Numerical Methods For Solution of
Differential Equations

Tobias Ritschel

Kongens Lyngby 2013
B.Sc.-2013-16

Technical University of Denmark

Department of Applied Mathematics and Computer Science
Building 303B, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk B.5c.-2013-16

Summary

Runge-Kutta methods are used to numerically approximate solutions to initial
value problems, which may be used to simulate, for instance, a biological system
described by ordinary differential equations. Simulations of such system may be
used to test different control strategies and serve as an inexpensive alternative
to real-life testing.

In this thesis a toolbox is developed in C and Matlab containing effective nu-
merical Runge-Kutta methods. Testing thse methods on the time it takes to
simulate a system for a large set of parameters showed that some methods per-
formed well in some cases whereas others were faster in others such that not
one method outbested the others.

Carrying out the same tests using parallel simulations showed that a speed-up
of between 11 and 12 is possible in Matlab and in C when using 12 processes,
and that different implementations of parallel simulations in C, are suitable for
different number of processes.

In all aspects, simulations were obtained much faster in C compared to Matlab.

Resumé

Runge-Kutta metoder bruges til at approksimere lgsninger til begyndelses-vaerdi
problemer numerisk, hvilket eksempelvis kan bruges til at simulere et biologisk
system beskrevet af ordinaere differentialligninger. Disse simuleringer kan bruges
til at teste forskellige kontrolstrategier og veere et mindre kraevende alternativ
til fysiske tests.

I dette projekt udvikles en toolbox in C og Matlab med effektive numeriske
Runge-Kutta metoder. Tests af den tid det tager metoderne at simulere et
system for et stort st parametre viste at visse metoder var hurtige i en slags
situationer og andre var hurtigere i andre situtioner saledes at ikke éen metode
var de andre overlegen.

Ved at udfgre de samme tests med parallelle simuleringer kunne det ses at det
er muligt at udfere simuleringerne 11 til 12 gange hurtigere i Matlab og i C ved
brug af 12 processer og at forskellige implementeringer af parallelle simuleringer
i C, er passende afheengigt af antallet af processer.

Simuleringer blev i alle tilfeelde udfert meget hurtigere i C i forhold til Matlab.

Preface

This thesis was prepared at Department of Applied Mathematics and Computer
Science, the Technical University of Denmark in fulfillment of the requirements
for acquiring the B.Sc. degree in Mathematics & Technology.

The thesis concerns numerical methods for solving initial value problems and
documents the Runge-Kutta toolbox created during the project. The main
focus is on implementation of the numerical methods in C and Matlab and on
the runtimes of the implementations on the two platforms. The simulations
which are timed, will be implemented in both sequential and parallel.

I would like to thank John Bagterp Jgrgensen for guidance throughout the
project and many helpful comments on the thesis and Carsten Volcker for help

with implementation of the methods. I would also like to thank Bernd Dammann
for help with MPI and LAPACK in C.

Lyngby, December 2013

Tobias Ritschel

Contents

Summary

Resumé

Preface

1

Introducton and Purpose

1.1
1.2
1.3
1.4

Introduction
Purpose
Matlab Interfaces
Clnterfaces

Runge-Kutta Methods

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

Introduction of Numerical Methods for Initial Value Problems . .
Subclasses of Runge-Kutta Methods
Explicit Euler
The Classical Runge-Kutta Method
The Runge-Kutta-Fehlberg Method
The Dormand-Prince Method
ESDIRK23
Modified Runge-Kutta Methods
Newton Iterations

2.10 SUummaryo e e e e e e

Adaptive Step Size

3.1
3.2
3.3
3.4

Step Doubling L
Embedded Error Estimation
Maximum Norm e
Asymptotic Controller L.

viii CONTENTS
3.5 PIController e 28
3.6 Control Algorithms L. 29
3.7 Summary ... e 32

4 Implementation of Numerical Methods 33
4.1 Euler. e 34
4.2 Classical Runge-Kutta 36
4.3 Runge-Kutta-Fehlberg 38
4.4 Dormand-Prince, 41
4.5 ESDIRK23 44
4.6 SUMIMATY« o v oot e e e e 47

5 Implementation of Parallel Simulations 49
5.1 Imtroduction. 50
5.2 Parallel Simulations In Matlab 51
5.3 Simple Parallel Simulations In C 51
5.4 Advanced Parallel SimulationsIn C 52
5.5 Message-Passing Interface L. 54
5.6 Summary 55

6 Fed Batch Fermenter Problem 57
6.1 Model of Fed Batch Fermenter 58
6.2 Simulation of Fed Batch Fermenter 59
6.3 Constant Inlet Rates 62
6.4 Analytically Optimal Inlet Rates 64
6.5 Piecewise Constant Approximations 66
6.6 Substrate Feedback for Optimal Inlet Rates 68
6.7 Substrate Feedback for Piecewise Constant Inlet Rates 71
6.8 Biomass/Substrate Feedback for Optimal Inlet Rates 74
6.9 Biomass/Substrate Feedback for Piecewise Constant Inlet Rates 77
6.10 Summary 80

7 Test of Numerical Methods 83
7.1 Test Problems. 84
7.2 Test of Runge-Kutta Toolbox In Matlab 85
7.3 Test of Runge-Kutta Toolbox In C 87
74 Test Results 90
7.5 Summary 94

8 Comparison of Runtimes 95
8.1 Imtroduction 96
8.2 Comparison of Methods 97
8.3 Comparison of C and Matlab 99

8.4 Comparison of Parallel Simulationsin C 100

CONTENTS ix
85 Summary 103
9 Conclusion 105
9.1 Conclusion, 106
A Solving Linear Systems of Equations 109
A.1 Gaussian Elimination. 110
A.2 LU-Factorization 110
A.3 Back and Forward Substitution 111
A4 LAPACKInC 112
B Implementations In C 115
B.1 Unmodified Methods 115
B.2 Modified Methods 137
B.3 Functions Used for Timing Simulations 161
B.4 Sequential Simulations 162
B.5 Simple Parallel Simulations 164
B.6 Advanced Parallel Simulations 168
C Implementations In Matlab 175
C.1 Unmodified Methods 175
C.2 Modified Methods 189
C.3 Newton Iterations 206
C.4 Sequential Simulations 207
C.5 Parallel Simulations 209

CONTENTS

CHAPTER 1

Introducton and Purpose

The topics that are treated in this project is presented in Section 1.1. These
are, the type of differential equations to which solutions are approximated, which
methods will be treated for obtaining these approximations and why it is im-
portant to consider conservation properties.

The purpose and goals of this project are presented in Section 1.2, namely
what methods are implemented, what should be their interface and how will the
methods be tested.

2 Introducton and Purpose

1.1 Introduction

This project is concerned with the computation of numerical approximations to
the solution of initial value problems (IVPs) of the sort

Colalt) = F(t,a(t)), (o) = w0, (11)

where g : R® - R", f: R x R® — R", z(t) € R". g(«(t)) may be nonlinear in
x(t) and f(¢,z(t)) may be nonlinear in ¢ and z(t).

Equation (1.1) is a generalization of the standard form of ordinary differential
equations, which is,

4s
dt
We will investigate methods for solving both problem (1.1) and (1.2). Both

problems may be stiff and methods for both the stiff and the non-stiff case are
treated.

(t) = ft,z(t), =(to) = zo. (1.2)

Explicit methods are preferred over implicit methods when the IVP is non-
stiff because of lower computational cost. In the non-stiff case we use the
Euler method, the Classical Runge-Kutta, the Runge-Kutta-Fehlberg and the
Dormand-Prince method. In the stiff case implicit methods may produce accu-
rate solutions using far larger steps than an explicit method of equivalent order,
would. In the stiff case we use ESDIRK23. We will also treat the modifications
needed for these methods to approximate solutions to (1.1).

When approximating the solutions to an IVP for many sets of parameters, the
computations may be carried out sequentially or in parallel, in both Matlab
and C. The runtime on each of these platforms are tested on simulations of a fed
batch fermenter. The model of this fermenter is described in Chapter 6. These
runtime tests are carried out with both fixed and adaptive step size, requiring
both low and high precision, and using a different number of processes to carry
out the parallel simulations. Low and high precision are defined in Section 8.1.

1.1 Introduction 3

1.1.1 Conservation Properties

Transforming a problem in the form of (1.1) into (1.2) poses some trouble re-
garding the conservation which the differential equation describes, e.g. mass
or energy. For example, using the explicit Euler for (1.1) gives the following
approximation.

x —g(z

9ot Z96) _ iy,),
h

where the conservation described in the differential equations is conserved from

step to step. Using the chain rule, (1.1) may be rewritten as,

0
S gtalt) = o-g(a(t)) Srlt) = 7t () (13)
where
0 0 0 0
o~ om m v Ge) T

Using the explicit Euler method on the problem in this form gives the approxi-
mation

0 Tp41 — T

Here the conservation described by the differential equation is not conserved.
This introduces further error besides the one introduced by the method. This
occurs because the chain rule is only valid in the limit & — 0 when $z(t) is

dt
discretized from (1.3) to (1.4).

The last step of the transformation from (1.1) to (1.2), is to isolate -z (t) such
that (1.4) becomes,

o0 = | groe)] st
= F(t,z(t)),

where F(¢,z(t)) is now the right hand side in (1.2).

4 Introducton and Purpose

1.2 Purpose

The purpose of this project is to develop a toolbox in C and Matlab containing
effective numerical Runge-Kutta methods and to document the implementation
of these methods. The subpurposes of this project are,

1. implement the following Runge-Kutta methods for (1.2)

e The Explicit Euler method

e The Classic Runge-Kutta method, RK4
The Runge-Kutta-Fehlberg method, RKF45
e The Dormand-Prince method, DOPRI54
the ESDIRK23 method

2. modify the methods in 1. for (1.1)
3. compare implementations on

e runtime for fixed step size
e runtime for low precision

e runtime for high precision
4. compare simulation runtimes in Matlab to simulation runtimes in C
5. compare runtime of sequential simulations to those of parallel simulations

6. compare runtime of different implementations of parallel simulations

Low and high precision are defined in Section 8.1. The implementations of these
methods have different interfaces. Any method has one interface in Matlab and
a different one in C. Furthermore, the unmodified explicit methods require only
ft,z(t) from (1.2). The unmodified implicit methods need also %f(t,x(t)).
The modified versions of these also need g(x(t)) and a% g(z(t)). In the following
Sections, the interfaces for the implemented methods are described.

The comparison between the Runge-Kutta methods will be done by timing
the simulations used in the fed batch fermenter problem in Chapter 6. This
includes comparing the runtime for a given method when using different fixed
step sizes and using adaptive step size, with either low or high accuracy. These
comparisons will be done for simulations in both Matlab and C and using both
sequential and parallel simulations.

S UL W N

0 N O U W N N O Ut W N

© 00 O Uk W N

1.3 Matlab Interfaces

1.3 Matlab Interfaces

The four different Matlab interfaces are shown in Listings 1.1 to 1.4.

Listing 1.1: Matlab-interface for the unmodified explicit methods.

function [t,x] = <ERK>(
fun,

tspan,

x0,

AbsTol, RelTol,
varargin)

Listing 1.2: Matlab-interface for the unmodified implicit methods.

function [t,x] = <IRK>(
fun,

Jac,

tspan,

x0,

AbsTol, RelTol,
varargin)

Listing 1.3: Matlab-interface for the modified explicit methods.

function [t,x] = <ERKMod>(
fun,

gfun,

gJac,

tspan,

x0,

AbsTol, RelTol,

varargin)

Listing 1.4: Matlab-interface for the modifed implicit methods.

function [t,x] = <IRKMod>(
fun,

Jac,

gfun,

gJac,

tspan,

x0,

AbsTol, RelTol,

varargin)

© 00~ O U W N~

© 00~ O U b W N -

6 Introducton and Purpose

<ERK> is either the Euler method, RK4, RKF45 or DOPRI54. <IRK> is ES-
DIRK23. <ERKMod> and <IRKMod> are the modified versions of these.

In the Matlab implementations, the methods return a vector containing the dis-
crete time values, t, and a two-dimensional array containing the approximation
of the solution to the IVP in the discrete time values, x. t is identical totspan
supplied by the user if using fixed step size, i.e. if tspan has more than two
elements.

The inputs are the function handles fun, Jac, gfun and gJac which return
f(t,z(t)) and g(x(¢)) from (1.1) or (1.2), and the Jacobi matrices of these. fun
and gfun should return column vectors. If the method should use fixed step
size, tspan should contain the equidistant time values, and else, the initial and
final time values. x0 contains the initial conditions. AbsTol and Reltol are the
absolute and relative tolerances, and varargin may be used for any parameters
which should be passed to the function handles.

1.4 C Interfaces

The four different C interfaces are shown in Listings 1.5 to 1.8.

Listing 1.5: C-interface for the unmodified explicit methods.

<ERK>(

ODEModel_t* fun,

const int nx, const int nt,

const double *tspan,

const double *x0

const double *AbsTol, const double RelTol,
const void *params ,

double *t,

double *x)

Listing 1.6: C-interface for the unmodified implicit methods.

<IRK>(

ODEModel_t* fun,

ODEModel_t* Jac,

const int nx, const int nt,

const double *tspan,

const double *x0

const double *AbsTol, const double RelTol,
const void *params ,

double *t,

1.4 C Interfaces 7

10| double *x)

© 00 J O U = W N~

= =
= O

— =
= O © 00 O Ut = W N =

=
N

=W N =

Listing 1.7: C-interface for the modified explicit methods.

<ERKMod > (

ODEModel_t* fun,
ODEModel_t* gfun,
0ODEModel_t* glJac,

const int nx, const int nt,
const double *tspan,

const double *x0

const double *AbsTol, const double RelTol,
const void *params ,
double *xt,

double *x)

Listing 1.8: C-interface for the modifed implicit methods.

<IRKMod > (

ODEModel_t* fun,
ODEModel_t* Jac,
0ODEModel_t* gfun,
0ODEModel_t* glJac,

const int nx, const int nt,
const double x*tspan,

const double *x0

const double *AbsTol, const double RelTol,
const void *params ,
double *xt,

double *x)

As for the Matlab interfaces, <ERK> is either the Euler method, RK4, RKF45 or
DOPRI54. <IRK> is ESDIRK23 and, <ERKMod> and <IRKMod> are the modified
versions of the above.

The C implementations have somewhat the same input and output as the Matlab
versions, however, the function handles in Matlab are implemented as function
pointers in C. These are of the type ODEModel_t, which is implemented as

Listing 1.9: ODEModel_t type.

typedef void ODEModel_t (

const double t, const double *x,
const void *params,

double *f);

8 Introducton and Purpose

t is a time scalar, x is a pointer to an array, params is a pointer to an array
of any type, containing parameters. This is used in the same way varargin
is used in Matlab. f is a pointer to an array where the function evaluation is
stored and is effectively the output of the function. The const in the types
indicates that these variables are not going to be overwritten or changed during
the function call. Moreover it is a useful way of indicating which is input and
which is output.

gfun and gJac do not use t as g(z(t)) does not depend on time explicitly,
however they do have t as input, such that they may be passed as the same
type of function as fun and Jac.

nx is the same as n in (1.1) and (1.2) and is the number of variables. In Matlab
this is omitted since it is length(x0), however this feature is not available in
C. Likewise for nt, which in Matlab is length(tspan). If nt = 2, the method
uses adaptive step size, and if it is larger, it uses nt steps with fixed step size.

CHAPTER 2

Runge-Kutta Methods

This Chapter introduces the subclasses of Runge-Kutta methods used for nu-
merically approximating solutions to IVPs in Section 2.2. The IVPs have either
of the two forms

d

9®) = Fa(), alto) = a0,

and
d
32 = f(t,2(t), 2(to) = o,
Sections 2.3 to 2.7 introduce the methods which are implemented in the Runge-

Kutta Toolbox. All of these methods approximates the solution of IVPs in the
form (1.2).

The modifications needed for the methods in the toolbox to approximate solu-
tions to (1.1) are dicussed in Section 2.8.

The modified methods and ESDIRK23 require Newton iterations, which are
described in Section 2.9.

10 Runge-Kutta Methods

2.1 Introduction of Numerical Methods for Ini-
tial Value Problems

The simplest method for approximating solutions to initial value problems of
the form, (1.2) is the forward Euler method, also known as the explicit Euler
method. This may also be the most intuitive to derive. The idea is based on
the expression of the forward derivative as a limit.

d () = lim x(t+ h) — x(t)

a(t) = Him TSI — pra()),

The forward Euler method simply comes from exchanging this limit with an
adequately small fixed step size, h. This gives

x(t+ h})L —x(t) ~ f(t2(t))

such that
z(t+ h) = z(t) + hf(t,x(t)).

The Euler method is written as the step update
Tn+l = Tn + hf<tn7xn)7

where x,, is the approximation of x(t,) and ¢, is the n’th time value. This will
approximate the solution when applied repeatedly from some initial time with
an initial condition, up to some predefined end time. Each step depends only
on the previous step and the right-hand-side function.

The initial value problem is solved over a finite time interval which is split up into
a number of discrete time values in which the solution, x(t), is approximated.
One can either choose a number of equidistant time values, a fixed step size or
an arbitrary set of time values in which one wants an approximation. The time
values may also be picked by a step size controller which calculates each step
size based on an error estimate.

The forward Euler method is an example of an explicit one-step one-stage
method. An explicit method approximates the solution using only approxi-
mated solution values at earlier times. A method can also be implicit which
means that the expression for the step z,11 also depends on z, itself. Take
for example the backward Euler method which is defined as

$n+1 = Tp + hf(tn-‘rlvxn-i-l)' (21)

In general, the function f(¢,x(t)) is nonlinear and cannot be solved for 1
analytically. The step may instead be obtained by using Newton iterations to

2.2 Subclasses of Runge-Kutta Methods 11

approximate the solution, x,41, to (2.1). This can be done quite effectively
since the initial guess may be picked as the approximation in the previous step
which, for small step sizes, will be relatively close to the approximation in the
following step. These Newton iterations are also used in the modified methods.

Depending on the nature of the particular problem it may be very effective
to use an implicit method over an explicit. These problems are referred to as
stiff problems. A stiff problem is characterised by LeVeque [2007] as one where
a%f(t,a:(t)) is much larger in norm value than $z(¢). One way of checking
for this is to calculate the stiffness ratio, which is the ratio between the largest

eigenvalue of the Jacobian matrix f’(¢,z(t)) and the minimum eigenvalue.

max | Ap|
min |Ap|

If this value is large the problem may very well be stiff, however there is no
implication since a scalar problem always has a stiffness ratio of one but may
also be stiff. Likewise, the value may be large even though the problem is not
very stiff at all.

Elden [2010] defines a problem as stiff if the solution contains both slow and
very fast processes. This could be a system describing chemical kinetics in which
some chemical reactions are much faster than others.

2.2 Subclasses of Runge-Kutta Methods

The numerical methods used in this project are of the class known as Runge-
Kutta methods. These are stage based single step methods. A general Runge-
Kutta method with r stages has the form

T, =t, +ch (2'23‘)

Xi=an+hY ayf(T;,X;) (2.2b)
j=1

Tpn+1 = T + hz b]f (Tja X])) (22C)
j=1

where ¢ = 1...7 and the coefficients a;;,b; and c; are specific for each method.
These coefficients are usually collected in a scheme called a Butcher tableau

12 Runge-Kutta Methods

0 0 0 ailp a1 Qi3 ai1 0 0 Y 0 0
a1 0 O a1 a2 a3 a1 azp 0 a1 v O
az1 aszx 0 a31 asz2 a33 asz; agz ass3 asy asz Yy
(a) ERK (b) FIRK (c) DIRK (d) SDIRK
0 0 0
ao1 Yy O

(e) ESDIRK

Figure 2.1: The different subclasses of Runge-Kutta methods.

which has the general form.

C1|G11 -+ Q1r

cl| A . . .
= : : - (2.3)

b e lay - an

. by - b,

Here A is a square matrix and b, ¢ are vectors. There are several subclasses of
Runge-Kutta methods, all specified by the structure of the A matrix. These will
be described in detail in the following Subsections. The A matrices for 3-stage
cases are shown in Figure 2.1.

As will be discussed in a later Section, the local truncation error may be esti-
mated as the difference between an approximationof order p and one of order
p+ 1. When this is done, the Butcher tableau is extended in the following way,
where b are the coefficient for the higher order method.

C1 | Qi -0 Qir
clA
_ b = alan - an - (2.4)
b by b,
by b,

The Butcher Tableaus for the methods implemented in the Runge-Kutta Tool-
box are listed in Sections 2.3 through 2.7.

2.2 Subclasses of Runge-Kutta Methods 13

2.2.1 Explicit Runge-Kutta Methods

The explicit Runge-Kutta methods, or ERK methods, are the simplest to im-
plement since each stage depends only on previous stages and there is no need
for solving nonlinear equations. These have the form

i—1

Xi=zn+hY ayf(T;,X;) (2.5b)
j=1
j=1

where the index in the sum in the expression for X; now only runs from 1 to
i— 1.

2.2.2 Fully Implicit Runge-Kutta Methods

The fully implicit Runge-Kutta methods are the most general since any coeffi-
cient of the A matrix may be non-zero, which means that every internal stage,
may depend on all of the other internal stages, including itself.

This means that in each stage, a system of mr nonlinear equations has to be
solved, where n is the dimension of the problem and r is the number of stages.
The Fully Implicit Runge-Kutta methods, or FIRK for short, have the form
shown in (2.2).

2.2.3 Diagonally Implicit Runge-Kutta Methods

These methods are characterised by having zero elements in the strictly upper
triagonal part of the A matrix. Hence each stage depends only on the previous
stages and itself. This means that a sequence of r implicit systems, each of size
n needs to be solved, rather than nr for FIRK methods. The diagonally implicit

14 Runge-Kutta Methods

Runge-Kutta methods, or DIRK methods, have the form

Ti =1, + Cih (26&)

Xi=wo+h)_ayf(T,X,) (2.6D)
j=1

Tn+1 :xn“i’hzbjf(crijJ) (26C)
j=1

The internal stages may be written as

Xi = Tn + hZa”f(Tj,XJ)
j=1
= hagi f (T3, X;) + s,

where
i—1
wi = Tn —+ hZaijf (Tj,Xj) .
j=1

This 1; need only to be calculated once for each step. The method now uses
Newton iterations, as described in Section 2.9, where the residual function for
the i'th stage is

Ri(X:) = Xi — hagi f (T;, Xi) — i = 0.

and the Jacobian of this residual function is

0 0
%Ri(Xi) =1- haii%f (T3, X5) ,

where I € R™*" is the identity matrix. Each Newton iteration is then calculated
as

XF = XxF - AXxk,

where AX; is the solution to the system

R0 AXE = R (2.7)

Notice that the Jacobi matrix is evaluated in the initial guess rather than in the
current iteration. This is discussed further in Section 2.9.

