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Summary (English)

Through a synthesis between Discourse Representation Theory and Montague
Semantics, this thesis presents a formal logical approach to anaphora resolution
in natural languages based on the strategy described by Reinhard Muskens in
the 1991 paper Anaphora and the Logic of Change.

A method for validating co-indexings after translation by employing a set of
filters is proposed, and the approach is illustrated through filters based on sub-
types, logic, and an adaptation of Chomsky’s Government and Binding theory.

While the approach is shown to be capable of standing on its own, the proposed
design should be seen as one half of a system that utilizes both logical and
statistical means.

The thesis is accompanied by a proof of concept implementation, demonstrating
the described strategy both as translator and as anaphora resolver.
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Summary (Danish)

Gennem en syntese af diskursrepresentationsteori og Montague semantic præsen-
terer denne afhandling en formel logisk tilgang til anaforisk resolution i naturligt
sprog baseret på strategien beskrevet af Reinhard Muskens i artiklen Anaphora
and the Logic of Change fra 1991.

Der fremsættes en metode til at validere co-indekseringer efter oversættelse gen-
nem anvendelse af filtre. Tilgangen illustreres med filtre baseret på deltyper,
logisk struktur og en tilpasning af Chomsky’s Government and Binding teori.

Selvom det vises at proceduren er i stand til at stå alene som oversættelsesproces,
skal det foreslåede design ses som en del af et system der benytter både logiske
og statistiske metoder.

Afhandlingen indeholder også en implementering af et konceptbevis, som demon-
strerer den beskrevne strategi både som oversættelsesproces og som proces til
anaforisk resolution.
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This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the re-
quirements for acquiring a B.Sc. in Software Technology.

The thesis deals with the resolution of anaphora in natural language, and the
translation of natural language to a logical representation. A solution based
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Chapter 1

Introduction

When humans communicate, we constantly use expressions that contain refer-
ences to objects instead of merely acting as descriptions of objects - anaphora.
We expect common understanding of such lingual signs to form a basis for decod-
ing communication. Indeed, a conversation between humans devoid of internal
references appears almost unnatural, as we intuitively bind syntactic elements
together through reference. With that in mind, it is not surprising that the
study of anaphoric constructions since the earliest attempts to formalize lan-
guage has been an essential topic among philosophers, linguists, and logicians
alike.

In Anaphora and the Logic of Change [Mus91], a strategy is proposed for trans-
lating and resolving sentences with anaphoric ambiguities through a hybrid of
Montague semantic and Discourse Representation Theory. Muskens’ approach
is an attempt to bridge the gap, combining the successful treatment of anaphora
in DRT with the elegant semantics of Montague. In this thesis, I shall explore
the opportunities presented by that approach, with additional consideration
towards deixis and encyclopaedic semantics.

To properly translate a full sentence, two things are necessary: An indexing and
a translation process. These represent respectively an assignment of objects
to references and a correspondence between the indexed sentence and a logical
expression.
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Depending on the indexing used to translate a sentence, the meaning of the
sentence may change dramatically. As such, it is important to ensure that
any indexing to be translated is sound. In this paper, I shall combine the
translation strategy devised by Muskens with a set of filters, guaranteeing that
a sensible indexing is used. I have chosen three such constraints, each illustrating
a different approach to filtering: Syntactic, nominal and gender-based.

To demonstrate the proposed method of validation and translation, a proof of
concept implementation has been constructed. Furthermore, the program has
been combined with a primitive indexing generator to show how a full translation
engine can emerge.

1.1 Key Concepts

Any language fragment consists of a sequence of symbols, to which meaning are
assigned. Such symbols are referred to as words. The set of interpretable words
is denoted W . A sequence of words is referred to as a sentence.

A syntax describes a set of sentences referred to as well-formed. Typically,
syntax is defined on the basis of a set of rules called a grammar. Most syntaxes
describing natural languages divide words into subsets called syntactic classes
- for example verbs, nouns, and adjectives. The semantics of a sentence denotes
the meaning behind the text, expressed as a logical statement. I will use the
notation JsK to denote the semantics of a sentence s.

In most cases, discourse concerns itself with objects in the real world - people,
places, items. I use the term entity to describe such an object. When en-
countered in natural language, entities are referred to by nouns, pronouns, or
proper nouns. A single word referring to an entity is denoted a reference, while
the entity referred to is called a referent. The relationship between reference
and referent is similar to that described in the beginning of the 20th century
by Saussure, distinguishing between image (signifiant) and concept (signifié).
[Sau16]

When two references share a referent, they are said to corefer. To denote that
two references have the same referent, a subscript numbering is used:

"(Bob)1 owns (a donkey)2. (He)1 beats (it)2."
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Such an assignment of referents to references is denoted a coindexing (or just
an indexing). Mostly, one specific reference can be said to introduce each
referent to the discourse - in the example, these are respectively (Bob) and (A
donkey). This reference is said to generate the entity. If a reference occurs
later in the text than the generating reference, it is called an anaphor. If it
occurs earlier in the text, it is called a cataphor.

In the semantics used by Muskens [Mus91], the indexing is associated with the
article rather than with the noun: "(Bob)1 owns (a)2 donkey. Intuitively, this
makes sense as the difference between a generating reference (a donkey) and a
non-generating reference (the donkey) often lies only in the article.

In corpora, entities may describe illusive concepts such as actions ("Alice did
it") or ideas ("Bob thought so"). For the purpose of this thesis, entities are
limited to denote objects mentionable by a noun or proper noun. Furthermore,
the study of cataphora is beyond the scope of this paper.

1.2 Generation of Indexings

As the main objective of the project is to translate and validate rather than
generate indexings, the program is limited to the use of a primitive generation
strategy as described in the following paragraphs.

Generating references are given a unique number, while non-generating refer-
ences are associated with a variable 1 ≤ xi ≤ n, where n is the total number
of references. In the case of the previous example, this indexing corresponds to
the following:

"(Bob)1 owns (a)2 donkey. (He)x1
beats (it)x2

."

Based on this, a sequence of all possible indexings is generated. In the case of
the example, the sequence consists of (1, 2, 1, 1), (1, 2, 1, 2),(1, 2, 1, 3), (1, 2, 1, 4),
(1, 2, 2, 1), (1, 2, 2, 2), (1, 2, 2, 3), (1, 2, 2, 4), (1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 3, 3), (1, 2, 3, 4),
(1, 2, 4, 1), (1, 2, 4, 2), (1, 2, 4, 3), and (1, 2, 4, 4).

The sentence is translated using each indexing until one is validated by the
filters.
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Chapter 2

Logical Background

The semantics of the proposed approach are based on two logical systems: Typed
lambda calculus and dynamic logic. In this chapter I will introduce the two logics
- in section 2.1 and section 2.2, respectively. I will use the definition of typed
λ-calculus employed by Curry rather than the one by Church [Bar92].

In section 2.3 I shall introduce the synthesis between the two logics presented by
Muskens along with the concept of stores essential to his approach to anaphora
resolution. [Mus91]

For a more thorough analysis of λ-calculus and dynamic logic, see respectively
Barendregt [Bar92] and Harel et al [HKT84].
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2.1 Typed Lambda Calculus

As in ordinary lambda-calculus, terms are defined inductively through three
rules. Let x be a variable or constant. Furthermore, let s and t be λ-terms.
Then, the following are λ-terms:

Variable: x

Abstraction: λx.t

Application: (ts)

A type is defined as a set of λ-terms abiding to a set of rules called typing
rules. The shorthand notation t : σ is used to denote t ∈ σ. The set of types is
inductively constructed from a set of primitive types Φ and a type constructor
→. As such, if τ and σ are types, τ → σ is a type as well.

The typing rules are defined inductively on the basis of a set Γ of initial assump-
tions, which assign types to some given terms. Thus, Γ is a set of pairs (t, σ)
where t is a term and σ is a type. The typing rules are as follows, where M and
N denote arbitrary terms and x an arbitrary variable:

Axiom:
(M,σ) ∈ Γ

Γ `M : σ

→-introduction:
Γ ` x : σ Γ `M : τ

Γ ` λx.M : (σ → τ)

→-elimination:
Γ `M : (σ → τ) Γ ` N : σ

Γ ` (MN) : τ

Remark 2.1. If it holds for all terms x such that ∃y(x, y) ∈ Γ that x is a
variable and that ¬∃y1y2(x, y1) ∈ Γ ∧ (x, y2) ∈ Γ ∧ y1 6= y2, then the types are
disjunct. [Bar92] Less formally, the types defined through the typing rules are
disjunct if only variables are initially assigned types, and if every variable is
only assigned one type.
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All terms for which a type can be derived using these rules are said to be well-
typed. For the purposes of this paper, only well-typed terms are of interest.
Furthermore, the conditions described in remark 2.1 hold. Therefore, every
term belongs to a single type, and the notation τ(M) can be used to refer to
the type of a term M .

Terms in typed and untyped λ-calculus alike may be reduced through the scheme
of α-conversion and β-reduction. Using the notation t[x/y] to signify the sub-
stitution of x for y in t, the rules are as follows:

α-conversion: λx.t1 ≡ λy.(t1[x/y])
β-reduction: (λx.t1)t2 ≡ t1[x/t2]

For reasons explained by Muskens [Mus91, p. 9], a three-typed lambda-calculus
with primitive types Φ = {e, s, t} will be used. The three types represent re-
spectively entities, states, and truth values.

The calculus can be extended to include the full first-order logic. A set of
constants Ξ is introduced. Predicates, quantifiers and logical combinators are
represented as constants in Ξ, using the following types:

Constant Type
n-ary predicate e1 → ...→ en → t
∨ t→ (t→ t)
∧ t→ (t→ t)
→ t→ (t→ t)
¬ t→ t
∀ s→ (t→ t) or e→ (t→ t)
∃ s→ (t→ t) or e→ (t→ t)
= s→ (s→ t) or e→ (e→ t)

Three subsets of this logic will be used: Λ, PLs, and PLe.

Definition 2.1. Λ denotes the full set of well-typed terms. PLs denotes the
subset of Λ excluding any formula produced through abstraction. PLe denotes
the two-typed subset of PLs excluding s.

The reader may notice that PLe is essentially ordinary predicate logic, while
PLs is predicate logic extended with a primitive type corresponding to states.
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2.2 Dynamic Logic

Dynamic Logic is an extension of modal logic designed for reasoning about
computation. As the name implies, dynamic logic concerns itself with situations
in which the truth values of formulae change. This phenomenon is formalized
through constructs called programs.

A program should be envisioned as an automata defining a transition between
states, representing valuations of variables. For reasons outlined by Muskens
[Mus91], programs should operate non-deterministically.

Programs operate on formulae - a set of logical expressions equivalent to PLe.
Importantly, the value of a formula depends on the values of the variables in
the formula, and thus on the state.

The set of programs is defined inductively. Let v be a variable, let u be a variable
or a constant, and let A be a formula. Then, two atomic programs are used by
Muskens [Mus91]:

v := u Assignment
A? Test

Ordinarily, many combinators exist for creating compound programs. However,
only two are used[Mus91]. Let γ and δ be programs. Then, the following are
compound programs:

(γ; δ) Sequential Composition
(γ ∪ δ) Non-deterministic Choice

A well-formed term of dynamic logic has the form [P ]F , where, P is a program
and F is a formula. [P ]F should be interpreted as the assertion that F holds
immediately after executing P . In the context of natural languages, this notation
is of little importance, as the goal is to interpret sentences as programs - not as
full terms.
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2.3 A Logical Synthesis

Representing dynamic logic in the language of Montague semantics requires a
translation into typed λ-calculus. In regular dynamic logic, states are treated
as functions from variables to values. As the reader may have noticed, this
contradicts the notion of states as one of the primitive types introduced in
section 2.1. The problem is solved by extending Λ with a set of constants
{v1, ..., vn} of the type s → e. Following the terminology of Muskens, such
functions are denoted stores.

Pertaining to stores, the notation i[v]j is introduced as an abbreviation of
∀us→e((ST u ∧ u 6= v) → uj = ui) [Mus91]. Here, ST is a function with
the interpretation "is a store". Intuitively, the meaning of i[v]j is that the state
i and j agree on the values of all stores except possibly v.

A translation function Θ can now be defined. Formulae represent functions from
states to truth values, and as such their translations should have type s → t.
Of particular importance is the translation of variables:

Θ(v) = λi(v i)

Constants have the same value regardless of the state. As such, the following
translation is used:

Θ(v) = λi(v)

For compound expressions with combinator •, the translation is:

Θ(e1 • e2) = λi(Θ(e1)i •Θ(e2)i)

The translations for quantifiers and negations is similar.

Programs represent relations between states. As such, they correspond to ex-
pressions of the type s→ (s→ t). I will use the shorthand σ to cover this type.
With that in mind, the following set of translations are defined:

Θ(v := u) = λij(i[v]j ∧ vj = ui)

Θ(A?) = λij(Θ(A)i ∧ j = i)

Θ(γ; δ) = λij∃k(Θ(γ)ik ∧Θ(δ)kj)

Θ(γ ∪ δ) = λij(Θ(γ)ij ∨Θ(δ)ij)

Consider the example he1 sleeps. Intuitively, the sentence should be understood
as a test, verifying that the entity in store 1 is asleep. As such:

Jhe1 sleepsK = Θ(sleeps v1?)
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Translating into type theory, we get:

Θ(sleeps v1?) = λiλj(Θ(sleeps v1)i ∧ i = j)

= λiλj((Θ(sleeps)i Θ(v1)i) ∧ i = j)

= λiλj((sleeps (v1i)) ∧ i = j)

Generating references are treated as assignments introducing a new variable. As
such, for the sentence (a man)1 sleeps:

J(a man)1 sleepsK = Θ(((v1 := x); (man v1 ?)); (sleeps v1?))

= λij∃k(Θ((v1 := x); (man v1 ?))ik ∧Θ(sleeps v1?)kj)

= λij∃kh(Θ(v1 := x)ih ∧Θ(man v1 ?)hk ∧Θ(sleeps v1?)kj)

= λij∃kh((i[v1]h ∧ v1j = xi) ∧Θ(man v1 ?)hk ∧Θ(sleeps v1?)kj)

Since x is a completely new entity, the statement v1j = xi is tautological. As
such:

= λij∃kh(i[v1]h ∧Θ(man v1 ?)hk ∧Θ(sleeps v1?)kj)

Finally, the tests can be translated through the now familiar process:

= λij∃kh(i[v1]h ∧man (v1h) ∧ h = k ∧ sleeps (v1k) ∧ k = j)

= λij(i[v1]j ∧man (v1j) ∧ sleeps (v1j))

In the next chapter, I shall demonstrate how Θ can be emulated by combining
the semantics of individual words.
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Categorial Grammar

A categorial grammar is defined as a pair (P,C), where P is a set of elements
called primitive categories and C is a set of elements called combinators. The
set of categorial grammars is denoted Ω. Given a grammar γ = (P,C), the
language Γ of that grammar is defined inductively:

Axiom:
p ∈ P
p ∈ Γ

Composition:
c1 ∈ Γ c2 ∈ Γ • ∈ C

c1 • c2 ∈ Γ

For the purposes of this paper, only a subset of Ω denoted A/B-grammars
[MR12] are relevant. The set ofA/B-grammars is the set {γ ∈ Ω|γ = (P, {/, \})},
where P is an arbitrary set of primitive categories.

Note that for more complicated languages, there are sentences which cannot be
represented by A/B-grammars. For the full English language, the introduction
of additional combinators is necessary. [MR12]
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For the purpose of derivation, a categorial grammar may be thought of as a
sequent calculus. The category of a sequence is recursively derived through a
deduction scheme. The following derivation rules are used in the case of A/B-
grammars:

Axiom:
A ` A

/-derivation:
Σ ` A/B Π ` B

Σ,Π ` A

\-derivation:
Π ` B\A Σ ` B

Σ,Π ` A

This reflects the intuitive notion of A/B and B\A as functions taking a category
B as argument and yielding a category A. However, A/B takes the argument
on the right side, while B\A takes the argument on the left side.

Remark 3.1. In \-derivation, the ordering of Σ and Π is reversed in the con-
clusion. This is in accordance with the mentioned intuition and prepares for
the equivalence of both derivations to the type constructor →, as discussed in
section 3.1.

A sequence Σ is derivable iff there exists a category ς such that Σ ` ς. Proofs
are represented using a binary tree notation as seen below. A proof of a Σ is
therefore referred to as a derivation tree of Σ. To illustrate the notation,
consider the proof of (A/B)/C,C,D,D\B ` A:

(A/B)/C C

A/B

D\B D

B

A

Notice the ordering of D and D\B conforming to remark 3.1.

