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Summary (English)

This thesis concerns multi-agent systems and agent-oriented programming in
relation to the Multi-Agent Programming Contest (MAPC). More specifically
the MAPC scenarios of 2011 and 2012, namely the Agents on Mars scenarios,
and the adaptation and improvement of the 2011 winner, HactarV2, to the 2012
scenario.

HactarV2 is written in the GOAL programming language. GOAL is an agent-
oriented programming language for developing rational agents. The logic pro-
gramming language Prolog is used as GOAL’s knowledge representation lan-
guage.

Our system, which is named HARDAC, is evaluated against an updated ver-
sion of the Python-DTU system from the MAPC 2012, which is the strongest
system for the 2012 contest we know.

The results are positive showing that while still marginally weaker than Python-
DTU, HARDAC is competitive against Python-DTU and wins close to 40% of
the time.
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Summary (Danish)

Denne afhandling omhandler multi-agent systemer og agent-orienteret pro-
grammering i relation til Multi-Agent Programmeringskonkurrencen (MAPC).
Mere specifikt MAPC scenarierne fra 2011 og 2012, altså Agenterne på Mars
scenarierne, og adaption og forbedring af vinderen fra 2011, HactarV2, til 2012
scenariet.

HactarV2 er skrevet i GOAL programmeringssproget. GOAL er et agent-orienteret
programmeringssprog for udvikling af rationelle agenter. Logik programmer-
ingssproget Prolog er brugt som GOAL’s vidensrepræsentationssprog.

Vores system, som er kaldt HARDAC, er evalueret mod en opdateret version
af Python-DTU systemet fra MAPC 2012, hvilket er det stærkeste system fra
2012 konkurrencen som vi kender.

Resultaterne er positive og viser at selvom HARDAC er en smule svagere end
Python-DTU, så er HARDAC stadigvæk konkurrencedygtig overfor Python-
DTU og vinder omkring 40% af gangene.
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CHAPTER 1

Introduction

A multi-agent system is a distributed system with intelligent agents capable of
sensing and acting which can be used to solve problems which are difficult or
even impossible to handle with traditional approaches.

The Multi-Agent Programming Contest (MAPC) is a competition that aims to
stimulate research in the area of multi-agent system development and pro-
gramming by providing an annual competition where multi-agent systems
compete in a scenario constructed to favor using multi-agent systems. This
thesis considers a multi-agent system from the MAPC 2011 scenario, HactarV2.

The goal of this thesis is to identify and improve aspects of HactarV2 to make
it competitive in the MAPC 2012 scenario. The multi-agent system which is the
result of the improvements is named HARDAC. To test whether HARDAC is
competitive in the MAPC 2012 scenario, HARDAC will be evaluated against a
strong contestant from the MAPC 2012, Python-DTU.

The thesis begins with an introduction to GOAL (the agent-oriented program-
ming language that HactarV2 is written in) and the MAPC 2011 and 2012 sce-
narios in chapters 3, 4, and 5.

This is followed by an analysis of the strategies used by HactarV2 and Python-
DTU in chapters 6 and 7. The analysis is concluded with a description of the
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improvements and strategies to HactarV2 that will be implemented in HARDAC.

After the analysis, important implementation details of the improvements and
strategies will be explained in chapter 8.

Then HARDAC will be tested against Python-DTU over 18 simulations, repre-
senting 6 tournaments. The results of the simulations will be evaluated, exam-
ining more closely the effect of some of the strategies. This happens in chapter
9.

Based on the evaluation, possible future improvements will be identified and
presented in chapter 10.

A reflection on the development process and discussion about the strategies is
then conducted in chapter 11.

The thesis ends with a conclusion in chapter 12.



CHAPTER 2

Problem statement and
learning objectives

The purpose of the project is to define, implement and evaluate a prototype of
a multi-agent system using the agent programming language GOAL, available
as open source software.[Lø]

The learning objectives are:

1. Understand the GOAL programming language, as well as the Mars Sce-
nario from the MAPC version 2011 and 2012.

2. Adapt the HactarV2 system, winner of the MAPC 2011 tournament, to
the MAPC 2012 scenario and attempt to improve it.

3. Evaluate our multi-agent system against the updated Python-DTU 2012
system in the MAPC 2012 scenario.
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CHAPTER 3

Basics of multi-agent
systems

In this chapter the basic idea of a multi-agent system is explained. It begins
with a look at some definitions of agents, and a discussion of what an agent is.
This concept of an agent is then expanded to describe multi-agent systems.

3.1 Agents

To understand multi-agent systems, it is important to specify the term agent.
Russel and Norvig define an agent as:

anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators. [RN09,
p. 34]
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Wooldridge is more specific, limiting his definition to computer systems:

An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to meet its delegated objectives. [Woo11, p. 21]

Both definitions are general and not limited to artificial intelligence. However,
only software agents will be considered in this thesis. Software agents are sit-
uated in an environment; are reactive of that environment, they perceive the en-
vironment and are able to respond to perceived changes; are proactive, they
perform actions in order to achieve their goals; and they are social, they are ca-
pable of communicating with other agents. [Woo11, p. 26-27]

An agents percepts are the information about the environment that the agent is
able to perceive with its sensors. An agents actions are the possible movements
of its actuators that the agent is able to perform to manipulate its environment.
Actions therefore also change the state of the instantiated agent in the environ-
ment but not just the agents mental state as the mental state of the agent is not
part of the environment.

An agent’s belief base is the set of its beliefs, that is, the statements that the agent
believes are correct about the environment, itself, and other agents. An agent’s
knowledge base is the set of knowledge, that is, facts about the environment and
agents. The difference between beliefs and knowledge is that beliefs can be in-
correct while knowledge is always correct.

To prevent performing impossible actions and to update the mental model af-
ter an action has been performed, with the immediate effects of the action on
the belief base, an action schema ([RN09, p. 367]) can be used. It consists of
action rules, which consist of an action (the name of the action, including any
parameters the action may have), a set of preconditions (conditions that must
be met before the action can be executed), and a postcondition (effects of the
action on the mental model of the agent). An action schema is a set of such
rules for each possible action.

A rational agent is by definition an agent that acts so as to achieve the best
outcome, or at least the expected outcome when there is uncertainty. [RN09, p.
4]
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3.2 Multi-Agent systems

The relationship between agents and multi-agent systems (abbreviated MAS)
is now clear.

Multiagent systems are systems composed of multiple interacting
computing elements, known as agents. Agents are computer sys-
tems with two important capabilities. First, they are at least to some
extent capable of autonomous action - of deciding for themselves what
they need to do in order to satisfy their design objectives. Second,
they are capable of interacting with other agents - not simply by ex-
changing data, but by engaging in analogues of the kind of social
activity that we all engage in every day of our lives: cooperation,
coordination, negotiation, and the like. [Woo11, preface, p. xiii]

A multi-agent system is a system comprised of several agents that may coop-
erate, negotiate, and/or compete with each other to achieve their goals.
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CHAPTER 4

Agent-oriented programming
and GOAL

This chapter contains an introduction to agent programming and the GOAL
programming language. A short introduction to the agent-oriented program-
ming paradigm is followed by a more in-depth guide to the GOAL program-
ming language, explaining what a GOAL agent is, what it consists of, how
it reasons, and how it communicates. It is concluded by a short summary of
important bugs present in the GOAL version used during this project.

For a short introduction to the GOAL IDE see the appendices.

4.1 The agent-oriented programming paradigm

To design agent systems, programming using the paradigm of agent-oriented
programming can be useful. The key idea of agent-oriented programming is
that agents are programmed in terms of mentalistic notions (such as belief, de-
sire, intention) that represent the properties of agents ([Woo11, p. 55]). The
design of a program is therefore centered around designing intelligent agents
that have the characteristics defined in the previous section. Primarily that the
agents are autonomous, reactive, proactive, and social.



10 Agent-oriented programming and GOAL

Figure 4.1: An illustration of an agent in its environment including the sense-
decide-act loop. Agents perceive their environment and act accord-
ingly. [Woo11, p. 22]

When designing agents, a useful interpretation of the agent’s behavior is that
the agent is in a close-coupled, continual interaction with its environment. It
perceives its environment and then decides what actions to perform based on
its percepts and its beliefs about the environment, indefinitely. This is called
the sense-decide-act loop (see Figure 4.1).

The HactarV2 multi-agent system is written in the GOAL programming lan-
guage. What follows is an introduction to the language.

4.2 The GOAL programming language

GOAL is an agent programming language for programming ratio-
nal agents. GOAL agents derive their choice of action from their
beliefs and goals. The language provides the basic building blocks
to design and implement rational agents. The language elements
and features of GOAL allow and facilitate the manipulation of an
agent’s beliefs and goals and to structure its decision-making. The
language provides an intuitive programming framework based on
common sense notions and basic practical reasoning. [MPI]
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Figure 4.2: An example of GOAL’s syntax. In the figure is shown a simple
program for an agent in the Blocks World environment, opened in
the GOAL IDE.

GOAL is a programming language for writing multi-agent systems. It is built
using Java and therefore executes on the JVM. It is based on the idea that agents
have declarative goals (i.e. states consisting of statements about themselves, the
environment, and other agents) that they would like to fulfill. After a goal has



12 Agent-oriented programming and GOAL

been achieved it is discarded automatically.

The agents of GOAL are based on the sense-decide-act loop. In GOAL, the
agents first receive percepts then decide on an action and then execute the ac-
tion on the environment. The decision phase includes processing of percepts
and updating the internal mental state of the agent, as well as communication
with other agents in the multi-agent system run by GOAL. Communication is
done by sending and receiving messages in each sense-decide-act loop.

Each agent has five databases: a belief base, a knowledge base, a goal base,
a message/mail base, and a percept base. These databases together comprise
the mental state of the agent. The mental state of the agent is declarative and
is written using a declarative programming language such as Prolog. This lan-
guage is called the knowledge representation language ([Hin, p. 19]). It contains
atoms and predicates that the agent uses to decide on actions and update its
mental state based on any new percepts received during the decide phase of
the sense-decide-act loop.

There are a number of built-in actions that can be executed multiple times for
each iteration of the sense-decide-act loop because they do not interact with
the environment. These actions are insert, delete, adopt, drop, and send.
Their usage will be explained in the following sections. All other actions, that
are part of the environment, end the current iteration of the loop, with the re-
sult that the agent has requested the action be performed.

All agents are executed once per round, i.e. all agents in the system have fin-
ished one iteration of their sense-decide-act loop before they execute the next
iteration of their loop. That is, they are synchronized at the end of the loop.
This implies that all agents always execute the same number of iterations. A
round is therefore defined as the execution of one iteration for all the agents in
the multi-agent system. Furthermore, it seems that all agents are executed se-
quentially and deterministically (they have a randomly predefined order, such
that the order of execution of the agents is always the same) when debugging
("stepping") the system.

4.2.1 Structure of GOAL programs

The overall structure of a GOAL agent program looks like Table 4.1.

A user-defined module has the syntax module <NAME> {} where <NAME> is
the name of the module. Modules can have parameters after their name, e.g.
module <NAME>(X,Y) {} where X and Y are variables that must be instan-
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1 i n i t module { < s e c t i o n s > }
2
3 main module { < s e c t i o n s > }
4
5 event module { < s e c t i o n s > }
6
7 <other user−defined modules>

Table 4.1: The structure of GOAL programs (from [MPI]).

tiated when the module is executed.

Each module can contain sections such as knowledge, beliefs, goal, and
program. See Figure 4.2 for an example. The contents of the knowledge,
beliefs, and goal sections are added to the corresponding database of the
agent when the system is executed. It is important to note that the queries to
the databases can be connected by conjunction, but not disjunctions.

The program section contains the actual reasoning code that is executed when
the agent enters the module. The program section consists of if <BELIEF>
then <ACTION>. sentences (such that if the agent believes that <BELIEF>
then it executes <ACTION>) or forall <BELIEF> do <ACTION> (such that
for all substitutions the agent believes <BELIEF> the agent executes <ACTION>).
<BELIEF> and <ACTION> usually contain variables that can be unified with
atoms. The first such substitution triggers the if − then construct while the
forall−do construct triggers all the possible substitutions. forall−do is there-
fore usually used when processing percepts and messages. For example, if
bel(has(X)) then use(X). means that if the agent believes that has(X)
for an atom that can be substituted by X then it does the action use(X). If use
is a module it enters the module use with the instantiated variable X instead.
if − then and forall − do can also be nested. These constructs are imperative,
in contrast to the declarative syntax when reasoning about the mental state.

The order in which the constructs are evaluated can be specified at the be-
ginning of the section as program[order=<ORDER>] where <ORDER> can be
linear, linearall, or random. linear means that they are evaluated from
top to bottom until one of the conditions is applicable for instantiation or none
of them are. random randomizes the evaluation order. linearall evaluates
all of them, from top to bottom. The default order is linear.
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A project in GOAL consists of:

1. A .mas2g file containing information about how to set up the environ-
ment, when to start executing the agents, and which files contain the pro-
gramming for the agents (files ending in .goal).

2. .goal files containing the actual implementation of the agents. Each
type of agent preferably has its own .goal file.

3. Optional .mod2g files (containing modules) and .pl (containing predi-
cates and atoms), that are imported in the relevant .goal files using the
#import "<FILE>" statement, where <FILE> is the filename.

GOAL has multiple default modules that are executed at multiple times in the
lifecycles of the agents. The init module is executed when the agents are
instantiated. Then the event and main modules are executed, in that order,
in each sense-decide-act loop. The event module is supposed to handle any
new percepts and send and receive messages from other agents in each loop
while the main module is the actual decision phase of the agent where the
agent decides on an action.

As Prolog is the language of choice for modeling the mental state of each agent,
the predicates and atoms of the mental state are written using the usual Prolog
syntax. For example, the knowledge for an implementation of an agent in the
Blocks World environment 1 can be seen in Table 4.2.

1 % only blocks can be on top of another o b j e c t .
2 block (X) :− on (X , _ ) .
3 % a block i s c l e a r i f nothing i s on top of i t .
4 c l e a r (X) :− block (X) , not ( on ( _ , X) ) .
5 % the t a b l e i s always c l e a r .
6 c l e a r ( t a b l e ) .
7 % the tower p r e d i c a t e holds f o r any s tack of blocks t h a t s i t s on the

t a b l e .
8 tower ( [ X ] ) :− on (X , t a b l e ) .
9 tower ( [ X , Y| T ] ) :− on (X , Y) , tower ( [ Y| T ] ) .

Table 4.2: Knowledge for the Blocks World MAS.

1This is one of the demonstration multi-agent systems that is included in the GOAL package.
GOAL can be downloaded at [MPI].
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4.2.2 Mental state of agents

A rational agent maintains a mental state to represent the current
state of its environment and the state it wants the environment to
be in. The representation of the current state determines the infor-
mational state of the agent, and consists of the knowledge and beliefs
of an agent. The representation of the desired state determines the
motivational state of the agent, and consists of the goals of an agent.
A mental state thus is made up of the knowledge, beliefs and goals
of an agent. [Hin, p. 19]

The belief and knowledge base can be accessed by the bel keyword. See for
example line 22 in Figure 4.2.

The goals can be accessed by the goal, a-goal (short for achievement goal,
a-goal(X) is the same as goal(X), not(bel(X))), and goal-a (short
for goal achieved, goal-a(X) is the same as goal(X), bel(X)) keywords.
Goals can be adopted using adopt and dropped by drop. Goals are automat-
ically dropped when they are fulfilled.

The belief base can also be modified by the insert and delete actions, which
inserts or deletes atoms in the belief base, respectively. It is not possible to
modify predicates.

The negation-as-failure operator not can also be used on the goal and bel
operators, in addition to using it on an atom or predicate.

GOAL programs are first-order intentional systems [Hin, p. 14]. Agents can rea-
son about beliefs and goals but not beliefs and goals about beliefs and goals. So
the mental content of agents can be represented by sentences such as bel(p)
(the agent believes that p) and goal(p) (the agent wants that p), but not bel(a,
bel(p,b)) (agent a believes that b believes p). This also implies that the be-
lief and goal operators in GOAL, bel respectively goal, cannot be nested.

Messages and percepts are accessed through the bel operator. Messages can
be deleted using the delete operator, but percepts cannot be modified as they
are added and removed automatically at the beginning and end of each round,
respectively. This is in accordance with the sense-decide-act model as new per-
cepts are received each round.
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4.2.3 Environment and agent communication

Agents can communicate with each other using the send action. The syntax is
send(<ID>, <ATOM>) where the atom <ATOM> is sent to the agent <ID>. It
is also possible to use the ID allother to send the atom to all the other agents
in the multi-agent system.

It is only possible to send and receive atoms, not predicates, and only one
atom per send action. But it is possible to chain multiple actions together
by using the + operator. E.g. send(<ID>, vertex(X)) + send(<ID>,
location(Y)) sends the atoms vertex(X) and location(Y), with instan-
tiated variables X and Y, to the agent called <ID>.

Messages are received at the beginning of each sense-decide-act loop as a
received(<FROM>, <ATOM>) predicate that can be accessed through the
bel operator, where <FROM> is the agent that has sent the atom <ATOM>. Any
send actions executed also results in a sent(<TO>, <ATOM>), that is inserted
into the message database. As messages are sent during the execution of an
agent, the messages can be delayed. For example, if an agent A1 sends a mes-
sage to an agent A2 that has already acted on the environment in the given
round, the message to A2 is delayed by one round.

The environment is initialized in the .mas2g file in a section called environment,
where the actual environment interface is specified as a string. Parameters for
initializing the environment can also be specified in this section. The section
called launchpolicy contains information about how and when to launch
agents. An agent is usually launched when there exists a necessary embodi-
ment of the agent in the environment, an entity, that the agent can connect to
and control. As an example of the environment setup, see Table 4.3 for the
.mas2g file for the Blocks World MAS as seen in Figure 4.2.

Communication between the environment and the multi-agent system occurs
through the Environment Interface Standard (EIS)2.

The percepts from the environment are sent to the multi-agent system through
the EIS interface. Each agent receives its own set of percepts that it is able to
perceive at the given time. In GOAL the percepts are represented as percept(X)
predicates where X is the actual percept from the environment.

The environment actions, those that are meant to be executed on the envi-
ronment and change the state of the entity that the agent controls instead of
modifying the internal state of the agent, usually have an action schema. These

2See http://sourceforge.net/projects/apleis/ for more information about EIS.

http://sourceforge.net/projects/apleis/
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1 environment {
2 " blocksworld . j a r " .
3
4 i n i t [ c o n f i g u r a t i o n =" bwconfigEx1 . t x t " ] .
5 }
6
7 a g e n t f i l e s {
8 " s t a c k B u i l d e r . goal " .
9 " tableAgent . goal " .

10 }
11
12 launchpol icy {
13 when entity@env do launch s t a c k b u i l d e r : s tackBui lder , t a b l e a g e n t :

tableAgent .
14 }

Table 4.3: The .mas2g file for the Blocks World MAS.

are called action specifications in GOAL and are written in the actionspec
section of the init module. These actions are written using the usual syntax
for executing actions as described in the previous sections. When these actions
are executed the action is sent to the environment and the current iteration in
the sense-decide-act loop ends. The result of the action is received as a percept
in the next round. As an example, see the actionspec section in the init
module in Figure 4.2.

4.3 Relevant GOAL bugs

As GOAL is in the alpha stage of its development there are a lot of bugs and the
syntax is not finalized. Unfortunately, because of bugs and syntax changes in
the latest revision of GOAL that we have tested at the time of writing (GOAL
revision 5738), our system must be run using GOAL revision 49413. Revision
4941 is not devoid of bugs however. An unfortunate and critical bug is that the
agents are randomly disconnected from the environment after some time with
no possibility to reconnect again. It seems to be triggered when there is high
disk activity. A partial workaround that alleviates the problem somewhat is to
disable writing logs to the disk from the GOAL IDE.

3Available at http://mmi.tudelft.nl/trac/goal/raw-attachment/wiki/
Releases/goal20120705v4941/goal20120705v4941.jar

http://mmi.tudelft.nl/trac/goal/raw-attachment/wiki/Releases/goal20120705v4941/goal20120705v4941.jar
http://mmi.tudelft.nl/trac/goal/raw-attachment/wiki/Releases/goal20120705v4941/goal20120705v4941.jar
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CHAPTER 5

The Multi-Agent
Programming Contest

This chapter explains the Multi-Agent Programming Contest’s 2012 scenario,
Agents on Mars, and gives an introduction to the multi-agent systems that will
be examined in this thesis.

[The Multi-Agent Programming Contest] competition is an attempt
to stimulate research in the area of multi-agent system development
and programming [...]. The performance of a particular system
will be determined in a series of games where the systems com-
pete against each other. While winning the competition is not the
main point, we hope it will shed light on the applicability of certain
frameworks to particular domains. [MAP]

5.1 Agents on Mars scenario

It is the Agents on Mars scenarios from the MAPC competitions in 2011 and
2012 that are relevant in this project. For both scenarios the main task of the
agents is to find the best water wells and occupy the best zones of Mars. Some-
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Role
Acti

ons

Energ
y

Hea
lth

Str
en

gth

Visi
bili

ty

ra
nge

Explorer skip, goto, probe,
survey, recharge, buy 35 4 0 2

Repairer
skip, goto, parry,
survey, repair,
recharge, buy

25 6 0 1

Saboteur
skip, goto, parry,
survey, attack,
recharge, buy

20 3 1 1

Sentinel skip, goto, parry,
survey, recharge, buy 30 1 0 3

Inspector skip, goto, inspect,
survey, recharge, buy 25 6 0 1

Table 5.1: The different roles in the Agents on Mars scenario for the MAPC
2012. Adapted from [BKS+, p. 6].

Action: at
ta
ck

pa
rr
y

go
to

pr
ob
e

su
rv
ey

in
sp
ec
t

bu
y

re
pa
ir

Cost: 2 2 Travel cost 1 1 2 2 2

Table 5.2: Action cost for the MAPC 2012 scenario Agents on Mars. [BKS+, p.
6-7].

times they have to sabotage their rivals to achieve their goal (while the oppo-
nents will most probably do the same) or defend themselves. When an agent is
sabotaged (i.e. its health drop to zero) then it is disabled and it is only allowed
to execute the actions goto, repair, skip, and recharge (the recharge rate
is set to 10 %). Of course the agents’ vehicle pool contains specific vehicles.
Some of them have special sensors, some of them are faster and some of them
have sabotage devices on board. Last but not least, there are the repair agents,
that are capable of fixing agents that are disabled, i.e. have been sabotaged. In
general, each agent has a special expert knowledge and is thus the only one
able to perform a certain action. So the agents have to find ways to cooper-
ate and coordinate themselves. The different vehicle roles, their attributes, and
possible actions are shown in Table 5.1. The agents are able to execute their re-
spective actions only if they have the necessary amount of energy. Action costs
are shown in Table 5.2.

In Agents on Mars the environment is represented by a graph. Vertices denote
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Figure 5.1: An illustrated example of the first three phases of coloring. [BKS+,
p. 3]

water wells of different value and are possible locations for the agents. The
weights of the edges denote the costs of traversing the edge. In order to score
points the agents have to control zones. A zone is a subgraph that is colored in
one’s team’s color. The coloring algorithm follows 4 phases, see Figure 5.1 for
a visual example of the first 3 phases.

1. Phase 1. A vertex is given the color of the team which has the majority of
agents standing on it.
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2. Phase 2. Vertices which are neighbors to two previously colored ver-
tices(of the same color) are colored.

3. Phase 3. If part of the map is separated by one teams colored vertices, the
separated area is colored in that teams color.

4. Phase 4. If all of one teams agents are disable, the opposing team colors
all the vertices on the map.

Each round the team scores points based on the values of the nodes in the zone
it controls. This score will be referred to as the zone score. However, the team
needs to have an agent of the Explorer role probe a vertex in order to receive
points equal to the node’s value. Otherwise it receives one point for that node.
It is also possible to score points each round through achievement points. These
achievements are acquired when a team reaches certain milestones, e.g., having
attacked enemy agents 10 times, or probed 20 vertices, etc. Each achievement
gives two achievement points. These points count for two normal points every
round. This will be referred to as the achievement score. The achievement points
can also be spent on upgrades that will give the agents an edge over the oppo-
nent, but then the team no longer receives the 2 points each round.
The goal of the game is to maximize the score. The map is unknown in the be-
ginning, so it is necessary to explore the area first before attempting to control
zones. [MAP]

The total score for each team is calculated as

score =

steps∑
s=1

(zoness + moneys)

where steps are the number of steps in the simulation, zoness is the zone
score at step s, and moneys is the achievement score at step s.

The environment is supplied with the MAPC package [BKS+] as a server that
must be executed to start the simulation. A Unix shell script called
startServer.sh in [BKS+] can be used to execute the server where it is also
possible to choose between different teams and simulations. It utilizes EIS to
communicate between the MAPC server and the multi-agent system. This in-
terface is called EISMASSIM. The file eismassim-2.0.jar is the environ-
ment that GOAL must load. To connect to the server the multi-agent systems
must be authorized by means of a username and password specified in one of
the configuration files for the server and the configuration file for EISMASSIM
called eismassimconfig.xml.
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The environment also has a deadline for each step, from when the agents re-
ceive their percepts to they send their action requests and the server receives
them. If an agent does not send an action in time before the deadline is reached
then the agent does not perform an action that step. So this should be avoided.
The deadline can be changed through eismassimconfig.xml

Between 2011 and 2012 the Agents on Mars scenario underwent some impor-
tant changes. The number of agents on each team doubled from 10 to 20. And
most importantly the distribution on the value of nodes changed. In 2011 the
high value nodes would always be in the center of the map, and therefore it was
important to find and control the center. It also meant that once the Explorers
found a higher value node, it was certain to be near the center, so the team
could focus its efforts on that area. In 2012 this changed. The 2012 graph gen-
erator randomly distributes a random number of the highest value (10) nodes,
and then "blurs" the areas surrounding these nodes. That is, the neighbors of
the highest value nodes have a value less than 10 and their remaining neigh-
bors have an even smaller value. This continues until the value of the remain-
ing nodes are 1. It then flips the graph symmetrically. Considering the values
of the vertices as a height map, the topography in 2011 was guaranteed to al-
ways be a single hill, whereas in 2012 it can be anything from a mountain range
to two solitary hills in an otherwise flat environment. This poses a lot of chal-
lenges, but this will be discussed in the analysis chapter.

The simulation state transition is as follows: [BKS+, p. 9]

1. collect all actions from the agents,

2. let each action fail with a specific probability,

3. execute all remaining attack and parry actions,

4. determine disabled agents,

5. execute all remaining actions,

6. prepare percepts,

7. deliver the percepts.

So attacks and parries have higher priority than the other actions. This implies
that it is impossible to run from an attack without being hurt. Also note that
disabled agents are determined before any repair actions are executed. This is
important as it can be exploited, which will be described in the analysis section.
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After the actions have been executed the percepts for the next round are pre-
pared and delivered for each agent. The percepts include: the current state of
the simulation, team, and vehicle (i.e. the embodiment of the agent); all the
visible edges, vertices, and vehicles; any probed vertices, surveyed edges, and
inspected vehicles. We refer to [BKS+, p. 8] for the complete listing of the
percepts.

5.2 The Python-DTU and HactarV2 systems

In this project we have developed a multi-agent system, called HARDAC, based
on the multi-agent system HactarV21. HactarV2 is a multi-agent system writ-
ten in GOAL developed in 2011 by students from the Delft University of Tech-
nology, Netherlands. It won the Multi-Agent Programming Contest in 2011.

The system that we are evaluating HARDAC against is Python-DTU2, writ-
ten in Python. It was developed by students from the Technical University of
Denmark for the 2012 MAPC competition. This system reached second place.
It is important to mention that the Python-DTU code used in this thesis is an
updated version3 of the team that reached second place in the 2012 MAPC
competition. The update consists of a small change in the buying strategy that
prevents Python-DTU from overreacting when a single enemy Saboteur buys a
lot of upgrades. With this update the Python-DTU team is the strongest multi-
agent system developed for the MAPC Agent on Mars scenario that we know
of.

As there are several challenges to overcome to be competitive against the other
multi-agent systems in the MAPC (e.g. which upgrades to buy and when, how
to choose zones to control, if the system should be aggressive or defensive),
an overall overview of the behavior of system can be made by identifying the
problems and the solutions implemented in the system. A solution to any one
of these problems will henceforth be referred to as a strategy.

1HactarV2 can be downloaded from http://multiagentcontest.org/downloads/
Multi-Agent-Programming-Contest-2011/Sources/HactarV2_Code.zip/.

2Python-DTU can be downloaded from http://multiagentcontest.org/downloads/
Multi-Agent-Programming-Contest-2012/Sources/Python-DTU/

3A diff of the changes can be found in the appendices.

http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2011/Sources/HactarV2_Code.zip/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2011/Sources/HactarV2_Code.zip/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2012/Sources/Python-DTU/
http://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2012/Sources/Python-DTU/


CHAPTER 6

Analysis of MAPC 2012,
HactarV2, and Python-DTU

This chapter begins with a description of the small changes needed to make
HactarV2 run on the MAPC 2012 server. It is followed by a short analysis of
the MAPC 2012 scenario map. Then the limitations of HactarV2, as a multi-
agent system, caused by the messaging system are discussed. The chapter is
concluded by a thorough analysis of the strategies used by HactarV2, and com-
parisons to relevant strategies used by Python-DTU.

Before beginning to analyze, it is important to define a few terms. The use of
the word optimum varies slightly between the MAPC scenario and HactarV2.
The MAPC scenario defines optimum as any vertex of the highest value, in
this case 10. HactarV2 however uses optimum as the term for the vertex it will
"swarm" around. In this thesis it will be used to mean any vertex of the highest
value.

Swarm is used by HactarV2 to denote the group of agents that constitute the
area around the optimum. However it is used by Python-DTU and the scenario
to mean any group of agents that are controlling an area. This is the meaning
it will have in this project. Swarming is the behavior of any agent who is in a
swarm.
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6.1 Agents on Mars 2012 scenario maps

In the 2012 MAPC scenario, three different map sizes are used. The largest map
has 300 vertices, the second largest 240 vertices, and the smallest map has 200
vertices.

More interesting is the change in distribution of vertex values. In the 2011 sce-
nario the high valued nodes were always clustered in the middle of the map.
In 2012 however the graph generation has a random chance of creating an op-
timum at any give node. Once it has iterated over all possible nodes, it "blurs"
the areas around the placed optimums, decreasing the value by some amount
the further away it gets from the optimum. It then flips the map symmetrically
across the vertical axis, making the left and right sides equal but opposite. The
agents are distributed in much the same way, so that if one team starts with a
Saboteur in the top left corner of the map, then the opposing team has a Sabo-
teur in the top right corner of the map.

Considering the varying vertex values as a height map, the Agents on Mars
scenarios can be viewed topographically. Seen this way the 2011 distribution
was a single hill, whereas in 2012 the distribution can be anything from a hill,
to a mountain range, to two solitary peaks. See Figure 6.1 and Figure 6.2 for
examples of the difference between the 2011 and 2012 scenarios. This is actu-
ally a big obstacle for HactarV2. It has implications for the most important of
HactarV2’s strategies, as will be seen in this chapter.

6.2 The messaging system of HactarV2

It is important to discuss the messaging system HactarV2 uses, and how it lim-
its the possibilities of HactarV2 as a multi-agent system. As explained in the
GOAL programming language section of chapter 4, the agent’s mails are not
synchronized before deciding on an action, leading to agents receiving mail
that is one round old.

This messaging system prevents many options for coordination. It prevents
the agents from agreeing on actions before performing them. This means that
it is not possible to prevent agents from moving to the same vertex with the
same purpose. As an example, several Explorers will often move to the same
unprobed vertex with the intention of probing it. They will not realize the
redundancy until they are standing on the same vertex at which point only
one will actually probe, effectively wasting a turn for the other Explorers that
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Figure 6.1: An example of the topography of a 2011 scenario map. A red color
indicates a higher value than a green color. The red vertices in the
middle therefore have value 10 while the green vertices at the cor-
ners have a value of 1.

moved to the vertex.

This is also a problem for decision making when attempting to control a zone,
as it often leads to two agents leaving their vertex to make the zone bigger,
which results in them losing their connection to the zone. This makes the zone
smaller, and forces the agents who moved out of the zone to move back, wast-
ing their turn and causing HactarV2 to lose points because their zone is smaller.

Besides the limitations on communication, the messaging system is also very
computationally heavy. Sending more than a bare minimum of messages slows
the system down too much to be able to make the deadline imposed by the
server.

Python-DTU does not suffer from these problem. At the beginning of every
step, all agents handle perceptions and mail any new beliefs to the other agents.
This way, all agents have the same knowledge before they begin deciding on
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Figure 6.2: An example of the topography of a 2012 scenario map. A red color
indicates a higher value than a green color. The completely red
vertices have value 10 while the completely green vertices have a
value of 1.

an action, allowing much greater levels of cooperation. To decide which agent
does what, Python-DTU uses an auction based negotiation which prevents sev-
eral of the cases mentioned above. For example, Explorers will never move to
the same unprobed vertex with the intention of probing and agents in their
swarm collectively decide where to stand.
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6.3 Analysis of HactarV2

The general idea of HactarV2 is to use hill-climbing1 for the Explorers to quickly
find the center of the map, and the optimum area. Once this is found the loca-
tion is sent to all other agents, and they move towards the optimum until they
reach the optimum zone they control. When they reach the zone all the agents
swarm around the optimum until the end of the game.