2.2 Subclasses of Runge-Kutta Methods 15

2.2.4 Singly Diagonal Implicit Runge-Kutta Methods

This subclass is characterized by all the diagonal elements in the A matrix being
identical. When solving the system of equations in (2.7), LU-factorizations are
used. For DIRK methods this has to be done for every stage. However, for
the singly diagonal implicit methods, or SDIRK methods for short, the LU-
factorization may be reused for every stage, which lowers the computational
cost. These methods have the form

T =tp +cih (2.8a)
i—1

Xi=mn+hY_ayf (Tj,X;) + hyf (Th, X,) (2.8b)
i=1

Top1 = n +h Y bif (Tj,X;). (2.8¢)
j=1

2.2.5 Explicit Singly Diagonal Implicit Runge-Kutta Meth-
ods

The ESDIRK methods have the same properties as the SDIRK methods, except
that the first stage is the current step, i.e. a;; = 0. The remaining elements
in the diagonal are still identical. Since the first stage is also the current step,
the evaluation of the right hand side, in the previous step, may be reused. The
form is

Tl = tn (29&)

X, =z, (2.9b)

T, =t, +ch, ©1>2 (2.9¢)
i—1

Xi=an+hY ayf (T, X;)+hvf (T X:), i>2 (2.9d)
j=1

Tyl :xn—l—thjf(Tj,Xj). (2.96)

j=1

16 Runge-Kutta Methods

2.3 Explicit Euler

The explicit Euler method is a one-stage first order ERK method. The Butcher
Tableau for the explicit Euler method is,

00
1

This Butcher Tableau translates into the simple equation

Tn4l = Tp + hf(t717 zn)

2.4 The Classical Runge-Kutta Method

This method, RK4, is a four-stage, fourth order method. Its Butcher Tableau
is

0

1] 1

7|3

1 1

210 3

110 0 1
1 1 1 1
5 3 3 &

The RK4 method has been used widely in the precomputer era, as the coeffi-
cients are simple enough to compute the approximations by hand.

It may be noticed that each stage depends only on the previous stage. This is
not a general feature of the explicit Runge-Kutta methods.

2.5 The Runge-Kutta-Fehlberg Method

RKF45 is an embedded ERK method, which means that it uses embedded error
estimation. The method uses a fourth- and fifth-order method in the embedded
error estimation and it has six stages which is the minimum number of stages

2.6 The Dormand-Prince Method 17

needed for a fifth order method. It has the extended Butcher Tableau

0

1| 1

4 4

3| 3 9

8 32 32

12 | 1932 7200 7296

13 | 2197 2197 2197

1| 439 _3 3680 845
216 513 4104

1 8 9 3544 1859 11

2 27 2565 4104 40
25 0 1408 2197 _1 0
216 2565 4104 5
16 0 6656 28561 9 2
135 12825 56430 50 55

The error estimate simply uses the difference between the b and the b coeflicients,
rather than calculating both approximations.

2.6 The Dormand-Prince Method

DOPRI54 is, like the RKF45 method, an embedded ERK method. It also uses
Runge-Kutta methods of orders four and five, however, it has seven stages, one
more than RKF45. It has the following Butcher Tableau

0
1 1
5 5
3 3 9
10 10 10
4 44 __56 32
5 15 15 9
8 | 19372 25360 64448 212
9 | 6561 2187 6561 729
1 | 9017 _ 355 46732 49 5103
3168 33 5247 176 18656
1 35 0 500 125 2187 11
384 192 6784 84
5179 0 7571 393 92097 187 1
57600 16695 640 339200 2100 40
35 0 500 125 2187 11 0
384 1113 192 6784 84

As can be seen, the coefficients for the fifth order method are identical to those
in the seventh stage. This means that the function evaluation f(77, X7) used
in the error estimate, can be reused in the following step as f(71, X1), which
means that DOPRI54 needs no more function evaluations than RKF45, even
though it has one more stage.

18 Runge-Kutta Methods

2.7 ESDIRKZ23

ESDIRK23 is also an embedded method, which uses three-stage implicit Runge-
Kutta methods of order two and three. It has the Butcher Tableau

0

27| v gl
1— 1—

1 5 = v
1— 1—
=t 5 v
6v—1 1 1—-3y
12 129(1-2v) 3-(1—27)

where vy =1— % As for DOPRI54, the last stage is also the approximation in
the subsequent step. The residual function for each internal stage is

Ri(X;) = X — hy f(T5, X3) — s,

where

Yo = xy + haoy f(T1, X1)
3 = xp + haz1 f(Th, X1) + as2 f (T2, X2)).

2.8 Modified Runge-Kutta Methods 19

2.8 Modified Runge-Kutta Methods

Using Runge-Kutta methods to approximate the solution to IVPs in the form

So(e(0) = S(2(0), (o) =m0,

requires a little more work, in the sense that each stage X; needs to be solved
for, using Newton iterations. A general Runge-Kutta method for (1.1) with r
stages has the form

T; = t, +cih (2.10a)
Gi =gn+h§:aijf(Tj,Xj) (2.10Db)
=1
9(Xi) = G;] (2.10c)
Gn41 = Tn + hz b; f (Ty, X;) (2.10d)
j=1
9(Tn+1) = gnt1, (2.10e)

where g, is the approximation of g(z(t,)). For explicit methods, Newton iter-
ations are then used to solve g(X;) = G; and g(xn41) = gn41 for X; and z,4q
respectively.

For implicit methods, which already require Newton iterations to obtain each
stage, the difference lies in the residual function, and the additional evaluations
of g(z(t)) and 2 g(z(t)). For these modified implicit methods, the work required
for each step may not be more than for the unmodified implicit methods.

The procedure of Newton iterations is discussed further in Section 2.9.

20 Runge-Kutta Methods

2.9 Newton Iterations

This Section covers the Newton iterations used in ESDIRK23 and in the mod-
ified methods. See Chapter 4 of [Elden, 2010] for more on numerical methods
for solving nonlinear equations. The system of equations, which requires to be
solved in the modified methods is,

g(z(t)) =g, (2.11)

where g is a computed approximation of g(x(t)), and this expression needs to be
solved for z(t). Newtons method is used to find roots of a non-linear function,
hence, solving the problem

R(z(t)) = 0.

In the context of implicit methods, this is called the residual function. These
iterations use an initial guess, xg, from which a new guess is computed as,

af = ah — Agk, (2.12)
where Az* is the solution to the linear system of equations,

0

— R(zF)AzF = R(z¥).

= R(a) (%)

This procedure is repeated until the norm of the residual function is sufficiently
small. Notice that superscript indicates step in Newton iterations and that
subscript is step in the numerical methods. Newton iterations may be used to
solve the non-linear system of equations in (2.11) by setting

RG(1) = 9(a(0) ~ g
L R((1) = 5-gla(t).

The iteration update may be approximated by letting Axj be the solution to,

0

—R(z°)Az" = R(z"). (2.13)
ox

Provided that the initial guess zq is reasonably close to the real solution, the
approximation may work very well.

Using this approximation reduces the number of LU-factorizations to one per
step and only the backward and forward substitutions are required in each step.
The procedure of Newton’s method used in this project is shown in Algorithm
1.

2.10 Summary 21

Data: 20, R(z(t))
Result: 2,41, @
initial guess, z°;
evaluate R (xo);
evaluate %R (J:O);
check for convergence, ||R (2°) || < T;
set k=a =0;
while not converged, diverged and convergence is not slow do
solve equation (2.13) for Az*;
calculate 2%+ by equation (2.12);
evaluate R (zFT1);
10 « = max (a R<xk+1)”°°>

T REMe)
11 check for convergence, R (1) < 7;
12 check for slow convergence, k > kinaz;
13 check for divergence, o > 1;
14 increment k by 1;
15 end

© 00 N O kA W N -

16 set T,y = x¥;

Algorithm 1: Newton iterations.
2.10 Summary

This Chapter has described the five subclasses of Runge-Kutta methods, ex-
plicit methods, implicit methods, diagonally implicit methods, singly diagonally
implicit methods and explicit singly diagonally explicit methods and their ad-
vantages.

The methods which are implemented in the Runge-Kutta Toolbox has been de-
scribed in the sense of their Butcher Tableaus and other properties the methods
may have.

Generally, Runge-Kutta methods are meant for IVPs in the form (1.2), and the
modifications required for the methods to approximate solutions to IVPs of the
form (1.1) have been described in Section 2.8.

The modified methods, and ESDIRK?23, require Newton iterations which have
been described in Section 2.9.

22

Runge-Kutta Methods

CHAPTER 3

Adaptive Step Size

This Chapter concerns step size control for numerical methods for approximating
solutions to IVPs of the form (1.1) and (1.2).

Sections 3.1 and 3.2 discuss two methods for estimating the local truncation
error and Section 3.3 describes the norm which is used in the Runge-Kutta
Toolbox.

Sections 3.4 and 3.5 discuss two step size controllers and the use of these is
presented in Section 3.6 where to algorithms for updating the step and step size
are described.

24 Adaptive Step Size

3.1 Step Doubling

This section describes the step doubling procedure for an explicit Runge-Kutta
method approximating the solution to an IVP of the form (1.2). The concept
is to take a full step of step size h, and a double step, consisting of two steps,
of step size h/2. Let the full step be

T, =t, —‘rCih

X—a:n—l-hZan X;)

Then the double step is

N 1
T-TL+2 =t,+c—=

K2

Xin—i_r =Tn+ < ZG/L]f(n+2 Xn+)

SIS

:i.n+%_xn+ be(n+2 Xn+)

. h h
T‘n+1: n 5 iy
A (t +2>+C 5

Xt = Zif L Zal]f (Tn+1 Xn+1>

_7 1
Inir =it + s Zb f (T, X)),

The local truncation error of x,,41 may then be estimated as
€= Tn4+1 — Jﬁn+1. (33)

This is described more concisely in Algorithm 2. This procedure uses three steps,
but only requires two function evaluations. It is, however, more expensive than
the embedded error estimate, described in Section 3.2.

If using an implicit Runge-Kutta method or a modified method, the three cal-
culations require Newton iterations for each stage, which means that three steps
may be very expensive compared to a single step.

3.2 Embedded Error Estimation 25

evaluate f(t,,Tn);

calculate x, 41 using step size, h;
~ . . h.

calculate Z,, +1 using step size, 3;

evaluate f(t, + %, §3n+%);

N L B h.
calculate #,,41 using step size 3;
estlimate error as € = Ty41 — Tp+1;

Algorithm 2: Step doubling.

S ok W N

3.2 Embedded Error Estimation

Embedded Runge-Kutta methods use embedded error estimation. This Section
describes the procedure for explicit Runge-Kutta methods for approximating
the solution to an IVP of the form (1.2). The concept is similar to that of step
doubling. For a p order Runge-Kutta method, the local truncation error may
be estimated using a p + 1 order Runge-Kutta method. The advantage of this
method over step doubling is that it is essentially free, since the higher order
method is designed to have the same coefficients, A and c.

E:tn-i-clh

i—1
Xi = Tn + hZaijf (Tj7Xj)

j=1
Tnt1 =$n+hzbjf(Tj7Xj)=
=1
j=1

Here, x,,41 is the p’th order approximation and &, is the p+1’th order approx-
imation. The only difference between these two methods is the b coefficients,
ie. b; # Bj for at least one value of j. Like for step doubling, the error estimate
of Tp41 is

e=api1 —Enp1 = | +h Y bif (T3, X)) | = | &n + 1Y bif (T3, X))

j=1 j=1

:hiicb—@)f@%Xﬂ

:hidjf(Tj7Xj). (3.5)
j=1

26 Adaptive Step Size

There is no need for calculating Z,4; since the error estimate depends only
on the coefficients d, and the function evaluations, which have already been
obtained during the calculations of the stages, the error estimate is simply an
inexpensive sum.

In practice one may use Z,41 as the advancing method, since for small step
sizes, the LTE is assumed to be even smaller for this approximation. Then the
calculation of x,,41 may be omitted and the expense is the same.

3.3 Maximum Norm

The Runge Kutta Toolbox uses the maximum-norm, which requires both an
absolute and a relative tolerance. In the implementation of the Runge-Kutta
Toolbox methods, these tolerances are supplied by the user.

The norm is used, both for the error estimates, described in the previous Sec-
tions, and in the Newton iterations. The norm of the error estimates is shown
below, with the terminology of the error estimation Sections.

lei]
= . 3.6
el irer%i)é] {AbsToli + |(xnt1)i] - RelTol (3:6)

e is the error estimate for z,+; and e; is the i’th component of e. Likewise
for the other vector components. AbsTol is a user-specified absolute tolerance
vector and RelTol is a user-specified relative tolerance scalar.

In the Newton iterations the norm is

IR floo = max [Fa)i (37)
i€[l,n] | AbsTol; + |(gn+1)i| - RelTol |’

where g, is the approximation of g(x(t,41)), and R(z*) is the residual func-
tion evaluated in the current iteration.

3.4 Asymptotic Controller 27

3.4 Asymptotic Controller

The asymptotic controller is derived from the expression of the local truncation
error. For sufficiently small step sizes h, the local truncation error is dominated
by the leading term, which also determines the order of a method. For a p’th
order method the local truncation error, F, is approximately

E ~ F(zp41)h?, (3.8)

where F'(z,41) is some function dependent on the current step, but not on the
step size. This is usually some function including derivatives of z(t), evaluated
in t,4+1. h is the step size. Strictly, this is only valid in the asymptotic limit
where h goes to zero.

Assume that the step size h was used to take one step and for estimating the
local truncation error. Given some tolerance, ¢, we want to find the step size
ﬁ, which would have produced an estimated local truncation error, €, hence it
should satisfy, A

€= F(xn1)h?. (3.9)

The ratio between these two error estimates is,

- “\ P
€ F(xpi1)h? h
—_ == . 1

FE F(l’n_;,_l)hp (h) (3 0)

The step size, h which would have produced an error estimate of € is
1
h=h (3) v (3.11)
) - .

If the solution, x(t), is smooth in a neighborhood around x,41 it may be ex-
pected that using this step size in the subsequent step, will satisfy the tolerance,
e. In the sense of current and next step size, (3.11) is,

h (=) 12

where h,, is the previous step size, € is the tolerance, usually 0.8 or 0.9. E,, 14 is
the estimated error of the next step and p is the order of the method.

28 Adaptive Step Size

3.5 PI Controller

The PI step size controller is a little more advanced, and takes into account
both the current and the previous step size. For explicit methods the step size
update is calculated as,

kg k
€ FE P
hpi1=h L 3.13
i " (En+1> <En+1> ()
0.4
k= —— .14
! p+1 (3.14)
0.3
k, = ——. 1
Pl (3.15)

For implicit methods the PI step update is

. e \" /[E, \™
i <hn—1> <En+l> <En+1> ()

1
1

This is different from the PI controller for explicit methods because of the factor

(hh’_‘l), and the numerator in k7 and k, is 1 instead of 0.4 and 0.3, respectively.

See [Engsig-Karup et al., 2012] for more step size controllers and norms, and
more on error estimation.

3.6 Control Algorithms 29

3.6 Control Algorithms

3.6.1 Step Size Control for Explicit Runge Kutta Methods

For the unmodified explicit methods, the step size control is as shown in Algo-
rithm 3.

1 if the error estimate is sufficiently small then
2 update step;

3 if first step then

4 ‘ adjust step size with asymptotic controller;
5 else

6 ‘ adjust step size with PI controller;

7 end

8 store error for use in next accepted step;

9 else
10 ‘ adjust step size with asymptotic controller;
11 end

Algorithm 3: Step size control for methods where approximations are
obtained without any use of Newton iterations.

Since there are no Newton iterations, the step size control only depends on the
error estimate. In case the error is too large or if the iteration is at its first step,
the asymptotic step size controller is used. In the latter case, this is simply
because there is no measure of the error in the previous step, which is needed
in the PI step size controller.

Updating the step in line 2, means updating time as t,+1 = t, + h, updat-
ing the approximation as either z,41 or Z,4+1. Furthermore, evaluations of
f(tnt1,Zns1) and g(zn41) may be updated too, if computed values may be
reused.

30 Adaptive Step Size

3.6.2 Step Size Control for the Modified Euler’s Method
and ESDIRK23

For the methods which use Newton iterations, i.e. the modified methods and
ESDIRK?23, the step size control is as shown in Algorithm 4.

1 if all Newton iterations converged then
2 if the error estimate is sufficiently small then
3 update step;
4 if first step then
5 ‘ adjust step size with asymptotic controller;
6 else
7 ‘ adjust step size with PI controller;
8 end
9 store error for use in next accepted step;
10 else
11 ‘ adjust step size with asymptotic controller;
12 end
13 if 222 <1 then
14 ‘ restrict step size with O"ETf,
15 end
16 else if any Newton iteration diverged then
17 | restrict step size with max(3, <2L);
18 else
19 if % < 1 then
20 | restrict step size with min(§, *=<L);
21 else
22 ‘ restrict step size with %;
23 end
24 end

Algorithm 4: Step size control for methods where approximations are
obtained using Newton iterations.

If all Newton iterations converged, the procedure is very similar to that of Al-
gorithm 3, except that the step size is restricted according to the ratio % if
this is smaller than 1. In the case where all Newton iterations converged, the
ratio can be no smaller than ayef.

ayey is effectively any value between 0.2 and 0.5, the choice used in the imple-
mentations is 0.4. « is, as described in Section 2.9, the maximum ratio between
the residual in two subsequent Newton iterations.

3.6 Control Algorithms 31

The asymptotic controller is the same for both the modified and the unmodified
methods, and for both explicit and implicit methods. As mentioned in Section
3.5 the PI controller is different for the implicit methods, but as the asymptotic
controller, it is the same for both the modified and unmodified methods.
If any Newton iteration diverged the step size is restricted by the smaller of 22ef
and % If no Newton iterations converged or diverged, they all suffered from
slow convergence, i.e. too many iterations. In this case the step size is restricted
by the largest of % and O‘;—ef The restriction may be no larger than 1.

As for the step size control algorithm for the unmodified explicit methods, the
step update in line 3 is t,11 = t, + h, updating the approximation as either
Zpy1 OF Tpy1 and possibly function evaluations as well.

32 Adaptive Step Size

3.7 Summary

This Chapter has described the two methods of error estimation, step doubling
and embedded error estimation. When using adaptive step size, the step update
is accepted or failed based on the norm of the error, and the norm used has also
been described. The step size may be adjusted in each step using a step size
controller. The asymptotic controller and the PI controller are described and so
is the entire procedure of updating the step and step size both for the unmodified
explicit methods, and the modified methods and ESDIRK?23.

The Fuler method and RK4 use step doubling to estimate the error whereas
RKF45, DOPRI54 and ESDIRK23 are embedded methods, which use embedded
error estimation. The asymptotic controller is used to update the step size after
the first step and if the error estimate of a step is too large in norm value.
Otherwise the PI controller is used.

For the modified methods and ESDIRK23 the procedure of updating the step
and step size also takes into account whether the Newton iterations converged,
diverged or suffered from slow convergence. The step size is also restricted
depending on the norm values of the residuals in the Newton iterations.

CHAPTER 4

Implementation of Numerical
Methods

This Chapter describes the implementation of the Runge-Kutta methods de-
scribed in Sections 2.3 through 2.7, which numerically approximate solutions to
IVPs of the form

et = f(t,a(t), alte) = w0,

and

d

3 9@(®) = f(t,2(t)), z(to) = 2o,

The implementation of both the modified and unmodified versions of each
method is described. The methods are similar in many ways, however each
has details which sets it apart from the others.

34 Implementation of Numerical Methods

4.1 Euler

Both the modified and the unmodified Euler method is implemented as shown
in Algorithm 5. The unmodified method uses Algorithm 6 in line 7 and 12 and
Algorithm 3 in line 15. The modified method uses the alternative.

Data: f(t,z(t)), g(x(t)), %g(z(t)), initial and final time ¢(and ty,
number of steps N, initial conditions xg, absolute tolerance,
relative tolerance, parameters

Result: time and approximation vectors are returned or manipulated

1 initialization;
2 check if the method should use fixed step size;
3 if using fized step size then
4 calculate step size, h = %;
5 for every step do
6 update time step;
7 calculate z,11 using Algorithm 6 or 7;
8 end
9 else
10 while final time is not exceeded do
11 check if final time is exceeded by step size;
12 calculate z,11 and Z, 1 using Algorithm 2 and either 6 or 7;
13 estimate error as T,+1 — Tpt1;
14 calculate norm of error using the norm (3.6);
15 update step and step size using either Algorithm 3 or 4;
16 end
17 end
18 return number of steps;

Algorithm 5: Algorithm for both the modified and unmodified Euler
method.

If the method uses fixed step size, each step is simply calculated until the final
time is reached. Fach step uses one function evaluation. If the method is used
with adaptive step size, the step doubling described in Algorithm 2, is used for
estimating the error.

In the step update algorithm Z,, 1 is used as the approximation. In the modified
Euler method, g(&,+1) is evaluated in the step function and updated together
with Z,41. Note that the double step approximation is used as the advancing
step.

4.1 Euler 35

4.1.1 The Unmodified Euler Step Function

The unmodified Euler method is the simplest of the methods in the Runge-
Kutta Toolbox. Its step function is shown in Algorithm 6, and simply calculates
the Euler step. Prior to each call of this function should be a right-hand-side
evaluation. This function evaluation is omitted in the step function because it
saves function evaluations when using double stepping. The double stepping
could be put into each step function, but would be futile when using fixed step
size, where no error estimate is needed.

Data: f(t,z(t)), f(tn,®n), tn, Tn, b
Result: z,41
1 Tpt1 = Tn + hf(tny xn);
Algorithm 6: The unmodified Euler step function.

4.1.2 The Modified Euler Step Function

The modified Euler step function is shown in Algorithm 7. The « returned
by the Newton iterations is also the one returned by the step function. When
using double stepping, it is important to make sure whether all three Newton
iterations converged or if any of them diverged, even though one may expect
the two steps using half step size to converge if the full step did.