For reasons outlined by Muskens [Mus91], I will use an A/B grammar with two
primitives P = {S,E}. This grammar is denoted as γ, while the language of γ
is denoted Γ.
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In addition to the primitive categories, liberal use will be made of the following
abbreviations:

VP = S/E

N = S\E
NP = S/(S/E)

The abbreviations correspond to the syntactic classes of Verb Phrases, Nouns
and Noun Phrases.

3.1 Dictionary

A dictionary is defined as a function ∆ : W → Γ × Λ (see the previous section
and definition 2.1, respectively). Note that if the full English language were to
be modelled, it would be necessary to map each word to a set of pairs instead
of a single pair, in order to accommodate for words with multiple meanings.

Given a sentence s, let Σ be the sequence of categories ∆ associates with each
word in s. A derivation tree Ψ(s) is defined as a derivation tree of Σ. Fur-
thermore, s is a well-formed sentence iff Σ ` S. For an example, consider the
sentence s1 = a man sleeps. In this case, assume that Σ = (NP/N,N,VP).
Ψ(s1) can then be constructed as:

a

NP/N

man

N

NP

sleeps

VP

S

We see that the sentence is well-formed, as S is derived.

Now, the semantics function can be defined inductively. Let P : Γ → Λ be the
projection P (g, l) = l. Then for a single word w:

JwK ≡ P ◦∆(w)

Consider a sentence s. If s is derivable, there exist sequences of words Σ and
Π such that s = Σ,Π, and either Σ ` A/B ∧ Π ` B or Σ ` B ∧ Π ` B\A.
Essentially, the last derivation required to prove s. Then:

JsK ≡ JΣKJΠK

If s is not derivable, JsK is left undefined. Since Σ and Π are trivially derivable,
JsK is still defined for all derivable sentences.
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As discovered by Montague [Mon70], there is an intimate connection between
syntactic proofs and semantics. Reading the compositions / and \ as equivalent
to the type constructor →, a morphism φ from syntactic types to semantic
types can be defined. Using the types introduced in the previous chapter, let
the correspondence be defined as:

φ(S) = s→ (s→ t)

φ(E) = e

φ(b\a) = φ(a/b) = φ(b)→ φ(a)

This produces a type correspondence identical to the one used by Muskens
[Mus91]. Furthermore, the definitions of φ(b\a) and φ(a/b) reflect the intuition
expressed in remark 3.1.

Let G = {(a, b) ∈ Γ × Λ|φ(a) = τ(b)}. Then, ∆ is proper iff the image of ∆
is a subset of G. As a consequence of the Curry-Howard isomorphism [MR12],
the following holds:

Lemma 3.1. If ∆ is proper and s is a derivable sentence, then JsK is a well-
typed λ-term of type φ(Ψ(s)) for all sentences s.

The consequences are simple, yet powerful. Consider again the example a man sleeps.
The calculation of Ja man sleepsK can be illustrated through the derivation tree:

a

JaK
man

JmanK
JaKJmanK

sleeps

JsleepsK
(JaKJmanK)JsleepsK

Consulting lemma 3.1, the tree corresponds to a tree of types such that the type
of each term is consistent with the typing rules introduced in definition 2.1. The
tree has the following form:

a

e→ σ)→ ((e→ σ)→ σ)

man

e→ σ

(e→ σ)→ σ

sleeps

e→ σ

σ

Since the sentence was well-formed, (JaKJmanK)JsleepsK has the type φ(S) =
s → (s → t) = σ - which, as shown in the previous chapter, corresponds to a
program of dynamic logic.
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Based on φ, the creation of a dictionary can begin. I use the following categories
and types for the syntactic classes:

Syntactic class: Category: Type:
Common noun N e→ σ
Proper noun NP (e→ σ)→ σ
Intransitive Verb VP e→ σ
Monotransitive Verb VP / NP ((e→ σ)→ σ)→ (e→ σ)
Conjunction S \(S/S) σ → (σ → σ)
Pronoun NP (e→ σ)→ σ
Relative Pronoun (N \N ) / VP (e→ σ)→ ((e→ σ)→ (e→ σ))
Article NP/N (e→ σ)→ ((e→ σ)→ σ)
Adjective N/N (e→ σ)→ (e→ σ)

Through the application of φ to every category defined in the list, the reader may
assert that a dictionary based on this mapping is indeed proper. The mapping
differs from the one presented by Muskens [Mus91, p.14] on three accounts.

I have added the syntactic class of adjective, using the category N/N . Since the
type of N is e→ σ, the type of adjectives must be (e→ σ)→ (e→ σ).

Muskens defines conjunctions as prefix operators by using the category (S/S)/S.
Furthermore, an infix if with category S \(S/S) is defined. As the next section
will show, the definition of if as an infix operator leads to an inconsistency. I
presume that a mistake has led the two categories to be swapped. As such, I
have elected to use the category S \(S/S) for conjunctions, and eliminated the
prefix if.

Similarly, who is defined by Muskens as a prefix operator using the category
(N / N ) / VP. With such an interpretation, the grammatical way of using the
pronoun becomes a who man sleeps. I define as an infix operator through the
category (N \N ) / VP. This results in a grammatical usage consistent with
common english: a man who sleeps.
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3.2 The Problem of Causality

In the dictionary used by Muskens, causality is represented by the conjunction
if. The following translation is given:

Jif K ≡ λpqλij(i = j ∧ ∀h(pih→ ∃k(qhk))

Assuming that if is indeed a prefix operator, this corresponds to an understand-
ing of if as either Jx if yK ≡ JxK → JyK or Jx if yK ≡ JyK → JxK, depending on
the assigned category.

The first interpretation reflects the category (S/S)\S used by Muskens. The
result, however, seems contrary to the intuitive understanding of the word if in
common English.

While the second interpretation - reflecting the category (S\S)/S - is consistent
with common English, it does present a problem. Suppose that an anaphor in
the second clause of the conjunction has an antecedent in the first - consider,
for example, in the following sentence:

"A1 farmer beats a donkey2 if it2 sleeps"

The sentence "it2 sleeps" translates to:

λij(i = j ∧ sleeps v2i)

Applying this to the semantics for if, we get:

λqλij(i = j ∧ ∀h((i = h ∧ sleeps v2i)→ ∃k(qhk))

The sentence "A1 farmer beats a donkey2" translates to:

λij(i[1, 2]j ∧ farmer v1j ∧ donkey v2j ∧ beats v2j v1j)
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Combining this result with the former gives the following term:

λij(i = j ∧ ∀h((i = h ∧ sleeps v2i)→
∃k(h[1, 2]k ∧ farmer v1k ∧ donkey v2k ∧ beats v2k v1k))

The referent created by a2 donkey appears later in the sentence than the refer-
ence it2 - the reference is a cataphor, not an anaphor. As the example shows,
the semantics defined by Muskens do not support cataphoric referents. Three
strategies for repairing this issue are immediately come to mind:

• Change the semantics to support cataphors.

• Change the category of if to reflect a prefix notation, resulting in a transla-
tion as Jif x yK ≡ JxK→ JyK. This corresponds to the if... then-statement
so common in programming languages.

• Introduce a new word with the meaning JxK→ JyK.

I have opted for the latter, and introduced the word so in the dictionary. I have
attempted to come as close as possible to the intuitive Jx so yK ≡ JxK → JyK.
With that in mind, I define:

JsoK ≡ λpqλij(i = j ∧ ∀h(qih→ ∃k(phk))

As a demonstration, consider the sentence A1 farmer beats a2 donkey so it2
hates him1. The sentence it2 hates him1 translates to:

λij(hates v1j v2j ∧ i = j)

Applying this to the semantics for so, we get:

Jso it2 hates him1 K ≡ λqλij(i = j ∧ ∀h(qih→ ∃k(hates v1k v2k ∧ h = k))

≡ λqλij(i = j ∧ ∀h(qih→ (hates v1h v2h))

As already mentioned, "A1 farmer beats a donkey2" translates to:

λij(i[1, 2]j ∧ farmer v1j ∧ donkey v2j ∧ beats v2j v1j)
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Combined with the former result, we get the following translation for A1 farmer
beats a2 donkey so it2 hates him1:

λij(i = j ∧ ∀h((i[1, 2]h ∧ farmer v1h ∧ donkey v2h ∧ beats v2h v1h)→
(hates v1h v2h))

Consulting the Θ-function, we see that the semantics correctly correspond to
a test. Furthermore, the result corresponds to the intuitive definition JsoK =
JxK→ JyK.

A similar issue exists with the conjunction or, though it is not of great conse-
quence. Due to the semantics, a referent created in one clause cannot be picked
up in another. As such, the following indexing becomes ungrammatical:

*"A1 woman sleeps or she1 walks."

Rather, the sentence results in the following translation:

A1 woman sleeps or she2 walks."

In English, this is not much of an issue - mostly, the first indexing would be
written as "A woman sleeps or walks". Therefore, while not decidedly ungram-
matical, the first indexing is at least unusual. Preferring the second indexing,
therefore, is somewhat natural.

3.3 Encyclopaedic Semantics

As more and more words are added to the dictionary, it becomes clear that the
meaning of individual words are interdependent. As such, it is possible to define
new words through existing words - or simply through logical terms. Jackendoff
refers to this strategy as encyclopaediac semantics. [Jac02]

One attempt to capture this notion is description logics, in which semantics
networks are used to emulate semantics dependencies.[JM09] While description
logics are beyond the scope of this paper, it is interesting to see how well such
phenomena are represented in the semantics used here.
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Most words w in the dictionary have the effect of applying a predicate p(w) to
one or several entities. As explained, the predicate takes the form of a constant,
to which the variables representing the entities are applied.

Definition 3.2. Let ∆ be a dictionary and w a word for which ∆ is undefined.
Furthermore, assume that w can be represented by an n-ary predicate p(w).
Then, a description D(w) of w is a λ-term of the type e1 → ... → en → s
using no predicates undefined in ∆.

To apply the description of a word w, simply replace p(w) by D(w) in JwK.

To illustrate the concept, I have added a word is representing the interpretation
of being as a form of equality between entities. As a monotransitive verb, the
semantic function of the word gives:

JisK ≡ λQλy(Qλxλij((is y)x ∧ i = j))

Through definition 3.2, we define D(is) = λxy(x = y). Now, the constant is
can be replaced by D(is):

JisK ≡ λQλy(Qλxλij(x = y ∧ i = j))

As an example, consider the sentence bob1 is a 2 farmer. The expression a 2

farmer translates as:

λP2λij∃k(i[v2]k ∧ farmer (v2k) ∧ P2(v2k)kj)

Applying this to JisK, we get:

λy(λij(i[v2]j ∧ farmer (v2j) ∧ (v2j) = y)

Applying this to the translation of Bob yields:

λij(v1i = bob ∧ i[v2]j ∧ farmer (v2j) ∧ (v2j) = (v1i))

We see that the translation correctly applies the equality to the entities v1i and
v2j.
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3.4 Defining the Semantic Function

Finally, the full dictionary can be defined. Using the types defined in section 3.1,
the semantics of every word are defined below. Let x and y be variables of type
e and let i through l be variables of type s. Furthermore, let p and q be variables
of type σ, P1 and P2 be variables of type e→ σ and let Q be a variable of type
(e→ σ)→ σ. Then:

Word w: Corresponding Semantics [w]:
Common noun cn λxλij(cn x ∧ i = j)
Proper noun pnα λPλij(vαi = pn ∧ P (vαi)ij)
Pronoun pα λPλij(P (vαi)ij)
Adjective a λPλxλij(Pxij ∧ a x)
Intransitive verb v λxλij(v x ∧ i = j)
Monotransitive verb v λQλy(Qλxλij((v x) y ∧ i = j))
is (monotransitive verb) λQλy(Qλxλij(x = y ∧ i = j))
who (relative pronoun) λP1P2λxλij∃h(P2xih ∧ P1xhj)
and/. (conjunction) λpqλij∃h(pih ∧ qhj)
or (conjunction) λpqλij(i = j ∧ (∃h(pih) ∨ ∃k(qik)))
so (conjunction) λpqλij(i = j ∧ ∀h(pih→ ∃k(qhk)))
aα (article) λP1P2λij∃kh(i[vα]k ∧ P1(vαk)kh ∧ P2(vαk)hj)
theα (article) λP1P2λij∃k(P1(vαk)ik ∧ P2(vαk)kj)
everyα (article) λP1P2λij(i = j ∧ ∀kl((i[vα]k ∧ P1(vαk)kl)→ ∃l(P2(vαk)lh)))
noα (article) λP1P2λij(i = j ∧ ¬∃khl(i[vα]k ∧ P1(vαk)kh ∧ P2(vαk)hl))

Finally, the semantic function is combined with the categories of section 3.1 to
create the full dictionary ∆.



Chapter 4

Reduction and
Simplification

Presuming that the semantic function correctly reflects the logical synthesis
discussed in section 2.3, the semantics JSK of a sentence S should correspond to
a program.

As the type of [S] is s → (s → t), beta-reduction can be used to reduce JSK to
a term of the form λijR, where R is a term of PLs. In order to further process
this expression, three refinements take place as described in this chapter.

Section 4.1 and section 4.3 are adaptations of the strategy employed by Muskens
[Mus91], while section 4.2 describes an additional step.

4.1 From Meaning to Truth

As a result of lemma 3.1, the translation process will result in a term of the type
s→ (s→ t). This corresponding to a relation between two states - in dynamic
logic, a program. What we are interested in, however, is not the program itself
- rather, we are interested in the set of states that could serve as initial state
for the program. A further step is needed:
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Definition 4.1. The content of a sentence s is defined as λi∃j JsKij.

Intuitively, definition 4.1 captures the aforementioned set. As Muskens points
out, this definition corresponds to the step from discourse structure to truth
taken in discourse representation theory [Mus91]. As such, it comes as no sur-
prise when the same step is necessary here.

4.2 Anaphora as Generators of Entities

In corpora, anaphora often act as generators of referents. Mostly, this phe-
nomenon occurs when no previous reference exists, e.g. when referents are
introduced by name ("Alice loves bob.") or a text starts in medias res ("The
elevator continued its horribly slow ascent.", "He had known the woman all his
life.").

The content of any well-formed sentence will be a term on the form λi∃j R.
In the cases discussed, the expression R will contain references to the values of
stores in state i - the first state of execution. Muskens’ solution is to require a
deictic antecedent for every such store. [Mus91] As the given examples show,
finding one such is impossible in many cases. Therefore, we desire a definition
of content independent of the initial state.

Assume that v1, ..., vn is the sequence of stores referenced in the initial state i
in R. Let α be any state, and let β be a state such that α[v1, ..., vn]β. Then
the existence of β is guaranteed by the update axiom. As such, the ontological
assumption that every deictic reference has some referent can be formulated
through the following definition:

Definition 4.2. The non-deictic content of a sentence s is defined as
λα∃βk (α[v1, ...vn]β ∧ JsKβk).

Crucially, this definition is equivalent to definition 4.1 apart from the aforemen-
tioned ontological assumption of non-deixis.
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4.3 From States to Entities

By necessity, the non-deictic content of any well-formed sentence will be re-
ducible to the form λi R, where R is a term of PLs. Expressive as PLs is,
states and stores prove a needless complication after translation is complete. As
such, a translation into PLe is desired. To remedy the situation, Muskens offers
the Unselective Binding Lemma [Mus91]

Lemma 4.3. Let u1, ...un be store names, let x1, ..., xn be distinct variables,
and let ϕ be a formula that does not contain j. Then for all states i:

1. ∃j(i[u1, ..un]j ∧ ϕ[x1/u1j, ..., xn/unj]) is equivalent to ∃x1...xnϕ

2. ∀j(i[u1, ..un]j → ϕ[x1/u1j, ..., xn/unj]) is equivalent to ∀x1...xnϕ

Muskens omits the proof of the lemma, as it is rather simple. For the sake of
completeness, I include it here:

Proof. To show that 1 holds, assume that ϕ is true in some state i. Then,
d1, ..., dn exist which satisfy φ as substitutions for x1, ..., xn. By the Update Ax-
iom introduced by Muskens [Mus91], there exists a state j such that i[u1, ...un]j
and ukj = dk for all k between 1 and n. Hence, ∃j(i[u1, ..un]j∧ϕ[x1/u1j, ..., xn/unj])
holds in i.

