chat " ></div >

218 </div >

Listing B.2: index.html

86

C
World generator

1 <?php

2
3 namespace World;

4
5 class World {

6 private $grid = array ();

7 private $intersections = array();

8 private $intersection_coords = array ();

9 private $houses = array ();

10
11 private $intersection_pct = 0;

12
13 private $start = array ();

14 private $end = array ();

15
16 private $debug = false;

17
18 public function __construct ($nx , $ny = false , $house_pct = ←֓

0.05 , $pct = 0.05 , $allow_nearby_house = true , $house_count ←֓

= false , $random_start = true)

19 {

20 if (! $ny) {

21 $ny = $nx;

22 }

23 $this -> intersection_pct = $pct ;

24
25 for ($i =0; $i < ($nx * $ny); $i ++) {

26 $this -> intersections [$i] = array(

27 'x' => 0,

28 'y' => 0

29);

30 }

31
32 if ($random_start) {

33 // Start placed north , south , east or west ?

34 switch(rand (0 ,3)) {

35 case 0:

36 // North

37 $this -> start = array (0, rand (1, $ny -2));

38 $this ->end = array($nx -1, rand (1, $ny -2));

39 break;

40 case 1:

41 // South

42 $this -> start = array($nx -1, rand (1,$ny -2));

43 $this ->end = array (0, rand (1,$ny -2));

44 break;

87

APPENDIX C. WORLD GENERATOR

45 case 2:

46 // East

47 $this -> start = array(rand (1,$nx -2) ,$ny -1);

48 $this ->end = array(rand (1,$nx -2) ,0);

49 break;

50 case 3:

51 // West

52 $this -> start = array(rand (1,$nx -2) ,0);

53 $this ->end = array(rand (1,$nx -2) ,$ny -1);

54 break;

55 }

56 } else {

57 $this -> start = array (1 ,0);

58 $this ->end = array($n -2 ,0);

59 }

60
61 for ($i =0; $i < $nx ; $i ++) {

62 for ($j =0; $j < $ny; $j ++) {

63 if ($this -> start == array($i ,$j) || $this ->end == ←֓

array($i ,$j)) {

64 $this ->grid [$i][$j] = Types:: $TYPE_INTERSECTION ←֓

;

65 $this -> intersection_coords [] = array('x' => $i ,←֓

'y' => $j);

66 $this -> intersections [$i]['x']++;

67 $this -> intersections [$j]['y']++;

68 } else if ($i == 0 || $j == 0 || $i == $nx -1 || $j ←֓

== $ny -1) {

69 $this ->grid [$i][$j] = Types:: $TYPE_WALL ;

70 } else {

71 // var isWall = Math . floor(Math . random () *(/←֓

wallFrequency));

72 $intersection = (rand (0 ,1000) / 1000) <= $pct ;

73
74 if ($intersection) {

75 if ($this -> canHaveIntersection ($i ,$j)) {

76 $this ->grid [$i][$j] = Types ::←֓

$TYPE_INTERSECTION ;

77 $this -> intersection_coords [] = array('x←֓

' => $i , 'y' => $j);

78 $this -> intersections [$i]['x']++;

79 $this -> intersections [$j]['y']++;

80 $pct = $this -> intersection_pct ;

81 } else {

82 $this ->grid [$i][$j] = Types ::←֓

$TYPE_GRASS ;

83 }

84 } else {

85 $this ->grid [$i][$j] = Types:: $TYPE_GRASS ;

86 }

87 }

88 }

89 }

90
91 if ($this -> debug) echo "1\n";

92 for ($i =1; $i < count($this -> intersection_coords); $i ++) {

93 if ($this -> intersection_coords [$i]['x'] == $this ->←֓

intersection_coords [$i -1]['x'])

94 $this -> createRoad ($this -> intersection_coords [$i],←֓

$this -> intersection_coords [$i -1]) ;

88

95 }

96
97 if ($this -> debug) echo "2\n";

98 usort($this -> intersection_coords , function ($a , $b) {

99 return $a['y'] < $b['y'];

100 });

101
102 if ($this -> debug) echo "3\n";

