
Multi-Agent Systems in GOAL

Jannick Johnsen and Søren Jacobsen

Kongens Lyngby 2013
IMM-B.Sc.-2013-18

Technical University of Denmark
DTU Compute
Matematiktorvet, building 303B, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
compute@compute.dtu.dk
www.compute.dtu.dk B.Sc.-2013-18

Summary (English)

In this report we will document our efforts to develop the Xmas (cross platform
Multi-Agent System) engine for designing MAS (Multi Agent System) environ-
ments and managing intelligent agents acting in them. As the engine is for
designing environments, the agents are supposed to receive commands from and
send percepts to a seperate agent programming language, which implements the
artificial intelligence of the agents.

The primary goal of the project is to make the engine as general as possible
so as to allow any desirable environment to be designed with it, while mak-
ing it easy to extend individual components to suit the needs of specific types
of MASs. The engine comes packaged with support for interfacing with EIS
(Environment Interface Standard), and, by extension, the agent programming
languages supported by it. A simple tile-based environment is also provided.
The engine is designed with the model-view-controller (MVC) pattern, to al-
low clear seperation of components. To showcase and test our engine, we have
created a reference implementation which uses the GOAL agent programming
language to control agents.

We believe that the Xmas engine have achieved a high degree of generality,
although this comes at the expense of features and functionality useful to many
MASs, which have instead been delegated to extensions. The engine is best
suited for designing, setting up and executing larger systems, as there is a lot
of overhead involved. The engine as well as the example extensions runs on the
major operating systems, including Linux, Windows and Mac OS.

ii

Summary (Danish)

I denne rapport vil vi dokumentere vores bestræbelser på at udvikle Xmas
(cross platform Multi-Agent System) maskinen, der er designet til at udvik-
le MAS (Multi-Agent System) miljøer og holde styr på intelligente agenter,
der agerer heri. Da maskinen bruges til at lave miljøer, er det meningen at
agenterne sender sanselige indtryk til og modtager kommandoer fra et separat
agent-programmeringssprog, der implementerer agenternes kunstige intelligens.

Det primære mål med projektet er at gøre maskinen så generel som muligt,
således at ethvert ønskeligt miljø kan udvikles med den, og samtidig gøre det
nemt at udvide individuelle komponenter, så de passer til specifikke MAS-typer.
Maskinen kommer med indbygget understøttelse for sammenkobling med EIS
(Environment Interface Standard), og dermed også for sammenkokbling med de
af EIS understøttede agent-programmeringssprog. Et simpelt flise-baseret miljø
følger også med maskinen. Maskinen er designet ud fra model-view-controller
udviklingsmønsteret, hvilket muliggør en klar opdeling af de forskellige kompo-
nenter. For at teste og fremvise vores maskine har vi udviklet en referenceim-
plementation der bruger agent-programmeringssproget GOAL til at styre dens
agenter.

Vi mener at Xmas i høj grad er generel, hvilket har betydet at flere funktio-
naliteter er blevet rykket fra Xmas-kernen ud til udvidelsespakker. Xmas er
bedst egnet til større systemer, da der skal en del kode til at designe, opsætte
og eksekvere sytemer med den. Både Xmas og udvidelsespakkerne kører på de
dominerende operativsystemer, Linux, Windows og Mac OS inkluderet.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an B.Sc. in Informatics.

Although multi-agent systems is a field with a lot of research, there are not
many tools aimed at designing or setting up environments for these systems.
This problem is compounded by the fact that there are many capable agent
programming languages (APLs). In this project we will explain and showcase the
design of our Xmas Engine designed specifically to communicate with different
APLs in the same environment. Furthermore the engine is also designed to be
used for any type of environment. Along with the engine we provide a reference
implemention (with agent programs written in GOAL) showing the abilities of
the Xmas Engine.

Lyngby, 01-July-2013

vi

Jannick Johnsen and Søren Jacobsen

Acknowledgements

For the guidance given to us in shaping our project, and for the continuous
assistance throughout, we would like to thank our supervisor Jørgen Villadsen.
We would also like to thank Koen V. Hindriks for providing us the source code of
the environments that comes with GOAL, so that we could quickly understand
how to develop our own environment.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Theory 5
2.1 Multi-Agent Systems . 5

2.1.1 Agents and Environments in Artificial Intelligence 5
2.1.2 Multi-Agent Systems . 7
2.1.3 The GOAL Agent Programming Language 8
2.1.4 The Environment Interface Standard 10

2.2 Model View Controller . 11
2.2.1 Model . 12
2.2.2 View . 12
2.2.3 Controller . 13

2.3 Factory Design Pattern . 15
2.3.1 Abstract Factory Design Pattern 17

2.4 Test Driven Development . 18
2.4.1 How to write unit tests 20

3 Reference Implementation 27

x CONTENTS

4 System Features 33
4.1 Overview . 33

4.1.1 State . 33
4.1.2 Actions . 34
4.1.3 Events and Triggers . 35

4.2 Virtual World . 35
4.2.1 Entities, Agents and Entity Modules 35

4.3 Events and Triggers . 37
4.3.1 Concept . 38
4.3.2 Entities and EventManager 39
4.3.3 Example of making and using an Event 40

4.4 Actions . 41
4.4.1 Action Types . 41
4.4.2 Example – Move Entity Action 42
4.4.3 Summary . 43

4.5 Converting Actions and Percepts 43
4.6 Agent Controllers . 44

4.6.1 Concept . 44
4.6.2 How to use agent controllers 46

4.7 View . 47
4.7.1 Concept . 47

4.8 Engine Extensions . 49
4.8.1 Tile Extension . 49
4.8.2 EIS Extension . 50
4.8.3 Logger Extension . 53

5 Implementation 55
5.1 Architecture . 55

5.1.1 Model Component . 55
5.1.2 World Creation Component 57
5.1.3 View Component . 57
5.1.4 Controller Component . 58

5.2 Model . 59
5.2.1 World . 59
5.2.2 Entities and Entity Modules 60
5.2.3 Events and Triggers . 60
5.2.4 Actions . 63

5.3 Agent Controller . 66
5.4 View . 68
5.5 Engine Extensions . 70

5.5.1 Tile Extension . 70
5.5.2 EIS Extension . 73

5.6 Reference Implementation . 79
5.6.1 The Console View . 80

CONTENTS xi

5.6.2 GOAL Program Implementation 82

6 Testing 85
6.1 Testing the Engine . 85
6.2 Testing the Reference Implementation 86

7 Results and Comparisons 87
7.1 Generality of the engine . 87
7.2 Model View Controller Design Pattern 90
7.3 Choice of Technologies . 90
7.4 Comparison to other Environment Construction Tools 91

7.4.1 Cartago . 92
7.4.2 Environment Interface Standard 94

8 Conclusion 95
8.1 Results of comparisons . 95
8.2 Engine completion . 96
8.3 Future work . 97

A Domain Model UML Diagram for XMAS Model 99

B XMAS Engine Component Diagram 101

C Vacuum World Example 103
C.1 World . 103
C.2 The Entities And Agents . 108
C.3 Actions and Events . 109
C.4 Controller . 112
C.5 View . 114
C.6 Designing the map and wiring the parts together 115
C.7 Testing the Vacuum World . 117

D GOAL Part of Reference Implementation 119
D.1 Agent Desicion Flow Chart . 121
D.2 GOAL Source Code for Reference Implementation 122

Bibliography 129

xii CONTENTS

Chapter 1

Introduction

Background

MASs (multi-agent systems) is an important research topic in the field of AI
(artificial intelligence) as they consist of several intelligent agents interacting
and cooperating to reach a specific goal. This lends itself well to distributed
computing, following the recent (since the turn of the millenium) trend of de-
signing processors with more cores rather than better ones. Multi-Agent Sys-
tems have also been used to simulate naturally occurring systems, where several
autonomous agents interact.

There have been a lot of research on the topic of MASs, as well as related
ones such as distributed artificial intelligence (DAI). There are several APLs
(Agent Programming Languages) tailored to MAS development; they are called
MASPLs (Multi-Agent System Programming Languages).

Motivation

While there exists many multi-agent programming languages, there are few tools
for constructing environments for the agents to behave in, which also allows for

2 Introduction

easy graphical representation.

There are many complications when developing multi agent systems, our goal
with this project was to lessen one of these by designing an engine with the
specific purpose to develop multi agent environments. What these environments
can be is left to the developer, however almost everything in the engine we
propose is modular and interchangeable, ensuring that all types of multi agent
environments are possible.

What the types of projects can be is manyfold but here are some possible ex-
amples:

Agent comparison software There are many different languages in which it
is possible to write agent programs; some are specifically designed for it, others
are powerful enough to accommodate the possibility of agent programming. Our
engine is designed with support for multiple languages at once which makes this
engine a suitable candidate for designing a comparator program.

For instance, if two groups wanted to test their agent programs against each
other, this engine would make it possible for them to easily design a world in
which this test could occur.

Agent testing/Simulation software Testing agent software can be com-
plicated. Being able to rapidly create an environment and visualize it can be
important to a MAS project, as it ensure basic mistakes are ironed out before
larger scale implementation.

Agent teaching tools Teaching agent languages can be tough without proper
exercises; however, the time spent on designing these exercises can prove too
exhausting for the teacher to develop. Using our engine the teacher can rapidly
design the world he had in mind for his exercise instead of designing every
integral part of the multi agent system himself. This is because our engine
provides all the basic features of a multi agent system, so that the time can
be spent more productively on designing how a given exercise should play out,
showcasing the problem the students are supposed to deal with.

Computer games In practice most computer games are just multi agent
programs where one of the agents is controlled by the player. Our engine should
make it fairly easy by setting up framework for creating rules inside a given

3

world and ensure that the agents of the world follow said rules, thus defining a
game which the engine would be capable of running.

Goals

The engine which we propose must reach a list of goals in order for us to deem
the project succesful:

Generality: By this, we mean that components developed with our engine
should be reusable in the sense that they should be able to be used in
other projects. For examle, the logic for connecting to a specific APL
should be implamentable in other projects. Furthermore, the engine itself
should be multi- applicable; it should be able to be used to construct any
kind of scenario, and interface with different APLs.

Easy to use: It should be relatively easy to construct a complicated scenario,
and even easier to construct a simple one.

Cross platform compatibilty: The engine should be executable on as many
platforms as possible, at least the three major operating systems (Linux,
Mac and Windows).

Overview of the Report

In this report we will document our efforts to design an engine as described
above. The report is structured as follows:

Theory outlining the design patterns used in the engine along with explanation
of MAS.

Reference Implementation providing an introduction to how a final product
of the engine might look, along with agent programs connected to the
engine.

System Features describing the features of the engine and how it can be used.

Implementation containing an examination of the actual implementation of
the engine, along with our considerations of the choices taken.

Testing describes how the engine was tested.

4 Introduction

Results and Comparisons evaluates whether the goals we had set for the
engine was reached, and compares it to similar works.

Chapter 2

Theory

2.1 Multi-Agent Systems

2.1.1 Agents and Environments in Artificial Intelligence

In artificial intelligence, an agent is something that can perform actions in and
(partially or fully) perceive the state of the environment it is situated in. As
an example, consider an agent tasked with finding the shortest route between
two nodes in a weighted, undirected graph, with the limitation that it can only
see the nodes that have an edge to the one it is standing in, an example of the
graph can be seen on fig. 2.1. We will now use this example to describe what
[RNC+96] calls a task environment, consisting of definitions for the performance
measure for the agent, the environment it acts in, the actions it can take, and
its facilities for perception:

Environment The environment is a model of the world the agent acts in.
In our example, it is described as a graph. The environment may also
contain artifacts for agents to interact with, such as a packages to pick up
or obstacles to navigate around.

Actions This denotes what actions the agent can take to change the state of

6 Theory

Figure 2.1: What an agent can see of a graph where it tries to move from node
A to node B.

the environment or itself. In the example, the agent would have a move
action, allowing it to move to an adjacent, connected node.

Percepts If the agent is to make intelligent decisions, it must be able to perceive
the current state of the world – that is, itself and the environment. Such
a fragment of information that the agent have sensed is called a percept.
In the running example, the agent can perceive the nodes immediately
connected to the one it is standing on, as well as the edges to those nodes.

Performance For an agent to be as efficient as possible, it is useful to have a
performance measure describing how well the agent is executing the task
at hand. In the provided example, the performance measure could be
defined in terms of the number of actions taken per unique node visited,
giving the agent an idea of the amount of redundancy in its pathfinding.

While the task environment can be used to succinctly describe the properties of
the world, it says nothing of the logic that the agent applies to perform tasks
in the world. This is left in the hands of an agent program, which is responsible
for processing the percepts and choosing actions for an agent. In general, an
agent program receives percepts and chooses an appropriate action based on the
knowledge available to it in an aptly named percept-action cycle. This knowledge
may just be the current percepts, or it may be all the percepts retreived so far.
When choosing an action, it may take into consideration how different actions
would affect the world, and how much closer performing the action would bring
the agent to its goal. Agents with such capable agent programs are called
utility-based agents in [RNC+96].

2.1 Multi-Agent Systems 7

2.1.2 Multi-Agent Systems

While there is no strict, universal definition of what constitutes a multi-agent
system, the following seems to represents the simplest consensus: In a multi-
agent system, several intelligent agents act and interact more or less autonomously
in an environment. The interacting of agents may be of any character, the im-
portant part is that each agent can be aware of the others and affect their
execution directly or indirectly. Here, a direct effect means changing another
agents state, eg. by moving it into another postition or decreasing its health.
An indirect effect could be communicating with the agent, suggesting another
execution path. For instance, a system in which agents compete for ressources
and hinder other agents’ progress is a multi-agent system, as is a system in
which the agents work together towards a common goal.

While the former may be useful in simulating certain systems, the latter is
more interesting in software design, as such an approach could conceivably lead
to more decentralized problem solving. A mixture of the two approaches can
also be used, as in the Multi-Agent Programming Contest1, where teams of
cooperating agents compete for points. In this case, the goal for each team is to
develop the best strategy, where performance is measured by competitiveness.

In addition to the above, limiting the agents’ knowledge of the state of the world
is a desirable characteristic of a MAS; otherwise, there would be no need for the
agents to communicate, and they could just as well be subroutines of a single
agent [PL05]. It could still be modelled as a MAS, of course, but not a very
interisting one. Additionally, the case could be made that the less agents know
of the world, the less information they have to process when searching for an
action to execute, thus reducing their computational load. On the other hand,
less information can cause the agent to follow a suboptimal execution path,
causing a trade-off between computation time and optimality.

One of the strong points of multi-agent systems is that it consists of several pieces
of software running more or less autonomously. As mentioned above, this allows
for developing decentralized systems, where agent programs runs on different
threads or servers. In the context of distributed systems, less dependency on a
central intelligence is of course preferred.

Furthermore, MASs are useful when simulating naturally occuring systems wherein
several “agents” interact with each other An example of this could be a group of
animals around a watering hole, where some are prey and some are predators.

1multiagentcontest.org

8 Theory

2.1.3 The GOAL Agent Programming Language

In this section we will outline the GOAL language based on [Hin09].

Several APLs (Agent Programming Languages) have been developed to suit the
defining characters of agents and their interaction with environments as we have
described them above. In this section, we will focus on the relatively new GOAL
APL, which can be written using the prolog logic programming language.

In GOAL, code is segmented into sections describing:

• What it knows

• What it wants to achieve

• What it can do

• How it handles new information (percepts) from the environment

• The actual logic for choosing an appropriate action to execute

The first two points in the list will be explained below.

Mental State

GOAL provides the notion of mental state of an agent, which describes what
the agent knows and what it aims to achieve. Specifically, it consists of the
following three components:

Knowledge describes what the engine knows to be universally true. This in-
formation is completely static; it is something the agent is “born” with,
and can not be changed. In other words, this describes the rules and
constants of the system.

Beliefs are facts the agent deduces during its execution, using its knowledge.
Beliefs can be updated at runtime by using the insert(ϕ) and delete(ϕ)
commands, where ϕ is a belief. The bel(ϕ) operation can be used to
ascertain whether the agent believes that ϕ holds.

Goals are what the agent strives to accomplish. These can be dynamically
updated along the way to acommodate for a changing world. This is done
with the adopt(ϕ) and drop(ϕ) commands, where ϕ is a goal. goal(ϕ)

2.1 Multi-Agent Systems 9

checks whether ϕ is currently a goal of the agent. If a goal have been
achieved – that is, if the agent’s current beliefs and knowledge satifies a
goal – it is automatically removed from the goals collection, as the agent
would otherwise keep trying to accomplish it.

The information in the mental state is stored as logical statements in prolog.
The operations mentioned above for querying and modifying the mental state
thus takes a prolog statement as input.

Acting and Perceiving

When a GOAL program is running, it executes the following steps, in order:

1. Receive percepts

2. Update the goals and beliefs of the agent if needed

3. Choose an appropriate action to execute

This is repeated in a cycle.

The processing of new percepts mentioned in point #2 is handled in the event
module of the agent program. Here, all new percepts in the current cycle can be
inspected, and the mental state of the agent can be updated. If, for example,
the agent perceives that it is in a different location than in the previous cycle,
this module can be used to change its beliefs accordingly. If the world have
changed drastically, the agent may also choose to drop goals that can no longer
be achieved, and/or adopt goals that seems more fruitful to pursue. As such,
the processing of percepts is the primary place to change the mental state of
the agent.

The choosing of an action is where the agent decides – based on its mental state
– which execution path it should take. The actions themselves are provided in
an action specification section of the program, where each action denotes
pre- and postconditions of the action. That is, what must hold for the action to
be executed and what effect it will have on the environment. An action is not
considered for execution if its precondition does not hold. If it does hold and
the action is taken, the logical statements in the postcondition is inserted into
the belief base.

When an action have been chosen in GOAL, it is only set to be executed, that
is, GOAL requests that it be executed. It might be that the program managing

10 Theory

the agent in the environment sees fit to not execute it, or that the action fails
(if the agent tries to move into a wall, for example). In that case, GOAL only
knows about the failure of the action if it is somehow obvious from the next set
of percepts it receives. In light of this, postconditions on actions should only be
used when it absolutely certain that what the postcondition specifies is true, as
it may otherwise insert flawed information into the agents beliefs.

2.1.4 The Environment Interface Standard

Several agent programming languages – including GOAL – is only concerned
with the agent logic of a MAS. To provide a world in which these agents can
function, they need to be connected to a program providing an environment.

EIS (Environment Interface Standard) [BHD11] is a Java framework, which
can be used to design environments and connect them to agent programming
languages. As such, it does not assume much about the implementation of the
environments or the agents inhabiting it.

It provides entities which can function as the bodies of agent programs,
and means for receiveing commands and returning percepts to the connected
agents.When using EIS, the environment designer can handle actions sent by the
agent programs with the performEntityAction method to define exactly how
they affect the world the designer have constructed. Percepts can be requested
explicitly through the getAllPerceptsFromEntity method (this is how GOAL
gets its percepts from EIS) or as notifications, for APLs that support it.

The main point of EIS is to provide a standard (hence the name) for developing
MASs, such that environments designed with this standard can easily be inter-
faced with different APLs. As such, EIS comes pre-loaded with bindings for
several common APLs such as GOAL and Jason. As part of this standard, the
IILang (Interface Immediate Language) abstract syntax tree have been devel-
oped. It can be used to easily and unambiguously define actions and percepts
consisting of identifiers, numerals, representations of functions over identifiers
and numerals, and lists of identifiers, numerals and functions. These IILang
objects can be created as native Java objects and easily parsed to – in the case
of GOAL – prolog statements, and vice versa.

In conclusion, it is important to note that GOAL and EIS are supposed to be
two components of a multi-agent system. GOAL is not supposed to maintain
an environment, and EIS is not very well suited for implementing agent logic.