This strategy will not work as intended in the 2012 scenario, as it results in
HactarV2 deciding the first optimum it finds must be the optimum, and the
center of the map, and begins to swarm around it. Due to the updated scenario,
where the highest valued nodes are placed randomly, this can be anywhere on
the map. Therefore the area chosen by HactarV2 is rarely the best area, and
will usually swarm around a lower valued area than Python-DTU. Occasion-
ally HactarV2 is lucky and picks a good zone which is far enough away from
Python-DTU to be left alone. However, even in the best case, HactarV2 will
never be able to win against Python-DTU.

6.3.1 Probing

As mentioned HactarV2’s Explorers use hill-climbing to search for the high-
est value nodes. The hill-climbing algorithm itself functions very well, but the
Explorers stop probing once an optimum node has been found. When an op-
timum is found the Explorer sends a mail to all other agents telling them to
converge on the optimum and begin to swarm. At this point the Explorers will
only probe the area around the optimum. This is a consequence of the general
strategy of finding the center of the map, as mentioned above. This strategy
leaves HactarV2 with very few probed vertices, very little knowledge about
the map, and fewer achievement points.

HactarV2’s Explorers are also programmed to always survey a vertex first, be-
fore performing any other action. This is backwards, as probing first may give
a few extra points the next round, whereas surveying first yields no advantage.
This is a small point, however, the fact that Explorers survey at all may be un-
necessary. Traversing an edge which has not been surveyed costs the same
amount of energy as traversing one where the weight is known. Therefore, it
may be worthwhile to completely remove surveying from Explorers.

1That is, continuously moving towards a higher-valued vertex until no such vertex exists.
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6.3.2 Swarming

HactarV2 uses a swarming strategy once it has decided which highest value
node to control. The basic algorithm for an agent in the swarm is to consider
its position and possible neighboring positions for expanding the swarm. De-
pending on the calculations the agent will move to one of these neighboring
vertices, or stay where it is. The algorithm only allows agents to expand the
swarm to vertices which are not owned by either team. This can lead to an un-
fortunate circumstance where all of HactarV2’s agents become trapped inside
of Python-DTU’s swarm. When this happens, it counts as Python-DTU sep-
arating the rest of the map from HactarV2, resulting in Python-DTU owning
nearly all the vertices on the map. The swarm has other issues as well.

There are two more reasons the swarm is not very effective. First the agents
often become confused about where they should stand, sometimes moving to
the same node as another HactarV2 agent, or moving too far away from the
swarm. When this happens they are told to move back towards the optimum
and try again. This causes the swarm to be very volatile and unstable. Moving
around like this means that HactarV2 controls fewer vertices than it has the
opportunity to.

Secondly, a single enemy Saboteur can be enough to heavily disrupt HactarV2’s
swarm. When an agent in the swarm feels threatened by enemy agents it runs
away, and unless there is an allied Saboteur nearby, the enemy Saboteur will
eventually drive the whole HactarV2 swarm away. Another way it disrupts the
swarm is by causing large battles (see Figure 6.3. Large battles happen when all
of HactarV2’s Saboteurs move to the same node as the enemy Saboteurs. This
causes Python-DTU’s and HactarV2’s Repairers to come to the node. When
many Saboteurs and Repairers gather on a node, HactarV2’s poor targeting al-
lows the enemy agents to stall all of HactarV2’s Saboteurs and Repairers.

When these battles happen inside of HactarV2’s zone, the vertex where the
battle happens is often occupied by equal numbers of allied and enemy agents,
causing HactarV2 to lose control of the node, and through the coloring algo-
rithm, possibly other nearby nodes as well. It also means that the distance
from the battle to other HactarV2 agents is short, allowing Python-DTU to dis-
able large portions of HactarV2’s swarm while the Repairers slowly repair each
other and the Saboteurs at the site of the battle. These scenarios cause HactarV2
to lose a lot of points over the course of the simulation.

The result of the cases above is shown clearly on the zone stabilities statistic
generated by the monitor (see Figure 6.4).
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Figure 6.3: An example of a large battle

Figure 6.4: The zone stabilities graph output from the MAPC 2012 server
showing HactarV2 zone stability versus Python-DTU zone stabil-
ity.
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6.3.3 Repairing and attacking

Something that was noticed when examining simulations, is that when there
are several Repairers, or Saboteurs, on the same node, they end up choosing
the same target. As an example, if there were three Repairers on a node, and
three disabled agents, all three Repairers would attempt to repair the same
agent, instead of them repairing one each. The same happens when there are
several enemy agents on a node with several of HactarV2’s Saboteurs. This
is a limitation of the current HactarV2 code, which they did not address in
the 2011 scenario. We have noticed that versus Python-DTU this is actually
a pressing issue for HactarV2’s swarm, both when attacking and defending.
Especially as when a large battle arises the Repairers congregate on the battle
vertex and become trapped, indefinitely repairing disabled agents on the node.
This causes problems as it allows enemy Saboteurs to completely destroy Hac-
tarV2’s swarm while the Repairers and Saboteurs do nothing to stop it.

6.3.4 Buying

HactarV2 uses a very aggressive buying strategy. As soon as it has achievement
points to spend, it begins to upgrade its Saboteurs with strength and shields.
The advantage gained does not seem to be worth the cost however, as being
stronger than Python-DTU for the first 150 steps does not seem to make a dif-
ference in the overall outcome. Also, the cost is quite large, often HactarV2 has
spent around 12 achievement points in the first 20 steps. These achievement
points spent add up to several thousands of points lost during the simulation.
(see Figure 6.5)

6.3.5 Superiority

When HactarV2 controls more than a certain percentage of the map, it activates
its superiority strategy. In this strategy each Saboteur is assigned a Repairer
that it is to hunt down and follow. This should prevent the opposing team
from ever getting back into the game, while HactarV2’s other agents explore
the map for more achievement points. This state will never be entered versus
Python-DTU.
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Figure 6.5: The achievement points graph showing HactarV2’s aggressive buy-
ing strategy and its consequences.

6.3.6 Bugs and needed updates

Separate from these strategies are a couple issues that should be addressed.
First is the fact that some of the algorithms used, e.g. for deciding whether or
not to parry, expect only two agents of each role. The MAPC 2012 server also
returns more precise feedback for failed actions, which needs to be updated in
the HactarV2 code.

The other bug is in the Inspector code. The bug causes them to behave poorly
in the swarm, not keeping to their positions, but rather moving towards enemy
Saboteurs. Looking at the statistics we see that our Inspectors inspect around
1000 times per simulation. However, teams only receive achievement points
for how many of the enemy teams agents have been inspected, this is a big
waste of time.

This behavior often results in the Inspectors getting caught up inspecting only a
few enemy agents over and over. This often leads to not inspecting all of the en-
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emy teams agents, which reduces the number of achievement points received,
as well as causing other agents to move, usually in fear of enemy Saboteurs,
due to not knowing the role of some nearby enemy agent.

6.3.7 Storing information

In the beginning of a simulation the agents have very little information about
the map causing one severe issue. When one of HactarV2’s agents is disabled
early on in the simulation, there is a high probability that it will not know of
any paths to allied Repairers. Looking for solutions it was discovered that the
agents receive a lot of information about their surrounding area during the
map, which HactarV2 does not store. Storing this information and sending it
to allied agents would help reduce the probability of not having a path to an
allied Repairer. This will not be enough in all cases, so a secondary solution
is needed. One possibility would be to try to survey as much of the map as
quickly as possible with the Sentinels, spreading them out to cover as large a
portion of the map as possible. It would be difficult to avoid them moving
towards each other, as the agents don’t know how the map is connected. A
simpler solution would be to have the agents play more cautiously during the
early stages of the simulation. This would not remove the problem entirely, but
would hopefully make it less dangerous.
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6.4 Relevant strategies from Python-DTU

6.4.1 The greedy algorithm

Returning to Python-DTU’s solution regarding finding the best zones. Python-
DTU runs a greedy algorithm on all the nodes in the map. It begins by calculat-
ing an approximate best optimum area, and then calculates approximate best
locations for their agents to stand, taking into account the coloring algorithm
used by the environment. The agents then decide through an auction-based
negotiation who will go where. This results in Python-DTU selecting, not per-
fect, but very good vertices to stand on so that the zone they control is large.
This strategy will not always be optimal, but in practice it works very well.

6.4.2 Probing

Python-DTU’s Explorers use a random exploration algorithm for finding ver-
tices to probe. They never survey, instead they make sure that if the edge is
unknown they do not attempt to traverse it without 9 energy (the max weight
of an edge). Their random probing solution works well because they probe for
200 steps, allowing them to probe a lot of vertices. Probing for the first 200
steps allows Python-DTU to probe a far greater number of vertices than Hac-
tarV2. However, HactarV2’s hill-climbing algorithm should be more efficient
at finding high valued nodes quickly than Python-DTU’s random search.

6.4.3 Buying

Python-DTU uses a less aggressive buying strategy than HactarV2. It waits
until step 150 before using knowledge gained from inspecting the opposing
team’s Saboteurs to decide whether or not to buy upgrades, and how many.
Python-DTU uses the second highest enemy Saboteur strength, and second
highest enemy Saboteur health, to decide when to buy upgrades. This is the
update that was made after the MAPC 2012. Previously Python-DTU consid-
ered the highest enemy Saboteur health and strength, when deciding to buy
upgrades. This was exploited by the winners of the MAPC 2012 competition
by buying lots of upgrades on a single Saboteur, causing Python-DTU to spend
up to four times as many achievement-points on upgrades as the winners.

Both waiting until step 150 and using knowledge of the second highest enemy
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Saboteur health and strength seem to be good solutions. The 150 step timeout
may not be optimal, but very little would be gained by adjusting it. Therefore,
Python-DTU’s solution will inspire the solution for HARDAC.

6.4.4 Repairing and attacking

Another point is how Python-DTU uses its Saboteurs. When Python-DTU
agents detect enemy agents around an area they control, they request help
from a Saboteur. Python-DTU then sends a single Saboteur to disable Hac-
tarV2’s agents. And if Python-DTU discovers an enemy swarm it will send a
Saboteur to disrupt it.

Examining Python-DTU’s swarm it is noticeable that when swarming, the Re-
pairers will move to the disabled agents if they are far away, whereas the agent
will move to the Repairer if it is nearby. This allows Python-DTU to have a
greater zone stability, and waste less time moving disabled agents around.



CHAPTER 7

Possible Strategies for
HARDAC

Based on the analysis in the previous chapter, there are several improvements
that could be implemented and a few bug fixes that have to be implemented.
The bug fixes are for mistakes in the original code, such as role names being
spelled incorrectly, and a few fixes for the new server. For example the server
now returns more precise messages when an action fails, so a few lines in the
original code must be replaced. In broad categories the improvements deal
with messaging, probing, swarming, buying upgrades, attacking, repairing,
and defending.

7.1 Messaging

The messaging system could be rewritten so that all agents process their per-
cepts and send any mails before any agent begins to decide what action to take.
This would be very beneficial, also for implementing many other strategies, but
it requires a complete rewriting of the original messaging system and would
probably require a large restructuring of the main agent logic. Therefore it will
not be improved as a part of this thesis. It will be discussed in the extensions
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chapter as a possibility for future development, as well as the possibilities it
opens for new or improved strategies.

7.2 Probing

An important strategy to improve is probing. First of all, the Explorers need
to deal with having multiple optimums. Having HactarV2 swarm around a
the first found optimum, which likely has low valued surrounding vertices, is
not good enough. Therefore the Explorers should continue to probe the map,
even after they have found one optimum and have a new way of handling opti-
mums. Handling multiple optimums could be handled by finding any probed
vertices with value 10, instead of having a single Explorer send information on
"the" optimum.

The hill-climbing algorithm used by HactarV2 works well. However, once an
Explorer has found an optimum, hill-climbing is no longer useful as the agent
is already at the top of the hill. There are two clear possibilities; start to probe
nearby unprobed vertices randomly, or start probing the area surrounding the
optimum. Given enough time the random search should cover all the vertices,
but high-value vertices near optimums may be missed. To get the most out of
the positions HARDAC chooses for its agents, probing the surrounding area
should be the better solution and will be the solution used in HARDAC. The
efficiency of the Explorers can also be improved by stopping them from sur-
veying.

7.3 Swarming

Swarming could be improved in several ways. HactarV2’s single swarm is of-
ten a bad solution. This is because a vertex’s value decreases the further from
an optimum it is. Therefore agents swarming far from the optimum would
probably contribute more points, each round, by swarming around a separate
optimum instead. Another possibility for improvement would be to make the
swarm less frightened of enemy agents. Having agents that can stay and parry
on their vertex instead of running away would make the swarm more stable.
To further control the erratic movement, agents who believe they have found
a good position to stand on, could be told to stay there for a certain number of
turns. The agents should also be allowed to move to vertices that are controlled
by the enemy team, not just unoccupied vertices. Finally, the agents should not
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all move if there is an enemy agent on a node. For example, there are situations
where four HactarV2 agents are standing on an optimum, along with an enemy
agent. All four HactarV2 agents conclude that they should move to expand the
swarm. This causes HactarV2 to lose control of the optimum, so next turn they
all move back to the optimum. This continues indefinitely or until the enemy
agent moves.

To prevent this, HARDAC could take into account the number of enemy agents
on a node, and leave enough agents to keep control of the node. A timeout
could also be used to prevent erratic movement in the agents once they have
found a good place to stand.

Another solution would be to use Python-DTU’s greedy algorithm and have
a single agent calculate positions and send a position to each swarming agent.
This could potentially make HARDAC’s swarm equally as good as Python-
DTU’s. Hopefully this would then allow improvements in other areas to tip the
balance in HARDAC’s favor. The advantages of this solution is that we know
it works, and would take of the problems of erratic movement. HARDAC will
use a Prolog implementation of Python-DTU’s greedy algorithm.

7.4 Buying upgrades

The buying strategy needs improvement, both for conserving points, but also
in choosing upgrades. HactarV2 uses too many achievement points, for little
gain in the early stages of the simulation. One partial solution would be to
only buy strength to conserve achievement points. However, this would leave
HARDAC’s Saboteurs very vulnerable to enemy Saboteurs. Using a time-out
of some number of steps would solve the problem. Python-DTU waits 150
steps before buying upgrades. Waiting longer may not be safe, as it would
leave HARDAC weaker than Python-DTU for some number of steps. The sim-
plest option is to use the same time-out as Python-DTU, which should put
HARDAC on equal footing with Python-DTU.

Using the opponents second strongest Saboteur’s upgrades to decide what im-
provements to buy would prevent the updated system from falling into the
same trap that Python-DTU did during the MAPC 2012 competition. Some
guidelines for choosing upgrades may be necessary as Python-DTU might be
the first to buy, in which case they will buy strength first. If this happens,
HARDAC would buy health, which would cause a feedback loop ending in
HARDAC’s Saboteurs having a lot of health and no strength, while Python-
DTU has a lot of strength. This is a problem as it would prevent HARDAC’s
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Saboteurs from being able to disable any enemy agent in a single attack, while
Python-DTU would be able to.

7.5 Attacking

The targeting of the Saboteurs could be improved heavily by coordinating at-
tacks when on the same node as other allied Saboteurs. A solution that does
not rely on sending messages is necessary. A possibility would be using the
agent name to determine which agent does what. A priority list of which agent
role to attack would also be useful for ensuring that high-priority targets are
disabled.

To prevent large battles, the Saboteurs could consider the number of, allied
and enemy, Saboteurs and Repairers that are on their node and move away if
they are not needed. To prevent the large battles from happening in our zone, it
would also be beneficial to send some Saboteurs to the enemy swarm to harass
it. This should force some of the enemies’ Saboteurs back to defend, as well
as disrupt the enemy swarm, and help keep HARDAC’s swarm safe. This re-
quires that HactarV2’s Saboteurs stop swarming, and instead focus on keeping
Python-DTU occupied.

7.6 Repairing

As with Saboteurs, Repairers could be greatly improved by coordinating re-
pairs when on the same node as other allied Repairers. And because of the
order that actions are handled by the server, namely repairs occur after at-
tacks, we can improve them even further. By knowing that repairs happen
after attacks, and knowing Python-DTU’s attack priorities, the Repairers could
attempt to predict which allied agent on a node will be attacked that turn, and
perform a repair on that agent the same turn(see Figure 7.1). In this way al-
lied agents can avoid becoming disabled even though they are attacked. This
makes it possible to effectively fight battles with fewer Saboteurs than the op-
ponents. Needing fewer Saboteurs in large battles allows the surplus Saboteurs
to move around and attack other enemy agents, disrupting their swarm.

To deal with getting stuck in large battles, there are a couple of options. It
would be possible for the Repairers to calculate whether or not they are in a
large battle, and move away. This may not be ideal as if there are no allied
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(a) The Saboteurs
will attack each
other this turn.
Knowing this,
HARDAC’s
Repairer will
preemptively
repair HARDAC’s
Saboteur.

(b) HARDAC’s
Saboteur is not
disabled, whereas
Python-DTU’s
Saboteur is, al-
lowing it to attack
Python-DTU’s
Repairer.

(c) Again the Sabo-
teurs will attack
each other, caus-
ing HARDAC’s
Repairer to pre-
emptively repair
HARDAC’s
Saboteur.

(d) Both Python-
DTU agents are
disabled, while
both HARDAC
agents are fully
operational.

Figure 7.1: An example showing how the new preemptive repairing works,
with Python-DTU(green) and HARDAC(blue) in an even battle
with one Repairer and one Saboteur each, and the result.

disabled agents, then the Repairers would be better off helping in the battle.
They could also make repairing an agent a goal, to force them to commit to
repairing a disabled agent, while still allowing them to participate in the battle
when they are not needed elsewhere.

7.7 Defending

Knowing the priorities of Python-DTU’s Saboteurs can also be used to improve
the defense algorithms of HactarV2. If an agent is standing on the same node as
a Python-DTU Saboteur, it is possible to calculate whether or not it might attack
the agent. This can be used to prevent running away, needless parrying, and
for calling for help if the swarm is under attack. While in the swarm agents that
can parry should stay on their node when an enemy Saboteur comes and parry
for its attacks for as long as possible. This allows allied Saboteurs the chance of
coming to the rescue and disabling the enemy Saboteur before it disrupts the
swarm.
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CHAPTER 8

Implementation

In the first half of this chapter different ways to control an agents behavior are
described. In the second half, the implementation details of strategies chosen
for HARDAC are described.

For the complete program listing see the appendices.

8.1 Controlling the behavior of agents

The behavior of the overall system must be consistent such that the behaviors
of the agents are determined by the state of the simulation and the teams. Sev-
eral methods have been utilized to realize this goal. The use of these methods
will be explained in more detail in the relevant sections later on in this chapter.

8.1.1 Timeouts

For some strategies timeouts have been used to determine if it is time to per-
form some specific behavior. These timeouts are for the most part triggered
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when certain steps in the simulation are reached or if certain knowledge about
the match has been obtained.

These triggers have been chosen and tweaked so as to be competitive against
Python-DTU. Some of the triggers therefore also coincide with those used by
Python-DTU. However, it is important to note that the triggers of HARDAC
do not exploit any shortcomings Python-DTU may have, so they should also
be competitive against other opponents when battling on the MAPC 2012 sce-
nario.

In HARDAC there are timeouts for deciding when to decide on swarms
(timeToDecideSwarm), when to swarm
(timeToSwarm), when to disrupt enemy swarms (timeToHarass), when to
hunt an enemy Saboteur that is attacking HARDAC’s swarms (timeToHunt),
and when to buy upgrades (timeToBuy).

8.1.2 Agent ranks

1 % Returns the rank ( based on i t s name) of an agent compared to a l l
other agents on i t s node

2 agentRankHere ( Rank ) :− currentPos ( Here ) , me(Name) , team (Team) , ! ,
3 f i n d a l l ( Agent , v i s i b l e E n t i t y ( Agent , Here , Team , normal ) , Agents ) ,

agentRank ( Agents ,Name, Rank ) .
4
5 % An agents rank ( i . e . index ) in the l i s t L i s t
6 agentRank ( L i s t , Agent , Rank ) :− nth0 ( Rank , L i s t , Agent ) , ! .

Figure 8.1: An example a predicate computing the rank of an agent on the cur-
rent vertex; agentRankHere/1.

Sometimes, to prevent performing large computations unnecessarily or for op-
timizing behavior, agents can order the agents on the team by a rank where
the rank depends on the situation. These ranks are usually used to determine
which target to attack or repair to prevent attacking or repairing the same tar-
get, and who needs to calculate the swarming positions.

8.1.3 Messages

Messages are expensive and are delayed by one simulation step, so they are
kept to a minimum and used only for synchronizing certain beliefs and when
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requesting services from other agents. Sometimes they are also necessary, how-
ever, such as when sharing relevant information about the simulation state be-
tween the agents. A compromise between sending messages and performing
complex calculations for each agent therefore had to be reached.

Messages for new vertices are sent to each agent when found, not only when
a vertex has been probed or surveyed as in the HactarV2 system. This dra-
matically reduces the performance in the first couple of steps of the simulation
because a large amount of vertices are visible at each step. The advantage is
that paths between vertices are found significantly earlier than otherwise.

Messages for synchronizing and updating the status (i.e. health, name, and
position) of allies and enemies are also shared between the agents as this infor-
mation is used for deciding when to do certain behavior.

8.1.4 Goals and predicates

Goals in GOAL are useful for forcing agents to commit themselves to reach a
desired state of the simulation or until a certain condition is met. Goals are
used in HARDAC for swarming, repairing, harassing, and probing.

Sometimes a predicate is used instead to determine if a certain condition is met.
This serves a similar purpose as goals but may be easier to implement or has
already been implemented in HactarV2 and refactoring would be a waste of
time.

8.1.5 Predicting other agent’s behavior

If the relevant beliefs are consistent between the agents of HARDAC then each
agent can potentially predict the behavior of the other agents. This is exploited
by the Saboteurs when choosing targets to attack so that when multiple Sabo-
teurs are at the same vertex they will not attack the same target if it is unnec-
essary. It is also used by Repairers for the same reason, i.e. delegating tasks
for the Repairers at a vertex. This is achieved in each agent by doing the same
calculations and then choosing targets depending on the rank of the agent.
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8.2 The strategies used by HARDAC

8.2.1 Buying upgrades

1 module upgrades {
2 knowledge {
3 shouldBuyStr ( S ) :− enemySaboteurSecondMaxHealth ( Health ) , S < Health

, ! .
4 shouldBuyStr ( S ) :− me(Me) , hasLowestRoleRank (Me) , S < 6 , ! . % At

l e a s t one Saboteur should be able to k i l l anybody in one round .
5 shouldBuyHP (H) :− enemySaboteurSecondMaxStrength ( Strength ) , H =<

Strength , ! .
6 }
7 program {
8 i f be l ( timeToBuy , not ( ( enabledEnemyHere ( ID ) , dangerousEnemy ( ID ) ) ) ,

s t r en gt h ( S ) , maxHealth (H) , money (M) , M >= 4) then {
9 i f be l ( shouldBuyStr ( S ) ) then {

10 i f t rue then buy ( sabotageDevice ) .
11 i f t rue then recharge .
12 }
13 i f be l ( shouldBuyHP (H) ) then {
14 i f t rue then buy ( s h i e l d ) .
15 i f t rue then recharge .
16 }
17 } } }

Figure 8.2: The buying module for Saboteurs.

The buying strategy of HARDAC has been made similar to the buying strategy
used by Python-DTU. The current strategy is to:

1. Only buy upgrades for the Saboteurs, and only buy health and strength
upgrades.

2. Ensure that the health of HARDAC’s Saboteurs is always one more than
the enemy’s strength. This ensures that the enemy cannot disable HARDAC’s
Saboteurs in one step.

3. Consider the health and strength of the enemies Saboteurs before buying
upgrades. HARDAC only buys upgrades if the second highest health
and strength among the enemy Saboteurs is higher (or equal in the case of
the enemy’s strength) than HARDAC’s Saboteurs, using predicates called
secondMaxHealth and secondMaxStrength. This ensures that the
enemy cannot trick HARDAC into buying upgrades for all its Saboteurs
while the enemy only buys for one Saboteur.
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4. Use a timeout to prevent buying upgrades early in the simulation. This
timeout is called timeToBuy and is constructed such that the Saboteurs
first considers buying upgrades after at least 140 steps have passed.

8.2.2 Probing

The motivation for this strategy is the fact that Python-DTU probes a lot more
than HactarV2 and therefore is able to determine better nodes to control for its
zone score.

To reduce this discrepancy, HARDAC’s Explorers do not survey unless they
have probed the whole map, and the behavior have also been changed signifi-
cantly.

The Explorers of HARDAC go through three stages when probing the map:

1. Finding optimums. This stage is controlled by using a goal, optimum,
that is achieved when the Explorer itself has probed a vertex of value 10.

2. Probing the area around the found optimum. This stage is controlled by
a timeout. When it is not time to swarm and the optimum goal has been
achieved, the agent will probe the area around the optimum so the po-
tential zone score can be calculated for when the team later on chooses to
swarm. The Explorers calculate a list of vertices around their respective
optimum that have not been probed and then probes all the vertices in the
list. This is accomplished by using a predicate called needExploring/1,
where the variable is the list in question, that is updated at each step.

3. Probing the rest of the map. When it is not time to swarm and all nodes
in the needExploring/1 predicate has been probed, the Explorer will
find any vertices left on the map that is not probed and then probe them.

After the three stages have been completed, or the timeToSwarm timeout is
reached, the Explorers will swarm.

8.2.2.1 Hill-climbing to find optimums

The hill-climbing algorithm from HactarV2 for finding optimums has been
kept in HARDAC because it will also find the highest valued vertices in MAPC
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2012. The implementation is in the searchOptimal module of explorer
.mod2g. It works by probing a random neighbor of the current vertex and
then advancing to that neighbor if it has a higher value. Otherwise it goes back
to the previous vertex and tries another neighbor. If no higher-value vertices
are neighbor to the current vertex then the current vertex must be an optimum.

8.2.2.2 Probing around optimum

1 calculateNeedExploring ( L ) :− swarmPosition (MOpt) , MOpt \= unknown ,
f i n d a l l ( V1 , ( member (O, Opts ) , neighbour (O, V1 ) , needProbe ( V1 ) ) , A) ,
f i n d a l l ( V2 , ( member (N,A) , neighbour (N, V2 ) , needProbe ( V2 ) ) , B ) ,
append (A, B ,C) , append ( Opts , C,D) , s o r t (D, L ) .

2
3 updateNeedExploring (A, B ) :− f i n d a l l (V, (member (V,A) , needProbe (V) ) , B ) .

Figure 8.3: Predicates used for updating and calculating the list contained in
the needExploring predicate.

When an Explorer has found an optimum it must change its behavior as hill-
climbing no longer suffices because it is already at the top of the hill. We have
chosen to probe all vertices surrounding the found optimum.

The Explorers uses a predicate needExploring/1 to ensure that they probe
around a certain radius of the optimum that they have found. This ensures that
a zone value can be approximated for each optimum when it is time to decide
where to swarm. See also the above explanation of needExploring/1.

This behavior is implemented in the module searchPostOptimal in
explorer.mod2g.

8.2.2.3 Probing afterwards

After having probed all vertices around the optimum, the Explorer will probe
the rest of the map until it is time to swarm. This is also implemented in the
module searchPostOptimal.
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8.2.3 Attacking

HactarV2’s Saboteurs have some deficiencies that we have focused on improv-
ing. These deficiencies of HactarV2’s Saboteurs are:

1. They do not delegate targets among themselves, thereby not preventing
them from attacking the same enemy.

2. They do not reason about the state of the swarms, both the enemy’s
swarms and their own team’s swarms. It is important to disrupt the en-
emy swarms and prevent the enemy from disrupting our swarms. Oth-
erwise they can gain a considerable advantage.

8.2.3.1 Keeping track of the enemy

1 i f be l ( agentRankHere ( 0 ) , enemyTeam ( T ) , me(Me) , currentPos (V) , f i n d a l l ( [
E , P , X] , ( v i s i b l e E n t i t y ( E , P , T , X) , not ( enemyStatus ( E , P , X) ) ) , L ) , L \=

[ ] ) then {
2 f o r a l l be l ( agent ( ID ) , ID \= Me, s ta tusUser ( ID ) , not ( v i s i b l e E n t i t y ( ID ,

V, _ , _ ) ) ) do send ( ID , enemyStatusPack ( L ) ) .

20 · 4, and not 202 · 4 ·Ni, i.e. one for each enemy

Figure 8.4: How the agents inform each other about the status of the enemy.
Note how the agents send a list of enemyStatus rather than one
message per enemyStatus. This reduces the penalty associated
with messaging. From common.mod2g.

The known states of the enemy agents are sent to the Saboteurs (and Repair-
ers, see the section about repairing) at the beginning of each step in a predicate
called enemyStatus/3. It contains the ID, the position, and the status (dis-
abled, normal) of the enemy agent. The Saboteurs need to know the location
and status of enemy agents such that they can reason about where the enemy
is swarming and if the enemy Saboteurs are a potential threat to HARDAC’s
swarms.

Alternatively, the agents themselves could request tasks from the Saboteurs,
resulting in fewer messages sent. But this would require writing additional
code, thereby raising the complexity, and synchronizing the status of the ene-
mies is also relevant for Repairers.

For performance purposes, all the visible enemy agents are sent to the Sabo-
teurs in one message instead of multiple messages. Furthermore, the messages
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are sent only if the agent believes the relevant Saboteur cannot see the enemies
visible to the agent. So the maximum number of messages sent each round
about the status of the enemy is reduced significantly. See Figure 8.4.

8.2.3.2 Handling large battles

1 % I f there are N−1 a l l y Saboteurs and N enemy Saboteurs a t a ver tex
then we should not go there because we are not needed ( i . e . i f not (
notLargeBat t l e ) )

2 l a r g e B a t t l e C a l c u l a t o r (V,AN,EN,AL) :− f i n d a l l ( EID , ( enemyStatus ( EID , V, _ )
, dangerousEnemy ( EID ) ) , EL ) , ! , f i n d a l l (AID , ( teamStatus (AID , V, _ ) ,
r o l e (AID , ’ Saboteur ’ ) ) , AL) , ! , length ( EL ,EN) , length (AL,AN) .

3 l a r g e B a t t l e (V,AL) :− l a r g e B a t t l e C a l c u l a t o r (V,AN,EN,AL) , AN >= EN, AN \=
0 , EN \= 0 , ! .

4 notLargeBat t l e (V) :− l a r g e B a t t l e C a l c u l a t o r (V, _ , 0 , _ ) , ! .
5 notLargeBat t l e (V) :− l a r g e B a t t l e C a l c u l a t o r (V,AN,EN, _ ) , ANPlusUs i s AN +

1 , ANPlusUs < EN, ! . % AN+1 to prevent us from c r e a t i n g a l a r g e
b a t t l e

Figure 8.5: How large battles are identified. From roleKnowledge.pl.

A vertex V is said to contain a large battle if the number of ally Saboteurs on V
≥ the number of enemy Saboteurs on V > 0. This definition assumes that the
Saboteurs of each team are evenly matched, which is a reasonable assumption.

If a vertex is determined to contain a large battle, it may be useful to move a
Saboteur away from the battle. When HARDAC detects a large battle the Sabo-
teur with the lowest rank among the Saboteurs at the vertex will try to either
harass an enemy swarm, find an enemy on a neighboring vertex to attack, or
move to a random neighboring vertex, in that order.

To prevent the Saboteur from moving back into the large battle, it determines
if moving to the vertex would create a large battle, and if true, will not move to
that vertex.

These changes hopefully forces some Saboteurs to disable swarming enemies
instead of fighting indefinitely at the same vertex.

The predicates in HARDAC are called largeBattle/2 and notLarge Battle/1.
largeBattle has as parameters the vertex and the number of allied Sabo-
teurs at the vertex, as this information is needed to determine if the Saboteur
is of the lowest rank among the Saboteurs at the vertex. notLargeBattle
also has the vertex in question as parameter. The reason for the predicate
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notLargeBattle, instead of utilizing the negation-as-failure operator in GOAL
on largeBattle, is that notLargeBattle also considers if the Saboteur is
moving to the vertex and if its presence in the immediate future will create a
large battle.

8.2.3.3 Harassing enemy swarms

1 % A p o s s i b l e harassment ver tex i s a high−value ver tex t h a t i s owned by
the enemy and t h e r e f o r e probably conta ins a swarm

2 timeToHarass :− me(Me) , hasLowestRoleRank (Me) , s tep (N) , N > 6 0 .
3 poss ib leHarassVertex ( Pos ) :− f i n d a l l (V, ( enemyStatus ( EID , V, normal ) , not

( inspectedEnemy ( EID , ’ Saboteur ’ ) ) , not ( inspectedEnemy ( EID , ’ Repairer ’
) ) , no tLargeBat t l e (V) ) , L ) , L \= [ ] , randomElement ( L , Pos ) , ! .

4
5 % I f we have defeated the enemy near the harass ver tex then the harass

i s over .
6 harass (V) :− ( currentPos (V) ; ( currentPos ( P ) , neighbour (V, P ) ) ) , not (

enemyStatus ( _ , V, normal ) ) , not ( ( neighbour (V,N) , enemyStatus ( _ ,N,
normal ) ) ) , h a r a s s S t a r t ( S ) , s tep ( Cur ) , N i s Cur − S , N < 7 5 .

7 harass (V) :− h a r a s s S t a r t ( S ) , S \= 0 , s tep ( Cur ) , N i s Cur − S , N > 50 , N
< 75 , ver tex (V, _ , _ ) .