Now assume that ∃j(i[u1, ..un]j ∧ ϕ[x1/u1j, ..., xn/unj]) is true in some state i.
Then by necessity the entities u1j, ..., unj satisfy ϕ. Hence, ∃x1...xnϕ holds.

Proof. That 2 follows from 1 is easily shown:

∀j(i[u1, ..un]j → ϕ[x1/u1j, ..., xn/unj]) ≡ ¬∃j¬(i[u1, ..un]j → ϕ[x1/u1j, ..., xn/unj])

≡ ¬∃j(i[u1, ..un]j ∧ ¬ϕ[x1/u1j, ..., xn/unj])

≡ ¬∃x1...xn¬ϕ
≡ ∀x1...xnϕ

Through repeated application of lemma 4.3, λi R can be translated to an expres-
sion of the form λi Q, where Q is a term of PLe. That this is the case follows
from the form of the dictionary. State-changing terms of the form s1[vn]s2 are
only introduced through JaK, JnoK and JeveryK. In all cases, s2 is bound by a



24 Reduction and Simplification

quantifier figuring in the same term - lemma 4.3 can be applied directly if the
sub-terms are known. Any reference to a state must be either a reference to a
quantified state or a reference to the initial state. In the first case, lemma 4.3
ensures that the store reference is replaced with an entity. In the second case,
the use of definition 4.2 guarantees that no such reference can exist.



Chapter 5

Filtering of Indexings

Determining whether an indexing is suitable can be done by a combination of
checks. I include three such filters - syntactic, gender-based and nominal. In
the following sections I define three conditions, that together ensure a level
of consistency in the accepted indexings: Definition 5.2, definition 5.3, and
definition 5.4.

Provided that these conditions are upheld, a large fragment of the language
defined by ∆ can be indexed unambiguously.

5.1 Syntactic Filtering

As evidenced by example 1 and 2, co-indexing may directly determine the well-
formedness of sentences. Furthermore, although the semantic value of subject-,
object- and reflexive object-pronouns may be identical, their syntactic positions
are restricted as examples 3 and 4 show.

1. *"John1 hit him1."

2. *"John1 hit himself2."
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3. *"He1 hit she2."

4. *"Him1 hit her2."

This phenomena is explained at length by the Government and Binding theory
presented by Chomsky. [Cho93] To fully describe the dictionary used in this
paper, a simplified theory suffices.

To define the relevant aspects of the theory, the concept of c-command is
introduced. A node A in a derivation tree c-commands another node B if and
only if:

• A is not an ancestor of B.

• B is not an ancestor of A.

• The first branching node that is an ancestor of A is an ancestor of B.

In the language of categorial grammars:

Definition 5.1. Let A and B refer to nodes in the derivation tree of a sentence
s. Let N1, and N2 be sequences of categories and let X and Y be categories.
Then A c-commands B iff B ∈ N2 and Ψ(s) contains either of the following
derivative steps:

(1):
N1 ` A N2 ` Y

N1, N2 ` X
(2):

N2 ` Y N1 ` A
N1, N2 ` X

B is governed by A if and only if A c-commands B and A is of the category
NP. B is bound by A if and only if A governs B and A and B corefer.

Definition 5.2. A sentence is defined to be syntax-consistent if and only if
the following constraints hold:[All95]

1. Subject pronouns cannot be governed.

2. Object pronouns must be governed.

3. Reflexive pronouns must be bound. Any other anaphora cannot be bound.

With the constraints in mind, consider examples 1 through 4. In example 1, him
is bound by John, violating rule 3. Similarly, in example 2, rule 3 is violated
as himself is not bound. Example 3 violates rule 1 as she is governed. Finally,
example 4 violates rule 2 as him is not governed.
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5.2 Gender-based Filtering

In English as in many other languages, pronouns are filtered by gender. In-
deed, the proper interpretation of a text often hinges on gendered information.
Consider the following sentences:

• "A1 farmer owns a2 donkey. He1 beats it2"

• "A1 farmer owns a2 donkey. She1 beats it2"

• *"A1 farmer owns a2 donkey. It1 beats it2"

Intuitively, indexings one and two are grammatical, while indexing three is not.
The explanation is that a variable is referenced by two different genders.

As such, there is a clear parallel to type constraints in programming languages
- integer-variables should not be referenced as string-variables, and so on.

In accordance with this line of reasoning, Ranta suggests an intricate system of
subtypes. [Ran94] To reflect the genders of English, three subtypes of entities
are introduced: emale , efemale and eneuter , corresponding to "he", "she" and
"it".

To limit the genders of a word, the semantics may restrict the type. For example,
the type of a woman must be efemale :

JwomanK ≡ λx : efemaleλij : s (woman x ∧ i = j)

While all pronouns are gendered, the same is not true of all nouns. For example,
a woman can only refer to female entities, while a farmer can refer to entities
of either gender - though not neutral entities. Similarly, there are names which
can be used of both men and women (Alex, Quinn, Elliot, Riley). In such cases,
it may be preferable to exclude one gender by the use of a negation, or provide
no gender-information at all. To enable this possibility, one can draw upon the
interpretation of types as sets. As such, the type of a farmer should be e\eneuter .

In practise, it is simpler to disassociate the genders from other type informa-
tion. To this purpose, the set of possible genders of an entity e in a term
t is expressed as a function G(e, t). If l is a leaf where e is constrained to
the set of genders L, G(e, l) = L. If l is a leaf where e is not constrained,
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G(e, l) = {male, female, neuter}. For a composite expression tcomp with chil-
dren t1 and t2, G(e, tcomp) = G(e, t1)∩G(e, t2). For a non-composite expression
tparent with a child tchild, G(e, tparent) = G(e, tchild). With this in mind, define:

Definition 5.3. An indexing on a term T is gender-consistent if and only if
G(e, T ) 6= ∅ for all proper nouns and for all entities quantified in T .

Requiring every indexing to be gender-consistent is equivalent to the extension
of the type-system with subtypes. The proof is trivial, especially with Curry’s
definition of typed terms.

5.3 Nominal Filtering

Proper nouns present another criteria upon which to filter indexings. It is clear
that the following indexing cannot be correct:

*"Alice1 sleeps and Clara1 walks."

Rather, the proper indexing should be:

"Alice1 sleeps and Clara2 walks."

The reason is that Alice and Clara due to being differently named must refer to
different entities. I define this form of consistency as follows:

Definition 5.4. An indexing on a sentence s is name-consistent if and only
if the deictic content of s does not contain an expression of the form n1 = n2,
where n1, n2 ∈ Names.

Due to the demand that all entity generators use unique indexing numbers, an
entity will only be referred to by two different proper nouns if two otherwise sep-
arate entities were equalised through use of is. Therefore, a sentence s contains
an contains an entity referred to by two different proper nouns iff JsK contains
an expression of the form n1 = n2 for two names n1 and n2.

It is important to note that corpora sometimes contain examples where an entity
can have multiple names - for example a last name and a first name. As such,
a more thorough investigation of the naming of entities would be required for
full dictionaries. In this case, the creation of a database for entities would be
sensible.
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Implementation

In this section I shall explain the workings of the proof of concept program
accompanying this thesis. As a consequence of my initial intention to use the
Isabelle proof assistant in the implementation of a logical filter, I have written
the program in the Poly/ML language (version 5.5), a full implementation of
Standard ML [Mat12].

The program is structured around a file Interface.ML, which imports and con-
nects every other component. The interface offers four functions:

• translate, which given a sentence s returns a string-representation of the
non-deictic content of s through generation and filtering of indexings.

• translate_indexed, which given a sentence s and an indexing i returns
a string-representation of the non-deictic content of s using i as indexing.

• translate_plain, which given a sentence s and an indexing i returns a
string-representation of the content of s using i as indexing - without any
form of simplification.

• meaning_of, which given a word w returns JwK.

Furthermore, a test suite has been implemented, offering a function full_test
to perform a large set of assertions on the output of the program.
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6.1 Data Structures

Categories are represented using a datatype, with / and \ defined as infix oper-
ators:

datatype Category =
E
| S
| \ of Category*Category
| / of Category*Category

infixr \;
infixr /;

The terms of Λ are represented by the datatype shown below. Note that in addi-
tion to those discussed in section 2.1, a constant Tr has been added, represent-
ing a tautology. To simplify the terms, implication has not been implemented -
rather, p→ q should be represented as ¬p ∨ q.

datatype Term = Var of string
| Abs of string*Term
| App of Term*Term
| Exists of string*Term
| Forall of string*Term
| Store of int*string
| Conj of Term*Term
| Eq of Term*Term
| Differs of int list*string*string
| Not of Term
| Disj of Term*Term
| Tr

The dictionary is represented by a tokenization function. As such, tokens cor-
responding to triples of w,∆(w) for every word w are necessary:

datatype Token = T of string*Category*Term

Finally, derivation trees are represented through a simple binary tree structure:

datatype ParseTree = Fail
| Leaf of Category*Token
| Node of Category*ParseTree*ParseTree;

Note the special node Fail. This represents a branch of a tree being ungram-
matical.
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6.2 Framework

When a sentence is input to the program, it is initially converted to a list of
tokens by the lexer. Afterwards, a list of potential indexings are generated.
Then, the list is traversed, building translations in an attempt to validate one.

During preprocessing, a function generate_possibilities builds a list of all poten-
tially viable indexings based on the total amount of references. This is carried
out by an algorithm inspired by the digital clock; the next indexing is gener-
ated by finding the first reference to differ from the total amount of references
and incrementing that, resetting every earlier referent to 1. As described in the
introduction, generating references are locked to a constant index.

Once the entire list of indexings has been built, an algorithm roughly corre-
sponding to the following flowchart is used:



32 Implementation

6.3 Tokenization

The Lexer

The lexer reads the input character by character. When a space or period is met,
the encountered letters are converted to a token using the tokenize-function.

One notable exception is the period. If a period is the last word of the text, it
is ignored. If, however, more words follow upon a period, it is read as the word
"and". This is possible as the translation for "." and "and" are identical.

The Dictionary

The dictionary consists of a function Tokenize : string → Token. Most words
can be described using standardized or semi-standardized syntactic and semantic
functions, such as in the following example:

| tokenize "sleeps" = T("sleeps", verb_intransitive,
verb_intransitive_term "sleeps")

Note that all information pertaining to store numbers is left to be added later.

Some words - notably those acting as articles or conjunctions - require cus-
tomized translations:

| tokenize "the" = T("the",article,
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()

in
Abs(v1, Abs(v2,Abs(v3,Abs(v4, Exists(v5,

Conj(App(App(App(Var(v1), Store(0, v5)), Var(v3)), Var(v5)),
App(App(App(Var(v2), Store(0, v5)), Var(v5)), Var(v4))))))))

end
)

If a word occurs which is not present in the dictionary, an UnknownWord -
exception is raised.
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6.4 Parsing

A derivation_tree is built based on the list of tokens. The tree is constructed us-
ing a simple backtracking-algorithm. First, each token in the list is encapsulated
in a leaf. Afterwards, the build_tree function is called:

fun build_tree [] = Fail
| build_tree [Elem] = Elem
| build_tree l =

if (has_derivation l)
then try_all (find_derivation_list [] l)
else Fail

A function find_derivation_list constructs a list of all possible derivations from
a given sequence of trees. Then, the function try_all attempts to recursively
derive a complete tree from each possibility:

fun try_all [] = Fail
| try_all (x::xs) =

let
val res = build_tree x

in
if res = Fail then try_all xs else res

end

If at any point a derivation is impossible, a node of the type Fail is returned,
signifying a grammatical error.

Single derivations are handled through a combination of functions: deriv_cat_possible,
deriv_node_possible, deriv_cat_result, and deriv_node_result. The first two
return boolean values representing whether a derivation rule can be applied to
two categories. The other represent the result.

As pointed out in remark 3.1, it is necessary to alter the ordering of the nodes
when a \-derivation is used. In the implementation, this is represented through
a boolean value:

fun deriv_cat_result (a/b) (c\d) =
if (b = (c\d)) then (a, false)
else if (c = (a/b)) then (d, true)
...
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The boolean is used to construct a tree of the correct form:

fun deriv_node_result (Node(c1,t1,t2)) (Node(c2,t3,t4)) =
let

val (res, switch) = deriv_cat_result c1 c2
in

if switch then
Node(res, (Node(c2,t3,t4)), (Node(c1,t1,t2)))

else
Node(res, (Node(c1,t1,t2)), (Node(c2,t3,t4)))

end
...

6.5 Beta-Reduction

Once the parse tree is constructed, a direct translation to lambda calculus is
possible. All leaves are replaced by a lambda term determined by the referenced
token:

fun to_term (Leaf(_, T(_,_,t))) = t

All inner nodes are recursively replaced by an application of the left child to the
right child:

| to_term (Node(_, t1, t2)) = App((to_term t1), (to_term t2))

Two functions replace and beta_reduce are implemented, representing respec-
tively α-conversion and β-reduction. Replace is a simple recursive traversal:

fun replace (Var(x)) s t2 = if x = s then t2 else Var(x)
| replace (App(te1, te2)) s t2 = App( (replace te1 s t2), (replace te2 s

t2))
...
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The implementation of beta-reduction is similar to the theoretical definition:

beta_reduce (App(Abs(s, t1), t2)) = beta_reduce (replace t1 s t2)
| beta_reduce (App(t1, t2)) =

let
val res = beta_reduce t1

in
if res = t1
then App(t1,t2)
else beta_reduce (App(res, t2))

end
...

Note that when an application where the β-reduction rule cannot be applied is
encountered, forward recursion is used to ensure that the inner term is reduced
as widely as possible.

6.6 Simplification & Unselective Binding Lemma

The simplification process consists of five different functions, some of which
are applied multiple times. The full process can roughly be described by the
following flowchart:

In the following sections, each individual function shall be described. Note that
the application of the Unselective Binding Lemma is a two-part process - first,
the term is rewritten to use the shorthand notation i[v11, ..., vn]j as devised by
Muskens [Mus91]. Then, the lemma is applied.
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Resolution of Equalities

Any formula of the form ∃y t is replaced by t[x/y] if x = y in t. Finding equalities
within a term is done on a set basis, ensuring that equalities in disjunctions and
implications are located:

fun find_equality x (Eq(Var(s1), Var(s2))) =
if ((x = s1) andalso (s1 <> s2)) then singleton s2 else

if ((x = s2) andalso (s1 <> s2)) then singleton s1 else empty_set
| find_equality x (Conj(t1, t2)) = set_union (find_equality x t1)

(find_equality x t2)
| find_equality x (Exists(_, t)) = find_equality x t
...

Importantly, the function employs forward recursion. This ensures that the
quantifiers at the highest possible level are maintained.

As a consequence of the structure of the semantics, all quantified variables will
be of the type s before lemma 4.3 is applied. Similarly, they will be of the type
e afterwards. Therefore, this function can be reused to unify entities who have
been declared equal through is.

The second application of this process should happen before nominal filtering,
but after application of lemma 4.3. Otherwise, expressions like "alice1 is a2
farmer. The2 farmer is bob3. could result in wrongful indexings.

As equality resolutions leaves a trail of tautological expressions throughout the
term, the tautology-removal function is applied once after each time equality
resolution is used.

Convertion to Negative Normal Form

The expression is put on negative normal form through application of De Mor-
gan’s laws and the definition of the quantifiers:

...
(*Negated quantors:*)
| push_negations (Not(Exists(s,x))) = Forall(s, push_negations (Not(x)))
| push_negations (Not(Forall(s,x))) = Exists(s, push_negations (Not(x)))

(*De Morgan’s Laws:*)
| push_negations (Not((Disj(t1,t2)))) = Conj(push_negations

(Not(t1)),push_negations (Not(t2)))
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| push_negations (Not((Conj(t1,t2)))) = Disj(push_negations
(Not(t1)),push_negations (Not(t2)))

...

While not strictly necessary, the use of negative normal form make the rest of the
simplification process easier, as negations are out of the picture. Furthermore,
it has the added benefit of applying the following equivalence to implications:

(i[...]j ∧ x)→ y ≡ i[...]j → (x→ y)

This translation simplifies the extraction process described in the next section.

Extraction of State Information

Using the following definition, expressions of the form i[x]j are shortened as
described by Muskens [Mus91].

Definition 6.1. A successor to an existentially quantified variable i of type s in
a term t is defined as an existentially quantified variable j such that t ≡ i[x]j∧y
for some x and y.

