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Summary (English)

Fingerprint alteration is the procedure of attempting to change or remove char-
acteristics of ones �ngerprint in order to avoid identi�cation. Alterations can be
performed to the �ngertips by various means, such as scraping, cutting, burning
or transplanting skin. Unnatural �ngerprint patterns are commonly introduced
in altered �ngerprints.

The goal of the thesis is to propose a method to detect if a �ngerprint has been
altered or not.

The thesis includes a study on the characteristics of altered �ngerprints and
on the current state-of-the-art alteration detection algorithm. The proposed
method will take a localised approach analysing attributes and characteristics of
local areas of the �ngerprint in order to identify discrepancies and irregularities.



ii



Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in cooperation with the Nor-
wegian Biometrics Laboratory in ful�lment of the requirements for acquiring an
M.Sc. in Informatics.

The thesis deals with the problem of �ngerprint alteration. An approach for
detecting altered �ngerprints is proposed and evaluated.

The thesis consists of 10 chapters and appendixes which give a detailed de-
scription of the proposed alteration detection method together with the initial
experimental results.

Lyngby, 30-June-2013

John H. Ellingsgaard
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Chapter 1

Introduction

Flow-like patterns of ridges and valleys exists on the surface of the palms and
soles. Researchers have shown that these ridges, called friction ridges, improve
tactile sensitivity [SLPD09] and probably also assist in improving the grip of ob-
jects in moist conditions and even allow the skin to stretch more easily [WE09].

Apart from these biological bene�ts and features that aid the skin, friction ridges
also contain biometric characteristics and play an important part in biometric
recognition. This is down to the fact that the pattern of friction ridges on
each �nger is unique and immutable [JFNeb]. Even identical twins can be
distinguished based on their �ngerprints [JPP02], even though they do actually
share similarities [JPP01].

Identi�cation using �ngerprints is probably the most matured and widespread
biometric technique that currently exists. Fingerprints have a long history as a
tool for identi�cation and forensic purposes [Int05]. Technological advancement
has lead to the development of so-called Automated Fingerprint Identi�cation
Systems (AFISs) which are primarily used by border control and law enforce-
ment agencies for identi�cation purposes.

One such application is the Visa Information System (VIS) which enables Schen-
gen states to exchange visa data. The system is based on a centralised archi-
tecture. The system consists of distributed national interfaces (NI-VIS) that
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are linked together with a central information system (CS-VIS) [Com12]. The
system contains alphanumeric data as well as biometric data in the form of
�ngerprints and photographs, for identi�cation and veri�cation purposes.

Some of the purposes of VIS is to prevent visa shopping and facilitating the �ght
against fraud. However, another purpose of a border control biometrics system
is to identify individuals on a watch list [Com10]. One method used to avoid
identi�cation of such a system is to alter one's �ngerprints e.g. by obfuscating
ridge �ows by scraping, cutting or burning, or even in extreme measures using
plastic surgery [YFJ12].

The use of fake �ngers or prints are also of great concern. Extensive research
has been done on detecting fake �ngers yielding techniques such as perspiration
checks [AS09], analysing skin distortion [ACMM06] and even analysing odour
using electronic noses [BFMM05]. Unfortunately, many of the most reliable
techniques require expensive equipment which in some cases lead to require-
ments of additional policies using rudimentary methods, e.g. in Germany bor-
der control o�cers are required to look on the �ngerprint scanner and on the
�ngers of the visa holder in order to detect fake �ngers [SRBG11].

Altered �ngerprints on a real �nger are not necessarily easy to spot by a quick
glance on the �ngers of a person. Changes can be subtle to the naked eye
and would require o�cers to do a closer inspection of every �nger to positively
identify alterations.

Fake �ngers are typically used to impersonate and take on another persons
identity, while altered �ngerprints are typically to conceal ones identity in order
to avoid identi�cation.

The international standardisation project ISO/IEC 30107 [ISO12] de�nes the
Attack Presentation Characteristic (APC) which is the characteristic presented
in a sensor-based attack. Arti�cial (fake) or human-based characteristics are
the two main categories; a third category covering natural cases such as animal-
and plant-based APCs is also included for completeness.

Figure 1.1: Types of presentation attacks. Source: [ISO12].
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The two main categories have further subcategories of characteristics. Figure
1.1 gives an overview of the types of presentation attacks while examples of each
of the characteristics belonging to the two main categories are shown in Table
1.1.

Main Characteristic Example

Arti�cial
Complete gummy �nger
Partial glue on �nger

Human

Lifeless cadaver part, severed �nger/hand
Altered mutilation, surgical switching of �ngerprints
Non-Conformant tip or side of �nger
Coerced unconscious, under duress
Conformant zero e�ort impostor attempt

Table 1.1: Arti�cial and human attack presentation characteristics [ISO12].

This project will deal with the aspect of detecting altered �ngerprints. More
precisely, according to the aforementioned standard, the project concentrates on
altered, human, attack-presentation characteristics. The goal of this project is
not to identify the actual identity of an individual that has altered �ngerprints,
but instead to detect and raise an alarm if a �ngerprint is considered to be
altered.

This thesis can be structurally divided into four parts. The �rst part introduces
some characteristics of altered �ngerprints. The second part describes a chosen
state-of-the-art algorithm for detecting altered �ngerprints. The third part part
is the contribution of a proposed algorithm for detecting altered �ngerprints.
Finally the results are evaluated and discussed.
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Chapter 2

Altered Fingerprints

This chapter will describe some of the characteristics of altered �ngerprints.
More speci�cally, it will categorise the �ngerprints into three common categories;
the characteristics of each category will then be explored and analysed.

2.1 History

Fingerprints have a long history of being used for forensics and other identi�ca-
tion purposes. As the importance of the usage of �ngerprints has grown through
time and identi�cation techniques have improved, the instances of individuals
trying to deceive the system and avoid being identi�ed have become more com-
mon. Already back in 1935 H. Cummins [Cum35] published information on
three criminal cases involving altered �ngerprints. The cases were the following:

• John Dillinger applied acid to the �nger tips in order to burn and per-
manently change the �ngerprints. After his death it was determined that
careful examination of the remaining undamaged areas of the �ngerprints
would be enough to positively identify him solely on the �ngerprints.

• Gus Winkler mutilated four of his �ngerprints on the left hand, excluding
the thumb, possibly by the combination of slashing and deeply scraping.
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He was actually successful in changing his pattern type from double loop
to left loop (see Figure 2.1).

• Jack Klutas unsuccessfully tried to evade identi�cation by slashing his
�nger tips.

(a) Before mutilation (b) After mutilation

Figure 2.1: Gus Winkler succeeded in changing the pattern type from double
loop to left loop. Source: [Cum35].

The aforementioned incidents were all observed on hardened criminals and gang-
sters where authorities were successful in identifying all three sets of �ngerprints.
Other incidents demonstrate individuals using more advanced and inventive
techniques for masquerading their identity and ba�ing o�cials:

• Robert J. Philipps (1941) attempted to completely erase his �ngerprints
by transplanting skin grafted from the side of his chest onto the �nger-
tips [HC43].

• Jose Izquierdo (1997) cut a �Z� shaped cut (see Figure 2.2) on his �ngertip
and exchanged the two �aps of skin. After manually reconstructing his
real �ngerprint images o�cials managed to reveal his true identity; this
came with a large cost of approximately 170 hours of manual and computer
searching [Wer98].

• Donald Roquierre cut circles in the middle of each �nger, removed the
resulting skin (deep down to include the basal layer of skin where �nger-
prints form), turned the circles upside down and replaced them on di�erent
�ngers. He sewed them on with a needle and thread [Wer93].

The above mentioned examples are actual criminal cases. However, border
crossings are seeing an increased amount of asylum seekers and migrants with
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(a) Before z-cut (b) After z-cut

Figure 2.2: Illustrations of how two �aps of skin can be exchanges within a �Z�
shaped cut. The numbers and colours are merely for illustration
purposes to show skin positions before and after the surgery.

mutilated �ngerprints who try to avoid being identi�ed.

• In 2009 a Chinese woman successfully evaded identi�cation when entering
Japan by using plastic surgery to swap the �ngerprints from her right and
left hand. She was only discovered when arrested on separate charges and
police noticed that her �ngers had unnatural scars [New09].

• The MailOnline reported that it is common that migrants wanting to
enter Britain through Calais mutilate their �ngertips to hide their iden-
tity [Mai09].

Images that show actual �ngers with altered �ngertips can be seen in Figure
2.3.

2.2 Characteristics

Based on the observations by Feng, J. et al [FJR09] altered �ngerprints are
classi�ed into three categories based on the changes in ridge pattern due to
alteration [YFJ12]. The classi�cation types are based on the �ngerprint image
and not on the actual alteration process[YFJR09].
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(a) Skin transplanted from sole of foot (b) Bitten �ngertips

Figure 2.3: Images of altered �ngertips. Source: [JY12].

The following sections will describe the characteristics of �ngerprints in each of
these categories. Analysing discrepancies and special features of �ngerprints in
these subcategories will �rstly serve as the basis for understanding the structure
of common alterations.

2.2.1 Obliteration

Probably the most common form of alteration is obliteration. The word obliter-
ation basically means to destroy, remove or erase. Obliteration is the means of
diminishing the quality of the friction ridge patterns on the �ngertips in order
to make it problematic (or even impossible) to match with the original.

Obliteration can be performed by incision, scraping, burning, applying acids or
transplanting smooth skin [FJR09]. The previous section has several examples
of obliteration, e.g. Jack Klutas used incision, John Dillinger mutilated his
�ngertips with acids and Robert J. Philipps transplanted skin from the sides of
his chest to his �ngertips.

Obliteration can be perceived as a natural extension to the problem of identi-
fying low quality �ngerprints. The quality of unaltered �ngerprints can vary
depending on di�erent factors such as the quality of the actual scan or damages
such as ridges broken by �exion creases or scars. Also skin diseases such as
eczema or warts can have a degrading impact on the quality of the friction ridge
patterns (see Figure 2.4).
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(a) Finger eczema (b) Wart

(c) Finger eczema (d) Wart

Figure 2.4: Diseases can obliterate a �ngerprint. Images and subse-
quent �ngerprint images do not belong to the same subjects.
Source: [DDU13]

.

Good quality friction ridge patterns in an obliterated �ngerprint image are the
actual unaltered ridge patterns. Therefore, If a large enough area of the �n-
gerprint is undamaged it can hold enough information for an automatic �nger-
print information system to positively match it to the original �ngerprint image.
Therefore successful identi�cation is heavily dependant upon the quality level
of the �ngerprint.

Fingerprint quality assessment software such as NIST Fingerprint Image Quality
(NFIQ) could in many cases be used to deny enrolling or comparing a heavily
obliterated �ngerprint, since the quality would simply be deemed too low for
comparison.
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Obliteration

De�nition destroy, remove or erase.
Performed by incision, scraping, burning, applying acids or

transplanting smooth skin.
Characteristics areas of low quality friction ridge patterns.

Table 2.1: Characteristics of obliteration.

2.2.2 Distortion

Distortion is the reshaping of the original patterns of the friction ridges. This
can be done by removing and reorganising portions of skin from �ngertips or
by transplanting other skin with friction ridge patterns unto the �ngertip. The
resulting �ngerprints on the �ngertips will have unnatural ridge patterns.

Previously it was described how Jose Izquierdo distorted his �ngerprints by
exchanging two portions of skin on the �ngertip by a �Z� shaped cut. Figure
2.5 shows the actual �ngerprint images of Jose Izquierdo.

(a) Before z-cut (b) After z-cut

Figure 2.5: Jose Izquierdo altered his �ngerprints by exchanging two portions
of skin using a �Z� shaped cut. Source: [Wer98].

Fingertips that have been successfully distorted will have a high quality level,
since they will have clearly visible friction ridge patterns throughout the whole
�ngerprints; possibly even preserving ridge properties such as width and fre-
quency over the entire �ngerprint area.

A closer look at a distorted �ngerprint will however show clear irregularities.
There will typically be sudden changes in the orientation of friction ridges along
the scars where di�erent skin patches are joined together. Also, distortion can
result in unnatural distribution of singular points.
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Distortion

De�nition misrepresentation, misshape, a change in per-
ception so that it does not correspond to reality
(psychology).

Performed by removing and reorganising portions of skin from
�ngertips or by transplanting skin with friction
ridge patterns.

Characteristics unnatural ridge patterns and scarred areas.

Table 2.2: Characteristics of distortion.

Unaltered �ngerprints normally have a �owing and smooth orientation �eld
throughout the whole �ngerprint except in singular points.

2.2.3 Imitation

The most advanced category of altered �ngerprints are imitated �ngerprints.
This is not referring to spoo�ng or false �ngers but instead to the quality of
alteration.

Imitated �ngerprints have friction ridge patterns that both preserve ridge prop-
erties, e.g. width and frequency, while also containing the typical smooth ori-
entation �eld pattern found in unaltered �ngertips.

A typical imitation technique includes transplantation of a large area of fric-
tion ridge skin. An example of such a transplantation is the Chinese woman,
described earlier, who evaded identi�cation by swapping her left and right �n-
gerprints using plastic surgery. Another technique is simply to remove a portion
of friction ridge skin and thereafter join together the remaining skin. For this
to be a success, friction ridges on each side of the scar must principally avoid
abrupt changes in orientations. Gus Winkler was successful in this technique,
even changing the type of his �nger pattern in the process.

The main di�erence between distortion and imitation is the fact that imitated
�ngerprints maintain the smooth orientation �eld characteristics of an unaltered
�ngerprint.

The problem with imitated �ngerprints is that they contain so many properties
of an unaltered �ngerprint and in such a good quality that it will successfully
pass �ngerprint quality assessment software. Well executed imitation can even
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Imitation

De�nition copy, mimic or appear like.
Performed by transplanting large areas of skin with friction

ridge patterns or careful incision and reshaping.
Characteristics natural ridge patterns.