103 for ($i =1; $i < count($this -> intersection_coords); $i ++) {

104 if ($this -> intersection_coords [$i]['y'] == $this ->←֓

intersection_coords [$i -1]['y'])

105 $this -> createRoad ($this -> intersection_coords [$i],←֓

$this -> intersection_coords [$i -1]) ;

106 }

107
108 if ($this -> debug) echo "4\n";

109 // Make road from start to nearest intersection

110 $nearest_start = $this -> findNearestIntersection($this ->←֓

getStart ('x'),$this -> getStart ('y'));

111 $star = new Astar($this -> getMap () , $this -> getStart ('x'), ←֓

$this -> getStart ('y'), $nearest_start ['x'], ←֓

$nearest_start ['y']);

112 $path = $star -> findShortestPath ();

113 $this -> pathToRoad ($path);

114
115
116 if ($this -> debug) echo "5\n";

117 // Make road from end to nearest intersection

118 $nearest_end = $this -> findNearestIntersection($this -> getEnd←֓

('x'),$this -> getEnd ('y'));

119 if ($this -> debug) var_dump ($nearest_end);

120 $star = new Astar($this -> getMap () , $this -> getEnd('x'),$this←֓

-> getEnd('y'), $nearest_end ['x'], $nearest_end ['y']);

121 $path = $star -> findShortestPath ();

122 if ($this -> debug) var_dump ($path);

123 $this -> pathToRoad ($path);

124
125 if ($this -> debug) echo "6\n";

126 // Ensure all intersections are reacable from another ←֓

intersection

127 $points = $this -> getNonConnectedIntersections();

128 foreach ($points as $point) {

129 $nearest = $this -> findNearestIntersection($point['x'],←֓

$point['y']);

130 $star = new Astar($this -> getMap () , $point ['x'], $point ['←֓

y'], $nearest ['x'], $nearest ['y']);

131 $path = $star -> findShortestPath ();

132 $this -> pathToRoad ($path);

133 }

134
135 if ($this -> debug) echo "7\n";

136 // Ensure that end is reachable from start

137 $star = new Astar($this -> getMap () , $this -> getStart ('x'),←֓

$this -> getStart ('y'), $this -> getEnd('x'),$this -> getEnd('←֓

y'));

138 $path = $star -> findShortestPath ();

139 $this -> pathToRoad ($path);

140
141 if ($this -> debug) echo "8\n";

142 // Ensure all intersections are reachable from start

89

APPENDIX C. WORLD GENERATOR

143 foreach ($this -> intersection_coords as $coord) {

144 $star = new Astar($this -> getMap () , $coord ['x'], $coord ['←֓

y'], $this -> getStart ('x'), $this -> getStart ('y'));

145 $path = $star -> findShortestPath ();

146 if (! empty($path))

147 $this -> pathToRoad ($path);

148 }

149
150 // Place random houses

151 if ($house_count == false)

152 {

153 $houses_min = $nx *3;

154 $houses_max = $nx *4;

155 $house_count = rand ($houses_min , $houses_max);

156 }

157 $tries = 0;

158 $max_tries = 3;

159 $timeout = 2;

160 $time_start = microtime (true);

161 $start =

162 $use = 'timeout ';

163 while($house_count > 0) {

164 if ($use == ' timeout ') {

165 if (microtime (true) - $time_start > $timeout) {

166 break;

167 }

168 } else {

169 if ($tries == $max_tries) {

170 break;

171 }

172 }

173 for ($i =0; $i < $nx; $i ++) {

174 for ($j =0; $j < $ny; $j ++) {

175 if ($house_count == 0) {

176 break;

177 }

178 if ($this ->grid [$i][$j] == Types :: $TYPE_GRASS)

179 {

180
181 // Higher chance near intersections ?

182 if ($this -> hasNearbyRoad ($i ,$j) && (←֓

$allow_nearby_house || !$this ->←֓

hasNearbyHouse ($i ,$j))) {

183 // var isWall = Math . floor(Math . random←֓

() *(/ wallFrequency));

184 $chance = (rand (0 ,1000) / 1000) <= ←֓

$house_pct ;

185
186 if ($chance) {

187 $this -> grid [$i][$j] = Types::←֓

$TYPE_HOUSE ;

188 $this -> houses [] = array('x' => $i , ←֓

'y' => $j);

189 $house_count --;

190 }

191 }

192 }

193 }

194 }

195 $tries ++;

90

196 }

197
198 // Maybe connect intersections so that there is at most X ←֓

between any two or start?