A successor to a universally quantified variable i of type s in a term t is defined
as a universally quantified variable j such that t ≡ i[x]j → y for some x and y.

The list of successors to a variable k is created by finding a successor to l to k,
then finding a successor to l, and so on until no successor exists:

fun existential_successor_list term var used_stores =
let

val (store, state) = existential_successor term var
in

if (store <> 0) andalso (exist_quant state term) andalso
(not(contains used_stores store))

then (store, state)::(existential_successor_list term state
(store::used_stores))

else []
end

Based on this list, an expression s1[x1, x2, ...xn]s2 is created. A successor sn is
discounted for a state i if sn−1[xn]sn and i[x1, ..., xn, ...]sn−1. This ensures that
no store can be changed twice by the same expression.
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Once a list s1[x1, x2, ...xn]s2 has been created for some pair of states, all store
references using an intermediate state are pushed forward to s2 or backwards
to s1, depending on whether the store referenced has been updated when it is
encountered. This is done by mapping store references to states such that if a
store p changes value in an intermediate state q, p is mapped to q. If a reference
to p is found in a predecessor-state to q, the reference is changed to the initial
state s1 otherwise, it is changed to the final state s2:

fun push_stores (Store(i, s)) mapping top_var =
if (contains_state s mapping) then

if (earlier i s mapping) then (Store(i, last_state mapping))
else (Store(i, top_var))

else (Store(i, s))
...

Finally, the term in question is updated to reflect the changes. Quantifiers
pertaining to intermediate states and old difference-expressions are removed,
and a new difference-expression is added. If the successors are existentially
quantified, the resulting term becomes ∃s2(s1[...]s2 ∧ t):

Exists(last, state_update (Conj((diff), new_term)) last)

Otherwise, if the successors are universally quantified, the resulting term be-
comes ∀s2(s1[...]s2 → t):

(Forall(last, (Disj(Not(diff), state_update new_term last))))

Removal of Tautologies

The removal of tautologies is straightforward. Equalities are replaced with Tr
if they are of the form x = x:

fun taut_replace (Eq(t1, t2)) = if t1 = t2 then Tr else (Eq(t1, t2))

Conjunction, disjunction and negation are updated to reflect normal logical
rules, such that:

• ¬T ∧ x ≡ ¬T

• ¬T ∨ x ≡ x

• T ∧ x ≡ x
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• T ∨ x ≡ T

This is reflected in the code as follows:

| taut_replace (Conj(t1, t2)) =
let

val left = taut_replace t1
val right = taut_replace t2

in
if left = Tr then right
else if right = Tr then left

else if (left = Not(Tr)) orelse (right = Not(Tr)) then Not(Tr)
else (Conj(left, right))

end
...

Application of Unselective Binding Lemma

The Unselective Binding Lemma is used to replace quantifications over states
with quantifications over variables.

As state information was extracted to a high a level as possible, the application
of the binding lemma is simple. A function gather_vars collects a list of variables
if the lemma should be applied:

fun gather_vars (Differs(i, s1, s2)) s4 =
if (s2 = s4) then generate_var_list i
else []

...

As shown, the function generate_var_list is called. This generates a new vari-
able for each store referenced:

fun generate_var_list [] = []
| generate_var_list (x::xs) = (x, get_new_var())::(generate_var_list xs)

The new variables are used as described in Anaphora and the Logic of Change
to create an expression of the form ∃x1...xnφ or ∀x1...xnφ.
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6.7 Validation of Indexings

Government and Binding Checker

A tree-walking algorithm is used to determine whether the chosen indexing is
consistent with Government and Binding theory. The traversal is performed
mainly by the government_binding-function:

fun government_binding (Leaf(_,T(_,_,_))) = true
| government_binding (Node(c,t1, t2)) =

if (conj t1) orelse (conj t2)
then (government_binding t1) andalso (government_binding t2)
else

if conj (Node(c,t1, t2))
then government_binding t2
else (free t1) andalso (governed t2 (get_governor t1))

...

The function distinguishes between two kinds of inner nodes: Those which cor-
respond to a conjunction and those which do not. Due to the nature of the
implemented grammar, it holds for all derivable sentences that the root node
of any composite derivation tree must be either a conjunction or a verb. Fur-
thermore, the children of a conjunction-node are either conjunction-nodes or
verb-nodes. Therefore, this simplification is applicable.

If a verb node is encountered, it must hold that the left child governs of the
right child. A function get_governor is used to extract the governing entity.
Then, two functions free and governed are used to ensure that the rules set out
in definition 5.2 hold.

Nominal Filtering

Ensuring that no entity is referred to by two different names is a simple process
- the expression is traversed, searching for equality-expressions. If such an ex-
pression is found, the program requests a new indexing if the children contain
references to two different names.
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Gender-based Filtering

The semantics of every noun, pronoun or proper noun has been extended with an
additional term describing gender. As an example, consider the noun "farmer".
Without gender information, the semantics for a noun are implemented as:

λxλij(i = j ∧ noun x)

The term is expanded with an expression gender, to which the subject is applied:

λxλij(i = j ∧ gender x ∧ noun x)

As an example, assume that the gender of "farmer" may be either male or
female, but not neuter. The corresponding term is λe¬(neuter e). Replacing
the gender-variable in the semantics for noun results in the following term:

λxλij(i = j ∧ ¬(neuter x) ∧ noun x)

Pronouns and proper nouns are implemented in similar fashion.

The function G defined in definition 5.3 is implemented through two functions
gender_check_inner and gender_check_traverse. For predicates, G is defined
as:

gender_check_inner s (App(Var(x), Var(s2))) =
if (s = s2) andalso (((x = "male") orelse (x = "female")) orelse (x

= "neuter"))
then singleton x
else ["male", "female", "neuter"]

| gender_check_inner s (App(Not(Var(x)), Var(s2))) =
if (s = s2) andalso (((x = "male") orelse (x = "female")) orelse (x

= "neuter"))
then set_minus ["male", "female", "neuter"] (singleton x)
else ["male", "female", "neuter"]

...
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For composite expressions, the implementation directly copies the rules set forth
in section 5.2:

...
| gender_check_inner s (Conj(t1, t2)) = set_intersection

(gender_check_inner s t1) (gender_check_inner s t2)
...

The outer function - gender_check_traverse - repeatedly uses the inner to man-
age the gender of every quantified entity and every proper noun:

fun gender_check_traverse (Exists(s, t)) =
let

val res = gender_check_inner s t
in

if res = empty_set then false
else gender_check_traverse t

end
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Examples

In this chapter, I shall present various examples illustrating the implementation.
In the first section, a detailed example will be shown by hand. In the second
section, several examples of interest will be highlighted, although only the final
translation will be shown.

7.1 A Detailed Example

Consider the following sentence:

"A1 farmer beats a2 donkey. thea poor animal hates himb"

The first part of the text - A1 farmer beats a2 donkey - corresponds to the
following parse tree:

a1

NP/N

farmer

N

NP

beats

VP/NP

a2

NP/N

donkey

N

NP

V P

S
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Applying the translation of farmer to the translation of a1, we get:

Ja1 farmerK = (λP1P2λij∃kh(i[v1]k ∧ P1(v1k)kh ∧ P2(v1k)hj))

λxλij (farmer x¬ ∧ neuter x ∧ i = j)

= λP2λij∃kh(i[v1]k ∧ λxλij (farmer x¬ ∧ neuter x ∧ i = j)(v1k)kh

∧ P2(v1k)hj)

= λP2λij∃kh(i[v1]k ∧ (farmer (v1k) ∧ ¬neuter (v1k) ∧ k = h)

∧ P2(v1k)hj)

= λP2λij∃k(i[v1]k ∧ farmer (v1k) ∧ ¬neuter (v1k) ∧ P2(v1k)kj)

In similar fashion:

Ja2donkeyK = λP2λij∃k(i[v2]k ∧ donkey (v2k) ∧ neuter (v2k) ∧ P2(v2k)kj)

The meaning of beat aa donkey is derived as:

Jbeats a2 donkeyK = (λQλy(Qλxλij(beats xy ∧ i = j)))

λP2λij∃k(i[v2]k ∧ donkey (v2k) ∧ neuter (v2k) ∧ P2(v2k)kj)

= λy(λij∃k(i[v2]k ∧ donkey (v2k) ∧ neuter (v2k) ∧ beats (v2k)y

∧ k = j))

= λy(λij(i[v2]j ∧ donkey (v2j) ∧ neuter (v2j) ∧ beats (v2j)y)

Finally, applying Jbeat aa donkeyK to Ja1 farmerK, the following is derived. Note
that all state variables are pushed as far as possible forward, i.e. v1k is replaced
by v1j since k[v2]j.

Ja1 farmer beats a2 donkeyK = λij∃k(i[v1]k ∧ farmer (v1k) ∧ ¬neuter (v1k)

∧ (k[v2]j ∧ donkey (v2j) ∧ neuter (v2j)

∧ beats (v2j)(v1k))

= λij(i[v1, v2]j ∧ farmer (v1j) ∧ ¬neuter (v1j)

∧ donkey (v2j) ∧ neuter (v2j)

∧ beats (v2j)(v1j))
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In completely analogous fashion, the sentence thea poor animal hates himb cor-
responds to:

thea

NP/N

poor

N/N

animal

N

N

NP

hates

VP/NP

himb

NP

VP

S

By the same translation procedure, Jthea poor animal hates himbK is derived:

Jthea poor animal hates himK = λiλj(poor(vai) ∧ animal ∧ neuter

(vai) ∧ hates(vbi)(vai) ∧male(vbi) ∧ i = j)

Combining the two sentences using J.K gives the following translation:

λij(i[v1, v2]j ∧ farmer (v1j) ∧ ¬neuter (v1j) ∧ donkey (v2j) ∧ neuter (v2j)

∧ beats (v2j)(v1j) ∧ poor(vaj) ∧ animal(vaj) ∧ neuter(vaj)

∧ hates(vbj)(vaj) ∧male(vbj))

The non-deictic content of the combined sentence is then:

λi∃j(i[v1, v2]j ∧ farmer (v1j) ∧ ¬neuter (v1j) ∧ donkey (v2j) ∧ neuter (v2j)

∧ beats (v2j)(v1j) ∧ poor(vaj) ∧ animal(vaj) ∧ neuter(vaj)

∧ hates(vbj)(vaj) ∧male(vbj))

As i[v1, v2]j, a maximum of two stores are used in the interpretation of the
combined sentence. Consider the variables a and b. If a = b, the second part of
the sentence has the poor animal binding and governing him - breaking the rules
of Government and Binding Theory. That gives two possible interpretations:

λi∃j(i[v1, v2]j ∧ farmer (v1j) ∧ ¬neuter (v1j) ∧ donkey (v2j) ∧ neuter (v2j)

∧ beats (v2j)(v1j) ∧ poor(v1j) ∧ animal(v1j) ∧ neuter(v1j)

∧ hates(v2j)(v1j) ∧male(v2j))

Or:
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λi∃j(i[v1, v2]j ∧ farmer (v1j) ∧ ¬neuter (v1j) ∧ donkey (v2j) ∧ neuter (v2j)

∧ beats (v2j)(v1j) ∧ poor(v2j) ∧ animal(v2j) ∧ neuter(v2j)

∧ hates(v1j)(v2j) ∧male(v1j))

In the first of the two, ¬neuter (v1j) ∧ neuter(v1j), giving rise to contradiction
in the gender-based filtering. As such, only the second of the two is viable.
Applying the unselective binding lemma, the following term is reached and finally
returned, after gender-information has been removed:

∃xy(farmer x ∧ donkey y ∧ beats yx ∧ poor y ∧ animal y ∧ hates xy)

7.2 Other Interesting Cases

In this section, the results of various interesting translations will be shown. Note
that as the simple cases such as "a man sleeps" have mostly been examined by
hand throughout the paper, they are not included in this section. The interested
reader may find such examples - and many others - in the test suite included
in the appendix. Furthermore, only positive examples have been included here.
In the discussion section, several examples for which the program accepts a
non-ideal indexing are presented.

The examples from Anaphora and the Logic of Change

In Anaphora and the Logic of Change, Muskens used the example "A farmer
owns a donkey. The bastard beats it". Replicating the results, translating the
sentence gives:

Ev1.Ev2.(((farmer v1) & ((donkey v2) & ((owns v2) v1))) & ((bastard v1) &
((beats v2) v1)))

Similarly, "Every farmer who owns a donkey beats it" is correctly translated as:

Av1.Av2.(∼ ((farmer v1) & ((donkey v2) & ((owns v2) v1))) |((beats v2) v1))
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Examples Illustrating Conjunctions

Demonstrating the effect of simple compositions using and (or .), the sentence
"A woman sleeps and a man sleeps" gives:

Ev1.Ev2.(((woman v1) & (sleeps v1)) & ((man v2) & (sleeps v2)))

A similar sentence with universal quantifiers - "every woman sleeps and every
man sleeps" - correctly translates as:

(Av1.(∼(woman v1) |(sleeps v1)) & Av2.(∼(man v2) |(sleeps v2)))

Illustrating how anaphora are picked up through conjunctions, the translation
of "a man loves a woman and the woman loves the man" is:

Ev1.Ev2.(((man v1) & ((woman v2) & ((loves v2) v1))) & ((woman v2) &
((man v1) & ((loves v1) v2))))

Showcasing the new conjunction so, the sentence "a farmer beats a donkey so
the donkey hates the farmer" translates as:

Av1.Av2.((∼(farmer v1) |(∼(donkey v2) |∼((beats v2) v1))) |((donkey v2) &
((farmer v1) & ((hates v1) v2))))

To demonstrate the non-deterministic composition of programs ∪, consider the
sentence "a man sleeps or every man sleeps". As predicted through Θ, the
sentence is correctly translated as:

(Ev1.((man v1) & (sleeps v1)) |Av2.(∼(man v2) |(sleeps v2)))

Examples Illustrating Proper Nouns

Consider the sentences "Carl hates bob. bob owns a donkey" and "Carl hates
bob. carl owns a donkey". Due to the nominal filtering, they are correctly
translated as:
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Ev1.(((hates bob) carl) & ((donkey v1) & ((owns v1) bob)))

And:

Ev1.(((hates bob) carl) & ((donkey v1) & ((owns v1) carl)))

As a more complicated example of how proper nouns may act as both anaphora
and generators, consider the sentence "a man who loves alice owns a donkey so
alice loves the donkey". The translation is:

Av1.Av2.(((∼(man v1) |∼((loves alice) v1)) |(∼(donkey v2) |∼((owns v2) v1)))
|((donkey v2) & ((loves v2) alice)))

Examples Illustrating Adjectives and Being

Neatly demonstrating how entities are unified through the verb is, the sentence
"Bob is a farmer. he is good man is correctly translated as:

((farmer bob) & ((man bob) & (good bob)))

Similarly, the (somewhat strange) sentences "Alice loves a farmer. he is bob"
and "Alice loves bob. he is a farmer" are both correctly translated as:

((((man bob) & (good bob)) & ((loves bob) alice)))

Illustrating how the same unification holds under universal quantification, con-
sider the sentence "Every man who is a good farmer owns a donkey". The
translation is:

Av1.(∼((man v1) & ((farmer v1) & (good v1))) |Ev2.((donkey v2) & ((owns
v2) v1)))

Similarly, "bob beats no donkey so he is a good farmer" gives:

(Ev1.((donkey v1) & ((beats v1) bob)) |((farmer bob) & (good bob)))
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Discussion

The presented strategy shows itself to be effective in translating sentences of
limited length; except for a few edge cases addressed in the following sections,
anaphora are correctly identified and mapped to entities. Furthermore, the
combination of syntactic, nominal, and gender-based filtering has shown itself
to be far more capable than initially expected, eliminating the immediate need
for further filtering.

As the addition of the words so and is, and the linguistic class of adjectives
show, the procedure can easily be expanded to include new definitions of words,
more complex sentence structures, and even concepts such as encyclopaedic
semantics.