Table 2.3: Characteristics of imitation.

be hard to spot even with a close inspection of the �ngertips by the naked eye.

2.2.4 Focus of Thesis

The main focus of this thesis will be on distorted �ngerprints. The main reasons
for the decision are the following:

• Obliterated �ngerprints will, in most cases, already be processed correctly
based on the area and amount of obliteration. Either �ngerprint quality
assessment software will evaluate that the �ngerprint quality is too low or
it will be processed correctly in the biometric identi�cation system.

• Distorted �ngerprints can have a high quality level and share many prop-
erties with unaltered �ngerprints. However, they have clearly identi�able
properties, such as irregular and abrupt changes in the orientation of fric-
tion ridges.

• Imitated �ngerprints share too many properties with unaltered �nger-
prints, such as a natural ridge �ow throughout the whole �ngerprint and
natural distribution of minutia and singular points. It is assumed that it
is virtually impossible to identify that good quality imitation is an altered
�nger.



Chapter 3

Alteration Detection
Algorithms

Relatively limited research, with signi�cant and proven results, has been done
in the �eld of automatically detecting altered �ngerprints.

Yoon et al [YFJ12] proposed a very successful technique based on analysing dis-
continuity and abnormality in the �ow of the friction ridges along with analysing
the spatial distribution of minutiae.

This section will describe the construction of the state-of-the-art algorithm. This
algorithm will serve as the basis for further research into the topic of identifying
altered �ngerprints.

3.1 Algorithm Overview

The algorithm is based on two di�erent analyses:

• Analysis of the friction ridge orientations. Fingerprints generally have a
smooth ridge �ow except near singular points. Altered �ngerprints will
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typically result in irregular and abrupt changes in the ridge �ow in some
areas of the �ngerprint. This approach tries to identify regions of un-
natural ridge �ow. This speci�c analysis will be called Orientation Field
Analysis (OFA) in this thesis.

• Analysis of minutiae distribution. A minutia point is located at local
discontinuities in the �ngerprint pattern where friction ridges begin, ter-
minate or bifurcate. The analysis will be named Minutia Distribution
Analysis (MDA).

Fingerprint

Orientation 
Field 

Estimation

Minutia 
Extraction

Orientation 
Field 

Discontinuity

Minutiae 
Density Map

Feature Level 
Fusion

SVM 
Classification

Orientation Field Level

Minutiae Level

Altered 
or Not

Figure 3.1: Flowchart of the algorithm. Source: [YFJ12]

Feature vectors are constructed from each of the analyses, fused into one larger
feature vector and fed into a Support Vector Machine (SVM) for classi�cation.
Figure 3.1 shows a �owchart of the alteration detection algorithm.

The following sections will describe the two analyses used in the algorithm and
how the feature vectors are constructed.

3.2 Orientation Field Analysis

The OFA uses a mathematical model for constructing an approximation of an
estimated ridge �ow of the �ngerprint. The analysis identi�es discontinuities
based on di�erences of the ridge �ow approximation and estimation, e.g. areas
where the approximation is unable to correctly simulate the actual �ngerprint
image.

The orientation of friction ridges, typically called orientation �eld and denoted
θ, is de�ned as an image where θ(x, y) holds the estimated orientation at pixel
(x, y).

The steps of the analysis are the following:
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1. Normalisation. Formats the �ngerprint image to have a common rotation
and size.

2. Segmentation. The foreground of the �ngerprint is separated from the
background of the image in order to be able to only analyse the actual
�ngerprint. Segmentation is not described further in this section. See
section 5.2 for a detailed description of segmentation.

3. Orientation �eld estimation. The n × n block-wise averaged orientation
�eld, θ(x, y), is computed using the gradient-based method. A typical
block size used in this work is 8× 8.

4. Orientation �eld approximation. A polynomial model is used to approxi-
mate the orientation �eld θ(x, y) to obtain θ̂(x, y).

5. Orientation error map. The absolute di�erence between the orientation
�eld θ(x, y) and the approximation θ̂(x, y) is computed to yield an error
map, ε(x, y).

The steps will be described a little closer below. Since the orientation �eld serves
as a central part of this method and also in the upcoming proposed algorithm,
a technique for constructing such an orientation �eld will be described in more
detail.

3.2.1 Normalisation

In image processing, the term normalisation typically is a process of modifying
the range of pixel intensity values. Here, it deals with adapting a common
alignment and size of the �ngerprint image to ensure invariance with respect to
translation and rotation.

A rectangular region of the �ngerprint is located, rotated to be aligned along the
longitudinal direction, and cropped using the �ngerprint segmentation algorithm
of the NIST Biometric Image Software (NBIS) [WGTW12]. The cropped image
is resized to 512× 480 pixels.

3.2.2 Orientation Field Estimation

The orientation �ow of the friction ridges is a global feature of �ngerprints
that is very important in AFIS. The orientation �eld is the local orientation
of the friction ridges. It serves as an essential part in all stages of analysing a
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�ngerprint, such as preprocessing and feature extraction. The orientation �eld
will be used in several of the upcoming analyses.

An orientation image represents an intrinsic property of the �ngerprint image
and de�nes invariant coordinates for ridges and valleys in a local neighbour-
hood [LHJ98a]. The orientation �eld basically holds information on the local
orientations of friction ridges. Orientations are typically de�ned in the range
[0, π).

Depending on the context, this thesis uses both pixel-wise and block-wise ori-
entation �elds. Pixel-wise orientation is the estimated orientation of each pixel.
Instead of using local ridge orientation at each pixel, it is common to partition
the image into smaller blocks. The block-wise orientations are derived by simply
averaging the orientations within each block. Figure 3.2 shows the orientation
�eld of two �ngerprint images; the pixel-wise orientations are illustrated in grey-
scale while block-wise orientations use lines to represent orientations within each
block.

There are two common approaches to compute the orientation �eld of a �n-
gerprint: �lter-bank based approaches and gradient-based approaches. An ex-
ample of a �lter-bank based approach is a method proposed by Kamei and
Mizoguchi [KM95] using directional �lters in the frequency domain. According
to Gu and Zhou [GZ03] �lter-bank based approaches are more resistant to noise
than gradient-based approaches, but computationally expensive.

Gradient-based methods seems to be the most common approach for extract-
ing local ridge orientation; probably since it is the simplest and most natural
approach [MMJP09]. This thesis will adopt a gradient-based approach.

3.2.2.1 Pixel Orientation

A natural approach for extracting ridge orientation is based on computation of
gradients in the �ngerprint image. The �rst step is determining the gradient
components δx and δy for each pixel in the image. This implementation uses a
Sobel operator to de�ne the pixel gradient components. The Sobel operator is a
discrete di�erentiation operator that computes an approximation of the gradient
of the image intensity.

The Sobel operator uses two 3 x 3 gradient �lters - one for calculating the
horizontal changes in the image and the other for vertical changes. The two
kernels are illustrated in Figure 3.3 where Sx is the kernel for the horizontal
direction and Sy is the vertical.
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(a) Original (b) Pixel orientations (c) Block orientations

(d) Original (e) Pixel orientations (f) Block orientations

Figure 3.2: Orientation of �ngerprints. (a) (d) show the original �ngerprint
images (Source: [CMM+04]), (b) (e) contain pixel-wise orienta-
tions in gray-scale, and (c) (f) show block-wise orientations.

For each pixel, (i, j), in the image two two-dimensional convolutions with the So-
bel kernels are computed, yielding the gradient components δx(i, j) and δy(i, j).
Note that border pixels do not have their gradients calculated as they don't
have neighbouring pixels in every direction.

Sy =

−1 −2 −1
0 0 0
1 2 1

 Sx =

−1 0 1
−2 0 2
−1 0 1


Figure 3.3: Sobel's two 3x3 gradient kernels.

For each gradient the magnitude and vector angle can be calculated using equa-
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tions (3.1) and (3.2). However, pixel-wise orientation is very sensitive to noise
in the �ngerprint image and therefore is too detailed and somewhat inaccurate.
The solution is to calculate block-wise averages of the pixel gradients. This is
done in the next section.

G =

√
δx

2 + δy
2 (3.1)

θ(i, j) =
π

2
+ arctan(

√
δx(i, j)

δy(i, j)
) (3.2)

3.2.2.2 Block-wise Ridge Orientation

Block-wise averages of gradients have multiple purposes when processing �n-
gerprint images. Typically the orientation (or gradients) of each pixel is �rst
smoothed using an averaging �lter from a larger area of the image before as-
signing block-wise orientation averages. The same averaging technique is used
in both cases.

Yoon et al [YFJ12] use a 16 × 16 averaging �lter to smoothen the pixel-wise
orientations prior to computing the block-wise orientations.

The equations for calculating the block-wise orientations for each block are given
where pixel (i, j) is the centre of the block being calculated. Equations (3.3) and
(3.4) show the two components, Vx and Vy, of the doubled local ridge orientation
vector [Rav90]. W is the block size, Yoon, S. et al [YFJ12] use 8×8 pixel blocks.
Calculating the dominant ridge �ow is in equation (3.5) [MMJP09].

Vx(i, j) =

i+ W
2∑

u=i−W
2

j+ W
2∑

v=j−W
2

2δx(u, v) · δy(u, v) (3.3)

Vy(i, j) =

i+ W
2∑

u=i−W
2

j+ W
2∑

v=j−W
2

(δx(u, v)2 − δy(u, v)2) (3.4)

θ(i, j) =
π

2
+

1

2
arctan2(Vy(i, j), Vx(i, j)) (3.5)

3.2.3 Orientation Field Approximation

The global orientation �eld, θ(x, y), is approximated by a polynomial model to

obtain θ̂(x, y). The cosine and sine components of the doubled orientation at
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(x, y) can be represented by bivariate polynomials of order n:

gnc (x, y)
∆
= cos 2θ(x, y) =

n∑
i=0

i∑
j=0

ai,jx
jyi−j (3.6)

gns (x, y)
∆
= sin 2θ(x, y) =

n∑
i=0

i∑
j=0

bi,jx
jyi−j (3.7)

where ai,j and bi,j are the polynomial coe�cients for gnc (x, y) and gns (x, y),
respectively [YFJ12].

The order of the polynomial model, n, is selected to be 6. Coe�cients ai,j and
bi,j for the approximated polynomials ĝc(x, y) and ĝs(x, y), respectively, can be
estimated by the least squares method.

The approximated orientation �eld, θ̂(x, y), is constructed by

θ̂(x, y) =
1

2
tan−1(

ĝs(x, y)

ĝc(x, y)
) (3.8)

3.2.4 Orientation Error Map

Globally, a good quality �ngerprint has smooth orientations except near singular
points, the approximated orientation �eld will therefore generally model the
estimated orientation �eld quite well.

Altered areas in a �ngerprint, e.g. around scars and obliterated areas, can
result in discontinuous or unnatural changes in the orientation �eld. The ap-
proximated orientation �eld will not be able to accurately represent these abrupt
and irregular changes caused by alterations.

An error map, ε(x, y), is therefore computed as the absolute di�erence between

θ(x, y) and θ̂(x, y).

ε(x, y) = min(|θ(x, y)− θ̂(x, y)|, π − |θ(x, y)− θ̂(x, y)|)/(π/2) (3.9)

The error map shows how precise the approximation is to the estimation. Abrupt
changes and discontinuities in the ridge �ow will result in high values in the error
map.
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(a) Original (b) Estimation (c) Approximation (d) Error map

Figure 3.4: OFA of an unaltered �ngerprint. The error map has high
values around singularities. Source of original �ngerprint im-
age: [CMM+04].

Unaltered �ngerprints of good quality will therefore only have small errors
around singular points, whereas altered �ngerprints can additionally have er-
rors in scarred or mutilated areas. Figures 3.4 and 3.5 illustrate the resulting
orientation �elds and error map of an unaltered �ngerprint and an altered �n-
gerprint, respectively.

In order to extract features for classi�cation using SVM, a feature vector is
constructed from the error map. It is done in the following manner:

1. Two columns of blocks are removed from each side of the error map which
results in an error map of size 60× 60 blocks.

2. The error map is divided into 3× 3 cells. The size of each cell is therefore
20× 20 blocks.

3. Histograms in 21 bins in the range [0,1] are computed for each of the nine
cells.

4. The nine histograms are concatenated into a 189-dimensional feature vec-
tor.

3.3 Minutiae Distribution Analysis

One of the main characteristics that is used by AFIS for comparing �ngerprints
are minutiae. Minutiae are located at ridge endings or ridge bifurcation. In
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(a) Original (b) Estimation

(c) Approximation (d) Error map

Figure 3.5: OFA of an altered �ngerprint. The approximation is unable to
correctly model abrupt changes around distorted areas. The error
map therefore has high values around singularities and in some
scarred regions. Source of original �ngerprint image: [Wer98].

this analysis the minutiae extractor Mindtct in NBIS [WGTW12] is used to
extract minutia from a �ngerprint. Chapter 7 has a more in-depth description
of minutiae and also the minutiae extractor.

The analysis is based on the observation that the minutiae distribution of altered
�ngerprints often di�ers from that of natural �ngerprints [YFJ12]. The analysis
constructs a density map of the minutiae points by using the Parzen window
method with uniform kernel function.

Let Sm be the set of minutiae of the �ngerprint, i.e.,

Sm = {x | x = (x, y) is the position of minutia}. (3.10)

The density map of the minutia is constructed as follows:

1. The initial minutia density map, M ′d(x), is obtained by

M ′d(x) =
∑

x0∈Sm

Kr(x− x0), (3.11)
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where Kr(x−x0) is a uniform kernel function centered at x0 with radius,
r. Yoon et al [YFJ12] set the radius to 40 pixels. However, the current
implementation of this algorithm made for this thesis uses r = 30, since
this gave better results.

2. The initial density map,M ′d(x, y) is smoothed by a Gaussian �lter (30×30
pixels) with a standard deviation of 10 pixels.