8
9 % When the enemy i s disabled , the hunt i s over

10 timeToHunt :− me(Me) , hasLowRoleRank (Me) , not ( hasLowestRoleRank (Me) ) ,
s tep (N) , N > 1 0 0 .

11 hunt ( ID ) :− enemyStatus ( ID , _ , d isabled ) .

Figure 8.6: The timeouts for controlling when the harass and hunt should
start, and the predicates controlling when they have been achieved.
The timeouts also takes into consideration if the Saboteur has the
correct rank. From roleKnowledge.pl.

For disrupting enemy swarms, a goal called harass(V) has been created,
where V is a vertex. It seems that Python-DTU predominantly uses Inspec-
tors, Explorers, and Sentinels for swarming. The rest of the agents, Repairers
and Saboteurs, do not as they repair and attack respectively.

So for determining a vertex to harass, which is hopefully a place with a swarm,
we have chosen to choose a random vertex with an enemy Inspector, Explorer,
or Sentinel whose position do not contain a large battle.

If the harassing Saboteur is occupied with attacking enemy Saboteurs and Re-
pairers, in the worst case while fighting in a large battle, the Saboteur would
probably never move towards its harass vertex to achieve its goal. Harassing
therefore has a higher priority than nearly anything else, with the exception
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being buying upgrades. Of course, running from a battle includes a risk of
becoming disabled. Only one Saboteur is therefore allowed to harass.

The harass goal is achieved (i.e. the predicate harass/1 is true) when the
enemies at the harass vertex and its neighbors have been defeated. It is also
achieved when 50 steps of the simulation have elapsed from when the ha-
rass goal is adopted. To implement that, an atom which records at which step
the harassment strategy has begun, called harassStart/1, is inserted when
adopting the goal.

Goals are achieved when their respective predicate is true, in this case if the
harass/1 predicate is true. An important point is that goals in GOAL cannot
be adopted unless the predicate is false. So we have decided that after 75 steps
have elapsed, the predicate is false. This means that the agent has 25 steps
to drop the goal when it is achieved, which should be done automatically by
GOAL when the goal is achieved anyway. It of course cannot adopt a new
harass goal in this interval as the predicate is true.

To prevent confusion, the agent is only allowed to have at most one harass goal
at any time.

8.2.3.4 Delegating targets

To prevent the Saboteurs from attacking the same targets, the targets are del-
egated amongst the enabled Saboteurs by rank. As all enemies on a vertex
are visible to all the Saboteurs at vertex, it is possible to sort the enemies and
choose a target in the resulting list by order. This ensures that the Saboteurs do
not choose the same targets.

Furthermore, the targets are sorted by their role as not all roles are equal. The
ordering is as follows, in descending order of importance: Saboteurs, Repair-
ers, Explorers and Inspectors, Sentinels.

Sentinels have lower priority than Explorers and Inspectors, because they are
able to parry. The actual sorting is performed by the built-in sort/2 predicate.

As an example, if two Saboteurs, S0 and S1 with rank 0 and 1 respectively, are
at a vertex where the sorted list of targets is [E0, E1] then S0 will attack E0 and
S1 will attack E1.
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8.2.3.5 Rescuing swarms from attacks

When an enemy Saboteur is at the same vertex as a swarming HARDAC agent,
then one of the Saboteurs will attempt to remove the threat. That is, if a known
enemy Saboteur E is (probably) attacking an ally Inspector, Explorer, or Sen-
tinel, then the Saboteur with the second lowest rank among all the Saboteurs
will adopt a goal, hunt/1, with E as the parameter. If there are multiple such
E’s then it will choose one at random.

As with the harassment strategy the hunt goal has a high priority, and the
Saboteur with this goal will disregard all other possible course of actions than
to reach and disable the enemy. Buying upgrades, however, has a higher prior-
ity. Of course, if the agent is disabled itself, it will not attempt to fulfill its goal
until it is repaired again. Unless a path to the enemy in question does not exist,
in which case the goal will be dropped.

The goal is accomplished when the enemy has been disabled. For determining
this, the enemyStatus/3 predicate is used.

8.2.4 Repairing

1 ro leSe lec tRepa i rTarge tHere ( Target ) :−
2 me(Me) , agentEnabledRoleRankHere (Me, Rank ) ,
3 roleSortedDisabledHere (RL) , nth0 ( Rank , RL , Target ) .
4
5 roleSortedDisabledHere ( L ) :−
6 f i n d a l l ( ID , ( disabledAllyHere ( ID ) , r o l e ( ID , ’ Saboteur ’ ) ) ,SLTmp) ,
7 f i n d a l l ( ID , ( disabledAllyHere ( ID ) , r o l e ( ID , ’ Repairer ’ ) ) ,RLTmp) ,
8 l i k e l y T a r g e t s (TLTmp) , s o r t (TLTmp, TL ) ,
9 f i n d a l l ( ID , ( disabledAllyHere ( ID ) , r o l e ( ID , R) , not (member (R , [ ’ Saboteur

’ , ’ Repairer ’ ] ) ) ) ,OLTmp) ,
10 f i n d a l l ( ID , damagedAllyHere ( ID ) ,DLTmp) ,
11 s o r t (SLTmp, SL ) , s o r t (RLTmp, RL) , s o r t (OLTmp,OL) , s o r t (DLTmp,DL) ,
12 append ( SL , TL ,Tmp) , append (Tmp, RL , Tmp2) , append (Tmp2, OL, Tmp3) ,

append (Tmp3, DL, L ) .

Figure 8.7: The implementation of the target-selection process for repairing.

Two major issues with the way HactarV2 handles repairing is that:

1. Multiple Repairers on the same vertex could accidentally repair the same
agent, which is unnecessary.
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2. Repairers will sometimes repair agents on the current vertex that they
are standing on indefinitely, ignoring any nearby disabled agents. This
happens when enemy Saboteurs and Repairers are fighting against Hac-
tarV2’s Saboteurs and Repairers at the same vertex.

8.2.4.1 Delegating targets on vertex

To solve the first problem, the Repairers should somehow be able to delegate
repair tasks among the Repairers on the same vertex. As messages are a big
performance hit and delayed by one round, communication between the Re-
pairers is not feasible. Instead the Repairers of HARDAC predict the behavior
of the other allied Repairers on the same vertex, thereby making it possible to
avoid repairing the same agent twice.

As it is only possible to repair agents on the same vertex as the Repairer, and be-
cause all agents can perceive all other agents on the same node, the exact same
calculations can be performed, resulting in the exact same output for each Re-
pairer. The solution in HARDAC therefore consists of building a list of agents
to repair, sorting this list, and then choosing a target depending on the rank of
the agent among the allied Repairers at the vertex. Of course, if there are more
Repairers than repair targets available and the agent was not able to select a
unique target, then it will continue its program and not repair any agents on
the vertex.

The list is constructed such that disabled Saboteurs and Repairers are priori-
tized higher than other agents. The Repairers also consider repairing agents
that are hurt but not disabled.

This list is created by the roleSelectRepairTargetHere/1 predicate in
repairer.mod2g.

8.2.4.2 Predicting enemy attacks

Frequently the Saboteurs and Repairers of each team will converge to the same
vertex where they will fight until the end of the simulation. It is difficult to
escape if the teams are evenly matched as attack actions are processed before
goto actions by the server. By the same reason disabling Repairers may seem
like the most beneficial course of action, because this would prevent the Re-
pairers from repairing. But attacking and disabling all enemy Repairers in one
step requires a large amount of strength upgrades to be bought beforehand as
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the Repairers have at least 6 health and the Saboteurs have at least 3 strength.
Even if successful, the enemy could do the same or disable all Saboteurs which
would accomplish mostly the same; preventing at most 4 agents from repairing
or attacking for one step.

As repair actions are processed after attacks, a Saboteur can attack, become
disabled by being attacked, and be repaired in one step. Python-DTU seems
to favor attacking Saboteurs so repairing enabled Saboteurs that the Repairers
successfully predict will be attacked would give HARDAC an advantage over
Python-DTU. Unless the prediction was wrong, in which case the Repairers
would have wasted energy and time if the Saboteurs were at full health, i.e.
not damaged or disabled, before the repair action is processed.

The implementation is based on the same predicate,
roleSelectRepairTargetHere/1, with the difference being that this pred-
icate now accounts for non-disabled ally Saboteurs that are likely to be at-
tacked.

The complete listing of roleSelectRepairTargetHere/1 can be seen in
Figure 8.7.

likelyTargets/1, also seen in Figure 8.7, creates a list of enabled ally Sabo-
teurs at the vertex if there are at least as many enabled enemy Saboteurs on the
vertex as enabled ally Saboteurs. Sorting the lists ensures that they are identical
across all the Repairers at the vertex. Appending them fulfills the purpose that
the agents at the beginning of the resulting list L have a higher priority than
the rest.

One case that the above does not consider, is if a disabled Repairer selects itself
for repairing. Then no other Repairer at the vertex would repair the disabled
Repairer and it would still be disabled the next step. However, fixing this quirk
would require predicting what target the other Repairers choose, which would
make the predicate more complex than it already is.

8.2.4.3 Committing to repair an agent

To prevent the second point in the table above, the Repairers can adopt a goal
called repairing(ID) where ID is a disabled ally not on the same vertex as
the Repairer. Choosing an agent to repair is done at random, but agents that
can parry are weighted double. This is because those agents should be able to
survive longer after being repaired.
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Three of the Repairers will only commit themselves to repairing an agent if
they have nothing else to do. They will also only repair the agent if it is close
by. This prevents most of the Repairers from sporadically leaving spots where
agents are frequently disabled. The lowest ranking Repairer, when ranking by
role, works differently. If it detects that it is at a large battle then it will com-
mit to repair an agent regardless of the current situation around it. By only
allowing one Repairer to leave the large battle, HARDAC hopefully prevents
the enemy from gaining a significant advantage. The lowest ranking Repairer,
when ranking by role, will even go towards the disabled agent regardless of
the distance between them.

With this goal the enemy should hopefully not be able to destroy whole swarms,
because the disabled agents would be repaired faster than otherwise.

8.2.5 Swarming

The swarming behavior of HactarV2 had to be changed significantly to address
the following problems:

1. There are multiple optimums in the MAPC 2012 scenario as opposed to
the single optimum in MAPC 2011. This implies that swarming probably
has to be spread out around multiple optimums, creating the need for
multiple swarms.

2. Swarming agents in HactarV2 are easily disturbed by the enemy and
frequently moves around, breaking the swarm and decreasing the zone
score. The agents have to remain calm to be competitive against Python-
DTU.

As the Saboteurs and Repairers are frequently preoccupied with attacking and
repairing, the only agents able to swarm in HARDAC are the Inspectors, Ex-
plorers, and Sentinels. This results in a total of 12 swarming agents.

8.2.5.1 Calculating swarms

HARDAC utilizes the same algorithm as Python-DTU for calculating swarms,
as this algorithm has proved sufficient for generating valuable swarms in the
MAPC 2012 competition.
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function CALCSWARMS
Opts← BESTOPTIMUMS()
chosenopt ← CALCAREACONTROL(opt) for all opt ∈ Opts
optbest ← argmaxopt∈Opts

{∑
v∈CALCOWNED(chosenopt) value(v)

}
The swarms are then decided by CALCAREACONTROL(optbest).

end function
function CALCAREACONTROL(opt)

Place an agent a ∈ A on opt
chosen← {opt}
for all α ∈ A \ {a} do

owned← CALCOWNED(chosen)
best← BESTPOSITION(chosen, owned)
Place α on best
chosen← chosen ∪ {best}

end for
return chosen

end function

Figure 8.8: Pseudo-code of the swarming algorithm (CALCAREACONTROL)
from Python-DTU. A is the set of agents that should swarm,
value(v) is the value of vertex v. In HARDAC CALCSWARMS is
used.

The algorithm is a simple, greedy algorithm. It works by trying all possibilities
for placing one agent at a time on the map, and calculates the position that
results in the best outcome. It cannot place multiple agents on the map at the
same time, which is unfortunate as this would result in better swarms. Due to
time constraints, the algorithm has not been improved significantly. However,
the implementation in HARDAC calculates swarms from multiple optimums
and selects the best swarm from these possibilities, which could in some cases
result in a higher-value swarm.

See Figure 8.8 for an overview of the algorithm. See the appendix for the actual
implementation in GOAL used by HARDAC.

An explanation of the additional functions in Figure 8.8 is as follows (value(v)
is the value of the vertex v and neighbors(v) are the set of vertices that are
connected to v by an edge):

• BESTOPTIMUMS(): calculates valueopt =
∑

v∈N value(v), and valuemax =
argmaxopt∈Opts {valueopt}, where N is the set of neighbors and neigh-
bor’s neighbors to the optimum, for all optimums opt ∈ Opts. It then
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finds all opts for which valueopt ≤ limitwhere limit is the nearest integer
to 0.65 · valuemax.

• CALCOWNED(chosen): computes a set of the vertices who have at least
two neighbors n1, n2 ∈ chosen where n1 6= n2 and then unions it with
chosen, as these are exactly the vertices that can be owned by HARDAC
assuming that HARDAC only has agents on the vertices in chosen.

• BESTPOSITION(chosen, owned): computes and returns

argmaxv∈V \chosen

value(v) + ∑
w∈neighbors(v)\owned

value(w) ·N


where V is the set of all vertices and N = |neighbors(w) ∩ chosen|. So
BESTPOSITION finds a vertex that is not chosen yet such that the sum
of its value and the neighbors w that will be owned after v is chosen is
maximal. It has two peculiarities however:

1. It is possible for v to be in owned.

2. N can be larger than 1 so the value of each neighbor w of v that
are connected to at least one vertex in chosen are weighted by its
connections, but the zone score provided by w will, of course, never
be higher than value(w).

Both of these properties contribute to more resilient swarms as it pro-
motes redundancy by sacrificing a potential higher zone score. However,
it remains to be tested in HARDAC if the absence of these properties
would be useful.

To prevent multiple agents from computing the swarms and to ensure that all
the agents are positioned correctly, the only agent computing the swarm is the
Explorer with the highest role rank amongst the Explorers.

After the swarm has been computed, the Explorer will message the other agents
with their swarm position.

Only the agents that should actually swarm at the time of computation are
considered. This is important as not all agents should swarm at the same time.
See the timing for swarming below.
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8.2.5.2 Swarming behavior

When the agents have received their swarm position, they will adopt the swarm
goal. With this goal, the agents will move towards their swarm position. This
goal never succeeds, so as to ensure that the agents are swarming for the rest
of the simulation.

To prevent unnecessary movements, the agents will not flee from an enemy
when they are standing at their swarm position. However, they will defend
themselves, and with the hunting strategy for Saboteurs described in the pre-
vious section, help should hopefully reach the swarming agents in time before
most of the swarm has collapsed.

8.2.5.3 Timing

1 timeToDecideSwarm :− decidedSwarmAt ( OldS ) , s tep (NewS) , D i s NewS − OldS
, D >= 60 , ! .

2 timeToDecideSwarm :− swarmPosition (unknown) , ! , optimum (X) ,
calcZoneValue (X ,V) , V >= 7 0 .

3
4 timeToSwarm :− not ( r o l e ( ’ Explorer ’ ) ) , swarmPosition ( Opt ) , Opt \=

unknown , ! .
5 timeToSwarm :− r o l e ( ’ Explorer ’ ) , optimum ( _ ) , s tep ( Cur ) , Cur > 1 5 0 .

Figure 8.9: The timeouts for the swarm strategy.

The timeout timeToSwarm is used to determine when the agents should swarm.
It differs from the Explorers and the rest of the agents; the Explorers do not
swarm for an extended period of time after the other agents are swarming.
This is to ensure that the Explorers can complete most of their post-optimal
probing phases, thereby locate better swarming positions if any are available,
while the other agents swarm earlier to increase the zone score.

For deciding when to compute the swarm, a timeout called timeToDecide
Swarm is used. This timeout is designed such that new swarms are computed
for each 60 steps. The swarms are of course only updated if they can provide a
higher zone score. Swarms are also frequently calculated in the first 150 steps
of the simulation, so HARDAC can swarm early if any swarms of significant
value are found.

The atoms, decidedSwarmAt/1 and currentSwarmValue/1, are updated
when new swarms have been calculated to provide the functionality used by
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the timeouts and the swarms-calculating Explorer. They keep track of when
the current swarms were calculated and the value of these swarms.

The code for the timeouts can be seen in Figure 8.9.

8.2.6 Smaller strategies

8.2.6.1 Cautious behavior at the beginning of the match

To account for the fact that there may not exist a path between the agent and
a Repairer before a sufficient amount of the map has been explored, the agents
avoids dangerous enemies as long as there does not exist such a path. Danger-
ous enemies are those that are either Saboteurs or not inspected yet if not all
Saboteurs are inspected.

8.2.6.2 Record more vertices

As the agents of HactarV2 only record and inform other agents of vertices that
have been probed or surveyed, a lot of vital information is lost. This is be-
cause the amount of vertices visible to agents are large. This enables the agents
to compute paths drastically sooner than before, at the expense of the agents
sending and handling many messages in the first few steps of the simulation.



CHAPTER 9

Evaluation

This chapter deals with the setup and the results of testing HARDAC against
Python-DTU in the MAPC 2012 scenario. An explanation of how the testing
has been conducted and how the performance of the systems has been mea-
sured and compared with each other follows, followed by the results from the
testing.

An ordinary tournament from MAPC 2012 consists of exactly three simula-
tions, each with a different map size. Therefore the tests include all three map
sizes. The three map sizes are, in order and numbered: (1) 300 vertices, (2) 240
vertices, and (3) 200 vertices. The maps will henceforth be referred to by their
number.

Unfortunately, because of the bug that sometimes prevents agents from com-
municating with the server and each other for the rest of the simulation, the
testing had to be performed one simulation at a time.

It is important to note that HARDAC had a timeout of 30 seconds during
the simulations, instead of the usual 2 seconds which is the standard for the
MAPC 2012 tournament. This was thought necessary because of the large per-
formance hit stemming from the increased amount of messages being sent be-
tween agents in HARDAC. However, HARDAC seems to be able to send all
its action within 6 to 10 seconds. With a faster machine and some additional
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optimizations HARDAC may be able to comply with the ordinary 2 second
deadline.

6 tournaments have been run, resulting in 18 simulations. Running additional
tournaments were not possible due to time constraints.

9.1 Setup

9.1.1 Dependencies

The following dependencies are needed for running the simulations:

• The MAPC 2012 package, massim-2012-2.0-bin.zip, for running
the scenario.

• GOAL revision 4941 for running HARDAC.

• Python version >= 3.0 for running Python-DTU.

• The eismassimconfig.xml configuration file, to be placed in the GOAL
installation folder.

• The configuration file for the simulation1, evaluations-hardac.xml.

• Configuration files2: config_HARDAC.dtd, accounts-HARDAC-
longtimeout.xml, accounts-Python-DTU-2012.xml.

The environment interface, eismassim-2.0.jar, resides in the eismassim/target
subfolder in the MAPC 2012 package and has to be moved to the environments
subfolder of the GOAL installation folder.

The configuration files are available in the appendices.

1This file should be placed in the massim/scripts/conf subfolder of the MAPC 2012 pack-
age.

2These files should be placed in the massim/scripts/conf/helpers/2012 subfolder of the
MAPC 2012 package.
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9.1.2 Running the simulation

To run the simulation the MAPC 2012 Server3 is started and a configuration is
chosen. The configuration holds information about which teams are playing,
which maps to use, each agent’s timeout etc. Once the server is running, the
MAS’s are started. Python-DTU through the command line, and HARDAC
through the GOAL IDE. The server outputs whether or not the authentication
of each agent is successful. Before beginning the simulation the Mars Monitor4

is started, because the monitor generates useful statistics for each map. When
all agents have been authenticated and the monitor has started, the simulation
is begun by hitting the enter key at the terminal where the server is running.

9.1.3 Measuring performance

As it is not possible to specify the random seed for the map generator in the
2012 scenario, multiple simulations have been run to even out any advantage
or disadvantage that the map topography may provide. That is, if the best
swarm positions are far from each other then it may favor a more mobile team.
Conversely, if the best swarm positions are close to each other, then it may fa-
vor the team that has the best attack strategy as there would inevitably be large
battles if the swarms from both teams overlap.

The performance of the systems has been evaluated using the final scores for
each simulation. A single measure is created from these scores for each simula-
tion; the difference of the scores over the sum of the scores. By convention the
difference is calculated as the opposing team’s final score minus HARDAC’s
final score.

So this measure is a real number between −1 and 1. It is a percentage of how
unbalanced the scores are. That is, if the measure α is positive then the oppos-
ing team had won the match by α·100 percent. If the measure α is negative then
HARDAC had won the match by−α · 100 percent. The reason for this measure
is that it is a single number for each match that can be compared across matches
regardless of the difference in the zone scores available in each map.

Additionally, the MAPC 2012 Server provides statistics images generated for
each match. These are used to identify possible places for improvement. The

3By executing startServer.sh from the massim/scripts subfolder of the MAPC 2012
package.

4By executing startMarsMonitor.sh from the massim/scripts subfolder of the MAPC
2012 package.
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Mars Monitor generates files for each step throughout the simulation so the
match can be replayed by the Mars File Viewer5.

9.2 Results

The results of the 18 simulations are summarized in Table 9.1.

Tourna- Map Total score Difference Sum
Difference

Sum
ment HARDAC Python-DTU measure

1 1 151628 129901 -21727 281529 -7.72%
1 2 74358 89021 14663 163379 8.97%
1 3 49124 44090 -5034 93214 -5.40%
2 1 50525 92606 42081 143131 29.40%
2 2 45300 54330 9030 99630 9.06%
2 3 65247 88612 23365 153859 15.19%
3 1 66874 57534 -9340 124408 -7.51%
3 2 81231 73169 -8062 154400 -5.22%
3 3 80352 130895 50543 211247 23.93%
4 1 132308 138695 6387 271003 2.36%
4 2 51318 41507 -9811 92825 -10.57%
4 3 87497 69884 -17613 157381 -11.19%
5 1 92623 105268 12645 197891 6.39%
5 2 102456 104881 2425 207337 1.17%
5 3 61679 89707 28028 151386 18.51%
6 1 146182 125935 -20247 272117 -7.44%
6 2 56956 59150 2194 116106 1.89%
6 3 68520 72737 4217 141257 2.96%

Total 1464178 1567922 103744 3032100 3.42%

Table 9.1: The final score of each team for each simulation and the correspond-
ing difference-over-sum measure. The score of the winning team is
bolded. The difference is calculated by subtracting HARDAC’s score
from Python-DTU’s score.

The results show that Python-DTU won 11 of the 18 simulations, while HARDAC
won 7. However, if considered as tournaments the score is 3 wins each. In
most of the simulations the difference between the two scores is less than 10%.
If the results of the evaluations are representative of the actual performance

5By executing startMarsFileViewer.sh from the massim/scripts subfolder of the
MAPC 2012 package.
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of HARDAC against Python-DTU then it shows that HARDAC would win
against Python-DTU 7

18 ≈ 40% of the time, and therefore also about 40% of the
tournaments as the matches are independent of each other.

In some simulations Python-DTU wins by over 20%, implying that there may
be cases where Python-DTU is significantly superior to HARDAC.

The boxplot in Figure 9.1 shows that the median match is close to 0. How-
ever, the matches where HARDAC won are closer to 0 than the matches where
Python-DTU won. That is, Python-DTU sometimes win with a considerably
larger margin than what HARDAC seems to be capable of, as seen in the
barplot in Figure 9.1.

Figure 9.1: A box- and barplot of the difference-over-sum measures for the 18
simulations from Table 9.1.

9.3 Selected observations

9.3.1 Successful harass example

HARDAC prevents Python-DTU’s Inspectors from swarming by disabling them,
showcasing the harass strategy. See Figure 9.2.
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(a) The Saboteur
moves towards
the swarm.

(b) An Inspector has
been disabled.

(c) A second Inspec-
tor is disabled,
breaking the
swarm.

(d) A third Inspector
is attacked and
disabled.

Figure 9.2: From tournament 1 simulation 1. A HARDAC Saboteur (blue
agent) successfully harassing and destroying one of Python-DTU’s
swarms (green agents).

9.3.2 Analysis of the most unbalanced match

Tournament 2 simulation 1 is the most unbalanced match with respect to the
difference-over-sum measure. Examining the output from the server and the
Mars Monitor gives clues to what went wrong. The scores graph (see Figure 9.3
shows that HARDAC never managed to get a foothold during this simulation.
However, it does not show a certain step at which something went wrong for
HARDAC, so what happened? Using the Mars File Viewer it is possible to
watch the simulation again step-by-step. It shows that it was a combination of
factors that caused problems for HARDAC:

• At around step 75, Python-DTU and HARDAC begin to swarm. They
choose the same areas to swarm. Two symmetrically opposed areas at
the bottom of the map, with several optimums each, and two symmetri-
cally opposed areas at the side, with a single optimum each. Both teams
swarm at the side optimums, but Python-DTU gets to the best area at
the bottom of the map first. HARDAC’s attempt to capture the oppo-
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Figure 9.3: The scores graph for tournament 2 simulation 1.

site area is stopped by Python-DTU’s Saboteurs which are already in the
area, because of their swarm. The result of this is that all large battles hap-
pen inside HARDAC’s desired zone, completely disrupting HARDAC’s
swarm, while at the same time Python-DTU’s swarm is left untouched.
This is the main cause of Python-DTU’s dominance in this simulation.

• A little later, one of HARDAC’s Saboteurs sets out to find the rest of
Python-DTU’s swarm, but goes in the completely wrong direction, mov-
ing towards the top of the map.

• The last problem is that an Inspector becomes the central piece of HARDAC’s
swarm, but whenever it becomes time for it to inspect Python-DTU’s
Saboteurs, it moves away from its position. This causes the swarm to lose
nearly 30 points each step it is missing, which is a third of HARDAC’s to-
tal step score.
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9.3.3 Disabled swarming agents

(a) Summed score for each step between
step 225 and step 750. HARDAC’s score
is green, Python-DTU’s is blue.

(b) A large battle from step 455 showing
how HARDAC has disabled Python-
DTU’s Explorers while Python-DTU
fails to repair them for a long time.

Figure 9.4: The turning point for HARDAC in tournament 3 simulation 1, oc-
curring approximately at step 445.

The outcome of tournament 3 simulation 1 is curious as HARDAC overtakes
Python-DTU in the middle of the match where Python-DTU’s score suddenly
ceases to increase significantly. This is because HARDAC manages to disable
a large amount of the enemy’s swarming agents while Python-DTU fails to re-
pair them again for an extended period of time. This also happens to HARDAC
sometimes, but it shows the importance of disabling swarming agents. See Fig-
ure 9.4.

9.3.4 Repairers parrying unnecessarily

HARDAC’s Repairers seem to parry when at a large battle, probably when they
have nothing to repair, which uses a lot of energy. This may be detrimental for
HARDAC if this would result in Python-DTU gaining the upper hand in these
battles. See for example Figure 9.5.
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Figure 9.5: The actions for the Repairers from tournament 6 simulation 1. The
red portions of each action are the amount of the action that failed
to be performed correctly. Note the large number of failed parries
(second from the left), which should only occur if the Repairer is
not attacked while parrying.

9.3.5 Large battle inside swarms

Figure 9.6: Tournament 3 simulation 3. Large battles happen in HARDAC’s
swarms (green agents).
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There is a common theme in tournament 3 simulation 3 and tournament 5 sim-
ulation 3 (where Python-DTU wins by a large margin) and tournament 4 sim-
ulation 2 and tournament 4 simulation 3 (where HARDAC wins by a large
margin). See for example Figure 9.6.

In the above mentioned simulations where HARDAC loses it seems that large
battles happens inside HARDAC’s swarms, for most of the simulation, pre-
venting HARDAC from receiving the zone score it needs to win.

In the other two the same happens but inside Python-DTU’s swarms instead,
resulting in HARDAC winning the match.

It therefore seems important to prevent large battles from forming inside HARDAC’s
swarms, or at least to relocate the swarms to a more quiet region of the map.
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Extension

This chapter contains thoughts and ideas about development which were out-
side the scope of this project and possible extensions of HARDAC for future
work, as well as a brief look at MAPC 2013.

• Improving the messaging system. The messaging should be rewritten
so that all agents have received all other agents messages before deciding
on an action to perform. One possibility for achieving this would be to
have a predicate doneMessaging which becomes true when an agent
has received a mail with a keyword, such as doneMailing. Until this
predicate was true, the agent would skip through the main section, not
deciding on an action.

• Implementing negotiation With an updated messaging system it would
be possible to implement different forms of negotiation. Negotiation
could also help in one of the other areas that need improvement, making
decisions about which agent does what more efficient. Implementation
of negotiation is beyond the scope of this project.

• Handling large battles in HARDAC’s zone. The main weakness for
HARDAC is not being able to handle large battles happening within its
zones. There are two solutions. Move the zone, or move the battle. Mov-
ing the battle may be possible if HARDAC manages to send Saboteurs to
Python-DTU’s swarm.
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• Reducing Repairers failed parries. As seen in the evaluation chapter,
HARDAC’s Repairers have a disproportionate amount of failed parries.
This is caused by Repairers choosing to parry when there are a greater or
equal number of allied Saboteurs compared to enemy Saboteurs on the
same node. The solution would be to calculate which agents are likely to
be attacked by the enemy, and only parry if necessary.

• Repairers leaving large battles. In an attempt to control large battles and
mitigate them, HARDAC Repairers move away from large battles when
they detect they are a part of them. This allows the Repairers to repair
other disabled agents, preventing the swarm from collapsing due to the
swarm being attacked while the Repairers are caught up. The idea works
well, except when the Repairers have no other tasks. In this case, the
Repairer will identify being in a battle and leave it, but will then walk
around aimlessly, as it knows not to join the battle again. This can be
fixed by only leaving the battle if the agent has something worthwhile to
do.

• Dynamic strategies. An interesting possibility for improvement would
be dynamic strategies. It may be possible to adjust strategies during a
simulation or tournament depending on the enemy team. Adapting to
the enemy team would require testing several strategies during the sim-
ulation to find which one works best, or require information extracted
from observing the opposing team in previous matches. Another possi-
bility would be to estimate zone values for the opposing team, and play-
ing more defensive if HARDAC believes to have the better zone or more
aggressive if HARDAC believes the enemy has the better zone.

• Improving the swarm algorithm. The swarming algorithm, taken from
Python-DTU, is a greedy algorithm. It has not been tested thoroughly
enough to claim it is the best solution. There are cases where the algo-
rithm does not cover the largest possible area of the graph. It may be
possible to spread the agents out more by considering vertices which are
not already colored only.



CHAPTER 11

Discussion

This chapter contains discussion and reflection about the development process
and HARDAC’s strategies.

11.1 The development process

The first one and half months of this thesis were spent on getting HactarV2 to
connect and run on the MAPC 2012 server. Bugs in new releases of GOAL, new
syntax in GOAL, and a bug in EISMASSIM caused problems that were hard to
debug. The result was having to use an older version of GOAL, namely version
4941.

The original intention was to evaluate the performance of the implemented
strategies individually. So the development of the strategies were performed
by splitting up the strategies into multiple folders, which had a single base di-
rectory (HactarV2 with bugfixes and adapted to the MAPC 2012) from which
the strategies were merged to, and which were independent systems when
merged with the base directory and which could be merged into the final sys-
tem. As the strategies spanned multiple files, some which would often have
to be changed in multiple strategies, some Python scripts, using the diff and
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patch tools available in Linux, were made which automated the merging pro-
cess. However, it became too rigid as the number of strategies rose. Especially
when hierarchies of the strategies were made as some strategies depended on
other strategies. But it also gave a good overview of the different strategies of
HARDAC and it was easy to test a specific strategy.

11.2 Working with GOAL

Working in GOAL has both advantages and disadvantages. A very positive
advantage is the use of declarative languages for knowledge representation,
in our case Prolog. Declarative languages are a natural abstraction for writing
an agent’s reasoning process and mental state, that feels intuitive. Prolog also
makes for very robust systems. When a piece of Prolog code in GOAL does
not work as intended, the agent will usually still be able to make decisions,
albeit poor decisions, rather than crash. In the case of the competition this is
not always positive as efficiency is important for the agents to reach a decision
before the deadline, and it is not good when the agents perform actions that
are not as expected.

The major disadvantage is that GOAL is still in alpha. This is a problem as
it means the syntax is not finalized and the language and IDE have many bugs.
Some examples of bugs are the IDE randomly becoming unresponsive, pan-
els only being fully re-sizable while there is no simulation running, and the
most problematic bug where one of our agents would suddenly lose contact
with the server. The syntax changes forced us to use an outdated version of
the language, when updating to a newer version may have gotten rid of the
disconnection bug.
Using declarative languages with no feedback from the IDE about usage of
variables also makes debugging the code difficult, as a misspelled variable
name is simply accepted as a new variable that can be unified, no matter the
context.
Furthermore, most of the predicates in HARDAC do not ensure the variables
have the correct type. In hindsight using the built-in Prolog predicates such as
atom/1 and int/1, would have prevented difficult bugs from emerging.
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11.3 Reflections on strategies

During the project period we implemented and tested many strategies, not all
of which were successful. For a long time we hoped that HactarV2’s swarming
algorithm was good enough, if we managed to improve the other strategies to
support it. We spent a lot of time creating a second Sentinel swarm that would
be separate from the main swarm, in the hopes that having a second swarm
around a different optimum would allow HARDAC to get the upper hand.
This assumed that the harass strategy and HARDAC’s main swarm would be
so disruptive to Python-DTU’s swarm that neither team would receive many
points each step, with the Sentinel swarm tipping the score in HARDAC’s fa-
vor. In practice this resulted in many special cases, that all had to be handled.
The Sentinel swarm had to choose a different optimum to swarm around than
the rest of the swarm. The area the Sentinels chose should be as high-valued as
possible. If the Sentinel swarm is attacked it should find a new place to swarm.
The area should not be near Python-DTU’s swarm. These are just some of the
things the Sentinel swarm had to take into account when deciding where to
swarm.