2.2 Model View Controller 11

Figure 2.2: This image shows how the three components are connected to each
other; the full arrows indicate that a component has complete
knowledge of the component it is pointing to. A dashed arrow
indicates that the component the dashed arrow is pointing to is
listening to the component the arrow is originating from. (Image
taken from www.htmlgoodies.com/img/2010/11/mvc.png)

2.2 Model View Controller

To ensure that code is correctly decoupled from one another, strict design pat-
terns are necessary, as these allow developing complex projects without losing
sight of the entire project. If no pattern is followed, code can easily become
so entangled that later development might prove impossible. This section will
cover all the rules and ideas behind the MVC (Model-View-Controller) design
pattern. [Wikc] provides a short introduction to MVC, although complete com-
prehension of the design pattern requires experience using it. Hence, this section
will be based on our prior experiences with MVC.

The MVC pattern principle is that programs that can be interacted with by
a user can be split into three different components. These components are as
follows:

• Model – Core of the program

• View – Visualization of the program

• Controller – Manager of state changes to the core of the program

12 Theory

2.2.1 Model

The model is the core of the program. It is why the program functions as it
does, it contains all the data, and it is here all business logic is located. The
model should have no knowledge of either the view or the controller; by not
knowing either the program is ensured to not be tainted by their influence.

While it may not know of the view or the controller, it is paramount that the
model is built to optimally transfer information concerning its current state.
That means that providing a way for other components to listen on the model
is very welcome. This gives the model a way to publish its state when it has
been altered. What this does for the model is, that in case the model state has
been altered, it will have a way to provide the information of the state.

If such features are not built into the model, it would require the component
changing the state to inform of the state changes, in case of a MVC design. The
component changing state is the controller and as such the controller would have
both the duty of changing the state of the model and maintaining the view. This
is generally a case of a badly designed model and can be completely avoided if
the model simply has the ability to inform its listeners(such as a view) of any
changes.

2.2.2 View

The view is a way to visualize what is currently occurring inside the model
by visualizing it to the user. A view may take many shapes depending on the
model. If, for instance, the model is a program processing data on a server,
then the view could take the form of a logging console. Or if the model was a
computer game then the view would be the graphic representation of the game.
Additionally, a model can have several views, each displaying information in a
different manner. For example, the computer game mentioned above could also
feature a view printing debugging information to a console while the game was
running. Generally, a view should only have knowledge of the model and not the
controller. The idea is that if the view can see all model data then interaction
with the controller should not be necessary.

When designing a view there are some common pitfalls that can be avoided with
careful design. First off, the view is what it is named: a view. This means that
it should never do any state changes to the model. If getting hold of data means
that the model must change its state to accommodate this, then the model is
poorly made and should be changed. However, a view is allowed to change its

2.2 Model View Controller 13

own state without involving either the controller or model. To fully understand
what is meant by this, consider the following example:

Assume you have a menu bar as depicted in fig. 2.3.

Figure 2.3: A standard menu bar.

To open a menu, the user need to drag the mouse and click on one menu he or
she wishes to open. Many would see this as a task of the controller. This is not
the case, however, since the changes done are only performed on the view’s own
state and not the model of the program.

2.2.3 Controller

The controller is the link between the model and the user. By convention, all
changes the user wishes to perform on the model should be done through the
controller. Like the view, it can take many shapes, like an object that transforms
input from the mouse into changes to the model, or an object controlling how a
network data stream effects on the model.

In a well-designed program the controller should never have to interact with
the view. However, this can be practically impossible on larger projects unless
they are carefully planned, and as such the controller by convention is allowed
to know of both the view and the model.

A common mistake when designing the controller is to mistake the unit which
the controller gets input from as the actual controller. In many cases, the
keyboard is the device from which input is transformed into state changes to
the model. However, that does not mean that the controller should be the
only unit interacting with the keyboard. Going back to the example used to
understand the view, the reason why the controller should not deal with opening
a menu bar on the view is because the controller is not responsible of the state
of the view. The controller is only responsible for the state of the model; the

14 Theory

only case in which it is allowed for the controller to interfere with the view is in
the case that the model was unsuccessful in properly informing about its state
change caused by the controller. In this case it is okay for the controller to call
the view and ask it to adjust itself.

The reasoning for why the controller is normally mistaken to be responsible for
handling changes to the state of the view is because it is mistakenly thought of
as a controller for the entire program and not the model, a view may contain
its own controller which should not be mistaken from the other controller. To
fully understand this, imagine that the view in itself also contains a MVC inside
itself (see fig. 2.4).

Figure 2.4: A view with a MVC inside of it.

The model of a view (such as a menu bar) would contain data about the names
of the menus and it would be responsible for ordering and accessing information
as to what each menu contains. Its view would be that of a drawing board
responsible for properly drawing the menu bars. Luckily, most views are simple,
so one does not need to make an entire MVC design, but for graphical user
interfaces used in most operating system it is very important to understand
that a view can be an entire MVC setup in itself. This is why most operating
system comes with libraries to easily design GUI.

2.3 Factory Design Pattern 15

2.3 Factory Design Pattern

Removing flexibility from a program is normally considered a poor design de-
cision. One way to do that however would be by tying object creation to the
business logic of the program. This section will show why this combining of
object creation and business logic actually removes flexibility in the program.
Furthermore it will show how to solve this problem using the Factory Design
Pattern. We refer to [Wika] for an explanation of the subject.

Why object creation logic should be removed from business
logic

In all OOP2 languages you have the ability to create new objects to be used in
the program. When instantiating an object in a function, you inadvertently tie
a specific object type to that function. This means that the function can never
be used for other purposes than to work with that type of object. Thus if an
identical function was needed but for another version of that object you would
have to copy the function redundantly, greatly increasing the chance of errors
in the code as the same code was written twice.

To give an example of this, imagine you have a Printer that prints text on sheet
of paper, the pseudo code for such a printer would look like this:

Class Printer
Method PrintPaper takes Message returns Paper

Paper = new A4Sheet()
Paper.PrintText(Message)
Return Paper

endMethod
endClass

As we can see in this example, A4Sheet is an implementation of the object type
Paper, however as we have mixed object creation with business logic, we are
forced to specify the exact type of paper that our printer produces. This means
that if we wanted to make the printer able to print multiple types of paper, we
would have to make new functions copying the functionality of PrintPaper we
would have to make PrintPaperA3, PrintPaperA5, etc. As is evident, this is
very redundant and increases code complexity. Not only that, but if years later

2Object Oriented Programming

16 Theory

someone invented a new type of paper, the printer would have to be completely
changed, since the class was locked to specific paper types on the business logic
level.

Solving the problem of mixing object creation with business
logic

As we have shown, there are many problems involved when business logic con-
tains object creation logic. In order to solve this problem it is necessary to
separate the two. This can be done in multiple ways. Consider our previous
printer example. In this case, instead of having the method PrintPaper take
only a message, it could also take paper as part of its arguments. This way
we would avoid having to create the Paper as part of printing it. However, this
would only move the problem from the PrintPaper method to the business logic
that is calling it. It also changes the overall functionality of the method which
was to produce paper with messages on them and instead makes it so it doesn’t
produce the paper and only prints on paper given to it. Using the factory design
pattern we can avoid both problems while at the same time separate the object
creation away from the PrintPaper method. We do this by giving the Printer
class a factory which we will name PaperFactory.

The PaperFactory only has one task and that is to create Paper objects. That
means we have moved the object creation code away from the PrintPaper
method; all the PrintPaper method has to do is simply request a new piece of
paper from the PaperFactory.

The pseudo code for the PaperFactory could look something like this:

Class PaperFactory
Method CreatePaper takes nothing returns Paper

Return new A4()
endMethod

endClass

And the pseudo code for the new PrintPaper method of the Printer class
would be this:

Method PrintPaper takes paperFactory, message returns paper
Paper = paperFactory.CreatePaper()

2.3 Factory Design Pattern 17

Paper.Print(message)
Return Paper

endMethod

Thus as we can see the responsibility of creating paper has been removed from
the Printer class and instead moved to the PaperFactory class.

2.3.1 Abstract Factory Design Pattern

The abstract factory design pattern is closely tied to Factory design pattern in
that an abstract Factory like an abstract class only defines specification of the
implementing class, and doesn’t contain any logic at all.

An Abstract Factory is made by making an Abstract class of the factory. Go-
ing back to Printer example, imagine that the PaperFactory instead was an
abstract class, as displayed below:

Abstract class PaperFactory
Method CreatePaper takes nothing returns Paper

endClass

Now the Printer class only has to know about a Factory capable of producing
Paper, but it will have no information on what kind of paper is produced, an
implementation of the PaperFactory could now be made for each type of paper
that one wishes to produce.

For instance an implementation of the PaperFactory for creating A4 papers
could be designed like this:

Class A4PaperFactory implements PaperFactory
Method CreatePaper takes nothing returns paper

Return new A4Paper()
endMethod

endClass

As we can see, the A4PaperFactory class – which is an implementation of the
PaperFactory class – is capable of producing a special type of paper. As such
if this factory was used by the Printer class we saw in an earlier example,

18 Theory

the Printer would be capable of producing A4 papers with messages on them.
However were we to want another type of paper, the code for the printer would
not need to be changed or copied since we simply implement a new version of
the PaperFactory class and give that to the Paper class.

Summary

A lot of problems arise in code when mixing business logic with object creation
logic, this section has explained why the problems occur and what the reasons
behind them are. Furthermore it has shown how to solve these problems by
using the factory design pattern.

To summarize some of the problems when mixing business logic with object
creation logic:

• Increases the complexity in business logic, because of added creation logic

• Removes flexibility of the business logic, forcing it to work only with special
classes

• Increase the need for redundancy of business logic to accommodate for
new object types

• Makes changing legacy code difficult, as the code is tied to specific object
types

2.4 Test Driven Development

Designing code using a test first approach helps direct the design of the code
in a way that makes it more flexible. This section will cover how to achive
this, along with helpful advice on how to handle certain aspects of the TDD3

process. As such it will also explain the ways unit tests should be used and
what problems that might occur when attempting to write unit tests.

3Test Driven Development

2.4 Test Driven Development 19

Figure 2.5: The cycle of writing tests used to de-
velop production code (from [Wikd],
http://upload.wikimedia.org/wikipedia/en/9/9c/Test-driven_development.PNG)

The Idea Behind Test Driven Development

The idea of TDD is to write tests of how the program is supposed to function
before actually writing the program itself. These tests can be referred to as
executable specification, because they specify how single units of the program
are meant to be used.

To get an idea of how a TDD process works, look at fig. 2.5. As is shown in
the figure, the idea is that you begin the development of a unit in the program
by writing a test. The production code is then developed with the goal of
having the test succeed. Once all tests succeed, you clean up the code and
start the process over, with developing new features and accompanying tests.
After multiple iterations, you have ensured that not only does your code have
all the features you want, but that those features work as you would expect.
Furthermore, if new features were requested at a later time, it would be quite
easy to simply add new tests and begin development of the new features, while
using the old tests to ensure the old features were not ruined.

By writing the tests first, the developer can easily determine what the final
units should look like. If he did not apply a test first approach he would have
to do a lot more preplanning, as he would have to state the specifications of the
program in some other way. While a TDD approach will reduce the amount of
preplanning required, it will not completely remove the need for it. It will still

20 Theory

be required to plan such things as the domain model and the components of the
program.

To give an idea of what the executable specifications obtained through TDD
will look like, we provide the following example:

Assume you were to make a Calculator. Since this is a simple calculator, it
can only do addition, subtraction, multiplication and division. To specify this
calculator, one must create a test for each of its features:

• A test showing addition of two numbers

• A test showing subtraction of two numbers

• A test showing multiplication of two numbers

• A test showing division of two numbers

This specification will ensure that the final calculator can perform all these
actions or it will not work, thus our tests are enforcing specified features of the
calculator.

However, the great thing about using TDD is that you can go deeper and specify
what the exact outcome should be. Assume that you wanted to ensure that when
the calculator divides by zero, an error is thrown. To do this, all that is required
is to simply add a new test:

• A test showing that when the calculator divides by zero, an error is thrown.

As is evident, the more tests written for a certain aspect of the program, the
more specified that aspect is. Thus by doing test driven development, you have
essentially done two things at once. First, you have created a way to test if the
features are still functional; this provides a way to test them if their functionality
is changed at a later date. Second, by making tests you are specifying what the
output of the program should be, thus if others were to try and use your units in
their code, it would be easy for them to understand the provided functionality
by simply inspecting the unit tests you provide.

2.4.1 How to write unit tests

When following the TDD approach, it is important to properly understand how
to design unit tests, as many problems can arise when writing them. Most of

2.4 Test Driven Development 21

these problems can be traced to a few common programming mistakes. A good
introduction to using test-driven development is Misko Hevery’s lecture on the
subject, see [Tala].

As mentioned in [Tala], there is nothing that can be said about writing unit
tests that would improve the tests, there is no trick to writing them. However
there is a lot that can be said about designing code, a correctly designed piece
of code can make the process of making a unit test easy, while a badly designed
piece of code can make creating a unit test very difficult, if not impossible. To
understand what these bad design choices are, we will go through each of them.

Mixing Object creation logic with business logic

To properly design a test for a given class in the code, you must be able to
instantiate that object. If the object you wish to test instatiates all its de-
pendencies on construction (in contrast to taking instantiated dependencies as
arguments), you are forced to test all these dependencies along with the class.

To give an example of this problem, assume you have a WebDocument class, as
shown below:

Class WebDocument
Field: Document
Constructor takes URL

client = new TCPClient()
Document = client.Download(URL)

Endconstructor
Endclass

In this example the WebDocument creates its own TCP client which it uses to
download a document from an URL. If we were to test this class we would be
forced to setup a TCP connection every single time. This not only causes the
test to be slow it also introduces uncertainty, as the TCP connection could fail.

This problem can be solved by designing the class so that it requires the classes
to be provided instead of instantiating them itself. This method is called depen-
dency injection. Consider the following adaptation of the WebDocument class,
which uses dependency injection:

Class WebDocument

22 Theory

Field: Document
Constructor takes Client, URL

Document = Client.Download(URL)
EndConstructor

EndClass

By making this change, the test creator can choose which object is given as the
client. For instance he could use a mock4 client providing a document of his
choosing in the Download method.

This basically comes down to giving choice to the unit test writer, without this
the unit tester could be required to instantiate almost the entire program in
order to just test a single unit. By using dependency injection we effectively
remove this issue.

Global State in the Code

Whenever you have global state in your units it becomes very difficult to design
tests, as pointed out in [Talb]. This is because actions done in one test will
inadvertently affect the result of another test. Thus by eliminating all sources
of global state you ensure that the code which you are testing always works in
the same manner.

If the developer is not careful, it is often easy to accidentally write code with
global state in it, since it can the global state can be quite subtle. By definition,
global state occurs every time a piece of code knows about something that is has
no reference to, thus it has reference to something that is globally accessible.

To illustrate this, consider the following simple test:

Output1 = new A().Calculate()
Output2 = new B().Calculate()
Assert(Output1 != Output2)

Since a computer is deterministic, the result of asserting that the two outputs
are not equal should always be the same. If the assertion is sometimes true and
sometimes false, then we have a global state. This means that global state in
code is what makes the code non-deterministic. By its very nature, code that

4An object that mimics the behavior of the real object

2.4 Test Driven Development 23

is non-deterministic is untestable, since a test requires knowing the outcome in
advance so it can be asserted whether the result is the same.

Here we provide two examples of commonly accepted code design that produces
global state:

Singletons are objects that are only instantiated once. Their instantiation is
located on a global variable, since the variable on which the singleton is located
is global. That means all objects that use the singleton has their state bound
to that of the singleton.

Random numbers, Time and date, etc. are all cases of objects that hides
global state inside them. Thus if you use them as part of your code without
providing a way for a test to inject them as with other dependencies, you run
the risk of the program being untestable. The problem with these objects are
they usually hide the fact that they use global state, and as such can easily
sneak their way into the code if one is not careful.

Breaking Law of Demeter

One thing that makes testing difficult is if an object does not ask for what
it needs, but for the objet that can locate what it needs. The act of asking
only what is needed is called Law of Demeter or principle of least knowledge.
The idea is that a unit only needs to know about its immediate friends; units
it doesn’t directly work with should be irrelevant to it. Breaking the law of
Demeter is not only considered bad code design, but also makes writing unit
test harder.

When writing code, it is not always immediately obvious when law of Demeter
is violated. In the real world, however, breaking the law of Demeter often results
in absurd situations, and are thus more easily visible.

As an example (adapted from [Wikb]), imagine that you are in a shop and the
cashier asks for 10€. What would you do?

1. Give him a 10€bill

2. Give him the wallet and let him find the money

24 Theory

3. Give him the location of a hidden treasure which he should locate and
return the difference to you.

As we can see option 2 and 3 clearly violate law of Demeter because instead of
giving what is actually required we give something that provides what is actually
required.

In the example of the WebDocument we ourselves violated law of Demeter so let
us show how we could change the code to remedy this. The code that breaks
law of Demeter:

Class WebDocument
Field: Document
Constructor takes Client, URL

Document = Client.Download(URL)
EndConstructor

EndClass

The modified, more correct code:

Class WebDocument
Field: Document
Constructor takes ADocument

Document = ADocument
EndConstructor

EndClass

As we can see, instead of making WebDocument go locate the document on some
server, we simply make the document a dependency of the WebDocument class,
thus testing of the WebDocument will not even require a mock server anymore.
As such designing the test just became a lot easier.

Summary

While a TDD approach will increase the workload of the project as it will require
the developer to write a lot of tests, it adds a lot of value in return. The most
useful feature of TDD is perhaps that it provides a natural specification of the
programs individual units, which could be hard to properly formulate in words.
It also enforces good code design practices by making it hard to write unit tests
for badly designed code.

2.4 Test Driven Development 25

Advantages

• Provides test cases for all units, making it easier to see what breaks when
units are introduced or changed

• Reduces the amount of errors in the final product and as such reduces
time spent debugging

• Enforces proper code design

• Provides specification of the code, making it easy for others to understand

• Makes the writing process of a class easier since you start by stating what
you want from a class, instead of how it works.

Disadvantages

• Requires unit testing frameworks to do it properly

• Has a learning curve for those no familiar with TDD

• Increases the develop time as all code produced must also have a unit test
to prove it works as expected

26 Theory

Chapter 3

Reference Implementation

In this section we will introduce our reference implementation (henceforth some-
times called the package grabber scenario), which we have developed to showcase
and test our engine. It will also serve as an example of using the engine as well
as the extensions we have provided. In section 5.6, we will detail the actual
implementation of the scenario in the engine, the agent programs, as well as
the integration of the two. A less complex example, which describes the simple
vacuum world ([RNC+96], p. 35), can be found in appendix C.

The reference implementation is intended to cover as many of the engine fea-
tures and extensions as possible, while not focusing on creating any particularly
revolutionary artificial intelligence. As such, we have set up a world that is
relativively simple with respect to the action and perception repetoire of the
agents, and with an environment representation limited in complexity. Thus,
the interesting part of the reference implementation is not the scenario itself, but
rather the actual implementation. That being said, the scenario is as follows:

The agents in the scenario are tasked with exploring a maze in a discrete two
dimensional grid of tiles in order to locate packages and bring them to a special
tile called the dropzone (see figure 3.1). A tile in this scenario can contain sev-
eral objects, unless they are explicitly forbidden to occupy the same square. An
agent, for example, can not move into a tile that already contains another agent,
but it can move into a square containing a package or a dropzone. Importantly,

28 Reference Implementation

Figure 3.1: An initial configuration of the package grabber scenario. D (red)
marks the dropzone, Xs (green) are packages, As (black) are agents
and Ws (grey) are walls

a tile containing a wall cannot contain anything else, thus the tiles between
walls constitutes the navigable pathway of the maze.