Data: f(t,z(t)), g(z(t)), 29(=(t)),
f(tn, 2n), g(xn), tn, n, by AbsTol, RelT ol
Result: z,41, gnt1, @
calculate gn+1 = g(xn) + hf(tn, Tn);
set 20 = T
set R(z(t)) = g(z(t)) — gn+1;
use Algorithm 1 to obtain x,,1;

Algorithm 7: The modified Euler step function.

W N =

36 Implementation of Numerical Methods

4.2 Classical Runge-Kutta

Both the modified and the unmodified classical Runge-Kutta method is imple-
mented as shown in Algorithm 8. The unmodified method uses Algorithm 9
in line 9 and 14 and Algorithm 3 in line 17. The modified method uses the
alternative.

Data: f(t,z(t)), g(z(t)), %g(z(t)), initial and final time ¢y and ¢y,
number of steps N, initial conditions xg, absolute tolerance,
relative tolerance, parameters

Result: time and approximation vectors are returned or manipulated

1 initialization;
2 define A, b and ¢;
3 check if the method should use fixed step size;
4 if using fized step size then
5 calculate step size, h = t]{,:tlo;
6 for every step do
7 update time step;
8 evaluate f(t,,xn);
9 calculate 1 using Algorithm 9 or 10;
10 end
11 else
12 while final time is not exceeded do
13 check if final time is exceeded by step size;
14 calculate z,11 and Z,1 using Algorithms 2 and either 9 or 10;
15 estimate error as T,4+1 — Tpit1;
16 calculate norm of error using the norm (3.6);
17 update step and step size using either Algorithm 3 or 4;
18 end
19 end
20 return number of steps;

Algorithm 8: Algorithm for both the modified and unmodified classical
Runge-Kutta method.

Except for the calculation of z,41 and 2,11, this method is essentially the
same as the Euler method. For the modified RK4 method, the step update
in Algorithm 4 also updates Z,4+1 and ¢(Z,4+1). Note that the double step
approximation is used as the advancing step.

4.2 Classical Runge-Kutta 37

4.2.1 The Unmodified RK4 Step Function

For Euler’s method the Butcher Tableau was so simple that it did not need any
representation in the implementation. The Classical Runge-Kutta Method, or
RK4 for short, however, has arrays representing the b and ¢ vectors and the
A-matrix. The step function is shown in Algorithm 9.

Although this may be implemented with an actual for-loop, writing out each
stage explicitly saves a few calculations, whereever there are zero coefficients.
We see that in one iteration where step doubling is used, the RK4 method uses
11 function evaluations whereas Euler’s method used only two. The higher order
of this method should make up for this by admitting larger steps.

Data: f(t,$(t)), f(tna'rn)v tTw L, h7 Aa b, c
Result: z,41
set X1 = xp;

set f1 = f(tn,Tn);
fori=2...4do

calculate X; =z, + h Z;;ll a; jfi;
evaluate f; = f(t, + c;h, X;);
end
calculate z,41 = x, + h - Z?Zl b fi;
Algorithm 9: The unmodified RK4 step function.

B B =B B VU VI

4.2.2 The Modified RK4 Step Function

The modified RK4 step function is shown in Algorithm 10. Special for the
modified RK4 step function is that Newton iterations are used to obtain each
internal stage. Each of these iterations use the previous stage as initial guess,
and for the approximation x,y; the last stage is used as initial guess. The
residual function, R(x(t)) varies through the stages, however, the Jacobi matrix,
%R(Jc(t)), is the same for all Newton iterations in this step function.

38 Implementation of Numerical Methods

Data: f(t,(t)), g(x(t)), Zg(x(t)),
fltn,xn), g(xn), tn, Tn, h, AbsTol, RelTol, A, b, c

Result: z,41, gnt1, @
set X1 = xn;
set fl = f(tna xn);
fori=2...4do

calculate G; = g, + h Z;;ll a; jfi;

set 20 = X;_1;

set R(a(t)) = g(x(t)) — G

use Algorithm 1 to obtain X; and ay;

evaluate f; = f(t, + ¢;ih, X;);
end
10 calculate g,11 =g, + h- Z?Zl b; fi:
11 set 20 = Xy;
12 set R(a(t)) = g(2(t)) — gu1:
13 use Algorithm 1 to obtain x,,41;

Algorithm 10: The modified RK4 step function.

© w0 N o A W N

4.3 Runge-Kutta-Fehlberg

The modified and the unmodified Runge-Kutta-Fehlberg method is implemented
as shown in Algorithm 11. The unmodified method uses Algorithm 12 in line 9
and 15 and Algorithm 3 in line 17. The modified method uses the alternative.

Unlike the Euler method and RK4, this is an embedded method using embedded
error estimation. This is done in the step functions described in the Subsections
below. For the modified RKF45 method, the step update in Algorithm 4 also
updates &1 as well as g(&,+1). Note that the fifth order method is used as
the advancing method.

4.3.1 The Unmodified RKF45 Step Function

Like RK4, this method has array representations of the Butcher Tableau, how-
ever this also needs representations of b and d used in the error estimate. The
step function is implemented as shown in Algorithm 12. This is very similar to
that of RK4, except for the last line which calculates the error estimate. Hence
the error estimate is simply returned by the step function, and there is no need
for step doubling. Because of this there is actually no need to have the right-
hand-side evaluated outside the step function, however, for consistency, this is

4.3 Runge-Kutta-Fehlberg

39

© W N O kW N -

I O
© ® N O A~ W N H O

20

Data: f(t,z(t)), g(x(t)), %g(w(t)), initial and final time ¢y and ¢y,
number of steps N, initial conditions zg, absolute tolerance,
relative tolerance, parameters

Result: time and approximation vectors are returned or manipulated

initialization;

define A, b, b, ¢ and d;
check if the method should use fixed step size;
if using fized step size then
calculate step size, h = t]{,:tf;
for every step do
update time step;
evaluate f(t,, Tn);
calculate z,1 using Algorithm 12 or 13;
end
else
while final time is not exceeded do
check if final time is exceeded by step size;
evaluate f(t,,Tn);
calculate 2,41 and e using either Algorithm 12 or 13;
calculate norm of error using the norm (3.6);
update step and step size using either Algorithm 3 or 4;
end
end

return number of steps;

Algorithm 11: Algorithm for both the modified and unmodified Runge-
Kutta-Fehlberg method.

40 Implementation of Numerical Methods

not changed.

In comparison RKF45 uses 6 function evaluations per iteration where RK4 used
11 and Euler used 2 because of the double stepping. It should also be noticed
that the advancing step uses b instead of b, which means that the method is
expected to be of fifth order.

Data: f(t,z(t)), f(tn,xn),tn,xn,h,A,B,c,d
Result: Z,,11,en41
set X1 = xp;

set f1 = f(tn, Tn);
fori=2...6do

calculate X; =z, + h Z;;ll a;j fi;
evaluate f; = f(tn + cih, X;);
end
calculate Zp11 = xp + h E?:l Bifi;
calculate e, 1 = h E?:l d; - fi;
Algorithm 12: The unmodified RKF45 step function.

®» N o ok W N =

4.3.2 The Modified RKF45 Step Function

The modified RKF45 is much like the modified RK4 and so is its step function
which is shown in Algorithm 13.

Also for the RKF45 step function, Newton iterations are used to obtain each
internal stage, and these also use the previous stage as initial guess and the last
stage as initial guess for #,41. Also in this step function the residual function,
R(z(t)) varies through the stages, and the Jacobi matrix, %R(z(t)), is the same
for all Newton iterations in this step function. The embedded error estimate is
still virtually free. Important to notice is that the higher order method is used
as the advancing method.

4.4 Dormand-Prince 41

Data: f(¢,z(t)), g(z(t)), %g(m(t)),)
fn,xn), g(xn), tn, Tn, by AbsTol, RelTol, A, b, c,d
Result: 2,11, ent1, Gnt1, @

1 set X1 = x,;

2 set f1 = f(tn,Tn);

3 fori=2...6do

4 calculate G; = g, + h Z;;ll a; jfi;
5 set 20 = Xi 1

6 set R(x(t)) = g(x(t)) — Gy;

7 use Algorithm 1 obtain X;;

8 evaluate f; = f(t, + c;h, X;);
9 end
10 calculate gp41 = gn +h 2?21 l;ifi;
11 set 2° = Xg;
12 set R(z(t)) = g(x(t)) — gn+1;
13 use Algorithm 1 to obtain &, 1;
14 calculate e,11 = h 2?21 d; - fi;

Algorithm 13: The modified RKF45 step function.

4.4 Dormand-Prince

Both the modified and the unmodified Dormand-Prince method is implemented
as shown in Algorithm 14. The unmodified method uses Algorithm 15 in line 9
and 14 and Algorithm 3 in line 16. The modified method uses the alternative.

Like RKF45, this is an embedded method using embedded error estimation.
This is done in the step functions described in the Subsections below. For
the modified DOPRI54 method, the step update in Algorithm 4 updates both
Znt1, [(tnt1, Tny1) and g(Zpn41). Note that the fifth order method is used as
the advancing method and that there are no function evaluations outside the
step functions, except at the first step.

4.4.1 The Unmodified DOPRI54 Step Function

The Dormand-Prince method, DOPRI54, has array representations of A, b, 13,
c and d from the Butcher Tableau just like RKF45 did. The DOPRI54 step
function is implemented as shown in Algorithm 15. The step function does not
need b or b as only the latter is used and it is also the last row of A. This

42

Implementation of Numerical Methods

© 00w N O ok W N -

R e T
® N O Ok W N H O

19

Data: f(t,z(t)), g(x(t)), %g(x(t)), initial and final time ¢(and ty,
number of steps IV, initial conditions xg, absolute tolerance,
relative tolerance, parameters

Result: time and approximation vectors are returned or manipulated

initialization;

define A, b, b, ¢ and d;
evaluate f(tg,zo);
check if the method should use fixed step size;
if using fized step size then
calculate step size, h = %;
for every step do
update time step;
calculate x,11 using Algorithm 15 or 16;
end
else
while final time is not exceeded do
check if final time is exceeded by step size;
calculate Z,11 and e using either Algorithm 15 or 16;
calculate norm of error using the norm (3.6);
update step and step size using either Algorithm 3 or 4;
end
end
return number of steps;

Algorithm 14: Algorithm for both the modified and unmodified
Dormand-Prince method.

4.4 Dormand-Prince

also means that the output f(t,41,&n+1) can be input in the next iteration as
f(tn,z,). Hence DOPRI54 uses six function evaluations per iteration just like

RKF45, even though DOPRI54 has one more stage.

Data: f(t,z(t)), f(tn,xn), tn, Tn, h, 4, ¢, d
Result: 41, ent1, f(tnt1, Tnt1)
set X1 = zp;
set f1 = f(tn, zn);
fori=2...7do
calculate X; =z, + h Z;;ll a; j fi;
evaluate f; = f(t, + c;h, X;);
end
set 41 = X7;
set f(tni1, Tnt1) = fr;
calculate e,41 = h - 21‘7:1 d; fi;

© O N O oA W N

Algorithm 15: DOPRI54 step function.

4.4.2 The Modified DOPRI54 Step Function

The modified DOPRI54 step function is shown in Algorithm 16. DOPRI54
has one more internal stage than RKF45, however it does not need to solve
9(Zn+1) = gnt1. Like for RKF45, the initial guess for each stage is the previous
stage. DOPRI54 also uses the higher order method as the advancing method.

It also outputs fr41.

44 Implementation of Numerical Methods

Data: f(t,z(t)), g(z(t)), 29(x®)), f(tn.20), 9(20), tn, Tn, b, AbsTol,
RelTol, A, ¢, d
Result: &,41, €ni1, fott, gnyl, @
1 set X1 = ay;
2 set fl = f(tnaxn);
g fori=2...7do
4 calculate G; = g, + h 23211 a; jfi;
5 set 20 = X;_1;
6 set R(x(t)) = g(z(t)) — Gy;
7 use Algorithm 1 to obtain Xj;
8 evaluate f; = f(t, + c;ih, X;);
9 end
10 set Tpy1 = X7;
11 set fny1 = fr;
12 set gpy1 = G7;
13 calculate e,11 = h - 23:1 d; fi;

Algorithm 16: DOPRI54 step function.

4.5 ESDIRK23

Both the modified and the unmodified ESDIRK23 method is implemented as
shown in Algorithm 17. The unmodified method uses Algorithm 18 in line 8
and 13. The modified method uses the alternative.

Like RKF45 and DOPRI54, ESDIRK?23 is an embedded method using embedded
error estimation, which is done in the step functions described in the Subsections
below. For the unmodified ESDIRK23 method, only x,4+1 and f(tn+1, Tny1)
is updated in Algorithm 4. For the modified ESDIRK23 method, the step
update also updates g(z,+1). Note that the second order method is used as
the advancing method instead of the third order and that there are no function
evaluations outside the step functions except in the first step. Note also that
the step update procedure is the same for both the modified and the unmodified
ESDIRK23 method.

4.5.1 The Unmodified ESDIRK23 Step Function

The ESDIRK23 method has array representations of b, l;, c and d from the
Butcher Tableau. Since the A-matrix only has two distinct elements, and the
last row has the same coefficients as b, the matrix itself need not be stored.

4.5 ESDIRK23

45

Data: f(t,z(t)), % (t,z(t)), g(z(t)), %g(m(t)), initial and final time
to and ¢y, number of steps IV, initial conditions xg, absolute
tolerance, relative tolerance, parameters

Result: time and approximation vectors are returned or manipulated

initialization;

=

2 define A, b, 13, cand d;

3 check if the method should use fixed step size;

4 if using fized step size then

5 calculate step size, h = %;

6 for every step do

7 update time step;

8 calculate z,1 using Algorithm 15 or 19;

9 end
10 else
11 while final time is not exceeded do
12 check if final time is exceeded by step size;
13 calculate x,1 and e using either Algorithm 18 or 19;
14 calculate norm of error using the norm (3.6);
15 update step and step size using 4;
16 end
17 end

18 return number of steps;

Algorithm 17: Algorithm for both the modified and unmodified
Dormand-Prince method.

46 Implementation of Numerical Methods

Euler steps are used as initial guess for each internal stages and it uses Newton
iterations to obtain the approximation in the internal stages. Every time the
residual function, R(z), is evaluated in the Newton iterations, so is f(¢,z(t)).

If the first Newton iterations diverge or converges slowly, the while-loop in the

second Newton iterations will not initialize.

) Jz
d, vy, AbsTol, RelTol

Result: z,41, €nt1, frot1, @

set X1 = xp;

set f1 = f(tna xn)§

evaluate J = %f(tn, Tn);

calculate 2 R(z) = I — hvJ;

fori=2...3do
calculate ¢; = x,, + h 23;11 Ai, g f;
calculate z° = z,, + c;hf1;
set R(x(t)) = x(t) — hvf(tn + cih, (1)) — ¢4
use Algorithm 1 to obtain Xj;

end

set xpy41 = Xs;

set fri1 = f3;

calculate e = I - Z?Zl di fi;

© 00 N O A W N

o
N = O

-
w

Data: f(t,z(t)), 2 f(t,x(t)), f(tn,Tn), tn, Tn, h, AbsTol, RelTol, b, c,

Algorithm 18: The unmodified ESDIRK23 step function.

4.5.2 The Modified ESDIRK23 Step Function

The modified ESDIRK23 step function is shown in Algorithm 19. It is worth
noting that the modified ESDIRK23 method does not use Newton iterations
any more than the unmodified ESDIRK23 method does. It has an additional
evaluation of %g(tn,mn). Note also that both the Residual and the ; are

different from the same in the unmodified method.

4.6 Summary 47

Data: f(t,z(t)), 2 f(t,z(t), g(z(t)), Zg(@(t)), f(tnTn), g(xn), tn,
Ty, h, AbsTol, RelTol, b, ¢, d, v, AbsTol, RelTol

Result: z,41, ent1, fnt1s Gnt1, @

1 set X1 = xy;

2 set f1 = f(tn,Tn);

3 set ZR(xn) = 2 g(tn, Tn) — Wy ftn, Tn);
4 fori=2...3do

5 calculate v; = g, +h 23;11 Ai, 5 fjs

6 calculate 20 = x,,;

7 | set R(z(t)) = g(x(t)) — hyf(tn + cih,2(t)) — s;
8 use Algorithm 1 to obtain Xj;

9 end
10 set xp11 = X3;
11 set fot1,Tnt1) = f3;
12 set gpr1 = Gs;
13 calculate ;11 = h - Z?:1 d; fs;

Algorithm 19: The modified ESDIRK23 step function.
4.6 Summary

Every method consist of a main algorithm and a step function. The main algo-
rithm is in large parts the same for both the modified and unmodified versions
of each method. The main algorithm and both the modified and unmodified
step functions have been discussed and illustrated using pseudo-code.

48

Implementation of Numerical Methods

CHAPTER 5

Implementation of Parallel
Simulations

This Chapter describes the implementation of parallel simulations in Matlab
and C and provides pseudo-code. MPI may be used for implementing parallel
simulations in C and the relevant functions from this interface are described.

50 Implementation of Parallel Simulations

5.1 Introduction

This Chapter describes how the simulations needed to obtain the results in
Chapter 6 may be parallelized in order to decrease the runtime. Simulating in
parallel may improve runtime since computations are done simultaneously. This
improvement is attainable because the simulations are completely independent
of each other, which means that there is no need for communication between
the processes during simulation.

The goal when running the simulations is to obtain the approximations, e.g. to
write them onto a file. In a serial implementation, all simulations can easily
be written onto a single file, however this is more cumbersome when multiple
processes are to write to the same file. Alternatively, each process may write to
its own file, or each simulation may be saved in a separate file. This project is
not concerned with the possible increase in loading time, when data is stored
across several files, and it is expected that this is negligible.

An example of a parallel simulation which would not be effective is to do a
single simulation of the system in equation 6.15 with piecewise approximations
to the analytically optimal inlet rates as they are described in Section 6.5.
The simulation of this system is in practice a number of subsimulations with
constant inlet rates, where each uses the approximation from the previous as
initial condition.

This would mean that only one process could run at a time, since each pro-
cess would need the results from the previous as initial conditions. Hence, the
only change when using parallel instead of sequential simulations would be the
increase of unnecessary communication between the processes and therefore in-
creased runtime.

5.2 Parallel Simulations In Matlab 51

5.2 Parallel Simulations In Matlab

In Matlab, simulating in parallel is quite easy to implement compared to C. The
structure is like a for-loop, however the order of execution is not deterministic.
The command parfor is used instead of for and then Matlab delegates the body
of the loop to the processes. This may be used as seen in Algorithm 20.

There are several things to be aware of when using Matlabs parfor. Since the
body of the loop is executed in any order, any assignment like t = £(A(i)); is
left unchanged outside the loop, i.e. t is unchanged. Assigning to elements
in a vector or array do affect the variable outside the loop. For example,
C(i) = h(t,u) does change C. Another use which is important to be aware
of is that if an assignment is deterministic, it may be affected outside the loop.
This could be if p(i), s = s+1 end, where s is then affected. [Mathworks,
2013].

1 parfor each set of parameters do
2 simulation;
3 end

Algorithm 20: Implementation of parallel simulations in Matlab.

5.3 Simple Parallel Simulations In C

As mentioned in Section 5.1, the simulations are assumed to be completely in-
dependent of each other, which means that the parallel simulations may be done
without any communication between the nodes. The simple implementation of
parallel simulations is shown in Algorithm 21.

As will be shown in Chapter 8, this implementation has the disadvantage that
some simulations may take longer for some sets of parameters than others if
using adaptive step size. Consider a case with two processors available, and 10
simulations to be done. If half take 1 second and the other half takes 2 seconds,
then the total runtime is 15 seconds when using serial simulations. If then one
process does all the slow simulations, the runtime is 10 seconds, even though it
may had been expected that the runtime would be near halved, i.e. 7.

52 Implementation of Parallel Simulations

for each process do
acquire rank;
acquire number of processes;
acquire sets of parameters, based on rank and number of processes;
for each set of parameters do
‘ simulation;
end

® N o oA W N =

end

Algorithm 21: Simple implementation of parallel simulations.

5.4 Advanced Parallel Simulations In C

To account for the drawbacks of the simple parallel simulations, one may sacrifice
a processor to take care of keeping the remaining processors busy. If only two
processors are available, this would only increase the runtime since just one
process is simulating, but if a large number of processors are available, e.g. 16,
then the decrease in runtime is expected to be near 15, which is not much less
than 16.

The implementation of such a program is shown in Algorithm 22. As with the
simple implementation, all slave nodes may initialize themselves. The master
node is not needed until the first slave node is done with the simulations for the
set of parameters. This may be implemented such that the master node is also
doing simulations, but is somewhat more cumbersome, and without the scope
of this project.

5.4 Advanced Parallel Simulations In C

53

21
22
23

for master node do

e

acquire number of processes;
acquire chunks of parameters based on number of processes;
while simulations remain to be done do
wait for a message from any slave node;
at receival of message send out new set of parameters;
end
for each process do
‘ send stop signal;
end

nd
for each slave node do

acquire rank;
acquire number of processes;
acquire a set of parameters, based on rank and number of processes;
while stop signal not received do
for each set of parameters do
‘ simulation;
end
send message requesting new set of parameters from master
node;
receive message with new set of parameters from master node;
end

end

Algorithm 22: Advanced implementation of parallel simulations.

54 Implementation of Parallel Simulations

5.5 Message-Passing Interface

In practice, implementing parallel simulations in C is done with the Message-
Passing Interface, MPI. This interface provides functions for sending and receiv-
ing messages between processes and much more. [Dongarra et al., 1996].