3. Md(x, y) is transformed to lie in the interval [0, 1] by

Md(x, y) =

{
M ′d(x, y)/T, if M ′d(x, y) ≤ T,
1, otherwise

(3.12)

where T is a predetermined threshold (T is set to 6.9 in this speci�c
implementation).

Figures 3.6 and 3.7 show the density maps of an unaltered and altered �nger-
print, respectively. Alterations will cause ridge discontinuities which will result
in many spurious minutiae.

(a) Original (b) Minutiae (c) Density map

Figure 3.6: Minutia density map of an unaltered �ngerprint. Source of original
�ngerprint image: [CMM+04].

A feature vector is also constructed from the density map in the same fashion
as in the OFA. 16 columns of pixels are removed from each side of the density
map, resulting in an image of size 480× 480 pixels. The density map is divided
into 3× 3 cells, where each cell is 160× 160 pixels.

Histograms of each cell of the density map are computed in 21 bins in the range
[0, 1]. The nine histograms are concatenated to construct a 189-dimensional
feature vector.
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(a) Original (b) Minutiae (c) Density map

Figure 3.7: Minutia density map of an altered �ngerprint. Source of original
�ngerprint image: [Wer98].

The feature vector from the OFA is concatenated to the feature vector from the
MDA. This gives a feature vector of 378 dimensions. The feature vector is fed
into a SVM for classi�cation.

3.4 Summary

The state-of-the-art algorithm described in this chapter is based on two di�erent
analyses of a �ngerprint image: Orientation Field Analysis (OFA) and Minutia
Distribution Analysis (MDA).

The OFA identi�es discontinuities in the orientation �eld. This is done by
approximating the orientation �eld using a pair of bivariate polynomials. The
di�erences of the initial estimated orientation �eld and the approximated �eld
will highlight abrupt changes in the orientation �eld.

The MDA creates a minutiae density map in order to represent the distribu-
tion of minutiae. Discontinuities in friction ridges of altered �ngerprints will
generally result in a higher density of minutiae in altered regions.

Feature vectors are extracted from the two analyses, concatenated into one
vector and fed into a SVM for classi�cation.
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Chapter 4

Proposed Method

The goal of this thesis is to explore the possibilities of de�ning an alternative
approach of the given problem. The following part of the thesis will consider a
new method based on analyses of characteristics and features in local areas of
a �ngerprint in order to detect if a �ngerprint has been altered or not.

This chapter will give a brief introduction and overview of the proposed method.
In-depth descriptions and analysis of the individual parts of the approach will
be given in the following chapters.

4.1 Algorithm Overview

The existing alteration detection algorithm which was described in the previ-
ous chapter takes a global approach. It uses polynomials to approximate the
orientation �eld in order to analyse the �ow of the ridges and constructs a den-
sity map to analyse the minutiae distribution. This thesis will propose a new
method which is based on local analysis of pixel-wise orientations and also local
analysis of minutiae.

A rough overview of the upcoming algorithm is given in Figure 4.1. The algo-
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rithm starts by preprocessing the �ngerprint image before branching into two
analyses of distinct �ngerprint attributes. Features will be extracted from each
analysis, fused into one feature vector and thereafter fed into an SVM for clas-
si�cation.

Fingerprint

Singular Point 
Density 
Analysis

Minutia 
Orientation 

Analysis

Feature Level 
Fusion

SVM 
Classification

Singular Point Level

Minutiae Level

Altered 
or Not

Preprocessing

Figure 4.1: Flowchart of the proposed algorithm.

The following sections will give an introduction to the main steps of the method.
Extensive descriptions of the preprocessing pipeline and the two analyses will
be conducted in the forthcoming chapters.

4.2 Preprocessing

Preprocessing prepares the raw input �ngerprint image for the impending anal-
yses. This step locates the �ngerprint image, separates foreground from the
background, ensures that output images are invariant with respect to transla-
tion and rotation, and enhances the input image in order to clarify ridges and
reduce undesirable noise.

It is important that the preprocessing pipeline is tailored speci�cally for the
subsequent analyses. The preprocessing pipeline will be explained in chapter 5.

4.3 Singular Point Density Analysis

The singular point density analysis inspects changes in the pixel-wise orientation
�eld. It is based on the local entropy and uncertainty of orientations around
scarred and mutilated areas and uses common techniques to extract core features
of a �ngerprint.

Local areas of high curvature will be found using the Poincaré index. This is
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a common method for extracting singular points in which some altered regions
share similar characteristics.

Quality measurements of friction ridges are merged into the analysis in order to
diminish the e�ect of uncertainties in poor quality or heavily obliterated areas.
Gabor �lters will be used to evaluate the quality of ridges.

The analysis will produce a density map in which features will be extracted to
feed into the SVM. The extraction of features is described in section 4.5, below.

Chapter 6 will give a detailed description of the analysis. It will consider the
steps taken for constructing the �nal feature density map.

4.4 Minutia Orientation Analysis

Fingerprint alteration signi�cantly a�ects the distribution of minutiae by severe
skin distortion introduced during the process of alteration [YZJ12]. Abrupt
ridge endings produced by scars and unusual ridge patterns formed by mutilation
will result in additional spurious minutiae.

The state-of-the-art method already demonstrates that altered �ngerprints can
be detected by analysing the distribution of the minutia. The additional spu-
rious minutia that is caused by alterations will be located along edges of the
critical areas. The proposed method will make additional local analysis of each
detected minutia in order to identify discontinuities and changes in the orienta-
tion.

The nature of the analysis will require slight modi�cations of the minutiae ex-
tractor. Chapter 7 gives a detailed description of these modi�cations together
with a thorough examination of the analysis.

As with the singular point density analysis, the chapter will conclude with the
construction of a density map. Extracting the features from the map in order
to construct a feature vector for the SVM is given below in section 4.5.

4.5 Feature Extraction

There are multitudes of di�erent ways of analysing data and extracting features
to be used by an SVM. The feature extraction is based on the exact same
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properties and methods as the previous state-of-the-art approach. Some of the
reasons are the following:

• Both of the proposed analysis algorithms are reliant on the distribution of
special features across the �ngerprint in a similar fashion to the prede�ned
method.

• It is built on a proven technique.

• Will provide additional interoperability in the testing of the algorithms.
Each analysis is interchangeable since they provide a common data for-
mat such that feature extraction and interpretation of the results share a
common ground.

The �nal density maps from each analysis are images in the size of 512 × 480
pixels with intensity values that are normalised to lie in the range of [0, 1]. The
feature extraction will construct a 189-dimensional vector from each analysis.
This is done as follows:

1. Columns of 16 pixel are removed from each side of the density map. This
gives a density map of size 480× 480 pixels.

2. In order to separate and extract features from di�erent sections of the
image it is divided into 3× 3 cells. The size of each cell is thus 160× 160
pixels.

3. Histograms in 21 bins in the range [0,1] are computed for each of the nine
cells.

4. The nine histograms are concatenated into a 189-dimensional feature vec-
tor.

The two feature vectors are fusioned by concatenation which results in a 378-
dimensional feature vector. The feature vector is fed into a SVM for classi�ca-
tion.

4.6 Summary

A method will be proposed which is based on localised analyses of two di�erent
attributes of the �ngerprint image. It is constructed in a similar fashion as the
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existing alteration detection algorithm. This will make the di�erent analyses
interchangeable such that testing and benchmarking can easily be performed.

The proposed solution uses a SVM for classi�cation. Feature vectors are con-
structed from the two analysis and fed into the SVM.

The following chapters will give a detailed description of the di�erent parts of
the proposed alteration detection method.
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Chapter 5

Preprocessing Pipeline

Preprocessing serves an essential part when analysing and extracting features
from a �ngerprint image. Preprocessing deals with the subject of enhancing
the quality of an image and preparing it for being processed, in this case, by
alteration detection algorithms.

A raw �ngerprint image is input into the preprocessing pipeline. The pipeline
is used to identify foreground and background of the image, to reduce noise and
increase the contrast between ridges and valleys, and to transform the image
into a common and �invariant� format. The output should thus be a �ngerprint
image with properties and enhancements speci�cally designed for the following
analysis process.

Figure 5.1 shows the �ve steps of the preprocessing pipeline. The pipeline
consists of the following:

1. Cropping. Locating and isolating the �ngerprint image.

2. Segmentation. Separating the foreground from the background.

3. Rotation. Align �ngerprint image along the longitudinal direction.

4. Resize. The size of the image is changed to �t a speci�ed size.
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5. Enhancement. Improve the clarity of friction ridges and minimize noise.

Cropping Segmentation Rotation Reshaping Enhancement
Input

Raw 
image

Output

Enhanced 
image / mask

Figure 5.1: Main steps of preprocessing pipeline.

This chapter will describe the steps of the preprocessing pipeline in order to
prepare �ngerprint images for �ngerprint alteration detection analysis. Also, an
alternative enhancement method will brie�y be discussed in the �nal part of the
chapter.

5.1 Cropping

The NIST Biometric Image Software (NBIS) [WGTW12] includes a �ngerprint
segmentation algorithm, Nfseg, for cropping a rectangular region of an input
�ngerprint. The core strengths of Nfseg are to segment the four-�nger plain
impression found on the bottom of a �ngerprint card into individual �ngerprint
images. However, it can also be used on single �ngerprint images.

Nfseg is used to locate the �ngerprint and remove excessive white space from
the input �ngerprint. Since it does not do a good job of aligning the �ngerprint
along the longitudinal direction, further rotation techniques will be used further
on in the pipeline.

5.2 Segmentation

An important image preprocessing operation is that of separating the �ngerprint
image ridge area � the Region Of Interest (ROI) � from the image background.
This is known as �ngerprint segmentation.

The input �ngerprint image, I, is intensity normalised to have zero mean along
with unit standard deviation. This is done by the following pixel-wise function:

∀x ∈ {1..R}, y ∈ {1..C} : In(x, y) =
I(x, y)− avg(I)

std(I)
(5.1)
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where avg(I) is the average pixel intensity of the input image and std(I) is the
standard deviation. I(x, y) is the pixel intensity at pixel (x, y) of the input
image.

From In it is possible to generate a binary image, Imask, known as the mask
of the �ngerprint where ones belong to the image ROI and zeros belong to the
background.

The normalised image is divided into blocks of size 8 × 8. If the standard
deviation of a block is above a threshold, T , then the block is regarded as being
part of the actual �ngerprint, i.e. the foreground. This is a block-wise process;
the function for creating the mask is the following:

Ibmask(x, y) =

{
0 if std(Ib(x, y)) ≤ T,
1 otherwise

(5.2)

where Ib contains the blocks of size 8× 8 pixels. The threshold, T , is set to 0.1.

Morphological operations are run on the block-wise mask image, Ibmask, for
�lling holes and removing isolated blocks yielding Ib′mask. This is done by �rst
running a series of open operations (erosion followed by a dilation) for �lling
holes. Thereafter a series of close operations (dilation followed by an erosion)
are run to remove isolated blocks.

Two di�erent structures are used for the morphological operations: a square
rotated 45◦ with a diagonal length of 5 blocks and a square with a length of 3
blocks. The series of open operations are conducted by alternating between the
two shapes, starting with the rotated square. The close operations are executed
in the same fashion, however starting with the unrotated square. The shapes
have been set empirically.

An additional erosion operation using the same disk-shape element is used to
ensure that border blocks that may hold part background and part foreground
are eliminated.

The �nal pixel-wise �ngerprint mask, Imask, is the up-scaled version of the �nal
block-wise mask, Ib′mask. An example of the segmentation can be seen in Figure
5.9.

This is quite an aggressive segmentation which is well suited for detecting if a
�ngerprint has been altered or not. The strengths are that it removes unclear
borders which might be identi�ed as altered while keeping low quality areas that
reside within the ROI.
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(a) Original (I) (b) Ibmask (c) Final mask (Imask)

(d) Original (I) (e) Ibmask (f) Final mask (Imask)

Figure 5.2: Segmentation of two �ngerprint images. Source: (a) [CMM+04],
(d) [Sam01].

Likewise, this segmentation is not ideal for �ngerprint recognition purposes since
too many foreground blocks would be removed possibly erasing important minu-
tiae. Low quality areas within the �ngerprint can also add unwanted minutia or
features that can compromise the comparison algorithm whereas they will play
an important part in determining if the image has been altered or not.
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5.3 Rotation

The goal is to rotate the �ngerprint image so that it is aligned along the longi-
tudinal direction of the �nger.

Some landmark of the �ngerprint image is normally used as a reference point
for rotation purposes. Di�erent approaches have been proposed for rotating a
�ngerprint image, such as computing the image orientation using singular points
as reference points (e.g [LJK05]), using the �ngerprint Center Point Location
(CPL) as a reference point (e.g. [MIK+10], [MLBM11]) or using minutiae as
reference points [JA07].

Using minutia or singular points as reference points requires signi�cant analysis
of the �ngerprint image and can be quite complex. The approach taken in
this thesis is based on [MIK+10] since it is a simple and e�cient approach
which does not require complex computations. The approach is built on the
assumption that most �ngerprints have an ellipsoidal shape.

As mentioned earlier, the method uses the �ngerprint CPL as a reference point
for rotation. Since the core point is a consistent point at the central point of
the �ngerprint the core can be used as the CPL [JPH99]. However, since this
requires analysis of the actual �ngerprint image, Merkle et al [MIK+10] uses
the centroid of the ROI instead.

The proposed rotation method therefore uses the mask of the �ngerprint which
was constructed in the previous step. The mask, as described in 5.2, is a binary
image denoting �ngerprint foreground as ones and background as zeros. To
increase computation speed the mask of the �ngerprint image is scaled down, in
this current implementation by a factor of eight. The image is shifted so that
the centroid of the ROI is at point (0, 0).

Consider the image being placed in a Cartesian coordinate system, see Figure
5.3. Two areas, a1 and a2 are de�ned where a1 is composed of quadrant 2
(upper left) and 4 (bottom right) while a2 is composed of the remaining diagonal
quadrants.

The idea is to rotate the foreground image around the center so that the amount
of foreground pixels is balanced between a1 and a2.