199 }

200
201 public function hasNearbyRoad ($x ,$y)

202 {

203 return $this ->grid [$x -1][$y] == Types:: $TYPE_INTERSECTION ←֓

||

204 $this -> grid [$x +1][$y] == Types:: $TYPE_INTERSECTION ←֓

||

205 $this -> grid [$x][$y -1] == Types:: $TYPE_INTERSECTION ←֓

||

206 $this -> grid [$x][$y +1] == Types:: $TYPE_INTERSECTION ←֓

||

207 $this -> grid [$x -1][$y] == Types:: $TYPE_ROAD ||

208 $this -> grid [$x +1][$y] == Types:: $TYPE_ROAD ||

209 $this -> grid [$x][$y -1] == Types:: $TYPE_ROAD ||

210 $this -> grid [$x][$y +1] == Types:: $TYPE_ROAD ;

211 }

212
213 public function hasNearbyHouse ($x ,$y)

214 {

215 return $this ->grid [$x -1][$y] == Types:: $TYPE_HOUSE ||

216 $this -> grid [$x +1][$y] == Types:: $TYPE_HOUSE ||

217 $this -> grid [$x][$y -1] == Types:: $TYPE_HOUSE ||

218 $this -> grid [$x][$y +1] == Types:: $TYPE_HOUSE ;

219 }

220
221 public function getNonConnectedIntersections()

222 {

223 $res = array();

224 foreach ($this -> intersection_coords as $val)

225 {

226 if (! $this -> isConnected ($val)) {

227 $res [] = $val ;

228 }

229 }

230 return $res ;

231 }

232
233 public function isConnected ($pos)

234 {

235 return ($pos ['x'] - 1 > 0 && $this ->grid [$pos ['x'] - 1][←֓

$pos ['y']] == Types:: $TYPE_ROAD) ||

236 ($pos ['x'] + 1 < count($this ->grid) && $this ->grid [$pos←֓

['x'] + 1][$pos ['y']] == Types:: $TYPE_ROAD) ||

237 ($pos ['y'] - 1 > 0 && $this ->grid [$pos ['x']][$pos ['y'] ←֓

- 1] == Types :: $TYPE_ROAD) ||

238 ($pos ['y'] + 1 < count($this ->grid [0]) && $this ->grid [←֓

$pos ['x']][$pos ['y'] + 1] == Types:: $TYPE_ROAD);

239 }

240
241 public function findNearestIntersection($x ,$y)

242 {

243 $best_dist = 0;

244 $coord = array() ;

245 foreach ($this -> intersection_coords as $val)

246 {

91

APPENDIX C. WORLD GENERATOR

247 if ($val ['x'] == $x && $val ['y'] == $y) {

248 continue ;

249 }

250 $dist = abs($x - $val ['x']) + abs($y - $val ['y']);

251 if ($best_dist == 0 || $best_dist > $dist)

252 {

253 $coord = $val ;

254 $best_dist = $dist;

255 }

256 }

257 return $coord;

258 }

259
260 private function pathToRoad ($path)

261 {

262 foreach ($path as $node)

263 {

264 if ($this ->grid [$node ->x][$node ->y] != Types ::←֓

$TYPE_WALL && $this ->grid [$node ->x][$node ->y] != ←֓

Types:: $TYPE_INTERSECTION)

265 $this ->grid [$node ->x][$node ->y] = Types :: $TYPE_ROAD←֓

;

266 }

267 }

268
269 private function createRoad ($pos1 , $pos2)

270 {

271 // Should use A*

272 if ($pos1['x'] == $pos2['x']) {

273 $start = min($pos1['y'], $pos2['y']) + 1;

274 $end = max($pos1['y'], $pos2['y']);