Actions

The three actions moving, grabbing and dropping are enough for the agents to
fulfill their task, and as such they describe the complete action specification:

move(Direction) moves the agent one tile in the specified Direction . Direction
is limited to the four cardinal directions, so an agent can only move to an
immediately adjacent square. Note that every tile not containing a wall
is reachable from every other such tile in the maze when following this
movement rule.

grab removes the package in the same tile as the agent (if any) from the world,
and marks the agent as carrying a package.

drop adds a package to the world in the same tile as the agent (if it is carrying
a package) and marks the agent as not carrying a package. If a package
is dropped at a dropzone, it is removed from the world.

29

Figure 3.2: Here we see the visible tiles for the agent in the middle of the
colored section. Tiles colored in green are visible to the agent
while tiles in red are are blocked by walls. All other tiles are
outside the agents visibility range, and thus invisible. As can be
seen, agents are good at peeking around corners.

Note that this action specification does not mention any means of communi-
cating or otherwise cooperating, which is an otherwise important feature of
any multi-agent system. We have not implemented such functionality in the
XMAS engine, although it would be a high priority task if we were to develop
it further. Normally, GOAL provides built-in communication devices, which we
cannot use in the reference implementation, for reasons explained in the imple-
mentation section. In general, although several grabber agents can inhabit the
scenario, they will not actively work together or compete, although they will
try to accomplish the same goals.

Percepts

Now that agents can act in the environment, they must also be able to sense their
surroundings in order to make informed choices about their course of action. For
this purpose, the following three percepts can be obtained from the world:

Vision: A rather obvious perception device in this scenario is vision, allowing

30 Reference Implementation

an agent to learn the contents of tiles around it. Each agent can can see a
distance of five tiles in any direction, assuming there is no walls or other
agents blocking its vision. See fig. 3.2 for an illustration.

Package Possession: Specifies whether the agent is currently holding a pack-
age. An agent can only hold one package at a time. This truth value could
be mangaged by the agent program, but having it as a percept is easier on
the AP. Additionally, an effect could forcibly remove a package from an
agent, and we would thus need a percept for that (note that such an effect
does not currently exist in the scenario). With our current approach, we
provide a snapshot of the state of the perceivable world through percepts
and let the AP make of it what it can.

Position: The absolute position of the agent in the grid. In the agent program,
we initially used positions relative to the starting position of the agent to
build a map of maze. However, using this method we would lose track if
the agent was forcibly pushed into another tile (again, such an effect does
not exist in this scenario).

Additionally, agents receive their current movement speed (the time it takes to
move from one tile to an adjacent one) as a percept, although we do not use it
in this scenario.

Agent Program

We have implemented the agent logic for the grabber agent in the GOAL agent
programming language. The GOAL instance is connected to an EIS environ-
ment, which communicates with the XMAS engine by sending actions and re-
ceiving percepts.

It will try to find all packages in the maze and bring them to the dropzone. Note
that since packages might be hidden in places the agent has not yet looked, the
requirement for scenario completion is not just that no more packages can be
seen on the map, but also that there are no more tiles to explore.

In order to find all the hidden packages, the agent must explore the maze by
moving to tiles it has not stood on before in order to gain vision of other tiles and
pathways. The agent logic itself is pretty straight forward; it can be summarized
as below:

if I hold a package

31

and know the location of the dropzone
then go to the dropzone and drop it

if I have no package
and know the location of one

then go grab the package
otherwise ,

explore the maze further

In the pseudo code above, decisions such as “explore the maze further” are
goals the agent sets for itself. When it needs to get to a specific location, it finds
a path to that location using the A* algorithm, and then follows it each turn
until it reaches a goal or finds something better to do.

32 Reference Implementation

Chapter 4

System Features

4.1 Overview

Before we begin explaining all the features of the engine, we would like to point
out that if it is necessary for the reader to see an actual implementation using
all the feature, there is one available in appendix C (Vacuum World).

The goal of the engine is to allow for simulation of a world where agents within
are allowed to act. As such, it is important that it can accurately model a
state-machine. To model a state-machine, one must have the ability to contain
a state and perform actions to change the current state.

A complete UML Domain model diagram is provided in appendix A.

4.1.1 State

In our domain model, we have state stored in three object types:

• World

34 System Features

• Entities

• Modules

World The world is the place all entities are meant to inhabit as either agents
of the world or simply objects for other entities to interact with. The world is
not defined by the engine. As shown in appendix A.1, it is an abstract class,
meaning it is the developer using our engine that defines the world. As such the
world can be any type of world needed, it could be a 3-d world, a 2-d world, a
world based on tiles or hexagons, or simply be nodes with an undefined number
of edges connecting each other.

Entities The world is empty without anything inside it, as such we have the
entities which are meant to model the objects one would have the world contain.
For example, in our reference implementation, we have a world with packages
scattered about a maze. It is then the task of the agents to collect these packages;
the entities here are not only the walls of the maze and the packages, but also
the agents since they inhabit the world as well. The agents are different from
entities in that they all have a name. This name is unique and is meant to be
a way of distinguishing the agents from one another.

Modules The modules can be viewed as either the constraints or as the abili-
ties of all entities. For example, if you wanted to constrain entities from moving
into each other, you would create amovement blocking module, which would con-
tain information on whether or not a given entities is allowed to pass through
it. However, if you wanted to give an agent the ability to move, a speed module
would be required. Whether a certain module is a constraint or an ability is up
to the individual module.

4.1.2 Actions

A world is static and unexciting if one is not allowed to perform any changes
to it, for this we provide what we have chosen to name actions. There are
two different types of actions: environment actions and entity actions. The core
difference between them is that entity actions are meant as actions performed by
a single entity, such as moving the entity or having the entity pick up another
object. Environment actions are actions that affect the entire world. In our
domain model, we have chosen to add two actions that are built into the engine,
the first is an entity action that gets all the percepts for a given entity called

4.2 Virtual World 35

GetallPerceptsAction and the other is an environment action that can shut
down the engine called CloseEngineAction.

4.1.3 Events and Triggers

The engine relies heavily upon events, this means that all actions performed
within the engine is meant to trigger events in response. This can be used to
either activate new actions within the engine, or be meant to transfer data to
the views listening.

In order to listen to the events, a trigger need to be created with all the events
it listens to registered to it. Furthermore, a trigger needs a condition and an
action. The condition is a predicate that determines whether the trigger is fired,
and the action is the function that is excuted when the trigger is fired.

4.2 Virtual World

The object used to keep track of all entities in the environment is called the
world. This object is also used to model the structure of the environment; eg.
whether it is tile based, graph based or something else entirely. The only re-
striction imposed on the structure of the environment is that all entities have an
associated position in it, fitting the data structure describing the environment.
This is a pretty loose requirement, considering that it can effectively be ignored.

To give an example of what these positions should look like, imagine a tile based
environment the world could consist of a two dimensional array containing lists
of entities, with each field representing a tile, and positions represented as (x, y)
coordinates. In a graph based environment, the world would contain some
structural representation of a graph, and the positions could be references to
nodes, or representations of the graph as seen from different nodes.

4.2.1 Entities, Agents and Entity Modules

Entities are the objects inhabiting the world. They are very basic objects,
equipped with no definitions of how they are represented in the world or how
they can be interacted with, save for allowing other objects to subscribe to
events fired by the entity. All this is instead handled by entity modules, which

36 System Features

each entity contains a set of. These modules can be queried and called by other
objects. An entity could, for example, have a speed module – as is the case in
the tile extension – specifying how long it takes to move from one position to
another.

When modules are asked to identify themselves, they do so by means of a
module type. Two modules are identical – from the viewpoint of an entity – if
their module types are identical. As such, only one occurrence of any module
type can exist in a set of modules. and a module of type t on an entity e can
unambiguously be reffered to as e.Mt, where M is e’s module set.

It is perfectly legal (and sometimes recommended) for a module to identify
itself by another type. This means that if a module m1 of type t is registered
to an entity e, which already has a module m0 of type t attached (such that
e.Mt = m0), m1 replaces m0 in the set, and e.Mt = m1. Additionally, when the
new module is registered to the entity, it checks to see if any modules with the
same type is already attached. If that is the case, it stores a reference to the
original, and re-attaches it when it is itself detached. This allows for using filter
modules, which can use the functionality of the module they have replaced to
produce a modified output.

As an example, consider an entity e with a speed type module s0. Assume
that s0 has a method Speed, such that Speed(s0) returns the speed of e. If it
is for some reason desired to change the movement speed of entity e by 50%,
it is recommended practice to register a new module s1 to the entity, which
identifies itself as a speed type module, and likewise has a method Speed. As
s1 is registered to the e, it stores a reference to s0, and replaces it so that
e.Mspeed = s1. Now s1’s Speed method can be defined such that it returns half
the value s0 would, so that e.Mspeed.Speed = s1.Speed = s0.Speed

2 . If at some
point this effect is no longer desired, s1 can be deregistered from e, which causes
s0 to be reattached and e.Mspeed = s0 once again.

Note that this “chaining” of modules can be applied indefinetely, allowing several
modules to affect a single property of the entity. However, the module methods
are called as a stack, which means that the method of the module inserted last
is the first to be called. This imposes somewhat of a limit, and may not work as
desired in all cases. Consider a stack of n modules, where module m1 has been
pushed first, followed by m2 and so on, so that mn is at the top of the stack.
Then a module mi can not directly alter the way modules mi+1 . . . mn changes
its output. This may or may not be desirable, depending on the situation. It is
not possible, for example, to apply an effect causing an agent’s speed to be set
to x, no matter what happens, using this method.

Another issue the designer should be aware of is that it is possible to create a

4.3 Events and Triggers 37

Figure 4.1: A speed module s1 has replaced another (s0) of the same type on
entity e. Some object requests the speed of entity e by querying
its speed module s1. s1 then queries the speed module it replaced,
and returns half its value.

module m1 of type t, intented to replace another module m0 (as in the above
example), and not implementing the same public methods in m1 as in m0. Doing
this will cause a runtime exception.

An agent is a special entity which have a unique name and can collect percepts.
When an agent is asked to return all of its percepts, it queries each module for
any available percepts, and returns those as a collection. The agents are designed
to be controlled by an APL, they are done so through an AgentController, see
sec. 4.6 on how to work with agent controllers.

4.3 Events and Triggers

In this part the concepts and ideas of both events and triggers will be explained.
We will go through their intention and how to use them with the engine. Fur-
thermore, a couple of examples will be provided to give the general idea of what
they can be used for.

38 System Features

4.3.1 Concept

In the natural world, all actions have a reaction, these reactions could be thought
of as events meant to trigger when such actions are performed. Thus an engine
for modeling a virtual environment must provide as many features as those of
the real world environment.

Events To be clear, an event in the context of this engine is the occurrence
of something, for instance an event could be that “an Agent has moved”, or
“an Agent has picked up an item”. Furthermore, an event also has the duty
of providing necessary information for the listener, giving the listener a correct
idea of the meaning behind an event. In the case of the event which signified the
movement of an agent, it is necessary to provide the listener 1 with information
of which direction the agent moved, where its starting position is and how far it
has moved. Since a listener might be operating in a different thread, the listener
is completely dependent on this information, as it might no longer be retrievable
at the time the event is being analyzed. For instance, if an agent moved and
then was killed and removed from the world, its position would no longer be
stored in the world. As such, the listener would have no way to determine where
the move had ended if this information was not provided in the event.

Triggers Triggers in our engine are the means to which listeners gain access
to events. A trigger in our engine is the combination of three different parts.

• Events

• Condition

• Action

The events are what the trigger is listening for. These can be any type of
event, and a trigger can be registered to any number of events. But only
one event is required to “trigger” a Trigger. For instance, if a Trigger is
listening on both the events “10 seconds passed” and “Agent has moved”,
then the Trigger will be “triggered” when either of these events occur.
However it will be triggered each and every time such event has occurred
and is not limited to just one occurrence.

1Listeners refer to the object which is listening to the occurrence of an event, with the
intent of reacting to it

4.3 Events and Triggers 39

The Condition is a built in predicate for the trigger to check if it is willing
to respond to the event. If the condition is satisfied, the trigger’s action
is fired. A condition should only be used in cases that is not covered by
another event. For instance, say you have the event “An agent has moved”.
Let us call the agent that moved am and the agent whose movement you
are interested in ai. The condition on the trigger would then be:

is am = ai ?

As we can see the condition narrows the range of events that are responded
to at the cost of added calculations. In this case it would be much better to
subscribe to the event “Agent ai has moved”. This is purely an example
as events can not be tied to specific entity instantiations as events are
defined at compile time.

The Action of a trigger is the part that performs the work, it is a method
which is executed once an event has been raised and the condition is
satisfied. For instance if a trigger is meant to write a message when a
specific event has occurred, then this is where the action of writing such
a message should be placed.

4.3.2 Entities and EventManager

For triggers to become part of the engine it is required that the trigger is reg-
istered to the engine, however it is of crucial importance what one registers
the trigger to. A trigger can be registered to either a specific entity or the
EventManager. A Trigger registered to the EventManager will be triggered
each time an Event that it is listening to is fired. However a Trigger registered
to a specific entity will only be informed of events raised on the specific entity
instead of when the event is raised for every single entity.

An example of this would be: assume you have a Trigger T1 with the event “An
agent has moved”, and T1 is registered to Agent A. Additionally, you have a
Trigger T2 with same event as T1, but this trigger is registered to the Event-
Manager. To give a complete picture, also assume there is an Agent B which
has no Triggers registered to it.

This provides us with two scenarios:

Agent A has moved: In this case, both T1 and T2 is triggered, since T1 listens
on Agent A and T2 listens on any agent moving.

40 System Features

Agent B has moved: In this case, only T2 is triggered, for the reasons stated
above.

4.3.3 Example of making and using an Event

Let’s assume one was to make an event which was fired each time an agent had
moved, let us name this Event: AgentMoved.

First, make a class extending the XmasEvent class as shown below:

Then, add all the necessary data fields on the newly created event class.

To utilize the newly created event, it must be raised when appropriate. In this
case, the appropriate place would be to raise it during a move action.

In this action, after the movement of the agent had been performed, the method
RaiseEvent would need to be called on the entity that is being moved.

Summary

Events are what provides the engine flexibility and allows making reactions to
others actions. Events are designed for ease of use and are meant to be used as
much as possible. Triggers are used as a way to interface with events and they
are the only way to connect an object to the event it wishes to listen to.

4.4 Actions 41

Figure 4.2: Sequence diagram illustrating how a MoveEntityAction is pro-
cessed. The idea is that a controller, such as keyboard input or an
agent language, queues an action such as moving an entity on the
action manager. The action manager will then execute the action
as soon as it is ready.

4.4 Actions

XmasActions in the UML Domain model diagram in appendix A refers to the
object type that performs actions inside the engine. The reasoning behind
these actions being its own class is to ensure only one action at a time is being
performed. This is because there are many separate threads operating on the
model code at once and as such, there must be a way to activate only one action
at a time.

For the task of executing the actions we have the ActionManager. Its job is to
take in one action at a time and place them in a queue (see fig. 4.2).

4.4.1 Action Types

The engine is equipped with two different action types. One of them is the
EnvironmentAction, which are actions that perform changes on the entire en-
vironment. Examples of such actions are closing this engine or adding/removing
entities from the world.

The other action type is the EntityAction. This action type is meant as an
action that a single entity performs; ideally the actions should be as atomic as
possible. In our reference implementation we have given some ideas how these

42 System Features

Figure 4.3: Illustrating the inheritance of the newly created EntityAction
“MoveEntityAction”

actions work, such as grab, which is an action that grabs a package from the
tile the executing agent is standing on.

4.4.2 Example – Move Entity Action

Here we will show how an entity action is constructed by inheriting the EntityAction
class. As shown in fig. 4.3, we have created a MoveEntityAction class with one
field containing the direction of the move.

To have the action actually perform something, it is required that an abstract
method Execute is implemented. This execute method is the method that is
executed by the action manager. The implementation of the execute action
could then look something like the following pseudo code:

method Execute returns nothing
NewPosition = GetPositionOf(World, This.getSource()) + Direction
Wait(MOVE_TIME)
SetPositionOf(World,This.getSource(), NewPosition)

EndMethod

4.5 Converting Actions and Percepts 43

As one can see, the idea is that you find the position of the source of the
EntityAction and use that to generate the new position, which is its old posi-
tion incremented by its direction vector. The wait is there to give the move a
speed, as it would otherwise be an instant movement.

4.4.3 Summary

Using actions is fairly simple and serves to shield the user from the tedious and
error prone workings that takes place behind the scenes. It is meant to ensure
thread safety and allow multiple threads working with the engine at once. These
were the exact reasons we chose this design, as we ourselves had to deal with the
problem of interference from multiple concurrent threads. Furthermore, it will
also reduce code redundancy as generic actions can be reused by other actions.
The problem with this design is that it in a sense remakes what is already
implemented in a programming language. After all, running procedural code is
what programming languages are meant to do. However, in return it provides a
lot of utility and makes it possible to make tools for simplifying the process of
making actions. It also gives the ability to differentiate between different action
types and even create new action types if one wishes so.

4.5 Converting Actions and Percepts

Both actions and percepts are very abstract objects, and the XMAS engine can
not know how they are represented in different APLs. This means that the
system designer needs a way to translate actions from foreign types – such as
GOAL actions – into XmasActions, and XmasPercepts into percepts of foreign
types. We have provided the base necessities for implementing this functionality
with converters. A converter is, as the name implies, a class that takes objects
of a foreign type and map them to internal types or vice versa.

To use our converter, the designer simply extends the XmasConversionTool
class, then proceeds to define what foreign type he wishes to convert from or
to an internal XmasType. After this, the user defines each individual object
of the foreign type by extending the XmasConverter class. Once this task is
complete, the converter objects are added to the Tool object, and conversion
between foreign and internal types are now possible.

This feature is used as part of our EIS extension for converting IILang data into
XMAS percepts/actions.

44 System Features

Figure 4.4: Domain model for Agent Controller

4.6 Agent Controllers

The purpose of the agent controllers is to be able to control agents in the engine
from outside. This section will cover our setup of an agent controller.

To get an overview of the classes used for the AgentController, look at fig.
4.4.

4.6.1 Concept

The engine is designed to support the ability to be adapted for all APL types,
this means that the engine itself does not support all APLs but instead provides
a framework for quickly designing interfaces between the engine and any APL.
There are two classes that one must use in order to properly design the interface:

The AgentManager has the duty of speaking directly with the agent language
it attempts to interface with. Its job is to spawn an AgentController
for each agent the AP wishes to take control of. The AgentManager is
in that sense much akin to an Abstract Factory (see sec. 2.3) , which
– according to the design pattern – is an abstract class with a method
generating a certain type of object, without restricting exactly which
object is generated, as long as it is of the specified type. The idea is

4.6 Agent Controllers 45

Figure 4.5: This sequence diagram shows the process of an AP taking control
of agent through the AgentManager, and commanding it through
the AgentController

that if you have a GoalAgentManager then the controller it constructs
would be GoalAgentController. The methods required by both the
AgentController and the AgentManager are abstract. Thus, we ensure
at compile time that the engine framework is properly used.

The AgentController is the link between a single agent and the AP. Its job
is to take all commands sent to it by the connected AP, transform them
into actions understood by the engine, and apply them to the agent that
it controls.

To simplify the AgentController design, it provides the method PerformAction,
which makes it easy to execute actions on the agent it controls. When the
PerformAction is called, the AgentController queues the action given through
the method and puts the AgentController’s thread to sleep. Once the action
has been executed by the engine, the AgentController is woken up and returns
from the performAction method. All percepts received by the AgentController
during this time is stored on the AgentController and can be easily accessed
by the actual implemenation of the AgentController.

The process of an AP taking control of an agent is illustrated in fig. 4.5. The
AP calls the AgentManager to locate the agent it wishes to assume control of.