Any program using multiple processes should only call MPI functions between
the two function calls

MPI_Init (&argc,&argv);
<MPI function calls>
MPI_Finalize();

argc and argv are from the command line. Acquiring the rank is done with
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

which stores the rank of the process in the variable rank. The total number of
processes is stored in the variable size by the call

MPI_Comm_size(MPI_COMM_WORLD, &size);
A message may be send by the call
MPI_Send(send,n,MPI_INT,dest,tag,MPI_COMM_WORLD) ;

where send is a pointer to a contigous memory of size n times the size of MPI_INT
which is what may be received. The type may also be MPI_DOUBLE or others.
dest indicates which process the message should be sent to. tag is used to
identify the message. The last argument indicates which processes are valid for
the send. In the context of this project, all functions are always called with
MPI_COMM_WORLD. The receive function is not much different

MPI_Recv(rec,n,MPI_INT,source,tag,MPI_COMM_WORLD,&status);

Like the send function, rec is a pointer to memory of size n times the size of
MPI_INT or whatever type is passed. source indicates what process to receive

5.6 Summary 55

a message from and may be set to MPI_ANY_SOURCE to indicate that messages
from any process should be received. This is used in the advanced parallel
simulations. status is pointer to a structure MPI_Status which contain the
source and tag of the message.

5.6 Summary

This Chapter has described the implementation of parallel simulations in Matlab
by the use of parfor-loops.

The two implementations of parallel simulations in C has also been described
and the functions from the MPI interface which are used to acquire rank and
number of processes as well as sending and receiving messages from one process
to another, have been explained.

56

Implementation of Parallel Simulations

CHAPTER 6

Fed Batch Fermenter Problem

In this Chapter, it is illustrated how the numerical methods for solving IVPs,
introduced in the Chapter 4, may be used to test different control strategies for
increasing the total production of biomass in a fed batch fermenter by controlling
the rates of water and substrate inlet. The model of the fed batch fermenter is
described in Section 6.1.

The control strategies should be robust towards pertubations in the parameters
and the strategies are tested on a large set of pertubated parameters. The
different control strategies are shown below, where the optimal inlet rates are
analytically derived in [Jgrgensen, 2013]

Constant inlet rates

Optimal inlet rates

Piecewise approximation of 2.

Optimal inlet rates using substrate feedback
Piecewise approximation of 4.

Optimal inlet rates using biomass/substrate feedback

NS ot w N

Piecewise approximation of 6.

58 Fed Batch Fermenter Problem

6.1 Model of Fed Batch Fermenter

This Section describes the model of the Fed Batch Fermenter. In the fermenter is
a biomass and substrate solution in water and the biomass transforms substrate
into more biomass. Meanwhile, substrate and water are supplied to the tank,
and it is the rate of these inlets that are sought to be controlled as to optimize
the total production. The substrate to biomass reaction is satisfies the following,

YsS — X,

where S is substrate and X is biomass and with the reaction rate
r(Cx,Cs) = u(Cs)Cx,

where

Cs

w(Cs) = Hmaz——————@3 -
Ks+Cs + K7i

Hence the production rates are

Rx(Cx,Cs) = r(Cx,Cs)
Rs(Cx,Cs) = —7r(Cx,Cs).

The model is based on conservation of mass, and assumes that the inlets and
fermenter content has identical density. Hence the change in total mass, pV,
equals the mass added from the substrate, and water inlets, pFs and pF,, minus
whatever may be harvested from the fermenter during production, pF. This is
equation (6.1a).

The change in biomass, VCyx, is equal to what is produced from substrate,
RxV, minus what is harvested, F'Cx, which is expressed in equation (6.1b).

The change in mass of substrate, V Cg equals what is added from the substrate
inlet, F;Cs ;, and whatever is produced, RgV, minus what is harvested FCg,
expressed in equation (6.1c).

d
a(pV) =pFs + pFy, — pF, Vito) = Vo (6.1a)
d
a(VCx): — FCx + RxV, Cx(fo)z CX,O (6.1b)
d
@(VCS) =F,Csin — FCs + RsV, Cs(tg) = Cs,o (6.1c)

The model is now in the form (1.1). In the next Section, it will be transformed
into the form (1.2) as both forms are used in Chapter 8, where simulations are
timed for both the modified and unmodified methods.

6.2 Simulation of Fed Batch Fermenter 59

Symbol | Value Unit
P 1 kg/m’
F 0 m? /hr
Vs 1.777 | kg substrate/kg biomass
Imaz 0.37 1/hr
Kg 0.021 kg/m?
K 0.38 kg/m?

Table 6.1: Parameters in the Fed Batch Fermenter model.

6.2 Simulation of Fed Batch Fermenter

This Section describes the choice of certain parameter values and initial condi-
tions. In Table 6.1, can be seen the parameter values used in the simulations.

The initial conditions are chosen to be

Vo = 100 m* (6.2)
kg
Cxo=20—3 (6.3)
kg
Cs0 = 0.0893 — (6.4)
Py =0kg (6.5)

Vb is chosen rather arbitrarily and so is C'x¢. The choice of Cg g is explained
in a following Subsection. Py is chosen as is because the production is nil at the
start of the production.

In the simulations F' is chosen to be zero, meaning that there is no harvesting
during the production of biomass. All biomass is simply harvested when the
the tank is full, and the process is repeated. It is assumed that the tank has a
capacity of Viee = 1200m3.

The time span of simulation is not fixed since, it is generally not known in
advance how long it takes for the tank to fill up, for any given inlet rates and
parameters, e.g. piecewise constant parameters. For the optimal inlet rates with
no feedback, described in Section 6.4, the time span is

P E (6.6)

w* log Vin

vé”)

60 Fed Batch Fermenter Problem

Plot of specific growth rate

_mu(CS)

0.4

0.3f

0 02 04 06 08 1

Cs

Figure 6.1: Plot of the function p(Cg), with the parameters from Table 6.1

6.2.1 Specific Growth Rate

We investigate the function u(Cs) as we want an initial substrate concentration,
Cs,0, which gives the maximum reaction rate. The derivative of (Cy) is
d K](—K5K1+02)
7/1(05) = —Umaz .‘32 2
dCyg (KSK[—FC,sK]-‘rCS)

which is zero at 0.0893, where 1(0.0893) = 0.25. As can be seen from Figure
6.1 this is clearly a local maximum. In this plot the parameters from Table 6.1
are used. These optimal values will be used in the simulation of the model in
later sections.

Cs.optimal = 0.0893 (6.7)
,U(CS,optimal) = 025 (68)

6.2.2 Transformation of the IVP

In this Subsection the differential equations (6.1) are rewritten into the form
4 x = f(x) instead of the current form % g(x) = f(x) and a differential equation
which describes the change in production at time ¢ is added.x = (V,Cx, Cs, P)

and g(x) = (pV,VCx,VCs, P).

It is assumed that p is a constant, and we set F' = 0. Hence from equation 6.1a
we get

d
—V =F,+F,. .
dtv + (6.9)

6.2 Simulation of Fed Batch Fermenter

61

Using the chain rule on the left hand side in (6.1b), we obtain

d d d
@(VCX) = V%CX +CX@V.

(6.9) is substituted

d d d
V%CX —|—CX%

From (6.1b) we know that

d
Vo Ox + Ox(Fs + Fy) =

RxV.

From this we obtain the expression for the derivative of C'x.
d F, + F,

aCX = Rx —CX

%

The expression for %C’S can be derived in a similar manner using (6.1c) and

(6.9).

4

d d

d
= V%Cs + Cs(Fs + Fy)

= ESCS,ML + RSV

FSCS,in - CS(FS + Fw)

d
= %CS—RS“F

%4

The total production at a given time, ¢ is calculated as follows

P = [Ra(OV (D,

to

(6.10)

(6.14)

and is implemented as a part of the system of differential equations by differen-
tiating equation (6.14), which gives

d

—P(t) = .
T (t) = RxV.

The IVP (6.1) is put into the form (1.2) as

d

SV =F, +F,,

dt ot

d Fs + Fy

SCOx=Ry - Cx—2"v

dt X X X %)
FSCSin_CS(Fs+Fw)
dt %4 ’

Vito)= Vo
Cx(to) =Cxp
Cs(to) = Csyo

P(ty) = Po.

(6.15a)
(6.15b)
(6.15¢)

(6.15d)

62 Fed Batch Fermenter Problem

6.3 Constant Inlet Rates

In this section we use

Fy = 100m? /hr (6.16)
F, = 100m? /hr, (6.17)

as this value is somewhat reasonable, compared to the analytically optimal rates
used in the following section. In Figure 6.2 can be seen the simulation for the
exact parameter values. We see that the volume continues up to a total of 1200.
The biomass concentration decays in a somewhat exponential manner towards
zero and the substrate concentration grows exponentially towards around 35.
The production grows explosively at first and then assumes a somewhat constant
increase and ends at around 65. The production time is just above 5.

We will later see that this production is extremely low. The explanation is that
the substrate concentration becomes far larger than its optimal value and the
biomass concentration decays. Both of these contribute to a decrease in the
reaction rate of the substrate to biomass reaction.

In Figure 6.3 can be seen the histogram of productions when the parameter
values are varied. All productions are between 50 and 100 and the shape is
reminiscent of a normal distribution.

6.3 Constant Inlet Rates

63

1500

1000-

500

t

(a) Total tank volume

40

30

o’ 20

10

t

(c) Substrate concentration

20
15

310

t

(b) Biomass concentration

100

(d) Production

Figure 6.2: Trajectories of the approximate solution to the fed batch problem
(6.15) for different sets of parameters. Constant inlet rates have been used.

Frequency
© o o o
N w S [$))

©
=

A

50

100 150
Production

Figure 6.3: Fed batch biomass production for different sets of parameters. Con-

stant inlet rates have been used.

64 Fed Batch Fermenter Problem

6.4 Analytically Optimal Inlet Rates

In this Section we use the analytically optimal inlet rates, derived in [Jgrgensen,
2013].

F! = a,Vpexp(at)
Er = a,Vyexp(at),

where

o =
° CS,in
o s — (OS,in - O;’)/C;(-
CS,in
a = Qg+ Q-

As both inlet rates should be positive at all times, we must require that as > 0
and a,, > 0. We use Cgp = 2(C% +vsC%), which is twice the minimum value
for which ay, > 0. This value also has the particular property that as = oy, as
shown below.

Csin = 2(Cs+75C%)
Cxvs+Cs = —Cxvs+Csin—Cg
Ys + C;/C} = _(’YS - (Cs,in - C;’)/C;()
=2t At = - r
CS,in CS’,in
Qs = Qg
E@ = Fw

In Figure 6.4 are shown the simulation for these optimal inlet rates for different
sets of parameters, and the behavior is quite different from when using constant
inlet rates. Both volume and production increases in an exponential manner
while biomass and substrate concentrations are steady at their optimal values.

The production is in this case more than 20000, which is enormous compared to
the productions in the previous section which were all in the range of 50 to 100.
However, for some sets of parameters the system experiences the same behavior
as with constant inlet rates. The production time is just around 9, which is a
tad more than in the previous section where it was around 5.5.

The histogram for the optimal inlet rates shown in Figure 6.5 is also very dif-
ferent from the one we saw for constant inlet rates. More than half the values
are located in the vincinity of zero, but a large part is clustered in area around

6.4 Analytically Optimal Inlet Rates 65

1200
1000
800-
> 600-
400-
200
00
(a) Total tank volume (b) Biomass concentration
4
40 25X 10
30 2
1.5
©"20 o
1
10
0.5
00 2 4 6 8 10 00 2 4 6 8 10
t t
(c) Substrate concentration (d) Production

Figure 6.4: Trajectories of the approximate solution to the fed batch problem
(6.15) for different sets of parameters. The analytically optimal inlet rates have
been used.

20000 to 25000. In conclusion these optimal inlet rates are far superior to the
constant inlet rates used in the previous section, as a there is a large chance
that the production might be very big. However, there is still a big risk that
the production will be on the scale of hundreds.

66 Fed Batch Fermenter Problem

Frequency

0 1 2 -3 4
Production x10*

Figure 6.5: Fed batch biomass production for different sets of parameters. The
analytically optimal inlet rates have been used.

Sample Time, Ts = 0.49368
200 ‘

150

100-

50-

Figure 6.6: The optimal inlet rates together with piecewise constant approxi-
mations of these. N, = 20.

6.5 Piecewise Constant Approximations

In this section we use piecewise constant approximations of the optimal inlet
rates described in the previous section. The idea is to keep the inlet rates
constant in a number of time intervals, Ni. We use the left optimal inlet rate
which means we will get a stair function which is below the optimal inlet rate,
see Figure 6.6. In mathematical notation, the approximations are

F+

s/w

(t) = s*/w(tl)7 fort e [ti,ti+1]. (618)

In Figure 6.7, it is seen that, for Ny = 2000, the trajectories are very much
similar to those of purely optimal inlet rates. Even though it seems that the
two concentrations are still constant, they do vary very little as a consequence

6.5 Piecewise Constant Approximations 67

1500

1000-
>
500-
00
(a) Total tank volume (b) Biomass concentration
4
40 25X 10
30 2
1.5
©"20 o
1
10
0.5
00 2 4 6 8 10 00 2 4 6 8 10
t t
(c) Substrate concentration (d) Production

Figure 6.7: Trajectories of the solution to the fed batch problem (6.15) for dif-
ferent sets of parameters. Piecewise constant approximations to the analytically
optimal inlet rates have been used. Ny = 2000.

of the inlet rates not being completely optimal.

In Figure 6.8 we see histograms for N, = 20, and N = 2000. Clearly it
is beneficial to use a higher number of samples as the probability of a large
production is increased when N}, increases. However in both cases there is more
than 50% chance that the production will be very small, as for the two previous
strategies.

68 Fed Batch Fermenter Problem

0.5 0.5

04 04
© 03 © 0.3
=] =]
o o
o o
r 0.2 I 0.2

0.1 . 0.1

0O 1 2 3 4 0O 1 2 3 4
Production x10* Production % 10°
(a) Ny = 20 (b) Ny = 2000

Figure 6.8: Fed batch biomass production for different sets of parameters. Piece-
wise constant approximations to the analytically optimal inlet rates have been
used.

6.6 Substrate Feedback for Optimal Inlet Rates

In this Section we will see the effect of adding a feedback term to the expression
for the substrate concentration. The substrate feedback inlet rates are as follows

F, = F: + K,(Cs — Cs) (6.19)
F, = F*. (6.20)

The effect of this feedback term should counteract the tendency that the sub-
strate concentration becomes too large, and the biomass concentration too small,
since the optimal inlet rates are based on keeping both concentrations at their
optimum values.

The histograms for Ky = 10,50,100 and 300 are shown in Figure 6.10. The
effect is not at all clear for K, = 10, but for K; = 50 we begin to see the
lower part of the production distribution shift to the right. For this value of K
there is no risk of a production lower than 7000, a great improvement over the
previous strategies. The effect is even greater for Ky, = 100, where the lowest
production is around 12000, and for K = 300, all productions lie in the range
from around 18000 to 28000.

6.6 Substrate Feedback for Optimal Inlet Rates 69

1500 : 24
1000
>
500-
% 5 10 15 15
t t
(a) Total tank volume (b) Biomass concentration
0.4 ‘ 4x10°
2.5¢
2
o 1.5¢
1
0.5¢
0O 5 10 15 OO 5 10 15
t t
(c) Substrate concentration (d) Production

Figure 6.9: Trajectories of the approximate solution to the fed batch problem
(6.15) for different sets of parameters. The analytically optimal inlet rates with
substrate feedback have been used. K, = 300.

70 Fed Batch Fermenter Problem

0.5 05
04 0.4
G 0.3 c 0.3
=} 3
o o
(0] (]
0.2 £ 0.2
01 0.1 I '
0 0 2

3 4

0 1 2 0 1 3 4
Production x 10" Production x 10"
(a) K, =10 (b) K5 =50
0.5t 0.5
0.4 0.4
© 0.3 © 0.3
=] >
o o
(5 o
r 0.2 I 0.2
0.1 . 0.1 I
0O 1 2 3 4 GO 1 2 3 4
Production x10* Production x10*
(c) K5 =100 (d) Ks =300

Figure 6.10: Fed batch biomass production for different sets of parameters. The
analytically optimal inlet rates with substrate feedback have been used.

6.7 Substrate Feedback for Piecewise Constant Inlet Rates 71

6.7 Substrate Feedback for Piecewise Constant
Inlet Rates

In this Section, piecewise constant approximations to the inlet rates described
in the previous Section, are used. We consequently use N = 2000 as this
approximation is very close to the actual optimal rates, of course depending on
the time interval.

In Figure 6.11 is shown the simulation for K, = 300, and we see that both the
volume and production simulations behaves much like when using the optimal
inlet rates and hence also when using the piecewise approximations of these.

The histograms for this strategy is shown in Figure 6.12. The histograms are
much like the ones seen in the previous Section. However the distribution is
somewhat stretched as the lowest value of one of the distributions is lower than
when using the substrate feedback for the optimal inlet rates with the same
value of K. The highest values seem unchanged.

In other words, the distribution seem to have two parts, one of high production
and one of low productions. In these terms it is the low production which
is shifted to the left compared to the histograms in the previous Section. This
means that there is a slightly higher risk of lower productions and a lower chance
of higher productions.

72 Fed Batch Fermenter Problem

1500
1000
>
500
% 5 10 15 15
t
(a) Total tank volume (b) Biomass concentration
08 : 4210’ : :
25
0.6
2 .
04 1 a15
1
0.2
0.5
% 5 10 15 % 5 10 15
t t
(c) Substrate concentration (d) Production

Figure 6.11: Trajectories of the approximate solution to the fed batch problem
(6.15) for different sets of parameters. Piecewise constant approximations to
the analytically optimal inlet rates with substrate feedback have been used.
N = 2000 and K, = 300.

6.7 Substrate Feedback for Piecewise Constant Inlet Rates 73

0.5 0.5

04 04
© 0.3- © 0.3
3 =}
jon [on
] [}
- 0.2 L 0.2

0.1 0.1

% 1 2 3 4 % 1 2 3 4
Production x10* Production x 10"
(a) K =10 (b) K, =50

0.5 0.5

0.4 0.4
g g
@ 0.3- © 0.3
=] =}
o o
5] [}
L 0.2 r 0.2

0.1 0.1 i

% 1 2 3 4 % 1 2 3 4
Production x10* Production x10*
(c) K, =100 (d) K =300

Figure 6.12: Fed batch biomass production for different sets of parameters.
Piecewise constant approximations to the analytically optimal inlet rates with
substrate feedback have been used. N = 2000.

74 Fed Batch Fermenter Problem

6.8 Biomass/Substrate Feedback for Optimal In-
let Rates

The substrate feedback did in fact improve the robustness towards pertubations
in the parameters, so using the same approach for the biomass concentration
may have an even greater effect. The deviation of the biomass concentration
from its optimal value will control the water inlet rate. Hence the inlet rates
are as follows.

F, = FS* + KS(C&Q - Cs) (6.21)
Fy = F* + Ku(Cxo — Cx). (6.22)

In Figure 6.14 are shown the histograms for this strategy. Here we really see
some results. Even for K; = 10 and K, = 4 the high part of the distribution has
shifted, though not significantly. We see that using feedback for both substrate
and biomass gives far larger productions than we have seen before.

We see, however, that the distributions are more spread than earlier, e.g. for
K, = 300 the minimum value is around 12000 where it was around 18000 when
using only substrate feedback. All in all this strategy seems successful.

6.8 Biomass/Substrate Feedback for Optimal Inlet Rates

75

40

1500

1000

500-

% 5 10 15 1% 5 10 15
t t
(a) Total tank volume (b) Biomass concentration
4
4x10
3
a2
1
0O 5 10 15 OO 5 10 15

t

(c) Substrate concentration

t
(d) Production

Figure 6.13: Trajectories of the solution to the fed batch problem (6.15) for
different sets of parameters. The analytically optimal inlet rates with biomass
and substrate feedback have been used. K, = 300.

76 Fed Batch Fermenter Problem

0.5¢ 0.5
0.4 04
oy &
03 §0.3
> >
o jon
(5] 2]
0.2 0.2
0.1 0.1
% 1 2 3 4 % 1 2 3 4
Production x 10" Production x10°
(a) Ks =10, K\, = 4 (b) Ks =50, K, =4
0.5t 0.5
04 04
g g
© 0.3 ©0.3
> =
o o
(5} o
r 0.2 I 0.2
0.1 0.1
00 1 2 3 4 00 1 2 3 4
Production x10* Production x10*
(c) Ks =100, K, =4 (d) Ks =300, K, =4

Figure 6.14: Fed batch biomass production for different sets of parameters. The
analytically optimal inlet rates with biomass and substrate feedback have been
used.

6.9 Biomass/Substrate Feedback for Piecewise Constant Inlet Rates 77

6.9 Biomass/Substrate Feedback for Piecewise
Constant Inlet Rates

We now use piecewise constant approximations of the inlet rates used in the
previous section. We use N = 2000 as we have done earlier.

The simulations for Ky, = 300 and K,, = 4 is shown in Figure 6.15. These
simulations resemble the simulations in the previous Section quite well, aside
from some rapid variation in the substrate concentration during the first half
hour or so.

In Figure 6.14 can be seen the histograms for this method. We see that the
chance of having very large productions is far less compared to last section.
However we still see an improvement in the way that the distribution has shifted
to the right compared to the histograms in Section 6.7.

78 Fed Batch Fermenter Problem

1500
1000
>
500
% 5 10 15 % 5 10 15
t t
(a) Total tank volume (b) Biomass concentration
4
4x10

5 10 15 5 10 15
t t

(c) Substrate concentration (d) Production

Figure 6.15: Trajectories of the solution to the fed batch problem (6.15) for
different sets of parameters. Piecewise constant approximations to the analyti-

cally optimal inlet rates with biomass and substrate feedback have been used.
N, = 2000, K4 = 300 and K,, = 4.

6.9 Biomass/Substrate Feedback for Piecewise Constant Inlet Rates 79

0.5 0.5
0.4 0.4
& &
§ 03 §0.3
> >
jon [on
] [}
- 0.2 L 0.2
0.1 0.1
O0 1 2 3 4 00 1 2 3 4
Production x10* Production x 10"
(a) K,=10, K, =4 (b) Ks;=50, K, =14
0.5 0.5
0.4 0.4
g g
@ 0.3- © 0.3
> =]
o o
5] [}
L 0.2 r 0.2
0.1 I I 0.1 '
% 1 2 3 4 % 1 2 3 4
Production x10* Production x10*
(c) K =100, K, =4 (d) Ks =300, K, =4

Figure 6.16: Fed batch biomass production for different sets of parameters.
Piecewise constant approximations to the analytically optimal inlet rates with
biomass and substrate feedback have been used.

80 Fed Batch Fermenter Problem

6.10 Summary

Using constant inlet rates was not effective for the choice Fy = F,, = 100, the
production was in the range from 50 to 100, which is far lower than what may
be achieved using variable inlet rates.