This is an iterative process. Let s(ai) denote the sum of pixels in area ai. If
s(a1) > s(a2) then the image is rotated clockwise by 1◦, otherwise the image
is rotated counter-clockwise by 1◦. The iteration stops once the direction of
rotation changes, e.g. the balance of the sum is shifted to the opposite quadrants.
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(a) Original (b) After rotation

Figure 5.3: The �ngerprint mask is placed in a coordinate system and rotated.
The sums of the �ngerprint foreground of the quadrants with the
patterned background are compared to the sums of the quadrants
with a clear background.

The aggregated rotations are applied to the original �ngerprint image.

This rotation is adequate considering that input �ngerprint images normally are
aligned within ±45◦ of the longitudinal direction of the �nger. However, if the
�ngerprint is ±90◦ from the intended direction, the �nal rotation will result in
the �ngerprint image being rotated upside down.

A great weakness of the current rotation method is that it is not always able
to handle �ngerprint images where the outline is not somewhat ellipsoidal or
even. This can happen if a large area is of a poor quality and is conceived to
be background. The current solution is to have a maximum rotational angle of
±45◦; rotations past these thresholds are set to 0◦.

5.4 Resizing

The fourth step is the very simple process of resizing the image. It is important
that features that will be extracted from the �ngerprint images in the subsequent
analyses are invariant with respect to size, translation and rotation. This step
is the �nal and critical process in ensuring that this criteria is ful�lled.

Before resizing, the image must be cropped again since rotation might have
added additional background to the sides of the image. There are many ways
that the image can be re-cropped, e.g. by using the Nfseg algorithm or removing
columns and rows that contain only zeros. The current implementation uses a
simple approach cropping the �ngerprint image based on the rotated orientation
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mask.

The image is resized to the closest �t for 512 × 480 pixels and thereafter seg-
mented afresh.

5.5 Enhancement

The �nal step of the preprocessing pipeline is enhancement of the �ngerprint
image. The goal of �ngerprint enhancement techniques are traditionally to
improve the clarity of friction ridges and remove unwanted noise in order to
assist the following analyses or feature extraction algorithms.

Numerous �ngerprint enhancement techniques have been proposed, section 5.6
will brie�y compare some methods to support the �nal choice of enhancement
algorithms. This section will brie�y describe the chosen algorithms.

Two processes were conducted on the image to slightly enhance it: histogram
equalisation in the spatial domain and a simple enhancement in the frequency
domain. These methods will be described in the following sections.

5.5.1 Histogram Equalisation

Histogram equalisation is a common method for enhancing the contrast of a
image. The method de�nes a mapping of grey levels p into grey levels q which
attempts to uniformly distribute the grey levels q [Jai89]. A cumulative his-
togram of the enhanced image would show a relatively linear curve and the
ideal mean would be right in the centre of the density value. Histogram equali-
sation is described in equation (5.3) where k is the grey scale level of the original
image, nj is the number of times pixel value j appears in the image, n is the
total number of pixels and L is the number of grey levels (for example 256).

∀i ∈ {1..R}, j ∈ {1..C} : G(i, j) = H(I(i, j)) = H(k) =

k∑
j=0

nj
n

(L− 1) (5.3)

The contrast of grey levels are stretched near the histogram maxima using
histogram equalisation. This improves the detectability of many image fea-
tures [KP02].
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A limitation with a global histogram equalisation on a �ngerprint is that it
sometimes can enhance noise since the colour distribution of a �ngerprint image
is not necessarily uniform. For example if white is the dominant colour in an
image, then the very light grey colours would be �moved� relatively far towards
the darker grey. Applying this technique only on the ROI or maybe even using
a block-wise approach of this method would probably yield better results.

This limitation of the histogram equalisation is not a large problem in this
particular enhancement scheme, since the �ngerprint itself has been localised
and cropped prior to the histogram equalisation. This limits the amount of
background pixels in the image which otherwise could contribute to the excessive
change in brightness.

5.5.2 Enhancement in the Frequency Domain

The smooth and continuous orientation of the friction ridges in a �ngerprint
together with consistent friction ridge characteristics, such as ridge and valley
widths, give �ngerprint images a special characteristic in the frequency domain.

Ridges can be locally approximated by single sine waves. The orientation of
the ridges gives frequencies in all directions. A good quality �ngerprint image
will therefore produce a clear ring pattern around the center in the frequency
domain (see Figure 5.4). The clearness of the ring is based on the consistency
of the the ridge characteristics.

Figure 5.4: Fingerprint images produce a ring pattern in the frequency do-
main. Note the spectral energy in the inner ring. Source: [JKE07].

The NFIQ 2.0, which is currently under development, uses a radial power spec-
trum to determine a quality score of the �ngerprint [NIS12]. The quality score
is based on the peak of maximum energy in the inner ring. This can also be
seen in Figure 5.4.
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(a) Ridges in local area (b) Frequency domain of (a)

Figure 5.5: Orientation and frequency of ridges in local area. Source: [CCG05]

One method of improving the clarity of the ridge patterns could be to apply a
�lter which enhances the frequencies in the inner ring while minimising or even
eliminating frequencies outside of the inner ring.

Altered �ngerprints will have unnatural ridge properties on a global scale and
� depending on the type of alteration � be of a less quality. It is desired to also
enhance discrepancies since the impending analyses will be on these inconsis-
tencies.

Watson et al [WCG94] presented a simple enhancement method based on en-
hancing dominant frequencies in the frequency domain. This method concen-
trates on local properties and is performed using overlaying blocks. This ap-
proach will be used to enhance �ngerprint images in this thesis. The local
parallel ridges and valleys in a �ngerprint have a well-de�ned local frequency
and orientation [JPHP00], see Figure 5.5. The enhancement method takes
advantage of this property.

This method is quite e�cient in enhancing the image for the speci�c purpose of
analysing altered �ngerprints. The reason being that it manages to �ll up small
holes in ridges and also otherwise enhance the appearance of the friction ridges
in otherwise good quality areas. At the same time scattered frequencies in low
quality areas, such as in scarred and mutilated areas, tend to further enhance
the friction ridge uncertainties in those areas.

The �ngerprint image is divided into blocks of size 8 × 8 pixel. An additional
overlapping border of 8 × 8 pixels is added around each block such that the
actual size of each block is 24 × 24 pixels. The Fast Fourier Transform (FFT)
of each block is multiplied by an exponentiation of its magnitude; the exponent
factor k is set to 0.45. The enhanced block B′(x, y) based on the original block
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(a) Original (I) (b) Enhanced
(Ienh)

(c) Mask (Imask) (d) Final image

Figure 5.6: Enhancement of an unaltered �ngerprint. Source: (a) [CMM+04].

B(x, y) is done accordingly:

B′(x, y) = FFT−1(FFT (B(x, y)) · |FFT (B(x, y))|k) (5.4)

Notice that in Equation 5.4 blocks B(x, y) and B′(x, y) are 24 × 24 pixels, i.e.
they are extended by the borders. The enhanced image, Ienh, is combined by the
centre 8× 8 pixels in each block of B′. Examples of the resulting enhancements
on altered and unaltered �ngerprint images can be seen in Figures 5.6 and 5.7,
respectively. The reason for using overlapped blocks is to minimise the border
e�ect of the block-wise FFT.

The idea of the method is that dominant frequencies of each block correspond
to the ridges, amplifying these dominant frequencies increases the ratio of ridge
information to non-ridge noise [WCG94].

Willis and Myers [WM01] suggested using a larger value for k, e.g. 1.4, to-
gether with larger blocks. This increases the power of the reconstruction. For
analysing altered �ngerprints it was found more e�ective using a smaller k to-
gether with smaller blocks, since this slightly improves the ridge quality but
does not arti�cially reconstruct larger areas of the �ngerprint.

5.6 Alternative Enhancement Methods

Many di�erent methods and techniques have been proposed to enhance �nger-
prints, some examples are the following:
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(a) Original (I) (b) Enhanced
(Ienh)

(c) Mask (Imask) (d) Final image

Figure 5.7: Enhancement of a altered �ngerprint. Source: (a) [Sam01].

• Hong et al [LHJ98b] proposed a method using Gabor �lters based on
estimates of local friction ridge characteristics, such as orientation and
frequency. Yang et al [YLJF03] proposed a modi�ed method based on this
approach which was slightly more accurate in preserving the �ngerprint
image topography.

• Enhancements in the frequency domain have been proposed. Chikkerur et
al [CCG05] suggested a method based on Short Time Fourier Transform
(STFT). Similarly Sherlock et al [SMM94] also proposed a method using
a set of directional �lters in the Fourier domain.

• Many methods have also been proposed using wavelet transforms, such
as [HLW03], [YMY07], [HHKA05] and [ZWT02]. A common method,
based on the same ideas as some of the above enhancements, is to use a
set of directional �lters.

It is important that the choice of enhancement algorithm complements the al-
teration detection algorithms. Even though the alteration detection algorithms
have not been explored yet, some preferences of the attributes of enhancement
algorithms can already be determined. Compared to traditional minutia ex-
traction methods used for �ngerprint matching purposes; the selected algorithm
should retain some local inconsistencies.

Many of the above mentioned techniques are able to reconstruct and rejoin ridges
that have been broken or unclear. This is basically done using local analysis of
the �ngerprint characteristics. Analysing if a �ngerprint has been altered or not
requires analysing discrepancies and irregularities, the extent of reconstruction
is therefore also an issue.
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An implementation based on the Gabor �lter approach which was proposed by
Hong et al [LHJ98b] was compared with the proposed enhancement method in
the frequency domain. An in-depth description of the algorithm will be left out
of this report. However, the main idea will brie�y be described.

Figure 5.8 shows the main concepts of the algorithm. The image is divided into
blocks of size 16×16. An oriented window of size 32×16 is calculated for each of
these blocks and rotated to match the estimated orientation of the given block.
The frequency of the ridges and valleys in the oriented window is analysed giving
a so-called x-signature. The x-signature forms a discrete sinusoidal-shape wave
with the same frequency as the ridges and valleys in the oriented window. A
Gabor �lter based on the x-signature and orientation is applied to the processed
block.

Figure 5.8: A block is enhanced using a Gabor �lter based on the x-
signature and orientation of the local ridge characteristics.
Source: [LHJ98b].

According to Hong et al [LHJ98b] the algorithm is designed to only run on
recoverable parts of the �ngerprint, e.g. areas that are deemed to be part of the
foreground. Unrecoverable areas that contain severe noise or distortion so that
it does not provide enough information about the true friction ridge structures
would be segmented out. This con�icts somewhat with the desired enhancement,
which is also to slightly enhance altered areas of the �ngerprint. These areas
might be unrecoverable.

As seen in Figure 5.9 the Gabor �lter method is e�cient in rejoining ridges that
have been broken by creases or smudges. However, running the algorithm on
unrecoverable areas, such as highly obliterated areas (Figure 5.9f), results in the
reconstruction of friction ridges in random orientations.
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The proposed enhancement method is not as e�cient in joining broken fric-
tion ridges as the Gabor �lter method. However, it manages to enhance the
appearance of both recoverable and unrecoverable areas.
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(a) Original (I) (b) Proposed method (c) Gabor method

(d) Original (I) (e) Proposed method (f) Gabor method

Figure 5.9: Gabor �lter enhancement [LHJ98b] tries to reconstruct missing
ridges, while the proposed enhancement method only joins ridges
in relatively clear areas. Source: (a) [CMM+04], (f) [Sam01].
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5.7 Summary

The preprocessing pipeline plays an important part in processing and analysing
�ngerprint images. The main purpose of the preprocessing pipeline is to pre-
pare a raw �ngerprint image for the actual processing, e.g. analyses, feature
extraction or alteration detection. The central processing algorithm is highly
dependent on the quality of the input and will give di�erent results depending
on the condition of the input �ngerprint image.

The succeeding alteration detection algorithms rely on the preprocessing pipeline
to deliver �ngerprint images with clear friction ridge patterns in recoverable or
well-de�ned areas while maintaining enhanced characteristics in unrecoverable
areas. Also, images fed to the alteration detection algorithms should be invari-
ant with respect to translation and rotation.

The main functions of the preprocessing pipeline can be summarised as:

• Cropping and reshaping to ensure that the �ngerprint image is invariant
with respect to translation and rotation.

• Segmentation to separate the foreground, ROI, from the background.

• Enhancement to clarify the appearance of friction ridges.
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Chapter 6

Singular Point Density
Analysis

Scars and other deformation of the �ngerprint caused by alteration causes unnat-
ural changes in the orientation �eld both globally, as analysed by the alteration
detection algorithm proposed by Yoon et al [YFJ12], and also locally. Scars
will have unnatural joint friction ridges while other obfuscation causes various
random noisy patterns in the friction ridges.

The proposed method, Singular Point Density Analysis (SPD), for analysing
if a �ngerprint is altered or not is based on local analysis of the orientation
�eld using the Poincaré index to detect noisy friction ridge areas. An altered
�ngerprint will have a higher density of such areas than an unaltered.

6.1 Pre-Analysis

Singular points, called core and delta, act as control points around which the
ridge lines are �wrapped� [MMJP09]. The core is de�ned as the topmost point
on the innermost recurving ridgeline of a �ngerprint [ISO11] while a delta is
a point on a ridge at or nearest to the point of divergence of two typelines and
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located at or directly in front of the point of divergence [ISO11]. Figure 6.1
illustrates the locations and typical characteristics of core and delta points.

Figure 6.1: Delta and core points in �ngerprint images. Source: [MMJP09].

The suggested approach is partly inspired from research done by Petrovici [PL10b].
The research calculates amplitudes of singular points based on the reliability of
their orientation. Experimental results on synthetically altered images indicate
that altered �ngerprints will have many singular points with lower amplitudes
while unaltered �ngerprints have a few singular points with higher amplitudes.

Before describing the actual method, a brief analysis of the characteristics of
the orientation �eld will be conducted on altered and unaltered images.