In an attempt to reduce the erratic movement that took place in HactarV2’s
swarm, we implemented a delay on movement in the swarm, so that an agent
that believed it had found that best vertex for it to stand on would be encour-
aged to stay until some number of steps had passed. Unfortunately this caused
several agents to stand on top of each other all believing they had found the
best vertex for them to stand on, instead of spreading out. The attempted solu-
tions only slightly helped with the problem.

Eventually we realized that the swarming algorithm simply was not good enough,
or consistent enough, versus Python-DTU. Attempting to improve it caused
significant increases in computation time, and large amounts of very specific
code for various cases that would need to be handled. In hindsight, it would
have been beneficial to rewrite the swarm code from the beginning. It would
have saved a lot of time spent on trying to improve code that would never be
adequate against Python-DTU.

Inserting more vertices during the first steps of the simulation is very com-
putationally heavy. There is a lot of redundancy in the information being sent,
and since sending and receiving messages is very slow, this causes HARDAC
to miss the 2 second deadline during the first few steps of the simulation.

The final strategies of HARDAC have a lot of the same ideas that Python-
DTU’s have, with some of the algorithms strongly inspired by Python-DTU;
the swarming algorithm is a re-implementation of Python-DTU’s swarming
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algorithm; the ideas for hunting enemy agents and harassing enemy swarms
are present in both HARDAC and Python-DTU; the delayed buying of up-
grades; and repairing damaged agents. Other strategies and ideas are quite
different; HARDAC’s Repairers predicting Python-DTU’s attacks; and a gen-
eral decrease in the amount of surveying done by HARDAC.

Despite our attempts to prevent large battles, they still appear in every sim-
ulation. Whose zone the large battles happen in, seems to be the major factor
in whether Python-DTU or HARDAC wins a match. When the large battles
happen inside HARDAC’s zone Python wins convincingly. When the large
battles happen inside Python-DTU’s zone the simulations are very even, often
ending in a victory for HARDAC. This may be a result of Python-DTU being
better at continuing to harass outside of the large battles than HARDAC. Im-
proving the handling of large battles, i.e., finding a way to force the battle into
enemy territory, would benefit HARDAC immensely.



CHAPTER 12

Conclusion

In this thesis we have worked with HactarV2, the winner of MAPC 2011, and
Python-DTU, the strongest team for the 2012 MAPC scenario that we know of.
Our goal was to adapt and improve HactarV2 to make it competitive versus
Python-DTU, while learning the GOAL programming language and gaining
an understanding of the MAPC 2011 and 2012 scenarios.

The thesis begins by clarifying the meaning of the term multi-agent system.
Then examines the GOAL programming language, the language that HactarV2
is written in. We showed the syntax and basic structure of an agent in GOAL
and how to write a multi-agent system in it.

Relevant changes that were made to the Agents on Mars scenario between 2011
and 2012 were analyzed, most importantly the new graph generation, which
results in randomly placed optimums. The analysis continued with an anal-
ysis of HactarV2’s strategies, and their advantages and shortcomings. Where
relevant, the shortcomings were compared with Python-DTU’s strategies. The
analysis lead to many ideas for new strategies and improvements. By analyz-
ing the possible rewards and the time that would be involved in rewriting the
code, some of these strategies were implemented.

The important details about the implemented strategies have been explained,
including swarming by utilizing the same algorithm as Python-DTU, predict-
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ing attacks for repairing, delegating targets for repairing and attacking with-
out sending messages, and harassing and defending swarms. Once all the new
strategies had been tested they were combined, into a new multi-agent system
named HARDAC.

HARDAC was tested against Python-DTU through 18 simulations, represent-
ing 6 tournaments. The results showed the major improvement of HARDAC
versus HactarV2, moving from never winning versus Python-DTU to winning
nearly 40% of the time. Through the evaluations of the results, and the possi-
bilities for future work, possible future improvements to HARDAC have been
explained. Lastly the development process and the results of the evaluation
were discussed.



APPENDIX A

The GOAL IDE

GOAL projects are usually developed, executed, and debugged using the GOAL
IDE.

To run an MAS project, first load the .mas2g file in the IDE and then press
the green run button. The agents are paused by default, so it is necessary to
execute the agents by pressing the run button a second time.

When an MAS is running, it is possible to inspect the mental state of an agent
by right-clicking an agent in the IDE and clicking the Introspector item. Alter-
natively, pressing Ctrl+D when an agent is selected accomplishes the same. In
the Introspector, actions for both the environment and belief base can be man-
ually executed. Additionally, the belief base can be queried. It is important to
surround queries with the bel operator.

Agents can be debugged by stepping through them by clicking the "Step agent"
button. The agent windows at the lower portion of the IDE provides informa-
tion about the current step during the stepping.

The console window at the lower portion of the IDE contains information about
the connection to the agent and any errors and warnings that may occur during
the execution of the MAS.

When the MAS is finished, click the "Kill multi-agent system" while the MAS
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Figure A.1: The GOAL IDE for GOAL revision 4941 with an opened project,
also demonstrating the syntax of GOAL.
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Figure A.2: The GOAL IDE while running HARDAC.

entry (in the "Process overview" pane, together with the agents and environ-
ment interface) is selected.
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APPENDIX B

Swarming algorithm

The swarming algorithm from Python-DTU, calcAreaControl, reimplemented
in GOAL and changed slightly to calculate swarms from multiple promising
optimums instead of only the best. The predicate to call when deciding the
swarms is calcSwarms/2, which creates a list of vertex-agent pairs and the
value of the swarm.

1 calcSwarms ( Chosen , Value ) :− decideOptimums ( Opts ) , f i n d a l l ( ( Val , Swarm) ,
(member ( Opt , Opts ) , ca lcAreaControl ( Opt , Swarm , Val ) ) , L ) , s o r t ( L , S ) ,
length ( S ,N) , nth1 (N, S , ( Value , Chosen ) ) , ! .

2
3 % Python−DTU’ s algorithm f o r c a l c u l a t i n g swarm pos i t ions ,

reimplementation in GOAL
4
5 % calcAreaControl re turns p a i r s of agents and v e r t i c e s which determine

where the agents s h a l l stand when swarming
6 % Chosen = agent−ver tex p a i r s
7 calcAreaControl ( Opt , Chosen , Value ) :− a l l V e r t i c e s (Tmp) , d e l e t e (Tmp, Opt ,

Vs ) , swarmAgents ( [A|AT] ) , cacAux ( Vs , AT, [ Opt ] , Rest ) , Chosen = [ (A,
Opt ) |Rest ] , swarmValue ( Chosen , Value ) , ! .

8
9 cacAux ( _ , [ ] , _ , [ ] ) .

10 cacAux ( Vs , [A|T ] , Chosen , [ ( A, Best ) |Rest ] ) :− calcOwned ( Chosen , Owned) ,
b e s t P o s i t i o n ( Vs , Chosen , Owned, Best ) , cacAux ( Vs , T , [ Best|Chosen ] , Rest )
.

11
12 a l l V e r t i c e s ( Vs ) :− f i n d a l l (V, ( ver tex (V, Val , _ ) , Val \= unknown , Val \=

1) , L ) , s o r t ( L , Vs ) , ! .
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13 swarmAgents ( As ) :− timeToSwarm , swarmAgents ( As , [ ’ Saboteur ’ , ’ Repairer ’ ] )
, ! .

14 swarmAgents ( As ) :− swarmAgents ( As , [ ’ Saboteur ’ , ’ Repairer ’ , ’ Explorer ’ ] ) ,
! .

15 swarmAgents ( As , IgnoredRoles ) :− f i n d a l l (A, ( agent (A) , r o l e (A, R) , not (
memberchk (R , IgnoredRoles ) ) ) , L ) , s o r t ( L , As ) , ! .

16
17 swarmValue ( Chosen , Val ) :− f i n d a l l (V, member ( ( _ ,V) , Chosen ) , L ) ,

calcOwned ( L , Owned) , swarmValueAux (Owned, Val ) .
18 swarmValueAux ( [ ] , 0 ) .
19 swarmValueAux ( [V|T ] , Val ) :− swarmValueAux ( T , Part ) , vertexValue (V,Tmp) ,

(Tmp == unknown −> VVal = 1 ; VVal = Tmp) , ! , Val i s Part + VVal .
20
21 b e s t P o s i t i o n ( [ ] , _ , _ , _ ) :− f a i l , ! .
22 b e s t P o s i t i o n ( Vs , Chosen , Owned, Best ) :− s u b t r a c t ( Vs , Chosen , NewVs) , bpAux(

NewVs, Chosen , Owned, _ , Best ) .
23
24 bpAux ( [ ] , _ , _ , 0 , _ ) .
25 bpAux ( [ V1|R] , Chosen , Owned, MaxVal , Best ) :− bpZoneVal ( V1 , Chosen , Owned,

Val1 ) , bpAux(R , Chosen , Owned, Val2 , V2 ) , ( Val1 > Val2 −> ( Best = V1 ,
MaxVal = Val1 ) ; ( Best = V2 , MaxVal = Val2 ) ) .

26
27 bpZoneVal (V, Chosen , Owned, Val ) :− ver tex (V, VVal , _ ) , neighbours (V, Ns) ,

s u b t r a c t (Ns , Owned, Ws) , bpZoneValAux (Ws, Chosen , ValPart ) , Val i s
ValPart + VVal .

28
29 bpZoneValAux ( [ ] , _ , 0 ) .
30 bpZoneValAux ( [W|R] , Chosen , ValSum ) :− neighbours (W,Tmp) , i n t e r s e c t i o n (

Tmp, Chosen , Zs ) , ver tex (W, Tmp2, _ ) , (Tmp2 == unknown −> WVal = 1 ;
WVal = Tmp2) , bpZoneValAuxAux ( Zs , WVal , ValPart1 ) , bpZoneValAux (R ,
Chosen , ValPart2 ) , ValSum i s ValPart1 + ValPart2 .

31
32 bpZoneValAuxAux ( [ ] , _ , 0 ) .
33 bpZoneValAuxAux ( [ _|R] , WVal , ValSum ) :− bpZoneValAuxAux (R , WVal , ValPart ) ,

ValSum i s WVal + ValPart .
34
35 calcOwned ( [ ] , [ ] ) .
36 calcOwned ( Chosen , Owned) :− Chosen = [ _|T ] , coAux ( Chosen , T ,O) , union (

Chosen ,O, Owned) .
37
38 coAux ( [H] , [ ] , [H] ) .
39 coAux ( [H|T ] , T , Owned) :− T = [N|R] , n e i g h b o r I n t e r s e c t (H, T ,O) , coAux ( [N|R

] , R , O2) , union (O, O2 , Owned) .
40
41 n e i g h b o r I n t e r s e c t ( _ , [ ] , [ ] ) .
42 n e i g h b o r I n t e r s e c t (V , [H|T ] , NI ) :− neighbours (V,NV) , neighbours (H,NH) ,

i n t e r s e c t i o n (NV,NH, X) , n e i g h b o r I n t e r s e c t (V, T , Y) , union (X , Y , NI ) .
43
44
45 % Finds the optimum nodes t h a t can conta in a swarm with the l a r g e s t
46 % p o t e n t i a l values as defined by calcZoneValue
47 bestOptimums ( L is t , Opts ) :− f i n d a l l ( ( ValSum , Swarm) , (member (Swarm , L i s t ) ,

calcZoneValue (Swarm , ValSum ) ) , L ) , s o r t ( L , S ) , length ( S ,N) , nth1 (N, S
, ( MaxVal , _ ) ) , Limit i s round ( 0 . 6 5∗MaxVal ) , bestOptimumsAux ( S , Limit ,
L2 ) , s o r t ( L2 , Opts ) .
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48 bestOptimumsAux ( [ ] , _ , [ ] ) .
49 bestOptimumsAux ( [ ( Val , Opt ) |T ] , Limit , [ Opt|Rest ] ) :− Val >= Limit ,

bestOptimumsAux ( T , Limit , Rest ) .
50 bestOptimumsAux ( [ ( Val , _ ) |T ] , Limit , Rest ) :− Val < Limit , bestOptimumsAux

( T , Limit , Rest ) .
51
52 % C a l c u l a t e s the sum of the values f o r a l l the neighbors , and t h e i r

neighbors , and the ver tex O, around the ver tex O
53 calcZone (O, S ) :− f i n d a l l (N, ( neighbour (O, _ ,N) ) , L1 ) , f i n d a l l (N, (member

(M, L1 ) , neighbour (M, _ ,N) ) , L2 ) , union ( L1 , L2 , L3 ) , s o r t ( L3 , S ) .
54 calcZoneValue (O,V) :− calcZone (O, L ) , vertexListSum ( L ,V) .
55
56 vertexListSum ( [ ] , 0 ) .
57 vertexListSum ( [H|T ] , Sum) :− vertexValue (H,V) , V == unknown ,

vertexListSum ( T , S ) , Sum i s S +1.
58 vertexListSum ( [H|T ] , Sum) :− vertexValue (H,V) , V \== unknown ,

vertexListSum ( T , S ) , Sum i s S+V.
59
60 % Find a l l optimums t h a t are not already in use
61 allOptimums ( Opts ) :− allOptimums ( Opts , [ ] ) .
62 allOptimums ( Opts , Ignore ) :− f i n d a l l (V, ( optimum (V) , not (member (V, Ignore

) ) , not ( ( neighbour (V,N) ,member (N, Ignore ) ) ) ) , Opts ) , length ( Opts ,N) ,
N > 0 , ! .

63
64 % Choose the bes t optimums
65 decideOptimums ( Opts ) :− allOptimums ( L ) , ! , bestOptimums ( L , Opts ) , ! .
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APPENDIX C

Updates to Python-DTU from
MAPC 2012

1 23 a24
2 > s e l f . counter = args . counter
3 60 a62
4 > s e l f . max_opponent_health_l ist = [INITIAL_MAX_HEALTH, " " ,

INITIAL_MAX_HEALTH, " " ]
5 504 ,507 c506 , 5 2 4
6 < i f r o l e == SAB and maxHealth > s e l f . max_opponent_health :
7 < s e l f . max_opponent_health = maxHealth
8 < i f r o l e == SAB and s t r en gt h > s e l f . max_opponent_strength :
9 < s e l f . max_opponent_strength = s t re n gt h

10 −−−
11 > i f s e l f . counter and r o l e == SAB :
12 > i f maxHealth >= s e l f . max_opponent_health_l ist [ 0 ] :
13 > i f name != s e l f . max_opponent_health_l ist [ 1 ] :
14 > s e l f . max_opponent_health_l ist [ 2 ] = s e l f .

max_opponent_health_l ist [ 0 ]
15 > s e l f . max_opponent_health_l ist [ 3 ] = s e l f .

max_opponent_health_l ist [ 1 ]
16 > s e l f . max_opponent_health_l ist [ 0 ] = maxHealth
17 > s e l f . max_opponent_health_l ist [ 1 ] = name
18 > e lse :
19 > s e l f . max_opponent_health_l ist [ 0 ] = maxHealth
20 >
21 > e l i f maxHealth > s e l f . max_opponent_health_l ist [ 2 ] :
22 > s e l f . max_opponent_health_l ist [ 2 ] = maxHealth
23 > s e l f . max_opponent_health_l ist [ 3 ] = name
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24 > s e l f . max_opponent_health = s e l f .
max_opponent_health_l ist [ 2 ]

25 > e l i f r o l e == SAB :
26 > i f maxHealth > s e l f . max_opponent_health :
27 > s e l f . max_opponent_health = maxHealth
28 > i f s t r en gt h > s e l f . max_opponent_strength :
29 > s e l f . max_opponent_strength = s t r en gt h
30 589 a607
31 > parser . add_argument ( ’−c ’ , ’−−counter ’ , help= ’ Counter UFSCs counter ’ ,

a c t i o n = ’ s t o r e _ t r u e ’ )

This update can be applied to the file bagent.py from the Python-DTU code
downloaded from http://multiagentcontest.org/ by using the com-
mand patch bagent.py < update.diff on a Linux system, where update.diff
is a file containing the above diff output.

http://multiagentcontest.org/


APPENDIX D

MAPC 2012 configuration
files used during evaluation

D.1 eismassimconfig.xml

1 <?xml version=" 1 . 0 " encoding="UTF−8" ?>
2 < i n t e r f a c e C o n f i g s c e n a r i o=" mars2012 " host=" l o c a l h o s t " port=" 12300 "

scheduling=" yes " t imes=" no " n o t i f i c a t i o n s =" no " queued=" yes "
s t a t i s t i c s F i l e =" no " s t a t i s t i c s S h e l l =" yes " s u b m i t S t a t i s t i c =" no ">

3 < e n t i t i e s >
4 < e n t i t y name="HARDAC1" username="HARDAC1" password="y4D76cpW"

i i l a n g =" yes " xml=" yes "/>
5 < e n t i t y name="HARDAC2" username="HARDAC2" password="y4D76cpW"

i i l a n g =" yes " xml=" yes "/>
6 < e n t i t y name="HARDAC3" username="HARDAC3" password="y4D76cpW"

i i l a n g =" yes " xml=" yes "/>
7 < e n t i t y name="HARDAC4" username="HARDAC4" password="y4D76cpW"

i i l a n g =" yes " xml=" yes "/>
8 < e n t i t y name="HARDAC5" username="HARDAC5" password="y4D76cpW"

i i l a n g =" yes " xml=" yes "/>
9 < e n t i t y name="HARDAC6" username="HARDAC6" password="y4D76cpW"

i i l a n g =" yes " xml=" yes "/>
10 < e n t i t y name="HARDAC7" username="HARDAC7" password="y4D76cpW"

i i l a n g =" yes " xml=" yes "/>
11 < e n t i t y name="HARDAC8" username="HARDAC8" password="y4D76cpW"

i i l a n g =" yes " xml=" yes "/>
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12 < e n t i t y name="HARDAC9" username="HARDAC9" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

13 < e n t i t y name="HARDAC10" username="HARDAC10" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

14 < e n t i t y name="HARDAC11" username="HARDAC11" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

15 < e n t i t y name="HARDAC12" username="HARDAC12" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

16 < e n t i t y name="HARDAC13" username="HARDAC13" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

17 < e n t i t y name="HARDAC14" username="HARDAC14" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

18 < e n t i t y name="HARDAC15" username="HARDAC15" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

19 < e n t i t y name="HARDAC16" username="HARDAC16" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

20 < e n t i t y name="HARDAC17" username="HARDAC17" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

21 < e n t i t y name="HARDAC18" username="HARDAC18" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

22 < e n t i t y name="HARDAC19" username="HARDAC19" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

23 < e n t i t y name="HARDAC20" username="HARDAC20" password="y4D76cpW"
i i l a n g =" yes " xml=" yes "/>

24 </ e n t i t i e s >
25 </ i n t e r f a c e C o n f i g >

D.2 config_HARDAC.dtd

1 < ! ENTITY teamPythonDTU2012 SYSTEM " accounts−Python−DTU−2012.xml ">
2 < ! ENTITY teamHARDACLongTimeout SYSTEM " accounts−HARDAC−longtimeout . xml "

>
3
4 < ! ENTITY s imulat ion1 SYSTEM " sim1 . xml ">
5 < ! ENTITY s imulat ion2 SYSTEM " sim2 . xml ">
6 < ! ENTITY s imulat ion3 SYSTEM " sim3 . xml ">
7
8 < ! ENTITY act ionclassmap SYSTEM " act ionclassmap . xml ">
9 < ! ENTITY sim−server SYSTEM " sim−server . xml ">

10
11 < ! ENTITY a c t i o n s SYSTEM " sim−a c t i o n s . xml ">
12 < ! ENTITY r o l e s SYSTEM " sim−r o l e s . xml ">
13 < ! ENTITY achievements SYSTEM " sim−achievements . xml ">
14 < ! ENTITY agents SYSTEM " sim−agents . xml ">
15
16 < ! ATTLIST conf
17 backuppath CDATA " backup "
18 launch−sync−type CDATA " key "
19 reportpath CDATA " ./ backup/"
20 time CDATA " 18 : 0 6 "
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21 time−to−launch CDATA " 10000 "
22 tournamentmode CDATA " 0 "
23 tournamentname CDATA " Mars2012 "
24 debug−l e v e l CDATA " normal "
25 >
26
27 < ! ATTLIST s imulat ion
28 c o n f i g u r a t i o n c l a s s CDATA " massim . competi t ion2012 .

GraphSimulationConfiguration "
29 rmixmlobsserverhost CDATA " l o c a l h o s t "
30 rmixmlobsserverport CDATA " 1099 "
31 rmixmlobserver CDATA " massim . competi t ion2012 .

GraphSimulationRMIXMLDocumentObserver "
32 s i m u l a t i o n c l a s s CDATA " massim . competi t ion2012 . GraphSimulation "
33 x m l s t a t i s t i c s o b s e r v e r CDATA " massim . competi t ion2012 .

GraphSimulationXMLStatist icsObserver "
34
35 v i s u a l i s a t i o n o b s e r v e r CDATA " massim . competi t ion2012 .

GraphSimulat ionVisual izat ionObserver "
36 v i s u a l i s a t i o n o b s e r v e r−outputpath CDATA " output "
37 rmixmlobserverweb CDATA " massim . competi t ion2012 .

GraphSimulationRMIXMLDocumentObserverWebInterface "
38 xmlobserver CDATA " massim . competi t ion2012 . GraphSimulationXMLObserver "
39 xmlobserverpath CDATA " ./ backup/xmls "
40
41 s t a t i s t i c s o b s e r v e r CDATA " massim . competi t ion2012 .

GraphSimula t ionSta t i s t i c sObserver "
42 s t a t i s t i c s o b s e r v e r p a t h CDATA " s t a t i s t i c s "
43 >
44
45 < ! ATTLIST c o n f i g u r a t i o n
46 xmlns:meta CDATA " h t t p : //www. tu−c l a u s t h a l . de/"
47 maxNumberOfSteps CDATA " 750 "
48 numberOfAgents CDATA " 40 "
49 numberOfTeams CDATA " 2 "
50 gridWidth CDATA " 21 "
51 gridHeight CDATA " 21 "
52 cel lWidth CDATA " 100 "
53 minNodeWeight CDATA " 1 "
54 maxNodeWeight CDATA " 10 "
55 minEdgeCost CDATA " 1 "
56 maxEdgeCost CDATA " 10 "
57 mapGenerator CDATA " GraphGeneratorTriangBalOpt "
58 >
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D.3 evaluations-hardac.xml

1 <?xml version=" 1 . 0 " encoding="UTF−8" ?>
2 < !DOCTYPE conf SYSTEM " he lpers /2012/config_HARDAC . dtd ">
3
4 <conf>
5 &sim−server ;
6 <match>
7 &simulat ion1 ;
8 &simulat ion2 ;
9 &simulat ion3 ;

10 </match>
11
12 <accounts>
13 &act ionclassmap ;
14
15 &teamHARDACLongTimeout ;
16 &teamPythonDTU2012 ;
17 </accounts>
18 </conf>

D.4 accounts-HARDAC-longtimeout.xml

1 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC1" />

2 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC2" />

3 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC3" />

4 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC4" />

5 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC5" />

6 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC6" />

7 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
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" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC7" />

8 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC8" />

9 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC9" />

10 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC10" />

11 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC11" />

12 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC12" />

13 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC13" />

14 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC14" />

15 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC15" />

16 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC16" />

17 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC17" />

18 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC18" />

19 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC19" />

20 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password="y4D76cpW" team="HARDAC" timeout=" 30000 " username=
"HARDAC20" />
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D.5 accounts-Python-DTU-2012.xml

1 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU1" />

2 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU2" />

3 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU3" />

4 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU4" />

5 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU5" />

6 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU6" />

7 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU7" />

8 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU8" />

9 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU9" />

10 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU10" />

11 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU11" />

12 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU12" />

13 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU13" />
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14 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU14" />

15 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU15" />

16 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU16" />

17 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU17" />

18 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU18" />

19 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU19" />

20 <account act ionclassmap=" Graph " auxtimeout=" 500 " d e f a u l t a c t i o n c l a s s ="
massim . competi t ion2012 . GraphSimulationAgentAction " maxpacketlength=
" 65536 " password=" 1 " team=" Python−DTU" timeout=" 2000 " username="
Python−DTU20" />
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APPENDIX E

Test scores

Figure E.1: Scores for the first 2 test tournaments. Rows are simulations (1, 2,
3), columns are tournaments (1 to 2). HARDAC’s score is green,
Python-DTU’s is blue. Horizontal axis are the steps, vertical axis
are the total score at a step.
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Figure E.2: Scores for the last 4 test tournaments. Rows are simulations (1, 2,
3), columns are tournaments (3 to 6). HARDAC’s score is green,
Python-DTU’s is blue. Horizontal axis are the steps, vertical axis
are the total score at a step.



APPENDIX F

The source code of HARDAC

F.1 HARDAC.mas2g

1 %% The agent team ’ s mas2g f i l e
2 %% This f i l e conta ins s e v e r a l parameters required f o r launching the

GOAL agent team
3
4 environment {
5 " eismassim −2.0 . j a r " .
6 }
7
8 a g e n t f i l e s {
9 "HARDAC. goal " [name=mapc ] .

10 }
11
12 launchpol icy {
13 % Launch a l l the agents with a name corresponding to the one they

have in the s imulat ion
14 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC1: mapc .
15 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC2: mapc .
16 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC3: mapc .
17 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC4: mapc .
18 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC5: mapc .
19 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC6: mapc .
20 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC7: mapc .
21 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC8: mapc .
22 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC9: mapc .
23 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC10: mapc .
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24 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC11: mapc .
25 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC12: mapc .
26 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC13: mapc .
27 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC14: mapc .
28 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC15: mapc .
29 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC16: mapc .
30 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC17: mapc .
31 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC18: mapc .
32 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC19: mapc .
33 when [ type=mars2012entityunknown , max=1]@env do launch HARDAC20: mapc .
34 }
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F.2 HARDAC.goal

1 i n i t module {
2 knowledge {
3 % Contains general reasoning r u l e s
4 # import " generalKnowledge . pl " .
5
6 % Contains some r u l e s t h a t allow the agent to e x t r a c t information

from the percepts
7 # import " perceptKnowledge . pl " .
8
9 % Contains r o l e s p e c i f i c knowledge r u l e s

10 # import " roleKnowledge . pl " .
11
12 % Contains algori thms used f o r pathf inding
13 # import " d i j k s t r a . pl " .
14
15 % Contains r u l e s about n a v i g a t i o n a l s u b j e c t s
16 # import " navigationKnowledge . pl " .
17 }
18
19 b e l i e f s {
20 % Makes sure the agent doesnt t r y to execute a c t i o n s while the

server i s not s t a r t e d on s t a r t u p
21 doneAction .
22 donePercepts .
23 doneMailing .
24
25 % Our team name
26 team ( ’HARDAC’ ) .
27
28 ready .
29 }
30
31 goals {
32 % Goals are dynamically i n s e r t e d in the percept r u l e s l a t e r on
33 }
34
35 % Define a c t i o n s t h a t can be sent to the environment i n t e r f a c e
36 % Also s p e c i f y what needs to be true in order to perform the a c t i o
37 % and what should be i n s e r t e d i n t o the b e l i e f base afterwards
38 ac t ionspec {
39 % I n s e r t doneAction a f t e r each a c t i o n to make sure no new a c t i o n s

are performed in t h i s s tep ( manual scheduling )
40 % All a c t i o n s check i f the agent meets the energy requirements , and

f o r a c t i o n s t h a t requi re the agent to be enabled i t w i l l check
i f they are not disabled

41
42 recharge {
43 pre { t rue }
44 post { doneAction }
45 }
46 buy ( Upgrade ) {
47 pre { not ( d isabled ) , moneyGE ( 2 ) , energyGE ( 2 ) , r o l e ( ’ Saboteur ’ ) }
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48 post { doneAction }
49 }
50 probe {
51 pre { not ( d isabled ) , energyGE ( 1 ) , r o l e ( ’ Explorer ’ ) }
52 post { doneAction }
53 }
54 parry {
55 pre { not ( d isabled ) , energyGE ( 2 ) , not ( r o l e ( ’ Explorer ’ ) ) , not ( r o l e

( ’ I n s p e c t o r ’ ) ) }
56 post { doneAction }
57 }
58 survey {
59 pre { not ( d isabled ) , energyGE ( 1 ) }
60 post { doneAction }
61 }
62
63 % Only move over an edge when you a c t u a l l y have enough energy to do

so
64 % OR: Sometimes the edge you want to c r o s s i s not surveyed yet , but

do make sure you t r y to move to a neighbour
65 % ( see canGoto/2 in navigationKnowledge . pl )
66 goto ( There ) {
67 pre { currentPos ( Here ) , canGoto ( Here , There ) }
68 post { doneAction }
69 }
70
71 skip {
72 pre { t rue }
73 post { doneAction }
74 }
75 % Only r e p a i r agents of the same team , on your l o c a t i o n , and not

y o u r s e l f !
76 r e p a i r ( Agent ) {
77 pre { energyGE ( 3 ) , currentPos ( Here ) , team (Team) , me(Me) ,

v i s i b l e E n t i t y ( Agent , Here , Team , _ ) , Agent \= Me, r o l e ( ’
Repairer ’ ) }

78 post { doneAction }
79 }
80 % Only a t t a c k enemies on your l o c a t i o n . Keep t r a c k of who you l a s t

a t tacked f o r s t r a t e g i c purposes
81 a t t a c k ( Agent ) {
82 pre { not ( d isabled ) , energyGE ( 2 ) , currentPos ( Here ) , v i s i b l e E n t i t y

( Agent , Here , Team , _ ) , enemyTeam (Team) , l a s t A t t a c k e d (X) ,
r o l e ( ’ Saboteur ’ ) }

83 post { not ( l a s t A t t a c k e d (X) ) , l a s t A t t a c k e d ( Agent ) , doneAction }
84 }
85 i n s p e c t {
86 pre { not ( d isabled ) , energyGE ( 2 ) , r o l e ( ’ I n s p e c t o r ’ ) }
87 post { doneAction }
88 }
89 }
90 }
91
92 % Main module which i s executed every cycle , r u l e s are considered

l i n e a r l y by d e f a u l t
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93 main module {
94 knowledge {
95 dangerousPosit ion :− currentPos ( Here ) , not ( safePos ( Here ) ) , not (

pathCloses tRepairer ( Here , _ , _ , [ Here , _|_ ] , _ ) ) .
96 }
97 program {
98 % Only t r y to f ind a new a c t i o n when one was not chosen in t h i s

s tep yet
99 i f be l ( not ( doneAction ) ) then {

100
101 % I f disabled get y o u r s e l f f i x e d as soon as p o s s i b l e
102 i f be l ( disabled , not ( r o l e ( ’ Repairer ’ ) ) ) then disabled .
103
104 % Perform s p e c i f i c behavior when we have the e n t i r e map
105 %i f be l ( allMapAreBelongToUs ) then s u p e r i o r i t y S e l e c t .
106
107 % We should be very caut ious i f we r i s k being disabled and cannot

f ind a r e p a i r e r
108 i f be l ( dangerousPosit ion , not ( r o l e ( ’ Saboteur ’ ) ) , not ( r o l e ( ’

Repairer ’ ) ) ) then defense .
109
110 % Otherwise enter your r o l e s p e c i f i c module to do something

use fu l with your r o l e
111 i f be l ( r o l e ( ’ Repairer ’ ) ) then r e p a i r e r A c t i o n .
112 i f be l ( r o l e ( ’ I n s p e c t o r ’ ) ) then inspec torAct ion .
113 i f be l ( r o l e ( ’ Explorer ’ ) ) then explorerAct ion .
114 i f be l ( r o l e ( ’ Saboteur ’ ) ) then saboteurAction .
115 i f be l ( r o l e ( ’ S e n t i n e l ’ ) ) then s e n t i n e l A c t i o n .
116
117 % Aparently you had nothing r o l e s p e c i f i c to do , so do some

explor ing
118 i f be l ( t rue ) then explore .
119
120 % I f no a c t i o n could be found j u s t send a skip to ’ no va l id

a c t i o n rece ived in time ’
121 i f be l ( t rue ) then skip .
122 }
123 }
124 }
125
126 % Importing a l l the modules t h a t are used f o r choosing an a c t i o n
127
128 % This i s a module t h a t conta ins common behavior t h a t each agent should

perform
129 # import "common . mod2g" .
130
131 % The fol lowing modules conta in r o l e s p e c i f i c behavior
132 # import " explorer . mod2g" .
133 # import " saboteur . mod2g" .
134 # import " r e p a i r e r . mod2g" .
135 # import " s e n t i n e l . mod2g" .
136 # import " i n s p e c t o r . mod2g" .
137
138 % This module conta ins general behavior f o r disabled agents , but not

Repairers
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139 # import " disabled . mod2g" .
140
141 % This module conta ins some a d m i n i s t r a t i v e r u l e s t h a t have to be

performed a f t e r s p e c i f i c a c t i o n s
142 # import " a c t i o n P r o c e s s i n g . mod2g" .
143
144 % This module conta ins r u l e s t h a t allow f o r pathf inding and moving
145 # import " pathing . mod2g" .
146
147 % This module conta ins r u l e s required by an agent to defend i t s e l f in

times of danger
148 # import " defense . mod2g" .
149
150 % Event module which i s c a l l e d every GOAL c y c l e and i s used f o r

handling percepts , as well as updating the b e l i e f and goal base
before an a c t i o n i s s e l e c t e d