Using the optimal inlet rates derived by Jgrgensen [2013], the total production
is on the scale of 20000 for certain sets of parameters, however there is more
than 50 percent chance that it’s on the scale of 1000. The simulations of the
problem using the exact parameters from Table 6.1, gives a total production of
around 22000.

The inlet rates may be set to be piecewise constant over a number of intervals
as illustrated in Figure 6.6. Doing this with 20 intervals decreases the chance
of having a total production on the scale of 20000 to around 25 percent. There
is still a slight chance of having a production between around 2000 and 20000,
however, there is more than 40 percent chance of having a production on the
scale of 1000. If the number of intervals is instead 2000, the situation is much
like for the optimal inlet rates.

The inlet rate of substrate may be modified according to the varying substrate
concentration, as described in Section 6.6. If K, = 10 the situation is not much
different from not using feedback. Using K = 50 eliminates the risk of having
a total production lower than 7500. Increasing K, to 100 and 300 increases
the minimum total production, such that it is around 11000 and around 18000,
respectively.

Using piecewise approximations to these inlet rates, decreases the minimum
total production, however the tendency for increasing K is still the same. Here
2000 intervals are used. The minimum production for K, = 50 is around 5000,
for Ky = 100 it is around 8000 and for K, = 300 it’s around 15000.

The inlet rate of water may also be controlled by the varying concentration of
biomass, as described in Section 6.8. A suitable value for K, is 4, found by
numerical experiments. For the same values of K just mentioned, the tendency
is that the maximum production is increased, while the minimum production is
decreased slightly. Production may be as high as more than 40000 for Ky = 300
and K,, = 4.

Using piecewise approximations to these inlet rates decreases the maximum
production considerably, however the chance of these high productions were
already low. Except for this decrease, there is not much difference from the
productions when using piecewise approximations to the optimal inlet rates

6.10 Summary 81

with biomass and substrate feedback.

In conclusion, the feedback strategy is effective, whether using only substrate
or both substrate and biomass feedback. The values of K and K,, which gives
the most productive distribution, are K, = 300 and K,, = 4.

82

Fed Batch Fermenter Problem

CHAPTER 7

Test of Numerical Methods

This Chapter describes two simple test problems. The first is used to demon-
strate convergence of the methods. The second will illustrate the effectivity of
using adaptive step size, and this problem may be put in both of the forms (1.1)
and (1.2). The use of the Runge-Kutta Toolbox in both C and Matlab will be
illustrated by providing code for solving this problem.

The approximate solutions to this test problem will illustrate some differences
between the methods. The global error of the approximation and the number
of steps used to obtain these approximations are discussed.

84 Test of Numerical Methods

7.1 Test Problems

This Section discusses the two simple test problem which will demonstrate order
of convergence and illustrate some differences between the methods when using
adaptive step size in the following Sections. The first simple test problem is

d
() = cos(t), 2(0) =0, (7.1)

which has the solution
x(t) = sin(t). (7.2)

This problem is formally in the form of (1.2), but may also be considered to
be in the form of (1.1), where g(x(t)) = x(t) and %g(m(t)) = 1, such that the
modified methods may also be tested. This is used to obtain the convergence
tables seen in Figure 7.1. The second problem is

S(Pome) -0, wo=[]. o9

which has the solution

sin(t) + 2
z(t) = [ml(t)} = | —cos(t) +2] . (7.4)
72 (?) —cos(t) +2

This may be put into the standard form (1.2). As the second differential equation
is already in this form, only the first equation requires any modification. The
chain rule is applied.

(e N F

This is easily solved and the IVP (7.3) is transformed into

% ([Z%D: cos(t) _xzi(rtl)(t)l'l(t) | x((}):m. .

sin(t)

This is not a model based on a any conservation laws. However, using one of the
unmodified methods still introduce additional error in the discretization since
the chain rule is only valid in the limit. Hence, the modified methods may be
expected to solve this problem more accurately. As can be seen from Figure 7.2
the solution (7.4) is oscillatory, and clearly non-stiff.

7.2 Test of Runge-Kutta Toolbox In Matlab 85

7.2 Test of Runge-Kutta Toolbox In Matlab

This Section gives example code for approximating the solution to the IVP (7.3)
using adaptive step size in Matlab.

The right-hand-side function, g(z(¢)) and the Jacobi matrices of these is ex-
pected to be implemented as follows. fun and Jac is the right-hand-side and
Jacobi matrix corresponding to the form (7.6) and fun2 and Jac2 corresponds
to the form (7.3).

function f = fun(t,x)
f = [(cos(t) - sin(t).*x(1))./x(2) ; sin(t)];
end

function J = Jac(t,x)
J = [-sin(t)./x(2) , (-cos(t) + sin(t).*x(1))./x(2)."2 ; 0, 1];
end

function f = fun2(t,x)
f = [cos(t);sin(t)];
end

function J = Jac2(t,x)
J = zeros(2);
end

function g = gfun(x)
g = [x(1).%x(2);x(2)]1;
end

function dgdx = gJac(x)
dgdx = [x(2) , x(1) ; 0, 11;
end

Below is shown a Matlab-script which computes the simulations which are plot-
ted in Figure 7.2. The use of RK4, RKF45, DOPRI54 and the modified versions
of these are similar to that of the unmodified and modifed Euler. The script
should define, the time span, the initial conditions and absolute and relative
tolerances.

86 Test of Numerical Methods

% time span
ts = [0,10];

% initial conditions
x0 = xtrue(0);

% Tolerances
Tol = 1le-3;
AbsTol = ones(size(x0’))*Tol; RelTol = Tol;

% Simulations

[t,x] = Euler (efun, ts,x0,AbsTol,RelTol);
[t,x] = ESDIRK23 (@fun, @Jac, ts,x0,AbsTol,RelTol);
[t,x] = EulerMod (@fun2, @gfun,@gJac,ts,x0,AbsTol,RelTol);
[t,x] = ESDIRK23Mod(@fun2,@Jac2,@gfun,@gJac,ts,x0,AbsTol,RelTol);

This illustrates the difference between the methods quite well. The unmodi-
fied explicit methods only take the right-hand-side function, f(¢,x(¢)), as in-
put where the unmodified implicit method, ESDIRK23, also requires the Jaco-
bian matrix of this function. All the modified methods require the g(x(¢)) and
%g(m(t)) together with the right-hand-side function, f(¢,z(t)), and the implicit
modified method also requires 8% f(t,z(t)). The remaining inputs are the same.

The methods expect f(¢,z(t)) and g(z(t)) to return column vectors. The initial
condition should also be a column vector, however, the AbsTol vector should be
a row vector.

This script uses the tolerances AbsTol; = RelTol = 1073 Vi, however the abso-
lute and relative tolerances need not be the same, and the absolute tolerance
need not contain identical elements. A problem may be solved best by using
one relative tolerance and different absolute tolerances for each variable. The
impact of these tolerances lie in the norm described in Section 3.3 used for the
error estimate and the residual in the Newton iterations.

7.3 Test of Runge-Kutta Toolbox In C 87

7.3 Test of Runge-Kutta Toolbox In C

This Section gives example code for approximating the solution to the IVP (7.3)
using adaptive step size in C. The code is is the equivalent of the Matlab code
shown in Section 7.2.

In C, the right-hand-side function, ¢g(x(t)) and the Jacobi matrices of these are
implemented as shown below, where, like in the Matlab code, fun and Jac
corresponds to (7.6) and fun2 and Jac2 corresponds to (7.3).

void fun (const double t, const double *x,
const void *params, double *f){
f[0] = (cos(t)-sin(t)*x[0])/x[1]; f[1] = sin(t); }

void Jac (const double t, const double *x,
const void *params, double *J){

J[0*2+0] = -sin(t)/x[1];
J[0*2+1] = (-cost(t)+sin(t)*x[0])/(x[1]1*x[1]);
J[1*%2+0] = 0; J[1*2+1] = 1; }

void fun2(const double t, const double *x,
const void *params, double *f){
f[0] = cos(t); £f[1] = sin(t); }

void Jac2(const double t, const double *x,
const void *params, double *J){
J[0*2+0] 0; J[0*2+1] = 0;
J[1%2+0] 0; J[1*2+1] 0; }

void gfun(const double t, const double *x,
const void *params, double *g){
glo] = x[0]*x[1]; gl1] = x[1]; }

void gJac(const double t, const double *x,
const void *params, double *dgdx){
dgdx [0*x2+0] = x[1]; dgdx[0*2+1] = x[0];
dgdx [1%¥2+0] = 0; dgdx [1*2+1] 1; 3}

Below is shown a C-program which computes the simulations plotted in Figure
7.2. Like the Matlab version, the use of RK4, RKF45, DOPRI54 and the mod-
ified versions of these are similar to that of Euler. The program should define,
number of variables, the number of time values, parameters, tolerances, initial

88 Test of Numerical Methods

conditions, time span and function pointers. The number of time values is set
to 2, which the methods interpret as adaptive step size, where more than 2 time
values are used. The program should also allocate memory for storage of the
approximation.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include "RungeKuttaToolbox.h"

int main({

// Number of variables and timesteps

int nx = 2, nt = 2, size = nt+200, N;

// Initial conditions, time span and parameters
double x0[] = {2,1}, tspan[] = {0,10}, params[] = {0};
// Tolerances

double Tol = 0.001, AbsTol = {Tol,Tol,Tol,Tol}, RelTol = Tol;
// Approximation vectors

double *t = malloc(sizexsizeof(double))

double *x = malloc(nx*sizexsizeof (double));

ODEModel_t *pfun = fun, *pfun2 = fun2, *pgfun = gfun;
ODEModel_t *pJac = Jac, *pJac2 = Jac2, *pgJac = glJac;

// Simulations
N = Euler (pfun,
nx,nt,tspan,x0,AbsTol,RelTol,params,t,x);

N = ESDIRK23 (pfun, pJac,
nx,nt,tspan,x0,AbsTol,RelTol,params,t,x);
N = EulerMod (pfun2, pgfun,pglac,
nx,nt,tspan,x0,AbsTol,RelTol,params,t,x);
N = ESDIRK23Mod(pfun2,pJac2,pgfun,pglac,
nx,nt,tspan,x0,AbsTol,RelTol,params,t,x);
}

The C versions need nx and nt as input where Matlab reads these from the
length of the tspan and x0 vectors. size is set to 202, which is then the
maximum number of steps the method may take. The ODEModel_t is defined in
the Runge-Kutta Toolbox header.

In C, the arrays don’t have orientation like vectors do in Matlab. The matrices,
however, are implemented as arrays. This project uses row major, which means
that for a matrix of dimension n, the first n elements of the array is the first

7.3 Test of Runge-Kutta Toolbox In C 89

row, the next n elements, the second row and so forth. The time span vector
tspan has only two elements, regardless of the number of time steps, nt. If the
method should used fixed step size, only nt should be changed, where in Matlab
the tspan vector should be changed.

The methods take a parameter vector, params, and so do the functions described
above, even though the function evaluations require no parameters. The func-
tions get a const void pointer as input and if the parameters are to be used it
should be cast to a pointer type, such as double.

It is the users responsibility to allocate a sufficient amount of memory for the
approximations. If the output N is larger than or equal to size in the above ex-
ample, it is recommended that the approximation is discarded, and the method
is rerun with more memory allocated.

Note also that the functions gfun and gJac take t as input, even though g(xz(t))
and %g(z(t)) do not depend explicitly on ¢. This input is simply ignored by
these functions and is only passed such that it matches the ODEModel_t type.

90 Test of Numerical Methods

7.4 Test Results

In Figure 7.1 is shown the maximum element of the global error plotted against
step size, when each method approximates the solution to (7.1) using fixed step
size.

It is easily inspected that Euler’s method is of first order, whether modified or
not, the classic Runge-Kutta of fourth order, the Runge-Kutta-Fehlberg and
Dormand-Prince methods of fifth order and ESDIRK23 of second order as was
expected.

The global error of the modified RK4 and DOPRI54 does not continue to de-
crease when the step size, h, is decreased. This is because the accuracy of the
modified methods is influenced by the user supplied AbsT ol and RelTol. These
tolerances are set to AbsTol; = RelTol = 1073,Vi. The RKF45 is not affected
by this for the step sizes tested and nor is Euler or ESDIRK23. The two latter
methods, however, have very large errors compared to RKF45. For these three
methods, the error when approximating this simple test problem, is the same
whether modified or not

A peculiar detail is that the max-norm of the global error for Euler’s method
is exactly equal to the step size used. For the remaining methods the global
error is far smaller than that of Euler’s method, even for large step sizes. Even
though order of convergence is not directly related to the actual size of the error,
it is clearly seen that given a step size, the higher order methods have smaller
errors.

The methods are tested on approximating the solution to 7.3 using adaptive
step size, and their approximations are shown in Figure 7.2. The number of
steps used and the global error of the approximation is shown in Table 7.1.

For the most part, the modified methods produce more accurate solutions than
the unmodified methods. For the Euler method, the error is halved, where For
RK4 it is increased slightly. For RKF45 it decreases by more than a factor 30.
For DOPRI54 it is a little more than halved and for ESDIRK23 it is almost
halved.

For the Euler method, the modified version uses four more steps, which is neg-
ligible compared to how many steps are used. The RK4 method uses more
steps in the modified case, even though the approximation is less accurate. The
RKF45 and DOPRI54 use one and two steps less in the modified case and the
ESDIRK?23 uses six more, which is negligible.

7.4 Test Results

91

[Method [Euler [RK4 | RKF45 | DOPRI54 [ESDIRK23 |
Unmodified Methods
Error 0.139 0.183-10~* | 5.656-10~% | 0.545-10~° 0.0192
Steps 104 21 16 16 99
Modified Methods
Error | 0.050967 | 0.25826-10% | 0.16089-10~% | 0.19964-10~ | 0.010263
Steps 108 27 15 14 61

Table 7.1: Global error and number of steps for the approximations by the
Runge-Kutta Toolbox methods approximating the solution of (7.3) (modified
methods) and (7.6) (unmodified methods). The absolute and relative tolerances
are both AbsTol; = RelTol = 1073, Vi.

In Figure 7.2a it can be seen that the approximation produced by the modified
Euler method is more accurate around the local maximum around ¢t = 27 than
that of the unmodified Euler. In Figure 7.2b it can be seen that the modified
ESDIRK23 method uses more steps around the peaks at ¢t = 7 and ¢ = 3.

For the unmodified methods RK4 produces the best approximation in the sense
that it has the lowest global error. The goal, however, when using adaptive step
size is to use as large steps as possible and stay within the given tolerances.
RK4 uses 21 steps, as opposed to RKF45 and DOPRI54 which both use 16. the
unmodified RKF45 does not stay within the tolerance whereas the unmodified
DOPRI54 does.

For the modified methods, both RKF45 and DOPRIb54 stay within the limit and
use far fewer steps than the other methods.

For both the modified and unmodified methods, Euler and ESDIRK23 does not
stay within the tolerance, and use far more steps than the rest of the methods.
However, for the Euler method, each step is cheaper with respect to compu-
tational cost, and if a low accuracy is required this method may be very fast.
As for ESDIRK?23, it may be superior for stiff problems, where larger steps are
admitted. For this problem, however, the two methods perform considerably
worse than the other three.

92

Test of Numerical Methods

0
10 —— 10 _——
107° 107°
S <]
I]
10710 10710
1 1
107 ~h 107 ~h
107 107 10° 107 10 10°
h h
(a) Euler
10° 10°
-5 -5
10 / / 10 / /
S S —_—
] /]
10—10 10-10
107 h 107 h
107 107 10° 107 10 10°
h h
(b) Classic Runge-Kutta
10° 10°
10° / / 10° / /
9] s
g / g /
10—10 / 10710 /
5 5
107 ~h 107 ~h
107 107 10° 107 107 10°
h h
(c) Runge-Kutta-Fehlberg
10° 10°
10° // 10 /
<] <] 4
& g ~
107 / 107
/ 5 5
107 ~h 107 ~h
107 107 10° 107 107 10°
h h
(d) Dormand-Prince
100 / 100 /
1075 / 1075 /
S S
]]
10—10 10-10
2 2
-4 -4
10*15 h 10*15 h
107 1%'1 10° 107 10h'1 10°

(e) ESDIRK23

Figure 7.1: Convergence tests for the Runge-Kutta Toolbox methods approx-

imating the solution of (7.1) (blue +).

Modified methods.

Left:

Unmodified methods.

Right:

7.4 Test Results 93

()
()

(a) Euler’s method
3.5 ‘ ‘ ‘ ‘ 35

3t
2.57

()
()

0.5 X
G0 2 4 6 8 10 0O 2 4 6 8 10

(b) ESDIRK23

Figure 7.2: Plots of numerical approximations to the solution of (7.6) (left)
and (7.3) (right) by the Runge-Kutta Toolbox methods using adaptive step size
(blue x), together with the true solution (black line). The absolute and relative
tolerances are both AbsTol; = RelTol = 1073, Vi.

94 Test of Numerical Methods

7.5 Summary

This Chapter has presented example code for solving an IVP with the modified
and unmodified versions of Euler and ESDIRK23. The remaining methods use
the same syntax as Euler. Code is presented for both Matlab and C. All the
methods were tested on the problems (7.1) and (7.3). Testing the methods on
the former for different fixed step sizes showed that all the unmodified methods
have the expected order of convergence. It also showed that the global error
might behave differently for the modified methods since it then depends on the
accuracy of Newton iterations as well, however for Euler, RKF45 and ESDIRK23
the modified and unmodified methods were equally accurate for this problem..

Testing the methods on (7.3) showed that Euler and ESDIRK23 are considerably
less precise than the RK4, RKF45 and DOPRI54. In general the modified
methods produced more accurate approximations, however, for RK4 the error
was slightly larger for the modified method. The modified RKF45 produced a
far more accurate approximation than the unmodified RKF45.

For Euler and ESDIRK?23, the modified methods used a few more steps. The
modified RK4 used 27 steps whereas the unmodified RK4 used 21, which is a
relatively large difference, when the approximation is not more accurate. For
RKF45 the number of steps is one less for the modified method, which is very
good, considering that the error is more than 30 times smaller. For DOPRI54
the modified method uses two fewer steps and the error was more than halved.

CHAPTER 8

Comparison of Runtimes

In this Chapter, the methods of the Runge-Kutta Toolbox will be tested and
compared on runtimes. The methods will be tested on the time it takes to do
the computations needed to obtain the results, discussed in Section 6.4, where
the optimal inlet rates are used but without any feedback.

The methods will be compared on using fixed step size, with low and high preci-
sion. For the explicit methods, precision plays no rule, however, for the modified
methods and ESDIRK23 it does. Likewise, the methods will be tested on using
adaptive step size, for both high and low precision. When using adaptive step
size, all implemented methods are affected by the tolerances.

The two platforms, Matlab and C are also compared on the runtimes of the
methods when using adaptive step size with low precision.

The simulations that are used to time the methods may be carried out either
sequentially or in parallel. The sequential and parallel simulations are also timed
for adaptive step size with low precision. The comparison is between sequential
and parallel simulations in Matlab, parallel in Matlab and C, and sequential and
parallel in C. The latter uses two implementations of parallel simulations. These
two implementations are also tested against each other using adaptive step size
with low precision and a varying number of processes.

96 Comparison of Runtimes

8.1 Introduction

The simulation of the system in equation (6.15) will be done for a £%10 interval
of the values of the parameters s, tmaz, K s and K listed in Table 6.1. The
simulations will be done for ten equally spaced values in the interval which
results in 10* simulations. This procedure is exactly the same as the one used
to obtain the results in Section 6.4. This is a realistic number of simulations
and will show the great improvement in performance when using C over Matlab
and when using parallel computing over serial computing.

Each method will be run with adaptive step size with high precision defined as
AbsTol; = RelTol = 1079, Vi and with low precision defined as AbsTol; =
RelTol = 1073, V¥i. The methods will also be run for the step sizes h =
0.01,0.005,0.0025, with low and high precision. This only affects the modi-
fied methods and ESDIRK23, which use the precision in the Newton iterations.
The remaining methods produce the same simulations regardless of the supplied
precision when using fixed step size.

The grave improvement, which is observed in the runtimes, is attainable because
the simulations are completely independent of each other, which means that
there is no need for communication between the processes.

A completely different example would be using parallel computing to do a single
simulation of the system in equation 6.15 with piecewise approximations to the
analytically optimal inlet rates as described in Section 6.5, which would only
increase the runtime. In practice this is implemented as a series of simulations
over each interval where the inlet rates are constant, i.e. a series of simulations
similar to those needed to obtain the results in Section 6.3.

This would mean that only one process could run at a time, since each process
would need the results from the previous as initial conditions. Hence, the only
change when using parallel instead of serial computing would be the increase of
communication between the processes and therefore increased runtime.

8.2 Comparison of Methods 97

8.2 Comparison of Methods

This Section compares runtimes for the implemented methods using fixed and
adaptive step size with both low and high precision, as defined in Section 8.1.
The runtimes are obtained for the C implementations.

The runtimes are shown in Table 8.1. When the methods use fixed step size,
the runtime decreases roughly linearly. For several of the modified methods, the
runtime is a little less than doubled when the step size is halved, which may
be explained by the Newton iterations requiring less iterations since the initial
guess, which is the previous step, is better.

The unmodified explicit methods all have roughly the same runtime whether
they are used with high or low precision as expected. The modified methods are
slower when using fixed step size and high precision rather than low precision,
however, only by between 10% and 20%.

For low precision and adaptive step size, the unmodified explicit methods take
just about a second or less, whereas ESDIRK23 uses more than 5 seconds. The
modified Euler, RKF45 and DOPRI54 use about 11 to 15 seconds, whereas RK4
uses more than 20. RK4 uses both step doubling and has many stages, whereas
Euler uses step doubling but only has a single stage and RKF45 and DOPRI54
have many stages but use embedded error estimation. The modified ESDIRK23
uses 40 seconds, which is twice as much as any of the other methods when using
low precision.

The modified ESDIRK23 is very competitive for fixed step sizes, compared to the
unmodified ESDIRK23 which is only slightly faster, regardless of precision. This
is not the case when using adaptive step size, where the unmodified ESDIRK23
is about 14 times faster.