6.1.1 Orientation Certainty Level

The Orientation Certainty Level (OCL) is a common analysis used as a quality
measure to determine the certainty of local orientations. It measures the energy
concentration along the direction of ridges [XYYP08].

In section 3.2.2.1 the two intensity gradients, δx and δy, were found for each pixel
using a Sobel operator. This was used to calculate the pixel-wise orientation.
The orientation certainty can be calculated as the ratio of the two eigenvalues
of the covariance matrix of the gradient vector.

The covariance matrix C of the gradient vector for an N points image block is
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given by:
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where dx = δx and dy = δy are the gradient densities at each pixel.

The eigenvalues, λmax and λmin, can be calculated as[LJY02]:

λmax =
(a+ b) +

√
(a− b)2 + 4c2

2
(6.2)

λmin =
(a+ b)−

√
(a− b)2 + 4c2

2
(6.3)

The OCL is de�ned in the range [0, 1] where a high value means good quality.
The formula for calculating the OCL is therefore:

Ocl = 1− λmin
λmax

(6.4)

(a) Original (b) Certainty (c) Original (d) Certainty

Figure 6.2: Two unaltered images and their corresponding orientation cer-
tainty. Since the images are of relatively good quality, low cer-
tainty is in areas of high curvature. Source: (a), (c) [CMM+04].

Figures 6.2 and 6.3 show images of the pixel-wise OCL of unaltered and altered
�ngerprints, respectively. This has been calculated using blocks of size 15× 15
build around each pixel. The unaltered images are of relatively good quality
such that the orientation certainty is mainly high throughout the �ngerprint.
Only around singular regions is the certainty low. Some medium certainties are
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(a) Original (b) Certainty (c) Original (d) Certainty

Figure 6.3: Two altered images and their corresponding orientation certainty.
Areas with low friction ridge quality caused by scars and oblit-
eration cause low orientation certainty. Source: (a) [Sam01],
(c) [Wer98].

also vaguely seen in Figure 6.3d caused by small discontinuities in the friction
ridges.

It comes to no surprise that areas of low quality and scarred areas have a low
orientation certainty which can clearly be seen in Figure 6.3. In Figure 6.3d
most of the scar from the z-cut alteration is clearly visible.

6.1.2 Orientation Entropy

Entropy is a description to the uncertainty of a random variable; it can therefore
be used as a measure of the disorder of variables in a given system.

Considering the pixel-wise orientation, θ(x, y), as a random variable. Using a
sample rate, n, determining the amount of possible orientation values, a quanti�-
cation scale π

n is used to discretise the orientation �eld. The discrete orientation
�eld, θn, with sample rate n can be computed as:

∀x ∈ {1..R}, y ∈ {1..C} : θn(x, y) =
π

n
(
θ(x, y)

π
n

mod n) (6.5)

where R and C de�ne the row count and column count of the orientation image,
respectively.

The orienation entropy is a measure of how much �choice� is involved in the
selection of the event or of how uncertain we are of the outcome [Sha01]. The
entropy for each orientation is calculated according to the amount of di�erent
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possibilities in the surrounding area. Blocks of size 5 × 5 are used in the cur-
rent implementation, i.e. for each pixel, the surrounding pixels are taken into
consideration.

The discrete entropy image, En, can be constructed as:

∀x ∈ {3..R− 2}, y ∈ {3..C − 2} : En(x, y) = −
n∑
i=1

px,y(
π

i
) log10 px,y(

π

i
) (6.6)

where px,y(πi ) is the probability of the discrete orientation π
i in the block be-

longing to (x, y). Since blocks of size 5 × 5 are used, pixels that don't have a
complete border of 2× 2 surrounding pixels are not considered.

Figures 6.4 and 6.5 show multiple scaled orientation entropy images of unaltered
and altered �ngerprint images, respectively.

(a) Original (b) π
4
scale (c) π

6
scale (d) π

8
scale

(e) Original (f) π
4
scale (g) π

6
scale (h) π

8
scale

Figure 6.4: Multiple scaled orientation entropy images of unaltered �nger-
prints. Images have sample rate n = 4, 6 and 8. Constant high
entropy values are in singular regions where they act as center
points. The entropy varies in other positions of the �ngerprint
according to the scale. Source: (a), (e) [CMM+04].

The characteristics of the entropy images are very distinct in the demonstrated
images according to the nature of the �ngerprint. The center points in the
orientation entropy images which have a constant high entropy value are points
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with uncertain orientations. The di�erence between the entropy values in the
illustrated unaltered and altered images can be summarised as:

• Unaltered �ngerprint images have a constant high entropy value in the
center of singular regions.

• Altered �ngerprint images have many spurious positions with a constant
high entropy value. Scarred regions and mutilated areas add uncertainties
in the pixel-wise orientations which lead to the high entropy values.

(a) Original (b) π
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(e) Original (f) π
4
scale (g) π

6
scale (h) π

8
scale

Figure 6.5: Multiple scaled orientation entropy images of altered �ngerprints.
Images have sample rate 4,6 and 8. Obliterated areas and scars
generate high entropy readings. Even with multiple scaled entropy
images, there are many central points with a constant high entropy
value. Source: (a) [Sam01] , (e) [Wer98].

From Figure 6.4 it becomes clear that it is possible to use the entropy to locate
singular points. Chen et al [CPL+11] have also shown that combining a series
of entropy images of multiple scale by multiplication can be used to locate
singular points. Similarly, Tiribuzi et al [TPVR12] proposed an approach for
detecting altered �ngerprints using the minutia density map and multiple-scaled
orientation entropy images together with aMultiple Kernel Learning framework.

It can be concluded that altered images have a number of positions with a high
orientation uncertainty. Based on both the uncertainty and entropy analysis it
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seems that altered images have a higher amount of positions in a �ngerprint
with characteristics similar to singular points.

6.2 Poincaré Index

Methods for detecting singular points are commonly based on the Poincaré
index which in this context analyses the change of direction around a given
point. Using the Poincaré index for singular point detection was proposed by
Kawagoe and Tojo [KT84].

The Poincaré index has shown to have high accuracy, but low robustness [REB10].
Methods to determine singular points relying on local features like Poincaré in-
dex or other similar properties of the orientation �eld work well in good quality
�ngerprint images. However, they fail to correctly localise reference points in
poor quality �ngerprints with cracks and scars, dry skin or poor ridge and valley
contrast [JPHP00]. Many false core and delta points can be produced when the
orientation �eld is noisy, e.g. in low quality �ngerprint areas. The proposed
method takes advantage of this limitation.

For correctly detecting singular points di�erent heuristics are used to �lter out
false locations, e.g. iterative smoothing of the orientation �eld [BPL08], using
a modi�ed gradient based Poincaré method [BG01] and in combination with
additional �lters [BG02], [ZCG09]. No �ltering process will be used in the
current analysis which will therefore detect singular point candidates.

In the current context, the Poincaré index for a given point can be de�ned as
the cumulative change in the orientation �eld travelling clockwise around the
neighbouring points, see Figure 6.6.

The pixel-wise orientation �eld, θ(x, y) is estimated using the previous de�ned
gradient-based method where θ(x, y) denotes the orientation of pixel (x, y). The
orientation �eld is smoothed using a 15× 15 averaging �lter.

For each pixel in the �ngerprint ROI the surrounding neighbouring orientations
are gathered in order by travelling clockwise around the pixel, starting at any of
the eight surrounding pixels. The Poincaré index, P (x, y), calculated for pixel
(x, y) with the eight surrounding orientation elements dk(k = 0..7) is calculated
as follows:

P (x, y) =
∑
k=0..7

a(dk, d(k+1) mod 8), (6.7)

where a(di, dj) is the angle between di and dj selecting the direction of the
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(a) Whorl (360◦) (b) Loop (180◦) (c) Delta (-180◦)

Figure 6.6: Poincaré index of a given point is the cumulative change in
orientation of the neighbouring points, travelling clockwise.
Source: [MMJP09].

orientations so that |dj − di| ≤ π/2. The possible values of P (x, y) are 0, ±π
and ±2π:

P (x, y) =



2π, if (x, y) belongs to a whorl

π, if (x, y) belongs to a loop

−π, if (x, y) belongs to a delta

−2π, if (x, y) is in the center of a rare diamond shape

0, otherwise

(6.8)

Notice that a Poincaré value of −2π does not belong to a singular point. It is,
however, a theoretically possible value. A poincaré index of −2π would require
friction ridges to shape a very unnatural diamond shape around a given point,
see Figure 6.7. This does not occur in a normal �ngerprint image; however, it
has been seen to occur in highly obliterated or unclear areas.

After calculating the Poincaré index for all pixels in the �ngerprint image, the
Poincaré matrix, Pb(x, y), is binarised accordingly:

Pb(x, y) =

{
1, if P (x, y) ∈ {±π,±2π}
0, otherwise

(6.9)

The resulting binarised Poincaré image will generally have a small cluster of one
to four adjacent pixels with high values in the singular regions. However, noisy
or low quality areas in unaltered images may lead to the detection of additional
false singular points.
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(a) Diamond (-360◦)

Figure 6.7: Poincaré index of -360 would require orientations in a special dia-
mond shape.

The unnatural �ow of friction ridges in altered �ngerprints will generally result
in a higher detection of false singular points. Figure 6.8 shows the resulting
binarised Poincaré image, Pb, of two unaltered �ngerprints. Figure 6.8d illus-
trates the problem with poor quality �ngerprint images. Figure 6.9 shows Pb of
altered images.

An observation can be made on the spurious false singularities found in both
altered and unaltered �ngerprints that can further strengthen the analysis of
singularities and help detect if a �ngerprint has been altered or not. As already
stated, false minutia is detected in areas of low quality. However, scarred areas
which are connected to friction ridges with regular ridge-valley patterns also
contribute to the detection of false singular points.

In the following section Gabor �lters will be used to determine quality measures
of the friction ridges. The basic idea is to highlight singular points in good
quality areas.

6.3 Gabor Filters

The goal is to determine the clarity of friction ridges in a �ngerprint so that
found singularities can be classi�ed based on the quality score of their position.
Gabor �lters will be used to measure the quality of friction ridges. Gabor �lters
are bandpass �lters that have both frequency and orientation properties; they
can therefore be constructed to present friction ridge frequency and orientation.

Shen et al [SKK01] proposed a block-wise approach using Gabor �lters to de-
termine the quality of friction ridges. A global quality measure based on Gabor
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(a) Original (b) Pb (c) Original (d) Pb

Figure 6.8: Singular point detection of unaltered �ngerprints. (a) Fingerprint
image [CMM+04], (b) its corresponding binarised Poincaré im-
age with highlighted readings, (c) Poor quality �ngerprint im-
age [CMM+04], (d) its corresponding binarised Poincaré image.
Low quality images will result in spurious false singularities.

�lter responses was proposed by Olsen et al [OXB12]. The latter approach will
be used in this thesis adopting the suggested �lter bank size from the prior.

The �rst step is to convolve the �ngerprint image, I, with a two-dimensional
Gaussian with σ = 1. The convolution is subtracted from the original image to
give Ī which is a high-pass �ltered image.

The quality of the ridge-valley structure of the friction ridges is found by convolv-
ing the �ngerprint image, Ī, with two-dimensional Gabor �lters in n orientations
(n = 8). The orientations θ are computed:

θ = π
k − 1

n
, k = 1, .., n (6.10)

Hamamoto et al [HUW+98] de�ne the general form of a complex two-dimensional
Gabor �lter in the spatial domain as:

h(x, y, θk, f, σx, σy) = exp(−1

2
(
x2
θk

σ2
x

+
y2
θk

σ2
y

))exp(j2πfxθk), k = 1, .., n (6.11)

where

n is the number of orientations used in the �lter bank
xθk = x sin θk + y cos θk,
yθk = x cos θk − y sin θk,
f is the frequency of the sinusoidal plane wave along the orientation θk,
σx and σy are the parameters of the Gaussian window.
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(a) Original (b) Pb (c) Original (d) Pb

Figure 6.9: Singular point detection of altered �ngerprints. (a) Distorted �n-
gerprint [Wer98], (b) its corresponding binarised Poincaré image
with highlighted readings, (c) Heavily damaged �ngertip [Sam01],
(d) its corresponding binarised Poincaré image.

The �lter frequency, f , is set to 0.1 as the average inter-ridge distance (corre-
sponding to the wavelength) is approximately 10 pixels in a 500 dpi �ngerprint
image [JPHP00]. The standard deviation of the Gaussian envelope along the x
and y axes are set as σx = σy = 6.0.

The magnitude of the responses is convolved with a two-dimensional Gaussian
with σ = 4 to smoothen the magnitudes. Areas containing clear ridge-valley
structures will have a strong response from one or more of the �lter orientations,
see Figure 6.10 while low quality areas will have low responses.

A pixel-wise standard deviation of the bank of Gabor responses is calculated,
Gstd.

The resulting Gabor quality matrix, Gstd, is transformed to lie in the interval
[0, 1] by:

QG(x, y) =

{
Gstd(x, y)/T, if Gstd(x, y) ≤ T
1, otherwise

(6.12)

where T is a given threshold (T = 0.01). The threshold is determined empiri-
cally.

6.4 Density Map

The quality metrics matrix, QG, are factors that determine the quality of friction
ridges in each pixel. The quality score is de�ned in the interval [0, 1] where 1 is
the best quality.
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(a) I (b) θ1 = 0 (c) θ3 = 2
8
π

(d) θ5 = 4
8
π (e) θ7 = 6

8
π (f) QG

Figure 6.10: Gabor �lter responses of an obliterated �ngerprint. (a) input im-
age [YFJR09], (b)�(e) absolute values of Gabor �lter responses
in di�erent orientations after Gaussian smoothening and (f) stan-
dard deviation of the Gabor responses with di�erent orientations.

An initial density map, Pd, is created from combining the Poincaré matrix,
Pb(x, y), and the normalised Gabor quality matrix, QG, by multiplication:

Pd(x, y) = Pb(x, y) ·QG(x, y) (6.13)

Pd is a density map where singularities positioned within clear areas receive a
higher value than singularities in poor quality areas.