275 for ($i= $start ; $i < $end ; $i ++) {

276 if ($this ->grid [$pos1['x']][$i] != Types ::←֓

$TYPE_WALL && $this ->grid [$pos1['x']][$i] != ←֓

Types:: $TYPE_INTERSECTION)

277 $this ->grid [$pos1['x']][$i] = Types :: $TYPE_ROAD←֓

;

278 }

279 } else if ($pos1['y'] == $pos2['y']) {

280 $start = min($pos1['x'], $pos2['x']) + 1;

281 $end = max($pos1['x'], $pos2['x']);

282 for ($i= $start ; $i < $end ; $i ++) {

283 if ($this ->grid [$i][$pos1['y']] != Types ::←֓

$TYPE_WALL && $this ->grid [$i][$pos1['y']] != ←֓

Types:: $TYPE_INTERSECTION)

284 $this ->grid [$i][$pos1['y']] = Types :: $TYPE_ROAD←֓

;

285 }

286 }

287 }

288
289 private function canHaveIntersection ($x ,$y)

290 {

291 return $this -> intersections [$x -1]['x'] == 0 &&

292 $this -> intersections [$x +1]['x'] == 0 &&

293 $this -> intersections [$x -1]['y'] == 0 &&

294 $this -> intersections [$x +1]['y'] == 0 &&

295 $this -> intersections [$y -1]['x'] == 0 &&

296 $this -> intersections [$y +1]['x'] == 0 &&

297 $this -> intersections [$y -1]['y'] == 0 &&

92

298 $this -> intersections [$y +1]['y'] == 0;

299 }

300
301 public function __toString ()

302 {

303 $out = "<div >";

304 foreach ($this -> grid as $key => $value) {

305 $out .= "<div class=' clear '>";

306 foreach ($value as $key2 => $value2) {

307 $out .= '<span class =" grid_item ';

308 if ($value2 == Types :: $TYPE_WALL) {

309 $out .= 'wall ';

310 } elseif ($value2 == Types:: $TYPE_ROAD) {

311 $out .= 'road ';

312 } elseif ($value2 == Types:: $TYPE_INTERSECTION) {

313 $out .= 'intersection ';

314 } elseif ($value2 == Types:: $TYPE_HOUSE) {

315 $out .= 'house';

316 }

317 $out .= '"></ span >';

318 }

319 $out .= " </div >";

320 }

321 $out .= " </div >";

322
323 return $out ;

324 }

325
326 public function getGrid ()

327 {

328 return $this ->grid ;

329 }

330
331 public function getJson ()

332 {

333 return json_encode ($this -> getGrid ());

334 }

335
336 public function getMap ()

337 {

338 return $this ->grid ;

339 }

340
341 public function getHouses ()

342 {

343 return $this -> houses ;

344 }

345
346 public function getStart ($coord = false)

347 {

348 if ($coord)

349 {

350 return $this -> start[$coord == 'x' ? 0 : 1];

351 }

352 else

353 return $this -> start;

354 }

355
356 public function getEnd ($coord = false)

357 {

93

APPENDIX C. WORLD GENERATOR

358 if ($coord)

359 {

360 return $this -> end[$coord == 'x' ? 0 : 1];

361 }

362 else

363 return $this -> end;

364 }

365 }

366 ?>

Listing C.1: world.php

94

D
Log analyser

1 <?php

2 /*

3 Query parameters

4 --------------------

5 ?c = class; [2, 3, 4, 32]

6 ?mode = mode ; [c = class , i = individual]

7 ?skip , for mode = i only . Shows the 'skip 'th user in 'class' ←֓

class

8 ?t = which data values to be shown (for latex graph) [possible , ←֓

perfects]

9 ? limit [optional], only show the ' limit' first games in the graph

10 */

11 $class = isset($_GET['c']) ? $_GET['c'] : 2;

12
13 if ($class == 3) {

14 $username = "bsc";

15 $password = " bscpassword ";

16 $hostname = "bsc. crvwhcfju0fb .eu -west -1. rds. amazonaws .com";

17 } else {

18 $username = "root ";

19 $password = "";

20 $hostname = " localhost ";

21 }

22
23 // connection to the database

24 $dbhandle = mysql_connect ($hostname , $username , $password) or die ("←֓

Unable to connect to MySQL");