151 event module {
152 program {
153 % When a new step i s detec ted allow the program to process the

percepts , mails from other agents and choose a new a c t i o n
154 i f be l ( percept ( s tep ( Current ) ) , s tep ( Old ) , ! , Old \= Current ) then {
155 i f be l ( Old == unknown)
156 then i n s e r t ( not ( s tep ( Old ) ) , not ( donePercepts ) , not ( doneMailing )

, not ( doneAction ) , s tep ( Current ) ) .
157 % The i n t e g e r part i s to keep unknown from g e t t i n g in the

a r i t h m e t i c . . should be catched by the r u l e above but
sometimes i s n ’ t

158 i f be l ( in teger ( Old ) , Current > Old )
159 then i n s e r t ( not ( s tep ( Old ) ) , not ( donePercepts ) , not ( doneMailing )

, not ( doneAction ) , s tep ( Current ) ) .
160 }
161
162 % simEnd , r e s e t the agents b e l i e f base and a l s o stop the agent from

sending a c t i o n s
163 i f be l ( percept ( simEnd ) ) then r e s e t B e l i e f s .
164
165 % i f the percepts and mails are not handled do so , and make sure i t

doesn ’ t happen again before the next s tep
166 i f be l ( not ( donePercepts ) ) then s e l e c t P e r c e p t s + i n s e r t ( donePercepts

) .
167 i f be l ( donePercepts , not ( doneMailing ) ) then s e l e c t R e c e i v e M a i l +

i n s e r t ( doneMailing ) .
168
169 % si mS ta r t percepted , but im not ready f o r a new match ! Quickly

prepare f o r a new match
170 % BUG: agents r e s e t themselves during the tournament ! <−− seems to

be f i x e d in MAPC 2012
171 i f be l ( percept ( s i mS t ar t ) , not ( ready ) ) then r e s e t B e l i e f s .
172
173 % si mS ta r t percepted and ready , handle the s i m S t a r t p e r c e p t s and

allow the program to send a c t i o n s again
174 i f be l ( percept ( s i mS t ar t ) , ready ) then d e l e t e ( ready ) +

s i m S t a r t P e r c e p t s .
175 }
176 }
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F.3 common.mod2g

1 % Makes sure agents process percepts t h a t are r e l e v a n t to t h e i r r o l e
2 module s e l e c t P e r c e p t s {
3 program [ order= l i n e a r a l l ] {
4 % Handle percepts t h a t everyone uses .
5 i f t rue then commonPercepts .
6
7 % Handle percepts t h a t are s p e c i f i c to a c t i o n s
8 i f be l ( l a s t A c t i o n ( survey ) , l a s t A c t i o n R e s u l t ( s u c c e s s f u l ) ) then

surveyVer t i ces .
9

10 % Handle percepts s p e c i f i c f o r your r o l e .
11 i f be l ( r o l e ( ’ Explorer ’ ) ) then e x p l o r e r P e r c e p t s .
12 i f be l ( r o l e ( ’ Saboteur ’ ) ) then saboteurPercepts .
13 i f be l ( r o l e ( ’ Repairer ’ ) ) then r e p a i r e r P e r c e p t s .
14 i f be l ( r o l e ( ’ I n s p e c t o r ’ ) ) then i n s p e c t o r P e r c e p t s .
15 i f be l ( r o l e ( ’ S e n t i n e l ’ ) ) then s e n t i n e l P e r c e p t s .
16 }
17 }
18
19 % Makes sure agents process mail t h a t i s r e l e v a n t to t h e i r r o l e
20 module s e l e c t R e c e i v e M a i l {
21 program [ order= l i n e a r a l l ] {
22 % Handle mails t h a t everyone uses .
23 i f t rue then commonReceiveMail .
24
25 % Handle mails s p e c i f i c f o r your r o l e .
26 i f be l ( r o l e ( ’ Explorer ’ ) ) then explorerReceiveMai l .
27 i f be l ( r o l e ( ’ Saboteur ’ ) ) then saboteurReceiveMail .
28 i f be l ( r o l e ( ’ Repairer ’ ) ) then repai rerRece iveMai l .
29 i f be l ( r o l e ( ’ I n s p e c t o r ’ ) ) then inspectorRece iveMai l .
30 i f be l ( r o l e ( ’ S e n t i n e l ’ ) ) then s en t i n e l R ec e iv e Ma i l .
31
32 % Handle mails t h a t disabled agents need .
33 i f be l ( disabled ) then disabledReceiveMail .
34
35 % Clean up mailbox .
36 i f t rue then clearMai lbox .
37 }
38 }
39
40 % Module t h a t performs some i n i t i a l percept handling and allows the

agent to s t a r t sending a c t i o n s
41 module s i m S t a r t P e r c e p t s {
42 program [ order= l i n e a r a l l ] {
43 % I n s e r t some dummy values f o r c e r t a i n predica tes , to allow

updating them
44 i f t rue then i n s e r t ( oldZone (unknown) , l a s t P o s (unknown) , s tep (

unknown) ) .
45 i f t rue then i n s e r t ( currentPos (unknown) , zoneScore (unknown) , hea l th

(unknown) ) .
46 i f t rue then i n s e r t ( decidedSwarmAt ( 0 ) , currentSwarmValue ( 0 ) ,

swarmPosition (unknown) , h a r a s s S t a r t ( 0 ) ) .
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47 i f t rue then i n s e r t ( needExploring (unknown) ) .
48
49 % I n s e r t a dummy value f o r our teammates ’ p o s i t i o n s
50 f o r a l l be l (me(Me) , ! , agent ( Agent ) , Me \= Agent ) do i n s e r t (

teamStatus ( Agent , unknown , 10) ) .
51
52 % T e l l the others your r o l e
53 i f be l ( percept ( r o l e (R) ) , me( Id ) , not ( r o l e ( Id , _ ) ) )
54 then i n s e r t ( r o l e ( Id , R) ) + send ( a l l o t h e r , r o l e (R) ) .
55
56 % I n s e r t some i n f o about the match and the map
57 i f be l ( percept ( s teps (X) ) ) then i n s e r t ( s teps (X) ) .
58 i f be l ( percept ( edges (X) ) ) then i n s e r t ( edges (X) ) .
59 i f be l ( percept ( v e r t i c e s (X) ) ) then i n s e r t ( v e r t i c e s (X) ) .
60
61 % Dummyvalue f o r l a s t a t t a c k e d f o r saboteur
62 i f be l ( r o l e ( ’ Saboteur ’ ) ) then i n s e r t ( l a s t A t t a c k e d ( ’ ’ ) ) .
63
64 % Drop any goals t h a t we may have
65 i f goal ( optimum ) then drop ( optimum ) .
66 i f goal ( swarm ) then drop ( swarm ) .
67 f o r a l l goal ( harass (X) ) do drop ( harass (X) ) .
68 f o r a l l goal ( hunt (X) ) do drop ( hunt (X) ) .
69 f o r a l l goal ( r e p a i r i n g (X) ) do drop ( r e p a i r i n g (X) ) .
70
71 % Explore should have a goal to f ind an optimal node
72 i f be l ( r o l e ( ’ Explorer ’ ) ) then adopt ( optimum ) .
73 }
74 }
75
76 % Module t h a t can be c a l l e d to r e s e t the agent to a c lean s t a t e ready

to s t a r t a new match
77 module r e s e t B e l i e f s {
78 program [ order= l i n e a r a l l ] {
79 % Delete some r o l e s p e c i f i c information ( d e l e t i n g takes a b i t of

time , hence the r o l e check )
80 i f be l ( l a s t A t t a c k e d (X) ) then d e l e t e ( l a s t A t t a c k e d (X) ) .
81 f o r a l l be l ( l a s t I n s p e c t ( Id , X) ) do d e l e t e ( l a s t I n s p e c t ( Id , X) ) .
82 f o r a l l be l ( needExploring (X) ) do d e l e t e ( needExploring (X) ) .
83 i f be l ( decidedSwarmAt (X) ) then d e l e t e ( decidedSwarmAt (X) ) .
84 i f be l ( currentSwarmValue (X) ) then d e l e t e ( currentSwarmValue (X) ) .
85 i f be l ( r e p a i r i n g (X) ) then d e l e t e ( r e p a i r i n g (X) ) .
86 i f be l ( h a r a s s S t a r t (X) ) then d e l e t e ( h a r a s s S t a r t (X) ) .
87
88 % Throw out information from the previous match
89 i f be l ( hea l th (H) ) then d e l e t e ( hea l th (H) ) .
90 i f be l ( s teps (X) ) then d e l e t e ( s teps (X) ) .
91 i f be l ( v e r t i c e s (X) ) then d e l e t e ( v e r t i c e s (X) ) .
92 i f be l ( edges (X) ) then d e l e t e ( edges (X) ) .
93 i f be l ( swarmPosition (X) ) then d e l e t e ( swarmPosition (X) ) .
94
95 % Forget your mates s t a t u s ( in case of a new random assignment )
96 f o r a l l be l ( r o l e ( Id , Role ) ) do d e l e t e ( r o l e ( Id , Role ) ) .
97 f o r a l l be l ( teamStatus ( Id , Pos , HP) ) do d e l e t e ( teamStatus ( Id , Pos ,

HP) ) .
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98
99 % More garbage d e l e t i n g

100 f o r a l l be l ( enemyStatus ( Id , Vertex , S t a t e ) ) do d e l e t e ( enemyStatus ( Id
, Vertex , S t a t e ) ) .

101 i f be l ( currentPos (X) ) then d e l e t e ( currentPos (X) ) .
102 i f be l ( l a s t P o s (X) ) then d e l e t e ( l a s t P o s (X) ) .
103 i f be l ( s tep (X) ) then i n s e r t ( not ( s tep (X) ) ) .
104 i f be l ( zoneScore (X) ) then d e l e t e ( zoneScore (X) ) .
105 i f be l ( oldZone (X) ) then d e l e t e ( oldZone (X) ) .
106 f o r a l l be l ( ver tex ( Id , Value , L i s t ) ) do d e l e t e ( ver tex ( Id , Value ,

L i s t ) ) .
107 f o r a l l be l ( i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy ,

MaxEnergy , Health , MaxHealth , Strength , VisRange ) )
108 do d e l e t e ( i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy ,

MaxEnergy , Health , MaxHealth , Strength , VisRange ) ) .
109 f o r a l l be l ( doneProbing (V) ) do d e l e t e ( doneProbing (V) ) .
110
111 % After d e l e t i n g a l l garbage make sure no new a c t i o n s are sent , and

the agent i s ready f o r a new s i m s t a r t
112 i f t rue then i n s e r t ( donePercepts , doneMailing , doneAction , ready ) .
113 }
114 }
115
116 % Module t h a t processes percepts t h a t are rece ived from the environment
117 module commonPercepts {
118 knowledge {
119 s ta tusUser ( ID ) :− r o l e ( ID , ’ Saboteur ’ ) .
120 s ta tusUser ( ID ) :− r o l e ( ID , ’ Repairer ’ ) .
121 statusChanged :− l a s t A c t i o n ( goto ) , l a s t A c t i o n R e s u l t ( s u c c e s s f u l ) ,

! .
122 statusChanged :− oldHealth (OHP) , hea l th (HP) , OHP \= HP.
123 }
124 program [ order= l i n e a r a l l ] {
125 % Record any new v e r t i c e s
126 f o r a l l be l ( percept ( v i s i b l e V e r t e x (V, _ ) ) , ver tex (V, unknown , OldNBs ) ,

needSurvey (V) , v i s i b l e E d g e s L i s t (V, NBs) , union ( OldNBs , NBs ,Tmp) ,
s o r t (Tmp,NewNBs) , length ( OldNBs ,M1) , length (NewNBs,M2) , M1 < M2
)

127 do i n s e r t ( not ( ver tex (V, unknown , OldNBs ) ) , ver tex (V, unknown ,NewNBs)
) + send ( a l l o t h e r , newPerceivedVertex (V,NewNBs) ) .

128 f o r a l l be l ( percept ( v i s i b l e V e r t e x (V, _ ) ) , not ( ver tex (V, _ , _ ) ) ,
v i s i b l e E d g e s L i s t (V,Tmp) , s o r t (Tmp, NBs) , length (NBs ,M) , M > 1)

129 do i n s e r t ( ver tex (V, unknown , NBs) ) + send ( a l l o t h e r ,
newPerceivedVertex (V, NBs) ) .

130
131
132 %Keep t r a c k of zoneScore
133 i f be l ( percept ( zoneScore (Z) ) , zoneScore (X) , oldZone (Y) ) then i n s e r t

( not ( zoneScore (X) ) , not ( oldZone (Y) ) , oldZone (X) , zoneScore (Z)
) .

134
135 % Keep t r a c k of the ver tex you were on before you got here .
136 i f be l ( percept ( p o s i t i o n ( Cur ) ) , currentPos ( Old ) , ! , Old \= Cur ) then

{
137 i f be l ( tookShortcut ) then d e l e t e ( tookShortcut ) .
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138 i f be l ( l a s t P o s ( P ) ) then i n s e r t ( not ( l a s t P o s ( P ) ) , l a s t P o s ( Old ) ) .
139 }
140
141 % Update current l o c a t i o n
142 i f be l ( percept ( p o s i t i o n ( Cur ) ) , currentPos ( Old ) )
143 then i n s e r t ( not ( currentPos ( Old ) ) , currentPos ( Cur ) ) .
144
145 % Swarm goal managing , when we have rece ived a swarm p o s i t i o n
146 i f not ( goal ( swarm ) ) , be l ( getOptimum ( _ ) , timeToSwarm ) then adopt (

swarm ) .
147
148 % Check i f the found optimum wasn ’ t wrong
149 f o r a l l be l ( optimum (O) , currentPos ( Here ) , ver tex ( Here , Value , _ ) ,

ver tex (O, OValue , _ ) , vertexValueGT ( Value , OValue ) )
150 do i n s e r t ( not ( optimum (O) ) , optimum ( Here ) ) + send ( a l l o t h e r ,

optimum ( Here ) ) .
151
152 % Temporarily record our previous hea l th
153 i f be l ( hea l th (HP) ) then i n s e r t ( oldHealth (HP) ) .
154
155 % Update the agents hea l th
156 i f be l ( percept ( hea l th (H) ) , hea l th ( Current ) , ! , H \= Current ) then

i n s e r t ( not ( hea l th ( Current ) ) , hea l th (H) ) .
157
158 % I f you can see an enemy and an a l l y cannot then inform the agent
159 i f be l ( agentRankHere ( 0 ) , enemyTeam ( T ) , me(Me) , currentPos (V) ,

f i n d a l l ( [ E , P , X] , ( v i s i b l e E n t i t y ( E , P , T , X) , not ( enemyStatus ( E , P , X
) ) ) , L ) , L \= [ ] ) then {

160 f o r a l l be l ( agent ( ID ) , ID \= Me, s ta tusUser ( ID ) , not ( v i s i b l e E n t i t y
( ID , V, _ , _ ) ) ) do send ( ID , enemyStatusPack ( L ) ) .

161 }
162
163 % Keep t r a c k of the s t a t u s of enemy agents
164 f o r a l l be l ( enemyTeam ( T ) , v i s i b l e E n t i t y ( ID , Vertex , T , S t a t u s ) , not (

enemyStatus ( ID , _ , _ ) ) )
165 do i n s e r t ( enemyStatus ( ID , Vertex , S t a t u s ) ) .
166 f o r a l l be l ( enemyStatus ( ID , StoredVertex , S toredSta tus ) , v i s i b l e E n t i t y

( ID , ActualVertex , _ , Actua lS ta tus ) , ( StoredVertex \= ActualVertex
; S toredSta tus \= ActualS ta tus ) )

167 do i n s e r t ( not ( enemyStatus ( ID , StoredVertex , S toredSta tus ) ) ,
enemyStatus ( ID , ActualVertex , Actua lS ta tus ) ) .

168
169 % T e l l the others where you are
170 i f be l ( percept ( p o s i t i o n ( Pos ) ) , statusChanged , hea l th (HP) ) then send

( a l l o t h e r , teamStatus ( Pos ,HP) ) .
171
172 % Delete temporary atom
173 i f be l ( oldHealth (X) ) then d e l e t e ( oldHealth (X) ) .
174 }
175 }
176
177 % Module t h a t processes messages from other agents
178 module commonReceiveMail {
179 knowledge {
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180 neighborUnion ( L , NBs) :− f l a t t e n ( L ,A) , f i n d a l l ( [ unknown , X] , (member
(X ,A) , atom_chars (X , Chrs ) , append ( [ v , e , r , t , e , x ] , _ , Chrs ) ) , B ) ,
s o r t ( B , NBs) .

181 }
182 program [ order= l i n e a r a l l ] {
183 % Record any new v e r t i c e s
184 f o r a l l be l ( rece ived (A, newPerceivedVertex (V, NBs) ) , not ( ver tex (V, _ , _ )

) ) do i n s e r t ( ver tex (V, unknown , NBs) ) + d e l e t e ( rece ived (A,
newPerceivedVertex (V, NBs) ) ) .

185 f o r a l l be l ( rece ived (A, newPerceivedVertex (V, NBs) ) , ver tex (V, unknown ,
OldNBs ) , length ( OldNBs , M1) , length (NBs ,M2) , M1 < M2) do i n s e r t
( not ( ver tex (V, unknown , OldNBs ) ) , ver tex (V, unknown , NBs) ) + d e l e t e
( rece ived (A, newPerceivedVertex (V, NBs) ) ) .

186
187 % Fix any i n c o n s i s t e n c i e s , because i f mult ip le agents sends

messages concerning the same ver tex but with d i f f e r e n t
neighbors ( happens because not a l l edges are v i s i b l e from the
f u r t h e s t v i s i b l e ver tex ) then GOAL i n s e r t s the ver tex f o r each
unique l i s t of neighbors !

188 f o r a l l be l ( ver tex (V, unknown , _ ) , f i n d a l l (X , ver tex (V, unknown , X) , Tmp
) , s o r t (Tmp, L ) , L = [ _ , _|_ ] , neighborUnion ( L , RealNBs ) , member (
FalseNBs , L ) ) do i n s e r t ( not ( ver tex (V, unknown , FalseNBs ) ) , ver tex
(V, unknown , RealNBs ) ) .

189
190 % Update edge/node values f o r ( non ) e x i s t i n g v e r t i c e s
191 f o r a l l be l ( rece ived (A, ver tex ( Id , Value , NewList ) ) , not ( ver tex ( Id , _ , _ )

) ) do
192 d e l e t e ( rece ived (A, ver tex ( Id , Value , NewList ) ) ) + i n s e r t ( ver tex ( Id ,

Value , NewList ) ) .
193 f o r a l l be l ( rece ived (A, ver tex ( Id , Value , NewList ) ) , ver tex ( Id , Value ,

OldList ) ) do
194 d e l e t e ( rece ived (A, ver tex ( Id , Value , NewList ) ) ) + i n s e r t ( not ( ver tex (

Id , Value , OldList ) ) , ver tex ( Id , Value , NewList ) ) .
195
196 % Update probe values f o r ( non ) e x i s t i n g v e r t i c e s
197 f o r a l l be l ( rece ived (A, vertexProbed ( Id , Value , L i s t ) ) , not ( ver tex ( Id , _

, _ ) ) )
198 do d e l e t e ( rece ived (A, vertexProbed ( Id , Value , L i s t ) ) ) + i n s e r t (

ver tex ( Id , Value , L i s t ) ) .
199 f o r a l l be l ( rece ived (A, vertexProbed ( Id , Value , T h e i r L i s t ) ) , ver tex ( Id ,

unknown , L i s t ) )
200 do d e l e t e ( rece ived (A, vertexProbed ( Id , Value , T h e i r L i s t ) ) ) + i n s e r t (

not ( ver tex ( Id , unknown , L i s t ) ) , ver tex ( Id , Value , L i s t ) ) .
201
202 % Swarm l o c a t i o n r e c e i v i n g
203 i f be l ( rece ived ( Agent , swarmPosition ( Opt ) ) , swarmPosition ( Old ) )
204 then i n s e r t ( not ( swarmPosition ( Old ) ) , swarmPosition ( Opt ) ) + d e l e t e

( rece ived ( Agent , swarmPosition ( Opt ) ) ) .
205
206 % Agent r o l e s
207 f o r a l l be l ( rece ived ( Agent , r o l e ( Role ) ) ) do i n s e r t ( r o l e ( Agent , Role ) )

+ d e l e t e ( rece ived ( Agent , r o l e ( Role ) ) ) .
208
209 % Agent l o c a t i o n s and s t a t u s
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210 f o r a l l be l ( rece ived ( Agent , teamStatus ( Pos ,HP) ) , teamStatus ( Agent ,
OldPos , OldHP) , ( Pos \= OldPos ; HP \= OldHP) )

211 do i n s e r t ( teamStatus ( Agent , Pos ,HP) ) + d e l e t e ( teamStatus ( Agent ,
OldPos , OldHP) , rece ived ( Agent , teamStatus ( Pos ,HP) ) ) .

212 f o r a l l be l ( rece ived ( Agent , teamStatus ( Pos ,HP) ) ) do d e l e t e ( rece ived (
Agent , teamStatus ( Pos ,HP) ) ) .

213
214 % i n s p e c t e d E n t i t i e s
215 % When you get a percept of an inspected enemy , r e p l a c e the l a s t

i n s p e c t i o n of t h a t e n t i t y .
216 f o r a l l be l ( rece ived ( _ , i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex ,

Energy , MaxEnergy , Health , MaxHealth , Strength , VisRange ) ) ,
217 i n s p e c t e d E n t i t y ( Id , Team , Role , V2 , E2 , ME2, H2, MH2, S2 , VS2 ) )
218 do i n s e r t ( not ( i n s p e c t e d E n t i t y ( Id , Team , Role , V2 , E2 , ME2, H2,

MH2, S2 , VS2 ) ) ,
219 i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy , MaxEnergy ,

Health , MaxHealth , Strength , VisRange ) ) .
220 % When you get a percept of an inspected enemy , and i t has never

been inspected before , i n s e r t i t .
221 f o r a l l be l ( rece ived ( _ , i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex ,

Energy , MaxEnergy , Health , MaxHealth , Strength , VisRange ) ) ,
222 not ( i n s p e c t e d E n t i t y ( Id , _ , _ , _ , _ , _ , _ , _ , _ , _ ) ) )
223 do i n s e r t ( i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy ,

MaxEnergy , Health , MaxHealth , Strength , VisRange ) ) .
224
225 % Save any new information about the enemy .
226 f o r a l l be l ( rece ived ( ID , enemyStatusPack ( L ) ) ) do {
227 f o r a l l be l (member ( [ E , V, X] , L ) ) do {
228 i f be l ( not ( enemyStatus ( E , _ , _ ) ) ) then i n s e r t ( enemyStatus ( E , V, X) )

.
229 i f be l ( enemyStatus ( E ,OV, Y) , (V \= OV ; X \= Y) , not (

v i s i b l e E n t i t y ( E , _ , _ , _ ) ) ) then i n s e r t ( not ( enemyStatus ( E ,OV, Y
) ) , enemyStatus ( E , V, X) ) .

230 }
231 }
232 f o r a l l be l ( enemyStatus (A, B1 , C1 ) , ! , enemyStatus (A, B2 , C2 ) , ( B1 \= B2

; C1 \= C2 ) ) do d e l e t e ( enemyStatus (A, B2 , C2 ) ) .
233 }
234 }
235
236 % Clears out rece ived messages and sent messages , these are now

processed and i r r e l e v a n t , hence slowing down the quer ies f o r no
reason

237 module clearMai lbox {
238 program [ order= l i n e a r a l l ] {
239 f o r a l l be l ( rece ived ( Agent , Message ) ) do d e l e t e ( rece ived ( Agent ,

Message ) ) .
240 f o r a l l be l ( sent ( Agent , Message ) ) do d e l e t e ( sent ( Agent , Message ) ) .
241 }
242 }
243
244 % Behavior when swarming
245 module swarm {
246 program {
247 i f be l ( getOptimum ( Pos ) , neighbour ( Pos ) ) then advancedGoto ( Pos ) .
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248 i f be l ( getOptimum ( Pos ) , currentPos (V) , V \= Pos , path (V, Pos , [ V, Next
|_ ] , _ ) ) then advancedGoto ( Next ) .

249 i f be l ( currentPos (V) , getOptimum (V) , enemyHere ( ID ) , dangerousEnemy (
ID ) ) then defense .

250 i f t rue then recharge .
251 }
252 }
253
254
255 % The common explore module t h a t works f o r every agent and explores the

graph and i t s edges
256 module explore {
257 program {
258 % i f there are edges with unknown weight around the current node

survey them
259 i f be l ( currentPos ( Here ) , ! , needSurvey ( Here ) , agentRankHere ( Rank ) )
260 then s e l e c t S ur v e y ( Rank ) .
261
262 % Find c l o s e s t unsurveyed ver tex
263 i f be l ( foreverAlone , currentPos ( S t a r t ) , pathClosestNonSurveyed (

S t a r t , NonSurveyedVertex , [ Here , Next|Path ] , Dis t ) )
264 then advancedGoto ( Next ) .
265
266 % When mult ip le agents are on the node and there i s an unsurveyed

neighbor , t r y to s p l i t up .
267 i f be l ( not ( foreverAlone ) , agentRankHere ( Rank ) , neighbourNeedSurvey (

Any) ) then gotoNeighbour ( Rank , true , f a l s e ) .
268
269 % find a b e t t e r ( higher value ) node to c h i l l on
270 i f be l ( currentPos ( Here ) , ! , neighbour ( There ) , safePos ( There ) ,
271 vertexValue ( Here , Value1 ) , vertexValue ( There , Value2 ) ,

vertexValueGE ( Value2 , Value1 ) )
272 then advancedGoto ( There ) .
273
274 % lack of b e t t e r node , go to an unprobed one .
275 i f be l ( neighbour ( There ) , vertexValue ( There , unknown) , safePos ( There )

)
276 then advancedGoto ( There ) .
277
278 % find a s a f e place to stand
279 i f be l ( neighbour ( There ) , safePos ( There ) )
280 then advancedGoto ( There ) .
281
282 % keep moving
283 i f be l ( currentPos ( Here ) , not ( safePos ( Here ) ) , neighbour ( Here , There )

)
284 then advancedGoto ( There ) .
285 }
286 }
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F.4 defense.mod2g

1 module defense {
2 knowledge {
3 needToParry :− currentPos ( Here ) , ! , enemyTeam ( T ) , v i s i b l e E n t i t y ( ID ,

Here , T , normal ) , dangerousEnemy ( ID ) .
4 }
5
6 program {
7 % Enemy on your p o s i t i o n and the agent can parry
8 i f be l ( not ( r o l e ( ’ Explorer ’ ) ) , not ( r o l e ( ’ I n s p e c t o r ’ ) ) , needToParry )

then defenseParry .
9

10 % Wait f o r the Saboteur to beat you f o r parry achievements
11 i f be l ( not ( r o l e ( ’ Explorer ’ ) ) , not ( r o l e ( ’ I n s p e c t o r ’ ) ) , maxEnergy ( E ) ,

not ( energy ( E ) ) , ! , neighbour ( There ) ,
12 v i s i b l e E n t i t y ( Id , There , Team , _ ) , enemyTeam (Team) ,

inspectedEnemy ( Id , ’ Saboteur ’ ) ) then recharge .
13
14 % I f you cannot parry ( and i s not swarming ) then j u s t run away
15 i f not ( goal ( swarm ) ) then defenseFlee .
16 }
17 }
18
19 module defenseParry {
20 program {
21 % randomly pick f l e e or parry when l a s t parry was u s e l e s s .
22 i f be l ( l a s t A c t i o n ( parry ) , l a s t A c t i o n R e s u l t ( u s e l e s s ) ) then

randomDefense .
23 i f t rue then parry .
24 i f t rue then recharge .
25 }
26 }
27
28 module randomDefense {
29 program {
30 % Keep 75% chance to parry , 25% to f l e e
31 i f be l ( randomFloat (R) , R > 0 . 2 5 ) then {
32 i f t rue then parry .
33 i f t rue then recharge .
34 }
35 i f not ( goal ( swarm ) ) then defenseFlee .
36 }
37 }
38
39 module defenseFlee {
40 program {
41 % run away i f needed .
42 i f be l ( currentPos ( Here ) , not ( needSurvey ( Here ) ) ) then {
43 % to a s a f e spot .
44 i f be l ( neighbour (N) , safePos (N) ) then advancedGoto (N) .
45 % to a s a f e r spot which i sn ’ t where I was l a s t s tep .
46 i f be l ( neighbour (N) , not ( ( v i s i b l e E n t i t y ( _ , N, Team , _ ) ,

enemyTeam (Team) ) ) , not ( l a s t P o s (N) ) ) then advancedGoto (N) .
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47 % to a s a f e r spot .
48 i f be l ( neighbour (N) , not ( ( v i s i b l e E n t i t y ( _ , N, Team , _ ) ,

enemyTeam (Team) ) ) ) then advancedGoto (N) .
49 }
50
51 % max edge Weight i s 9 .
52 i f be l ( energyGE ( 9 ) , currentPos ( Here ) ) then {
53 % to a s a f e spot .
54 i f be l ( v i s ib leEdge ( Here ,N) , safePos (N) ) then advancedGoto (N) .
55 % to a s a f e r spot which i sn ’ t where I was l a s t s tep .
56 i f be l ( v i s ib leEdge ( Here ,N) , not ( ( v i s i b l e E n t i t y ( _ , N, Team , _ ) ,

enemyTeam (Team) ) ) , not ( l a s t P o s (N) ) ) then advancedGoto (N) .
57 % to a s a f e r spot .
58 i f be l ( v i s ib leEdge ( Here ,N) , not ( ( v i s i b l e E n t i t y ( _ , N, Team , _ ) ,

enemyTeam (Team) ) ) ) then advancedGoto (N) .
59 }
60
61 i f t rue then recharge .
62 }
63 }
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F.5 disabled.mod2g

1 module disabledReceiveMai l {
2 program [ order= l i n e a r a l l ] {
3 i f t rue then e x i t−module .
4 }
5 }
6
7 module disabled {
8 program {
9 % I f we are a t a ver tex with a Repairer ( and we are not a Repairer )

then we should j u s t wait
10 i f be l ( not ( r o l e ( ’ Repairer ’ ) ) , currentPos (V) , v i s i b l e E n t i t y ( ID

, V, _ , _ ) , r o l e ( ID , ’ Repairer ’ ) ) then recharge .
11
12 % Wait f o r nearby Repairer when you are a Repairer and other

Repairer has a higher p r i o r i t y .
13 i f be l ( r o l e ( ’ Repairer ’ ) , r o l e ( Agent , ’ Repairer ’ ) , me(Name) , Agent \=

Name, v i s i b l e E n t i t y ( Agent , Pos , _ , _ ) , ( neighbour ( Pos ) ;
currentPos ( Pos ) ) , compareAgents (Name, Agent , Agent ) ) then
recharge .

14
15 % Wait f o r nearby Repairer when you are not a Repairer
16 i f be l ( not ( r o l e ( ’ Repairer ’ ) ) , r o l e ( Agent , ’ Repairer ’ ) , v i s i b l e E n t i t y

( Agent , Pos , _ , _ ) ) then {
17 i f not ( goal ( swarm ) ) , be l ( randomFloat (X) ) then {
18 i f be l (X > 0 . 2 5 , neighbour ( Pos ) ) then recharge .
19 i f be l (X =< 0 . 2 5 , neighbour ( Pos ) ) then advancedGoto ( Pos ) .
20 i f be l ( currentPos ( Pos ) ) then recharge .
21 }
22 }
23
24 % Find n e a r e s t Repairer .
25 i f be l ( neighbour (V) , team ( T ) , v i s i b l e E n t i t y ( ID , V, T , _ ) , r o l e ( ID , ’

Repairer ’ ) ) then advancedGoto (V) .
26 i f be l ( currentPos ( Here ) , pathCloses tRepairer ( Here , _ , _ , [ Here , Next|_

] , _ ) ) then advancedGoto ( Next ) .
27
28 % Goto n e a r e s t unknown ver tex to expand the known graph , hopeful ly

enabl ing a path to a Repairer
29 i f be l ( neighbour (N) , not ( ver tex (N, _ , _ ) ) ) then advancedGoto (N) .
30 i f be l ( currentPos ( Here ) , pathClosestUnknownVertex ( Here , _ , [ Here , Next

|_ ] , _ ) , not ( l a s t P o s ( Next ) ) ) then advancedGoto ( Next ) .
31
32 % I f there are no unknown v e r t i c e s then why can ’ t you f ind a path

to the n e a r e s t Repairer ?
33 i f t rue then recharge .
34 }
35 }
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F.6 saboteur.mod2g

1 %Saboteur s p e c i f i c Percept handeling
2 module saboteurPercepts {
3 program [ order= l i n e a r a l l ] {
4 % When an agent i s under a t t a c k ( and hopeful ly swarming ) then help

i t i f we are the r i g h t Saboteur
5 i f not ( goal ( harass ( _ ) ) ) , not ( goal ( hunt ( _ ) ) ) , be l ( timeToHunt , ! ,

f i n d a l l ( EID , ( teamStatus ( ID , V, _ ) , r o l e ( ID , R) , member (R , [ ’
I n s p e c t o r ’ , ’ S e n t i n e l ’ , ’ Explorer ’ ] ) , enemyStatus ( EID , V, normal ) ,
inspectedEnemy ( EID , ’ Saboteur ’ ) ) , L ) , randomElement ( L , Enemy) )

6 then adopt ( hunt (Enemy) ) .
7 }
8 }
9

10 module saboteurReceiveMail {
11 program [ order= l i n e a r a l l ] {
12 i f t rue then e x i t−module .
13 }
14 }
15
16 module saboteurAction {
17 knowledge {
18 enabledAllySaboteursHere :− currentPos (V) , me(Me) , team ( T ) ,

v i s i b l e E n t i t y ( ID , V, T , normal ) ,
19 r o l e ( ID , ’ Saboteur ’ ) , ID \= Me.
20 enabledEnemiesHere ( Role , S ) :− currentPos (V) , enemyTeam ( T ) , ! ,
21 f i n d a l l ( ID , ( v i s i b l e E n t i t y ( ID , V, T , normal ) , inspectedEnemy (

ID , Role ) ) ,L ) , ! , s o r t ( L , S ) .
22 enabledEnemiesHereNotInList ( Ignored , S ) :− currentPos (V) , enemyTeam (

T ) , ! ,
23 f i n d a l l ( ID , ( v i s i b l e E n t i t y ( ID , V, T , normal ) , not ( memberchk ( ID

, Ignored ) ) ) ,L ) , ! , s o r t ( L , S ) .
24
25 % P r i o r i t i z e Saboteurs and Repairers over the others and p r i o r i t i z e

S e n t i n e l lowest
26 roleSortedEnemyList ( L ) :− enabledEnemiesHere ( ’ Saboteur ’ , SL ) ,

enabledEnemiesHere ( ’ Repairer ’ ,RL) ,
27 enabledEnemiesHere ( ’ S e n t i n e l ’ , SeL ) , append ( SL , RL , Tmp1) ,

append (Tmp1, SeL , Tmp2) ,
28 enabledEnemiesHereNotInList (Tmp2,OL) , append (Tmp1, OL, Tmp3

) , append (Tmp3, SeL , L ) .
29
30 r o l e S e l e c t A t t a c k T a r g e t ( Target ) :−
31 me(Me) , agentEnabledRoleRankHere (Me, Rank ) ,

roleSortedEnemyList ( EL ) , nth0 ( Rank , EL , Target )
.