Complexity-wise, the parsing algorithm is the definite bottleneck. Assume that
s is a sentence with n words. Then, in order to parse s, a recursion tree with n
levels is necessary. At a level m layers from the root, each node may have up to
m children. As such, the complexity of the parser is O(n ·(n−1) · ... ·1) = O(n!).
In reality, backtracking is only necessary in the case of conjunctions. As such, if
c is the number of conjunctions, only c branches of the parse tree are necessary.
The entire sentence must still be traversed at each level, resulting in a decent
complexity of O(c! · n2).
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8.1 Syntactic Ambiguities

Consider the sentence s = "A man sleeps and a woman sleeps or a donkey
sleeps". Here, depending on the order in which the conjunctions are parsed, two
candidates for ψ(s) exists. The first proof is the following tree, corresponding to
an translation of the sentence as JsK = ∃x1x2x3((man x1∧sleeps x1∧woman x2∧
sleeps x2) ∨ (donkey x3 ∧ sleeps x3)):

or

S\(S/S)

and

S\(S/S)

Ψ(a man sleeps)

S

S/S

Ψ(a woman sleeps)

S

S

S/S

Ψ(a donkey sleeps)

S

S

Another possible translation for the sentence is JsK = ∃x1x2x3((man x1 ∧
sleeps x1) ∧ ((woman x2 ∧ sleeps x2) ∨ (donkey x3 ∧ sleeps x3))). The cor-
responding derivation tree is:

and

S\(S/S)

Ψ(a man sleeps)

S

S/S

or

S\(S/S)

Ψ(a woman sleeps)

S

S\S
Ψ(a donkey sleeps)

S

S

S

At present, the program does nothing to address such ambiguities. A strategy
based on either filtering or statistics should be implemented to alleviate this
issue.

8.2 Logical Filtering

In some texts, references and referents can only be matched through logical
means. Consider, for example, the myriad of jokes on the form:

"A1 Dane, a2 Swede, and a3 Norwegian enter a bar. The1 Swede says..."

With slight modifications, the sentence becomes a member of the language of
∆:
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"A Dane enters a bar. A Norwegian enters it. A Swede enters it. The Swede
owns a donkey."

Translated, the sentence becomes:

Ev1.Ev2.Ev3.Ev4.Ev5.(((((dane v1) & ((bar v2) & ((enters v2) v1))) &
((norwegian v3) & ((enters v2) v3))) & ((swede v4) & ((enters v2) v4))) &

((swede v1) & ((donkey v5) & ((owns v5) v1))))

Hence, the program claims that v1 is simultaneously Danish and Swedish!

In some cases, the information needed to glean the identity of a referent might lie
with verb phrases and not noun phrases. Contrast the following two sentences:

"Carl1 poisoned Bob2. He2 died within a3 week."
"Carl1 poisoned Bob2. He1 was arrested within a3 week."

Rather than the aforementioned naive approach, it is likely that a solution can
be found by inspecting the non-deictic content of the sentence. As such, some
form of inference is necessary.

As pointed out by Allen [All95, p. 465-467], logical consistency is not the
desired property - rather, a notion of coherence should be introduced. Several
attempts at defining coherency are given, along with possible approaches to
determine whether the property holds. [All95, p. 467-495]

Early in the design process, the intention was to include inference as the primary
means of filtering. I imagined coupling the existing program with a deduction
system based on the Isabelle theorem prover (see [PNW13]) and one of the
strategies given by Allen.

Through empiric observation, I determined that - for the limited dictionary
- filtering beyond name, gender, and syntax added little value. Furthermore,
the examples where logical filtering is necessary mostly require encyclopaedic
semantics to some extend. However, should the dictionary be expanded in that
capacity, I believe it would prove highly interesting to explore logical filtering
strategies.
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8.3 A Little Help From Statistics

The primary purpose of this project is to translate and validate already paired
sentences and coindexings. Generation of indexings is a secondary issue, and as
such has only been superficially addressed.

Consider the relatively simple sentence "a1 man sleeps. a2 farmer sleeps. hex
talks". There are two possible values for x. Both readings are semantically
coherent. As such, the issue lies with the generation of indexings. The problem
is solved through the intuition that a nearer generator (x = 2) is more likely.
This suggests that a probability-based algorithm would be well-suited.

In recent years, machine learning methods has produced very successful solutions
for generating indexings. Based on Expectation Maximization, coindexings can
be generated with success rates in the vicinity of 80% [GHC98].

It is my opinion that a combination of a statistical generation-procedure and
the logical translation- and validation-procedure could outperform either of the
two alone, as the strengths of each approach counterbalance the weaknesses of
the other.

Furthermore, while a combination of encyclopaedic semantics and logical filter-
ing can to some extend address the problem of semantic ambiguity, syntactic
ambiguity remains an issue. Utilizing statistical methods to choose between
parse trees when multiple possibilities exist may lead to better results.

8.4 Other Improvements

Since the implemented algorithms serve merely to demonstrate a strategy, some
are severely lacking in efficiency. Most glaring amongst these is the parser. As
shown by Moot and Retoré, the CYK algorithm used for parsing context-free
grammars can be adapted to produce an efficient parser for categorial grammars.
[MR12]

Efficiency aside, improvements upon the strategy mainly expands in two direc-
tions: Additional words, and additional filters. Naturally, the two correlate -
more complex languages require more complex filters. Should the dictionary
expand to much larger size, it might be desirable to further study encyclopaedic
semantics.
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Immediately springing to mind are plurals, which in the way of filtering behave
much like genders. Furthermore, plurals present an interesting opportunity to
explore more complex anaphoric relationships. A similar case could be made for
possessive pronouns, tenses and the passive form. Another avenue to explore
is the notion of possible worlds, represented by words such as believe, think or
know.

Finally, a strategy for resolving cataphoric references could be implemented
- perhaps based on grammatical transformations, as presented by Chomsky.
[Cho93]
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Chapter 9

Conclusion

I have presented a formal logical method for semantic translation and anaphora
resolution, largely based on the combination of Discourse Representation Theory
and Montague Semantics applied by Reinhard Muskens in Anaphora and the
Logic of Change.

I have designed a proof-of-concept implementation for the PolyML-language,
demonstrating the theoretical groundwork. As discussed in the previous chapter,
the resulting program performs well, although limited to a small set of the
English sentences.

I have shown how the strategy can be expanded to include further definitions of
syntactic classes, eventually covering a large set of the grammatical sentences
of an ordinary language. For the best result, the method should be combined
with a complementing statistical theory, such as those presented by Charniak
and many others. Finally, I have illustrated several areas of interest into which
future work could expand the strategy.
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Appendix A

Source Code

(*------------------------------------------------------------------*)
(* Definitions for various structures, constants, etc.: *)
(*------------------------------------------------------------------*)

(*Exceptions:*)
exception UnknownWord
exception UngrammaticalSentence
exception Type
exception WrongfulIndexing
exception DerivationException
exception RuntimeError
exception NoViableIndexing

(*Datatype declarations:*)
(*Categorial Grammar:*)
datatype Category =

E
| S
| \ of Category*Category
| / of Category*Category

infixr \;
infixr /;

(*Abbreviations*)
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val VP = S / E;
val N = S \ E;
val NP = S / VP;

(*Static categories referenced by dictionary:*)
val noun = N;
val article = NP/N;
val verb_intransitive = VP;
val verb_monotransitive = VP/NP;
val proper_noun = NP;
val adjective = N/N
val pronoun = NP;
val conjunction = S\(S/S);

(*Logical Expressions:*)
datatype Term =

Var of string
| Abs of string*Term
| App of Term*Term
| Exists of string*Term
| Forall of string*Term
| Store of int*string
| Conj of Term*Term
| Eq of Term*Term
| Differs of int list*string*string
| Not of Term
| Disj of Term*Term
| Tr

(*Other datatypes:*)
datatype Token = T of string*Category*Term
datatype ParseTree =

Fail
| Leaf of Category*Token
| Node of Category*ParseTree*ParseTree;

(*Counter for variable naming:*)
val counter = ref 0;
fun increment x = (counter := ((!counter) +x))

fun get_new_var () =
let

val void = increment 1
in

concat ["v", (Int.fmt (StringCvt.DEC) (!counter))]
end
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fun reset_var_counter () = (counter := 0)

(*------------------------------------------------------------------*)
(* Various generic functions: *)
(*------------------------------------------------------------------*)
(*True if list contains s, false otherwise*)
fun contains [] s = false
| contains (x::xs) s = (x=s) orelse (contains xs s)

fun print_term (Var(s)) = s
| print_term (Tr) = "T"
| print_term (Abs(s, t)) = concat ["L",s,".",(print_term t)]
| print_term (App(t1, t2)) = concat ["(", (print_term t1), " ",

(print_term t2), ")"]
| print_term (Conj(t1, t2)) = concat ["(", (print_term t1), " & ",

(print_term t2), ")"]
| print_term (Disj(t1, t2)) = concat ["(", (print_term t1), " | ",

(print_term t2), ")"]
| print_term (Exists(s, t)) = concat ["E",s,".",(print_term t)]
| print_term (Forall(s, t)) = concat ["A",s,".",(print_term t)]
| print_term (Store(i, x)) = concat ["S(",(Int.fmt (StringCvt.DEC)

i),",",x,")"]
| print_term (Eq(t1, t2)) = concat ["(", (print_term t1), " = ",

(print_term t2), ")"]
| print_term (Differs(l, x1, x2)) = concat [x1,"[",print_list l,"]",

x2]
| print_term (Not(t)) = concat ["~", (print_term t)]

and print_list [] = ""
| print_list [x] = (Int.fmt (StringCvt.DEC) x)
| print_list (x::t) = concat [(Int.fmt (StringCvt.DEC) x), ",",

print_list t]

(*Determines whether a given sentence is grammatical and converts it to
a term:*)

fun to_term Fail = raise UngrammaticalSentence
| to_term (Leaf(_, T(_, _, t))) = t
| to_term (Node(_, t1, t2)) = App((to_term t1), (to_term t2))

(*Prints a derivation tree:*)
fun print_tree Fail = "fail"
| print_tree (Leaf(_, T(s,_,_))) = s
| print_tree (Node(_, t1, t2)) = concat ["(", print_tree t1, ",",

print_tree t2, ")"];

(*Static terms referenced by dictionary*)
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fun apply_content x =
let

val v1 = get_new_var()
val v2 = get_new_var()

in
Abs(v1, Exists(v2, App(App(x, Var(v1)), Var(v2))))

end

fun pronoun_term gender =
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()

in
Abs(v1, Abs(v2, Abs(v3, Conj(App(gender, Store(0,

v2)),App(App(App(Var(v1), Store(0, v2)), Var(v2)),
Var(v3))))))

end

fun verb_intransitive_term x =
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()

in
Abs(v1, Abs(v2, Abs(v3, Conj(App(Var(x), Var(v1)), Eq(Var(v2),

Var(v3))))))
end

fun verb_monotransitive_term x =
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()

in
Abs(v1,Abs(v2,App(Var(v1),Abs(v3,Abs(v4, Abs(v5,

Conj(App(App(Var(x),Var(v3)),Var(v2)), Eq(Var(v4),
Var(v5)))))))))

end

fun proper_noun_term x gender =
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
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in
Abs(v1, Abs(v2, Abs(v3, Conj(Eq(Store(0, v2), Var(x)),

Conj(App(gender, Store(0, v2)),App(App(App(Var(v1),
Store(0, v2)), Var(v2)), Var(v3)))))))

end

fun noun_term x gender =
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()

in
Abs(v1,Abs(v2,Abs(v3, Conj(App(gender, Var(v1)),

Conj(App(Var(x), Var(v1)), Eq(Var(v2), Var(v3)))))))
end

fun adjective_term x =
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()

in
Abs(v1, Abs(v2, Abs(v3, Abs(v4, Conj(App(App(App(Var(v1),

Var(v2)), Var(v3)), Var(v4)), App(Var(x), Var(v2)))))))
end

(*------------------------------------------------------------------*)
(* Functions representing the main features of the program: *)
(*------------------------------------------------------------------*)

(*Import the other files:*)
use "Structures.ml";
use "Sets.ml";
use "Dictionary.ml";
use "Lexer.ml";
use "Parser.ml";
use "Binding.ml";
use "BetaReducer.ml";
use "Simplifier.ml";
use "GenderAndNameChecker.ml";
use "Indexer.ml";
use "Postprocessor.ml";

(*Translate a sentence with generated indexing:*)
fun translate s =

let
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val void = reset_var_counter()
in

print_term (postprocess (translate_complete s))
end

(*Translate a sentence with predetermined indexing:*)
fun translate_indexed s l =

let
val void = reset_var_counter()

in
print_term (postprocess (taut_replace (resolve_equalities

(apply_to_final_term(taut_replace (extract_and_push
(resolve_equalities (beta_reduce
(apply_content(to_term(parse (apply_indexing l (lex
s)))))))))))))

end;

(*Translate a sentence without applying simplifications:*)
fun translate_plain s l =

let
val void = reset_var_counter()

in
print_term (taut_replace (resolve_equalities(beta_reduce

(apply_content(to_term(parse (apply_indexing l (lex
s))))))))

end;

(*Print the semantic representation of a single word:*)
fun meaning_of s = pr_to (tokenize s)
and pr_to (T(_,_,t)) = print_term t;

(*Import the test suite:*)
use "TestSuite.ml";

(*------------------------------------------------------------------*)
(* Functions for converting a string to a list of tokens: *)
(*------------------------------------------------------------------*)

(*Read a list of characters, converting to strings:*)
(*Reading a space:*)
fun read_char_list s (#" "::t) =

if s = [] then (read_char_list [] t)
else (implode s)::(read_char_list [] t)

(*Reading a period:*)
| read_char_list s (#"."::t) =

let



63

val rest = read_char_list [] t
in

if rest = [] then [implode s]
else (implode s)::"and"::read_char_list [] t

end
(*End of sentence:*)
| read_char_list s [] =

if s = [] then []
else [implode s]

(*Reading a letter:*)
| read_char_list s (x::t) = read_char_list (s @ [x]) t

(*Read a string, converting it to a list of words:*)
fun read_sentence s = read_char_list [] (explode s)

(*Convert a list of strings to a list of tokens:*)
fun tokenize_list [] = []
| tokenize_list (x::xs) = (tokenize x)::(tokenize_list xs)

(*Read a string, converting it to a list of tokens:*)
fun lex s = tokenize_list (read_sentence s)

(*------------------------------------------------------------------*)
(* Functions for building a derivation tree from a list of tokens. *)
(* *)
(* Note: Rather inefficient brute-force strategy. *)
(*------------------------------------------------------------------*)

(*Determine whether a derivation on two categories is possible:*)
fun deriv_cat_possible (a/b) c = if (b=c) then true else false
| deriv_cat_possible c (b\a) = if (b=c) then true else false
| deriv_cat_possible _ _ = false;

fun deriv_node_possible (Node(c1,_,_)) (Node(c2,_,_)) =
deriv_cat_possible c1 c2

| deriv_node_possible (Node(c1,_,_)) (Leaf(c2,_)) =
deriv_cat_possible c1 c2

| deriv_node_possible (Leaf(c1,_)) (Leaf(c2,_)) = deriv_cat_possible
c1 c2

| deriv_node_possible (Leaf(c1,_)) (Node(c2,_,_)) =
deriv_cat_possible c1 c2

| deriv_node_possible Fail _ = false
| deriv_node_possible _ Fail = false

(*Determine the result of a derivation on two categories:*)
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fun deriv_cat_result (a/b) (c\d) =
if (b = (c\d)) then (a, false)
else if (c = (a/b)) then (d, true)

else raise DerivationException
| deriv_cat_result (a/b) c = if (b=c) then (a, false) else raise

DerivationException
| deriv_cat_result c (b\a) = if (b=c) then (a, true) else raise

DerivationException
| deriv_cat_result _ _ = raise DerivationException;

fun deriv_node_result (Node(c1,t1,t2)) (Node(c2,t3,t4)) =
let

val (res, switch) = deriv_cat_result c1 c2
in

if switch then
Node(res, (Node(c2,t3,t4)), (Node(c1,t1,t2)))

else
Node(res, (Node(c1,t1,t2)), (Node(c2,t3,t4)))

end
| deriv_node_result (Node(c1,t1,t2)) (Leaf(c2,t3)) =

let
val (res, switch) = deriv_cat_result c1 c2

in
if switch then

Node(res, (Leaf(c2,t3)), (Node(c1,t1,t2)))
else

Node(res, (Node(c1,t1,t2)), (Leaf(c2,t3)))
end

| deriv_node_result (Leaf(c1,t1)) (Leaf(c2,t2)) =
let

val (res, switch) = deriv_cat_result c1 c2
in

if switch then
Node(res, (Leaf(c2,t2)), (Leaf(c1,t1)))

else
Node(res, (Leaf(c1,t1)), (Leaf(c2,t2)))

end
| deriv_node_result (Leaf(c1,t1)) (Node(c2,t2,t3)) =

let
val (res, switch) = deriv_cat_result c1 c2

in
if switch then

Node(res, (Node(c2,t2,t3)), (Leaf(c1,t1)))
else

Node(res, (Leaf(c1,t1)), (Node(c2,t2,t3)))
end
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| deriv_node_result _ _ = raise DerivationException