25
26 $selected = mysql_select_db ("bsc",$dbhandle) or die (" Could not ←֓

select db ");

27
28 function getQuery ($sql) {

29 $result = mysql_query ($sql) or die ('Invalid query: ' . ←֓

mysql_error ());

30 return $result ;

31 }

32
33 function possiblePerfects ($id) {

34 $res = getQuery (" SELECT COUNT(id) as c FROM cars WHERE ←֓

user_games_id = " . $id);

35 $row = mysql_fetch_assoc ($res);

36 return $row ['c'];

37 }

38
39 function countPerfects ($arr) {

40 $c = 0;

95

APPENDIX D. LOG ANALYSER

41 foreach ($arr as $v) {

42 $j = json_decode ($v ,true);

43 if ($j['perfect '] && $j['trash'][' capacity '] != 0) {

44 $c ++;

45 }

46 }

47 return $c ;

48 }

49
50 $time_start = microtime (true);

51
52 // Users created during test

53 if ($class == 2) {

54 $result = getQuery ('SELECT *, FROM_UNIXTIME (created_at) as ←֓

created_at_time FROM users WHERE created_at > UNIX_TIMESTAMP ←֓

("2013 -06 -10 10:00:00") and created_at < UNIX_TIMESTAMP ←֓

("2013 -06 -10 12:00:00") ');

55 } else if ($class == 4) {

56 $result = getQuery ('SELECT *, FROM_UNIXTIME (created_at) as ←֓

created_at_time FROM users WHERE created_at > UNIX_TIMESTAMP ←֓

("2013 -06 -10 12:00:00") and created_at < UNIX_TIMESTAMP ←֓

("2013 -06 -10 13:00:00") ');

57 } else if ($class == 3) {

58 // Amazon is off by 2 hours

59 $result = getQuery ('SELECT *, FROM_UNIXTIME (created_at) as ←֓

created_at_time FROM users WHERE created_at > UNIX_TIMESTAMP ←֓

("2013 -06 -10 06:00:00") and created_at < UNIX_TIMESTAMP ←֓

("2013 -06 -10 08:00:00") ');

60 } else if ($class == 32) {

61 $result = getQuery ('SELECT *, FROM_UNIXTIME (created_at) as ←֓

created_at_time FROM users WHERE created_at > UNIX_TIMESTAMP ←֓

("2013 -06 -10 08:00:00") and created_at < UNIX_TIMESTAMP ←֓

("2013 -06 -10 10:00:00") ');

62 }

63 // print values to screen

64
65 $games = array ();

66 while ($row = mysql_fetch_assoc ($result)) {

67 $userid = $row ['id '];

68 $sql = " SELECT * FROM (SELECT id FROM user_games WHERE user_games←֓

. users_id = { $userid } " .

69 "AND user_games .end IS NOT NULL GROUP BY id ORDER BY user_games .←֓

id ASC" .

70 ") t1 , log , log_eav le " .

71 " WHERE log . user_games_id = t1.id " .

72 "AND le. log_id = log.id " .

73 "AND (le. key = 'trash_pickup ' OR le. key = 'click_to ')";

74 $logs = getQuery ($sql);

75 // print_r ($row);

76 if (mysql_num_rows ($logs)) {

77 // Gather data

78 while($r = mysql_fetch_assoc ($logs)) {

79 if ($r ['key '] == 'trash_pickup ') {

80 $games [$userid][$r ['user_games_id ']][$r['key ']][] = $r['←֓

value '];

81 } else {

82 if (! isset($games [$userid][$r['user_games_id ']]['clicks ']))←֓

{

83 $games [$userid][$r['user_games_id ']]['clicks '] = 0;

84 }

96

85 $games [$userid][$r['user_games_id ']]['clicks ']++;

86 }

87 if (! isset($games [$userid]['username '])) {

88 $games [$userid]['username '] = $row ['username '];