The case is very different when using high precision and adaptive step size. Here
FEulers method uses almost 13 seconds, more than twenty times as long as for low
precision. RK4 uses 1.6 compared to 1 seconds for low precision, and RKF45
and DOPRI54 has the same runtime regardless of precision. ESDIRK23 uses
almost 70 seconds. For the unmodified methods the tendency is that the high
order methods, RK4, RKF45 and DOPRI54, do not suffer much from increasing
the precision whereas Euler and ESDIRK23 spend a lot more time when using
high precision and adaptive step size. This tendency carries over to the modified
methods, where Euler uses almost 270 seconds and ESDIRK23, 525. However,
the unmodified RKF45 and DOPRI54 didn’t have higher runtimes when using
high precision where the modified versions of these two, more than double in
runtime.

98 Comparison of Runtimes

In conclusion, the higher order methods may be used with advantage when
using high precision, whereas the lower order methods may be effective for low
precision. The modified methods are generally slower, except for ESDIRK23 for
fixed step sizes where the modified and unmodified versions have runtimes close
to each other.

’ Step size \ Adap. \ 0.01 | 0.005 | 0.0025
y High Precision \
Unmodified Methods

Euler 12.90 0.65 1.30 2.61
RK4 1.61 5.39 10.73 | 21.31
RKF45 0.99 8.83 17.68 | 36.03
DOPRI54 1.10 10.12 | 20.13 | 40.64

ESDIRK23 69.57 | 44.58 85.40 | 171.72
Modified Methods

Euler 268.18 | 34.50 | 66.49 | 128.51
RK4 35.25 | 121.96 | 240.03 | 475.84
RKF45 32.46 | 198.04 | 397.41 | 757.30

DOPRI54 30.10 | 185.58 | 362.95 | 720.34
ESDIRK23 | 525.81 | 49.73 | 96.75 | 183.90

’ Low Precision ‘
Unmodified Methods

Euler 0.60 0.66 1.31 2.59
RK4 0.98 5.33 | 10.67 | 21.25
RKF45 0.99 877 | 17.60 | 35.01
DOPRI54 1.10 | 10.19 | 20.22 | 40.35

ESDIRK?23 5.43 46.46 88.32 | 175.39
Modified Methods

Euler 11.54 | 28.33 | 56.62 | 112.33
RK4 20.27 | 104.11 | 206.99 | 412.67
RKF45 12.84 | 171.07 | 344.21 | 668.91

DOPRI54 14.20 | 172.57 | 344.54 | 665.73
ESDIRK23 | 40.62 | 41.78 | 80.57 | 173.12

Table 8.1: Runtimes for the C implementations of the Runge-Kutta Toolbox
methods when approximating the solution to the IVP (6.1) with the optimal
inlet rates described in Section 6.4, for ten thousand sets of parameters. The
methods use fixed and adaptive step size with both high and low precision.

8.3 Comparison of C and Matlab 99

8.3 Comparison of C and Matlab

This Section compares runtimes of sequential and parallel simulations in Matlab
and C. In C, two implementations of parallel simulations are tested. In these tests
the methods use adaptive step size and low precision.

Matlab can use a maximum of 12 processes and the runtimes for parallel simu-
lations in C, shown in Table 8.2, all use 12 processes as well.

It is easily inspected that the simulations are much faster in C. For sequential
Euler simulations, C is faster by a factor of 300. For the other unmodified
methods, the speed-up from C to Matlab is between 100 and 250. For the
modified methods, the speed-up is around 80 to 100, except for the modified
ESDIRK23, whose runtime is about 230 longer in Matlab.

In Matlab, all the runtimes of the parallel simulations are between 11 and 12
times lower than that of sequential simulations, where 12 is maximum, when
using 12 processes.

In C, the parallel simulations from Algorithm 21, are between 5 and 10 times
faster, which is very low considering that the maximum is 12. This low speed-up
may be due to some simulations being more time-consuming than others and
hence some processes finish early and stand idle while the rest finish.

For most of the advanced parallel simulations, the speed-up is between 10 and
11, where 11 is now maximum since one process, the master node, is not doing
any simulations. In any of the cases, the advanced parallel simulations are faster
than the simple ones, however it may be expected that the simple is faster if
every simulation takes the same time, at which all processes may terminate
simultaneously.

The sequential simulations in C are faster than the parallel simulations in Matlab
for the maximum number of processes.

In conclusion, C may be used with great advantage when it comes to runtimes,
regardless of the number of processes used. The advanced parallel simulations
are faster than the simple ones, even though the former sacrifices a processor
to be a master node. These two implementations will be investigated further in
Section 8.4.

100 Comparison of Runtimes

Platform Matlab C

Method seq. par. seq. \ par. \ adv. par.
Unmodified Methods

Euler 185.02 16.31 0.60 | 0.07 0.06

RK4 248.03 21.41 0.98 | 0.15 0.10

RKF45 217.48 18.41 0.99 | 0.17 0.10

DOPRI54 232.31 19.76 | 1.10 | 0.20 0.12
ESDIRK23 | 495.17 | 42.99 | 5.43 | 0.53 0.50

Modified Methods

Euler 991.45 | 86.59 | 11.54 | 1.21 1.08
RK4 1594.69 | 137.85 | 20.27 | 2.71 1.92
RKF45 1019.51 | 88.08 | 12.84 | 1.86 1.22

DOPRI54 1083.01 93.52 | 14.20 | 2.07 1.42
ESDIRK23 | 9210.04 | 801.52 | 40.62 | 4.24 4.05

Table 8.2: Runtimes for the methods implemented in the Runge-Kutta Toolbox,
run on C when approximating the solution to the IVP (6.1) for ten thousand
sets of parameters. The methods use fixed step size with both high and low
precision.

8.4 Comparison of Parallel Simulations in C

This Section compares the two implementations of parallel simulations, shown
in Algorithms 21 and 22. The methods are run with adaptive step size and low
precision and using a varying number of processes.

It can be seen from Table 8.3, that for the simple parallel simulations using
several processes is faster than sequential simulations. However, doubling the
number of processes does not always halve the runtime. For Euler, increasing the
number of processes from 8 to 16 hardly decreases the runtime at all. However,
the unmodified Euler and ESDIRK23 do experience a speed-up of almost a
factor 2 when increasing the number of processes from 4 to 8. In many of the
cases, the speed-up is as low as 3/2, when doubling the number of processes.
The reason for this is that the runtime of a single simulation may be very much
dependent on the set of parameters, when using adaptive step size, and hence
some processes finish earlier than others and stand idle.

For the advanced parallel simulations, the case is somewhat different. This
implementation cannot be used with a single process, since the master node
does not do any simulations. However, the runtimes for 2 processes may be
compared to those of sequential simulations, i.e. the simple parallel simulations
using 1 process. Here we see that the runtimes are somewhat identical, actually

8.4 Comparison of Parallel Simulations in C 101

with a slight advantage for the advanced implementation, which may be due to
some imprecision in the time measuring.

It should be kept in mind that for the advanced parallel simulations, the number
of processes working is one less than the number of available processes. Hence,
the speed-up from using 2 to 4 processes is close to 3, which is very reasonable.
For 4 or more processes, the speed-up is close to 2 when doubling the number
of processes, which indicate that the advanced parallel simulation is closer to
optimal than the simple simulations.

The runtimes of the simple parallel simulations are faster for 2 and for some of
the methods, also for 4 processes. For most of the methods, using the advanced
implementation is faster or as fast as the simple, when using 8 processes, and
when using 16, the advanced is faster for all the methods.

In conclusion, if a large number of processes is available, e.g. 16, the advanced
implementation performs faster, but if only a few, e.g. 2 or 4 processes are
available, the simple implementation may be the fastest.

102 Comparison of Runtimes

’ Processors \ 1 \ 2 \ 4 \ 8 \ 16 ‘
’ Simple Parallel Simulations ‘
Unmodified Methods

Euler 0.61 | 033 | 0.19 | 0.10 | 0.09
RK4 1.13] 070 | 0.43 | 0.26 | 0.15
RKF45 1.15 | 0.75 | 0.46 | 0.27 | 0.16

DOPRI54 131 | 086 | 0.54 | 0.31 | 0.20
ESDIRK23 | 5.36 | 2.83 | 1.50 | 0.77 | 0.51

Modified Methods

Euler 1215 | 6.35 | 3.42 | 1.88 | 1.10
RK4 21.20 | 12.32 | 7.34 | 4.17 | 2.98
RKF45 13.34 | 8.04 | 4.89 | 2.79 | 2.01

DOPRI54 14.69 | 9.20 | 5.61 | 3.20 | 2.22
ESDIRK23 | 45.39 | 22.91 | 11.97 | 6.49 | 4.27

’ Advanced Parallel Simulations
Unmodified Methods

Euler N/A | 0.64 | 0.23 | 0.10 | 0.05
RK4 N/A | 1.15| 0.41 | 0.17 | 0.09
RKF45 N/A | 1.13| 0.39 | 0.17 | 0.09

DOPRI54 N/A | 1.30 | 0.46 | 0.20 | 0.10
ESDIRK23 | N/A | 546 | 1.81 | 0.79 | 041

Modified Methods

Euler N/A | 11.55 | 3.93 | 1.70 | 0.86
RK4 N/A | 20.08 | 6.92 | 3.00 | 1.57
RKF45 N/A | 1249 | 4.43 | 1.87 | 0.95

DOPRI54 N/A | 14.25 | 4.89 | 2.13 | 1.14
ESDIRK23 | N/A | 44.03 | 14.97 | 6.47 | 3.53

Table 8.3: Runtimes for the methods implemented in the Runge-Kutta Toolbox,
run on C when approximating the solution to the problem stated in equation
(6.15) for ten thousand different set of parameters. The methods use adap-
tive step size and low precision and are timed when using different number of
Processors.

8.5 Summary 103

8.5 Summary

In this Chapter, the methods in the Runge-Kutta Toolbox have been tested
against each other on runtime. They have been compared when using both
fixed and adaptive step size, and both high and low precision.

In Section 8.2 the implemented methods were tested against each other. It was
observed that the higher order methods are faster when using adaptive step
size, when high precision is required, whereas the lower order unmodified Euler
is ultimately the fastest when using low precision, both for fixed and adaptive
step size.

It was seen that when using fixed step size, the runtime roughly doubles when
the step size is halved. For fixed step size, Euler is by far the fastest, regardless
of precision and modification. For the unmodified methods, Euler is fastest,
RK4 second, RKF45 third, DOPRI54 fourth and ESDIRK23 is the slowest.
The same tendency is seen for the modified methods except that ESDIRK?23 is
faster than RK4.

The modified methods are generally slower than the unmodified, except for the
modified ESDIRK23 which has nearly the same runtime as the unmodified for
fixed step size. RKF45 and DOPRI54 has nearly the same runtimes, regardless
of precision and modifications, with a slight advantage to RKF45.

In Section 8.3 it was shown that simulations were obtained far faster in C than
in Matlab. The parallel simulations were between 11 and 12 times faster when
using 12 processes in Matlab. In C the speed-up was between 5 and 10 when
using the simple parallel simulations, where 5 is a very little speed-up. For the
advanced parallel simulations, the speed-up was between 10 and 11, where 11 is
the maximum, when one process is the master node.

In Section 8.4 it was seen that, the simple parallel simulations were fastest, when
a small number of processes is used, e.g. 2 or 4. When using 4 or 8 processes
some simulations were faster with the simple implementation and for some it
was faster with the advanced. However, for 16 processes the advanced parallel
simulations were faster for all methods.

104 Comparison of Runtimes

CHAPTER 9

Conclusion

In this Chapter, the conclusions from the project are summarized. Which meth-
ods were used, after what principle were they implemented, how do the imple-
mentations perform in different settings. How may these methods be used to
solve a problem in a test case. How fast are the implementations in Matlab and
C and what speed-up may be achieved when doing parallel simulations.

106 Conclusion

9.1 Conclusion

In this project, the five methods, the explicit Euler, the Classical Runge-Kutta,
Runge-Kutta-Fehlberg, Dormand-Prince and ESDIRK23 have been implemented.
These methods are described in Sections 2.3 through 2.7 and have been imple-
mented in an unmodified version, which approximates the solution to initial
value problems of the kind

%x(t) = f(t2(t), x(to) = o,

and a modified version which approximates the solution to initial value problems
of the kind

o) = f(6,2(0), wlto) = 0.

The implementation of both versions are described in Chapter 4 and both ver-
sions of all five methods have been implemented in both Matlab and C. The
implementations are split up into a main algorithm which calls a step function
algorithm. This may lower the number of function evaluations, e.g. when im-
plementing step doubling for error estimation. The implementations may use
fixed or adaptive step size where the latter requires an error estimate.

The Euler method and RK4 uses step doubling for error estimation whereas
RKF45, DOPRI54 and ESDIRK?23 are embedded methods, which use embedded
error estimation.

Once the approximation and error estimate have been calculated when using
adaptive step size, the step is either failed or accepted based on the error es-
timate and the step size is adjusted using either asymptotic or PI step size
controller.

The modified methods and ESDIRK23 use Newton iterations and if these it-
erations do not converge sufficiently fast, the step is not updated and the step
size is restricted according to the convergence rate of the Newton iterations,
depending on whether they converged slowly or diverged.

The use of the implementations are described with an example for both Matlab
and C in Sections 7.2 and 7.3, respectively. The methods were tested on the
problem (7.1) using fixed step size to demonstrate convergence. For the unmod-
ified methods, the convergence rates were as expected, Euler was first order,
RK4 was fourth order, RKF45 and DOPRI54 were fifth order and ESDIRK23
was second order.

9.1 Conclusion 107

However, for the modified RK4 and DOPRI54, the error did not become ar-
bitrarily low, which may be due to the Newton iterations whose approximate
solution depends on the user supplied tolerances. Low tolerance was used as it
is defined in Section 8.1.

The methods were also tested on the problem (7.3) using adaptive step size, all
with low tolerance as it is defined in Section 8.1. This showed that Euler and
ESDIRK23, whether modified or not, produced less accurate approximations
than the other methods. The modified methods were generally more accurate,
except that the modified RK4 had a larger error than the unmodified version of
this.

The Euler method and ESDIRK23 produced less accurate approximations than
RK4, RKF45 and DOPRI54, and they used far more steps. RK4 produced an
adequately accurate approximation, however using more steps than RKF45 and
DOPRI54. The unmodified RKF45 did not stay within the supplied tolerances
whereas the modified version did. Both the modified and unmodified DOPRI54
was sufficiently accurate and used the least number of steps.

In Chapter 6, the unmodified RK4 was used with fixed step size to simulate
a fed batch fermenter in operation for 10* sets of parameters, using different
strategies for controlling inlet rates of substrate and water. It was shown that
using feedback from both the substrate and biomass resulted in the distribution
with the highest productions.

In Chapter 8 the implementations were tested against each other. It was ob-
served that when using fixed step size, the runtime roughly doubles when the
step size is halved. Of the unmodified methods, Euler was the fastest, followed
by RK4, RKF45, DOPRI54 and last ESDIRK23. The same tendency is seen for
the modified methods except that in this case, ESDIRK?23 is faster than RK4.

Whether modified or not, the higher order methods, RK4, RKF45 and DO-
PRI54 were faster when using adaptive step size and high precision whereas the
low order unmodified Euler method was the fastest when using low precision.
ESDIRK23 was in any case very slow when using adaptive step size.

Generally the modified methods were slower than the unmodified, except for ES-
DIRK23 which had nearly the same runtime when using fixed step size, whether
modified or not and regardless of precision.

In Section 8.3, it was shown that both the sequential and parallel simulations
were obtained between 80 and 300 times faster in C compared to Matlab. Using
parallel simulations was between 11 and 12 times faster than sequential simu-
lations in Matlab, when using the maximum number of processes available in

108 Conclusion

Matlab, which is 12.

Using simple parallel simulations in C only gave a speed-up of between 5 and 10,
compared to 12 which is maximum. Using the advanced parallel simulations,
the speed-up was between 10 and 11, where 11 is maximum.

These two implementations of parallel simulations were tested further in Section
8.4, where it was concluded that for a low number of processes, e.g. 2 and 4, the
simple parallel simulations were faster, however, the advanced was the fastest
when using 16 processes.

APPENDIX A

Solving Linear Systems of
Equations

This Chapter describes Gauss elimination which may be used in Newton iter-
ations, to solve (2.7) for Az¥. This method is equivalent to another method
called LU-factorization, which is also described briefly. Both these methods
require back substitution and solving a system of linear equations using LU-
factorization also requires forward substitution, which both are also described.

110 Solving Linear Systems of Equations

A.1 Gaussian Elimination

Gaussian Elimination may be used for solving linear systems of equations such
as the ones in Newton iterations. Say the system is

Az = b, (A1)

where A € R"*™ and z,b € R™. The Gaussian elimination algorithm transforms
the system A.1 into an upper triangular form

Ur =c,

which may then be solved using back substitution. In Matlab solving a linear
system of equations can be done by using the backslash operator \. A procedure
for Gaussian elimination is shown in Algorithm 23. This algorithm assumes that
the pivot elements are non-zero. It is also assumed that A and b are arrays which
start in 0, e.g. the first elements are Ay g and by as this is the case with C arrays.
The transformation into the upper triangular form requires O(n?) flops. [Elden,
2010].

Data: A, b
Result: A is transformed to upper triangular form. b is changed
accordingly.
1 fork=0...n—2do
2 fori=k+1...n—1do
Aik

3 M= i
4 forj=k+1...n—1do
5 ‘ Ai,j :Ai,j —m-Ak)j;
6 end
7 bl = bl —-m: bk;
8 end
9 end
10 assign U; j = A; ;, for j > i and U; ; = 0 otherwise ;
11 assign ¢ = b;

Algorithm 23: Gaussian elimination.

A.2 LU-Factorization

An alternative to Gaussian elimination is using LU-factorization on A. If A is
nonsingular it may be put into the form

PA=LU,

A.3 Back and Forward Substitution 111

where P is a permutation matrix, L is unit lower triangular matrix and U is an
upper triangular matrix. Using this factorization, the linear system of equations
(A.1), may be transformed into

PAx = LUx = Pb.

The last equation may be solved by

e Solving Ly = Pb for y using forward substitution

e Solving Ux = y for x using back substitution

Procedures for LU-factorization can be found in Chapter 8 of [Elden, 2010].

A.3 Back and Forward Substitution

Once a linear system of equations is on either upper triangular or lower trian-
gular form it may be solved using either forward or back substitution. If the
matrix is in upper triangular form it may be solved using backward substitution
as shown in Algorithm 24. If it is in lower triangular form it may be solved
using forward substitution as shown in Algorithm 25.

Data: U, ¢
Result: z which solves Uz = c.
_ Cn—1
1 Tn-1= Un—1mn-1"
2 fori=dim—2...0do
3 T; = Cq,
4 forj=i+1...n—1do
5 ‘ T =T; — Ui’j.’tj;
6 end
7 Ti =17,
8 end

Algorithm 24: Back substitution.

112 Solving Linear Systems of Equations

Data: L, d
Result: y which solves Ly = d.
— _do .
1 Yo = Loo’
2 Yn_1 = % fori=1...dim—1do
3 | yi=dg
4 for j=0...7—1do
5 | i = vi — Lijys;
6 end
T Y=
8 end

Algorithm 25: Forward substitution.

A.4 LAPACK In C

This Section describes the functions used to solve the linear system (2.13) in
C. The library LAPACK provides several functions for linear algebra. In this
project, it has only been used to solve linear systems of equations but may also
be used to add vectors and matrices and much more. Netlib [2013].

The method dgesv may be used for solving a linear system of equations Az = B,
where A € RV*YN and B € RV*NRHS CBLAS_ORDER indicates whether to use
row major or column major and is set to CblasRowMajor. Since the matrix A
is represented by a one-dimensional array, it is important to indicate whether
the method should assume that each row is stored contigously or each column
is stored contigously. This project stores each row contigously, as is mentioned
in Section 7.3. The function call would be

clapack_dgesv(const enum CBLAS_ORDER Order,
const int N,
const int NRHS,
double *A, const int lda, int *ipiv,
double *b, const int 1ldb);

where N is the dimension of A, NRHS is the number of right-hand-sides which in
this project is always 1. 1da and 1db is in this project the same as N. ipiv is an
output array which gives information about the row interchanges made during
the solve.

Effectively dgesv calls the functions dgetrf to compute an LU-factorization,
and then solves the factorized system using dgetrs. Since the Jacobi ma-

A.4 LAPACK In C 113

trix %R(a:k‘) is approximated with a%R(xO) in the Newton iterations, the LU-
factorization may be reused in each Newton iteration, thus saving a lot of LU-
factorizations. The factorization is called as

clapack_dgetrf (const enum CBLAS_ORDER Order,
const int M,
const int N,
double *A, const int lda, int *ipiv);

where M is equal to N. This may then be solved using

clapack_dgetrs(const enum CBLAS_ORDER Order,
const enum CBLAS_TRANSPOSE Trans,
const int N,
const int NRHS,
double *A, const int lda, int *ipiv,
double *B, const int 1db);

where CBLAS_TRANSPOSE should be set to CblasNoTrans.

114 Solving Linear Systems of Equations

0 N O Ut kW N

APPENDIX B

Implementations In C

This Chapter includes the source code for the methods in C. Each implementa-
tion is split up into the main function and the step function. The implementa-
tions are split up into two files. One containing the unmodified methods, and
one containing the modified methods. The former file also contains The Newton
function which is used in the explicit modified methods together with help func-
tions, which adds vectors, finds minimum or maximum element of an array etc.
Both files contain a type definition of 0DEModel_t which the methods expect as
input for the functions f(t,z(t)), % (t,z(t)), g(z(t)) and (,%g(m(t)).