46 System Features

The agent is located through a string (its name) which is unique to it and
ensures that only one agent is taken. When the AgentManager finds the correct
agent, it will immediately generate a new AgentController. The AP will not
gain access to the agent but instead it will gain access to the AgentController.
Now that the AP possesses the AgentController, it will have the ability to send
the AgentController commands. These commands might not be understood
by the engine if the APL is foreign enough to the engine’s own language and
as such it is the duty of the AgentController to convert these commands into
actual actions which the engine can understand.

4.6.2 How to use agent controllers

To use the built-in controller features of the engine, the designer must provide his
own implementations of AgentController and AgentManager. The designer
must do this for every different APL he wishes to use in the engine.

The classes AgentManger and AgentController both provides functionality as
part of their own classes but also requires some methods that must be imple-
mented for the classes to function.

For the AgentManager the designer must provide a method that produces AgentControllers
of their implemention, along with locating an agent though the AgentManager
does provide some assistance in that regard, in the form of a agent locating
method defined as: TakeControlOf, which takes the name of an agent as a
string, and returns the corresponding Agent. Furthermore, it should be noted
that the AgentManager is also automatically designed to create threads for the
AgentControllers it constructs.

For the AgentController, the designer must provide all logic defining how
a controller handles a given agent, this means getting the percepts from the
agent, analyzing the percepts and deciding an action (Could be outsourced to
another APL such as GOAL) and then queue said action to the agent. The
AgentController has the method PerformAction. This method can be very
useful as it queues an action automatically to its agent, then blocks the thread
until the action has been performed. Furthermore, this action will also trigger a
C# event called PerceptsRecieved in the case that the agent controller actually
recieve any percepts during the action. For instance, this event could be used for
where the AgentController, decides the next action for the agent to perform,
as done in the Vacuum World Example in appendix C.

4.7 View 47

Figure 4.6: UML diagram of the view

Summary

The agent controller is designed to be very lightweight, since we do not want to
impose any restrictions that might limit an APL which we know nothing about.
As such, the AgentController is more akin to a convention or a design pattern
for how interfacing with agents should occur. It provides the skeleton of how
a link might be designed but does not impose any restriction on how the link
should be set up.

4.7 View

The engine is designed to assist the user in all parts of the process when mak-
ing an environment, this also extends to the visualization of said environment.
However, since our goal is to have as few restrictions on the model as possible,
our knowledge of that view’s representation is very limited.

4.7.1 Concept

The view API which the engine provides consists of four abstract classes that
are meant to be implemented by the user. The four classes can be seen in
fig. 4.6. We will go through each class and explain how they are meant to be
implemented.

XmasView The XmasView class is very simple; it only provides a single method
that is required to be implemented. When the engine starts the view up it

48 System Features

generates a thread for the view and the Start method is the first method
to be executed inside that thread. The start method could contain an
endless loop that on a time interval updates the view. Another task of
the implemented view is also to update its ThreadSafeEventManager.
The ThreadSafeEventManager ensures that events sent from the model
thread of the engine is not immediately executed, but instead lie dormant
in the ThreadSafeEventManager until the view thread is ready to execute
them. How many events that one wishes to execute is up to the user.
We also provide the appropriate methods for the user to specify exactly
how long he wishes to wait for the next event, or if it should timeout.
The ThreadSafeEventManager is very important to the view as without
it, designing view code becomes complicated as one need to constantly
ensure that no concurrency bugs has been applied to the system.

WorldView The WorldView class is added because of the long term benefits, as
of now it provides nothing for the designer. However if we found benefits
to add to the class, making it ahead of time, even if it is initially empty,
can have many benefits as the project expands.

EntityView Much like the WorldView class, the EntityView is also very mini-
mal. However, it enforces certain things that the user of the engine should
take care of. First, it automatically makes a ThreadSafeEventQueue from
the entity and attaches it to the ThreadSafeEventManager which should
be provided by the XmasView. The idea is that all events the XmasView
wishes to listen on should be subscribed to by registering its triggers on
the ThreadSafeEventQueue. This will ensure that when the view updates
the ThreadSafeEventManager all events pertaining to the specific entity is
also updated on the EntityView’s triggers, but done so on the view thread
instead of the model thread, separating the two threads completely.

ViewFactory The ViewFactory is meant to include all objects with low life
cycle used by the view, it is also designed specifically to construct new
EntityViews during runtime of the engine. In order to know which
EntityView belongs to which XmasEntity, one is required to register all
types of XmasEntities and link it to its counterpart EntityView. For
instance, assume you have a class inheriting XmasEntity called Wall, and
the Wall’s representation called WallView, then you need to manually
register inside the ViewFactory that Wall is represented by WallView.

Summary

The view framework provides four classes each with their own advantages; they
each represent a part of the model of engine. They are designed to assist the

4.8 Engine Extensions 49

Figure 4.7: Illustrating a 7×7 tile map. The tiles inside the red zone are being
queried by specifying the tile at (0, 0) and the range r = 2

user in keeping his code threadsafe so that as few problems as possible arise.

4.8 Engine Extensions

Since most of the engine is very abstract in functionality, we have made three
extensions, which makes it easy to implement a tile based environment, com-
municating with EIS supported APLs and log events.

4.8.1 Tile Extension

This extension represents the world as a two-dimensional array of tiles using
what we will call a tile map(as can be seen in fig. 4.7). Tiles in this sense
are squares that fit exactly one entity. We have implemented it so that the
tile in the center has the position (0, 0). This means that all positions are given
relative to the origo tile at (0, 0). As a consequence of this, a tile map must have

50 System Features

odd dimensions, as it would otherwise not have a center tile. If the user tries to
access a tile that is out of bounds (for example the tile at position (0, n+1) in a
n×n tile map), a tile containing a special entity signaling that the tile is not part
of the world is returned. This ensures that querying the tile map for a tile at any
position will never fail and always return a valid value. As well as accessing tiles
at arbitrary positions, the tile map can be queried with a position and a range
r, in which case a two dimensional array of size (2r + 1)× (2r + 1) is returned,
containing the tiles in that square (see fig. 4.7). This can be used when the
querying of large pieces of the map at a time is needed. When determinining
an agent’s vision (described below), we use this functionality to collect all tiles
in the agent’s visible range and then filter out the obscured tiles.

In the tile extension, we have provided several modules that can be equipped
to agents to make them better suited for inhabiting a tile based environment.
For example, the movement blocking- and vision blocking modules apply to all
entities with a physical presence in the environment; given another entity, they
specify whether the entity they are attached to blocks the aforementioned en-
tity’s movement or vision, respectively.

Also provided in the Tile Extension is a MoveUnit action which is designed to
move agents along a vector inside the Tile world. This action requires a speed
module, defining how long it takes for an agent to move one tile.

Vision

The tile extension also provides means for seeing tiles around an entity via the
Vision module. All entities that are able to sense their surroundings also have
a VisionRange module which – as the name implies – defines how far (in tiles)
the entity can see.

When the vision module is asked to return its percepts, it asks the world to
build it a Vision object, which it returns. The Vision object uses an algorithm
described in sec. 5.5.1 to assemble a set of mappings from positions (relative to
the entity) to tile references.

4.8.2 EIS Extension

The EIS extension provides means for communicating with an EIS instance over
a socket, as well as serializing and deserializing percepts and actions encoded in

4.8 Engine Extensions 51

an XML representation of EIS’ IILang format. The extension features a custom
agent controller and manager, which have been developed to work with EIS.

As EIS is implemented in Java and our engine is written in C#, information
can not easily be passed between the two in a native manner. Instead, we
have opted to have them communicate over sockets. As EIS already supports
formatting IILang objects to XML, we chose this to encode information passed
over the sockets. We have implemented our own IILang object tree in C#,
which implements XML serialization and deserialization, as well as a Java class
used to parse XML to IILang objects.

Furthermore, we have implemented special package streaming objects in both
C# and Java, which sends the size of a payload before the actual data when
streaming XML over sockets. This allows us to detect when an XML message
has been completely received. This means that designers wanting to use EIS
with our engine should implement our accompanying Java libraries, as well as
the EIS engine extension.

In order for an EIS instance to connect to an agent controller, it must connect
to a socket which is known by both the EIS instance and the engine at runtime.
The agent manager listens to this socket and accepts the connection. As the EIS
instance connects, it receives a new socket which can be used to communicate
with the agent controller. It now sends an XML message with the name of
the agent on this socket, and the agent manager constructs an agent controller
tied to this name and socket. The controller and the EIS instance now have
their own private socket connection to communicate on, and the agent manager
proceeds to listen for other APL instances requesting an agent controller.

Execution Protocol

The EIS instance can now proceed to send actions to be executed by the agent
controller. When such an action is received, the controller enqueues it, and
sleeps till it is finished, at which point it resumes listening for actions on the
socket. The request to return all percepts is just an action with the name
getAllPercepts, which causes the controller to gather all available percepts
from the attached agent and sent them to the EIS instance via the socket. Note
that by default, this is the only way perepts are sent; percepts are returned in
response to no other actions. Since the agent controller effectively blocks on ac-
tions, the EIS instance can not have the controller queue other actions or return
percepts when it is executing an action that takes time, such as the tile exten-
sion’s move action (this is a restriction imposed by the agent controller base class
as described in section 4.6, as it is the default behaviour of the performAction

52 System Features

method).

Problems With the Chosen Execution Protocol The execution sequence
deescribed above is very simple, but has some downsides. Consider, for example,
that two agents wish to communicate with each other through the engine via
a talk action. It could be that agent a1 wanted to ask agent a2 whether a
certain tile was a desirable place to go. In that case, a1’s APL would have the
action queued in the engine, which would execute it and place the question in
a2’s mailbox. If, however, a2 had just started a lenghty action, such as moving,
its APL would not get notified that it had been asked a question until the move
was complete, and the controller could respond to the getAllPercepts action.
This introduces quite some delay in performing such actions, which are rather
important in a multi-agent system.

To remedy this, the system could be designed such that the controller instead
blocked on the call to return all percepts until the agent had some new percepts
available. In the communication example described above, a2 would immedi-
ately perceive that a1 had asked it a question, which would cause its controller to
send all a2’s percepts (including the question) to the waiting EIS instance. As-
suming that the corresponding AP prioritizes answering the question, a1 would
have its answer in the shortest possible amount of time. In general, allowing
agents to perform multiple actions at the same time makes the world more re-
sponsible in a number of ways. As another example, agents in a tile based world
(or any world that allows vision) could subscribe to events on tiles they could
see, and be able to respond when eg. an enemy moved into one of them. This
would allow them to communicate the offenders position to nearby agents, or
simply give the AP a chance to preemptively figure out what the best possible
action would be to execute next.

This method does have some problems. How, for example, does a2’s AP know
that it should prioritize answering the question, and not, say, command the
agent to begin a new move action? Since a2 is already in the middle of a move,
it would most likely break the rules of the environment. To remedy this, the
agents need to return the action(s) they are currently executing as percepts,
and the AP would have to consider these when choosing actions. For larger
environments and agent programs, this would complicate the agent logic and
percept pool.

4.8 Engine Extensions 53

4.8.3 Logger Extension

One of the extensions that we provide with the engine is a simple logger, this
logger is implemented as a view on the engine and it is meant to be used by
others to add a logger for their environment.

To use the logger all that is required is that the user extends the class LoggerView.
The logger will then provide the extending class with a ThreadSafeEventManager,
which will have its events automatically executed. As such, the only thing re-
quired by the user is to create a ThreadSafeEventQueue and register the trig-
gers with the events the user wishes to log.

The LoggerView is constructed with a Logger object, on which the user can call
the method LogStringWithTimeStamp, providing a string to be logged as well
as the importance of the event, that is, what debug level it is on. The Logger
class is instantiated with a maximum debug level, and will not log messages
from events with higher debug level. In this way, the user can specify if he
only wants critical errors, critical errors and warnings, or all information to be
logged.

The user must also provide the logger with a StreamWriter object, this object
can take many different forms however for logging we recommend using it to
wrap a file stream.

For an example of how the logger is used, see appendix C. This uses the logger
as a view, to track the movements and action of the vacuum cleaner in vacuum
world.

54 System Features

Chapter 5

Implementation

5.1 Architecture

The section will cover how all the components of the engine interacts with one
another, it will detail how flow of information is transferred through the engine
and into the components connected to it. The component diagram of the Xmas
Engine can be found in appendix B.

The components of the engine are

• Model

• World Creation

• View

• Controller

5.1.1 Model Component

Requires: XmasWorld, XmasAction and Trigger

56 Implementation

Provides: Percept

The model component is responsible for handling internal interactions of the
engine. These interactions are based on which XmasAction it is given.

The model component has three requirements, these requirements are necessary
for the model component to properly execute the environment requested by the
user.

The first requirement of the model component is the XmasWorld, the model com-
ponent uses the XmasWorld by giving it to ActionManager, the ActionManager
then gives the XmasWorld to all XmasActions as they are about to be executed.

The second requirement is the XmasActions, all XmasActions queued on the
model component are executed by the ActionManager. An XmasAction are
not executed immediately however, as they wait until all prior XmasActions
executions has been completed. Once queued to the ActionManager, they
are provided with all necessary dependencies such as the XmasWorld and the
EventManager.

XmasAction is designed to allow other threads the ability to interact with the
engine. The reason is that we did not wish for multiple threads to change the
state of the model component at once is that would force the designer using
the engine to deal with multi threading problems. To guarentee that this is
never necessary we provide the abiltity to inject code into the ModelComponent
thread, which is transferred in the form of an XmasAction.

The last requirement of the model component is Trigger, the model component
takes any number of triggers and inserts them in the EventManager. When an
XmasAction raise’s an XmasEvent on the EventManager, the Triggers that
are registered to that XmasEvent are all triggered.

The only thing that the model component provides is the Percept, each Percept
is something that an agent can sense. An AgentController connected to the
model component can receive these Percepts which it is meant to use for ana-
lyzing the agent’s next move.

The model component is made of many classes however the three XmasModel,
EventManager and ActionManager are what provide the core features of the
model component and as such is the only ones shown in the diagram. When
going into details of the exact design of the engine it will be evident that the
class XmasEntity also provides some of the features of both EventManager and
ActionManager, however it only does this to make the feel of using the engine

5.1 Architecture 57

more natural. For instance when moving an entity we thought that it would
make sense that the code for this was Entity.QueueAction(new Move()), in-
stead of ActionManager.QueueAction(new Move(EntityToBeMoved)). In ac-
tuality the code does the same thing since in the first case: All the Entity does
is to call the ActionManager in the same way we just showed and then use itself
in place of the EntityToBeMoved. This is the reason why the Entity is not
shown in the model component as it has no relevance when understanding the
component itself.

5.1.2 World Creation Component

Provides: XmasWorld

The world creation component is responsible for making a world for the engine’s
entities to inhabit. The world is created when the engine starts to execute, as
such its internal class WorldBuilder only contains a blue print for which entities
it should construct and not the actual entities themselves. It does this by storing
a function for each entity, those functions contains the information on how each
of the entities should be constructed.

The user of the engine is meant to implement his own WorldBuilder class,
that implementation should contain knowledge on how the world he wishes to
construct is created. That means if for instance wants to use a Tile based world
then his implementation of WorldBuilder should construct a tile based world.

5.1.3 View Component

Provides: Trigger

The view component is meant as the component that visualizes the model of the
engine to the user, it does not enforce how the visualization is done or in which
way the visualization occurs. It only provides the tools necessary to perform
this task.

The view is meant to register Triggers on the model component, these Triggers
contains XmasEvents when an XmasEvent is raised, the Triggers with those
XmasEvents are triggered. The idea is that when a Trigger is triggered that
means the current state of the model component has changed, the view uses
these Triggers to be informed about such changes, and are thus able to change

58 Implementation

its own state in responds correctly making it able to visualize the new model
state.

5.1.4 Controller Component

Requires: Percept

Provides: XmasAction

The controller component’s responsibility is to command Agents to perform
actions inside the world. The controller component does this by making the
AgentController send XmasAction objects to a specific Agent in the model
component. Where upon that Agent will perform said XmasAction, once the
model component has executed all prior actions.

The controller component also has ability to receive Percept objects back from
the engine, these Percept contain data about what the Agent it is control-
ling has sensed. These Percepts are meant to be analyzed by the controller
component to determine what its next XmasAction should be.

The controller component is made up of abstract classes which the user of the
engine must first implement; these implementations could be setup to act as an
interface between a single APL and our engine. This means that for each APL
one must make a new implementation of the controller component. To reduce
the burden of the user we will in our extensions provide the ability to interface
with EIS supported APLs.

Furthermore the controller component is not only designed to make interfacing
with different APLs easier, it is also meant to be used when making an interface
between the user and the model component. For instance if one wished to
control an agent with the keyboard, then an Keyboard implementation of the
AgentController and AgentManager should be made, where it would be possible
to bind the queuing of move actions to specific buttons on the keyboard, this
done as part of our Reference implemenation that can be seen in its source code.

Summary

The architecture of the engine shows the connectivity between each of the com-
ponents. The Model component which job it is to ensure proper interactions

5.2 Model 59

occur inside the world. The world which is constructed by the World Creation
Component, meant to be designed along with the world itself.

The interactions of the model component are provides by the controller compo-
nent which task it is to command the agents inside the engine, and make it so
they are given intelligence. And lastly the view component which only task is
to visualize the state of the engine.

5.2 Model

5.2.1 World

To be able to unambiguously reference an entity, they are assigned an id (rep-
resented as a number) in the engine. This is relevant when, for example, a
backend APL such as GOAL executes an action involving other entities than
the agent it is controlling. In this case, the entity’s position can be amiguous,
since several agents may very well occupy the same spot in the world.

To hold references to all entities in the environment, the XmasWorld class con-
tains a set of mappings (a C# Dictionary) from ids to entities. Since all agents
have a name, it also contains mappings from names to agents.

When an entity is added to the world, the variable holding the last used id is
increased by one, and the entity is associated with this number. This ensures
unambiguity, since no number can be used twice. However, it does impose
a limit on the number of entities that can be added to the world. We have
represented the id as a 64 bit unsigned integer (C# ulong type), so it supports
adding more than 1.8 × 1019 entities. Even in an environment that is meant
to run indefinetely, and where entities are added and removed often (such as a
server based website indexing tool), this limit is still very hard to reach.

The process of assigning ids to entities is handled in the AddEntity method,
which takes as arguments the entity to be added and an EntitySpawnInformation
object, containing the desired position of the entity in the world, and any other
relevant information, such as initial state. However, this only occurs after the
user-implemented method OnAddEntity is called with the entity and spawn in-
formation as arguments, and has returned success. This method is overridable
by the designer, and can be used to ensure that entities are added properly to
the custom world, or not at all. For example, if the world has the restriction
that no two entitites can start in the same position, OnAddEntity can be imple-

60 Implementation

mented so as to return failure when an the entity in question would be spawned
in an occupied position. Alternatively, it may correct the error, for example by
placing the entity in an adjacent, unoccupied square and return success. In any
case, the AddEntity method propagates the return value from OnAddEntity to
its caller when it returns.

The RemoveEntity method dereferences the entity by removing itself and its
id from the previously mentioned set of mappings. Similarly to the AddEntity
method, it calls the user-supplied OnRemoveEntity method, and returns its
return value.

5.2.2 Entities and Entity Modules

When designing the Entity class, we wanted to detach the properties and be-
haviour of entities from the class itself, and segmentize them into smaller, suc-
cinct objects. In essence, we wanted to be able to construct an entity that
could, for example, move and speak by assembling it from a movement ob-
ject and a speaking object. In object oriented programming languages such as
C#, problems like this are typically accomplished by means of inheritance. It
would indeed make sense to let a MovingAndSpeakingAgent class inherit from
the MovingAgent and SpeakingAgent classes, which would then provide the
desired behaviour. Unfortunately, C# does not support multiple inheritance; a
class can not directly inherit from more than one class, although it can inherit
multiple interfaces. Instead of using inheritance, we designed the module system
described in section 4.2.1.