32
33 % Prevent a g i g a n t i c endless b a t t l e between enemy Repairers and us

a t t h i s ver tex
34 notRepairBlob :− enabledEnemyHere ( EEID ) , dangerousEnemy ( EEID ) , ! .
35 notRepairBlob :− enabledEnemiesHere ( ’ Repairer ’ ,ERL) , length (ERL ,N) ,

N < 3 .
36
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37 lowestRank ( L ) :− me(Me) , length ( L ,N) , agentRank ( L ,Me, Rank ) , M i s N
−1, Rank == M.

38 }
39 program {
40 % Determine i f i t i s time to buy upgrades
41 i f t rue then upgrades .
42
43 % Hunt i f we are supposed to help somebody
44 i f not ( goal ( swarm ) ) , a−goal ( hunt ( ID ) ) then hunt .
45
46 % Try to harass the enemy ’ s swarms i f we are harass ing
47 i f a−goal ( harass ( There ) ) then harassGoto .
48
49 % Harass sometimes
50 i f be l ( randomFloat (X) , ! , X > 0 . 5 ) then harassBegin .
51
52 % I f we have been a t t a c k i n g a Sent ine l , and i t parr ies , and there

are an Explorer or I n s p e c t o r nearby then a t t a c k t h a t enemy
ins tead

53 % ( This can a c t u a l l y happen a l o t when harass ing )
54 i f be l ( not ( ( enemyHere (X) , dangerousEnemy (X) ) ) , l a s t A c t i o n R e s u l t (

f a i l e d _ p a r r y ) , lastActionParam ( SID ) , inspectedEnemy ( SID , ’
S e n t i n e l ’ ) , Rs = [ ’ Explorer ’ , ’ I n s p e c t o r ’ ] ) then {

55 i f be l ( enabledEnemyHere ( ID ) , currentPos (V) , inspectedEnemy ( ID , R) ,
member (R , Rs ) ) then saboteurAttack ( ID ,V) .

56 i f be l ( enabledEnemyNear ( ID ,V) , inspectedEnemy ( ID , R) , member (R , Rs )
) then saboteurAttack ( ID ,V) .

57 }
58
59 % I f we are a t a l a r g e b a t t l e ( i . e . we some of us Saboteurs are not

needed ) then we should move
60 i f be l ( currentPos (V) , l a r g e B a t t l e (V,AL) , ( not (

r o l e S e l e c t A t t a c k T a r g e t ( _ ) ) ; ( s o r t ( [Me|AL] , AL2) , lowestRank (AL2
) ) ) ) then {

61 % Harass so we can get away
62 i f t rue then harassBegin .
63
64 i f be l ( enabledEnemyNear ( ID , Vertex ) , Vertex \= V) then

saboteurAttack ( ID , Vertex ) .
65 i f be l ( f i n d a l l (N, neighbour (N) ,L ) , randomElement ( L , X) ) then

advancedGoto (X) .
66 }
67
68 % Attack enemy by rank i f there are more a l l y Saboteurs here
69 i f be l ( currentPos (V) , enabledAllySaboteursHere ,

r o l e S e l e c t A t t a c k T a r g e t ( ID ) , notRepairBlob ) then saboteurAttack (
ID ,V) .

70
71 % Attack enemy on t h i s ver tex .
72 % Preference to h i t Saboteur over other t a r g e t s .
73 % We p r e f e r Explorers over I n s p e c t o r s because they have l e s s

hea l th
74 % We normally p r e f e r to h i t I n s p e c t o r s and Explorers over

Repairers because they cannot parry .
75 i f be l ( enabledEnemyHere ( ID ) , currentPos (V) ) then {
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76 i f be l ( inspectedEnemy ( ID , ’ Saboteur ’ ) ) then saboteurAttack (
ID ,V) .

77 i f be l ( inspectedEnemy ( ID , ’ I n s p e c t o r ’ ) ) then saboteurAttack (
ID ,V) .

78 i f be l ( inspectedEnemy ( ID , ’ Repairer ’ ) , notRepairBlob ) then
saboteurAttack ( ID ,V) .

79 i f be l ( inspectedEnemy ( ID , ’ Explorer ’ ) ) then saboteurAttack (
ID ,V) .

80 i f be l ( notRepairBlob ) then saboteurAttack ( ID ,V) .
81 }
82
83 % i f the other saboteur i s a l s o a t your l o c a t i o n s p l i t up .
84 i f be l ( currentPos ( Vertex ) , enabledEnemyNear ( _ , Y) , ! , v i s i b l e E n t i t y ( ID

, Vertex , _ , _ ) , r o l e ( ID , ’ Saboteur ’ ) , not (me( ID ) ) , ! ,
85 enabledEnemiesNear ( L i s t ) , agentRankHere ( Rank ) ) then g o t o S p l i t (

Rank , L i s t ) .
86
87 %Attack enemy on nearby ver tex
88 i f be l ( enabledEnemyNear ( ID , Vertex ) , currentPos (V) , Vertex \= V, not

( inspectedEnemy ( ID , ’ S e n t i n e l ’ ) ) , no tLargeBat t l e ( Vertex ) ) then
saboteurAttack ( ID , Vertex ) .

89 i f be l ( enabledEnemyNear ( ID , Vertex ) , currentPos (V) , Vertex \= V,
notLargeBat t l e ( Vertex ) ) then saboteurAttack ( ID , Vertex ) .

90
91 % Attack enemies on optimums
92 i f be l ( currentPos (V) , optimum ( Opt ) , enemyStatus ( ID , Opt , normal ) ,

inspectedEnemy ( ID , R) , member (R , [ ’ I n s p e c t o r ’ , ’ Explorer ’ ] ) , path (
V, Opt , [ V, Next|_ ] , _ ) ) then advancedGoto ( Next ) .

93 i f be l ( currentPos (V) , optimum ( Opt ) , enemyStatus ( ID , Opt , normal ) ,
path (V, Opt , [ V, Next|_ ] , _ ) ) then advancedGoto ( Next ) .

94
95 %a t t a c k n e a r e s t v i s i b l e enemy ( only works in zones because

otherwise i t would have already been handled above )
96 i f be l ( currentPos ( S t a r t ) , pathClosestVisibleEnemy ( S t a r t ,

LocationEnemy , NameEnemy, [ Here , Next|Path ] , Dis t ) , ! )
97 then advancedGoto ( Next ) .
98
99 % Harass i f nothing e lse , i f we can f ind a s u i t a b l e ver tex

100 i f t rue then harassBegin .
101
102 %F a i l save
103 i f t rue then explore .
104 }
105 }
106
107 module saboteurAttack ( ID , Vertex ) {
108 program {
109 % Attack t a r g e t i f on t h i s l o c a t i o n .
110 i f be l ( currentPos ( Vertex ) ) then {
111 %I f your l a s t a t t a c k a c t i o n was a t the same t a r g e t who parr ied

and there i s another a c t i v e t a r g e t h i t the other ins tead
112 i f be l ( l a s t A c t i o n R e s u l t ( f a i l e d _ p a r r y ) , l a s t A t t a c k e d ( ID ) , ! ,

enabledEnemyHere (AID) , AID \== ID ) then a t t a c k (AID) .
113 i f t rue then a t t a c k ( ID ) .
114 i f t rue then recharge .
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115 }
116 % Goto ver tex with enemy agent .
117 i f t rue then advancedGoto ( Vertex ) .
118 }
119 }
120
121 %Chase a f t e r and a t t a c k your t a r g e t .
122 module hunt {
123 program {
124 i f goal ( hunt ( ID ) ) , be l ( enemyNear ( ID , Vertex ) ) then saboteurAttack ( ID

, Vertex ) .
125 i f goal ( hunt ( ID ) ) , be l ( enemyStatus ( ID , Vertex , _ ) , currentPos ( Here ) , ! ,

path ( Here , Vertex , [ Here , Next| L i s t ] , _ ) )
126 then advancedGoto ( Next ) .
127 % i f you can ’ t f ind t a r g e t then drop the hunt
128 i f goal ( hunt ( ID ) ) then drop ( hunt ( ID ) ) .
129 }
130 }
131
132 % Used to determine i f we need to buy upgrades
133 module upgrades {
134 % We should probably not buy more hea l th than s t r en gt h because i t i s

l e s s use fu l . And i f we have more hea l th than them then they w i l l
buy more strength , which in turn would make us buy more hea l th (3

i s the d e f a u l t s t r en gt h )
135 knowledge {
136 shouldBuyStr ( S ) :− enemySaboteurSecondMaxHealth ( Health ) , S < Health

, ! .
137 shouldBuyStr ( S ) :− me(Me) , hasLowestRoleRank (Me) , S < 6 , ! . % At

l e a s t one Saboteur should be able to k i l l anybody in one round .
138 shouldBuyHP (H) :− enemySaboteurSecondMaxStrength ( Strength ) , H =<

Strength , ! .
139 }
140 program {
141 i f be l ( timeToBuy , not ( ( enabledEnemyHere ( ID ) , dangerousEnemy ( ID ) ) ) ,

s t r en gt h ( S ) , maxHealth (H) , money (M) , M >= 4) then {
142 % buy s t re n gt h upgrade according to second highes t inspected

enemy Saboteur hea l th
143 i f be l ( shouldBuyStr ( S ) ) then {
144 i f t rue then buy ( sabotageDevice ) .
145 i f t rue then recharge .
146 }
147
148 % buy heal th upgrade according to second highes t inspected enemy

Saboteur s t re ng t h
149 i f be l ( shouldBuyHP (H) ) then {
150 i f t rue then buy ( s h i e l d ) .
151 i f t rue then recharge .
152 }
153 }
154
155 }
156 }
157
158 % Attempt to f ind enemy " swarms " and harass them
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159 module harassGoto {
160 program {
161 % I f we are near the harassment ver tex then we should j u s t proceed

as usual
162 % Otherwise go towards the ver tex
163 i f goal ( harass ( There ) ) , be l ( currentPos ( Here ) , Here \= There , ( path (

Here , There , [ Here , Next|_ ] , _ ) ; ( neighbour ( Here , There ) , Next =
There ) ) , ! ) then {

164 % Maybe we are a t a neighbour to the harass ver tex and there are
an enemy here ( in which case don ’ t go towards the harass
ver tex )

165 i f be l ( enabledEnemyHere ( ID ) , not ( neighbour ( Here , There ) ) ) then {
166 % Maybe we are a t a ver tex toge ther with an enemy and we might

want to move towards our goal ins tead of a t t a c k i n g
167 i f be l ( enabledEnemyHere ( ID ) , randomFloat (X) , ! , X > 0 . 5 ) then

advancedGoto ( Next ) .
168
169 % Otherwise , e x i t the module
170 }
171 % Otherwise move towards the ver tex
172 i f be l ( not ( enabledEnemyHere ( ID ) ) ) then advancedGoto ( Next ) .
173 }
174 }
175 }
176
177 module harassBegin {
178 program {
179 i f not ( goal ( harass ( _ ) ) ) , be l ( timeToHarass , poss ib leHarassVertex ( Pos

) , s tep ( Step ) , h a r a s s S t a r t ( Old ) )
180 then adopt ( harass ( Pos ) ) + d e l e t e ( h a r a s s S t a r t ( Old ) ) + i n s e r t (

h a r a s s S t a r t ( Step ) ) .
181 }
182 }
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F.7 repairer.mod2g

1 module r e p a i r e r P e r c e p t s {
2 program [ order= l i n e a r a l l ] {
3 i f t rue then e x i t−module .
4 }
5 }
6
7 module repa i rerRece iveMai l {
8 program [ order= l i n e a r a l l ] {
9 i f t rue then e x i t−module .

10 }
11 }
12
13 module r e p a i r e r A c t i o n {
14 knowledge {
15 isDamaged ( ’ Saboteur ’ ,HP) :− HP < 3 .
16 isDamaged ( ’ Repairer ’ ,HP) :− HP < 6 .
17 isDamaged ( ’ I n s p e c t o r ’ ,HP) :− HP < 6 .
18 isDamaged ( ’ Explorer ’ ,HP) :− HP < 4 .
19 disabledAllyHere ( ID ) :− currentPos ( Here ) , team (Team) , me(Me) ,

v i s i b l e E n t i t y ( ID , Here , Team , disabled ) , ID \= Me.
20 damagedAllyHere ( ID ) :− currentPos ( Here ) , me(Me) , teamStatus ( ID , Here

,HP) , ID \= Me, r o l e ( ID , Role ) , isDamaged ( Role ,HP) .
21 disabledImportantAllyHere ( ID ) :− disabledAllyHere ( ID ) , r o l e ( ID , R) ,

member (R , [ ’ Repairer ’ , ’ Saboteur ’ ] ) .
22 damagedImportantAllyHere ( ID ) :− damagedAllyHere ( ID ) , r o l e ( ID , R) ,

member (R , [ ’ Repairer ’ , ’ Saboteur ’ ] ) .
23 a l l y R e p a i r e r s A t (V, RN) :− me(Me) , f i n d a l l ( Id , ( teamStatus ( Id , V,HP) ,

HP \= 0 , Id \= Me, r o l e ( Id , ’ Repairer ’ ) ) , RL) , ! , length (RL ,RN
) .

24 enabledEnemySaboteursHere ( L ) :− currentPos (V) , enemyTeam ( T ) ,
f i n d a l l ( ID , ( v i s i b l e E n t i t y ( ID , V, T , normal ) , dangerousEnemy ( ID ) ) ,
Tmp) , s o r t (Tmp, L ) .

25 enabledAllySaboteursHere ( L ) :− currentPos (V) , team ( T ) , f i n d a l l ( ID ,
( v i s i b l e E n t i t y ( ID , V, T , normal ) , r o l e ( ID , ’ Saboteur ’ ) ) , Tmp) , s o r t (
Tmp, L ) .

26
27 % Likely t a r g e t s f o r the enemy are our enabled Saboteurs . I f the

enemy has enough enabled Saboteurs to t a r g e t a l l our enabled
Saboteurs then our enabled Saboteurs are l i k e l y to be at tacked
the next round .

28 l i k e l y T a r g e t s ( L ) :− enabledEnemySaboteursHere ( EL ) ,
enabledAllySaboteursHere (AL) , length ( EL ,EN) , length (AL,AN) , ( (
EN >= AN, L = AL) ; (EN < AN, L = [ ] ) ) .

29 disabledAt (V, DN) :− me(Me) , f i n d a l l ( Id , ( teamStatus ( Id , V, 0 ) , Id
\= Me) , DL) , ! , length (DL,DN) .

30 i n s u f f i c i e n t R e p a i r e r s A t (V) :− currentPos (H) , H \= V,
a l l y R e p a i r e r s A t (V,RN) , disabledAt (V,DN) , DN > RN.

31 enabledAllyRepairersHere :− currentPos (V) , me(Me) , team ( T ) ,
v i s i b l e E n t i t y ( ID , V, T , normal ) , r o l e ( ID , ’ Repairer ’ ) , ID \= Me, ! .

32
33 % Create a l i s t of a l l y agents to determine who to r e p a i r f i r s t . I t

i s important to note t h a t non−disabled agents can s t i l l be
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repaired i f they are deemed to be at tacked next round because
both a t t a c k a c t i o n s and determining disabled agents are
processed before r e p a i r a c t i o n s by the server .

34 roleSortedDisabledHere ( L ) :− f i n d a l l ( ID , ( disabledAllyHere ( ID ) , r o l e (
ID , ’ Saboteur ’ ) ) ,SLTmp) ,

35 f i n d a l l ( ID , ( disabledAllyHere ( ID ) , r o l e ( ID , ’
Repairer ’ ) ) ,RLTmp) ,

36 l i k e l y T a r g e t s (TLTmp) , s o r t (TLTmp, TL ) ,
37 f i n d a l l ( ID , ( disabledAllyHere ( ID ) , r o l e ( ID , R)

, not (member (R , [ ’ Saboteur ’ , ’ Repairer ’ ] ) )
) ,OLTmp) ,

38 f i n d a l l ( ID , damagedAllyHere ( ID ) ,DLTmp) ,
39 s o r t (SLTmp, SL ) , s o r t (RLTmp, RL) , s o r t (OLTmp,

OL) , s o r t (DLTmp,DL) ,
40 append ( SL , TL ,Tmp) , append (Tmp, RL , Tmp2) ,

append (Tmp2, OL, Tmp3) , append (Tmp3, DL, L )
.

41
42 al lDisabledNear ( L ) :− f i n d a l l ( ( V, ID ) , ( teamStatus ( ID , V, 0 ) , neighbour (

V) ) ,X) , ! , s o r t (X , S ) , f i n d a l l (A, member ( ( _ ,A) , S ) ,L ) .
43
44 ro leSe lec tRepa i rTarge tHere ( Target ) :− me(Me) ,

agentEnabledRoleRankHere (Me, Rank ) , roleSortedDisabledHere (RL) ,
nth0 ( Rank , RL , Target ) .

45 ro leSe lec tRepa i rTarge tNear ( Target ) :− me(Me) ,
agentEnabledRoleRankHere (Me, Rank ) , a l lDisabledNear (RL) , nth0 (
Rank , RL , Target ) .

46
47 disabledAgentToRepair ( Agent , There ) :− me(Me) , currentPos ( Pos ) ,
48 f i n d a l l ( ( ID ,V) , ( teamStatus ( ID , V, 0 ) , ID \= Me, V \= Pos ) , L1 ) ,
49 f i n d a l l ( ( ID ,V) , ( teamStatus ( ID , V, 0 ) , ID \= Me, V \= Pos , r o l e ( ID ,

R) , member (R , [ ’ S e n t i n e l ’ , ’ Repairer ’ , ’ Saboteur ’ ] ) ) , L2 ) ,
50 append ( L1 , L2 , L ) , randomElement ( L , ( Agent , There ) ) , ! .
51
52 }
53 program {
54 % Repair the agents t h a t I have committed myself to r e p a i r i f they

are c l o s e by
55 i f a−goal ( r e p a i r i n g ( ID ) ) , be l ( not ( d isabled ) , currentPos (V) ,

teamStatus ( ID , Pos , _ ) ) then {
56 i f be l ( Pos == V) then r e p a i r e r R e p a i r ( ID ,V) .
57 i f be l ( neighbour ( Pos ) ) then r e p a i r e r R e p a i r ( ID , Pos ) .
58 i f be l (me(Me) , hasLowestRoleRank (Me) , path (V, Pos , [ V,N|T ] , _ ) ) then

r e p a i r e r R e p a i r ( ID ,N) .
59 }
60
61 % I t i s necessary to r e p a i r the other agents t h a t are not a t a

l a r g e b a t t l e
62 i f be l ( currentPos (V) , l a r g e B a t t l e (V, _ ) , me(Me) , hasLowestRoleRank (

Me) ) then repairCommitBegin .
63
64 % Fix a l l y here , de legat ing the r e p a i r t a s k s among a l l the a l l y

Repairers a t t h i s ver tex
65 i f be l ( currentPos (V) , enabledAllyRepairersHere ,

ro leSe lec tRepa i rTarge tHere ( ID ) ) then r e p a i r e r R e p a i r ( ID ,V) .
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66
67 % Fix a l l y here , when there are no other enabled a l l y r e p a i r e r s

here , p r i o r i t i z i n g Saboteurs and Repairers
68 i f be l ( currentPos (V) , not ( enabledAllyRepairersHere ) ) then {
69 i f be l ( disabledImportantAllyHere ( ID ) ) then r e p a i r e r R e p a i r ( ID ,V) .
70 i f be l ( damagedImportantAllyHere ( ID ) ) then r e p a i r e r R e p a i r ( ID ,V) .
71 i f be l ( disabledAllyHere ( ID ) ) then r e p a i r e r R e p a i r ( ID ,V) .
72 i f be l ( damagedAllyHere ( ID ) ) then r e p a i r e r R e p a i r ( ID ,V) .
73 }
74
75 % Fix a nearby a l l y . I t i s important t h a t not a l l Repairers a t the

ver tex moves to r e p a i r the same t a r g e t .
76 % I t i s a l s o important t h a t not too many Repairers move a l o t i f

they c u r r e n t l y are in a l a r g e b a t t l e , because t h i s could s h i f t
the b a t t l e towards our swarms as the disabled a l l i e s are
probably coming from the swarms

77 % ( they cannot come from l a r g e b a t t l e s and not many agents are
doing much e l s e than swarming or f i g h t i n g a t a ver tex ) .

78 i f be l ( disabledAllyNear ( ID , Vertex ) , i n s u f f i c i e n t R e p a i r e r s A t ( Vertex )
, currentPos ( Pos ) ) then {

79 i f be l ( enabledAllyRepairersHere , not ( ro leSe lec tRepa i rTarge tHere ( _
) ) , ro leSe lec tRepa i rTarge tNear ( ID2 ) ) then r e p a i r e r R e p a i r ( ID2 ,
Vertex ) .

80 i f be l ( not ( enabledAllyRepairersHere ) ) then r e p a i r e r R e p a i r ( ID ,
Vertex ) .

81 }
82
83 % Go towards the agent t h a t I want to r e p a i r
84 i f a−goal ( r e p a i r i n g ( ID ) ) , be l ( not ( d isabled ) , currentPos (H) ,

teamStatus ( ID , T , _ ) , path (H, T , [ H,N|R] , _ ) ) then r e p a i r e r R e p a i r ( ID
,N) .

85
86 % Find an a l l y to r e p a i r and commit to i t
87 i f t rue then repairCommitBegin .
88
89 % Find help , because I am disabled .
90 i f be l ( disabled ) then disabled .
91
92 % Defend i f my current l o c a t i o n has dangerous enemies nearby .
93 i f be l ( currentPos ( Here ) , not ( safePos ( Here ) ) ) then defense .
94
95 % Swarm i f I should swarm
96 i f a−goal ( swarm ) then swarm .
97
98 % Explore the map .
99 i f t rue then explore .

100 }
101 }
102
103 module r e p a i r e r R e p a i r ( ID , Vertex ) {
104 program {
105 i f be l (me(Me) , ID \= Me) then {
106 % Repair t a r g e t a t t h i s ver tex i f p o s s i b l e . Defend y o u r s e l f i f

necessary .
107 i f be l ( currentPos ( Here ) , v i s i b l e E n t i t y ( ID , Here , _ , _ ) ) then {
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108 i f t rue then r e p a i r ( ID ) .
109 i f be l ( not ( safePos ( Here ) ) ) then defense .
110 i f t rue then recharge .
111 }
112 % Goto ver tex with disabled/i n j ur e d agent .
113 i f t rue then advancedGoto ( Vertex ) .
114 }
115 }
116 }
117
118 module repairCommitBegin {
119 program {
120 % Find an a l l y to r e p a i r and commit to i t
121 i f not ( goal ( r e p a i r i n g ( _ ) ) ) , be l ( not ( d isabled ) , currentPos ( Here ) ,

disabledAgentToRepair ( Agent , There ) ) then {
122 i f be l ( neighbour ( There ) ) then r e p a i r e r R e p a i r ( Agent , There ) + adopt

( r e p a i r i n g ( Agent ) ) .
123 i f be l ( path ( Here , There , [ Here , Next|_ ] , _ ) ) then r e p a i r e r R e p a i r (

Agent , Next ) + adopt ( r e p a i r i n g ( Agent ) ) .
124 }
125 }
126 }
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F.8 explorer.mod2g

1 % B e l i e f base management s p e c i f i c to the Explorers
2 module e x p l o r e r P e r c e p t s {
3 knowledge {
4 calcSwarms ( Chosen , Value ) :−
5 decideOptimums ( Opts ) , f i n d a l l ( ( Val , Swarm) , (member ( Opt , Opts ) ,

ca lcAreaControl ( Opt , Swarm , Val ) ) , L ) ,
6 s o r t ( L , S ) , length ( S ,N) , nth1 (N, S , ( Value , Chosen ) ) , ! .
7
8 % Python−DTU’ s algorithm f o r c a l c u l a t i n g swarm pos i t ions ,

reimplementation in GOAL
9

10 % calcAreaControl re turns p a i r s of agents and v e r t i c e s which
determine where the agents s h a l l stand when swarming

11 % Chosen = agent−ver tex p a i r s
12 calcAreaControl ( Opt , Chosen , Value ) :−
13 a l l V e r t i c e s (Tmp) , d e l e t e (Tmp, Opt , Vs ) ,
14 swarmAgents ( [A|AT] ) , cacAux ( Vs , AT, [ Opt ] , Rest ) , Chosen = [ (A, Opt

) |Rest ] ,
15 swarmValue ( Chosen , Value ) , ! .
16
17 cacAux ( _ , [ ] , _ , [ ] ) .
18 cacAux ( Vs , [A|T ] , Chosen , [ ( A, Best ) |Rest ] ) :−
19 calcOwned ( Chosen , Owned) , b e s t P o s i t i o n ( Vs , Chosen , Owned, Best ) ,

cacAux ( Vs , T , [ Best|Chosen ] , Rest ) .
20
21 a l l V e r t i c e s ( Vs ) :− f i n d a l l (V, ( ver tex (V, Val , _ ) , Val \= unknown , Val

\= 1) , L ) , s o r t ( L , Vs ) , ! .
22 swarmAgents ( As ) :− timeToSwarm , swarmAgents ( As , [ ’ Saboteur ’ , ’

Repairer ’ ] ) , ! .
23 swarmAgents ( As ) :− swarmAgents ( As , [ ’ Saboteur ’ , ’ Repairer ’ , ’ Explorer ’

] ) , ! .
24 swarmAgents ( As , IgnoredRoles ) :− f i n d a l l (A, ( agent (A) , r o l e (A, R) ,

not ( memberchk (R , IgnoredRoles ) ) ) , L ) , s o r t ( L , As ) , ! .
25
26 swarmValue ( Chosen , Val ) :− f i n d a l l (V, member ( ( _ ,V) , Chosen ) , L ) ,

calcOwned ( L , Owned) , swarmValueAux (Owned, Val ) .
27 swarmValueAux ( [ ] , 0 ) .
28 swarmValueAux ( [V|T ] , Val ) :−
29 swarmValueAux ( T , Part ) , vertexValue (V,Tmp) , (Tmp == unknown −>

VVal = 1 ; VVal = Tmp) , ! , Val i s Part + VVal .
30
31 b e s t P o s i t i o n ( [ ] , _ , _ , _ ) :− f a i l , ! .
32 b e s t P o s i t i o n ( Vs , Chosen , Owned, Best ) :−
33 s u b t r a c t ( Vs , Chosen , NewVs) , bpAux(NewVs, Chosen , Owned, _ , Best ) .
34
35 bpAux ( [ ] , _ , _ , 0 , _ ) .
36 bpAux ( [ V1|R] , Chosen , Owned, MaxVal , Best ) :−
37 bpZoneVal ( V1 , Chosen , Owned, Val1 ) , bpAux(R , Chosen , Owned, Val2 , V2

) ,
38 ( Val1 > Val2 −> ( Best = V1 , MaxVal = Val1 ) ; ( Best = V2 , MaxVal =

Val2 ) ) .
39
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40 bpZoneVal (V, Chosen , Owned, Val ) :−
41 ver tex (V, VVal , _ ) , neighbours (V, Ns) , s u b t r a c t (Ns , Owned, Ws) ,
42 bpZoneValAux (Ws, Chosen , ValPart ) , Val i s ValPart + VVal .
43
44 bpZoneValAux ( [ ] , _ , 0 ) .
45 bpZoneValAux ( [W|R] , Chosen , ValSum ) :−
46 neighbours (W,Tmp) , i n t e r s e c t i o n (Tmp, Chosen , Zs ) , ver tex (W, Tmp2, _ ) ,

(Tmp2 == unknown −> WVal = 1 ; WVal = Tmp2) ,
47 bpZoneValAuxAux ( Zs , WVal , ValPart1 ) , bpZoneValAux (R , Chosen , ValPart2

) , ValSum i s ValPart1 + ValPart2 .
48
49 bpZoneValAuxAux ( [ ] , _ , 0 ) .
50 bpZoneValAuxAux ( [ _|R] , WVal , ValSum ) :−
51 bpZoneValAuxAux (R , WVal , ValPart ) , ValSum i s WVal + ValPart .
52
53 calcOwned ( [ ] , [ ] ) .
54 calcOwned ( Chosen , Owned) :− Chosen = [ _|T ] , coAux ( Chosen , T ,O) , union

( Chosen ,O, Owned) .
55
56 coAux ( [H] , [ ] , [H] ) .
57 coAux ( [H|T ] , T , Owned) :− T = [N|R] , n e i g h b o r I n t e r s e c t (H, T ,O) , coAux

( [N|R] , R , O2) , union (O, O2 , Owned) .
58
59 n e i g h b o r I n t e r s e c t ( _ , [ ] , [ ] ) .
60 n e i g h b o r I n t e r s e c t (V , [H|T ] , NI ) :− neighbours (V,NV) , neighbours (H,NH)

, i n t e r s e c t i o n (NV,NH, X) , n e i g h b o r I n t e r s e c t (V, T , Y) , union (X , Y , NI
) .

61
62 validSwarms ( Swarms ) :− not ( memberchk ( ( _ , unknown) ,Swarms ) ) , ! .
63
64 % Updates the l i s t of nodes t h a t s t i l l need to be probed
65 updateNeedExploring (A, B ) :− f i n d a l l (V, (member (V,A) , needProbe (V) ) ,

B ) .
66 }
67
68 program [ order= l i n e a r a l l ] {
69 % I f our l a s t goto f a i l e d we are p o t e n t i a l l y under at tack , f l e e i n g

might be nescessary
70 i f be l ( noFlee , l a s t A c t i o n ( goto ) , l a s t A c t i o n R e s u l t ( f a i l e d ) ) then

d e l e t e ( noFlee ) .
71
72 % Makes sure the graph adminis t ra t ion i s performed a f t e r a probe

and other agents r e c e i v e t h i s new c o r r e c t information
73 i f be l ( l a s t A c t i o n ( probe ) , l a s t A c t i o n R e s u l t ( s u c c e s s f u l ) ) then

probeVert i ces .
74
75 i f be l ( currentPos ( Here ) , safePosForProbing ( Here ) , noFlee ) then

d e l e t e ( noFlee ) .
76
77 % Update needExploring i f necessary
78 i f be l ( not ( needExploring (unknown) ) , needExploring ( L ) , L \= [ ] ,

updateNeedExploring ( L ,NewL) ) then i n s e r t ( not ( needExploring ( L ) ) ,
needExploring (NewL) ) .

79
80 % Decide on swarm p o s i t i o n s i f i t i s time to swarm
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81 i f be l ( timeToDecideSwarm , ! , me(Me) , hasHighestRoleRank (Me) ,
calcSwarms ( Swarms , NewVal ) , validSwarms ( Swarms ) , s tep (NewS) ,
decidedSwarmAt ( OldS ) , NewS \= OldS , currentSwarmValue ( CurVal ) ,
NewVal > CurVal ) then {

82 f o r a l l be l (member ( (A, Pos ) , Swarms ) ) do send (A, swarmPosition ( Pos ) )
+ i n s e r t ( not ( decidedSwarmAt ( OldS ) ) , decidedSwarmAt (NewS) ) +

i n s e r t ( not ( currentSwarmValue ( CurVal ) ) , currentSwarmValue (
NewVal ) ) .