B.1 Unmodified Methods

Listing B.1: Implementation of the unmodified methods in C

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include

#include

int Euler (

©

10
11
12
13
14
15
16
17
18
19

20
21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

116 Implementations In C

ODEModel_t x*fun,

int nx, int nt,

double *tspan,

double *xO0,

double *AbsTol, double RelTol,
void *params,

double *xt,

double *x){

int i, firststep, fixedstepsize = nt > 2;

double h = 0.001, epsilon = 0.8, p = 1, phat = p+l1, kp =
...0.4/phat, kI = 0.3/phat, E, Eold;

double *fn = malloc(nx*sizeof (double));

double *xfull = malloc(nx*sizeof (double)), *xhalf = malloc(
..nx*sizeof (double)), *xdouble = malloc(nx*sizeof (
...double));
double *e = malloc(nx*sizeof (double)), *absx = malloc(
.nx*sizeof (double)), *Tol = malloc(nx*sizeof (
.double));

// Initial time and initial conditions
t[0] = tspan[0];
Vaddl ((x+0*nx) ,1.0,x0,nx) ;
// If using fixed step size
if (fixedstepsize){
h = (tspan[1] - tspan[0])/nt;
// For every step
for(i = 0; i < nt; i++){
t[i+1] = t[i] + h;
fun(t[i],(x+i*nx) ,params,fn);
EulerStep(fun,nx,t[i], (x+i*nx) ,fn,h,params, (x+(i+1) *nx));
}
}elseq
// If using adaptive step size
firststep = 1;
i = 0;
// While end time has not been reached
while (t[i] < tspan[1]){
// Make sure end time is not passed
if(h > tspan[1] - t[il){
h = tspan([1] - t[il;
}
// Full step
fun(t[i], (x+i*nx) ,params,fn);
EulerStep(fun,nx,t[i], (x+i*nx) ,fn,h,params,xfull) ;
// Double step
EulerStep (fun,nx,t[i],(x+i*nx) ,fn,h/2,params,xhalf);

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96

B.1 Unmodified Methods

117

fun(t[i]+h/2,xhalf ,params,fn);
EulerStep(fun,nx,t[i]l+h/2,xhalf ,fn,h/2,params, xdouble);
// Error estimate
Vadd2(e,1.0,xfull,-1.0, xdouble ,nx) ;
Vabs (e,e,nx) ;
Vabs (absx ,xfull ,nx) ;
Vadd2(Tol,1.0,AbsTol ,RelTol,absx,nx);
Vdiv(e,e,Tol,nx) ;
E = max(e,nx);
// Avoid division by zero in PI step size
if (E < pow(10,-10)){ E = pow(10,-10); }
// Fail or accept step
if(E <= 1){
// Update step
t[i+1] = t[i]l + h;
Vaddl ((x+(i+1)*nx) ,1.0,xdouble ,nx) ;
if (firststep){
// New asymptotic step size
h = h*pow(epsilon/E,1.0/phat);
firststep = 0;
}elseq
// New PI step size
h = h*pow(epsilon/E,kI)*pow(Eold/E,kp);
}
// Save error for use in the PI step size controller
Eold = E;
i++;
}elseq{
// New asymptotic step size
h = h*pow(epsilon/E,1.0/phat);
}
}
}
free(fn); free(xfull); free(xhalf); free(xdouble); free(e);

free(absx); free(Tol);
// Return number of steps
return ij;

void EulerStep(
ODEModel_t *fun,
int nx,
double tn,
double *xn,
double *fn,

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117

118

119

120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136

118 Implementations In C

double h,
void *params,
double *xnpl){
// Next step
Vadd2 (xnpl1,1.0,xn,h,fn,nx);
}
int RK4(
ODEModel_t *xfun,
int nx, int nt,
double *tspan,
double *xO0,
double *AbsTol, double RelTol,
void *params,
double *xt,
double *x){
int i, firststep, fixedstepsize = nt > 2, s = 4;
double h = 0.001, epsilon = 0.8, p = 4, phat = p+l1l, kp =
...0.4/(p+1), kI = 0.3/(p+1), E, Eold;
double *fn = malloc(nx*sizeof (double));
double *xfull = malloc(nx*sizeof (double)), *xhalf = malloc(
..nx*sizeof (double)), *xdouble = malloc(nx*sizeof (
...double));
double *e = malloc(nx*sizeof (double)), *absx = malloc(
..nx*sizeof (double)), *Tol = malloc(nx*sizeof (
...double));
double A[s][s], b[]l = {1/6.0,1/3.0,1/3.0,1/6.0}, cl[] =
...{0.0,1/2.0,1/2.0,1.0};
A[11[0] = 1/2.0, A[2]1[1] = 1/2.0, A[3][2] = 1.0;
// Initial time and initial conditions
t [0] = tspan[0];
Vadd1 ((x+0*nx) ,1.0,x0,nx);
// If using fixed step size
if (fixedstepsize){
h = (tspan[1] - tspan[0])/nt;
// For every step
for(i = 0; i < nt; i++){
t[i+1] = t[i] + h;
fun(t[i], (x+i*nx) ,params,fn);
RK4Step (fun,nx,t[i],(x+i*nx) ,fn,h,params, (x+(i+1) *nx) ,A,D
.,C)
}
}elseq
// If using adaptive step size
firststep = 1;

i = 0;

B.1 Unmodified Methods 119

137 // While end time has not been reached

138| while(t[i] < tspan[1]){

139 // Make sure the end time is not passed

140 if(h > tspan[1] - t[il){

141 h = tspan[1] - t[il;

142 }

143 // Full step

144 fun(t[i], (x+i*nx) ,params,fn);

145 RK4Step (fun,nx,t[i],(x+i*nx) ,fn,h,params ,xfull,A,b,c);

146 // Double step

147 RK4Step (fun,nx,t[i],(x+i*nx),fn,h/2,params, xhalf ,A,b,c);

148 fun(t[i]1+h/2, xhalf ,params,fn);

149 RK4Step (fun,nx,t[i]+h/2,xhalf ,fn,h/2,params,xdouble ,A,b,c
)5

150 // Error estimate

151 Vadd2(e,1.0,xfull,-1.0,xdouble ,nx) ;

152 Vabs(e,e,nx);

153 Vabs (absx ,xfull ,nx) ;

154 Vadd2(Tol,1.0,AbsTol ,RelTol,absx,nx);

155 Vdiv(e,e,Tol,nx) ;

156 E = max(e,nx);

157 // Avoid division by zero in PI step size

158 if (E < pow(10,-10)){ E = pow(10,-10); }

159 // Accept or fail step

160 if (E <= 1){

161 // Update step

162 t[i+1] = t[i]l + h;

163 Vadd1l ((x+(i+1)*nx) ,1.0,xdouble ,nx) ;

164 if (firststep){

165 // New asymptotic step size

166 h = h*pow(epsilon/E,1.0/phat);

167 firststep = 0;

168 }elseq

169 // New PI step size

170 h = h*pow(epsilon/E,kI)*pow(Eold/E,kp);

171 }

172 // Save error for PI step size controller

173 Eold = E;

174 i++;

175

176 }elseq{

177 // New asymptotic step size

178 h = h*pow(epsilon/E,1.0/phat);

179 }

180 %}

181

182] }

183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199

200
201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224

120 Implementations In C

free(fn); free(xfull); free(xhalf); free(xdouble); free(e);
free(absx); free(Tol);

// Return number of steps taken

return ij;

}

void RK4Step (

ODEModel_t *fun,

int nx,

double tn,

double *xn,

double *fn,

double h,

void *params,

double *xnpl,

double A[]J[4], double b[], double c[]){

double *X2 = malloc(nx*sizeof (double)), *X3 = malloc(nx*
...sizeof (double)), *X4 = malloc(nx*sizeof (double));

double *f2 = malloc(nx*sizeof (double)), *f3 = malloc (nx*
...sizeof (double)), *f4 = malloc(nx*sizeof (double));

// Stage 2

Vadd2 (X2,1,xn,A[1][0]*h,fn,nx) ;

fun(tn+c[1]*h,X2,params ,£2);

// Stage 3

Vadd2(X3,1,xn,A[2][1]1*h,f2,nx);

fun(tn+c[2]*h,X3,params ,£3);

// Stage 4

Vadd2(X4,1,xn,A[3][2]*h,£3,nx);

fun(tn+c[3]*h,X4,params ,f4);

// Next step

Vadd5 (xnpl,1,xn,b[0]*h,fn,b[1]*h,£f2,b[2]*h,£f3,b[3]*h,f4,nx)

free(X2); free(X3); free(X4); free(f2); free(f3); free(f4d);
}

int RKF45(

ODEModel_t *fun,

int nx, int nt,

double *tspan,

double *xO0,

double *AbsTol, double RelTol,
void *params,

double *xt,

double *x){

int i, firststep, fixedstepsize = nt > 2, s = 6;

225

226
227
228

229

230
231
232
233

234

235

236
237
238
239
240
241
242
243
244
245
246
247
248

249
250
251
252
253
254
255
256
257
258
259

B.1 Unmodified Methods 121

double h = 0.001, epsilon = 0.8, p = 4, phat = p+1, kp =
..0.4/(p+1), kI = 0.3/(p+1), E, Eold;

double *fn = malloc(nx*sizeof (double));

double *xfull = malloc(nx*sizeof (double));

double *e = malloc(nx*sizeof (double)), *absx = malloc(
..nx*sizeof (double)), *Tol = malloc(nx*sizeof (double))

double A[s][s], bl[]l =
..{25/216.0,0.0,1408/2565.0,2197/4104.0,-1/5.0,0.0%},
..bhat[] =
.{16/135.0,0.0,6656/12825.0,28561/56430.0,-9/50.0,2/55

double c[] = {0.0,1/4.0,3/8.0,12/13.0,1.0,1/2.0}, d[s];
A[1]1[0] = 1/4.0;

A[2][0] = 3/32.0, A[2][1] = 9/32.0;

A[3]1[0] = 1932/2197.0, A[3][1] = -7200/2197.0, A[3][2] =
...7296/2197.0;

A[4]1[0] = 439/216.0, A[4]1[1] = -8.0, A[4]1[2] =
...3680/513.0, A[4]1[3] = -845/4104.0;

Als][0] = -8/27.0, A[5][1] = 2.0, A[5][2] =
...-3544/2565.0, A[5][3] = 1859/4104.0, A[5]1[4] =
...-11/40.0;

// Calculate d = b-bhat
Vadd2(d,1.0,b,-1.0,bhat ,s);
// Initial time and initial conditions
t[0] = tspan[0];
Vadd1l ((x+0*nx) ,1.0,x0,nx) ;
// If using adaptive step size
if (fixedstepsize){
h = (tspan[1] - tspan[0])/nt;
// For every step
for(i = 0; i < nt; i++){
t[i+1] = t[i]l + h;
fun(t[i], (x+i*nx) ,params,fn);
RKF45S8tep (fun ,nx,t[i],(x+i*nx) ,fn,h,params, (x+(i+1)*nx) ,e
...,A,bhat ,c,d);
}
}elsed{
// If using adaptive step size
firststep = 1;
i = 0;
// While end time has not been reached
while (t[i] < tspan[1]){
// Make sure sure end time is not passed
if(h > tspan[1] - t[il){
h = tspan([1] - t[i];
}

0};

122 Implementations In C

260 // Full step

261 fun(t[i], (x+i*nx) ,params,fn);

262 RKF45Step (fun,nx,t[i],(x+i*nx) ,fn,h,params,xfull,e,A,bhat
.,c,d);

263 // Error estimate

264 Vabs(e,e,nx);

265 Vabs (absx ,xfull ,nx) ;

266 Vadd2(Tol,1.0,AbsTol ,RelTol,absx,nx);

267 Vdiv(e,e,Tol ,nx) ;

268 E = max(e,nx);

269 // Avoid division by zero in PI step size

270 if (E < pow(10,-10)){ E = pow(10,-10); }

271 // Accept or fail step

272 if (E <= 1){

273 // Update step

274 t[i+1] = t[i] + h;

275 Vadd1l ((x+(i+1)*nx) ,1.0,xfull ,nx);

276 if (firststep)d

277 // New asymptotic step size

278 h = h*pow(epsilon/E,1.0/phat);

279 firststep = 0;

280 Yelseq{

281 // New PI step size

282 h = h*pow(epsilon/E,kI)*pow(Eold/E,kp);

283 }

284 // Save error for PI step size controller

285 Eold = E;

286 i++;

287

288 }elseq

289 // New asymptotic step size

290 h = h*pow(epsilon/E,1.0/phat);

291 }

292| }

293

294| %

295| free(fn); free(xfull); free(e); free(absx); free(Tol);

296| // Return number of steps

297 return i;

208| }

299

300| void RKF45Step(

301| ODEModel_t x*xfun,

302 int nx,

303 double tn,

304| double *xn,

305| double *fn,

306
307
308
309
310
311
312

313

314

315

316
317
318
319
320
321
322
323
324
325
326

327
328
329

330
331
332

333
334

335
336
337
338
339
340
341
342
343
344

B.1 Unmodified Methods 123

double h,

void *params,

double *xnpl,

double *e,

double A[]J[6], double bhat[], double c[], double d[]){

double *X2 = malloc(nx*sizeof (double)), *X3 = malloc (nx*
...sizeof (double)), *X4 = malloc(nx*sizeof (double));
double *X5 = malloc(nx*sizeof (double)), *X6 = malloc (nxx*

...sizeof (double));

double *f2 = malloc(nx*sizeof (double)), *f3 = malloc (nx*
...sizeof (double)), *f4 = malloc(nx*sizeof (double));

double *f5 = malloc(nx*sizeof (double)), *f6 = malloc (nx*
...sizeof (double));

// Stage 2

Vadd2(X2,1,xn,A[1][0]*h,fn,nx) ;

fun(tn+c[1]*h,X2,params ,f2);

// Stage 3

Vadd3(X3,1,xn,A[2][0]*h,fn,A[2] [1]*h,f2,nx);

fun(tn+c[2]*h,X3,params ,£3);

// Stage 4

Vadd4 (X4,1,xn,A[3][0]*h,fn,A[3][1]*h,£f2,A[3][2]*h,f3,nx);

fun(tn+c[3]*h,X4,params ,f4);

// Stage 5

Vadd5(X5,1,xn,A[4][0]*h,fn,A[4][1]*h,f2,A[4][2]*h,£3,A
...[4]1[3]*h,f4,nx);

fun (tn+c[4]1*h,X5,params,f5);

// Stage 6

Vadd6(X6,1,xn,A[5][0]*h,fn,A[5][1]1*h,f2,A[5][2]*h,£f3,A
...[5]1[3]1*h,f4,A[5]1[4]*h,f5,nx);

fun(tn+c[5]*h,X6,params,f6);

// Next step

Vadd6é (xnpl,1,xn,bhat [0]*h,fn,bhat [2]*h,f3,bhat [3]*h,f4,bhat
...[4]1*h,f5,bhat [5]*h,f6,nx);

// Embedded error estimate

Vadd5(e,d[0]*h,fn,d[2]*h,f3,d[3]*h,f4,d[4]1*h,f5,d[5]*h,f6,
...nx);

free(X2); free(X3); free(X4); free(X5); free(X6);
free(f2); free(f3); free(f4); free(f5); free(f6);
}

int DOPRI54(
ODEModel_t *fun,
int nx, int nt,

345
346
347
348
349
350
351
352

353

354
355

356

357

358
359
360
361

362

363

364

365
366
367
368
369
370
371
372
373
374
375
376

124 Implementations In C

double *tspan,

double *xO0,

double *AbsTol, double RelTol,

void *params,

double *xt,

double *x){

int i, firststep, fixedstepsize = nt > 2, s = 7;

double h = 0.001, epsilon = 0.8, p = 4, phat = p+l1, kp =
...0.4/(p+1), kI = 0.3/(p+1), E, Eold;

double *fn = malloc(nx*sizeof (double)), *fnpl = malloc(
...nx*sizeof (double)) ;

double *xfull = malloc(nx*sizeof (double));

double *e = malloc(nx*sizeof (double)), *absx = malloc(
...nx*sizeof (double)), *Tol = malloc(nx*sizeof (double))

double A[lsl[s], bll =

.{5179/57600.0,0.0,7571/16695.0,393/640.0,-92097/33920
double bhat[] =
.{35/384.0,0.0,500/1113.0,125/192.0,-2187/6784.0,11/84
cll] = {0.0,1/5.0,3/10.0,4/5.0,8/9.0,1.0,1.0};

double dls];

A[1]1[0] = 1/5.0;

A[2][0] = 3/40.0, A[2][1] = 9/40.0;

A[3][0] = 44/45.0, A[3][1] = -56/15.0, A[3]1[2] =
. 32/9.0;

A[4]1[0] = 19372/6561.0, A[4]1[1] = -25360/2187.0, A[4][2] =
...64448/6561.0, A[4][3] = -212/729.0;

A[5][0] = 9017/3168.0, A[5][1] = -355/33.0, A[5][2] =
...46732/5247.0, A[5]1[3] = 49/176.0, A[5]1[4] =
...-5103/18656.0;

A[6][0] = 35/384.0, Ale][2] =

500/1113.0, A[6]1[3] = 125/192.0, A[6]1[4] =
...—-2187/6784.0, A[6][5] = 11/84.0;

// Calculate d = b-bhat
Vadd2(d,1.0,b,-1.0,bhat,s);

// Initial time and initial conditions
t [0] = tspan[0];

Vaddl ((x+0*nx) ,1.0,x0,nx) ;

fun(t [0] ,(x+0%*nx) ,params,fn);

// If using fixed step size

if (fixedstepsize){

h = (tspan[1] - tspan[0])/nt;
// For every step
for (i i < nt; i++){

0;

t[i+1] t[i] + h;

0.0,187/2100.0,1/

0,0.0},

377

378
379
380
381
382
383
384
385
386
387
388
389
390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

B.1 Unmodified Methods 125

DOPRI54Step (fun,nx,t[i],(x+i*nx) ,fn,h,params, (x+(i+1) *nx)
.,e,fn,A,c,d);

}

}else{

// If using adaptive step size
firststep = 1;
i = 0;

// While end time has not been reached
while (t[i] < tspan[1]){
// Make sure end time is not passed
if (h > tspan[1] - t[il){
h = tspan[1] - t[i];
}
// Full step
DOPRI54Step (fun,nx,t[i], (x+i*nx) ,fn,h,params,xfull,e,fnpl
...,A,c,d);
// Error estimate
Vabs (e,e,nx);
Vabs (absx,xfull ,nx);
Vadd2(Tol,1.0,AbsTol ,RelTol,absx,nx);
Vdiv(e,e,Tol,nx);
E = max(e,nx);
// Avoid division by zero in PI step size
if(E < pow(10,-10)){ E = pow(10,-10); }
// Accept or fail step
if (E <= 1){
// Update step
tli+1] = t[i]l + h;
Vaddl ((x+(i+1)*nx) ,1.0,xfull ,nx);
Vaddl(fn,1.0,fnpl ,nx);
if (firststep){
// New asymptotic step size
h = h*pow(epsilon/E,1.0/phat);
firststep = 0;
Yelse{
// New PI step size
h = h*pow(epsilon/E,kI)*pow(Eold/E,kp);
}
// Save error for PI step size controller
Eold = E;
i++;

}else{

// New asymptotic step size

h = h*pow(epsilon/E,1.0/phat);
}
}

126 Implementations In C

422
423| '}
424| free(fn); free(fnpl); free(xfull); free(e); free(absx);

...free(Tol);

425 // Return number of steps
426 return i;

427 }

428
429| void DOPRI54Step (

430 ODEModel_t *fun,

431| int nx,

432| double tn,

433| double *zxn,

434| double *fn,

435 double h,

436| void *params,

437| double *xnpl,

438| double *e,

439| double x*fnpl,

440! double A[]J[7], double c[], double d[]){
441
442| double *X2 = malloc(nx*sizeof (double)), *X3 = malloc (nx*
...s8izeof (double)), *X4 = malloc(nx*sizeof (double));
443| double *X5 = malloc(nx*sizeof (double)), *X6 = malloc(nx*
...sizeof (double)), *X7 = malloc(nx*sizeof (double));
444| double *f2 = malloc(nx*sizeof (double)), *f3 = malloc(nxx*
...sizeof (double)), *f4 = malloc(nx*sizeof (double));
445| double *f5 = malloc(nx*sizeof (double)), *f6 = malloc (nx*
...sizeof (double)), *f7 = malloc(nx*sizeof (double));
446| // Stage 2

447| Vadd2(X2,1,xn,A[1][0]l*h,fn,nx);

448| fun(tn+h/5.0,X2,params,f2);

449\ // Stage 3

450/ Vadd3(X3,1,xn,A[2][0]*h,fn,A[2][1]*h,f2,nx);

451| fun(tn+h#*3/10.0,X3,params ,£3);

452| // Stage 4

453| Vadd4 (X4,1,xn,A[3]1[0]*h,fn,A[3][1]*h,f2,A[3][2]*h,f3,nx);
454| fun(tn+h*4/5.0,X4,params ,f4);

455| // Stage 5

456| Vaddb5(X5,1,xn,A[4][0]*h,fn,A[4][1]*h,f2,A[4][2]*h,£f3,A
...[41[3]*h,f4,nx);

457| fun(tn+h*8/9.0,X5,params ,f5);

458| // Stage 6

459| Vadd6(X6,1,xn,A[5][0]*h,fn,A[5][1]1*h,f2,A[5][2]*h,£f3,A
...[5]1[3]*h,f4,A[5][4]*h,f5,nx);

460/ fun(tn+h ,X6 ,params ,f6) ;

461| // Stage 7 is also the next step

462

463
464
465

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486

487
488

489

490

491
492
493
494
495
496
497
498

B.1 Unmodified Methods 127
Vadd6 (xnpl,1,xn,A[6]1[0]*h,fn,A[6][2]*h,£f3,A[6][3]*h,f4 A
...[6]1[4]*h,f5,A[6][5]*h,£f6,nx);
fun(tn+h, xnpl ,params ,f7);
// Embedded error estimation
Vadd6(e,d[0]*h,fn,d[2]*h,f3,d[3]*h,f4,d[4]*h,f5,d[5]*h,f6,d
...[6]1*h,£f7 ,nx);
// The function evaluation is saved and reused
Vaddl (fnpl1,1.0,£f7,nx);
free(X2); free(X3); free(X4); free(X5); free(X6); free(X7);
free(f2); free(f3); free(f4); free(fb); free(f6); free(f7);
}
int ESDIRK23(
ODEModel_t *fun,
ODEModel_t *Jac,
int nx, int nt,
double *tspan,
double *x0,
double *AbsTol, double RelTol,
void *params,
double *t,
double *x){
int i, firststep, fixedstepsize = nt > 2, s = 3;
double h = 0.001, halpha, hold, hmax = 10, hmin = 0.000001,
epsilon = 0.8, p = 2, phat = p+1, kp = 1/phat, kI =
... 1/phat, E, Eold;
double *fn = malloc(nx*sizeof (double)), *fnpl = malloc(
...nx*sizeof (double));
double *xfull = malloc(nx*sizeof (double));
double *e = malloc(nx*sizeof (double)), *absx = malloc(
.nx*sizeof (double)), *Tol = malloc(nx*sizeof (double))

double gamma = 1-1.0/sqrt(2.0), a31 = (1.0-gamma)/2, b[]
...{a31,a31,gammal};

double bhat[] = {(6*gamma-1)/(12*xgamma) ,1/(12*gamma*(1-2%

.gamma)) , (1-3*gamma) /(3*(1-2*gamma))}, c[] = {0,2*

...gamma ,1}, dl[s];

double Convergence, Divergence, alpharatio, *stepoutput;