5.2.3 Events and Triggers

This section will cover the inner workings of how events and triggers are con-
nected, as well as detail why we designed it the way we did. We will also cover
the exact procedure when an event is raised, to defuse any confusion there might
be as to what happens inside the engine.

Explanation

By themselves, events are not particularly complicated since they are essentially
just data structures that are transferred to all its listeners upon triggering. As
such we shall do a close examination of how exactly the EventManager works.

5.2 Model 61

Figure 5.1: A sequence diagram of an event being raised on an entity

The EventManager is tethered through the engine to all entities that are inside.
Whenever an entity has an event raised on it, it is copied to the event manager
which also raises the event. The intent is to minimize the number of events
needed to cover a single case. To be clear on how exactly this transpires, we
have drawn a sequence diagram shown in fig. 5.1.

As can be seen in the figure, an action – in this case a move action – raises an
EntityMovedEvent on a given entity. The entity then calls all triggers registered
to it, where the trigger also contain the event being raised. After this, the entity
informs the EventManager that an event has been raised on it, which causes the
EventManager to also call all its registered Triggers with the given Event. Once
all relevant triggers have been informed of the Event being raised, the procedure
is complete and the EventManager returns to its dormant state.

In the case of events that are not linkable to a specific entity such as an “Engine
Close Event”, the event is raised purely on the EventManager itself. Otherwise,
the process is exactly the same as above, except that no particular entity is
involved.

Considerations

As there were many considerations that went through our design process, we will
take each component of this area and break down why exactly why we designed
it as we did.

62 Implementation

Problems of C# events and why we chose to design our own events
The language which our engine is written in is C#, one of the good things about
C# is that events is built into the language. As such it may come as a surprise
that we have chosen to re-implement events ourselves. However, while the name
might be the same, the intent between C# events and our events is so different
that it is impossible to compare the two. The intent behind C# events is to keep
maintenance on single objects, so that changes to a given object can affect its
linked objects without having to be designed specifically to do so. This allows
for really decoupled projects and is what makes object maintenance in C# easy.
However our events are not meant for such low-level tasks. Instead they are
meant to allow reactions to occur in response to other actions. Furthermore,
C# actions are bound to a specific class, and can only be fired inside methods
of an instantiation of the specific class. The events we have designed are meant
to be raised by all types of class that wish to signal such an event has occurred.

To give an idea of what sort of problems that would arise from using C# events,
one need only look at how global events would have to be implemented. Since
Events using C# are linked to a specific class, this would essentially mean
that the EventManager class would need to be setup for every single event the
engine is capable of running. What this basically has accomplished is to couple a
single class into the entire workings of an engine, this makes the engine difficult
to extend and modify at a later time since the design would be practically
hardcoded into it.

Improvements of events As of now, our events are not tied to being EntityEvents
or EnvironmentEvents like actions are, however this might have been a wrong
move on our part. The problem is that the user of the engine might be unclear
as to which is what, currently the difference lies in the name convention used
for events. For instance, it is clear from the name that the EntityMovedEvent
can be tied to a specific entity. In the case of the AddedEntityToEngineEvent,
however, there is some ambiguity, as the event is clearly speaking about a single
entity, but as the entity is only just added it would have been impossible for
any trigger to be registered to it. If one was to make improvements to the event
design this would be one change that was worth looking into.

Triggers The trigger design came about as a necessity for providing a way for
the user to easily design reactions to a given event. The trigger design is very
minimalistic except for the fact that it has a condition. We designed it with the
condition because we wanted it to be obvious how unwanted events should be
handled. Furthermore it also helps to separate the code containing the condition
and the code containing the action itself, allowing for more readable code.

5.2 Model 63

Another way the triggers could have been designed would be if the user simply
registered lambda functions (anonymous function), this would help reduce the
amount of classes a user should know and understand. However we preferred
to encapsulate this into what we call the Trigger, since we wanted to have the
ability to expand the capability of the trigger at a later time.

In short, triggers are a simple design that gives the engine user a lot of flexibility.

Summary

Events and triggers might be a hassle to setup and design, but in return they
provide the engine with a lot of flexibility. Without Events the engine would
suffer greatly and all actions would be required to be bogged down with a lot of
extra logic. This would not only remove the modularity of the engine but also
make using the engine more error-prone.

5.2.4 Actions

As we already went through what actions can be used for, this section will
instead focus on the idea behind actions, and how we implemented them. It
will furthermore cover the entire life span of an action object.

Explanation

An action – or XmasAction, as it is called in our engine – is a class which pro-
vides an API for performing state changes inside the engine, while also ensuring
that only one action at a time is being executed.

As can be seen in fig. 5.2 it starts with the XmasModel running an endless
loop that tells the ActionManager to execute all newly queued actions. The
ActionManager then takes all the actions from a thread safe list and places
them in a local list. After this, each action is executed individually, putting the
action that is being executed in a running state, this state will not change before
the actions Completed method is called. Once an action has been properly
executed, it will be changed to a completed state and will be properly disposed
of. When the last action has been executed by the ActionManager, the call
to ExecuteActions returns and XmasModel will put the thread in a waiting
state. The XmasModel will remain in a waiting state until a new action has been

64 Implementation

Figure 5.2: A sequence diagram describing the execution of an action.

5.2 Model 65

placed on the queue; this prevents it from busy waiting when no actions are to
be executed.

Considerations

The way that action completion is designed might seem tedious in that it has to
call the special method Completed on each action. However it is quite necessary
as the completion of the execute method call does not guarantee that a method
is completed, for instance in the case of non-instantanious actions, as explained
in the example below.

Consider the action of moving from one place to another. In this case the move
action would need to set a delay before the actual move, to give the idea that
the move action had a speed. As we can’t halt other actions during this time it
is paramount that the Execute method is released so that other actions can be
executed during this period.

This is also how the move action is designed in our reference implementation,
the algorithm is as follows

1. The move action is put on the queue

2. The move action sets up a timer on a different thread and finishes its
execution

3. The timer is fired after a given time, and places a new action on the queue

4. The new action performs the actual move, and calls the Completed method
of its parent Action (the MoveAction)

As one can see, the problem in this design is the redundancy created by having
to call the method Completed on every designed action execution. This might
not seem like a problem but it is problematic in a few ways. First and foremost it
adds complexity in usage of the engine, a person with no knowledge of using the
engine would not intuitively deduce the correct way to make and use actions.
Thus it creates a second problem: there is no way to determine if an action
is correctly constructed during compile time. This means bugs will naturally
accumulate during extended use, even if a user has experience and foreknowledge
forgetting even for a single action can be crucial. This is because running
actions use resources and if never completed the resources of the actions are
never released. For instance let us assume the MoveAction Completed method
is never called, the result of this is that it is stored in the ActionManager

66 Implementation

as Running. Now let us assume that this move action is continuously being
executed by hundreds if not thousands of agents. As each action is never released
the memory stored for each action is never released and an unintentional memory
leak is thus created.

Another way we could have chosen to implement the action completion process,
is the usage of child action. Imagine if an action could generate new actions
that were linked with it, thus the completion of an action would be tied to the
fact that all its child actions had been executed and not the arbitrary call of a
Complete method. This could undoubtedly provide new problems to overcome
and as such we have not fully followed this path, however given more time to
study the consequences of this design would reveal whether or not this is a better
design.

Summary

A lot of the considerations when designing the action all comes down to the
reliance on user to clean up the Action, which is generally not good from a design
perspective; it is always preferable that used data is cleaned up automatically
when it is out of scope. However it is not all bad as this design does guarantee a
flexible usage of the actions; it provides more control to the user which might give
the user abilities to do certain things which would otherwise be denied within
the engine. This is also why this design method was chosen as our philosophy
in the engine design was to minimize limitations as much as possible while still
providing the features we thought necessary to fulfill the engine’s goal.

5.3 Agent Controller

The agent controller is designed specifically to be able to accommodate all types
of APL. This means that a lot of special care had to be taken in order for us to
impose as few restrictions as possible. This section will focus on the different
designs we went through and why we eventually landed on the design we have
now.

Explanation

The AgentManager is designed to run separately from the engine’s model thread,
which means it has the ability to take all the time needed to properly connect

5.3 Agent Controller 67

Figure 5.3: This image details exactly how an AgentManager Processes incom-
ing requests from an outside AP

to an outside AP, same goes for the AgentController. This means that when
an AgentManager generates a new AgentController to be used by the AP, it
also generates a new thread which the AgentController is executed on. In the
System Features section we covered how AgentControllers are used. Here we
will elaborate on the exact process. In fig. 5.3, a sequence diagram is shown
that looks familiar to the one shown in the system features. However there are
a few key differences. First, this sequence diagram shows the complete life cycle
of an AgentManager, since the AgentManager is running on its own thread it
does not care about blocking until work needs to be done and the only kind
of work it is responsible for is ensure that AgentControllers are generated for
APs in need of them. Second, it also details that AgentControllers are in fact
generated by the AgentManager with its own thread.

Considerations

The AgentManager went through many design iterations in order to arrive at
its present state. Originally, the AgentManager was called AgentServer. The
reason was that for another language to interface with the language of the
engine – C# – there must be a universal way of connecting the two languages.
A way in which practically no languages was prohibited from interacting, and
as we thought such a way could only be achieved through a TCP connecting
since the protocol for TPC connections is very old and as such usable in most
languages by far. While it is true that probably almost all languages do require
a TCP connecting in order for them to work with our engine, it is not true for

68 Implementation

languages that the engine understand, considering that all the .NET platform
languages works together very well. For example, you could use the functional
programming language F#, which also runs on the .NET platform. As such, if
we imposed that all AgentManagers are AgentServers, it would be required to
setup a server just for using a language which the engine already understands.
There is also that our goal for the engine was to be general as possible and since
an AgentServer is more restrictive than an AgentManger, then AgentManager
is the design we went with.

Summary

AgentManager and AgentController is designed as a framework for making an
interface between an APL and the engine. They are intentionally made very
lightweight so that they do not prohibit any special requirements of any given
APL.

5.4 View

As the view our engine provides is only a framework for making an actual view,
it limits what can be said about its implementation. What this section will
focus on is why we chose to design the view in this manner and how we provide
ways to ensure that the view can be executed on a different thread while not
being affected by its problems.

Design

The view design for the engine was never meant to be an actual view, this
would limit the potential of what could be done so we are rather content with
not providing more than the skeleton for making a proper view. The idea is
that the actual implementation of a view should be part of some extension to
make a view that displays graphics or a view that shows a console, it should
never be a core part of the engine. The core engine should only provide what
all views need, this means that if just a single view is restricted by our design
then our design is flawed.

5.4 View 69

Figure 5.4: Sequence diagram show how events triggered on the model is
stored and put on hold until the view thread is able to process
them

Thread Safety

One thing all views have in common is the dangers of having code that is not
thread safe, by having two threads run through the same address space at the
same time, the risk of a race condition or deadlock is very high. This makes
programming a view rather difficult. To combat this problem, we came up with
the ThreadSafeEventManager and the ThreadSafeEventQueue. These classes
both assist with ensuring that the model thread is never involved in the view
thread’s business. The way the ThreadSafeEventManager works is by storing
all events triggered by the EventManager of the model, the events data are all
kept safe and the order in which the events was triggered is also kept. The
idea is that when the view thread is not performing any actions, such as when
it is in sleep mode between a draw update, instead of sleeping it will call the
ThreadSafeEventManager and tell it to begin executing. The process works by
running the ThreadSafeEventQueue that had one of its events trigger and tell
it to execute. When all ThreadSafeEventQueue are empty then that mean that
there are no longer any events waiting to be executed on the view thread. Since
views are only interested in seeing the changes to the world and not how the
changes came about, then that means that the views only need access to the
events and not the actions. To see a sequence diagram of this process look at
fig. 5.4.

70 Implementation

Summary

The view design is mostly focused on ensuring that the user of the engine should
deal with as few threading problems as possible as such we have developed two
classes ThreadSafeEventQueue and ThreadSafeEventManager these both make
it possible for the view to trigger events when the thread is free from other duties,
instead of relying on the model thread to also handle view event updates.

5.5 Engine Extensions

5.5.1 Tile Extension

The tiled environment is quite elementary, as it is basically a two-dimensional
array with some extra arithmetic to change the coordinate system, as described
in System Features. The actions and events are also very straight-forward, as
they function as described in their own sections. The most interesting part of
the tile extension is thus the way we handle vision, which we will describe here.

Vision

We say that the tile t2 is visible from another tile t1 if at least one corner of
t1 connects to at least three corners of t2. If t2 is vision blocking, only two
corners of t2 need be connected to. In figure 5.5 we have shown some examples
of connecting corners. Next, we will explain what it means for two corners to
connect.

We say that a corner c1 on a tile t1 connects to a corner c2 of another tile t2 if
a straight line can be traced from c1 to c2 without intersecting with a tile that
is blocking the line. In the tile extension, a tile is blocking the line if it contains
an entity that is vision blocking with respect to the entity looking from t1. This
presents a problem with a line whose vector has an x or y component equal to
0. As such a line never intersects with any tiles (it only passes between them),
it will always connect with the rules stated above, even if all tiles it passes are
vision blocking. Thus, we say that a line which only extends in the x or y
direction does not connect if it passes between two vision blocking tiles.

Note that in fig. 5.5, the line from the SE corner of A to the SW corner of T3
does not connect, as it passes between two vision blocking tiles, as described

5.5 Engine Extensions 71

Figure 5.5: In this figure we see the visibility of selected tiles T1 . . . T4with
regards to the agent in position A. The light gray squares represent
vision blocking tiles, and all other tiles are see-through. Lines have
been drawn from the corners of the agent’s tile to the corners of the
selected tiles. Green lines signifies that the two corners connect,
whereas red lines means they are not connected. Tiles T1, T2 and
T4 are visible to the agent, while T3 is obscured.

72 Implementation

Figure 5.6: A line described by the vector v = (3, 4) with slope s = vy

vx
= 4

3 .
Squares in light gray are tiles the line intersect with.

above. Also note that T4 should, intuitively, be obscured to the agent; we should
have a rule saying that when a line intersects with a corner, it should be blocked
if both of the two tiles that are connected to the corner, and is not intersected
by the line, are vision blocking.

In its most simple form, the vision algorithm iterates over all the tiles in the
agent’s visible range, and returns a collection containing just those satisfying
the above condition, as shown in the pseudo code below:

Method Vision
takes an Agent A,
returns a collection of Tiles

Tiles : Collection of Tiles
for each Tile T in A’s visible range:

if T.isVisionBlocking(A):
if any one corner of A connects with any two corners of T:

add T to Tiles
else :

if any one corner of A connects with any three corners of T:
add T to Tiles

return T

The interesting part of the algorithm is this: how do we determine whether two
corners connect? That is, how do we find all the tiles a line from one corner to
another passes through?

5.5 Engine Extensions 73

To illustrate the problem, consider the line depicted in fig. 5.6. First, we find
the slope of the line as s = vy

vx
, where v is the vector describing the line. If we

consider the line’s equation (y = s · x), as it is depicted in the figure, we can
see that the line segment decribed by the vector between the points (x0, s · x0)
and (x0 + 1, s · (x0 + 1)) (where x0 ∈ N) crosses the tiles between x = x0 and
x = x0 + 1 on the x-axis and y = bs · x0c and y = ds · (x0 + 1)e on the y axis.
This can be repeated for every x0 in the range 0 . . . vx to obtain the complete
collection of intersected tiles.

In the Vision class, the walkAlongVector(Vector v) method performs the
above operations, with some modifications to handle vectors with negative com-
ponents properly. It is called by the ConnectCorners(Point, Point) method,
which calculates the vector v. WalkAlongVector uses the yield return key-
word to return each tile at a time, so lines are only drawn until a blocking one
is encountered.

5.5.2 EIS Extension

EIS support in engine is provided with a special AgentController and AgentManager
class, along with a specially designed java EIS environment jar file. This section
will go through how the implementation works and how we connect to the EIS
environment.

The EIS environment in java and the agent controller on the engine is connected
through a TCP connection. They communicate with each other with XML as
a markup language for the data they transmit.

Fig. 5.7 shows the setup between EIS and the agent controller.

Although the EIS environment and the agent controller sends all data in form
of XML data there is one difference and that is all XML nodes are packaged
into packages of a certain size and the size is sent before the xml data, as can
be seen in fig. 5.8.

This was done to ensure that the agent controller at all times knew how much
data was to be transmitted, thus giving it the right to deny packages if they
were over a certain size. In our current implementation however no package size
is denied.

74 Implementation

Figure 5.7: An illustration of the connection between the EIS environment
and the agent controller.

Figure 5.8: Image of the data sent between the EIS environment and the agent
controller.

5.5 Engine Extensions 75

Engine Side of EIS Support

In the project: XmasEngineExtensions we provide the following two classes:

EISAgentController: this class is responsible for converting xml data from the
EIS environment into actions that can be queued to the agent it controls.
And also for converting percepts the agent it controls receives into XML
data that can be sent to the EIS environment.

EISAgentServer creates a TCP server. All EIS environments that wish to con-
nect to it must make a TCP client call. Once a connection is established,
the agent server will construct an EISAgentController object, that ob-
ject will take over all further duties of comunication.

How the EISAgentServer works

The server manages the agent controllers and it also manages the connection
creation between an EIS environment and an EisAgentController.

In Fig. 5.9 we show how an EIS environment connects to an agent server and
how the agent server handles the connection. The connection works by the EIS
environment making a TCP connection request. The agent server then responds
by constructing the agent controller (and give it its own thread). Once the agent
controller is constructed the agent server is no longer responsible for handling
that connection and leaves it up to the agent controller to find out what the
EIS environment wants. This is basically to connect to a given agent whom it
knows by name, and start sending it actions.

How the EisAgentController works

The EIS agent controller’s job is to ensure that all demands made by an EIS
environment are met. This is done by receiving actions in XML data form and
convert the data into Xmas Actions. These actions are then queued onto an
agent.

In fig. 5.10, it is shown how xml data received is converted by the controller
and then sent to the agent inside the engine. Percepts are only sent if they
are updated. In this case the action was to retrieve percepts. If the action had
instead been to move an agent, then no percepts would be sent by the controller.

76 Implementation

Figure 5.9: A sequence diagram of an EIS environment connecting to the en-
gine through an EisAgentServer.

5.5 Engine Extensions 77

Figure 5.10: A sequence diagram showing how XML data from EIS environ-
ment are converted into Xmas data.

78 Implementation

Figure 5.11: This diagram shows how the communication between goal and
the EIS environment works.

EIS Environment

The EIS environment is designed to setup an interface between an APL and an
environment. The way we use EIS is by making it a hollow link between our
engine and the APL (such as GOAL). Thus the EIS environment implementation
we make must be able to provide communication between the APL and our
engine. The way we have done this is by making the environment convert all
the XML data it receives from Xmas into IILang objects, which is an object tree
implemented in EIS for recursively representing percepts and actions in native
Java code as well as converting them to and from XML and prolog statements.
It can then use the IILang objects in its internal GOAL interface.

An example of sequence for the EIS environment communicating with an APL
(such as GOAL) can be seen on fig. 5.11. The basic idea is that the goal program
sends commands directly to the EIS environment we have implemented and then
we ensure that those commands are fulfilled by transmitting them over to the
EisAgentController through a TCP connection.

5.6 Reference Implementation 79

Considerations

The design of interfacing with GOAL was originally what the engine design
was mostly focused on; as such there have been lots of different approaches to
this interfacing that we have gone through. One approach was to connect the
EIS environment using J# which could be converted into C# byte code; this
would be a lot faster than our current approach since XML data wastes a lot of
space by encapsulating every bit of information. However J# is an old language
and we wanted to ensure that we did not run into too many complications
under development as such we chose our current approach since the real time
transmission of data is not as important as the idea of it, for this project in
particular.