(*Determine whether a sequence of trees has a derivation:*)
fun has_derivation [] = false
| has_derivation [_] = false
| has_derivation (x::(y::tail)) =

if (deriv_node_possible x y) then true
else has_derivation (y::tail)

(*Build a list of all possible derivations of some sequence of trees:*)
fun find_derivation_list _ [] = []
| find_derivation_list _ [_] = []
| find_derivation_list l (x::(y::tail)) =

if (deriv_node_possible x y)
then (l@(((deriv_node_result x y)::tail)))::

(find_derivation_list (l@[x]) (y::tail))
else find_derivation_list (l@[x]) (y::tail)

(*Build a parse tree from a sequence of subtrees:*)
fun build_tree [] = Fail
| build_tree [Elem] = Elem
| build_tree l =

if (has_derivation l)
then try_all (find_derivation_list [] l)
else Fail

and try_all [] = Fail
| try_all (x::xs) =

let
val res = build_tree x

in
if res = Fail then try_all xs else res

end

(*Convert a list of tokens to a list of leaves containing those
tokens:*)

fun to_leaf_list [] = []
| to_leaf_list ((T(s,c,t))::xs) = (Leaf(c, T(s,c,t)))::(to_leaf_list

xs)

fun parse l = build_tree (to_leaf_list l)

(*------------------------------------------------------------------*)
(* Functions for reducing a lambda-term through beta-reduction *)
(* and alpha-conversion: *)
(*------------------------------------------------------------------*)
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(*Replace all instances of the variable s in t1 with t2:*)
fun replace (Var(x)) s t2 = if x = s then t2 else Var(x)
| replace (App(te1, te2)) s t2 = App( (replace te1 s t2), (replace

te2 s t2))
| replace (Conj(te1, te2)) s t2 = Conj( (replace te1 s t2), (replace

te2 s t2))
| replace (Disj(te1, te2)) s t2 = Disj( (replace te1 s t2), (replace

te2 s t2))
| replace (Eq(te1, te2)) s t2 = Eq( (replace te1 s t2), (replace te2

s t2))
| replace (Exists(x, t)) s t2 = Exists(x, (replace t s t2))
| replace (Abs(x, t)) s t2 = Abs(x, (replace t s t2))
| replace (Forall(x, t)) s t2 = Forall(x, (replace t s t2))
| replace (Store(i, x)) s (Var(s2)) =

if (x = s)
then Store(i, s2)
else Store(i, x)

| replace (Store(i, x)) s _ =
if (x = s)
then raise Type
else Store(i, x)

| replace (Not(t1)) s t2 = Not(replace t1 s t2)
| replace (Differs(i2, x1, x2)) s (Var(s2)) =

if s = x1 (*Note that x1 == x2 is a logical fallacy, should never
happen*)

then Differs(i2, s2, x2)
else

if s = x2
then Differs(i2, x1, s2)
else Differs(i2, x1, x2)

| replace (Differs(i2, x1, x2)) s _ =
if (x1 = s) orelse (x2 = s) then raise Type
else (Differs(i2, x1, x2))

| replace Tr _ _ = Tr

(*Recursively perform beta-reduction:*)
fun beta_reduce (App(Abs(s, t1), t2)) = beta_reduce (replace t1 s t2)
| beta_reduce (App(t1, t2)) =

let
val res = beta_reduce t1

in
if res = t1
then App(t1,t2)
else beta_reduce (App(res, t2))

end
| beta_reduce (Abs(s, t)) = Abs(s, (beta_reduce t))
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| beta_reduce (Exists(s, t)) = Exists(s, (beta_reduce t))
| beta_reduce (Forall(s, t)) = Forall(s, (beta_reduce t))
| beta_reduce (Conj(t1,t2)) = Conj((beta_reduce t1), (beta_reduce t2))
| beta_reduce (Disj(t1,t2)) = Disj((beta_reduce t1), (beta_reduce t2))
| beta_reduce (Not(t)) = Not(beta_reduce t)
| beta_reduce x = x;

(*------------------------------------------------------------------*)
(* Functions for generating and applying an indexing: *)
(*------------------------------------------------------------------*)

(*Assigns store i to the term:*)
fun assign i (Store(_, s)) = Store(i,s)
| assign i (Abs(s, t)) = Abs(s, (assign i t))
| assign i (Exists(s, t)) = Exists(s, (assign i t))
| assign i (Forall(s, t)) = Forall(s, (assign i t))
| assign i (App(t1, t2)) = (App((assign i t1), (assign i t2)))
| assign i (Conj(t1, t2)) = (Conj((assign i t1), (assign i t2)))
| assign i (Var(s)) = Var(s)
| assign i (Eq(t1, t2)) = (Eq((assign i t1), (assign i t2)))
| assign i (Differs(_, s1, s2)) = Differs([i],s1, s2)
| assign i (Not(t)) = Not(assign i t)
| assign i (Disj(t1, t2)) = (Disj((assign i t1), (assign i t2)))
| assign _ Tr = Tr

(*Determines whether the given category warrants an assignment:*)
fun should_assign x = (x = NP) orelse (x = (NP/N))

(*Applies an indexing on list format:*)
fun apply_indexing _ [] = []
| apply_indexing [] ((T(s, c, t))::ys) =

if (should_assign c)
then raise WrongfulIndexing
else (T(s, c, t))::(apply_indexing [] ys)

| apply_indexing (x::xs) ((T(s, c, t))::ys) =
if (should_assign c)
then (T(s, c, assign x t))::(apply_indexing xs ys)
else (T(s, c, t))::(apply_indexing (x::xs) ys)

val current = ref []
val index_counter = ref 1

fun add_first l i max =
if (contains l i) then
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let
val void1 = current := ((!current)@[!index_counter])
val void2 = index_counter := 1 + !index_counter

in
if i = max then ()
else add_first l (i+1) max

end
else

let
val void = current := ((!current)@[1])

in
if i = max then ()
else add_first l (i+1) max

end

fun set_first i l =
let

val void1 = current := []
val void2 = index_counter := 1

in
add_first l 1 i

end

fun next_list i (h::t) l len =
if (contains l len)
then h::(next_list i t l (len+1))
else

if h = i
then 1::(next_list i t l (len+1))
else (h+1)::t

| next_list _ [] _ _ = []

fun has_next_list i (x::xs) l len =
if (i=1) then false
else if (x <> i) andalso (not(contains l len)) then true
else has_next_list i xs l (len+1)

| has_next_list _ [] _ _ = false

fun recurse_generate e l=
if (has_next_list e (!current) l 1)
then

let
val void = current := (next_list e (!current) l 1)

in
(!current)::(recurse_generate e l)

end
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else []

fun generate_possibilities indexes entities l =
let

val void = set_first indexes l
in

(!current)::(recurse_generate entities l)
end

fun require_lock "a" = true
| require_lock "every" = true
| require_lock "no" = true
| require_lock s = contains proper_noun_list s

fun new_index "a" = true
| new_index "every" = true
| new_index "no" = true
| new_index "alice" = true
| new_index "bob" = true
| new_index "carl" = true
| new_index "denise" = true
| new_index "alex" = true
| new_index "the" = true
| new_index "he" = true
| new_index "she" = true
| new_index "it" = true
| new_index "himself" = true
| new_index "herself" = true
| new_index "itself" = true
| new_index "him" = true
| new_index "her" = true
| new_index _ = false;

fun get_indexes ((T(s,_,_))::xs) =
if new_index s then 1 + (get_indexes xs)
else (get_indexes xs)

| get_indexes [] = 0

fun locked_indexes i ((T(s,_,_))::xs) =
if require_lock s then i::(locked_indexes (i+1) xs)
else

if new_index s then (locked_indexes (i+1) xs)
else (locked_indexes (i) xs)

| locked_indexes i [] = []
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fun try_translate _ [] = raise NoViableIndexing
| try_translate l (x::xs) =

let
val tree = parse (apply_indexing x l)

in
if (government_binding tree) then
let

val fin = simplify (beta_reduce (apply_content(to_term
tree)))

in
if (name_check fin) andalso (gender_check fin) then fin
else try_translate l xs

end
else try_translate l xs

end

fun translate_complete s =
let

val token_list = (lex s)
val i = get_indexes token_list

in
(try_translate token_list (generate_possibilities i i

(locked_indexes 1 token_list) ))
end

(*------------------------------------------------------------------*)
(* Functions for pushing negations downwards and extracting *)
(* quantors, putting an expression on negation normal form: *)
(*------------------------------------------------------------------*)

(*Negation not present:*)
fun push_negations (Abs(s,x)) = Abs(s, push_negations x)
| push_negations (Conj(t1,t2)) = Conj(push_negations

t1,push_negations t2)
| push_negations (Disj(t1,t2)) = Disj(push_negations

t1,push_negations t2)
| push_negations (Exists(s,x)) = Exists(s, push_negations x)
| push_negations (Forall(s,x)) = Forall(s, push_negations x)

(*Double negation cancelled:*)
| push_negations (Not(Not(t))) = push_negations t

(*Negated quantors:*)
| push_negations (Not(Exists(s,x))) = Forall(s, push_negations

(Not(x)))
| push_negations (Not(Forall(s,x))) = Exists(s, push_negations

(Not(x)))
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(*De Morgan’s Laws:*)
| push_negations (Not((Disj(t1,t2)))) = Conj(push_negations

(Not(t1)),push_negations (Not(t2)))
| push_negations (Not((Conj(t1,t2)))) = Disj(push_negations

(Not(t1)),push_negations (Not(t2)))

(*Other cases:*)
| push_negations x = x

(* Finds a removes the next quantifier.
** Returns a triple consisting of a number representing whether it is
** existential or universal, the name of the variable,
** and the resulting term:*)
fun next_quantifier (Exists(s, t)) = (1, s, t)
| next_quantifier (Forall(s, t)) = (2, s, t)
| next_quantifier (Not(t)) =

let
val (x,y,z) = next_quantifier t

in
(x,y, Not(z))

end
| next_quantifier (Conj(t1,t2)) =

let
val (x1,y1,z1) = next_quantifier t1

in
(*Try to find quantifier in lhs:*)
if (x1 <> 0)
then (x1, y1, Conj(z1, t2))
else

(*Try to find quantifier in rhs:*)
let

val (x2, y2, z2) = next_quantifier t2
in

(x2, y2, Conj(t1, z2))
end

end
| next_quantifier (Disj(t1,t2)) =

let
val (x1,y1,z1) = next_quantifier t1

in
(*Try to find quantifier in lhs:*)
if (x1 <> 0)
then (x1, y1, Disj(z1, t2))
else

(*Try to find quantifier in rhs:*)
let
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val (x2, y2, z2) = next_quantifier t2
in

(x2, y2, Disj(t1, z2))
end

end
| next_quantifier x = (0, "", x)

(*Checks if a term contains a quantifier:*)
fun has_next_quantifier (Forall(_,_)) = true
| has_next_quantifier (Exists(_,_)) = true
| has_next_quantifier (Conj(t1, t2)) = (has_next_quantifier t1)

orelse (has_next_quantifier t2)
| has_next_quantifier (Disj(t1, t2)) = (has_next_quantifier t1)

orelse (has_next_quantifier t2)
| has_next_quantifier (Not(t)) = (has_next_quantifier t)
| has_next_quantifier _ = false

(*Extract all quantifiers to the topmost level of a term:*)
fun extract_quantifiers t =

(*Do nothing if the term contains no quantifiers:*)
if (not(has_next_quantifier t)) then t
else

let
val (typ, var, res) = next_quantifier t

in
if (typ = 1) then Exists(var, extract_quantifiers res)
else if (typ = 2) then Forall(var, extract_quantifiers res)

else raise RuntimeError
end

(*Puts a term on negation normal form:*)
fun nnf (Abs(s,t)) = Abs(s, (push_negations t))

(*------------------------------------------------------------------*)
(* Resolve variable equalities within a term: *)
(*------------------------------------------------------------------*)

(*Find the set of variables equal to x within a term:*)
fun find_equality x (Eq(Var(s1), Var(s2))) =

if ((x = s1) andalso (s1 <> s2)) then singleton s2 else
if ((x = s2) andalso (s1 <> s2)) then singleton s1 else

empty_set
| find_equality x (Conj(t1, t2)) = set_union (find_equality x t1)

(find_equality x t2)
| find_equality x (Exists(_, t)) = find_equality x t
| find_equality x (Forall(_, t)) = find_equality x t
| find_equality x (Disj((Not(t1)), t2)) = set_union (find_equality x
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t1) (find_equality x t2)
| find_equality x (Disj(t1, Not(t2))) = set_union (find_equality x

t1) (find_equality x t2)
| find_equality x (Disj(t1, t2)) = set_union (find_equality x t1)

(find_equality x t2)
| find_equality _ _ = empty_set

fun replace_all (x::xs) v s = replace v s (Var(x))
| replace_all [] v s = v

(*Resolve state equalities:*)
fun resolve_equalities (Abs(s, t)) = Abs(s, resolve_equalities t)
| resolve_equalities (Exists(s, t)) =

let
val v = resolve_equalities t
val q = find_equality s v

in
if q <> empty_set then (replace_all q v s )
else Exists(s,v)

end
| resolve_equalities (Forall(s, t)) =

let
val v = resolve_equalities t
val q = find_equality s v

in
if q <> empty_set then (replace_all q v s )
else Forall(s,v)

end
| resolve_equalities (Disj(t1, t2)) = Disj(resolve_equalities t1,

resolve_equalities t2)
| resolve_equalities (Conj(t1, t2)) = Conj(resolve_equalities t1,

resolve_equalities t2)
| resolve_equalities (Not(t)) = Not(resolve_equalities t)
| resolve_equalities x = x;

(*------------------------------------------------------------------*)
(* Remove tautological statements from expressions: *)
(*------------------------------------------------------------------*)

(*Replaces tautological expressions with Tr:*)
fun taut_replace (Eq(t1, t2)) = if t1 = t2 then Tr else (Eq(t1, t2))
| taut_replace (Conj(t1, t2)) =

let
val left = taut_replace t1
val right = taut_replace t2

in
if left = Tr then right
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else if right = Tr then left
else if (left = Not(Tr)) orelse (right = Not(Tr))

then Not(Tr)
else (Conj(left, right))

end
| taut_replace (Disj(t1, t2)) =

let
val left = taut_replace t1
val right = taut_replace t2

in
if left = Tr orelse right = Tr then Tr
else if left = Not(Tr) then right

else if right = Not(Tr) then left
else Disj(left, right)

end
| taut_replace (Not(t)) =

let
val inner = taut_replace t

in
if (inner = Not(Tr)) then Tr
else Not(inner)

end
| taut_replace (Exists(s,t)) = Exists(s, taut_replace t)
| taut_replace (Forall(s,t)) = Forall(s, taut_replace t)
| taut_replace (Abs(s,t)) = Abs(s, taut_replace t)
| taut_replace x = x

(*------------------------------------------------------------------*)
(* Set a term up for Unselective Binding Lemma application: *)
(*------------------------------------------------------------------*)

(*Returns the next existential successor to a variable:*)
fun existential_successor (Differs([i], s1, s2)) var = if s1 = var then

(i, s2) else (0,"")
| existential_successor (Conj(t1,t2)) var =

let
val left = existential_successor t1 var

in
if left <> (0, "") then left
else existential_successor t2 var

end
| existential_successor (Disj(t1,t2)) var =

let
val left = existential_successor t1 var
val right = existential_successor t2 var

in
if left <> (0,"") andalso left = right then left
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else (0, "")
end

| existential_successor (Exists(s, t)) var = existential_successor t
var

| existential_successor (Forall(s, t)) var = existential_successor t
var

| existential_successor _ _ = (0, "")

(*Returns the next universal successor to a variable:*)
fun universal_successor (Not(Differs([i], s1, s2))) var = if s1 = var

then (i, s2) else (0,"")
| universal_successor (Conj(t1,t2)) var =

let
val left = universal_successor t1 var
val right = universal_successor t1 var

in
if left <> (0,"") andalso left = right then left
else (0, "")

end
| universal_successor (Disj(t1,t2)) var =

let
val left = universal_successor t1 var

in
if left <> (0, "") then left
else universal_successor t2 var

end
| universal_successor (Exists(s, t)) var = universal_successor t var
| universal_successor (Forall(s, t)) var = universal_successor t var
| universal_successor _ _ = (0, "")