Similar to the previous minutia distribution analysis, the �nal density map,
SPd, is constructed by using the Parzen window method with uniform kernel
function and smoothed using a low-pass Gaussian �lter. To feed the information
into a SVM, a feature vector is extracted from the density map using the same
method as in the minutia distribution analysis.

Figures 6.11 and 6.12 show examples of the �nal density maps of unaltered and
altered �ngerprints, respectively. Notice that the altered �ngerprints have a
higher density of singularities than the unaltered in the �nal density maps.
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(a) Original (b) Pb (c) QG (d) SPd

(e) Original (f) Pb (g) QG (h) SPd

Figure 6.11: Singular point density analysis of unaltered �ngerprints. (a) in-
put image, (b) its corresponding binarised Poincaré image with
highlighted readings, (c) quality measurement of the friction
ridges, (d) the �nal singular point density map. (e)�(g) show
the same as (a)�(d) but with a lower quality image. Source: (a),
(e) [CMM+04].
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(a) Original (b) Pb (c) QG (d) SPd

(e) Original (f) Pb (g) QG (h) SPd

Figure 6.12: Singular point density analysis of altered �ngerprints. (a) input
image, (b) its corresponding binarised Poincaré image with high-
lighted readings, (c) quality measurement of the friction ridges,
(d) the �nal singular point density map. (e)�(g) show the same
as (a)�(d) with a heavily damaged �ngertip. Source: (a) [Wer98],
(e) [Sam01].
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6.5 Summary

Uncertainties in the orientation �eld are introduced around altered areas of a
�ngerprint. The disorder of pixel-wise orientations in scarred and obliterated
areas share similar characteristics to that of singular regions.

An analysis based on the distribution and density of singular regions is con-
ducted using the Poincaré index to locate singular point candidates. Altered
images will generally have a distribution of singular point candidates which
di�ers from natural �ngerprints.

Gabor �lters are used to determine a �ngerprint quality measurement of the
clarity of friction ridges. This is used to slightly reduce the e�ect of spurious
singular regions found in areas which are heavily obliterated. Singularities found
in unclear areas will have a weaker amplitude in the �nal density image.
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Chapter 7

Minutia Orientation
Analysis

Yoon et al [YFJ12] have demonstrated that the minutia distribution of altered
�ngerprints often di�ers from that of a natural �ngerprint. The main reason
being that scars and obliterated areas will provide additional spurious minutia
due to ridge discontinuity.

The Minutia Orientation Analysis (MOA) takes advantage of the excessive num-
ber of minutia that appear due to alteration. Instead of relying on the actual
distribution of minutia as the MDA does, properties of minutia in local areas
will be analysed to try to determine if a �ngerprint has been altered or not.

7.1 Pre-Analysis

Altered �ngerprints have an unnatural orientation �ow. The Orientation Field
Analysis (OFA) proposed by Yoon et al [YFJ12] takes a global approach to
determine these inconsistencies in the orientation �eld. Likewise, the MOA
showed that minutia distribution of altered �ngerprints often di�ers from that
of natural �ngerprints.
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Scars will produce broken ridges which will contribute to some of the addi-
tional minutiae that is extracted from altered �ngerprints. Figure 7.1 shows
an example of a z-cut alteration where a relatively large portion of minutiae is
concentrated around the scarred areas.

(a) Original (b) Minutia

(c) Minutia density (d) Minutia density with outline of
scar

Figure 7.1: Scars will typically have a higher concentration of minutiae.
Source: (a) [Wer98].

Fingerprints with transplanted skin will typically have sudden changes in the
orientation of friction ridges in some areas along the scars. This is caused by
the joining of skin with di�erent friction ridge patterns which are separated by
the scar. Friction ridges on each side of scars caused by small cuts will have
somewhat continuous �owing orientations.

The following method that will be proposed will try to analyse and identify
unnatural orientation changes in the friction ridges by analysing the detected
minutiae. The idea is to register a metric for each minutia point which describes
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the change in orientation in its surroundings.

There are multiple options that can be considered. Two simple approaches based
on analysing orientations in a certain radius, r, from the minutia could be:

1. Using a rotating line. A circle of radius r is considered around each minutia
point. Using the computed orientation �eld, the maximum di�erence of
orientation between a series of orientation pairs on opposite sides of the
circle around the minutia point can be found based on Figure 7.2. Here,
steps of π4 are used to �nd a set of 8 points around the minutia point. The
minutia is assigned the maximum di�erence in orientation of the points
on opposite sides of the minutia.

r

p1

p2

p3

p4

p5

p6

p7

p8

(a)

r

p1

p2

p3

p4

p5

p6

p7

p8

(b)

Figure 7.2: Di�erences in orientations can be measured based on points in a
certain distance, r, from the minutia. A line is rotated clockwise
in steps of π4 around the minutia center. (a) First the orientation
di�erence between points p1 and p5 are found, (b) the line is ro-
tated and the di�erence between points p2 and p6 are found, and
so on. The minutia is assigned the maximum orientation di�erence
of the four measurements.

2. Based on minutia direction. The minutia extractor assigns a direction
to every minutiae, normally in the range [0, 2π), pointing towards the
current friction ridge that it belongs to. Instead of analysing multiple
points around a circumference with radius r around the minutia, only the
point in the given direction of the minutia and on the opposite side are
measured like earlier. The minutia is assigned the orientation di�erence
of these two points. This can be seen in Figure 7.3.

The problem with both of the above mentioned approaches is that minutia close
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r

p1

p2

Figure 7.3: Di�erences in orientations can be measured based on points in a
certain distance, r, from the minutia. Points are found by the
actual orientation of the minutia. The minutia is assigned the
orientation di�erence of points p1 and p2.

to high curvature regions, such as singularities, will be assigned high values.
The second approach is an improvement since it takes into account the actual
direction of the minutia.

Instead a simple method is proposed based on comparing neighbouring minutia,
that are closer than a given radius. To compare neighbouring minutiae, it is
desired that minutia are found on both sides of scars in order to analyse changes.
The problem comparing minutia, is that minutia extractors generally do a lot of
analyses of candidate minutiae in order to remove false minutiae. Even though
the density of minutiae is higher along scars, the minutia extractor does a good
job in limiting minutia with con�icting orientations.

Before further introducing the proposed method, a basic understanding of the
minutia extractor is required in order to improve the feature extraction algo-
rithm for this speci�c analysis.

7.2 Minutia Extractor

The minutia extractor, Mindtct, that has been used in this project has six
main processes [WGT+] which here have been categorised into three smaller
categories: preprocessing, feature extraction and minutia analyses. An overview
of these processes can be seen in Figure 7.4. The following sections will brie�y
describe these categories. The focus will be on the processes that speci�cally
can have an in�uence on altered images.
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Detect Minutia
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Figure 7.4: Process of NIST's minutia extractor Mindtct.

7.2.1 Preprocessing

The preprocessing pipeline of the minutia extractor has two main purposes:
to analyse the quality of the �ngerprint and prepare it for feature extraction.
Speci�cally, the quality measurements are made by generating multiple image
maps. Subsequently the �ngerprint is binarised where each pixel in the image is
assigned either a black or white pixel denoting ridges and valleys, respectively.

7.2.1.1 Image Maps

The input �ngerprint image is analysed in order to determine poor quality areas
in the image. The following characteristics are calculated:

• Orientation Field. A block-wise orientation �eld is constructed using a
�lter-bank based approach in the frequency domain. Each block is in-
crementally rotated π k−1

16 , for k = 1, .., 16 and thereafter analysed by
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convolving a vector of the block's row sums with di�erent waveforms of
increasing frequency. Each block is assigned the orientation that best �ts
one of the waveform �lters; no orientation can be assigned if no dominant
ridge �ow can be determined.

• Low Contrast Map. This is basically a segmentation mask (see 5.2) based
on the image contrast. No morphological operations are performed on this
segmentation mask. Minutia will only be detected in the found ROI.

• Low Flow Map. Is basically a map marking which blocks in the orientation
�eld do not currently have a valid direction; these blocks are marked as
having low quality and minutia extracted from these blocks will be seen
as less reliable.

• High Curve Map. A map is constructed that marks blocks in areas of high
curvature, e.g. around singular points of the �ngerprint. If minutia are
extracted from these blocks they will also be assigned a lower quality.

• Quality Map. The low contrast map, low �ow map and high curve map
are combined to construct a single quality map.

Once the above mentioned maps have been constructed, the orientation �eld
is further modi�ed. Analysis based on neighbouring blocks is performed to:
smoothen orientations, interpolate invalid direction blocks with neighbours and
even removing additional directions that are inconsistent with surrounding blocks.

Heavily obliterated areas which have signi�cantly unclear ridges might end in
the low contrast map � minutia will therefore not be found in these areas. The
areas of interest are especially scarred regions caused by alterations which gen-
erally have su�ciently high contrast. Scarred regions have a high risk of being
in either the low �ow map or high curve map. This happens if the orienta-
tion is unclear or if the alteration causes sudden changes in the friction ridge
orientation, respectively.

7.2.1.2 Binarise Image

The second step of the preprocessing is preparing the actual �ngerprint image for
minutia extraction. A binarised image is constructed to represent the �ngerprint
image. Each pixel in the image is assigned a binary value based on attributes
of the surrounding pixels of the original image together with the friction ridge
orientation.
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Figure 7.5: Rotated block with processed pixel in centre used to binarise �n-
gerprint image. Source: [WGT+]

A block of size 7 × 9 is constructed around the pixel that is being processed,
i.e. a border of 3 columns and 4 rows surrounding the processed image. The
block is rotated so that the rows align with the orientation of the pixel in the
orientation �eld, see Figure 7.5. The intensities (grey values) are accumulated
for each row of the block, forming a vector of row sums.

The binary value to be assigned to the center pixel is determined by multiplying
the center row sum by the number of rows in the grid and comparing this value
to the accumulated grayscale intensities within the entire grid. If the multiplied
center row sum is less than the grid's total intensity, then the center pixel is set
to black; otherwise, it is set to white.

If the accumulated sum of the center row is smaller than the average row sum,
the value is set to 0 (black); otherwise it is set to 1 (white). The formula for
the binarised image, B, is the following:

∀x ∈ {1..R}, y ∈ {1..C} : B(x, y) =

0 if Rb · rx,y[Rb−1
2 ] <

Rb∑
i=1

rx,y[i],

1 otherwise

(7.1)

where Rb = 9 and rx,y is the vector of row sums belonging to pixel (x, y).

7.2.2 Feature Extraction

The image is now ready for feature extraction. The minutia extractor �rst tries
to identify possible minutia candidates. Thereafter the candidate list will be
further analysed in order to remove false minutia.
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7.2.2.1 Detect Minutia

Minutia are detected by identifying localized pixel patterns in the binary image.
Even though there are many common types of minutia, see Figure 7.6, the
feature extraction algorithm takes advantage of the fact that the types can
basically be narrowed down to two: ridge ending and bifurcation. Every minutia
point can fall into one of these two, as an example a spur is a combination of a
bifurcation and a ridge ending while an independent ridge consists of two ridge
endings.

(a) (b) (c) (d) (e) (f) (g)

Figure 7.6: Common types of minutia. (a) ridge ending, (b) bifurcation,
(c) lake, (d) independent ridge, (e) island or point, (f) spur,
(g) crossover. Source: [MMJP09]

A series of di�erent sized patterns are constructed that represent ridge end-
ings and bifurcation. The binarised image is scanned looking for sequences that
match the given patterns, see Figure 7.7. Note that the patterns grow by in-
serting multiple instances of the centre row into the patterns. The image is
scanned vertically and horizontally; the horizontal scan rotates the patterns 90◦

clockwise. Each sequence that matches one of the given patterns is added to
the candidate list.

Figure 7.7: Pixel patterns used to detect minutiae. The * represents center
rows that can be repeated one or more times. Source: [WGT+]
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7.2.2.2 Remove False Minutiae

The pixel pattern approach that is used to �nd minutia is an exhaustive and
greedy algorithm which will detect most true minutia, but also include many
false minutia in the candidate list. The feature extractor therefore does a thor-
ough analyses of the minutia in the candidate list in order to remove the false
candidates.

A simpli�ed description of the di�erent steps taken in order to remove false
minutia will be given below. The NBIS documentation [WGT+] and the source
code of Mindtct [WGTW12] can be referenced for a more precise and detailed
description. The remove process does the following:

• Remove islands and lakes. Islands can be formed by ridge ending fragments
and spurious ink marks while lakes are small holes or voids within ridges.
A pair of candidate minutia will be detected at each end of islands and
lakes. If two minutiae are found to be closer than a given threshold (16
pixels) with directions that are nearly opposite, the pair of minutiae are
removed from the candidate list.

• Remove islands on holes in the binary image de�ned by a single point.
Smaller islands or lakes might be represented by only one single minutia
point. If a minutia point belongs to a ridge or valley area with a perimeter
length ≤ 15 pixels, then it is removed from the candidate list.

• Remove minutiae that point su�ciently close to a block with invalid di-
rection. If a minutia point is closer than 4 pixels � in the direction it is
pointing � of a block containing an unde�ned ridge �ow direction, then it
is removed.

• Remove minutiae that are su�ciently close to a block with invalid direc-
tion. If minutia are close to blocks with unde�ned directions, which also
have additional neighbours with invalid direction, the minutia is removed.
The idea is that the candidate minutia is either close to the border of the
�ngerprint or close to a larger area of poor quality.

• Remove or adjust minutiae that reside on the side of a ridge or valley.
Some candidate minutiae might not be located at ridge or valley endings,
but instead on the side of ridges or valleys caused by noisy or uneven
ridge/valley areas. Using rotated blocks a closer analysis is done to de-
termined if the minutia is located on a well formed ridge/valley ending;
which is at the bottom of a bowl-shaped rotated contour.