Summary

EIS is an interface for designing environments in java that connects to EIS
supported APLs, we use this environment to develop an environment that is
simply a TCP connection between the APL(in our case goal) and our engine.
The design provides the necessary features to the engine, but the design could
have been more optimized by using a more compact way of sending data, since
sending data as XML nodes takes up a lot of space since XML requires all data
to be encapsulated by it.

5.6 Reference Implementation

The reference implementation relies heavily upon the extensions that are at-
tached as part of the engine.

The extensions the reference implementation uses are:

Logger Extension this is used to log all actions that occur inside the engine
and to log any errors that might also occur.

EIS Extension this extension is used to connect the reference implementation
to our goal program for the agents inside the reference implementation.

Tile World Extension the reference implementation uses a Tile based world
as such it directly uses the Tile World Extension that provides just this
functionality.

80 Implementation

The reference implementation as such only provides:

• Actions specific to the reference implementation(Grabbing/releasing pack-
ages)

• Entities specific to the reference implementation(Walls, Player, etc.)

• Percepts and modules specific to the reference implementation(Holding
package percept)

• A view in console form

• A Goal program

• A way to control an agent with keyboard

5.6.1 The Console View

The console view is designed to draw the screen at a specific frame rate. When
the console view does not draw it will instead update all view data it has stored.

To change view data in a view, an event must be fired from the model, however
since the model is operating on a different thread than the view, the view must
ensure no concurrency errors. This is done by using the ThreadSafeEventMananger,
as explained in 5.4.

The console view works by drawing the screen, then – if it has time left be-
fore the next drawing is scheduled – it will execute a single event on the
ThreadSafeEventManager. The view will continue this process until either
there are no events left to be executed or the time is up and it is time for
it to perform the next drawing of the screen. In fig. 5.12 an illustration of this
process is shown.

This provides the reference implementation with a very quickly updated view
as no time is wasted on the thread, since the view will continue to update even
when it is not drawing. Furthermore, by updating the view data in a separate
thread the engine core does not use its computation power on handling this,
which makes the engine more efficient overall.

5.6 Reference Implementation 81

Figure 5.12: the sequence of the console view drawing process

82 Implementation

5.6.2 GOAL Program Implementation

The GOAL program is designed to work directly with our reference implemen-
tation, as it is just a showcase of what such a program might look like. It will
make assumptions about how the reference implementation works. For instance,
it will assume that there are entities called walls that blocks movement.

To see the commented source code of our GOAL program, see appendix D.2.

5.6.2.1 Agent Decision

A full flow chart of the goal program decision chart can be found in appendix
D.1.

As can be seen from the flow chart, the agent will try to find packages and bring
them to a dropzone, if no such packages can be found or if no dropzone is found,
the agent will start exploring the entire world.

The goal program operates with a few different notions;

Street The first notion is the notion of streets. A tile is a street if it contains
no wall types such as normal walls or impassableWalls (map boundary
walls). This means that the agent can move on this tile.

Route When an agent decides to move to a specific tile, it will perform an
A* search to find the shortest path to that tile. The A* search (which is
called As in the GOAL / prolog code found in appendix D.2) returns a
route represented by a list of tiles the agent should follow to reach the
desired tile. Whenever the agent have no tasks of higher priority (such as
grabbing a package if it is standing on one), it will pop a tile from the
route and move onto it.

Explored the agent’s goal is to eventually have all tiles explored as this means
that it can determine whether all packages have been picked up. The agent
determines that a tile has been explored if it has seen all its adjacent tiles
(fig. 5.13 shows an image of this). No matter how much the agent explores,
whenever it uncovers a previously unexplored tile, it will see new tiles to
explore, unless the uncovered tile is a wall. This will continue until a wall
has been reached on all its paths. Uncovering a new tiles works much like
putting a carrot in front of a mule; it will always try to catch up to the
carrot, just as the agent will try to uncover unexplored tiles.

5.6 Reference Implementation 83

Figure 5.13: An image of an agent’s vision and which it would determine to
be explored

Summary

The reference implementation was designed as a reference for all the features of
the engine, as such it made heavy use of the extensions that we implemented.
This section only covered the view and the goal program in details. This is
because most of the reference implementation consists of either declaring new
agent/entity types or wiring all the extensions together. As such, there was
almost no business logic involved which makes them rather uninteresting to
explain in detail.

One part that the reference implementation does not cover which could have
been interesting was the notion of linked modules as explained in 4.2.1. This
could have been used in the reference implementation but we did not choose to
do so.

Overall the design of the reference implementation is very solid and fulfills the
goals we had for it, which were to be a showcase for our engine.

84 Implementation

Chapter 6

Testing

When developing a large project, one of the most difficult aspects of the process
can be proper testing. This section will go through what kinds of tests we
performed to ensure that our engine works correctly.

6.1 Testing the Engine

Unit Tests: The location of the unit tests for the engine and all its depencies
can be found in the source code in the XmasEngine_Test and JSLibrary_Test
projects.

Since our engine by itself is not meant to be executed, but rather is meant to
have some of its components implemented first, the only kinds of tests that
can be performed on the engine are unit tests. The unit tests that are most
important to the core functionality of the engine are the tests concerning the
EventManager and the ActionManager, since these tests shows that the action,
trigger and event functionality correctly works. However, as we created the
engine using a TDD approach we should have tests for almost all classes with
business logic contained in them.

86 Testing

One component proved impossible to properly unit test and that was the EIS
agent controller, since this component required a connection to properly under-
stand its errors. To perform this test we designed a simple component/functional
test, this test is not meant to be executed as part of the unit tests. The test is
designed to be executed with an debugger so that the programmer can easily
follow if any errors occur during the run.

6.2 Testing the Reference Implementation

The testing of our reference implementation hinges on the fact that we assume
the engine works correctly, thus it is the job of engine-tests to ensure correctness
and not our reference implementation. As the reference implementation’s com-
plicated logic was located as part of the extensions, which were already tested
as part of testing the engine, the only testing that the reference implementation
needed was testing of the GOAL program which is controlling the agent.

The goal program was tested by taking out individual parts of it such as its path
finding, and carefully tested and debugged in the SWI-prolog program. When
all parts worked correctly we moved them to the actual goal program and then
made a larger scale test of the goal program using the fully running engine.
Once the agent correctly had located all packages and stopped as we wanted,
we concluded that the reference implementation was working as it should.

Chapter 7

Results and Comparisons

In this section we will discuss the major considerations we faced during the
project, as well as the choices we took in accomplishing our goals, and how we
could have otherwise reached them.

7.1 Generality of the engine

One of the major goals of this project was to make the engine as general as
possible. This includes the ability for the designer to implement any kind of
environment, displayed any way he wants, and controlled by whatever APL he
would like to use. In this section we will discuss how these three vital parts of
our engine lives up to this goal.

For the engine to be general, it must have the ability to adapt to any needed
situation. The only restriction is that these situations are based in multi-agent
systems. Other than that, nearly any situation should be coverable by the
engine. For instance if one wishes to use the engine to make a computer game,
then the view must be able to support a graphical display and the world of
the engine must have the ability to be changed to a 3d-world. But if instead
one wishes to make an engine for searching documents for spelling errors, then

88 Results and Comparisons

the world should be extendable to a text-document. Furthermore to be general
also means that the engine should be used to work with any other APL, so
regardless if the APL is GOAL, Jason or F# the engine should have the ability
to be adapted into working with either of those languages.

In many cases, the shortest path to a general system is removing restrictions.
Unfortunately, features are often restrictive in nature; the most general system
of all is one that is completely featureless. Thus, it is often a trade-off between
features and generality. In our engine design idea we try to overcome this by
making all features as extensions or optional thus not restricting the core engine.

Model

For the model to be general, it should be capable of representing a world as
any possible data structure. Additionally, the objects inhabiting it should be as
general as possible, allowing them to be defined in a way that makes sense in
the context of the world.

We have accomplished this by imposing as few restrictions as possible on these
objects. For example, as described in section 4.2, a world in the engine has no
data associated with it by default, leaving the modelling of it completely in the
hands of the designer. The only restriction on the world is the idea that all
entities should have a postition in it, although the position object is completely
general itself.

Initially, we toyed with the idea of equipping the world with a graph as the de-
fault representation of the environment, since it is a very general data structure
in the sense that it can be used to describe other data structures. The problem
with this approach is that a graph may not be the best representation of any
given world. In the case of a tile based world, for example, a two dimensional
array is more feasible, since this is its natural representation. Ultimately, we
chose to impose no restrictions on the data structure used, and instead rely on
the use of extensions to model environments.

Interfacing with APLs

One of the major problems in designing an interface that works with different
APLs is that: the order in which they, queue actions and queries percepts
may be different from APL to APL. In effect, they do not share a common
execution protocol. This means that we cannot provide a general method for

7.1 Generality of the engine 89

communicating with any AP. Instead, as with other parts of the engine, the
intent is to allow for extensions capaple of interfacing with different APLs in
any way they see fit.

It could be argued that using the notions of percepts and actions serves to
limit the universality of the engine. These are, however, general concepts for
interacting with an intelligent agent. They are basically the input and output
of the agent; it perceives the state of the world, and produces an action based
on this information. As such, they are essential to interacting with an agent,
and incorporated in all agent programming languages we are aware of.

View

For the view to be considered general it is paramount that the design of the view
is not being restricted in anyway, this is done by keeping anything in the view
very minimalistic. By minimalistic we mean that the view only provides about
four classes and they only provide a tiny portion of business logic. If we had
narrowed down how exactly a view should be designed such as requiring a frame
for which the view is projected on. This might have made implementations of
the view easier as tools to draw on frames could be pre-implemented into the
engine, but in turn restricted the view from being able to become other types
of view. We did not want to do this since we think that restrictions should
be non-existent .However this also poses a potential problem in that it is so
minimalistic that we barely provide anything for the user, and leave the user to
the task of making the view by themself.

Solving the Problems of Generality

As evident when discussing how to make the engine general and how to make it
work with as many situations as possible, there is a problem that the workload
for the user gets increased. This is because whenever we remove something from
the engine in order to ensure that we impose no restrictions, we run the risk
of removing something that made the life of the user easier, as they would not
have to re-implement it themself. To combat this problem, we moved everything
that added value to the engine but imposed a restriction on it to the Engine
Extensions project. The idea would be that while the extensions was not part
of the core engine, they would be part of what we delivered with the engine.
We saw this as the best of both worlds. Not only do we ensure that the engine
is not being restricted, but at the same time if the user did not mind some
restrictions, then they would be able to find a suitable extension among the

90 Results and Comparisons

ones we provide. As of now the only extensions we have are those needed for
the reference implementation, but our long term plan would be to add more
extensions if possible.

7.2 Model View Controller Design Pattern

The model view controller design pattern is one of the older design patterns
within software design; its purpose is to ensure that the developer does not deal
with multiple issues at once, and instead is able to focus on one task of the
project at a time. We chose to base our engine on the MVC pattern because
we also do not want the user of the engine to be tasked with multiple issues
at once. Without the MVC pattern, the user could be confused about how for
instance they should design a controller for an APL, and perhaps they would
mistakenly design it tailored to specific actions. If the user did this, they would
have to write new actions to perform the same task for each new APL they
encountered, which would increase code redundancy. As the developers of this
engine we wanted to ensure those kinds of mistakes do not happen. The way
we enforce this is by forcing the MVC pattern. By forcing the MVC pattern we
force the user to think about how they should construct the implementation of
the engine’s abstract classes. However since it is only a pattern, the user can
still make bad design decisions as we impose no restrictions.

7.3 Choice of Technologies

The XMAS Engine

We have chosen to implement the engine in C#, which runs on the .NET plat-
form. While Java has a strong presence in multi-agent system development –
as it is used by established APLs such as Jason, as well as the EIS standard –
we have a subjective preference for C#. In general, C# is a newer and more
modern programming language with better facilities for writing comprehensive
and maintainable code, and provides some features usually only found in func-
tional programming languages. Additionally, .NET code can be executed across
platforms, thanks to the Mono project1, although the newest version of .NET
(v4.5) has not been ported at the time of this writing. Although developing our
reference implementation would have been simpler had we used Java, opting

1http://www.mono-project.com

7.4 Comparison to other Environment Construction Tools 91

out of this in favor of C# gave us the opportunity to test how well our engine
interfaced with programs not written in the same language.

Reference Implementation

As our reference implementation was developed to showcase and test our engine,
we aimed to implement it using the most commonly used agent programming
language. Since EIS can be interfaced with many different APLs, this seemed
like the obvious choice. If the engine could be shown to work with EIS, any APL
supported by EIS would work by extension. Initially, we considered writing a
J# (.NET bindings for the Java Language) module, which would work natively
with both our engine written in C#, and the EIS implementation written in
Java. However, we felt that this would remove the difficulties of communicating
with an entirely different platform.This difficulty is important to overcome, as
it readies the engine for future problems of a similar kind.

7.4 Comparison to other Environment Construc-
tion Tools

In this section, we will compare the XMAS engine to other frameworks that can
be used to construct and manage MAS environments. In particular, we will con-
sider CArtAgO2 (Common “Artifacts for Agents” Open framework, henceforth
referred to as Cartago), which have been used in several projects, and as a part
of the JaCaMo3 (Jason, Cartago, Moise) project, which provides a complete
framework for multi-agent systems consisting of the Jason MAPL (multi-agent
programming language), the Cartago environment constructions API, and the
Moise organizational system. We will also compare our engine to using plain
EIS.

2http://cartago.sourceforge.net/
3http://jacamo.sourceforge.net/

92 Results and Comparisons

7.4.1 Cartago

Agents and Artifacts

The Cartago framework uses the A&A (Agents and Artifacts) approach to design-
ing environments. In the following, we will provide an overview of this model,
which is presented in [ORV08].

In the A&A meta-model, a collection of computational entities called artifacts
constitutes the environment. They are computational entities in the sense that
they are meant to provide functionality exploitable by the agents, and can have a
state and business logic, but are not meant to act autonomously. In fact, instead
of agents having predefined actions that manipulates the state of the world
when executed, they are aware of a collection of artifacts, which each provide
a number of operations the agents can perform on them. The artifacts also
provides percepts to the agents, and are as such the agents’ means of interacting
with the world.

Artifacts can not only be used to model objects with a physical presence in
the world (such as analogues to the packages and dropzones in our reference
implementation), but also more abstract concepts, such as control flow objects.
For example, a communication artifact could be created, through which sev-
eral agents could talk and listen, through operations and percepts, respectively.
Since agents can create and destroy artifacts at will, such communication chan-
nels are easy to spawn in an ad hoc manner.

The A&A meta-model, as described in [ORV08], is to some extent based on
the way humans interact in a working environments, as it draws on research
in fields such as organisational sciences and anthropology. This lead to the
introduction of artifacts as tools, service providers and communication devices,
since they better describe such an environment. In general, the A&A approach
focuses on incorporating these concepts as an integral part of the environment,
so as to make it a functional and reactive part of a multi-agent system. This
is in contrast to classical MAS engineering, where the environment is typically
defined as a more static structure which agents can act in and retreive percepts
from.

Cartago Implementation

The Cartago framework is implemented in Java and can natively connect to
the Jason APL. Here, we will explain how Cartago implements the A&A meta-

7.4 Comparison to other Environment Construction Tools 93

model. A more thorough explanation can be found in [RPV11].

Agents In Cartago, agent programs are connected to agent bodies, which are
– in that respect – conceptually similar to agents in the XMAS engine,
as they represent a vessel for the agent in the environment, but no agent
logic. In keeping with the A&A approach explained above, the agent API
allows for creating and deleting artifacts, as well as executing operations
on artifacts and retreiving percepts from them.

Sensing For handling perception, Cartago provides the concept of sensors. An
agent contains a set of sensors, each collecting percepts from an artifact.
The sense method of an agent takes a sensor as input and returns a
percept gathered by it, whereafter the percept is removed from the sensor.
The sensors can be overridden by the designer to – for example – control in
what order it should return its contained percepts. A sensor is connected
to an artifact via the focus method. Sensory inputs can be filtered, so
that a sensor only picks up percepts matching a user-defined pattern.

Artifacts Artifacts specify operations that agents can execute as described
by the A&A meta-model. Artifacts can generate events, which can be
gathered by any connected agent sensors. Artifacts can describe how they
are meant to be used, ie. what operations thay have and how they should
be called. When an agent executes an operation on an artifact, a boolean
value is immediately returned, signifying either success or failure. The
calling agent can give a sensor as an argument to the method invocation,
which will gather any percepts that the artifact generates as a result of
executing the operation.

Agents and Artifacts in XMAS

The main purpose of the Cartago project is to provide a framework for designing
MASs using the A&A meta-model. While that have not been the goal of the
XMAS engine, it is general enough to support this approach, especially since
the engine allows entities to incorporate state and business logic through entity
modules. Below, we have described how artifacts, agents and perception would
be implemented using the engine:

Agents would be XMAS agents, with a module for creating, destroying and
containing (references to) artifacts, as well as a module for each sensor.
The sense action used in the Cartago API is not entirely equivalent to
our generic getAllPercepts action, as it only retrieves one percept from
one specific sensor, but such an action could easily be implemented.

94 Results and Comparisons

Artifacts would be represented as entities with a module for each operation the
artifact provides. When new stimuli, ie. new percepts, would be available,
an XMAS event would be raised.

Sensing The agents’ sensor modules would be connected to the artifact entities
by registering triggers on them, wchich would subscribe to the events
raised by the artifacts. By using trigger conditions (cf. section 4.3), the
percepts could be filtered as with Cartago sensors. The modules in XMAS
already provides means for being queried for collections of percepts, so this
functionality could be used to let them return all the percepts that have
become available to them since the last invocation. Alternatively, they
could incorporate some logic for the ordering of returned percepts, in case
the user only wants one percept per sense.

The functionality described above could be encapsulated in an engine exten-
sion, providing the proper modules, events and actions. One issue with this
is that entities in the XMAS engine are meant to have a position. As men-
tioned, this is not a strict requirement, as the position can be set to a null value
and ignored. Additionally, recent versions of Cartago supports what they call
workspaces, which serves to group the agents and artifacts together in different
sub-environments, for which positions in the XMAS engine would be well suited.

7.4.2 Environment Interface Standard

While Cartago provides a very specific approach to designing an environment,
EIS is at the opposite end of the spectrum, as it aims to provide a standard for
designing and connecting to environments. The Java implementation of EIS is
very bare bones in terms of functionality for managing an environment, as they
have focused more on interfacing with different APLs.

This means that its goals are different from ours. What EIS is good at, is
providing a way to comunicate with a language that otherwise had no way of
doing so. While the goal of our engine is simply to use APLs that are capable
of comunication (some of them being so through EIS).

Chapter 8

Conclusion

In this project, we have developed an engine for constructing scenarios to be
used in multi-agent systems. A scenario in this sense is an environment where
agents can interact, and with means to control the agents. Our project provides
the following features:

• A way to set up environments.

• Means of communicating with APLs, which controls the agents inhabiting
the environment.

• Provide a general way for agents to behave in the environment, by allowing
them to act and sense.

• Reactivity in the environments, allowing agents and entities to dynami-
cally respond to changes in the world.

8.1 Results of comparisons

As discussed in 7.4, our engine is placed somewhere in between Cartgo and EIS
in terms of multi-applicability and features. That is, our engine is more general

96 Conclusion

than Cartago, while providing more convenient features for a MAS than EIS
(and is, conversely, less feature complete than Cartago). We have argued that
the meta-model used in the Cartago project can be implemented in Xmas, and
shown that EIS can be used as an extension to the engine in order to exploit its
APL compatibility.