89 }

90 /*

91 [key] => trash_pickup

92 [value] => {" trash ":{" representation ":3 ," capacity ":9 ,"←֓

house_id ":2522 ," index ":1 ," id ":2517 ," taken ": true }," car←֓

":{" representation ":1 ," capacity ":8 ," filled ":9 ," index←֓

":0 ,"id ":1997 ," active ": false }," perfect ": false}

93 */

94 }

95 // $sql = " SELECT * FROM user_games WHERE user_games_id = {$r ['←֓

user_games_id ']}";

96 // $games [$r[' user_games_id ']][' game '] = mysql_fetch_assoc (←֓

getQuery ($sql));

97 }

98 }

99
100 $mode = isset($_GET['mode ']) ? $_GET['mode '] : 'c';

101
102 echo "<pre >";

103
104 $p_vs_c = array();

105 foreach ($games as $uid => $ugames) {

106 $p_vs_c [$uid] = array(

107 'username ' => $games [$uid]['username '],

108 'perfects ' => array () ,

109 'possible ' => array ()

110);

111 foreach ($ugames as $id => $game) {

112 if ($id == 'username ') continue ;

113
114 $p_vs_c [$uid]['perfects '][] = countPerfects ($game['trash_pickup ←֓

']);

115 $p_vs_c [$uid]['possible '][] = (int) possiblePerfects ($id);

116 }

117 }

118
119 if ($mode == 'i')

120 {

121 $json = array(

122 array('Game ','Possible ','Perfects ')

123);

124 $username = '';

125 $i = 0;

126 $skip = isset($_GET['skip ']) ? $_GET['skip '] : 0;

127 foreach ($p_vs_c as $uid => $stats) {

128 $username = $stats['username '];

129 $i ++;

130 if ($i < $skip) continue ;

131 foreach ($stats['possible '] as $k => $v) {

132 $json [] = array($k +1,$v , $stats[' perfects '][$k]) ;

133 }

134
135 $debug = $games[$uid];

136 break;

137 }

138 }

97

APPENDIX D. LOG ANALYSER

139
140 if ($mode == 'c')

141 {

142
143
144 $limit_games = isset($_GET['limit']) ? $_GET['limit '] : false;

145
146 // Sort out everything with less than 5 games

147 $min = 0;

148 foreach ($p_vs_c as $uid => $stats) {

149 if (count($stats['perfects ']) < 5) { // One key is username

150 unset($p_vs_c [$uid]) ;

151 continue ;

152 }

153 if ($min == 0 || $min > count($stats ['perfects ']))

154 $min = count($stats ['perfects ']);

155 }

156 // Find avg 's

157 $correctness = array();

158 $players = array();

159 $i = 0;

160
161 foreach ($p_vs_c as $uid => $value) {

162 if ($limit_games) {

163 for ($i =0; $i < $limit_games ; $i ++) {

164 if (! isset($value ['perfects '][$i])) break;

165 $correctness [$i][] = $value['perfects '][$i] / $value['←֓

possible '][$i];

166 if (! isset($players [$i]))

167 $players [$i] = 0;

168 $players [$i]++;

169 }

170 } else {

171 $tmp = count($value ['perfects ']);

172 for ($i =0; $i < $tmp ; $i ++) {

173 $correctness [$i][] = $value['perfects '][$i] / $value['←֓

possible '][$i];

174 if (! isset($players [$i]))

175 $players [$i] = 0;

176 $players [$i]++;

177 }

178 }

179 }

180 foreach ($correctness as $key => $value) {

181 $correctness [$key] = (array_sum ($value) / count($value)) * 100;

182 }

183
184
185 $json = array(

186 array('Game ','Correctness ')

187);

188 if (! $limit_games || $limit_games > $min) {

189 $json [0][] = 'Players ';

190 }

191 $username = $class . '. klasse ';

192 foreach ($correctness as $game => $stats) {

193 if ($limit_games && $limit_games <= $min) {

194 $json [] = array($game +1, $stats);

195 } else {

196 $json [] = array($game +1, $stats , $players [$game]) ;

98

197 }

198 }

199 }

200
201 $time_end = microtime (true);

202 $time = $time_end - $time_start ;

203 echo "Did nothing in $time seconds \n";

204
205 ?>

206 <html >

207 <head >

208 <script type ="text / javascript " src =" https :// www . google.com/←֓

jsapi" ></script >

209 <script type ="text / javascript ">

210 google .load (" visualization ", "1", { packages :[" corechart "]}) ;