• Remove minutiae that form a hook on the side of a ridge or valley. Hooks
(see 7.6) will typically produce a pair of minutiae where one is a bifurcation



72 Minutia Orientation Analysis

and the other is a ridge ending. If two such minutia are close to each
other (within 16 pixels), on the same ridge or valley, and have directions
nearly opposite each other, then both minutiae points are removed from
the candidate list.

• Remove minutiae that are on opposite sides of a broken ridge. Ridges can
be broken by such things as �exion ridges or scars. Again, discontinuity
in ridges or valleys, will produce a pair of minutiae. If two minutia with
almost opposite directions are closer than 8 pixels then they are removed,
provided that the direction between the two minutia also is similar to one
of the minutia directions.

• Remove minutiae that have irregularly shaped ridges or valleys. Tests are
conducted to ensure that the structure enveloping a ridge or valley ending
is relatively Y-shaped and not too wide.

• Remove minutiae that form long, narrow, ridges or valleys in the unreliable
regions in the binary image. Similar to the prior process: minutia are
removed that belong to ridge or valley structures that are too narrow.

7.2.3 Minutia Analyses

The feature extractor prepares output �les in multiple formats and with addi-
tional information intended for miscellaneous �ngerprint comparison algorithms.
The �nal category of the feature extraction algorithm is to perform additional
analyses of the minutia in order to provide further attributes and information
to the subsequent minutia comparator.

Additional information from the feature extractor will not be used in the up-
coming alteration detection algorithm and will therefore only be mentioned very
brie�y. The two main processes are:

• Count neighbour ridges. Some minutia comparing algorithms use topolog-
ical correspondence, such as minutia direction and ridge counts between
neighbouring minutia, to compare �ngerprints.

• Assess minutia quality. Quality measurements are produced for each de-
tected minutia; these are based on the quality map combined with pixel
intensity statistics.
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7.3 Modi�ed Minutia Extractor

Based on the above dissection of the minutia extractor small modi�cations are
made to the source in order to provide additional minutiae in strategic places.
It is very important that the extractor still �lters out minutiae; leaving out
the whole �ltering process would result in an excessive amount of minutiae.
This would lead to large areas around singularities being identi�ed as having
unnatural changes in the �ow of friction ridges based on the high curvatures.

Modi�cations are the following:

• Islands and Lakes. A pair of candidate minutia will be detected at each
end of islands and lakes. If two minutiae are found to be closer than a given
threshold (16 pixels) with a minimum direction angle ≥ 123.75◦, then the
pair of minutiae are removed from the candidate list. An illustration of
this is shown in Figure 7.8.

The modi�ed version increases the threshold of the direction angle to
157.5◦. This will give a larger amount of minutiae belonging to small
islands and lakes.

(a) Island (b) Lake (c) Direction angle

Figure 7.8: The minimum direction angle between a pair of minutiae points is
used to determine if candidate minutiae are removed or not.

• Hooks. Scarred regions will produce hooks that protrude o� the side
of ridges. It would therefore seem obvious to keep candidate minutia
belonging to hooks in the modi�ed minutia extractor. The problem with
hooks is that they have directions which do not correspond to the actual
ridge �ow in the corresponding area, see Figure 7.9. Leaving minutiae
belonging to hooks will increase the inconsistency of minutiae directions
in unaltered regions of the �ngerprint also. This is therefore unmodi�ed
in the current solution.

• Discontinuities. Minutiae belonging to discontinuities (see Figure 7.10) in
ridges or valleys are removed in the standard feature extractor. Criteria
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Figure 7.9: Minutiae belonging to hooks have directions that di�er from the
friction ridge orientation.

is based on a combination of minutia distance, the di�erence of the di-
rectional angles between them and the direction of a line joining the two
minutiae points.

Figure 7.10: Discontinuities in ridges or valleys have a pair of minutiae points
in opposite directions.

Friction ridges on opposing side of scars can be considered as disconti-
nuities. The modi�ed feature extractor leaves out this check and does
therefore not remove minutiae on the basis of discontinuities. Disconti-
nuities in unaltered regions will not have a great impact on the analysis
of minutia orientations since they generally are consistent with the local
friction ridge orientation.

• Unreliable orientation. Alterations with a su�cient amount of friction
ridges will reside in a region with an orientation � it will be unreliable �
and will generally belong to the ROI of the �ngerprint. Minutiae in these
areas will typically have a lower quality score. Checks dealing with unreli-
able/invalid orientations are therefore unmodi�ed in the feature extractor.

• Irregular shaped ridges/valleys. The checks that test if ridges are to wide
or too narrow do not greatly a�ect the minutiae points around scars and
obliterated regions and will therefore be unmodi�ed in the feature extrac-
tor.

Only a couple of small modi�cations are done to the feature extractor. To
summarise the above, only the process that removes islands and lakes has been
modi�ed while the process that checks for discontinuities has been removed.



7.4 Algorithm 75

7.4 Algorithm

A modi�ed minutia extractor is prepared which gives more false minutiae. The
feature extractor will provide additional minutia around ridge discontinuities
and around spurious islands and lakes. These friction ridge features are common
around mutilated areas of a �ngerprint.

The Minutia Orientation Analysis (MOA) is a relatively simple algorithm which
analyses local orientation di�erences of minutiae. Each minutia point compares
its orientation with every surrounding minutiae within a given radius, see Figure
7.11. The largest orientation di�erence is registered and saved in a orientation
di�erence map. A density map is then constructed from the orientation di�er-
ence map.

r

m1

m2

m3

Figure 7.11: Each minutia point �nds the minutia with the largest orientation
di�erence from its own within a given radius, r. Minutia point
m1 is being processed. Only minutia within the given radius are
considered. Minutia point m2 di�ers most from m1; the minutia
which is being processed is assigned the orientation di�erence of
these two points.

Descriptions on how the orientation di�erence and orientation density maps are
created is described below.

7.4.1 Orientation Di�erence Map

A function is introduced φ(u,v, r) which gives 1 if the distance between points
u and v is less than a given radius (distance), r, and 0 otherwise:

φ(u,v, r) =

{
1 |u−v|

r < 1,

0 otherwise
(7.2)
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Minutia directions are in the range [0, 2π). The directions are transformed to
lie in the interval [0, π), using modulo π, such as they now are orientations. The
di�erence, d(θi, θj), between two minutia orientations, θi and θj , is given as:

d(θi, θj) = min(|θi − θj |, π − |θi − θj |) (7.3)

Let Sm be the set of minutiae of the �ngerprint containing the minutia's position
and orientation, i.e.,

Sm = {(x, θ) | x = (x, y) is the position and θ is the orientation of minutia}.
(7.4)

A set, Sdi�, containing the position of each minutia together with the largest
orientation di�erence is given as:

Sdi� = {(x, θmax) | (x, θ) ∈ Sm ∧ θmax = Max(x, θ, r,Sm)}, (7.5)

where r = 30 and Max(x, θ, r,Sm) returns the largest orientation di�erence, a,
between θ and any minutia within the radius r by equation (7.6).

∀b ∈ {φ(x,x0, r) · d(θ, θ0) | (x0, θ0) ∈ Sm} : (b ≤ a) (7.6)

The initial minutia orientation di�erence map, M ′diff (x, y), is initiated by ze-
roes in the size of the �ngerprint image. The minutia di�erence values, Sdi�,
are plotted into M ′diff such that the location of each minutia is assigned the
corresponding minutia orientation di�erence.

The values of M ′diff (x, y) are transformed to lie in the interval [0, 1] by

Mdiff (x, y) =

{
M ′diff (x, y)/T, if M ′diff (x, y) ≤ T,
1, otherwise

(7.7)

where T is a predetermined threshold (T is set to π/4).

Mdiff is basically an image where each pixel Mdiff (x, y) contains a normalised
orientation di�erence of the minutia centred at (x, y). If no minutia is in (x, y)
then the value is 0.

7.4.2 Density Map

The �nal density map is computed using the same methods as the other density
maps:



7.4 Algorithm 77

1. An initial density map, M ′dens, is constructed by

M ′dens(x) =
∑

x0∈Mdiff

Kr(x− x0) (7.8)

where Kr(x−x0) is a uniform kernel function centred at x0 with a radius
r (r is set to 30 pixels).

2. Smoothening. The initial density map, M ′dens, is smoothed by a low-pass
Gaussian �lter of size 30× 30 with a standard deviation of 10 pixels.

3. Normalisation. The values of M ′dens(x) are transformed to lie in the in-
terval [0, 1] by

Mdens(x, y) =

{
M ′dens(x, y)/T, if M ′dens(x, y) ≤ T,
1, otherwise

(7.9)

where T is a predetermined threshold (T is set to 6.9).

(a) Original (b) Minutia (c) MOA

(d) Original (e) Minutia (f) MOA

Figure 7.12: MOA of two unaltered �ngerprints. Minutia points generally
share similar orientations to their neighbouring minutia. Singular
regions will introduce some variations; the MOA will therefore
have higher amplitudes around singular regions. Source: (a),
(d) [CMM+04].
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(a) Original (b) Minutia (c) MOA

(d) Original (e) Minutia (f) MOA

Figure 7.13: MOA of two altered �ngerprints. Regions around scars with
irregular orientations will add additional high amplitudes to the
MOA density map. Source: (a) [Wer98], (d) [Sam01].

Figures 7.12 and 7.13 show the resulting density map of the MOA. A natural
�ngerprint will generally only have small peaks around singular regions. The
additional minutia around scars and obliterated areas with con�icting orienta-
tions in altered �ngerprint images will produce areas with higher amplitudes
such that the distribution of the density image will di�er from an unaltered
�ngerprint image.

7.5 Summary

Minutiae are points of bifurcation or termination of the friction ridges. Altered
�ngerprints will introduce additional discontinuities in the friction ridges which
will result in a distinct distribution of minutiae that di�ers from unaltered �n-
gerprint images.

The MOA identi�es discrepancies by analysing and comparing attributes of
neighbouring minutia. The analysis �nds the largest orientation di�erences of
minutia within a given radius and plots them in a density map.
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To increase the e�ciency of this analysis a modi�cation has been done to the �l-
tering process of minutiae candidates in the minutia extractor. The modi�cation
introduces additional minutiae with con�icting orientations around scars.
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Chapter 8

Results and Evalutaion

The previous chapters have described a proposed method for detecting altered
�ngerprints along with an existing state-of-the-art method proposed by Yoon
et al [YFJ12]. This chapter will describe some experimental results and give a
brief evaluation of the proposed method.

8.1 Metrics

There are four metrics de�ned for evaluating the altered presentation character-
istics detection rate [ISO12]:

• True Altered Detection Rate (TADR) is the proportion of altered presen-
tation characteristics correctly classi�ed as being altered.

• True Non-Altered Detection Rate (TNADR) is the proportion of non-
altered presentation characteristics correctly classi�ed as being non-altered.

• False Altered Detection Rate (FADR) is the proportion of non-altered
presentation characteristics incorrectly classi�ed as being altered.

• False Non-Altered Detection Rate (FNADR) is the proportion of altered
presentation characteristics incorrectly classi�ed as being non-altered.
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Generally, it must be considered impossible to correctly classify the altered
presentation characteristics of every �ngerprint image. The desirable results
are to have a high TADR together with a low FNADR, i.e. that many altered
�ngerprints are detected as altered while only a few unaltered �ngerprints are
detected as altered.

8.2 Experimental Setup

Before the actual results are presented, a description of the testing environment
will be given.

8.2.1 Fingerprint Database

Data sensitivity issues limit the amount of publicly available datasets with al-
tered �ngerprints. Fingerprints with alterations are de�ned as sensitive personal
data since it contains information about individuals trying to hide their identity
for reasons such as criminal o�ences. Even though �ngerprints are altered, they
may still hold enough information for a positive identi�cation.

Generally, access can only be attained to genuine altered �ngerprints obtained
by government o�cials by consent of the individual. In special cases of substan-
tial public interest, permission can sometimes be granted to process such data
in a controlled environment. Access to a database containing genuine altered
�ngerprints obtained by government o�cials is therefore considered an almost
impossible task.

For the experimental testing images have been collected from multiple public
sources and also obtained from other research centres. The majority of altered
�ngerprints are collected for dermatological purposes and contain �ngertips that
have unintentional alterations caused by diseases or injuries. Many of the dis-
torted images are caused by surgical procedures, e.g. scars or transplantations
from medical corrections of mutilated areas. The �nal database composition is
comprised of the following:

• Brno [Brn13]. A collection of �ngerprints containing a wide variety of
dermatological diseases. The database is a property of the Faculty of
Information Technology at Brno University of Technology and the research
group STRaDe in collaboration with dermatologists from FN Olomouc.
Skin diseases can have a great in�uence on the �ngerprint pattern. Many
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�ngerprints share characteristics similar to altered �ngertips, especially
belonging to the obliterated classi�cation. Some images with only minor
alterations have been classi�ed as unaltered prior to testing, since they
are considered to contain enough information for a positive comparison
decision by an AFIS.

• FVC 2004 [CMM+04]. The public �ngerprint database collected for the
Fingerprint Veri�cation Competition 2004 (FVC 2004). Images from database
DB1 (set A) were used - all images are unaltered.

• GUC-100 [GUC09]. An in-house database from Gjøvik University College
(GUC) in Norway. A few images contained dermatological diseases with
unnatural ridge �ow which were of special interest.

• Samischenko [Sam01]. The book Atlas of the Unusual Papilla Patterns
by S.S. Samischenko contains a large collection of �ngerprint images with
unusual �ngerprint patterns together with some natural. The database
contains �ngerprints from �ngers altered by burns, acid burns, transplan-
tation, miscellaneous injuries and diseases.

• Literature sources. An assortment of images, primarily altered, where
gathered from miscellaneous literature sources, such as books, presenta-
tions and articles.

It is di�cult to obtain data with a reliable ground truth, e.g. all �ngerprint
images with dermatological diseases are not necessarily classi�ed as altered.
Images have therefore been manually sorted and classi�ed as altered or unaltered
prior to any research on the detection methods. The ground truths were never
changed.