(*Removes the first part of every tuple in a list:*)
fun purge_first [] = []
| purge_first ((x,y)::t) = y::(purge_first t)

(*Removes the second part of every tuple in a list:*)
fun purge_second [] = []
| purge_second ((x,y)::t) = x::(purge_second t)

(*Get the last element of a list:*)
fun get_last [] = raise RuntimeError
| get_last [x] = x
| get_last (_::xs) = get_last xs

(*Get all elements but the last of a list:*)
fun all_but_last [] = raise RuntimeError
| all_but_last [x] = []
| all_but_last (x::xs) = x::(all_but_last xs)



76 Source Code

(*Removes all quantifiers contained in a list from an expression:*)
fun remove_quantifiers (Exists(s, t)) l =

if contains l s then remove_quantifiers t l
else Exists(s, remove_quantifiers t l)

| remove_quantifiers (Forall(s, t)) l =
if contains l s then remove_quantifiers t l
else Forall(s, remove_quantifiers t l)

| remove_quantifiers (Conj(t1, t2)) l = Conj(remove_quantifiers t1 l,
remove_quantifiers t2 l)

| remove_quantifiers (Disj(t1, t2)) l = Disj(remove_quantifiers t1 l,
remove_quantifiers t2 l)

| remove_quantifiers (Not(t)) l = Not(remove_quantifiers t l)
| remove_quantifiers x _ = x

(*Replace all difference-terms concerning the given list of states with
true:*)

fun remove_diff (Differs(i, s1, s2)) l = if (contains l s2) then Tr
else (Differs(i, s1, s2))

| remove_diff (Conj(t1, t2)) l = (Conj(remove_diff t1 l, remove_diff
t2 l))

| remove_diff (Disj(t1, t2)) l = (Disj(remove_diff t1 l, remove_diff
t2 l))

| remove_diff (Exists(s,t)) l = Exists(s, remove_diff t l)
| remove_diff (Forall(s,t)) l = Forall(s, remove_diff t l)
| remove_diff (Not(t)) l = Not(remove_diff t l)
| remove_diff x _ = x

(*True if i occurs before s in a list of pairs:*)
fun earlier i1 s1 ((i2, s2)::tail) =

if i1 = i2 then true
else if s1 = s2 then false

else earlier i1 s1 tail
| earlier _ _ [] = false

(*True if s1 occurs as a secondary item in a pair in a list*)
fun contains_state s1 ((_, s2)::tail) = if s1 = s2 then true else

contains_state s1 tail
| contains_state _ [] = false

fun first_state ((_, s)::_) = s
| first_state [] = raise RuntimeError

fun last_state [(_, s)] = s
| last_state (x::xs) = last_state xs
| last_state [] = raise RuntimeError



77

(*Push stores forward or backward:*)
fun push_stores (Store(i, s)) mapping top_var =

if (contains_state s mapping) then
if (earlier i s mapping) then (Store(i, last_state mapping))
else (Store(i, top_var))

else (Store(i, s))
| push_stores (Differs(l, s1, s2)) mapping top_var =

if (contains_state s1 mapping) then Differs(l, last_state
mapping, s2)

else (Differs(l, s1, s2))
| push_stores (Conj(t1, t2)) mapping top_var = (Conj(push_stores t1

mapping top_var, push_stores t2 mapping top_var))
| push_stores (App(t1, t2)) mapping top_var = (App(push_stores t1

mapping top_var, push_stores t2 mapping top_var))
| push_stores (Exists(s,t)) mapping top_var = Exists(s, push_stores t

mapping top_var)
| push_stores (Forall(s,t)) mapping top_var = Forall(s, push_stores t

mapping top_var)
| push_stores (Disj(t1, t2)) mapping top_var = (Disj(push_stores t1

mapping top_var, push_stores t2 mapping top_var))
| push_stores (Not(t)) mapping top_var = Not(push_stores t mapping

top_var)
| push_stores (Eq(t1, t2)) mapping top_var = (Eq(push_stores t1

mapping top_var, push_stores t2 mapping top_var))
| push_stores x _ _ = x

(*Returns true if the given variable is existentially quantified:*)
fun exist_quant s (Exists(s2, t)) = if s = s2 then true else

exist_quant s t
| exist_quant s (Forall(s2, t)) = exist_quant s t
| exist_quant s (Conj(t1,t2)) = (exist_quant s t1) orelse

(exist_quant s t2)
| exist_quant s (Disj(t1,t2)) = (exist_quant s t1) orelse

(exist_quant s t2)
| exist_quant _ _ = false

(*Returns true if the given variable is universally quantified:*)
fun forall_quant s (Forall(s2, t)) = if s = s2 then true else

forall_quant s t
| forall_quant s (Exists(s2, t)) = forall_quant s t
| forall_quant s (Conj(t1,t2)) = (forall_quant s t1) orelse

(forall_quant s t2)
| forall_quant s (Disj(t1,t2)) = (forall_quant s t1) orelse

(forall_quant s t2)
| forall_quant _ _ = false
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(*Determine existential and universal successors to a state:*)
fun existential_successor_list term var used_stores =

let
val (store, state) = existential_successor term var

in
if (store <> 0) andalso (exist_quant state term) andalso

(not(contains used_stores store))
then (store, state)::(existential_successor_list term state

(store::used_stores))
else []

end

fun universal_successor_list term var used_stores =
let

val (store, state) = universal_successor term var
in

if (store <> 0) andalso (forall_quant state term) andalso
(not(contains used_stores store))

then (store, state)::(universal_successor_list term state
(store::used_stores))

else []
end

(*Extract state information, push stores:*)
fun extract_and_push_recurse term top_var =

let
val mapping = existential_successor_list term top_var []

in
(*If an existential successor exists:*)
if mapping <> [] then

let
val state_list = purge_first mapping
val last = last_state mapping
val after_push = push_stores term mapping top_var
val rest = extract_and_push_recurse

(remove_quantifiers (remove_diff after_push
state_list) state_list) last

in
Exists(last, Conj(Differs(purge_second mapping,

top_var, last), rest))
end

(*If a universal successor exists:*)
else

let
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val mapping = universal_successor_list term top_var []
in

if mapping <> [] then
let

val state_list = purge_first mapping
val last = last_state mapping
val after_push = push_stores term mapping

top_var
val rest = extract_and_push_recurse

(remove_quantifiers (remove_diff after_push
state_list) state_list) last

in
Forall(last, Disj(Not(Differs(purge_second

mapping, top_var, last)), rest))
end

(*If no successor can be found yet:*)
else

continue term top_var
end

end

and continue (Conj(t1, t2)) top_var = Conj(extract_and_push_recurse t1
top_var, extract_and_push_recurse t2 top_var)

| continue (Disj(t1, t2)) top_var = Disj(extract_and_push_recurse t1
top_var, extract_and_push_recurse t2 top_var)

| continue (Not(t)) top_var = Not(extract_and_push_recurse t top_var)
| continue (Exists(s,t)) top_var = Exists(s, extract_and_push_recurse

t top_var)
| continue (Forall(s,t)) top_var = Forall(s, extract_and_push_recurse

t top_var)
| continue x top_var = x

fun extract_and_push (Abs(s,t)) = Abs(s, (extract_and_push_recurse t s))

(*------------------------------------------------------------------*)
(* Apply Unselective Binding Lemma to a term: *)
(*------------------------------------------------------------------*)

(*Generates a list of new variables from a list of integers:*)
fun generate_var_list [] = []
| generate_var_list (x::xs) = (x, get_new_var())::(generate_var_list

xs)

(*Checks if a term is a difference-expression. Returns list of new
variables if yes.*)

fun gather_vars (Differs(i, s1, s2)) s4 =
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if (s2 = s4) then generate_var_list i
else []

| gather_vars _ _ = []

(*Adds a bunch of existential quantifiers to a term:*)
fun add_existential_quantifiers t (x::xs) = Exists(x,

(add_existential_quantifiers t xs))
| add_existential_quantifiers t [] = t

(*Adds a bunch of universal quantifiers to a term:*)
fun add_universal_quantifiers t (x::xs) = Forall(x,

(add_universal_quantifiers t xs))
| add_universal_quantifiers t [] = t

(*Find the variable corresponding to a given integer in a list. Raises
exception if not found.*)

fun find_corresponding _ [] = "WHY"
| find_corresponding i ((x1, x2)::xs) = if i = x1 then x2 else

find_corresponding i xs

(*Replaces all store references corresponding to a state with variables
from a list:*)

fun replace_stores (Store(i, s1)) s2 l =
if s1 = s2 then Var(find_corresponding i l)
else (Store(i, s1))

| replace_stores (Conj(t1,t2)) s l = (Conj(replace_stores t1 s
l,replace_stores t2 s l))

| replace_stores (Disj(t1,t2)) s l = (Disj(replace_stores t1 s
l,replace_stores t2 s l))

| replace_stores (Not(t1)) s l = (Not(replace_stores t1 s l))
| replace_stores (App(t1,t2)) s l = (App(replace_stores t1 s

l,replace_stores t2 s l))
| replace_stores (Eq(t1,t2)) s l = (Eq(replace_stores t1 s

l,replace_stores t2 s l))
| replace_stores (Exists(s1,t)) s l = (Exists(s1, replace_stores t s

l))
| replace_stores (Forall(s1,t)) s l = (Forall(s1, replace_stores t s

l))
| replace_stores x _ _ = x

(*Apply unselective binding lemma to a term in PLs:*)
fun apply_binding_lemma (Exists(s,Conj(t1, t2))) =

let
val store_list = gather_vars t1 s

in
if store_list <> []
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then add_existential_quantifiers (apply_binding_lemma
(replace_stores t2 s (store_list)) ) (purge_first
store_list)

else (Exists(s,Conj(t1, apply_binding_lemma t2 )))
end

| apply_binding_lemma (Forall(s,Disj(Not(t1), t2))) =
let

val store_list = gather_vars t1 s
in

if store_list <> []
then add_universal_quantifiers (apply_binding_lemma

(replace_stores t2 s (store_list)) ) (purge_first
store_list)

else (Forall(s,Disj(Not(t1), apply_binding_lemma t2 )))
end

| apply_binding_lemma (Conj(t1,t2)) = (Conj(apply_binding_lemma t1 ,
apply_binding_lemma t2 ))

| apply_binding_lemma (Disj(t1,t2)) = (Disj(apply_binding_lemma t1 ,
apply_binding_lemma t2 ))

| apply_binding_lemma (Not(t)) = (Not(apply_binding_lemma t ))
| apply_binding_lemma x = x

fun has_corresponding [] _ = false
| has_corresponding ((x,_)::xs) (y,z) = (x = y) orelse

(has_corresponding xs (y,z))

fun merge [] l = l
| merge (x::xs) l = if has_corresponding l x then merge xs l else

merge xs (x::l)

(*Gather the names and numbers of all stores used in the initial
state:*)

fun gather_initial_stores s (Store(i, s2)) = if s = s2 then [(i,
get_new_var())] else []

| gather_initial_stores s (Conj(t1, t2)) = merge
(gather_initial_stores s t1) (gather_initial_stores s t2)

| gather_initial_stores s (Disj(t1, t2)) = merge
(gather_initial_stores s t1) (gather_initial_stores s t2)

| gather_initial_stores s (App(t1, t2)) = merge
(gather_initial_stores s t1) (gather_initial_stores s t2)

| gather_initial_stores s (Eq(t1, t2)) = merge (gather_initial_stores
s t1) (gather_initial_stores s t2)

| gather_initial_stores s (Not(t)) = gather_initial_stores s t
| gather_initial_stores s (Exists(_,t)) = gather_initial_stores s t
| gather_initial_stores s (Forall(_,t)) = gather_initial_stores s t
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| gather_initial_stores s _ = []

(*Apply unselective binding lemma to a term of the type s -> t. Will
produce non-deictic content.*)

fun apply_to_final_term (Abs(s, t)) =
let

val store_list = gather_initial_stores s t
in

if store_list <> []
then add_existential_quantifiers (apply_binding_lemma

(replace_stores t s (store_list)) ) (purge_first
store_list)

else apply_binding_lemma t
end

fun simplify t = (taut_replace (resolve_equalities
(apply_to_final_term(taut_replace (extract_and_push(nnf
(resolve_equalities t)))))))

(*------------------------------------------------------------------*)
(* Functions implementing filters on gender and name: *)
(*------------------------------------------------------------------*)

(*Recursively check that no proper noun is used to refer to two
different entities:*)

fun name_check_inner quant_var (Eq(Var(v1), Var(v2))) = if
(not(contains quant_var v1)) andalso (not(contains quant_var v2))
then false else true

| name_check_inner quant_var (Exists(s, t)) = name_check_inner
(s::quant_var) t

| name_check_inner quant_var (Forall(s, t)) = name_check_inner
(s::quant_var) t

| name_check_inner quant_var (Abs(s, t)) = name_check_inner
(s::quant_var) t

| name_check_inner quant_var (Disj(t1, t2)) = (name_check_inner
quant_var t1) andalso (name_check_inner quant_var t2)

| name_check_inner quant_var (Conj(t1, t2)) = (name_check_inner
quant_var t1) andalso (name_check_inner quant_var t2)

| name_check_inner _ _ = true

fun name_check t = name_check_inner [] t;

(*Recursively check that genders are consistent in the current
interpretation:*)

fun gender_check_inner s (App(Var(x), Var(s2))) =
if (s = s2) andalso (((x = "male") orelse (x = "female")) orelse

(x = "neuter"))
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then singleton x
else ["male", "female", "neuter"]

| gender_check_inner s (App(Not(Var(x)), Var(s2))) =
if (s = s2) andalso (((x = "male") orelse (x = "female")) orelse

(x = "neuter"))
then set_minus ["male", "female", "neuter"] (singleton x)
else ["male", "female", "neuter"]

| gender_check_inner s (Conj(t1, t2)) = set_intersection
(gender_check_inner s t1) (gender_check_inner s t2)

| gender_check_inner s (Disj(t1, t2)) = set_intersection
(gender_check_inner s t1) (gender_check_inner s t2)

| gender_check_inner s (Not(t)) = (gender_check_inner s t)
| gender_check_inner s (Exists(_,t)) = (gender_check_inner s t)
| gender_check_inner s (Forall(_,t)) = (gender_check_inner s t)
| gender_check_inner s (Abs(_,t)) = (gender_check_inner s t)
| gender_check_inner s _ = ["male", "female", "neuter"]

fun gender_check_traverse (Exists(s, t)) =
let

val res = gender_check_inner s t
in

if res = empty_set then false
else gender_check_traverse t

end
| gender_check_traverse (Forall(s, t)) =

let
val res = gender_check_inner s t

in
if res = empty_set then false
else gender_check_traverse t

end
| gender_check_traverse (Conj(t1, t2)) = (gender_check_traverse t1)

andalso (gender_check_traverse t2)
| gender_check_traverse (Disj(t1, t2)) = (gender_check_traverse t1)

andalso (gender_check_traverse t2)
| gender_check_traverse (Not(t1)) = (gender_check_traverse t1)
| gender_check_traverse _ = true;

fun gender_check_proper_nouns [] t = true
| gender_check_proper_nouns (x::xs) t = ((gender_check_inner x t) <>

empty_set) andalso (gender_check_proper_nouns xs t)

fun gender_check t = (gender_check_proper_nouns proper_noun_list t)
andalso (gender_check_traverse t)
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Appendix B

Auxiliary Code

(*------------------------------------------------------------------*)
(* Implements sets and various pertaining functions: *)
(*------------------------------------------------------------------*)

(*Defining the datatype:*)
datatype ’a set = list of ’a;

val empty_set = []
fun singleton x = [x]

(*Looking up: *)
fun set_contains (h::t) elem = (h = elem) orelse (set_contains t elem)
| set_contains [] elem = false

(*Adding an element:*)
fun set_add s elem =

if (set_contains s elem) then s
else elem :: s

(*Removing an element:*)
fun set_minus [] _ = []
| set_minus (h::t) s2 =

if set_contains s2 h then set_minus t s2
else h::(set_minus t s2)
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(*Operations between sets:*)
fun set_union (h::t) s2 = set_add (set_union t s2) h
| set_union [] s2 = s2

fun set_intersection (h::t) s2 =
if set_contains s2 h then h::(set_intersection t s2)
else (set_intersection t s2)

| set_intersection [] s2 = []
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Sample Dictionary