83 }
84 }
85 }
86
87 % Sending messages s p e c i f i c f o r the Explorers
88 module explorerReceiveMai l {
89 program {
90 i f t rue then e x i t−module .
91 }
92 }
93
94 % Module t h a t makes sure an a c t i o n i s chosen f o r the Explorer
95 module explorerAct ion {
96 knowledge {
97 % I f a l l t h i s nodes neighbours are probed , i t i s to be considered

as ’ doneProbing ’
98 doneProbing ( Here ) :− f i n d a l l (V, ( ver tex ( Here , _ , L ) , member ( [ _ , V] ,

L ) , needProbe (V) ) , [ ] ) .
99

100 % The l i s t of v e r t i c e s t h a t s t i l l need to be probed
101 calculateNeedExploring ( L ) :− swarmPosition (MOpt) , MOpt \= unknown ,
102 f i n d a l l ( V1 , ( member (O, Opts ) , neighbour (O, V1 ) , needProbe (

V1 ) ) , A) ,
103 f i n d a l l ( V2 , ( member (N,A) , neighbour (N, V2 ) , needProbe (

V2 ) ) , B ) ,
104 append (A, B ,C) , append ( Opts , C,D) , s o r t (D, L ) .
105
106 % This p r e d i c a t e determines when a node i s to be considered s a f e to

stand on , t h i s means no unknown r o l e agent (we have decided
t h a t there are 25% chance of s t i l l being safe , because there
are only 4 out of 20 agents t h a t are Saboteurs ) or Saboteur can

be at t h i s l o c a t i o n . We do not use safePos because we need to
take chances when probing .

107 safePosForProbing ( P ) :− randomFloat (X) , ! , ( safePos ( P ) ; X > 0 . 7 5 ) .
108 }
109 program {
110 % I f we are a t an optimum then we shouldn ’ t look f o r an optimum

anymore
111 i f a−goal ( optimum ) , be l ( currentPos ( Pos ) , optimum ( Pos ) , not (

timeToSwarm ) ) then drop ( optimum ) .
112
113 % Agent i s not safe , defend y o u r s e l f
114 i f be l ( not ( noFlee ) , currentPos ( Here ) , not ( safePosForProbing ( Here ) ) )

then defense .
115
116 % probe your node i f i t i s unprobed
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117 i f be l ( not ( d isabled ) , currentPos ( Here ) , needProbe ( Here ) , me(Name) ,
team (Team) ,

118 f i n d a l l ( Agent , ( v i s i b l e E n t i t y ( Agent , Here , Team , _ ) , r o l e ( Agent , ’
Explorer ’ ) ) , Agents ) , agentRank ( Agents ,Name, Rank ) , Rank ==
0)

119 then s e l e c t P r o b e ( Rank ) .
120
121 % When optimum i s found but c e r t a i n nodevalues s t i l l need explor ing

enter the module t h a t makes sure t h i s happens
122 i f not ( goal ( optimum ) ) , be l ( not ( timeToSwarm ) ) then {
123 i f be l ( needExploring (unknown) , calculateNeedExploring ( L i s t ) ) then

i n s e r t ( not ( needExploring (unknown) ) , needExploring ( L i s t ) ) +
searchPostOptimal .

124 i f t rue then searchPostOptimal .
125 }
126
127 % I f we are looking f o r an optimum enter the module t h a t has

optimum finding behavior
128 i f a−goal ( optimum ) then searchOptimal .
129
130 % When swarming then swarm
131 i f a−goal ( swarm ) then swarm .
132 }
133 }
134
135 % Module t h a t conta ins behavior f o r Explorers to f ind the optimal value

node
136 module searchOptimal {
137 program {
138 % i f t h i s ver tex has a lower value than the l a s t , t r a c k back to an

unprobed neighbor of the l a s t node
139 i f be l ( l a s t P o s ( Last ) , currentPos ( Here ) , ! , vertexValue ( Here , Value )

, vertexValue ( Last , OldValue ) , vertexValueGE ( OldValue , Value ) , ! ,
140 neighbour ( Last , New) , needProbe (New) , neighbour ( Here , New) ,

safePosForProbing (New) )
141 then advancedGoto (New) + i n s e r t ( tookShortcut ) .
142
143 % i f t h i s ver tex has a lower value than the l a s t , t r a c k back to the

l a s t node
144 i f be l ( l a s t P o s ( Last ) , currentPos ( Here ) , ! , vertexValue ( Here , Value )

, vertexValue ( Last , OldValue ) , vertexValueGT ( OldValue , Value ) , ! ,
safePosForProbing ( Last ) )

145 then advancedGoto ( Last ) .
146
147 % find a probed neighboring ver tex with a higher value and go to

there
148 i f be l ( currentPos ( Here ) , vertexValue ( Here , Value ) , ! , neighbour (

ElseWhere ) ,
149 vertexValue ( ElseWhere , EWValue ) , vertexValueGT ( EWValue , Value ) ,

safePosForProbing ( ElseWhere ) )
150 then advancedGoto ( ElseWhere ) .
151
152 % find an unprobed neighboring ver tex
153 i f be l ( neighbour ( There ) , needProbe ( There ) , safePosForProbing ( There )

) then advancedGoto ( There ) .
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154
155 % find an unprobed neighboring ver tex
156 i f be l ( neighbour ( There ) , needProbe ( There ) , not ( ( v i s i b l e E n t i t y ( _ ,

There , Team , _ ) , enemyTeam (Team) ) ) )
157 then advancedGoto ( There ) + i n s e r t ( noFlee ) .
158
159 % find an unprobed neighboring ver tex
160 i f be l ( neighbour ( There ) , needProbe ( There ) )
161 then advancedGoto ( There ) + i n s e r t ( noFlee ) .
162
163 % Find c l o s e s t unprobed ver tex
164 i f be l ( currentPos ( S t a r t ) , pathClosestNonProbed ( S t a r t ,

NonProbedVertex , [ Here , Next|Path ] , Dis t ) )
165 then advancedGoto ( Next ) .
166 }
167 }
168
169 % Module to search randomly a f t e r we have found an optimum
170 module searchPostOptimal {
171 program {
172 % Find the c l o s e s t unprobed ver tex which i s a neighbor of a ver tex

which needs to be explored
173 i f be l ( currentPos ( Here ) , pathClosestNonProbedWithExtraChecks ( Here ,

_ , [ Here , Next | _ ] , _ ) )
174 then advancedGoto ( Next ) .
175
176 % find an unprobed neighboring ver tex
177 i f be l ( neighbour ( There ) , needProbe ( There ) , safePosForProbing ( There )

) then advancedGoto ( There ) .
178
179 % find an unprobed neighboring ver tex
180 i f be l ( neighbour ( There ) , needProbe ( There ) , not ( ( v i s i b l e E n t i t y ( _ ,

There , Team , _ ) , enemyTeam (Team) ) ) )
181 then advancedGoto ( There ) + i n s e r t ( noFlee ) .
182
183 % find an unprobed neighboring ver tex
184 i f be l ( neighbour ( There ) , needProbe ( There ) )
185 then advancedGoto ( There ) + i n s e r t ( noFlee ) .
186
187 % I f a l l neighboring v e r t i c e s has been probed determine i f we need

to survey
188 i f be l ( not ( d isabled ) , currentPos ( Here ) , needSurvey ( Here

) , agentRankHere ( Rank ) )
189 then s e l e c t S u rv e y ( Rank ) .
190
191 % Find c l o s e s t unprobed ver tex
192 i f be l ( currentPos ( S t a r t ) , pathClosestNonProbed ( S t a r t ,

NonProbedVertex , [ Here , Next|Path ] , Dis t ) )
193 then advancedGoto ( Next ) .
194 }
195 }
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F.9 inspector.mod2g

1 module i n s p e c t o r P e r c e p t s {
2 program [ order= l i n e a r a l l ] {
3 % Process i n s p e c t data .
4 i f be l ( l a s t A c t i o n ( i n s p e c t ) , l a s t A c t i o n R e s u l t ( s u c c e s s f u l ) ) then

i n s p e c t E n t i t y P e r c e p t .
5 }
6 }
7
8 module inspectorRece iveMai l {
9 program [ order= l i n e a r a l l ] {

10 i f t rue then e x i t−module .
11 }
12 }
13
14 module inspec torAct ion {
15 program {
16 % I n s pe c t when p o s s i b l e
17 i f be l ( uninspectedNear ) then {
18 i f t rue then i n s p e c t .
19 i f t rue then recharge .
20 }
21
22 % Defend y o u r s e l f when not s a f e
23 i f be l ( currentPos ( Here ) , not ( safePos ( Here ) ) ) then defense .
24
25 % Find someone to i n s p e c t
26 i f be l ( currentPos ( Here ) , ! , v i s i b l e E n t i t y ( Agent , There , Team , _ ) ,

enemyTeam (Team) ,
27 ( uninspectedEnt i ty ( Agent ) ; ( inspectedEnemy ( Agent , ’ Saboteur ’ ) ,

l a s t I n s p e c t ( Agent , LI ) , s tep ( S ) , LI2 i s LI + 50 , LI2 < S ) ) ,
! ,

28 path ( Here , There , [ Here , Next|GotoPath ] , _ ) , ! )
29 then advancedGoto ( Next ) .
30
31 % Swarm
32 i f a−goal ( swarm ) then swarm .
33
34 % Walk towards the swarm p o s i t i o n
35 i f be l ( getOptimum (X) , currentPos ( Pos ) , path ( Pos , X , [ Here , Next|Path ] ,

_ ) ) then advancedGoto ( Next ) .
36
37 % Randomly explore i f nothing e l s e
38 i f t rue then explore .
39 }
40 }
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F.10 sentinel.mod2g

1 module s e n t i n e l P e r c e p t s {
2 program [ order= l i n e a r a l l ] {
3 i f t rue then e x i t−module .
4 }
5 }
6
7 module se n t i n e l R ec e iv e Ma i l {
8 program [ order= l i n e a r a l l ] {
9 i f t rue then e x i t−module .

10 }
11 }
12
13 module s e n t i n e l A c t i o n {
14 program {
15 % Defend i f my current l o c a t i o n has dangerous enemies nearby .
16 i f be l ( currentPos ( Here ) , not ( safePos ( Here ) ) ) then defense .
17
18 % Swarm i f I am in the optimum zone .
19 i f a−goal ( swarm ) then swarm .
20
21 % Move towards the swarm p o s i t i o n i f I am not in i t .
22 i f be l ( getOptimum (X) , currentPos ( Pos ) , path ( Pos , X , [ Here , Next|Path ] ,

_ ) )
23 then advancedGoto ( Next ) .
24
25 % Explore the map .
26 i f t rue then explore .
27 }
28 }
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F.11 pathing.mod2g

1 module g o t o S p l i t ( Rank , L i s t ) {
2 knowledge {
3 % Data re format t ing
4 s t r i p L i s t ( [ ] , [ ] ) .
5 s t r i p L i s t ( [ [ Value , Vertex ]| L i s t ] , [ Vertex| S L i s t ] ) :− s t r i p L i s t ( L i s t ,

S L i s t ) .
6 }
7 program {
8 % L i s t = [ [ Value , Vertex ] , [ . . . ] ] Highest a f t e r !
9 i f be l ( s t r i p L i s t ( L i s t , S L i s t ) , s e l e c t D e s t i n a t i o n ( SLis t , Rank , Vertex ) )

then advancedGoto ( Vertex ) .
10 % L i s t = [ Vertex , . . . , Vertex ]
11 i f be l ( s e l e c t D e s t i n a t i o n ( L i s t , Rank , Vertex ) ) then advancedGoto (

Vertex ) .
12 }
13 }
14
15 module gotoNeighbour ( Rank , Unknown, Safe ) {
16 program {
17 i f be l ( Unknown == true , Safe == true , maxEnergy ( E ) , energyGE ( E ) ,

currentPos ( Here ) , s e t o f ( Neighbour , ( v i s ib leEdge ( Here , Neighbour )
,

18 safePos ( Neighbour ) ) , Neighbours ) , se lectNeighbour ( Neighbours , Rank
, Vertex ) )

19 then advancedGoto ( Vertex ) .
20
21 i f be l ( Unknown == true , maxEnergy ( E ) , energyGE ( E ) , currentPos ( Here

) , s e t o f ( Neighbour , v i s ib leEdge ( Here , Neighbour ) , Neighbours ) ,
22 selectNeighbour ( Neighbours , Rank , Vertex ) )
23 then advancedGoto ( Vertex ) .
24
25 i f be l ( Safe == true , X i s Rank + 1 , s e t o f ( Neighbour , ( neighbour (

Neighbour ) , safePos ( Neighbour ) ) , Neighbours ) , se lectNeighbour (
Neighbours , X , Vertex ) )

26 then advancedGoto ( Vertex ) .
27
28 i f be l ( X i s Rank + 1 , s e t o f ( Neighbour , neighbour ( Neighbour ) ,

Neighbours ) , se lectNeighbour ( Neighbours , X , Vertex ) )
29 then advancedGoto ( Vertex ) .
30 }
31 }
32
33 module advancedGoto ( Des t ina t ion ) {
34 program {
35 % Goto pre condi t ion checks i f we can move over explored edges .
36 i f be l ( currentPos ( Here ) , not ( needSurvey ( Here ) ) ) then {
37 i f t rue then goto ( Des t ina t ion ) .
38 i f t rue then recharge .
39 }
40
41 % Recharge to a t l e a s t 9 energy before moving over an unsurveyed

edge .
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42 i f be l ( energyGE ( 9 ) ) then goto ( Des t ina t ion ) .
43 i f t rue then recharge .
44 }
45 }
46
47 module s e l e c t P r o b e ( Rank ) {
48 program {
49 % Use probe a c t i o n when I am rank 0 ( Highest )
50 i f be l ( Rank == 0 ) then probe .
51 % Go to a neighbor i f I am not rank 0
52 i f t rue then gotoNeighbour ( Rank , true , f a l s e ) .
53 i f t rue then recharge .
54 }
55 }
56
57 module se l ec t S ur v ey ( Rank ) {
58 program {
59 % Use survey a c t i o n when I am rank 0 ( Highest )
60 i f be l ( Rank == 0 ) then survey .
61 % Go to a neighbor i f I am not rank 0
62 i f t rue then gotoNeighbour ( Rank , true , f a l s e ) .
63 i f t rue then recharge .
64 }
65 }
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F.12 actionProcessing.mod2g

1 module surveyVer t i ces {
2 program [ order= l i n e a r ] {
3 % Search f o r and update current ver tex .
4 i f be l ( currentPos ( Id1 ) , ! , ver tex ( Id1 , Value , L i s t ) ,
5 f i n d a l l ( [W, Id2 ] , ( percept ( surveyedEdge ( Id1 , Id2 ,W) ) ; percept (

surveyedEdge ( Id2 , Id1 ,W) ) ) , Array ) )
6 then i n s e r t ( not ( ver tex ( Id1 , Value , L i s t ) ) , ver tex ( Id1 , Value , Array ) )

+ send ( a l l o t h e r , ver tex ( Id1 , Value , Array ) ) .
7 % Other statement i s f a l s e so do not search . I n s e r t new ver tex
8 i f be l ( currentPos ( Id1 ) , ! ,
9 f i n d a l l ( [W, Id2 ] , ( percept ( surveyedEdge ( Id1 , Id2 ,W) ) ; percept (

surveyedEdge ( Id2 , Id1 ,W) ) ) , Array ) )
10 then i n s e r t ( ver tex ( Id1 , unknown , Array ) ) + send ( a l l o t h e r , ver tex ( Id1

, unknown , Array ) ) .
11 }
12 }
13
14 module probeVert i ces {
15 program [ order= l i n e a r ] {
16 % Search f o r and update current ver tex .
17 i f be l ( percept ( probedVertex ( Id1 , Value ) ) , ver tex ( Id1 , V, L i s t ) ) then
18 i n s e r t ( not ( ver tex ( Id1 , V, L i s t ) ) , ver tex ( Id1 , Value , L i s t ) )
19 + send ( a l l o t h e r , vertexProbed ( Id1 , Value , L i s t ) ) .
20 % Other statement i s f a l s e so do not search . I n s e r t new ver tex .
21 i f be l ( percept ( probedVertex ( Id1 , Value ) ) , v i s i b l e E d g e s L i s t ( Id1 , L i s t )

) then
22 i n s e r t ( ver tex ( Id1 , Value , L i s t ) ) + send ( a l l o t h e r , vertexProbed ( Id1 ,

Value , L i s t ) ) .
23 }
24 }
25
26 module i n s p e c t E n t i t y P e r c e p t {
27 program [ order= l i n e a r a l l ] {
28 % When you get a percept of an inspected enemy , r e p l a c e the l a s t

i n s p e c t i o n of t h a t e n t i t y and send the percept to a l l other
agents .

29 f o r a l l be l ( percept ( i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy ,
MaxEnergy , Health , MaxHealth , Strength , VisRange ) ) , enemyTeam (
Team) ,

30 i n s p e c t e d E n t i t y ( Id , Team , Role , V2 , E2 , ME2, H2, MH2, S2 , VS2 ) )
31 do i n s e r t ( not ( i n s p e c t e d E n t i t y ( Id , Team , Role , V2 , E2 , ME2, H2,

MH2, S2 , VS2 ) ) ,
32 i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy , MaxEnergy ,

Health , MaxHealth , Strength , VisRange ) )
33 + send ( a l l o t h e r , i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy

, MaxEnergy , Health , MaxHealth , Strength , VisRange ) ) .
34
35 % When you get a percept of an inspected enemy , and i t has never

been inspected before , i n s e r t i t and send the percept to a l l
other agents .

36 f o r a l l be l ( percept ( i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy ,
MaxEnergy , Health , MaxHealth , Strength , VisRange ) ) , enemyTeam (
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Team) ,
37 not ( i n s p e c t e d E n t i t y ( Id , _ , _ , _ , _ , _ , _ , _ , _ , _ ) ) )
38 do i n s e r t ( i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy ,

MaxEnergy , Health , MaxHealth , Strength , VisRange ) )
39 + send ( a l l o t h e r , i n s p e c t e d E n t i t y ( Id , Team , Role , Vertex , Energy

, MaxEnergy , Health , MaxHealth , Strength , VisRange ) ) .
40
41 % I n s e r t l a s t time I inspected an agent .
42 i f be l ( percept ( i n s p e c t e d E n t i t y ( Id , _ , ’ Saboteur ’ , _ , _ , _ , _ , _ , _ , _ ) ) ,

l a s t I n s p e c t ( Id , LI ) , s tep ( S ) ) then i n s e r t ( not ( l a s t I n s p e c t ( Id , LI )
) , l a s t I n s p e c t ( Id , S ) ) .

43 i f be l ( percept ( i n s p e c t e d E n t i t y ( Id , _ , ’ Saboteur ’ , _ , _ , _ , _ , _ , _ , _ ) ) , not
( l a s t I n s p e c t ( Id , _ ) ) , s tep ( S ) ) then i n s e r t ( l a s t I n s p e c t ( Id , S ) ) .

44 }
45 }
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F.13 dijkstra.pl

1 %% Code f o r the d i f f e r e n t algori thms presented here i s adapted from :
ht tp :// c o l i n . barker . pagesperso−orange . f r /lpa/ d i j k s t r a . htm

2
3 %% D i j k s t r a from S to T
4 % path ( Vertex0 , Vertex , Path , Dis t ) i s t rue i f Path i s the s h o r t e s t

path from Vertex0 to Vertex , and the length of the path i s Dis t .
The graph i s defined by e /3. e . g . path ( penzance , london , Path , Dis t
)

5 path ( S t a r t , Target , Path , Dis t ) :−
6 d i j k s t r a 2 ( S t a r t , Target , s ( Target , Dist , Path ) ) , ! .
7
8 % Helping p r e d i c a t e s
9 d i j k s t r a 2 ( S t a r t , Target , Resul t ingS ) :−

10 c r e a t e ( S t a r t , [ S t a r t ] , Ds ) ,
11 recharge ( ERecharge ) ,
12 d i j k s t r a _ 2 ( Ds , ERecharge , [ s ( S t a r t , 0 , [ ] ) ] , Target , Resul t ingS ) .
13
14 d i j k s t r a _ 2 ( [ ] , _ , _ , _ , _ ) :− ! , f a i l .
15 d i j k s t r a _ 2 ( [D|Ds ] , ERecharge , _ , Target , s ( Target , Distance2 , Path1 ) ) :−
16 bes t ( Ds ,D, s ( Target , Distance , Path ) ) ,
17 d e l e t e 2 ( [D|Ds ] , [ s ( Target , Distance , Path ) ] , _ ) ,
18 reverse ( [ Target|Path ] , Path1 ) ,
19 Distance2 i s Distance + ERecharge , ! . % The f i r s t s o l u t i o n i s the

s h o r t e s t , so ’ ! ’
20
21 d i j k s t r a _ 2 ( [D|Ds ] , ERecharge , Ss0 , Target , Resul t ingS ) :−
22 bes t ( Ds , D, S ) ,
23 d e l e t e 2 ( [D|Ds ] , [ S ] , Ds1 ) ,
24 S=s ( Vertex , Distance , Path ) ,
25 reverse ( [ Vertex|Path ] , Path1 ) ,
26 Distance2 i s Distance + ERecharge ,
27 merge2 ( Ss0 , [ s ( Vertex , Distance2 , Path1 ) ] , Ss1 ) ,
28 c r e a t e ( Vertex , [ Vertex|Path ] , Ds2 ) ,
29 d e l e t e 2 ( Ds2 , Ss1 , Ds3 ) ,
30 i n c r ( Ds3 , Distance2 , Ds4 ) ,
31 merge2 ( Ds1 , Ds4 , Ds5 ) ,
32 d i j k s t r a _ 2 ( Ds5 , ERecharge , Ss1 , Target , Resul t ingS ) .
33
34
35 %% D i j k s t r a f o r c l o s e s t unknown ver tex
36 pathClosestUnknownVertex ( S t a r t , UnknownVertex , Path , Dis t ) :−
37 d i j k s t r a 7 ( S t a r t , s ( UnknownVertex , Dist , Path ) ) , ! .
38
39 % Helping p r e d i c a t e s
40 d i j k s t r a 7 ( S t a r t , Resul t ingS ) :−
41 c r e a t e ( S t a r t , [ S t a r t ] , Ds ) ,
42 recharge ( ERecharge ) ,
43 d i j k s t r a _ 7 ( Ds , ERecharge , [ s ( S t a r t , 0 , [ ] ) ] , Resul t ingS ) .
44
45 d i j k s t r a _ 7 ( [ ] , _ , _ , _ ) :− ! , f a i l .
46 d i j k s t r a _ 7 ( [D|Ds ] , ERecharge , _ , s ( Vertex , Distance2 , Path1 ) ) :−
47 bes t ( Ds ,D, s ( Vertex , Distance , Path ) ) ,
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48 not ( ver tex ( Vertex , _ , _ ) ) ,
49 d e l e t e 2 ( [D|Ds ] , [ s ( Vertex , Distance , Path ) ] , _ ) ,
50 reverse ( [ Vertex|Path ] , Path1 ) ,
51 Distance2 i s Distance + ERecharge , ! .
52
53 d i j k s t r a _ 7 ( [D|Ds ] , ERecharge , Ss0 , Resul t ingS ) :−
54 bes t ( Ds , D, S ) ,
55 d e l e t e 2 ( [D|Ds ] , [ S ] , Ds1 ) ,
56 S=s ( Vertex , Distance , Path ) ,
57 reverse ( [ Vertex|Path ] , Path1 ) ,
58 Distance2 i s Distance + ERecharge ,
59 merge2 ( Ss0 , [ s ( Vertex , Distance2 , Path1 ) ] , Ss1 ) ,
60 c r e a t e ( Vertex , [ Vertex|Path ] , Ds2 ) ,
61 d e l e t e 2 ( Ds2 , Ss1 , Ds3 ) ,
62 i n c r ( Ds3 , Distance2 , Ds4 ) ,
63 merge2 ( Ds1 , Ds4 , Ds5 ) ,
64 d i j k s t r a _ 7 ( Ds5 , ERecharge , Ss1 , Resul t ingS ) .
65
66
67 %% D i j k s t r a f o r c l o s e s t non−probed ver tex
68 pathClosestNonProbed ( S t a r t , NonProbedVertex , Path , Dis t ) :−
69 d i j k s t r a 3 ( S t a r t , s ( NonProbedVertex , Dist , Path ) ) , ! .
70
71 % Helping p r e d i c a t e s
72 d i j k s t r a 3 ( S t a r t , Resul t ingS ) :−
73 c r e a t e ( S t a r t , [ S t a r t ] , Ds ) ,
74 recharge ( ERecharge ) ,
75 d i j k s t r a _ 3 ( Ds , ERecharge , [ s ( S t a r t , 0 , [ ] ) ] , Resul t ingS ) .
76
77 d i j k s t r a _ 3 ( [ ] , _ , _ , _ ) :− ! , f a i l .
78 d i j k s t r a _ 3 ( [D|Ds ] , ERecharge , _ , s ( Vertex , Distance2 , Path1 ) ) :−
79 bes t ( Ds ,D, s ( Vertex , Distance , Path ) ) ,
80 needProbe ( Vertex ) ,
81 d e l e t e 2 ( [D|Ds ] , [ s ( Vertex , Distance , Path ) ] , _ ) ,
82 reverse ( [ Vertex|Path ] , Path1 ) ,
83 Distance2 i s Distance + ERecharge , ! .
84
85 d i j k s t r a _ 3 ( [D|Ds ] , ERecharge , Ss0 , Resul t ingS ) :−
86 bes t ( Ds , D, S ) ,
87 d e l e t e 2 ( [D|Ds ] , [ S ] , Ds1 ) ,
88 S=s ( Vertex , Distance , Path ) ,
89 reverse ( [ Vertex|Path ] , Path1 ) ,
90 Distance2 i s Distance + ERecharge ,
91 merge2 ( Ss0 , [ s ( Vertex , Distance2 , Path1 ) ] , Ss1 ) ,
92 c r e a t e ( Vertex , [ Vertex|Path ] , Ds2 ) ,
93 d e l e t e 2 ( Ds2 , Ss1 , Ds3 ) ,
94 i n c r ( Ds3 , Distance2 , Ds4 ) ,
95 merge2 ( Ds1 , Ds4 , Ds5 ) ,
96 d i j k s t r a _ 3 ( Ds5 , ERecharge , Ss1 , Resul t ingS ) .
97
98
99 %% D i j k s t r a f o r c l o s e s t non−probed vertex , with some a d d i t i o n a l checks

100 pathClosestNonProbedWithExtraChecks ( S t a r t , NonProbedVertex , Path , Dis t )
:−

101 d i j k s t r a 9 ( S t a r t , s ( NonProbedVertex , Dist , Path ) ) , ! .
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102
103 % Helping p r e d i c a t e s
104 d i j k s t r a 9 ( S t a r t , Resul t ingS ) :−
105 c r e a t e ( S t a r t , [ S t a r t ] , Ds ) ,
106 recharge ( ERecharge ) ,
107 d i j k s t r a _ 9 ( Ds , ERecharge , [ s ( S t a r t , 0 , [ ] ) ] , Resul t ingS ) .
108
109 d i j k s t r a _ 9 ( [ ] , _ , _ , _ ) :− ! , f a i l .
110 d i j k s t r a _ 9 ( [D|Ds ] , ERecharge , _ , s ( Vertex , Distance2 , Path1 ) ) :−
111 bes t ( Ds ,D, s ( Vertex , Distance , Path ) ) ,
112 not ( needExploring (unknown) ) , needExploring ( L i s t ) , member ( Vertex , L i s t )

, needProbe ( Vertex ) ,
113 d e l e t e 2 ( [D|Ds ] , [ s ( Vertex , Distance , Path ) ] , _ ) ,
114 reverse ( [ Vertex|Path ] , Path1 ) ,
115 Distance2 i s Distance + ERecharge .
116
117 d i j k s t r a _ 9 ( [D|Ds ] , ERecharge , Ss0 , Resul t ingS ) :−
118 bes t ( Ds , D, S ) ,
119 d e l e t e 2 ( [D|Ds ] , [ S ] , Ds1 ) ,
120 S=s ( Vertex , Distance , Path ) ,
121 reverse ( [ Vertex|Path ] , Path1 ) ,
122 Distance2 i s Distance + ERecharge ,
123 merge2 ( Ss0 , [ s ( Vertex , Distance2 , Path1 ) ] , Ss1 ) ,
124 c r e a t e ( Vertex , [ Vertex|Path ] , Ds2 ) ,
125 d e l e t e 2 ( Ds2 , Ss1 , Ds3 ) ,
126 i n c r ( Ds3 , Distance2 , Ds4 ) ,
127 merge2 ( Ds1 , Ds4 , Ds5 ) ,
128 d i j k s t r a _ 9 ( Ds5 , ERecharge , Ss1 , Resul t ingS ) .
129
130
131 %% D i j k s t r a f o r c l o s e s t non−surveyed ver tex
132 pathClosestNonSurveyed ( S t a r t , NonSurveyedVertex , Path , Dis t ) :−
133 d i j k s t r a 4 ( S t a r t , s ( NonSurveyedVertex , Dist , Path ) ) , ! .
134
135 % Helping p r e d i c a t e s
136 d i j k s t r a 4 ( S t a r t , Resul t ingS ) :−
137 c r e a t e ( S t a r t , [ S t a r t ] , Ds ) ,
138 recharge ( ERecharge ) ,
139 d i j k s t r a _ 4 ( Ds , ERecharge , [ s ( S t a r t , 0 , [ ] ) ] , Resul t ingS ) .
140
141 d i j k s t r a _ 4 ( [ ] , _ , _ , _ ) :− ! , f a i l .
142 d i j k s t r a _ 4 ( [D|Ds ] , ERecharge , _ , s ( Vertex , Distance2 , Path1 ) ) :−
143 bes t ( Ds ,D, s ( Vertex , Distance , Path ) ) ,
144 needSurvey ( Vertex ) ,
145 d e l e t e 2 ( [D|Ds ] , [ s ( Vertex , Distance , Path ) ] , _ ) ,
146 reverse ( [ Vertex|Path ] , Path1 ) ,
147 Distance2 i s Distance + ERecharge , ! .
148
149 d i j k s t r a _ 4 ( [D|Ds ] , ERecharge , Ss0 , Resul t ingS ) :−
150 bes t ( Ds , D, S ) ,
151 d e l e t e 2 ( [D|Ds ] , [ S ] , Ds1 ) ,
152 S=s ( Vertex , Distance , Path ) ,
153 reverse ( [ Vertex|Path ] , Path1 ) ,
154 Distance2 i s Distance + ERecharge ,
155 merge2 ( Ss0 , [ s ( Vertex , Distance2 , Path1 ) ] , Ss1 ) ,
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156 c r e a t e ( Vertex , [ Vertex|Path ] , Ds2 ) ,
157 d e l e t e 2 ( Ds2 , Ss1 , Ds3 ) ,
158 i n c r ( Ds3 , Distance2 , Ds4 ) ,
159 merge2 ( Ds1 , Ds4 , Ds5 ) ,
160 d i j k s t r a _ 4 ( Ds5 , ERecharge , Ss1 , Resul t ingS ) .
161
162
163 %% D i j k s t r a f o r c l o s e s t Repairer
164 pathCloses tRepairer ( S t a r t , Locat ionRepairer , NameAgent , Path , Dis t ) :−
165 d i j k s t r a 5 ( S t a r t , s ( Locat ionRepairer , Dist , Path ) , NameAgent ) , ! .
166
167 % Helping p r e d i c a t e s
168 d i j k s t r a 5 ( S t a r t , Result ingS , NameAgent ) :−
169 c r e a t e ( S t a r t , [ S t a r t ] , Ds ) ,
170 recharge ( ERecharge ) ,
171 d i j k s t r a _ 5 ( Ds , ERecharge , [ s ( S t a r t , 0 , [ ] ) ] , Result ingS , NameAgent ) .
172
173 d i j k s t r a _ 5 ( [ ] , _ , _ , _ , _ ) :− ! , f a i l .
174 d i j k s t r a _ 5 ( [D|Ds ] , ERecharge , _ , s ( Vertex , Distance2 , Path1 ) , NameAgent )

:−
175 bes t ( Ds ,D, s ( Vertex , Distance , Path ) ) ,
176 teamStatus ( NameAgent , Vertex , _ ) , r o l e ( NameAgent , ’ Repairer ’ ) ,
177 d e l e t e 2 ( [D|Ds ] , [ s ( Vertex , Distance , Path ) ] , _ ) ,
178 reverse ( [ Vertex|Path ] , Path1 ) ,
179 Distance2 i s Distance + ERecharge , ! .
180
181 d i j k s t r a _ 5 ( [D|Ds ] , ERecharge , Ss0 , Result ingS , NameAgent ) :−
182 bes t ( Ds , D, S ) ,
183 d e l e t e 2 ( [D|Ds ] , [ S ] , Ds1 ) ,
184 S=s ( Vertex , Distance , Path ) ,
185 reverse ( [ Vertex|Path ] , Path1 ) ,
186 Distance2 i s Distance + ERecharge ,
187 merge2 ( Ss0 , [ s ( Vertex , Distance2 , Path1 ) ] , Ss1 ) ,
188 c r e a t e ( Vertex , [ Vertex|Path ] , Ds2 ) ,
189 d e l e t e 2 ( Ds2 , Ss1 , Ds3 ) ,
190 i n c r ( Ds3 , Distance2 , Ds4 ) ,
191 merge2 ( Ds1 , Ds4 , Ds5 ) ,
192 d i j k s t r a _ 5 ( Ds5 , ERecharge , Ss1 , Result ingS , NameAgent ) .
193
194
195 %% D i j k s t r a f o r c l o s e s t V i s i b l e Enemy
196 pathClosestVisibleEnemy ( S t a r t , LocationEnemy , NameEnemy, Path , Dis t ) :−
197 d i j k s t r a 8 ( S t a r t , s ( LocationEnemy , Dist , Path ) , NameEnemy) , ! .
198
199 % Helping p r e d i c a t e s
200 d i j k s t r a 8 ( S t a r t , Result ingS , NameAgent ) :−
201 c r e a t e ( S t a r t , [ S t a r t ] , Ds ) ,
202 recharge ( ERecharge ) ,
203 d i j k s t r a _ 8 ( Ds , ERecharge , [ s ( S t a r t , 0 , [ ] ) ] , Result ingS , NameAgent ) .
204
205 d i j k s t r a _ 8 ( [ ] , _ , _ , _ , _ ) :− ! , f a i l .
206 d i j k s t r a _ 8 ( [D|Ds ] , ERecharge , _ , s ( Vertex , Distance2 , Path1 ) , NameAgent )

:−
207 bes t ( Ds ,D, s ( Vertex , Distance , Path ) ) ,
208 enabledEnemy ( NameAgent , Vertex ) ,
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209 v i s i b l e E n t i t y ( NameAgent , _ , _ , _ ) , %Enemy must be v i s i b l e in current
s tep .