211 google . setOnLoadCallback (drawChart);

212 function drawChart () {

213 // var data = google . visualization . arrayToDataTable ([

214 // ['Game ', ' Possible ', 'Perfects '],

215 // ['2004', 1000 , 400] ,

216 // ['2005', 1170 , 460] ,

217 // ['2006', 660, 1120] ,

218 // ['2007', 1030 , 540]

219 //]);

220 var data = google . visualization . arrayToDataTable (<? php echo←֓

json_encode ($json); ?>);

221
222 var options = {

223 title: ' <?php echo $username ; ?>'

224 };

225
226 var chart = new google. visualization . LineChart (document .←֓

getElementById ('chart_div '));

227 chart.draw (data , options);

228 }

229 </script >

230 </head >

231 <body >

232 <div id=" chart_div " style=" width: 900 px; height : 500 px;" ></div >

233 </body >

234 </html >

235
236 <?php

237 $xmax = 0;

238 $ymax = 0;

239 $ymin = 100;

240 foreach ($json as $key => $value) {

241 if ((! is_int ($value [0]))) continue ;

242
243 if ($xmax < $value [0]) {

244 $xmax = $value [0];

245 }

246 if ($ymax < $value [1]) {

247 $ymax = $value [1];

248 }

249 if ($ymin > $value [1]) {

250 $ymin = $value [1];

251 }

252 }

253 ?>

99

APPENDIX D. LOG ANALYSER

254
255 \ documentclass { article }

256 \ usepackage {tikz }

257
258 \ begin{ document }

259 \ pagestyle { empty}

260
261 \ begin{ tikzpicture }[x=1cm ,y=0.4 cm]

262
263 \def\xmin {0}

264 \def\xmax {<? php echo ceil ($xmax + 0.5) ; ?>}

265 \def\ymin {<? php echo ceil ($ymin - 0.5) ; ?>}

266 \def\ymax {<? php echo ceil ($ymax + 0.5) ; ?>}

267
268 % grid

269 \draw [style=help lines , ystep=2, xstep =1] (\ xmin ,\ ymin) grid

270 (\ xmax ,\ ymax);

271
272 % axes

273 \draw [->] (\ xmin ,\ ymin) -- (\ xmax ,\ ymin) node [right] {x };

274 \draw [->] (\ xmin ,\ ymin) -- (\ xmin ,\ ymax) node [above] {y };

275
276 % xticks and yticks

277 \ foreach \x in {1 ,2 ,... , <? php echo ceil ($xmax + 0.5) ; ?>}

278 \node at (\x, \ymin) [below] {\x};

279 \ foreach \y in {<? php echo ceil ($ymin - 0.5) ; ?>,<? php echo ceil (←֓

$ymin + 0.5) ; ?>,...,<? php echo ceil ($ymax + 0.5) ; ?>}

280 \node at (\ xmin ,\y) [left] {\y};

281
282 % plot the data from the file data .dat

283 % smooth the curve and mark the data point with a dot

284 \draw [color=blue] plot [smooth ,mark =*, mark size =1 pt] file {data .←֓

dat}

285 node [right] { correctness };

286
287 \end{ tikzpicture }

288
289 \end{ document }

290
291 \ begin{ tikzpicture }

292 \ begin{axis }

293 \ addplot [color=black ,solid ,thick ,mark =*, mark options ={ fill = white }]

294 coordinates {

295 <? php

296 foreach ($json as $key => $value) {

297 if ($key == 0) continue ;

298 echo "(". $value [0]. ",". number_format ($value [1] ,2).")\n"←֓

;

299 }

300 ?>

301 };

302 <?php

303 foreach ($json as $key => $value) {

304 if ($key == 0) continue ;

305 echo "\\ node [above] at (axis cs: { $value [0]} , ". number_format (←֓

$value [1] ,2) .") ".'{$'. number_format ($value [1] ,2).'$}; '."\n";

306 }

307 ?>

308 \end{axis }

309 \end{ tikzpicture }

100

310
311 <?php

312 echo "<pre >";