(*------------------------------------------------------------------*)
(* Function defining the dictionary. *)
(* *)
(* Note: Genders simplified for efficiency. *)
(*------------------------------------------------------------------*)

(*Pronouns:*)
fun tokenize "he" = T("he", pronoun, (pronoun_term (Var("male"))))
| tokenize "she" = T("she", pronoun, (pronoun_term (Var("female"))))
| tokenize "him" = T("him", pronoun, (pronoun_term (Var("male"))))
| tokenize "her" = T("her", pronoun, (pronoun_term (Var("female"))))
| tokenize "it" = T("it", pronoun, (pronoun_term (Var("neuter"))))
| tokenize "himself" = T("himself", pronoun, (pronoun_term

(Var("male"))))
| tokenize "herself" = T("herself", pronoun, (pronoun_term

(Var("female"))))
| tokenize "itself" = T("itself", pronoun, (pronoun_term

(Var("neuter"))))

(*Intransitive verbs:*)
| tokenize "sleeps" = T("sleeps", verb_intransitive,

verb_intransitive_term "sleeps")
| tokenize "walks" = T("walks", verb_intransitive,

verb_intransitive_term "walks")
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| tokenize "talks" = T("talks", verb_intransitive,
verb_intransitive_term "talks")

(*Monotransitive verbs:*)
| tokenize "loves" = T("loves", verb_monotransitive,

verb_monotransitive_term "loves")
| tokenize "hates" = T("hates", verb_monotransitive,

verb_monotransitive_term "hates")
| tokenize "beats" = T("beats", verb_monotransitive,

verb_monotransitive_term "beats")
| tokenize "owns" = T("owns", verb_monotransitive,

verb_monotransitive_term "owns")
| tokenize "knows" = T("knows", verb_monotransitive,

verb_monotransitive_term "knows")
| tokenize "enters" = T("enters", verb_monotransitive,

verb_monotransitive_term "enters")

(*Proper nouns:*)
| tokenize "alice" = T("alice", proper_noun, (proper_noun_term

"alice" (Var("female"))))
| tokenize "bob" = T("bob", proper_noun, (proper_noun_term "bob"

(Var("male"))))
| tokenize "carl" = T("carl", proper_noun, (proper_noun_term "carl"

(Var("male"))))
| tokenize "denise" = T("denise", proper_noun, (proper_noun_term

"denise" (Var("female"))))
| tokenize "alex" = T("alex", proper_noun, (proper_noun_term "alex"

(Not(Var("neuter")))))

(*Common nouns:*)
| tokenize "man" = T("man", noun, (noun_term "man" (Var("male"))))
| tokenize "woman" = T("woman", noun, (noun_term "woman"

(Var("female"))))
| tokenize "farmer" = T("farmer", noun, (noun_term "farmer"

(Not(Var("neuter")))))
| tokenize "donkey" = T("donkey", noun, (noun_term "donkey"

(Var("neuter"))))
| tokenize "bastard" = T("bastard", noun, (noun_term "bastard"

(Abs(get_new_var(), Tr))))
| tokenize "animal" = T("animal", noun, (noun_term "animal"

(Var("neuter"))))
| tokenize "dane" = T("dane", noun, (noun_term "dane"

(Not(Var("neuter")))))
| tokenize "norwegian" = T("norwegian", noun, (noun_term "norwegian"

(Not(Var("neuter")))))
| tokenize "swede" = T("swede", noun, (noun_term "swede"

(Not(Var("neuter")))))
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| tokenize "bar" = T("bar", noun, (noun_term "bar" (Var("neuter"))))

(*Adjectives:*)
| tokenize "good" = T("good", adjective, adjective_term("good"))
| tokenize "bad" = T("bad", adjective, adjective_term("bad"))
| tokenize "poor" = T("poor", adjective, adjective_term("poor"))
| tokenize "lazy" = T("lazy", adjective, adjective_term("lazy"))

(*Articles:*)
| tokenize "a" = T("a",article,

let
val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()
val v6 = get_new_var()

in
Abs(v1, Abs(v2,Abs(v3,Abs(v4, Exists(v5,

Exists(v6,Conj(Differs([], v3, v5)
,Conj(App(App(App(Var(v1), Store(0, v5)), Var(v5)),
Var(v6)), App(App(App(Var(v2), Store(0, v5)), Var(v6)),
Var(v4))))))))))

end
)

| tokenize "the" = T("the",article,
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()

in
Abs(v1, Abs(v2,Abs(v3,Abs(v4, Exists(v5,

Conj(App(App(App(Var(v1), Store(0, v5)), Var(v3)),
Var(v5)), App(App(App(Var(v2), Store(0, v5)), Var(v5)),
Var(v4))))))))

end
)

| tokenize "every" = T("every",article,
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()
val v6 = get_new_var()
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val v7 = get_new_var()
in

Abs(v1, Abs(v2, Abs(v3, Abs(v4, Conj(Eq(Var(v3), Var(v4)),
Forall(v5, Forall(v6, Disj(Not(Conj(Differs([], v3, v5),
App(App(App(Var(v1), Store(0, v5)), Var(v5)), Var(v6)))),
Exists(v7, App(App(App(Var(v2), Store(0, v5)), Var(v6)),
Var(v7)))))))))))

end
)

| tokenize "no" = T("no",article,
let

val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()
val v6 = get_new_var()
val v7 = get_new_var()

in
Abs(v1, Abs(v2, Abs(v3, Abs(v4, Conj(Eq(Var(v3), Var(v4)),

Not(Exists(v5, Exists(v6, Exists(v7, Conj(Conj(Differs([],
v3, v5), App(App(App(Var(v1), Store(0, v5)), Var(v5)),
Var(v6))), App(App(App(Var(v2), Store(0, v5)), Var(v6)),
Var(v7))))))))))))

end
)

(*Conjunctions:*)
| tokenize "and" = T("and", conjunction,

let
val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()

in
Abs(v1, Abs(v2, Abs(v3, Abs(v4, Exists(v5,

Conj(App(App(Var(v1), Var(v3)), Var(v5)), App(App(Var(v2),
Var(v5)), Var(v4))))))))

end
)
| tokenize "or" = T("or", conjunction,

let
val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
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val v4 = get_new_var()
val v5 = get_new_var()
val v6 = get_new_var()

in
Abs(v1, Abs(v2, Abs(v3, Abs(v4, Conj(Eq(Var(v3), Var(v4)),

Disj(Exists(v5, App(App(Var(v1), Var(v3)), Var(v5))),
Exists(v6, App(App(Var(v2), Var(v3)), Var(v6)))))))))

end
)
| tokenize "so" = T("so", conjunction,

let
val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()
val v6 = get_new_var()

in
Abs(v1, Abs(v2, Abs(v3, Abs(v4, Conj(Eq(Var(v3), Var(v4)),

Forall(v5, Disj(Not(App(App(Var(v1), Var(v3)), Var(v5))),
Exists(v6, App(App(Var(v2), Var(v5)), Var(v6))))))))))

end
)

(*"Who" is a special case:*)
| tokenize "who" = T("who", (N \ N ) / (VP),

let
val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
val v4 = get_new_var()
val v5 = get_new_var()
val v6 = get_new_var()

in
Abs(v1, Abs(v2, Abs(v3, Abs(v4, Abs(v5, Exists(v6,

Conj(App(App(App(Var(v2), Var(v3)), Var(v4)), Var(v6)),
App(App(App(Var(v1), Var(v3)), Var(v6)), Var(v5)))))))))

end
)

(*"Is" is a special case:*)
| tokenize "is" = T("is", verb_monotransitive,

let
val v1 = get_new_var()
val v2 = get_new_var()
val v3 = get_new_var()
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val v4 = get_new_var()
val v5 = get_new_var()

in
Abs(v1,Abs(v2,App(Var(v1),Abs(v3,Abs(v4, Abs(v5,

Conj(Eq(Var(v3),Var(v2)), Eq(Var(v4), Var(v5)))))))))
end

)

(*Raise exception on unknown words:*)
| tokenize _ = raise UnknownWord

(*The indexer needs a list of all proper nouns:*)
val proper_noun_list = ["alice", "bob", "carl", "denise", "alex"]



Appendix D

Test Suite

(*------------------------------------------------------------------*)
(* Functions defining a testing environment. Thorough, albeit by *)
(* nature incomplete. *)
(*------------------------------------------------------------------*)

val examples =[
(*The detailed example used in the report:*)
("a farmer beats a donkey. the poor animal hates him",
"Ev1.Ev2.(((farmer v1) & ((donkey v2) & ((beats v2) v1))) & (((animal

v2) & (poor v2)) & ((hates v1) v2)))"),

(*The examples used by Muskens:*)
("a farmer owns a donkey. the bastard beats it",
"Ev1.Ev2.(((farmer v1) & ((donkey v2) & ((owns v2) v1))) & ((bastard

v1) & ((beats v2) v1)))"),

("every farmer who owns a donkey beats it",
"Av1.Av2.((~(farmer v1) | (~(donkey v2) | ~((owns v2) v1))) | ((beats

v2) v1))"),

(*Simple cases:*)
("a man sleeps",
"Ev1.((man v1) & (sleeps v1))"),
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("a man loves a woman",
"Ev1.Ev2.((man v1) & ((woman v2) & ((loves v2) v1)))"),

("every man sleeps",
"Av1.(~(man v1) | (sleeps v1))"),

("no man sleeps",
"Av1.(~(man v1) | ~(sleeps v1))"),

("every man loves a woman",
"Av1.(~(man v1) | Ev2.((woman v2) & ((loves v2) v1)))"),

("no man loves every woman",
"Av1.(~(man v1) | Ev2.((woman v2) & ~((loves v2) v1)))"),

(*Examples with ’who’:*)
("carl hates a farmer who owns a donkey",
"Ev1.Ev2.(((farmer v1) & ((donkey v2) & ((owns v2) v1))) & ((hates v1)

carl))"),

("a farmer who owns a donkey hates every bastard who beats the donkey",
"Ev1.Ev2.(((farmer v1) & ((donkey v2) & ((owns v2) v1))) &

Av3.((~(bastard v3) | (~(donkey v2) | ~((beats v2) v3))) | ((hates
v3) v1)))"),

("every farmer who owns a donkey hates every bastard who beats the
donkey",

"Av1.Av2.((~(farmer v1) | (~(donkey v2) | ~((owns v2) v1))) |
Av3.((~(bastard v3) | (~(donkey v2) | ~((beats v2) v3))) | ((hates
v3) v1)))"),

(*Examples with adjectives:*)
("a good man loves a bad woman",
"Ev1.Ev2.(((man v1) & (good v1)) & (((woman v2) & (bad v2)) & ((loves

v2) v1)))"),

("a bad farmer who owns a lazy donkey beats the poor animal.",
"Ev1.Ev2.((((farmer v1) & (bad v1)) & (((donkey v2) & (lazy v2)) &

((owns v2) v1))) & (((animal v2) & (poor v2)) & ((beats v2) v1)))"),

(*Examples with conjunctions:*)
("a woman sleeps and a man sleeps",
"Ev1.Ev2.(((woman v1) & (sleeps v1)) & ((man v2) & (sleeps v2)))"),



95

("every woman sleeps and every man sleeps",
"(Av1.(~(woman v1) | (sleeps v1)) & Av2.(~(man v2) | (sleeps v2)))"),

("no farmer beats a donkey or every farmer beats a donkey",
"(Av1.Av2.(~(farmer v1) | (~(donkey v2) | ~((beats v2) v1))) |

Av3.(~(farmer v3) | Ev4.((donkey v4) & ((beats v4) v3))))"),

("a farmer owns a donkey so he beats it",
"Av1.Av2.((~(farmer v1) | (~(donkey v2) | ~((owns v2) v1))) | ((beats

v2) v1))"),

("a farmer beats a donkey so the donkey hates the farmer",
"Av1.Av2.((~(farmer v1) | (~(donkey v2) | ~((beats v2) v1))) | ((donkey

v2) & ((farmer v1) & ((hates v1) v2))))"),

("a farmer owns a lazy donkey so the bastard beats it",
"Av1.Av2.((~(farmer v1) | ((~(donkey v2) | ~(lazy v2)) | ~((owns v2)

v1))) | ((bastard v1) & ((beats v2) v1)))"),

("a man loves a woman and the woman loves the man",
"Ev1.Ev2.(((man v1) & ((woman v2) & ((loves v2) v1))) & ((woman v2) &

((man v1) & ((loves v1) v2))))"),

("a man sleeps or every man sleeps",
"(Ev1.((man v1) & (sleeps v1)) | Av2.(~(man v2) | (sleeps v2)))"),

("a man sleeps or no man sleeps",
"(Ev1.((man v1) & (sleeps v1)) | Av2.(~(man v2) | ~(sleeps v2)))"),

("a man who loves a woman sleeps or a woman who loves a man sleeps",
"(Ev1.Ev2.(((man v1) & ((woman v2) & ((loves v2) v1))) & (sleeps v1)) |

Ev3.Ev4.(((woman v3) & ((man v4) & ((loves v4) v3))) & (sleeps
v3)))"),

(*Examples with proper nouns:*)
("alice loves bob.",
"((loves bob) alice)"),

("alice loves bob and bob loves alice",
"(((loves bob) alice) & ((loves alice) bob))"),

("carl hates bob. bob owns a donkey.",
"Ev1.(((hates bob) carl) & ((donkey v1) & ((owns v1) bob)))"),

("carl hates bob. carl owns a donkey.",
"Ev1.(((hates bob) carl) & ((donkey v1) & ((owns v1) carl)))"),
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("alex loves a man. she sleeps",
"Ev1.(((man v1) & ((loves v1) alex)) & (sleeps alex))"),

("alex loves a woman. he sleeps",
"Ev1.(((woman v1) & ((loves v1) alex)) & (sleeps alex))"),

("a man who loves alice owns a donkey so alice loves the donkey",
"Av1.Av2.(((~(man v1) | ~((loves alice) v1)) | (~(donkey v2) | ~((owns

v2) v1))) | ((donkey v2) & ((loves v2) alice)))"),

("alice loves every farmer who beats no donkey so alice loves bob",
"(Ev1.(((farmer v1) & Av2.(~(donkey v2) | ~((beats v2) v1))) & ~((loves

v1) alice)) | ((loves bob) alice))"),

(*Examples with ’is’:*)
("bob is a farmer",
"(farmer bob)"),

("alice loves bob. he is a good man",
"(((loves bob) alice) & ((man bob) & (good bob)))"),

("every man who is a good farmer owns a donkey",
"Av1.((~(man v1) | (~(farmer v1) | ~(good v1))) | Ev2.((donkey v2) &

((owns v2) v1)))"),

("every farmer who beats no donkey is a good farmer",
"Av1.((~(farmer v1) | Ev2.((donkey v2) & ((beats v2) v1))) | ((farmer

v1) & (good v1)))"),

("no man who is a good farmer beats a donkey",
"Av1.Av2.((~(man v1) | (~(farmer v1) | ~(good v1))) | (~(donkey v2) |

~((beats v2) v1)))"),

("no good farmer beats every donkey so bob is a bad farmer",
"(Ev1.(((farmer v1) & (good v1)) & Av2.(~(donkey v2) | ((beats v2)

v1))) | ((farmer bob) & (bad bob)))"),

(*Complicated composite cases:*)
("a farmer owns a donkey and it is a lazy bastard so the farmer beats

the donkey",
"Av1.Av2.(((~(farmer v1) | (~(donkey v2) | ~((owns v2) v1))) |

(~(bastard v2) | ~(lazy v2))) | ((farmer v1) & ((donkey v2) &
((beats v2) v1))))"),
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("bob beats no donkey so he is a good farmer",
"(Ev1.((donkey v1) & ((beats v1) bob)) | ((farmer bob) & (good bob)))"),

("no man who is a good farmer loves a woman who beats a donkey",
"Av1.Av2.Av3.((~(man v1) | (~(farmer v1) | ~(good v1))) | ((~(woman v2)

| (~(donkey v3) | ~((beats v3) v2))) | ~((loves v2) v1)))")
];

(*Try a specific test:*)
fun try_example (text, expected) = (translate text) = expected;

(*Reference to the test on which full_test failed:*)
val failed_on = ref "none";

(*Try a list of tests:*)
fun test ((h1, h2)::t) =

let
val void = failed_on := h1

in
if not((try_example (h1, h2))) then false
else (test t)

end
| test [] = true;

(*Wrapper function:*)
fun full_test () = test examples;
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