210 d e l e t e 2 ( [D|Ds ] , [ s ( Vertex , Distance , Path ) ] , _ ) ,
211 reverse ( [ Vertex|Path ] , Path1 ) ,
212 Distance2 i s Distance + ERecharge , ! .
213
214 d i j k s t r a _ 8 ( [D|Ds ] , ERecharge , Ss0 , Result ingS , NameAgent ) :−
215 bes t ( Ds , D, S ) ,
216 d e l e t e 2 ( [D|Ds ] , [ S ] , Ds1 ) ,
217 S=s ( Vertex , Distance , Path ) ,
218 reverse ( [ Vertex|Path ] , Path1 ) ,
219 Distance2 i s Distance + ERecharge ,
220 merge2 ( Ss0 , [ s ( Vertex , Distance2 , Path1 ) ] , Ss1 ) ,
221 c r e a t e ( Vertex , [ Vertex|Path ] , Ds2 ) ,
222 d e l e t e 2 ( Ds2 , Ss1 , Ds3 ) ,
223 i n c r ( Ds3 , Distance2 , Ds4 ) ,
224 merge2 ( Ds1 , Ds4 , Ds5 ) ,
225 d i j k s t r a _ 8 ( Ds5 , ERecharge , Ss1 , Result ingS , NameAgent ) .
226
227
228 %% General D i j k s t r a helping p r e d i c a t e s
229
230 % c r e a t e ( S t a r t , Path , Edges ) i s t rue i f Edges i s a l i s t of s t r u c t u r e s s

( Vertex , Distance , Path ) containing , f o r each Vertex a c c e s s i b l e
from S t a r t , the Distance from the Vertex and the s p e c i f i e d Path .
The l i s t i s sor ted by the name of the Vertex .

231 c r e a t e ( S t a r t , Path , Edges ) :− maxEnergy ( E ) , s e t o f ( s ( Vertex , Edge , Path ) , (
e ( S t a r t , Vertex , Edge ) , Edge =< E ) , Edges ) , ! .

232 c r e a t e ( _ , _ , [ ] ) .
233
234 % bes t ( Edges , Edge0 , Edge ) i s t rue i f Edge i s the element of Edges , a

l i s t of s t r u c t u r e s s ( Vertex , Distance , Path ) , having the s m a l l e s t
Distance . Edge0 c o n s t i t u t e s an upper bound .

235 bes t ( [ ] , s (A, B ,C) , s (A, B ,C) ) .
236 bes t ( [ s (A, B ,C) |Edges ] , Best0 , Best ) :− s h o r t e r ( s (A, B ,C) , Best0 ) , ! , bes t

( Edges , s (A, B ,C) , Best ) .
237 bes t ( [ _|Edges ] , Best0 , Best ) :− bes t ( Edges , Best0 , Best ) .
238
239 s h o r t e r ( s ( _ , X , _ ) , s ( _ , Y , _ ) ) :−X < Y .
240
241 % d e l e t e 2 ( Xs , Ys , Zs ) i s t rue i f Xs , Ys and Zs are l i s t s of s t r u c t u r e s

s ( Vertex , Distance , Path ) ordered by Vertex , and Zs i s the r e s u l t
of d e l e t i n g from Xs those elements having the same Vertex as
elements in Ys .

242 d e l e t e 2 ( [ ] , _ , [ ] ) .
243 d e l e t e 2 ( [ X|Xs ] , [ ] , [X|Xs ] ) : − ! .
244 d e l e t e 2 ( [ X|Xs ] , [Y|Ys ] , Ds ) :− eq (X , Y) , ! , d e l e t e 2 ( Xs , Ys , Ds ) .
245 d e l e t e 2 ( [ X|Xs ] , [Y|Ys ] , [X|Ds ] ) :− l t (X , Y) , ! , d e l e t e 2 ( Xs , [Y|Ys ] , Ds ) .
246 d e l e t e 2 ( [ X|Xs ] , [ _|Ys ] , Ds ) :− d e l e t e 2 ( [ X|Xs ] , Ys , Ds ) .
247
248 % merge2 ( Xs , Ys , Zs ) i s t rue i f Zs i s the r e s u l t of merging Xs and Ys ,

where Xs , Ys and Zs are l i s t s of s t r u c t u r e s s ( Vertex , Distance ,
Path ) , and are ordered by Vertex . I f an element in Xs has the same

Vertex as an element in Ys , the element with the s h o r t e r Distance
w i l l be in Zs .
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249 merge2 ( [ ] , Ys , Ys ) .
250 merge2 ( [ X|Xs ] , [ ] , [X|Xs ] ) : − ! .
251 merge2 ( [ X|Xs ] , [Y|Ys ] , [X|Zs ] ) :− eq (X , Y) , s h o r t e r (X , Y) , ! , merge2 ( Xs ,

Ys , Zs ) .
252 merge2 ( [ X|Xs ] , [Y|Ys ] , [Y|Zs ] ) :− eq (X , Y) , ! , merge2 ( Xs , Ys , Zs ) .
253 merge2 ( [ X|Xs ] , [Y|Ys ] , [X|Zs ] ) :− l t (X , Y) , ! , merge2 ( Xs , [Y|Ys ] , Zs ) .
254 merge2 ( [ X|Xs ] , [Y|Ys ] , [Y|Zs ] ) :− merge2 ( [ X|Xs ] , Ys , Zs ) .
255
256 eq ( s (X , _ , _ ) , s (X , _ , _ ) ) .
257
258 l t ( s (X , _ , _ ) , s (Y , _ , _ ) ) :−X @< Y .
259
260 % i n c r ( Xs , Incr , Ys ) i s t rue i f Xs and Ys are l i s t s of s t r u c t u r e s s (

Vertex , Distance , Path ) , the only d i f f e r e n c e being t h a t the value
of Distance in Ys i s I n c r more than t h a t in Xs .

261 i n c r ( [ ] , _ , [ ] ) .
262 i n c r ( [ s (V, D1 , P ) |Xs ] , Incr , [ s (V, D2 , P ) |Ys ] ) :− D2 i s D1 + Incr , i n c r ( Xs ,

Incr , Ys ) .
263
264 % P r e d i c a t e t h a t f i n d s a l l surveyed edges , and checks both ways to make

sure not an edge i s missed
265 e (X , Y , Z) :− ver tex (X , _ , L i s t ) , member ( [ Z , Y] , L i s t ) , Z \= unknown .
266 e (X , Y , Z) :− ver tex (Y , _ , L i s t ) , member ( [ Z , X] , L i s t ) , Z \= unknown .
267 e (X , Y , 5 ) :− ver tex (X , _ , L i s t ) , member ( [ unknown , Y] , L i s t ) , ver tex (Y , _

, L i s t 2 ) , member ( [ unknown , X] , L i s t 2 ) .
268 e (X , Y , 5 ) :− ver tex (Y , _ , L i s t ) , member ( [ unknown , X] , L i s t ) , ver tex (X , _

, L i s t 2 ) , member ( [ unknown , Y] , L i s t 2 ) .
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1 % Energy/money checks
2 energyGE (Nr) :− Nr = unknown , energy ( E ) , E >= 9 .
3 energyGE (Nr) :− Nr \= unknown , energy ( E ) , E >= Nr .
4 moneyGE(Nr) :− money (M) , M >= Nr .
5 maxEnergy ( E ) :− disabled , maxEnergyDisabled ( E ) , ! .
6 maxEnergy ( E ) :− not ( d isabled ) , maxEnergyWorking ( E ) .
7 recharge (Nr) :− not ( d isabled ) , maxEnergy ( E ) , Nr i s round ( 0 . 5∗E ) .
8 recharge (Nr) :− disabled , maxEnergy ( E ) , Nr i s round ( 0 . 3∗E ) .
9

10 % Role of the agent
11 r o l e ( Role ) :− me( Id ) , r o l e ( Id , Role ) .
12
13 % Team determinat ion
14 enemyTeam ( T ) :− i n s p e c t e d E n t i t y ( _ , T , _ , _ , _ , _ , _ , _ , _ , _ ) .
15 enemyTeam ( T ) :− not ( team ( T ) ) , T \= none .
16
17 % Defines when an agent i s disabled
18 disabled :− heal th ( 0 ) .
19
20 % P r e d i c a t e s f o r determining when a node or i t s neighbor needs

surveying
21 needSurvey ( Vertex ) :− ver tex ( Vertex , _ , NBs) , (NBs = [ ] ; member ( [ unknown ,

_ ] , NBs) ) , ! .
22 needSurvey ( Vertex ) :− not ( ver tex ( Vertex , _ , _ ) ) .
23 neighbourNeedSurvey ( ID ) :− currentPos ( Here ) , neighbourNeedSurvey ( Here ,

ID ) .
24 neighbourNeedSurvey ( Vertex , ID ) :− ver tex ( Vertex , _ , L i s t ) , member ( [ _ , ID ] ,

L i s t ) , needSurvey ( ID ) .
25
26 % True when an optimum i s found and i t i s time to swarm
27 optimum :− optimum ( _ ) , ! , timeToSwarm .
28
29 % Random p r e d i c a t e s . random/3 with f l o a t inputs should work , but i t

doesn ’ t !
30 randomFloat (R) :− R i s ( random ( 6 5 3 9 1 ) /65391) . % There seems to be a

bug when using the b u i l t−in random/3 p r e d i c a t e
31 randomElement ( L i s t , Elem ) :− length ( L i s t ,N) , N > 0 , random ( 0 ,N, R) , nth0

(R , L i s t , Elem ) .
32
33 % Defines whether an enemy i s to be considered dangerous f o r sure
34 dangerousEnemy ( Id ) :− inspectedEnemy ( Id , ’ Saboteur ’ ) , ! .
35 dangerousEnemy ( Id ) :− not ( inspectedEnemy ( Id , _ ) ) , ! , f i n d a l l ( Id2 ,

inspectedEnemy ( Id2 , ’ Saboteur ’ ) , L i s t ) , length ( L i s t ,N) , N < 4 .
36 % Enemy i s pass ive when disabled , can a l s o be used on a l l i e s .
37 passiveEnemy ( Id ) :− v i s i b l e E n t i t y ( Id , _ , _ , d isabled ) , ! .
38 passiveEnemy ( Id ) :− inspectedEnemy ( Id , Role ) , ! , Role \= ’ Saboteur ’ .
39 passiveEnemy ( Id ) :− not ( inspectedEnemy ( Id , _ ) ) , ! , f i n d a l l ( Id2 ,

inspectedEnemy ( Id2 , ’ Saboteur ’ ) , L i s t ) , length ( L i s t , N) , N == 4 .
40
41 % Short p r e d i c a t e to e x t r a c t the most use fu l information from an

inspected enemy
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42 inspectedEnemy ( Id , Role ) :− i n s p e c t e d E n t i t y ( Id , _ , Role , _ , _ , _ , _ , _ ,
_ , _ ) .

43
44 % Vertex value checks ( checks f o r unknown before evaluat ing a r i t h m e t i c

operat ion )
45 vertexValueGT (A, B ) :− A \= unknown , B \= unknown , A > B .
46 vertexValueGE (A, B ) :− A \= unknown , B \= unknown , A >= B .
47
48 % Sum of the values of a l l v e r t i c e s in a l i s t
49 vertexListSum ( [ ] , 0 ) .
50 vertexListSum ( [H|T ] , Sum) :− vertexValue (H,V) , V == unknown ,

vertexListSum ( T , S ) , Sum i s S +1.
51 vertexListSum ( [H|T ] , Sum) :− vertexValue (H,V) , V \== unknown ,

vertexListSum ( T , S ) , Sum i s S+V.
52
53 % Get your swarm p o s i t i o n
54 getOptimum (X) :− swarmPosition (X) , X \= unknown .
55
56 % ( Optimums are now c a l c u l a t e d from the b e l i e f base . )
57 % Optimums are v e r t i c e s t h a t are maximas such t h a t no other ver tex with

a higher value e x i s t s , which i s t rue of the v e r t i c e s with value
1 0 .

58 % No l o c a l maxima n with value < 10 e x i s t s ( with very high p r o b a b i l i t y )
because of the map generat ion algorithm .

59 optimum (X) :− ver tex (X, 1 0 , _ ) .
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1 % Finds a l i s t of a l l neighboring nodes of a given node
2 neighbours (V, Ns) :− f i n d a l l (N, neighbour (V,N) , Ns) , ! .
3
4 % Finds a l l neighboring nodes of the current p o s i t i o n
5 neighbour ( Neighbour ) :− currentPos ( Id ) , ! , neighbour ( Id , _ , Neighbour ) .
6
7 % Finds a l l neighboring nodes of a given node
8 neighbour ( Id , Neighbour ) :− neighbour ( Id , _ , Neighbour ) .
9

10 % Finds a l l neighboring nodes of a given node , and the weight of t h e i r
connect ion

11 neighbour ( Id , Weight , Neighbour ) :− ver tex ( Id , _ , L i s t ) , member ( [ Weight ,
Neighbour ] , L i s t ) .

12
13 % This p r e d i c a t e determines when a node i s to be considered s a f e to

stand on , t h i s means no unknown r o l e agent or saboteur can be a t
t h i s l o c a t i o n

14 safePos ( P ) :− not ( ( v i s i b l e E n t i t y (A, P , T , normal ) , enemyTeam ( T ) , not (
passiveEnemy (A) ) ) ) ,

15 not ( ( neighbour ( P , P2 ) , v i s i b l e E n t i t y (A2 , P2 , T , normal ) , enemyTeam ( T )
, inspectedEnemy (A2 , ’ Saboteur ’ ) ) ) .

16
17 % Determines i f the agent i s the only agent on i t s p o s i t i o n
18 foreverAlone :− not ( ( currentPos ( Pos ) , me(Me) , team (Team) , ! ,

v i s i b l e E n t i t y ( ID , Pos , Team , _ ) , Me \= ID ) ) .
19
20 % Compares agents names to f ind which name has a higher ’ value ’
21 compareAgents ( Agent1 , Agent2 , Agent2 ) :− Agent1 @< Agent2 .
22 compareAgents ( Agent1 , Agent2 , Agent1 ) :− Agent1 @> Agent2 .
23
24 % Returns the rank ( based on i t s name) of an agent compared to a l l

other agents on i t s node
25 agentRankHere ( Rank ) :− currentPos ( Here ) , me(Name) , team (Team) , ! ,
26 f i n d a l l ( Agent , v i s i b l e E n t i t y ( Agent , Here , Team , normal ) , Agents ) ,

agentRank ( Agents ,Name, Rank ) .
27
28 % An agents rank ( i . e . index ) in the l i s t L i s t
29 agentRank ( L i s t , Agent , Rank ) :− nth0 ( Rank , L i s t , Agent ) , ! .
30
31 % P r e d i c a t e t h a t s e l e c t s a Neighbour on index Number from the l i s t of

Neighbours , use fu l in combination with agentrank f o r s p l i t t i n g up ,
agent with rank 0 w i l l not get a neighbor

32 selectNeighbour ( L i s t , Number , Neighbour ) :− length ( L i s t , S ize ) , Num i s
mod(Number , S ize ) , nth1 (Num, Lis t , Neighbour ) , ! .

33
34 % P r e d i c a t e t h a t s e l e c t s a Des t ina t ion on index Number from the l i s t of

Dest inat ions , use fu l f o r s p l i t t i n g up in combination with
agentrank when mult ip le d e s t i n a t i o n s are a v a i l a b l e

35 s e l e c t D e s t i n a t i o n ( L i s t , Number , Des t ina t ion ) :− length ( L i s t , S ize ) , Num
i s mod(Number , S ize ) , nth0 (Num, Lis t , Des t ina t ion ) , ! .

36
37 % Short p r e d i c a t e s f o r ver tex information
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38 vertexValue ( Id , Value ) :− ver tex ( Id , Value , _ ) .
39 vertexValue ( Id , unknown) :− not ( ver tex ( Id , _ , _ ) ) .
40
41 % Workaround f o r the a c t i o n s p e c i f c warning from the a c t i o n " goto " :
42 % "WARNING: getPrecondi t ion f o r UserSpecAction does not support

mult ip le s p e c i f i c a t i o n s "
43 % Saboteurs need to have >=11 energy because i t would be unwise to not

be able to a t t a c k a f t e r moving . Otherwise they would die i f they
walk to a ver tex with an enemy Saboteur .

44 canGoto ( Here , There ) :− r o l e ( ’ Saboteur ’ ) , neighbour ( Here , Weight , There ) ,
enemyTeam ( T ) , v i s i b l e E n t i t y ( ID , There , T , normal ) , dangerousEnemy ( ID )

, ( Weight == unknown −> W i s 11 ; W i s Weight +2) , energyGE (W) , ! .
45 canGoto ( Here , There ) :− neighbour ( Here , Weight , There ) , energyGE ( Weight ) ,

! .
46 canGoto ( Here , There ) :− not ( neighbour ( Here , There ) ) , v i s ib leEdge ( Here ,

There ) .
47
48 % The agent ’ s rank amongst i t s peers on the team with the same r o l e
49 agentRoleRank ( Agent , Rank ) :− r o l e ( Agent , Role ) , f i n d a l l (A, r o l e (A,

Role ) , L ) , s o r t ( L , S ) , agentRank ( S , Agent , Rank ) .
50 agentEnabledRoleRankHere ( Agent , Rank ) :− currentPos ( Pos ) , team ( T ) , r o l e

( Agent , Role ) , f i n d a l l (A, ( r o l e (A, Role ) , v i s i b l e E n t i t y (A, Pos , T ,
normal ) ) , L ) , s o r t ( L , S ) , agentRank ( S , Agent , Rank ) .

51 hasHighestRoleRank ( Agent ) :− agentRoleRank ( Agent , Rank ) , Rank i s 0 .
52 hasLowRoleRank ( Agent ) :− agentRoleRank ( Agent , Rank ) , Rank > 1 .
53 hasLowestRoleRank ( Agent ) :− agentRoleRank ( Agent , Rank ) , Rank i s 3 .
54
55 % Used to f ind a l l v i s i b l e edges around a ver tex
56 v i s i b l e E d g e s L i s t ( Id1 , Array ) :− f i n d a l l ( [ unknown , Id2 ] , ( percept (

v is ib leEdge ( Id1 , Id2 ) ) ; percept ( v i s ib leEdge ( Id2 , Id1 ) ) ) , Array ) .
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1 % Some information about the agent i t s e l f from the percepts
2 money(M) :− percept ( money (M) ) .
3 energy ( E ) :− percept ( energy ( E ) ) .
4 maxEnergyWorking ( E ) :− percept ( maxEnergy ( E ) ) .
5 maxEnergyDisabled ( E ) :− percept ( maxEnergyDisabled ( E ) ) .
6 s t re ng th ( S ) :− percept ( s t r en g th ( S ) ) .
7 maxHealth (H) :− percept ( maxHealth (H) ) .
8
9 % V i s i b l e e n t i t i e s , v e r t i c e s and edges from the percepts

10 v i s i b l e E n t i t y ( Id , Vertex , Team , S t a t u s ) :− percept ( v i s i b l e E n t i t y ( Id , Vertex
, Team , S t a t u s ) ) .

11 v is ib leEdge ( Vertex1 , Vertex2 ) :− percept ( v i s ib leEdge ( Vertex1 , Vertex2 ) ) .
12 v is ib leEdge ( Vertex1 , Vertex2 ) :− percept ( v i s ib leEdge ( Vertex2 , Vertex1 ) ) .
13
14 % Round information from the percepts
15 l a s t A c t i o n ( Action ) :− percept ( l a s t A c t i o n ( Action ) ) .
16 lastActionParam ( Param ) :− percept ( lastActionParam ( Param ) ) .
17 l a s t A c t i o n R e s u l t ( f a i l e d _ p a r r y ) :− percept ( l a s t A c t i o n R e s u l t ( f a i l e d _ p a r r y

) ) , ! .
18 l a s t A c t i o n R e s u l t ( f a i l e d ) :− percept ( l a s t A c t i o n R e s u l t ( Resul t ) ) ,

atom_chars ( Result , Chrs ) , append ( [ f , a , i , l , e , d ] , _ , Chrs ) , ! .
19 l a s t A c t i o n R e s u l t ( Resul t ) :− percept ( l a s t A c t i o n R e s u l t ( Resul t ) ) .
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1 %% Explorer s p e c i f i c knowledge
2
3 needProbe ( Vertex ) :− ver tex ( Vertex , unknown , _ ) .
4 needProbe ( Vertex ) :− not ( ver tex ( Vertex , _ , _ ) ) .
5
6 % True when we should decide swarm p o s i t i o n s
7 timeToDecideSwarm :− decidedSwarmAt ( OldS ) , s tep (NewS) , D i s NewS − OldS

, D >= 60 , ! .
8 timeToDecideSwarm :− swarmPosition (unknown) , ! , optimum (X) ,

calcZoneValue (X ,V) , V >= 7 0 .
9

10 % True when i t i s time to swarm . I t d i f f e r s from Explorers and the
others

11 timeToSwarm :− not ( r o l e ( ’ Explorer ’ ) ) , swarmPosition ( Opt ) , Opt \=
unknown , ! .

12 timeToSwarm :− r o l e ( ’ Explorer ’ ) , optimum ( _ ) , s tep ( Cur ) , Cur > 1 5 0 .
13
14 % Finds the optimum nodes t h a t can conta in a swarm with the l a r g e s t
15 % p o t e n t i a l values as defined by calcZoneValue
16 bestOptimums ( L is t , Opts ) :− f i n d a l l ( ( ValSum , Swarm) , (member (Swarm , L i s t ) ,

calcZoneValue (Swarm , ValSum ) ) , L ) , s o r t ( L , S ) ,
17 length ( S ,N) , nth1 (N, S , ( MaxVal , _ ) ) , Limit i s round ( 0 . 6 5∗MaxVal ) ,

bestOptimumsAux ( S , Limit , L2 ) , s o r t ( L2 , Opts ) .
18 bestOptimumsAux ( [ ] , _ , [ ] ) .
19 bestOptimumsAux ( [ ( Val , Opt ) |T ] , Limit , [ Opt|Rest ] ) :− Val >= Limit ,

bestOptimumsAux ( T , Limit , Rest ) .
20 bestOptimumsAux ( [ ( Val , _ ) |T ] , Limit , Rest ) :− Val < Limit , bestOptimumsAux

( T , Limit , Rest ) .
21
22 % C a l c u l a t e s the sum of the values f o r a l l the neighbors , and t h e i r

neighbors , and the ver tex O, around the ver tex O
23 calcZone (O, S ) :− f i n d a l l (N, ( neighbour (O, _ ,N) ) , L1 ) , f i n d a l l (N, (member

(M, L1 ) , neighbour (M, _ ,N) ) , L2 ) , union ( L1 , L2 , L3 ) , s o r t ( L3 , S ) .
24 calcZoneValue (O,V) :− calcZone (O, L ) , vertexListSum ( L ,V) .
25
26 % Find a l l optimums t h a t are not already in use
27 allOptimums ( Opts ) :− allOptimums ( Opts , [ ] ) .
28 allOptimums ( Opts , Ignore ) :− f i n d a l l (V, ( optimum (V) , not (member (V, Ignore

) ) , not ( ( neighbour (V,N) ,member (N, Ignore ) ) ) ) , Opts ) , length ( Opts ,N) ,
N > 0 , ! .

29
30 % Choose the bes t optimums
31 decideOptimums ( Opts ) :− allOptimums ( L ) , ! , bestOptimums ( L , Opts ) , ! .
32
33
34 %% Saboteur s p e c i f i c knowledge
35
36 % Used by the harassment s t r a t e g y
37 % A p o s s i b l e harassment ver tex i s a high−value ver tex t h a t i s owned by

the enemy and t h e r e f o r e probably conta ins a swarm
38 timeToHarass :− me(Me) , hasLowestRoleRank (Me) , s tep (N) , N > 6 0 .
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39 poss ib leHarassVertex ( Pos ) :− f i n d a l l (V, ( enemyStatus ( EID , V, normal ) , not
( inspectedEnemy ( EID , ’ Saboteur ’ ) ) , not ( inspectedEnemy ( EID , ’ Repairer ’
) ) , no tLargeBat t l e (V) ) , L ) , L \= [ ] , randomElement ( L , Pos ) , ! .

40
41 largestZone ( [ ] , 0 , _ ) .
42 largestZone ( [H|T ] , Val ,V) :− calcZoneValue (H, X) , largestZone ( T , XT , VT) , (

X > XT −> (V = H, Val = X) ; (V = VT, Val = XT) ) .
43
44 % I f we have defeated the enemy near the harass ver tex then the harass

i s over .
45 % A l t e r n a t i v e l y i f we have harassed f o r a long time ( > 50 s teps ) then

we should do something e l s e .
46 % I t i s important note t h a t the harass /1 p r e d i c a t e cannot be true when

adopting a harass goal .
47 % Otherwise the agent won ’ t adopt the goal ! As a workaround , i f N >= 75

then the p r e d i c a t e f a i l s .
48 % So in the time between 50 =< N < 75 the agent cannot adopt a new

harass goal .
49 harass (V) :− ( currentPos (V) ; ( currentPos ( P ) , neighbour (V, P ) ) ) , not (

enemyStatus ( _ , V, normal ) ) , not ( ( neighbour (V,N) , enemyStatus ( _ ,N,
normal ) ) ) , h a r a s s S t a r t ( S ) , s tep ( Cur ) , N i s Cur − S , N < 7 5 .

50 harass (V) :− h a r a s s S t a r t ( S ) , S \= 0 , s tep ( Cur ) , N i s Cur − S , N > 50 , N
< 75 , ver tex (V, _ , _ ) .

51
52 % When the enemy i s disabled , the hunt i s over
53 timeToHunt :− me(Me) , hasLowRoleRank (Me) , not ( hasLowestRoleRank (Me) ) ,

s tep (N) , N > 1 0 0 .
54 hunt ( ID ) :− enemyStatus ( ID , _ , d isabled ) .
55
56 % To determine which enemies are on the current p o s i t i o n
57 enemyHere ( ID ) :− currentPos ( Vertex ) , v i s i b l e E n t i t y ( ID , Vertex , Team , _ ) ,

enemyTeam (Team) .
58
59 % To d e t e r i n e which enemies are c l o s e to the current p o s i t i o n
60 enemyNear ( ID , Pos ) :− currentPos ( Pos ) , enemyHere ( ID ) .
61 enemyNear ( Id , Pos ) :− neighbour ( Pos ) , v i s i b l e E n t i t y ( Id , Pos , Team , _ ) ,

enemyTeam (Team) .
62
63 % To determine when a non−disabled enemy i s a t your p o s i t i o n
64 enabledEnemyHere ( Id ) :− currentPos ( Vertex ) , v i s i b l e E n t i t y ( Id , Vertex ,

Team , normal ) , enemyTeam (Team) .
65
66 % when an non−disabled enemy i s a t or next to your p o s i t i o n
67 enabledEnemyNear ( ID , Pos ) :− currentPos ( Pos ) , enabledEnemyHere ( ID ) .
68 enabledEnemyNear ( Id , Pos ) :− neighbour ( Pos ) , v i s i b l e E n t i t y ( Id , Pos , Team ,

normal ) , enemyTeam (Team) .
69
70 % A l i s t of a l l l o c a t i o n s near where there are enemies
71 enabledEnemiesNear ( L i s t ) :− f i n d a l l ( Vertex , enabledEnemyNear ( ID , Vertex ) ,

L ) , s o r t ( L , L i s t ) , L i s t = [ _|_ ] .
72
73 % Short p r e d i c a t e f o r f inding enemies worth a t t a c k i n g
74 enabledEnemy ( ID , Vertex ) :− enemyStatus ( ID , Vertex , normal ) .
75
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76 % Used f o r buying upgrades . Only buy i f the second highes t enemy
Saboteur has a s t re n gt h or hea l th advantage and i f enough time has
elapsed .

77 timeToBuy :− s tep ( Step ) , Step >= 1 4 0 .
78 enemySaboteurSecondMaxStrength ( Strength ) :− f i n d a l l ( Str ,

i n s p e c t e d E n t i t y ( _ , _ , ’ Saboteur ’ , _ , _ , _ , _ , _ , Str , _ ) , L ) , msort (
L , S ) , length ( S , N) , N > 1 , s o r t ( [N, 3 ] ,A) , nth1 ( 1 ,A, Index ) , nth1 (
Index , S , Strength ) , ! .

79 enemySaboteurSecondMaxHealth ( Health ) :− f i n d a l l (Hp,
i n s p e c t e d E n t i t y ( _ , _ , ’ Saboteur ’ , _ , _ , _ , _ , Hp, _ , _ ) , L ) , msort (
L , S ) , length ( S , N) , N > 1 , s o r t ( [N, 3 ] ,A) , nth1 ( 1 ,A, Index ) , nth1 (
Index , S , Health ) , ! .

80
81 % I f there are N−1 a l l y Saboteurs and N enemy Saboteurs a t a ver tex

then we should not go there because we are not needed ( i . e . i f not (
notLargeBat t l e ) )

82 l a r g e B a t t l e C a l c u l a t o r (V,AN,EN,AL) :− f i n d a l l ( EID , ( enemyStatus ( EID , V, _ )
, dangerousEnemy ( EID ) ) , EL ) , ! , f i n d a l l (AID , ( teamStatus (AID , V, _ ) ,
r o l e (AID , ’ Saboteur ’ ) ) , AL) , ! , length ( EL ,EN) , length (AL,AN) .

83 l a r g e B a t t l e (V,AL) :− l a r g e B a t t l e C a l c u l a t o r (V,AN,EN,AL) , AN >= EN, AN \=
0 , EN \= 0 , ! .

84 notLargeBat t l e (V) :− l a r g e B a t t l e C a l c u l a t o r (V, _ , 0 , _ ) , ! .
85 notLargeBat t l e (V) :− l a r g e B a t t l e C a l c u l a t o r (V,AN,EN, _ ) , ANPlusUs i s AN +

1 , ANPlusUs < EN, ! . % AN+1 to prevent us from c r e a t i n g a l a r g e
b a t t l e

86
87
88 %% Repairer s p e c i f i c knowledge
89
90 % P r e d i c a t e t h a t re turns disabled a l l i e s near or on the current

p o s i t i o n
91 disabledAllyNear ( ID , Here ) :− currentPos ( Here ) , team (Team) , me(Me) ,

v i s i b l e E n t i t y ( ID , Here , Team , disabled ) , ID \= Me, ! .
92 disabledAllyNear ( ID , Vertex ) :− team (Team) , neighbour ( Vertex ) ,

v i s i b l e E n t i t y ( ID , Vertex , Team , disabled ) , ! .
93 disabledAllyNear ( ID , Vertex ) :− currentPos ( Here ) , team (Team) ,

v is ib leEdge ( Here , Vertex ) , v i s i b l e E n t i t y ( ID , Vertex , Team , disabled ) ,
! .

94
95 % The r e p a i r i n g ( ID ) goal .
96 % When the in j ur ed agent i s no longer disabled , then the goal has been

achieved .
97 % A r e p a i r goal should never be adopted unless there e x i s t s a path

between the r e p a i r e r and the i n ju re d agent .
98 r e p a i r i n g ( Agent ) :− agent ( Agent ) , not ( teamStatus ( Agent , _ , 0 ) ) .
99

100
101 %% I n s p e c t o r s p e c i f i c knowledge
102
103 % P r e d i c a t e t h a t re turns uninspected agents c l o s e to the i n s p e c t o r
104 % This a l s o makes sure enemy saboteurs are s u i t a b l e f o r i n s p e c t i o n

again when l a s t i n s p e c t i o n i s older than 50 s teps
105 uninspectedNear :− v i s i b l e E n t i t y ( Agent , Vertex , Team , _ ) , enemyTeam (Team) ,

( currentPos ( Vertex ) ; neighbour ( Vertex ) ) ,
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106 ( not ( i n s p e c t e d E n t i t y ( Agent , _ , _ , _ , _ , _ , _ , _ , _ , _ ) ) ; ( inspectedEnemy (
Agent , ’ Saboteur ’ ) , l a s t I n s p e c t ( Agent , LI ) , s tep ( S ) , LI2 i s LI +
50 , LI2 < S ) ) .

107 uninspectedEnt i ty ( Agent ) :− not ( i n s p e c t e d E n t i t y ( Agent , _ , _ , _ , _ , _ , _ , _ , _ , _
) ) .
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