313 foreach ($json as $key => $value) {

314 if ($mode == 'c')

315 echo $value [0]. "\t". $value [1]. "\n";

316 else

317 if (isset($_GET['t']) && $_GET['t'] == 'possible ')

318 echo $value [0]. "\t". $value [1]. "\n";

319 else

320 echo $value [0]. "\t". $value [2]. "\n";

321 }

322 echo " </pre >";

323
324 class objectify

325 {

326 public function json_mapper ($value , $recursive = true) {

327 if (! empty($value) && is_string ($value) &&

328 $decoded = json_decode ($value , true)) {

329 return $decoded ;

330 } elseif (is_array ($value) && $recursive) {

331 return array_map ('objectify :: json_mapper ', $value);

332 } else {

333 return $value;

334 }

335 }

336
337 // currying , anyone?

338 public function json_mapper_norecurse ($value) {

339 return objectify :: json_mapper ($value , false);

340 }

341
342 public function json_to_array ($array , $recursive = true)

343 {

344 # if $array is not an array , let 's make it array with one value←֓

of

345 # former $array.

346 if (! is_array ($array)) {

347 $array = array($array);

348 }

349
350 return array_map (

351 $recursive ? 'objectify :: json_mapper '

352 : 'objectify :: json_mapper_norecurse ', $array);

353 }

354 }

355
356 $o = new objectify ();

357 if (isset($debug)) {

358 print_r (json_encode ($o -> json_to_array ($debug)));

359 } else {

360 print_r (json_encode ($o -> json_to_array ($games)));

361 }

Listing D.1: analyser.php

101

E
Project plan

103

www.compute.dtu.dk

Department of Applied Mathematics and Computer Science
Technical University of Denmark
Matematiktorvet
Building 303 B
DK-2800 Kgs. Lyngby
Denmark
Tel: (+45) 45 25 30 31
Fax: (+45) 45 88 26 73
E-mail: compute@compute.dtu.dk

	Abstract
	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Source code
	Nomenclature
	1 Introduction
	2 Analysis
	2.1 Mathematical skill
	2.2 Gamification
	2.2.1 Game concept proposal
	2.2.2 Path finding
	2.2.3 Generators
	2.2.4 Representations
	2.2.5 Difficulty
	2.2.6 Motivation

	2.3 Technical requirements
	2.3.1 Client-side
	2.3.2 Server-side

	3 Design
	3.1 User module
	3.2 Game
	3.2.1 Rules
	3.2.2 Graphical User Interface
	3.2.3 Gameplay
	3.2.4 System

	3.3 Database

	4 Implementation
	4.1 Application structure
	4.2 Game server
	4.2.1 PHP
	4.2.2 Node.js

	4.3 WebSocket
	4.3.1 Socket.IO
	4.3.2 Logging

	4.4 Game engine
	4.4.1 JavaScript and HTML
	4.4.2 CSS
	4.4.3 Graphical User Interface

	4.5 Client and server-side refactoring
	4.6 Database
	4.6.1 Connection Pooling
	4.6.2 Queries
	4.6.3 Scalability

	4.7 Speed optimizations
	4.7.1 JavaScript & CSS minification and combination

	4.8 Platform Compatibility
	4.8.1 Server-side
	4.8.2 Client-side

	5 Results
	5.1 Current status and limitations
	5.1.1 Known issues
	5.1.2 Reflections on implementation

	5.2 Usability tests
	5.2.1 Technical Environment
	5.2.2 Third grade pupils
	5.2.3 Second grade pupils
	5.2.4 Fourth grade pupils
	5.2.5 Reflection on obtained data

	5.3 Future work
	5.3.1 Improved difficulty engine
	5.3.2 Improved User Interface
	5.3.3 Administrative Performance Monitoring
	5.3.4 Improved Motivation
	5.3.5 Improved Score System
	5.3.6 Educational Gaming Platform

	6 Conclusion
	References
	Appendix
	A Use cases
	A.1 Moving cursor over and out of house
	A.2 Clicking on a house
	A.3 Changing path of a moving truck
	A.4 Clicking on exit

	B WebSocket and AJAX timings
	C World generator
	D Log analyser
	E Project plan