8.2 Engine completion

We will now evaluate whether the goals we listed in the introduction have been
reached:

Generality: As we discussed in section 7.1, we believe we have reached a good
amount of generality in the engine, as we impose few restrictions on the
design of environments. The eternal problem is the trade-off between gen-
erality and features, and much of our effort have been directed towards
equalizing these two qualities. Without several implementations of the
engine, it is difficult to say how well our solution caters to different envi-
ronment systems and their needs.

Ease of use: While our engine features tools that can ease the development of
larger systems, it is not comparatively easier to use in small scale aplli-
cations. Our minimal example implementation (Vacuum World, see Ap-
pendix C) consists of a total of 17 C# classes. It should be noted, however,
that the example does not use any extensions apart from the very basic
logger extension. Extensions can be used to define some of the abstract
notions such as position, and thus ease the development burden. It is also
worth noting that most of the classes contains very little code.

Cross platform compatibility: We have compiled the project against the
mono platform, which provides the .NET platform on Mac, Linux and
Windows. We have developed the engine in both Linux and Windows,
and it works as it should on both platforms. At the moment, our refer-
ence implementation can not be run on Linux or Mac due to a bug in
Mono regarding text buffer sizes when printing to a terminal. While the
reference implementation is an important part of this project, we do not
consider it a part of the core of the Xmas engine, and therefore conclude
that this goal has been reached.

In summation, we believe that the goals for the engine have mostly been reached.

8.3 Future work 97

However, There are many aspects of the engine which could be severely im-
proved. These include, but is not limited to,

• The specific way actions and events are designed. For instance, the distinction
between environment events and entity events, as discussed in section 5.2.3.

• The way the view is supposed to communicate with the model

• The way agent controllers are forced to have their own threads. This is
unnecessary when APLs runs all agents on a single thread, however inefficient
that may be.

8.3 Future work

Here, we will list some of the possible additions to the engine, which would make
it easier to use by providing functionality for a wide array of MAS scenarios.

• Extensions to communicate with other APLs, that do not support the EIS
standard.

• A collection of common environments, such as:

– Three dimensional worlds
– A graph based world

• An extension allowing construction and management of discrete worlds.

• Extending the reference implementation to include agents cooperating to
find packages.

• Copying the environment and functionality of the Agents on Mars scenario,
to showcase and test our engine against an established implementation.

• A collection of commonly used agent actions and percepts, such as means
of communicating with each other.

98 Conclusion

Appendix A

Domain Model UML Diagram
for XMAS Model

100 Domain Model UML Diagram for XMAS Model

Figure A.1

Appendix B
XMAS Engine Component

Diagram

102 XMAS Engine Component Diagram

Figure B.1

Appendix C

Vacuum World Example

To properly understand the engine it is often needed to have good examples of
how to use the engine, as such this part will cover how to make the Vacuum
Cleaner World that is a basic Agent based world.

Basically the idea is that the world consists for two tiles, which for the purpose
of this example we will call them Tile 0 and Tile 1. The agent is a vacuum
cleaner and has the ability to move from one tile to another, furthermore the
agent can sense if there is dirt on its current tile. The agent also has the ability
to suck if it sucks on a tile with dirt then the dirt is removed. The job of the
agent is thus to remove all dirt from both of the tiles, in a more advanced version
the tiles gets dirt after an uncertain amount of time, however in this example
the dirt is only there from the beginning of the world creation.

The full code for this example can also be found in the VacuumCleanerWorldExample
project as part of our source code.

C.1 World

We start by creating the world for the Vacuum Cleaner world, however before we
do this we must first define what a position in the world is and what information

104 Vacuum World Example

is need to add an agent.

Position in the vacuum world:
1 public class VacuumPosition : XmasPosition
2 {
3 public int PosID { get; set; }
4
5 public VacuumPosition (int posId)
6 {
7 this.PosID = posId;
8 }
9

10 public override EntitySpawnInformation GenerateSpawn ()
11 {
12 return new VacuumSpawnInformation (PosID);
13 }
14
15 public override string ToString ()
16 {
17 return "Tile("+PosID+")";
18 }
19 }

Information need to add an agent to the vacuum world:
1 public class VacuumSpawnInformation : EntitySpawnInformation
2 {
3 // Since the vacuum cleaner doesn ’t require more

information upon entering the world this information
is empty

4 public VacuumSpawnInformation (int spawn) : base(new
VacuumPosition (spawn))

5 {
6
7 }
8
9

10 }

Now we construct the world:
1 public class VacuumWorld : XmasWorld
2 {
3 // The two tiles that can contain the vacuum cleaner
4 private VacuumCleanerAgent [] vacuumTiles = new

VacuumCleanerAgent [2];
5

C.1 World 105

6 // these two tiles contain the dirt
7 private DirtEntity [] dirtTiles = new DirtEntity [2];
8
9 // Override this to provide a way to insert the agent

10 protected override bool OnAddEntity (XmasEntity
xmasEntity , EntitySpawnInformation info)

11 {
12 var spawn = (VacuumSpawnInformation)info;
13 var spawnloc = (VacuumPosition)spawn. Position ;
14
15 if (xmasEntity is VacuumCleanerAgent)
16 {
17 vacuumTiles [spawnloc .PosID] = xmasEntity as

VacuumCleanerAgent ;
18 return true;
19 }
20 else if (xmasEntity is DirtEntity)
21 {
22 dirtTiles [spawnloc .PosID] = xmasEntity as

DirtEntity ;
23 return true;
24 }
25
26 return false;
27 }
28
29 // this method provides the world the ability to remove

entities
30 protected override void OnRemoveEntity (XmasEntity entity

)
31 {
32 // since the vacuum cant be removed there is no need

to provide this in the world
33 if (entity is DirtEntity)
34 {
35 var vpos = (VacuumPosition) this.

GetEntityPosition (entity);
36 dirtTiles [vpos.PosID] = null;
37 }
38 }
39
40 // override this for the world to provide the location of

the vacuum cleaner
41 public override XmasPosition GetEntityPosition (

XmasEntity xmasEntity)
42 {
43 //Go through each tile to see if the agent is

106 Vacuum World Example

contained within if not return the posion of -1
44 if (vacuumTiles [0] == xmasEntity)
45 return new VacuumPosition (0);
46 else if (vacuumTiles [1] == xmasEntity)
47 return new VacuumPosition (1);
48
49 // same is done for dirt
50 else if (dirtTiles [0] == xmasEntity)
51 return new VacuumPosition (0);
52 else if (dirtTiles [1] == xmasEntity)
53 return new VacuumPosition (1);
54 else
55 return new VacuumPosition (-1);
56 }
57
58 // Override this to provide the ability for the world to

change position of the entity
59 public override bool SetEntityPosition (XmasEntity

xmasEntity , XmasPosition tilePosition)
60 {
61 // This can be implemented by removing the entity

from its last location
62 // and re -add it to the tile of its new position
63 var pos = (VacuumPosition) tilePosition ;
64 var lastpos = (VacuumPosition)this. GetEntityPosition

(xmasEntity);
65 if (xmasEntity is VacuumCleanerAgent)
66 {
67 this. vacuumTiles [lastpos .PosID] = null;
68 this. vacuumTiles [pos.PosID] = xmasEntity as

VacuumCleanerAgent ;
69 return true;
70 }
71 else if (xmasEntity is DirtEntity)
72 {
73 this. dirtTiles [lastpos .PosID] = null;
74 this. dirtTiles [pos.PosID] = xmasEntity as

DirtEntity ;
75 return true;
76 }
77 return false;
78
79 }
80
81
82 // Override this to get all entities on the world at a

specific location

C.1 World 107

83 public override ICollection <XmasEntity > GetEntities (
XmasPosition pos)

84 {
85 var vpos = (VacuumPosition)pos;
86
87 // check if the vacuum cleaner is located at the

position
88 // then return the entity , if not give an empty

collection
89 XmasEntity [] vacuum ;
90
91 if (this. vacuumTiles [vpos.PosID] != null)
92 vacuum = new XmasEntity [] { this. vacuumTiles [

vpos.PosID] };
93 else
94 vacuum = new XmasEntity [0];
95
96 // Check if dirt is located on the given position
97 XmasEntity [] dirt;
98
99 if (this. dirtTiles [vpos.PosID] != null)

100 dirt = new XmasEntity [] { this. dirtTiles [vpos.
PosID] };

101 else
102 dirt = new XmasEntity [0];
103
104 // Concatenate the two collections of dirt and vacuum

cleaner
105 // and make them into an array for the data to be

immutable
106 return vacuum . Concat (dirt). ToArray ();
107 }
108 }

Finally we create the factory that is meant to build the world on command from
the engine:

1 public class VacuumWorldBuilder : XmasWorldBuilder
2 {
3 // This explains to the engine how to construct the world

we just made
4 protected override XmasWorld ConstructWorld ()
5 {
6 return new VacuumWorld ();
7 }
8 }

108 Vacuum World Example

C.2 The Entities And Agents

The job of the agent in vacuum world is suck up dirt as such we must add a
dirt entity:

1 // Here we define a dirt entity
2 public class DirtEntity : XmasEntity
3 {
4 }

Before we can add the Vacuum cleaner we must first create the modules it uses,
in our case it only needs a module to see the dirt on its current location.

However before that we need to make a percept for the agent, this percept we
will call VacuumVision and it will show the vacuum’s current position and if the
tile it is on is dirty.

1 public class VacuumVision : Percept
2 {
3 // Property that tells if dirt is located at the vacuum

cleaner ’s position
4 public bool ContainsDirt { get; set; }
5
6 // Property that tells the position of the vacuum cleaner
7 public VacuumPosition VacuumCleanerPosition {get; set ;}
8
9 public VacuumVision (bool containsDirt , VacuumPosition

position)
10 {
11 this. ContainsDirt = containsDirt ;
12 this. VacuumCleanerPosition = position ;
13 }
14 }

Now we can add the module

1 public class VacuumVisionModule : EntityModule
2 {
3 // Override this method for the module to provide

percepts to the VacuumCleaner
4 public override IEnumerable <Percept > Percepts
5 {
6 get
7 {
8 // This module checkes if there are any dirt

located on the Vacuum cleaners position

C.3 Actions and Events 109

9 //if dirt is located it returns true if not it
returns false as part of the vision percept

10 if (EntityHost .World. GetEntities (this. EntityHost
. Position).Any(Ent => Ent is DirtEntity))

11 return new Percept [] { new VacuumVision (true
,(VacuumPosition) EntityHost . Position) };

12 else
13 return new Percept [] { new VacuumVision (

false , (VacuumPosition) EntityHost .
Position) };

14
15 }
16 }
17
18 }

And at last we can finally add the Vacuum Agent:
1 public class VacuumCleanerAgent : Agent
2 {
3 public VacuumCleanerAgent (string name)
4 : base(name)
5 {
6 // Register the Vacuum vision module to the agent , to

allow it to recieve percepts
7 this. RegisterModule (new VacuumVisionModule ());
8
9 }

10 }

C.3 Actions and Events

The vacuum cleaner can perform two actions which are to suck and to move.
We would also like that an event gets raised when either action is done.

Thus we must first define both events
1 public class VacuumMovedEvent : XmasEvent
2 {
3 // The position the vacuum moved from
4 public XmasPosition From{get; private set ;}
5
6 // The position the vacuum moved to
7 public XmasPosition To { get; private set; }

110 Vacuum World Example

8
9 public VacuumMovedEvent (XmasPosition from , XmasPosition

to)
10 {
11 this.From = from;
12 this.To = to;
13 }
14 }

1 // Define a Vacuum sucked event
2 public class VacuumSuckedEvent : XmasEvent
3 {
4 }

Now that the events has been defined it is time to make the actions.

We start by creating the move action, to prevent the agent from being too fast
we slow it down by putting a delay on its move action.

1 public class MoveVacuumCleanerAction : EntityXmasAction <
VacuumCleanerAgent >

2 {
3 // Override this for the action to be executable
4 protected override void Execute ()
5 {
6
7 // Create a timer so the move is delayed by a certain

speed
8 //(Otherwise the agent will be able to move

instantanious only limited by CPU power)
9 XmasTimer timer = this. Factory . CreateTimer (this , ()

=>
10 {
11 // the old position of the vacuum cleaner
12 var pos = (VacuumPosition)this. Source .

Position ;
13
14 // the new position of the vacuum cleaner
15 XmasPosition newpos = new VacuumPosition (-1)

;
16
17 // Moves the Vacuum to the other tile ei. if

on tile 0 move it to tile 1
18 if (pos.PosID == 0)
19 newpos = new VacuumPosition (1);
20 else if (pos.PosID == 1)
21 newpos = new VacuumPosition (0);

C.3 Actions and Events 111

22
23 this.World. SetEntityPosition (this.Source ,

newpos);
24
25 // Raises the event that the vacuum cleaner

has moved
26 this. Source .Raise(new VacuumMovedEvent (pos ,

newpos));
27
28 // Tells the engine the action is complete
29 this. Complete ();
30 });
31
32 // Start the timer , when the timer is done the action

added above will be queued safely to the engine
33 timer. StartSingle (1000) ;
34
35
36 }
37 }

Next, we create the suck action:
1 public class SuckAction : EntityXmasAction <

VacuumCleanerAgent >
2 {
3 // Override this for the action to be executable
4 protected override void Execute ()
5 {
6 // goes through all entities at the vacuum cleaner ’s

position and removes all dirt
7 foreach (XmasEntity ent in this.World. GetEntities (

this. Source . Position))
8 {
9 if (ent is DirtEntity)

10 this.World. RemoveEntity (ent);
11 }
12
13 // Raises the event that the vacuum cleaner has

sucked
14 this. Source .Raise(new VacuumSuckedEvent ());
15
16 // Tells the engine that the action is done
17 this. Complete ();
18
19 }
20 }

112 Vacuum World Example

C.4 Controller

In order for the agent to be able to react to its environment we must provide it
with an controllers, in this example we will use C# as the agent language.

First we start by making the controller, the controller contains logic on how the
agent should behave, in this example we make the agent suck if there is dirt
otherwise it will simply move and look for dirt elsewhere.

1 public class VacuumAgentController : AgentController
2 {
3 private EntityXmasAction nextAction = null;
4
5 public VacuumAgentController (Agent agent) : base(agent)
6 {
7 this. PerceptsRecieved += agent_perceptRecieved ;
8 }
9

10 // Override this method is the first and only thing
executed in its controller thread

11 public override void Start ()
12 {
13 while (true)
14 {
15 // Force the vacuum cleaner to generate all its

percepts
16 this. performAction (new GetAllPerceptsAction ());
17
18 // Perform its next action based on its decission
19 if (this. nextAction != null)
20 this. performAction (this. nextAction);
21
22 }
23
24 }
25
26 // this method will be called when an agent recieves a

percept
27 private void agent_perceptRecieved (object sender ,

UnaryValueEvent < PerceptCollection > evt)
28 {
29 //go through all percepts
30 foreach (Percept percept in evt.Value. Percepts)
31 {
32
33 if (percept is VacuumVision)
34 {

C.4 Controller 113

35 // Check if the vacuum cleaner is in a tile
with dirt then call suck

36 // otherwise move the vacuum cleaner
37 VacuumVision vision = percept as

VacuumVision ;
38
39 if (vision . ContainsDirt)
40 this. nextAction = new SuckAction ();
41 else
42 this. nextAction = new

MoveVacuumCleanerAction ();
43 }
44 }
45 }
46 }

Second we make an AgentManager class this class’s object will be responsible
for constructing a controller for the agent as such it must be provided with the
name of the agent so it can be located in the world:

1 public class VacuumAgentManager : AgentManager
2 {
3 private string name;
4
5 // Provide the manager with the name of the agent it

wishes to construct an agentcontroller for
6 public VacuumAgentManager (string name)
7 {
8 this.name = name;
9 }

10
11 // Override this method which will be called repeatably

once the engine starts
12 protected override Func < KeyValuePair <string ,

AgentController >> AquireAgentControllerContructor ()
13 {
14
15 // The name of the agent the manager will try to

locate
16 Agent agent = this. TakeControlOf (name);
17
18 // Lambda function that constructs new agent

controllers , this constructor will be called in
the agent controller ’s own thread

19 Func < KeyValuePair <string , AgentController >>
LambdaConstructor ;

20

114 Vacuum World Example

21 LambdaConstructor = () => new KeyValuePair <string ,
AgentController >(name ,new VacuumAgentController (
agent));

22
23 return LambdaConstructor ;
24 }
25
26 // Override this method to change how the manager

business logic works , since we only want to start one
agent controlller we use the manager ’s thread

instead
27 public override void Start ()
28 {
29 // Aquire constructor (in form of a lambda function)

for the agent controller
30 Func < KeyValuePair <string , AgentController >> con =

this. AquireAgentControllerContructor ();
31
32 // Construct the agent controller
33 KeyValuePair <string , AgentController > agentcontroller

= con ();
34
35 // Run the agent controller ’s start method
36 agentcontroller .Value.Start ();
37 }
38 }

C.5 View

All other parts are now done and it is time to make a visualization of the world
and the agent, to keep the example as simple as possible we will use an extension
meant for making loggers and use a log as our view. This way we can track all
actions taken by the vacuum agent.

1 public class VacuumWorldView : LoggerView
2 {
3 private ThreadSafeEventQueue evtq;
4
5 public VacuumWorldView (XmasModel model , Logger log) :

base(model ,log)
6 {
7 // Construct an ThreadSafe Event queue which triggers

can be registered to while keeping the code
thread safe

C.6 Designing the map and wiring the parts together 115

8 this.evtq = model. EventManager . ConstructEventQueue ()
;

9 this. ThreadSafeEventManager . AddEventQueue (evtq);
10
11 // Register the triggers that track the vacuum

cleaners actions
12 this.evtq. Register (new Trigger < VacuumMovedEvent >(

vacuum_Moved));
13 this.evtq. Register (new Trigger < VacuumSuckedEvent >(

vacuum_Sucked));
14 }
15
16 // Log that the Vacuum cleaner sucked
17 private void vacuum_Sucked (VacuumSuckedEvent obj)
18 {
19 this.Log. LogStringWithTimeStamp (" Vacuum sucked ",

DebugLevel .All);
20
21 }
22
23 // Log that the vacuum cleaner moved
24 private void vacuum_Moved (VacuumMovedEvent obj)
25 {
26 this.Log. LogStringWithTimeStamp (" Vacuum moved from:

" + obj.From + ", to: " + obj.To , DebugLevel .All);
27 }
28
29
30 }

C.6 Designing the map and wiring the parts to-
gether

Before the engine can be started its needed to design a map for the engine,
there are multiple options how the world looks we have chosen the one where
the agent is on Tile 0 and there is only dirt on Tile 1.

1 public class VacuumMap1 : VacuumWorldBuilder
2 {
3 public VacuumMap1 ()
4 {
5 // This explains to the engine how to generate one

instantiation of the map

116 Vacuum World Example

6 //if the user wishes to make multiple different map
then it would be need to make new classes

7 // that extends the VacuumWorldBuilder
8 this. AddEntity (new VacuumCleanerAgent ("

vacuum_cleaner "),new VacuumSpawnInformation (0));
9 this. AddEntity (new DirtEntity (), new

VacuumSpawnInformation (1));
10 }
11 }

When the map has been designed the only part left of the engine is to wire all
its components together, this is done in the C# programs main method:

Notice! that the log is written to file called viewlog.log

1 class Program
2 {
3 static void Main(string [] args)
4 {
5 // The factory responsible for constructing

components needed by the engine
6 XmasModelFactory factory = new XmasModelFactory ();
7
8 VacuumMap1 map1 = new VacuumMap1 ();
9

10 // Construct the model with all its required
components

11 XmasModel model = factory . ConstructModel (map1);
12
13 // makes a file where all view info is logged
14 StreamWriter sw = File. CreateText (" viewlog .log");
15
16
17 // Construct the view for the vacuum world
18 VacuumWorldView view = new VacuumWorldView (model ,

new Logger (sw , DebugLevel .All));
19
20 // Construct the manager for the agent controller

with the name of the agent
21 VacuumAgentManager controller = new

VacuumAgentManager (" vacuum_cleaner ");
22
23 // Instantiate and start the engine with the view and

the controller
24 XmasEngineManager engine = new XmasEngineManager (

factory);

C.7 Testing the Vacuum World 117

25 engine . StartEngine (model , new XmasView [] { view },
new XmasController [] { controller });

26
27 }
28 }

C.7 Testing the Vacuum World

Opening the viewlog.log we can see how the agent has progressed:

Vacuum moved from: Tile(0), to: Tile(1)
Vacuum sucked
Vacuum moved from: Tile(1), to: Tile(0)
Vacuum moved from: Tile(0), to: Tile(1)

We can see that the agent moved to Tile 1 and sucked up the dirt, after which
it went back and forth to locate more dirt.