// Calculate d = b-bhat

Vadd2(d,1.0,b,-1.0,bhat,s);

// Initial time and initial conditions

t[0] = tspan[0];

Vaddl ((x+0*nx) ,1.0,x0,nx) ;

fun(t[0], (x+0*nx) ,params,fn);

// If using fixed step size

499
500
501
502
503
504

505
506
507
508
509
510
511
512
513
514
515
516
517

518

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

539
540

128 Implementations In C

if (fixedstepsize){
h = (tspan[1] - tspan[0])/nt;
// For every step
for(i = 0; i < nt; i++){
t[i+1] = t[i]l + h;
stepoutput = ESDIRK23Step(fun,Jac,nx,t[i],(x+i*nx) ,fn,h,
...AbsTol ,RelTol ,params, (x+(i+1)*nx),e,fn,b,c,d, gamma
D
}
Yelseq{
// If using adaptive step size
firststep = 1;
i = 0;
// While end time has not been reached
while(t[i] < tspan[1]1){
// Make sure end time is not passed
if(h > tspan[1] - t[il){
h = tspan[1] - t[i];
}
// Full step
stepoutput = ESDIRK23Step(fun,Jac,nx,t[i],(x+i*nx),fn,h,
...AbsTol ,RelTol,params ,xfull,e,fnpl,b,c,d,gamma);
Convergence = stepoutput[0], Divergence = stepoutput[1],
...alpharatio = stepoutput[2]; free(stepoutput);
// Error estimate
Vabs(e,e,nx);
Vabs (absx,xfull ,nx) ;
Vadd2(Tol,1.0,AbsTol ,RelTol,absx,nx);
Vdiv(e,e,Tol,nx);
E = max(e,nx);
// Avoid division by zero in PI step size
if (E < pow(10,-10)){ E = pow(10,-10); 1}
if (Convergence){
// Fail or accept step
if (E <= 1){
// Update step
tli+1] = t[i]l + h;
Vaddl ((x+(i+1)*nx) ,1.0,xfull ,nx);
Vaddl (fn,1.0, fnpl ,nx);
if (firststep){
// New asymptotic step size
h = h*pow(epsilon/E,1.0/phat);
// Make sure step size is not too small or too large
//if (h > hmax){ h = hmax; }else if(h < hmin){ h = hmin
.
firststep = 0;
Yelse{

541
542
543
544

545
546

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

574
575
576
577
578
579
580
581
582
583
584

B.1 Unmodified Methods 129

// New PI step size
h = h*(h/hold)*pow(epsilon/E,kI)*pow(Eold/E,kp);
// Make sure step size is not too small or too large

if(h > hmax){ h = hmax; }else if(h < hmin){ h = hmin;
.
}
// Save error and step size for use in PI step size
...controller

Eold = E;

hold = h;

i++;
}elseq

// New asymptotic step size

h = h*pow(epsilon/E,1.0/phat);

// Make sure step size is not too small or too large
if(h > hmax){ h = hmax; }else if(h < hmin){ h = hmin; }
}

if (alpharatio < 1){

h = hxalpharatio;

}
}else if (Divergence){

halpha = h*alpharatio;

if (halpha > 0.5*%h){ h = halpha; }else{ h = 0.5%h; }
Yelse{

if (alpharatio < 1){

halpha = hxalpharatio;

if (halpha > 0.5*%h){ h = halpha; }else{ h = 0.5%h; }
}elseq
h = 0.5%h;
}
}
}
}
free(fn); free(fnpl); free(xfull); free(e); free(absx);
...free(Tol);

// Return number of steps
return ij;

double *ESDIRK23Step(
ODEModel_t *fun,
ODEModel_t *Jac,
int nx,
double tn,
double *xn,
double *fn,

585
586
587
588
589
590
591
592
593

594

595
596

597

598

599

600

601

602
603
604
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

130 Implementations In C

double h,

double *AbsTol, double RelTol,

void *params,

double *xnpl,

double x*xe,

double *fnpl,

double b[], double c[], double d[], double gamma){

int i, Convergence, SlowConvergence = 0, Divergence = 0,
...iter, itermax = 10;
double epsilon = 0.8, tau = 0O.lxepsilon, alpha = 0.0,
.alpharef = 0.4;

double *X2 = malloc(nx*sizeof (double)), *X3 = malloc (nx
...*sizeof (double));
double *£f2 = malloc(nx*sizeof (double)), *£f3 = malloc (nx

...*sizeof (double));
double *phi2 = malloc(nx*sizeof (double)), *phi3 = malloc(nx

...*sizeof (double)), *R = malloc(nx*sizeof (double));
double *absX = malloc(nx*sizeof (double)), *Tol = malloc(nx
...*sizeof (double)), *dX = malloc(nx*sizeof (double)) ;
double *J = malloc(nx*nx*sizeof (double)), *dRdx = malloc (nx
..*nx*sizeof (double)), *I = calloc(nx*nx,sizeof (double

D)

double T, rNewton, rNewtonO0Old, a2l = gamma, *output =
...malloc(sizeof (double) *3) ;

// Parameters used for LAPACK functions dgetrf and dgetrs

const enum CBLAS_ORDER Order = CblasRowMajor;

const enum CBLAS_TRANSPOSE Trans = CblasNoTrans;

int N = nx, M = N, NRHS = 1, LDA nx, LDB = N, *IPIV =
...malloc(nx*sizeof (int)) ;

// Jacobian Update

Jac(tn,xn,params,J);

for(i = 0; i < nx; i++){ *(I+i*(nx+1)) = 1.0; %}

Madd2 (nx ,dRdx ,1.0,I,-h*gamma,J);

// LU Factorization of dRd4X

clapack_dgetrf (Order ,M,N,dRdx ,LDA,IPIV);

// Stage 2 of the ESDIRK23 method

Vadd2 (phi2,1.0,xn,h*a21,fn,nx) ;

// Initial guess for the state by Euler step

T = tn + c[1]*h;

Vadd2(X2,1.0,xn,c[1]*h,fn,nx);

// Newton iterations

fun(T,X2,params,f2);

// R = X2 - h*gamma*f2 - phi2

Vadd3(R,1.0,X2,-h*gamma ,f2,-1.0,phi2,nx);

// rNewton = || |R|/(AbsTol + |X2|*RelTol) || _inf

622
623
624
625
626
627
628
629
630
631

632
633
634
635
636
637
638
639
640
641
642
643
644
645

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

B.1 Unmodified Methods 131

Vabs (e,R,nx) ;
Vabs (absX,X2,nx) ;
Vadd2(Tol,1.0,AbsTol ,RelTol,absX,nx);
Vdiv(e,e,Tol,nx) ;
rNewton = max(e,nx);
rNewton0ld = rNewton;
iter = 0;
Convergence = 0;
while (! Convergence && !SlowConvergence && !Divergence){
// Solve (I - hx*gamma*J) dX = R for dX (notice the lacking
minus). dX is stored in R
clapack_dgetrs(Order ,Trans ,N,NRHS,dRdx ,LDA,IPIV,R,LDB);
//Backslash(nx,dRdx,dX,R);
// Update X2 by adding -dX (notice the minus)
Vadd2(X2,1.0,X2,-1.0,R,nx);
fun(T,X2,params,£2);
// R = X2 - h*gamma*f2 - phi2
Vadd3(R,1.0,X2,-h*gamma ,f2,-1.0,phi2 ,nx);
// rNewton = || |R|/(AbsTol + |X2|*RelTol) || _inf
Vabs (e,R,nx);
Vabs (absX,X2,nx) ;
Vadd2(Tol,1.0,AbsTol ,RelTol,absX,nx);
Vdiv(e,e,Tol,nx);
rNewton = max(e,nx);
if (alpha < rNewton/rNewton0ld){ alpha = rNewton/rNewtonOld
N
Convergence = rNewton < tau;
SlowConvergence = iter > itermax;
Divergence = alpha > 1;
rNewton0ld = rNewton;
iter++;
}
// Stage 3 of the ESDIRK23 method
Vadd3 (phi3,1.0,xn,b[0]*h,fn,b[1]*h,f2,nx);
// Initial guess for the state
T = tn + h;
Vadd2(X3,1.0,xn,h,fn,nx);
// Newton iterations
fun(T,X3,params,f3);
// R = X3 - h*gamma*f3 - phi3
Vadd3(R,1.0,X3,-h*xgamma ,f3,-1.0,phi3 ,nx);
// rNewton = || |R|/(AbsTol + |X3|*RelTol) || _inf
Vabs (e,R,nx) ;
Vabs (absX,X3,nx);
Vadd2(Tol,1.0,AbsTol ,RelTol,absX,nx);
Vdiv(e,e,Tol,nx) ;
rNewton = max(e,nx);

132 Implementations In C

667| rNewtonOld = rNewton;

668 iter = O0;

669 Convergence = 0;

670 while (!Convergence && !SlowConvergence && !Divergence)q
671 // Solve (I - hxgamma*J) dX = R for dX (notice the lacking
minus)

672 clapack_dgetrs (Order ,Trans ,N,NRHS,dRdx ,LDA,IPIV,R,LDB);
673 //Backslash(nx,dRdx,dX,R);

674 // Update X3 by adding -dX (notice the minus)

675 Vadd2(X3,1.0,X3,-1.0,R,nx);

676 fun(T,X3,params,£3);

6771 // R = X3 - h*gamma*f3 - phi3

678 Vadd3(R,1.0,X3,-h*gamma ,£f3,-1.0,phi3 ,nx);

679 // rNewton = || |R|/(AbsTol + |X3|*RelTol) || _inf

680 Vabs (e,R,nx) ;

681 Vabs (absX ,X3,nx) ;

682 Vadd2(Tol,1.0,AbsTol ,RelTol,absX,nx);

683 Vdiv(e,e,Tol,nx);

684 rNewton = max(e,nx);

685 if (alpha < rNewton/rNewton0ld){ alpha = rNewton/rNewtonOld
.5}

686 Convergence = rNewton < tau;

687 SlowConvergence = iter > itermax;

688 Divergence = alpha > 1;

689 rNewton0ld = rNewton;

690 iter++;

691 2

692| // Update step

693| Vaddl (xnpl1,1.0,X3,nx);

694| // Embedded error estimate

695 Vadd3(e,d[0]l*h,fn,d[1]1*h,f2,d[2]*h,£f3,nx);

696| // The function evaluation is saved and reused
697| Vaddl (fnp1,1.0,£3,nx);

698| // Return Convergence booleans and alpha ratio

699| output [0] = Convergence, output[1] = Divergence, output [2]
.= alpharef/alpha;

700

701| free(X2); free(X3); free(f2); free(f3); free(phi2); free
...(phi3);

702| free(R); free(absX); free(Tol); free(dX);

703| free(J); free(dRdx); free(I); free (IPIV);

704

705| return output;

706| ¥

707

708| void NewtonSolve (
709 ODEModel_t =*gfun,

710
711
712
713
714
715
716
717
718

719

720
721

722

723
724
725
726
727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

B.1 Unmodified Methods

133

ODEModel_t x*gJac,

int nx,

double *gnpl,

double *x0,

double *AbsTol, double RelTol,
void *params,

double =*xnpl,

double =*output){

int Convergence, SlowConvergence = 0, Divergence = 0,
...itermax = 10, iter;

double epsilon = 0.8, tau = O.l1*epsilon, alpha = 0.0,
...alpharef = 0.4;

double *g = malloc(nx*sizeof (double));

double *R = malloc(nx*sizeof (double)), *absgnpl = malloc(nx
...*sizeof (double)), *Tol = malloc(nx*sizeof (double)) ;

double *e = malloc(nx*sizeof (double)), *dgdx = malloc(nx*nx

.*sizeof (double)), *dxn = malloc(nx*sizeof (double)) ;

double rNewton, rNewtonO0ld;

// Parameters used for LAPACK functions dgetrf and dgetrs

const enum CBLAS_ORDER Order = CblasRowMajor;

const enum CBLAS_TRANSPOSE Trans = CblasNoTrans;

int N = nx, M = N, NRHS = 1, LDA = nx, LDB = N, *xIPIV =
...malloc(nx*sizeof (int)) ;

// Initial guess for xnpl is the previous step

Vaddl (xnpl1,1.0,x0,nx);

// Calculate residual

gfun (0, xnpl ,params,g) ;

gJac (0, xnpl,params ,dgdx) ;

// LU Factorization of dgdx

clapack_dgetrf (Order ,M,N,dgdx ,LDA,IPIV);

// Residual

Vadd2(R,1.0,g,-1.0,gnpl ,nx);

Vabs (e,R,nx);

Vabs (absgnpl, gnpl,nx);

Vadd2(Tol,1.0,AbsTol ,RelTol,absgnpl ,nx);
Vdiv(e,e,Tol,nx);

// rNewton = || |R|/(AbsTol + |gnpl|*RelTol) || _inf
rNewton = max(e,nx);

rNewton0ld = rNewton;

iter = 0;

// Check for convergence

Convergence = rNewton < tau;

while (! Convergence && !Divergence && !SlowConvergence){
// Solve Dgxdxn = R = (g-gnpl). dxn is stored in R

clapack_dgetrs (Order ,Trans ,N,NRHS,dgdx ,LDA,IPIV,R,LDB);

//Backslash(nx,dgdx ,dxn,R);
// Update xnpl by adding -dxn (notice the minus)

134 Implementations In C

752 Vadd2 (xnpl1,1.0,xnpl,-1.0,R,nx);

753 gfun (0, xnpl ,params,g);

754 // Calculate residual

755 Vadd2(R,1.0,g,-1.0,gnpl ,nx);

756 Vabs (e,R,nx) ;

757 Vadd2(Tol,1.0,AbsTol ,RelTol, absgnpl ,nx);
758 Vdiv(e,e,Tol,nx);

759 // rNewton = || |R|/(AbsTol + |gnpl|*RelTol) || _inf

760 rNewton = max(e,nx);

761 if (alpha < rNewton/rNewton0ld){ alpha = rNewton/rNewtonOld
.5}

762 Convergence = rNewton < tau;

763 SlowConvergence = iter > itermax;

764 Divergence = alpha > 1;

765 rNewton0ld = rNewton;

766 iter++;

767 }

768| free(g); free(R); free(absgnpl); free(Tol); free(e); free(
...dgdx); free(dxn); free(IPIV);

769| // Return Convergence booleans and alpha ratio

770 output [0] = Convergence, output[1] = Divergence, output [2]
.= alpharef/alpha;

771 }

772
773| void Backslash(int nx, double *A, double *x, double *b){
774| double *U = malloc(nx*nx*sizeof (double)), *c = malloc(nx*
...sizeof (double));

775 memcpy (U,A,nx*nx*sizeof (double));

776| memcpy(c,b,nx*sizeof (double));

777! // Solves Ax = b

778| // GaussianElimination puts A in an upper triangular form,
..U

779| GaussianElimination(nx,U,c);

780| // BackSubstituion solves Ux = c

781| BackSubstitution(nx,U,x,c);

782| free(U); free(c);

783| }

784
785| void GaussianElimination(int nx, double *A, double *b){
786| int i,j,k;

787 double m;

788 for(k = 0; k < nx-1; k++){

789 for(i = k+1; i < nx; i++){

790 m = *(A+i*nx+k)/(*(A+k*nx+k));
791 for(j = k+1; j < nx; j++){
792 *(A+ixnx+j) -= x(A+k*nx+j)*m;

793 }

B.1 Unmodified Methods 135

794 b[i] = b[i] - m*b[k];

795 }

796| }

797 }

798

799| void BackSubstitution(int nx, double *U, double *x, double *

o.oe)q

800| int i,j;

801| x[nx-1] = c[nx-11/(*x(U + (nx-1)*nx + (nx-1)));

802| for(i = nx-2; i >= 0; i--){

803 x[i] = c[i];

804 for(j = i+1; j < nx; j++){

805 x[1] -= *(U+ixnx+j)*(x[j1);

806 }

807 x[1i] = x[i]/(x(U+i*nx+i));

808| 1}

809| }

810

811| void Vdiv(double *A, double *B, double *C, int nx){

812| // Divide two vectors elemenwise

813| // Answer is stored imn A

814| int j; for(j = 0; j < nx; j++){ A[j] = B[jl/Cc[jl; }

815/ }

816

817| void Madd2(int nx, double *A, double b, double *B, double c,

double *C){

818| int 1ij;

819| for(i = 0; i < nx; i++){

820 Vadd2 ((A+i*nx) ,b, (B+i*nx),c,(C+i*nx) ,nx);

821| }

822 }

823

824| void Vadd7 (double *A, double b, double *B, double c, double

...*C, double d, double *D, double e, double *E, double
.f, double *F, double g, double *G, double h, double *
. H, int nx){

825| // Add six vectors, each with a coefficient

826| // Answer is stored in A

827| int j; for(j = 0; j < nx; j++){ A[j] = b*B[jl + cx*C[j] + d*

...D[j] + exE[j] + £*F[j]l + g*G[j] + hxH[jl; }

828 }

829

830| void Vadd6 (double *A, double b, double *B, double c, double

...*C, double d, double *D, double e, double *E, double
.f, double *F, double g, double *G, int nx){

831| // Add six vectors, each with a coefficient

832| // Answer is stored in A

833

834
835
836

837
838
839

840
841
842

843
844
845

846
847
848

849
850
851

852
853
854

855
856
857
858
859
860
861
862
863
864
865
866
867
868

136 Implementations In C

int j; for(j = 0; j < nx; j++){ A[j] = b*B[j] + c*C[j] + dx

...D[j1 + ex*E[j] + £*F[j] + g*G[jl; }
}

void Vadd5(double *A, double b, double *B, double c,
...*C, double d, double *D, double e, double *E,

..f, double *F, int nx){
// Add five vectors, each with a coefficient
// Answer is stored in A

int j; for(j = 0; j < nx; j++){ A[j]l = b*B[j] + c*C[j]l + dx

...D[j1 + ex*E[j] + £xF[jl; }
}

void Vadd4 (double *A, double b, double *B, double c,
...*C, double d, double *D, double e, double *E,

Ao
// Add four vectors, each with a coefficient
// Answer is stored in A

int j; for(j = 0; j < nx; j++){ A[j]l = b*B[j] + c*C[j] + dx

...D[j]1 + exE[jl; }
}

void Vadd3 (double *A, double b, double *B, double c,

...*C, double d, double *D, int nx){
// Add three vectors, each with a coefficient
// Answer is stored in A

int j; for(j = 0; j < nx; j++){ A[j]l = b*B[j] + c*C[j] + dx*
J J J J J J J

...DI315 %}
}

void Vadd2(double *A, double b, double *B, double c,

...*%C, int nx){
// Add two vectors, each with a coefficient
// Answer is stored in A

int j; for(j = 0; j < nx; j++){ A[j]l = b*B[j] + c*C[j]l;

}

void Vaddil (double *A, double b, double *B, int nx){

// Assign one vector with a coefficient

// Answer is stored in A

int j; for(j = 0; j < nx; j++){ A[j]l = b*B[j]l;
}

void Vprint (double *A, int nx){
// Print vector
int j; for(j = 0; j < mnx; j++){ printf(
...printf ();

}

AL

double
double

double
int nx)

double

double

}

}

869
870
871
872
873
874
875
876
877
878
879

880
881
882
883
884

885

© 00 O U W N~

I e i e e e e
O © 00 O Ut W N = O

B.2 Modified Methods 137

void Vabs(double *A, double *B, int nx){

// Take absolute value of a vector

// Answer is stored in A

int j; for(j = 0; j < nx; j++){ A[j]l = fabs(B[jl); }
}

double max (double *A, int nx){
// Return maximum element in A
int j; double maxelem = A[0]; for(j = 1; j < nx; j++){ if (A
...[j] > maxelem){ maxelem = A[j]l; }} return maxelem;

double min(double *A, int nx){
// Return minimum element in A
int j; double minelem = A[0]; for(j = 1; j < nx; j++){ if(A
...[j] < minelem){ minelem = A[j]l; }} return minelem;

B.2 Modified Methods

Listing B.2: Implementation of the modified methods in C

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include

#include

int EulerMod(
ODEModel_t *fun,
ODEModel_t *gfun,
0DEModel_t *gJac,
int nx, int nt,
double *tspan,
double *xO0,
double *AbsTol, double RelTol,
void *params,
double *t,
double *x){

int i,j, firststep, fixedstepsize = nt > 2;

21

22

23
24

25

26

27
28

29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54

138 Implementations In C

double h = 0.001, halpha, hmin = 0.000001, hmax = 10,
...epsilon = 0.8;
double p = 1, phat = p+1, kp = 0.4/phat, kI

0.3/phat, E,

...Eold;
double *fn = malloc(nx*sizeof (double));
double *xfull = malloc(nx*sizeof (double)), *xhalf =
.malloc(nx*sizeof (double)), *xdouble = malloc (nx*
...sizeof (double));
double *e = malloc(nx*sizeof (double)), *absx =

..malloc(nx*sizeof (double)), *Tol
...sizeof (double));
double *gnpl = malloc(nx*sizeof (double)), *gfull =
.malloc(nx*sizeof (double)), *ghalf malloc (nx*
...sizeof (double));
double *gdouble = malloc(nx*sizeof (double));
double Convergence, Con, Divergence, Div, alpharatio, *
...stepoutput;
// Initial time and initial conditions
t[0] = tspan[0];
Vaddl ((x+0*nx) ,1.0,x0,nx) ;
gfun(t [0] ,x0,params, gnpl);
// If using fixed step size
if (fixedstepsize){
h = (tspan[1] - tspan[0])/nt;
// For every step
for(i = 0; i < nt; i++){
t[i+1] = t[i] + h;
fun(t[i], (x+i*nx) ,params,fn);
stepoutput = EulerModStep (fun,gfun,gJac,nx,t[i], (x+i*nx),
...fn,gnpl,h,AbsTol ,RelTol,params, (x+(