118 Vacuum World Example

Appendix D

GOAL Part of Reference
Implementation

120 GOAL Part of Reference Implementation

D.1 Agent Desicion Flow Chart 121

D.1 Agent Desicion Flow Chart

Figure D.1

122 GOAL Part of Reference Implementation

D.2 GOAL Source Code for Reference Imple-
mentation

1 init module {
2 knowledge {
3 % Determines if a vision M, that is a tile on the

map , contains no wall types
4 % findStreet (+M)
5 findStreet (M) :- M = vision (X,Y, HL), Z=(X,Y), (HL =

[]; member (E,HL), E\=wall , E\= impassablewall).
6
7 % Transposes the cordinate X, Y by the position of

the agent and returns them as Nx , Ny
8 % transpose ((+X, +Y), (-Nx , -Ny))
9 transpose ((X, Y), (Nx , Ny)) :- position (Px ,Py), Nx

is X + Px , Ny is Y + Py.
10
11 % Checks if a vision contains a certain entity and

transposes the vision by the agent ’s position
12 % visionContainsAt (+ Vision , ?Entity , -Tx , -Ty)
13 visionContainsAt (vision (X,Y,L), Entity , Tx , Ty) :-

transpose ((X,Y) ,(Tx ,Ty)), member (Entity ,L).
14
15 % Detemines if a cordinate is adjacent to another

cordinate
16 % adjSquare (+X,+Y, -Nx , -Ny)
17 adjSquare (X,Y,Nx ,Y) :- Nx is X + 1.
18 adjSquare (X,Y,Nx ,Y) :- Nx is X - 1.
19 adjSquare (X,Y,X,Ny) :- Ny is Y + 1.
20 adjSquare (X,Y,X,Ny) :- Ny is Y - 1.
21
22 % Determines if tile on the map can be said to be

explored when the vision is added to the
knowledge base

23 % isSquareExplored (+X,+Y,+ VisibleTiles)
24 isSquareExplored (X,Y, VisibleTiles):-
25 setof ((OX ,OY) ,(adjSquare (X,Y,OX ,OY)),OL),
26 setof ((NX ,NY) ,(member ((NX ,NY),OL) ,(street (NX ,NY)

; member ((NX ,NY),VisibleTiles))),OL).
27
28
29 % find the streets immediateley adjacent to a given

postition
30 nextStreet (X,Y,Nx ,Y) :- Nx is X + 1, street (Nx , Y).
31 nextStreet (X,Y,Nx ,Y) :- Nx is X - 1, street (Nx , Y).
32 nextStreet (X,Y,X,Ny) :- Ny is Y + 1, street (X, Ny).
33 nextStreet (X,Y,X,Ny) :- Ny is Y - 1, street (X, Ny).

D.2 GOAL Source Code for Reference Implementation 123

34
35 % removes a member M from a list L1 and returns the

list as L2
36 % delMember (+M, +L1 , -L2)
37 delMember (_, [], []) :- !.
38 delMember (X, [X|Xs], Y) :- !, delMember (X, Xs , Y).
39 delMember (X, [T|Xs], Y) :- !, delMember (X, Xs , Y2),

append ([T], Y2 , Y).
40
41 % Transpose Vision percept
42 transposedVision (vision (X,Y,Ents),vision (TX ,TY ,Ents)

):- transpose ((X,Y) ,(TX ,TY)).
43
44 % Calculates the move direction vector
45 calcMoveVector ((TX ,TY) ,(VX ,VY)):- position (X,Y),VX

is TX - X, VY is TY - Y.
46
47
48
49 % ----- A* algorithm Start -----
50
51 % Checks if the A* algorithm is going in circles
52 isNotGoingInCircle (_,node(_,’root ’,_)).
53 isNotGoingInCircle (Value ,node ((Value),_,_)):-!, fail.
54 isNotGoingInCircle (Value ,node(_,Parent ,_)):-

isNotGoingInCircle (Value , Parent).
55
56 % removes the Heuritiscs information from a node
57 % unWrapHeu (+ HeuriticNode , -Node)
58 unWrapHeu (HN ,N):-HN=(_,N).
59 unWrapHeu (N,N).
60
61 % Checks if a node(that might contain heuristic data

) is the lowest cost to the cordinates X, Y
62 % isBestOnList (+HN ,+L)
63 isBestOnList (HN ,L):- unWrapHeu (HN ,N),N=node(street (X,

Y),_,SCost), member (OtherNode ,L), OtherNode =
node(street (X,Y),_,OCost),SCost < OCost.

64 isBestOnList (HN ,L):- unWrapHeu (HN ,N) ,\+ member (N,L).
65
66 % Calculates the heuristics from Node1 to Node2
67 % calcHeu (+ Node1 , +Node2 , -H)
68 calcHeu (node(street (X,Y),_,_),node(street (TX ,TY),_,_

),H):-H is sqrt ((TX -X)^2+(TY -Y)^2).
69
70

124 GOAL Part of Reference Implementation

71 % Determines if a succussor to NodeCurrent should be
placed on the open list

72 % asSuc (+Open ,+ Closed ,-NOpen ,-NClosed ,+ NodeCurrent ,+
NodeSuccussorValue ,+ Goal)

73 asSuc(Open ,Closed ,NOpen ,NClosed , NodeCurrent ,
NodeSuccussorValue ,Goal):-

74 NodeCurrent = node(street (_,_),_,Cost),
75 NodeSuccussorValue = street (SX ,SY),
76 isNotGoingInCircle (NodeSuccussorValue ,

NodeCurrent),
77 NodeSuccussor = node(NodeSuccussorValue ,

NodeCurrent ,SCost),
78 SCost is Cost +1,
79 isBestOnList (NodeSuccussor ,Open),
80 isBestOnList (NodeSuccussor , Closed),
81 delMember ((_,node(street (SX ,SY),_,_)),Open ,

AlmostNewOpen),
82 delMember (node(street (SX ,SY),_,_),Closed , NClosed

),
83 calcHeu (NodeSuccussor ,Goal ,Heu),
84 HeuCost is Heu+SCost ,
85 NOpenNonSort = [(HeuCost , NodeSuccussor)|

AlmostNewOpen],
86 msort(NOpenNonSort ,NOpen).
87
88 % A recursive loop for going through each successor
89 % asLoopSuc (+ NodeCurrent ,+ ListOfSuccessors ,+Open ,+

Closed ,-FinalOpen ,- FinalClosed ,+ Goal)
90 asLoopSuc (_,[],O,C,O,C,_).
91 asLoopSuc (NodeCurrent ,[Suc| Successors],Open ,Closed ,

FinalOpen , FinalClosed ,Goal):-
92 asSuc(Open ,Closed ,NOpen ,NClosed , NodeCurrent ,Suc ,

Goal),
93 asLoopSuc (NodeCurrent ,Successors ,NOpen ,NClosed ,

FinalOpen , FinalClosed ,Goal).
94
95 % A recursive loop for going through each node until

the goal node has been reached
96 % asCur (+Open ,+ Closed ,-FinalOpen ,- FinalClosed ,+ Goal)
97 asCur ([(_, NodeCurrent)|_],_,_,_, NodeCurrent).
98 asCur ([(_, NodeCurrent)|Open],Closed ,FinalOpen ,

FinalClosed ,Goal):-
99 \+ (NodeCurrent = Goal),

100 NodeCurrent = node(street (X,Y),Parent ,_),
101 findall (Suc ,(nextStreet (X,Y,SX ,SY) ,\+ (Parent =

node(street (SX ,SY),_,_)),Suc= street (SX ,SY)),
SL),

D.2 GOAL Source Code for Reference Implementation 125

102 asLoopSuc (NodeCurrent ,SL ,Open ,Closed ,NOpen ,
AlmostClosed ,Goal),

103 NClosed = [NodeCurrent | AlmostClosed],
104 asCur(NOpen ,NClosed ,FinalOpen , FinalClosed ,Goal).
105
106 % Converts the path to a list PL by taking the

parent of each node from the goal until the start
node has been reached

107 % unWrapPath (+ GoalNode ,-Pl)
108 unWrapPath (node(_,’root ’,_) ,[]).
109 unWrapPath (node(street (X,Y),P,_),L):- unWrapPath (P,NL

),append (NL ,[(X,Y)],L).
110
111 %Finds the path from (FX , FY) To (TX , TY) by using

an A* algorithm
112 % aStarSearchOnStreet ((+FX ,+FY), (+TX ,+TY), -Path ,

-Cost)
113 aStarSearchOnStreet ((FX ,FY) ,(TX ,TY),Path ,Cost):-
114 EndNode = node(street (TX ,TY),_,Cost),
115 asCur ([(0 , node(street (FX ,FY),’root ’ ,0))],[],_,_,

EndNode),
116 unWrapPath (EndNode ,Path).
117
118 % ----- A* algorithm End -----
119
120 % finds the closets tile that has not been explored

yet according to the knowledge base.
121 % returns a path to that tile , from the agents

current position
122 % closestUnexplored (- ShortPath)
123 closestUnexplored (ShortPath) :-
124 findall ((Cost ,Path) ,(street (ToX ,ToY),
125 (\+ explored (ToX ,ToY)),
126 (\+ position (ToX ,ToY)), position (FX ,FY),
127 aStarSearchOnStreet ((FX ,FY) ,(ToX ,ToY),Path ,Cost)

),UnexloredList),
128 sort(UnexloredList ,S),
129 S = [(_, ShortPath)|_].
130 }
131
132 beliefs {
133 % The route is initialized a nothing , since the

agent knows nothing about the world yet
134 route ([]).
135 }
136
137 goals{

126 GOAL Part of Reference Implementation

138
139 }
140
141 program {
142
143 }
144
145 actionspec {
146
147 % Clears the move taken from the planned route
148 move(X,Y) {
149 pre { route ([(MX ,MY)|L]) }
150 post { not(route ([(MX ,MY)|L])), route(L) }
151 }
152
153 release {
154 pre { true }
155 post { true }
156 }
157
158 grab {
159 pre { true }
160 post { true }
161 }
162
163
164 }
165 }
166
167 main module {
168 program {
169 % Checks if the agent is standing on a dropzone and

is holding a package , if so it releases the
package

170 if bel(position (Tx ,Ty), on(Tx ,Ty , dropzone), percept (
holdingPackage)) then release .

171
172 % Checks if the agent is standing on a package and

is currently not holding a package , if so it
grabs the package

173 if bel(position (Tx ,Ty), on(Tx ,Ty , package), not(
percept (holdingPackage))) then grab.

174
175 % Moves to the next tile bases on the route it has

planned
176 if bel(route ([(X,Y)|_]), calcMoveVector ((X,Y) ,(VX ,

VY))) then move(VX ,VY).

D.2 GOAL Source Code for Reference Implementation 127

177 }
178 }
179
180 event module {
181 program {
182 % Updates the agent ’s speed and position as they are

recieved from the engine
183 if bel(percept (position (_,_)), position (X,Y)) then

delete (position (X,Y)).
184 if bel(percept (position (X,Y))) then insert (

position (X,Y)).
185 if bel(percept (speed(X))) then insert (speed(X))

.
186
187 % Updates the agent ’s knowledge base if it can see

either a package or a dropzone
188 if bel(V = vision (_,_,_), percept (V),

visionContainsAt (V, package , Tx , Ty)) then
insert (on(Tx , Ty , package)).

189 if bel(on(Tx ,Ty , package), percept (vision (X, Y, L)),
transpose ((X, Y), (Tx , Ty)), \+ member (package ,L

)) then delete (on(Tx ,Ty , package)).
190 if bel(V = vision (_,_,_), percept (V),

visionContainsAt (V, dropzone , Tx , Ty)) then
insert (on(Tx , Ty , dropzone)).

191
192 % Updates the agent ’s knowledge base on new streets (

Tiles without walls) it can see
193 forall bel (percept (V), V = vision (X,Y,Ents),

findStreet (V), transpose ((X,Y) ,(Nx ,Ny))) do
insert (street (Nx ,Ny)).

194
195 % Updates the agent ’s knowledge base if it can

determine if any of its streets
196 % are considered explored (ei. it knows about all

adjacent tiles to a given street)
197 forall bel (V = vision (_,_,_),
198 percept (V),
199 findStreet (V),
200 transposedVision (V, vision (X,Y,_)),
201 not(explored (X,Y)),
202 findall ((AX ,AY) ,(adjSquare (X,Y,AX ,AY),
203 AdjVision = vision (_,_,_), percept (

AdjVision),
204 transposedVision (AdjVision , vision (AX ,AY ,

_))) , VT),
205 isSquareExplored (X,Y,VT))

128 GOAL Part of Reference Implementation

206 do insert (explored (X,Y)).
207
208 % Clears the route if it has no path
209 forall bel (route ([])) do delete (route ([])).
210
211 % if the agent is holding a package and knows the

location of a drop zone , then the agent plans a
route the drop zone

212 if bel (not(route(_)), percept (holdingPackage), on(
X,Y, dropzone), position (PX ,PY),
aStarSearchOnStreet ((PX ,PY) ,(X,Y),Path ,_))

213 then insert (route(Path)).
214
215 % if the agent is not holding a package and knows

the location of a package then the agents plans a
route to that package

216 if bel (not(route(_)), not (percept (holdingPackage
)), on(X,Y, package), position (PX ,PY),
aStarSearchOnStreet ((PX ,PY) ,(X,Y),Path ,_))

217 then insert (route(Path)).
218
219 % if the agent has nothing better to do it will

explore the clostest tile that has not beed
explored .

220 if bel (not(route(_)), closestUnexplored (Path))
then insert (route(Path)).

221
222
223 }
224 }

Bibliography

[BHD11] TristanM. Behrens, KoenV. Hindriks, and Jürgen Dix. Towards an
environment interface standard for agent platforms. Annals of Math-
ematics and Artificial Intelligence, 61(4):261–295, 2011.

[Hin09] KoenV. Hindriks. Programmingrationalagents in goal. In
Amal El Fallah Seghrouchni, Jürgen Dix, Mehdi Dastani, and
Rafael H. Bordini, editors, Multi-Agent Programming:, pages 119–
157. Springer US, 2009.

[ORV08] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in
the a&a meta-model for multi-agent systems. Autonomous Agents
and Multi-Agent Systems, 17(3):432–456, 2008.

[PL05] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The
state of the art. Autonomous Agents and Multi-Agent Systems,
11(3):387–434, 2005.

[RNC+96] Stuart J. Russell, Peter Norvig, John F. Candy, Jitendra M. Malik,
and Douglas D. Edwards. Artificial intelligence: a modern approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[RPV11] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment
programming in multi-agent systems: an artifact-based perspective.
Autonomous Agents and Multi-Agent Systems, 23(2):158–192, 2011.

[Tala] Misko Hevery, Google Tech Talks. The clean code talks – unit test-
ing. http://www.youtube.com/watch?v=wEhu57pih5w. [Published:
30-10-2008].

http://www.youtube.com/watch?v=wEhu57pih5w

130 BIBLIOGRAPHY

[Talb] Misko Hevery, Google Tech Talks. The clean code talks - global state
and singletons. http://www.youtube.com/watch?v=-FRm3VPhseI.
[Published: 13-11-2008].

[Wika] Wikipedia. Factory method pattern. http://en.wikipedia.org/
wiki/Factory_design_patternr. [Accessed: 02-06-2013].

[Wikb] Wikipedia. Law of demeter. http://en.wikipedia.org/wiki/Law_
of_Demeter. [Accessed: 02-06-2013].

[Wikc] Wikipedia. Model–view–controller. http://en.wikipedia.org/
wiki/Model_view_controller. [Accessed: 07-06-2013].

[Wikd] Wikipedia. Test-driven development. http://en.wikipedia.org/
w/index.php?title=Test-driven_development. [Accessed: 25-05-
2013].

http://www.youtube.com/watch?v=-FRm3VPhseI
http://en.wikipedia.org/wiki/Factory_design_patternr
http://en.wikipedia.org/wiki/Factory_design_patternr
http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Model_view_controller
http://en.wikipedia.org/wiki/Model_view_controller
http://en.wikipedia.org/w/index.php?title=Test-driven_development
http://en.wikipedia.org/w/index.php?title=Test-driven_development

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Theory
	2.1 Multi-Agent Systems
	2.1.1 Agents and Environments in Artificial Intelligence
	2.1.2 Multi-Agent Systems
	2.1.3 The GOAL Agent Programming Language
	2.1.4 The Environment Interface Standard

	2.2 Model View Controller
	2.2.1 Model
	2.2.2 View
	2.2.3 Controller

	2.3 Factory Design Pattern
	2.3.1 Abstract Factory Design Pattern

	2.4 Test Driven Development
	2.4.1 How to write unit tests

	3 Reference Implementation
	4 System Features
	4.1 Overview
	4.1.1 State
	4.1.2 Actions
	4.1.3 Events and Triggers

	4.2 Virtual World
	4.2.1 Entities, Agents and Entity Modules

	4.3 Events and Triggers
	4.3.1 Concept
	4.3.2 Entities and EventManager
	4.3.3 Example of making and using an Event

	4.4 Actions
	4.4.1 Action Types
	4.4.2 Example – Move Entity Action
	4.4.3 Summary

	4.5 Converting Actions and Percepts
	4.6 Agent Controllers
	4.6.1 Concept
	4.6.2 How to use agent controllers

	4.7 View
	4.7.1 Concept

	4.8 Engine Extensions
	4.8.1 Tile Extension
	4.8.2 EIS Extension
	4.8.3 Logger Extension

	5 Implementation
	5.1 Architecture
	5.1.1 Model Component
	5.1.2 World Creation Component
	5.1.3 View Component
	5.1.4 Controller Component

	5.2 Model
	5.2.1 World
	5.2.2 Entities and Entity Modules
	5.2.3 Events and Triggers
	5.2.4 Actions

	5.3 Agent Controller
	5.4 View
	5.5 Engine Extensions
	5.5.1 Tile Extension
	5.5.2 EIS Extension

	5.6 Reference Implementation
	5.6.1 The Console View
	5.6.2 GOAL Program Implementation

	6 Testing
	6.1 Testing the Engine
	6.2 Testing the Reference Implementation

	7 Results and Comparisons
	7.1 Generality of the engine
	7.2 Model View Controller Design Pattern
	7.3 Choice of Technologies
	7.4 Comparison to other Environment Construction Tools
	7.4.1 Cartago
	7.4.2 Environment Interface Standard

	8 Conclusion
	8.1 Results of comparisons
	8.2 Engine completion
	8.3 Future work

	A Domain Model UML Diagram for XMAS Model
	B XMAS Engine Component Diagram
	C Vacuum World Example
	C.1 World
	C.2 The Entities And Agents
	C.3 Actions and Events
	C.4 Controller
	C.5 View
	C.6 Designing the map and wiring the parts together
	C.7 Testing the Vacuum World

	D GOAL Part of Reference Implementation
	D.1 Agent Desicion Flow Chart
	D.2 GOAL Source Code for Reference Implementation

	Bibliography