Since many of the altered �ngerprint images are from literature sources of poor
quality, a large amount of the available images are deemed unsuited for the
actual testing since they will produce unrealistic results most likely in the favour
of the proposed method. The �nal dataset used for testing contains a �ltered
version of the collected databases based on image quality.

The �nal �ltered dataset used for testing contains 116 good and varied images
of altered �ngerprints. Given the di�culty of gathering a variety of altered
images with an adequate quality, the dataset must be considered to be of a high
standard. Apart from the large government dataset used by Yoon et al [YFJ12,
YZJ12], most other research is either done on a very limited dataset, e.g. [PL12],
or on synthetic or simulated database, e.g. [FJR09], [TPVR12] and [PL10a,
PL11]. This is not to belittle other research, but instead to highlight the lack
of available databases and show that the dataset is far better than average in
this particular �eld.
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8.2.2 Algorithms

Both the state-of-the-art and proposed algorithm have been implemented using
Matlab. Dissecting the two approaches gives a total of four di�erent analyses.
Each of the analysis creates a density map and extracts feature vectors in a
similar fashions. The four di�erent analyses are:

• Orientation Field Analysis (OFA).

• Minutia Distribution Analysis (MDA).

• Singular Point Density Analysis (SPD).

• Minutia Orientation Analysis (MOA).

The fusion of OFA and MDA constitute the state-of-the-art algorithm while the
proposed method is constructed as a combination of the two remaining analyses,
SPD and MOA.
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Figure 8.1: Tests were conducted on each analysis algorithm separately.

The four di�erent analyses were tested separately. This was done by feeding
the SVM with the 189-dimensional vector extracted from each analysis. The
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preprocessing pipeline described in this thesis is used for all of the analyses.
However, enhancement of the �ngerprint image is not used on the two algorithms
that analyse minutiae since it has its own preprocessing pipeline. Figure 8.1
shows the arrangement of the individual testing.
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Figure 8.2: The state-of-the-art and proposed methods were tested separately.

Tests were conducted on the two methods, see Figure 8.2. An important step of
the testing was to feed the same set of images to all tests so that comparisons
can be done between the proposed and state-of-the-art method.

Additionally, a third method was proposed by combining the OFA from the
state-of-the-art together with the SPD. Test results will show that this is a
good combination since they are the two most reliable algorithms.

The testing currently contains a combination of three approaches each con-
taining a pair of analyses. A majority voting scheme is also introduced which
classi�es a �ngerprint as altered only if at least two of the methods give positive
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Figure 8.3: A combined test of the two most successful analyses was added.
Additionally, a majority voting scheme was applied to vote on the
results of all three methods.

classi�cations. The set up of the voting scheme can be seen in Figure 8.3.
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8.3 Results

The experimental testing is performed using a SVM for classi�cation. The linear
kernel function was chosen as the best performing amongst the kernels tested.
The SVM outputs binary (boolean) values: 1 when the system states that the
presentation characteristic has been altered, and 0 otherwise.

For the purpose of cross-validation a total of ten test runs have been performed.
The �nal test scores are based on the average scores of the test runs. For
each test, the training and validation samples are randomly chosen from the
available dataset. The randomisation algorithm used for preparing the samples
is con�gured to select a common size and distribution between altered and
unaltered for each test.

The size of the samples used for training and testing can be seen in Table 8.1.
The testing set is larger due to the limited size of the database.

Unaltered Altered Total
Training 94 35 129
Test 86 81 167
Total 180 116 296

Table 8.1: Average ratio between altered and unaltered �ngerprint images used
in each test. 296 �ngerprint images were used by the test.

Yoon et al [YFJ12] use a more thorough 10-fold cross-validation which produces
output results in the range [0, 1]. This gives additional options to �ne-tune the
results with regards to a desired proportion of TADR and FNADR. However,
such a test is not possible given the available database size.

The �nal test results are given in Table 8.2. The full test results of each run
can be found in Appendix A.

With a TADR of 91.9% and only 2.9% FNADR, the proposed method has
a very similar detection rate to the existing method (91.7% TADR and 3.2%
FNADR). However, combining the two most successful analyses from the two
into one alteration detection method gives an even better performance with
94.6% TADR and 2.9% FNADR.

Using the proposed voting scheme that combines the three alteration detec-
tion algorithms (see Figure 8.3) gives the best results (95.1% TADR and 2.9%
FNADR). The voting scheme requires at least two of the three methods to
classify an image as altered in order to classify a �ngerprint as altered.
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Method Analysis TADR FNADR

Existing
OFA 93.7% 3.2%
MDA 77.5% 7.9%

OFA/MDA 91.7% 3.2%

Proposed
SPD 92.0% 2.3%
MOA 81.6% 5.5%

SPD/MOA 91.9% 2.9%

Combined OFA/SPD 94.6% 2.4%

Voting OFA/MDA, SPD/MOA, OFA/SPD 95.1% 2.9%

Table 8.2: Test results. The existing algorithm (fusion of OFA and MDA) and
the proposed algorithm (fusion of SPD and MOA) have very similar
results. A fusion of OFA and SPD improves the result. The best
results are achieved when combining all three fused methods using
the voting scheme.

8.4 Evaluation

The proposed method is able to detect a high number of altered �ngerprints,
both obliterated and distorted. Not all altered �ngerprints are detected by the
algorithm, neither are all unaltered images classi�ed as unaltered. The reason
for this is the following:

• False non-altered detection. Some altered �ngerprints have only a small
area of alteration which can be hard to distinguish from a singular region.
Also, some alterations don't provide signi�cant minutiae or have very little
change in the �ow of the friction ridges along scarred regions.

• False altered detection. The main reason is poor image quality, especially
around singular regions where the orientations have a high curvature.

The reproduction of the state-of-the-art method gives a �rm basis on which to
compare results. Extensive testing of the state-of-the-art method was performed
by Yoon et al [YFJ12] on a much larger database from a government agency,
publishing results of 70.2% TADR and 2.1% FNADR. Since the state-of-the-art
method exhibited better performance on the current test database it might be
an indication that the proposed method will perform slightly lower on a large
scale database.
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The proposed method has a fully comparable performance rate to the existing
state-of-the-art algorithm based on the existing results. A list of images in
Appendix B also testify to that fact that the algorithms are able to identify
discrepancies in altered �ngerprint images. The images have a higher density
and greater distribution of high readings in altered �ngerprints compared to
unaltered.

The test results indicate that current alteration detection rates can be further
improved by combining the SPD and OFA algorithms from the two di�erent
methods. Introducing the majority voting scheme will require a combination of
all four analyses which complicates the detection algorithm and adds additional
computation. However, the attractive results achieved by this method suggest
a solution that delivers an increased detection rate with supreme accuracy that
clearly outperforms the current state-of-the-art method.

In order to successfully evade identi�cation by an AFIS, one is generally required
to alter multiple �ngertips. Most large-scale AFIS applications generally use
a comparison score combined from all ten �ngerprints. In such systems, �ve
�ngerprints are generally su�cient for reliable identi�cation [YFJ12]. This could
imply a system where at least �ve or six of the �ngerprints should be classi�ed
as altered in order to raise an alarm, signi�cantly minimising the chance for any
false detections.

8.5 Summary

Experimental testing has been performed on a dataset composed from multiple
sources. A reproduction of the state-of-the-art algorithm has enabled testing of
both methods and additional combinations of both.

The proposed method has very similar results to the state-of-the-art method. It
has also been shown that combining the most e�cient analysis algorithm from
each of the two methods, OFA from the existing and SPD from the proposed,
improves the detection rate. The best results are achieved by using a voting
scheme which votes on the results from the two methods along with results
from the combined method.
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Chapter 9

Directions for Future Works

This very brief chapter will identify some relevant directions for future works.
Some of the items are already in process.

• Large scale testing. The experimental testing of the proposed method
shows promising results. However, extensive tests on a larger scale need
to be conducted in order to ensure the e�ciency of the algorithms in
detecting altered �ngerprints.

Based on the potential of the current results, the National Institute of
Standards and Technology (NIST) in collaboration with the Department
of Homeland Security (DHS) have agreed to run elaborate tests on the
proposed method. The tests will be conducted in a similar fashion to the
tests performed on the method proposed by Yoon et al [YFJ12]. It will
test the proposed method, along with the current implementation of the
state-of-the-art, and the proposed fusion of the two methods.

• Orientation entropy. Section 6.1.2 suggests that the orientation entropy
has very distinct properties in altered �ngerprints, as already observed
by Tiribuzi et al [TPVR12]. Further study could be done to analyse
the relationship and behaviour of the orientation entropy of altered and
unaltered �ngerprint images in order to possibly implement an alteration
detection algorithm based on this technique.
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• Standard quality measures. Fingerprint image quality assessment software
such as NFIQ is used to evaluate the quality of a �ngerprint image. The
detection of �ngerprint alteration has a very close relation to assessing the
quality of a �ngerprint image.

Further work could be done to develop an approach to integrate alter-
ation detection algorithms into already existent quality measures, such as
introducing metrics on the probability that a �ngerprint has been altered.



Chapter 10

Conclusion

The success of Automated Fingerprint Identi�cation Systems (AFISs) has lead
to an increased number of incidents where individuals alter their �ngerprints
in order to evade identi�cation. Traditionally, �ngerprint alteration was mainly
seen in criminal cases, but today it is a common occurrence in non-criminal cases
also. This is probably especially seen at border crossings where �ngerprints are
subject to comparison against a watch list.

This thesis has proposed a novel method for detecting altered �ngerprints. The
method is based on analyses of two di�erent local characteristics of a �ngerprint
image. The �rst analysis identi�es irregularities in the pixel-wise orientations
which share similar characteristics to singular points. The second analysis com-
pares minutia orientations covering a local, but larger area than the �rst analy-
sis. A global density map is created in each of the analysis in order to identify
the distribution of the analysed discrepancies.

Experimental results suggest that the method yields performance fully com-
parable to the current state-of-the-art method. Further improvements can be
achieved by combining the most e�cient analysis of the two methods, Orien-
tation Field Analysis (OFA) and Singular Point Density Analysis (SPD). The
best results were achieved by doing an elaborate analyses using all three meth-
ods (the proposed, state-of-the-art and the combined method) and additionally
introducing a voting scheme to classify the �ngerprint.
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The promising results achieved in this study are attractive for further investiga-
tions. Especially, studies into the possibility of introducing alteration detection
into standard quality measures of �ngerprints which would improve AFISs and
contribute to the �ght against fraud.
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Test Results

Analyses:

• Orientation Field Analysis (OFA)

• Minutia Distribution Analysis (MDA)

• Singular Point Density Analysis (SPD)

• Minutia Orientation Analysis (MOA)

The dataset contained a total of 296 images comprised by 116 altered and 180
unaltered �ngerprint images. 10 test runs were performed on randomised train-
ing and validation samples.

Unaltered Altered Total
Training 94 35 129
Test 86 81 167
Total 180 116 296

Table A.1: Average ratio between altered and unaltered �ngerprint images
used in each test. 296 �ngerprint images were used by the test.
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OFA MDA Fusion
Test # TADR FNADR TADR FNADR TADR FNADR
1 97.4% 4.7% 83.1% 5.8% 97.4% 5.8%
2 88.5% 3.5% 83.3% 15.3% 88.5% 2.4%
3 96.1% 3.4% 76.3% 3.4% 86.8% 3.4%
4 92.1% 1.1% 76.3% 6.9% 93.4% 1.1%
5 96.0% 8.0% 81.3% 14.8% 96.0% 6.8%
6 95.9% 3.3% 79.5% 13.3% 89.0% 6.7%
7 93.8% 1.2% 74.1% 3.7% 91.4% 1.2%
8 93.6% 3.5% 66.7% 2.4% 91.0% 2.4%
9 93.6% 3.5% 69.2% 2.4% 88.5% 2.4%
10 89.9% 0.0% 84.8% 10.7% 94.9% 0.0%
Avg 93.7% 3.2% 77.5% 7.9% 91.7% 3.2%

Table A.2: Test results of the state-of-the-art method. The Fusion method is
the actual method which is the combination of the two analyses.

SPD MOA Fusion
Test # TADR FNADR TADR FNADR TADR FNADR
1 96.1% 1.2% 87.0% 4.7% 96.1% 2.4%
2 92.3% 3.5% 73.1% 7.1% 91.0% 2.4%
3 93.4% 4.6% 78.9% 8.0% 85.5% 2.3%
4 92.1% 1.1% 82.9% 5.7% 90.8% 4.6%
5 94.7% 4.5% 77.3% 5.7% 94.7% 2.3%
6 91.8% 3.3% 91.8% 8.9% 95.9% 7.8%
7 85.2% 0.0% 76.5% 1.2% 87.7% 1.2%
8 96.2% 3.5% 75.6% 3.5% 93.6% 2.4%
9 89.7% 0.0% 84.6% 4.8% 92.3% 2.4%
10 88.6% 2.3% 81.6% 5.5% 91.1% 1.2%
Avg 92.0% 2.3% 81.6% 5.5% 91.9% 2.9%

Table A.3: Test results of the proposed method. The Fusion method is the
actual method which is the combination of the two analyses.
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OFA/SPD Voting Scheme
Test # TADR FNADR TADR FNADR
1 97.4% 3.5% 98.7% 3.5%
2 93.6% 1.2% 94.9% 1.2%
3 97.4% 3.4% 92.1% 3.4%
4 92.1% 0.0% 93.4% 1.1%
5 96.0% 6.8% 96.0% 6.8%
6 95.9% 3.3% 97.3% 6.7%
7 95.1% 0.0% 93.8% 0.0%
8 96.2% 3.5% 96.2% 3.5%
9 92.3% 2.4% 93.6% 2.4%
10 89.9% 0.0% 94.9% 0.0%
Avg 94.6% 2.4% 95.1% 2.9%

Table A.4: Test results of combining the OFA and SPD analyses, and the
voting scheme using the state-of-the-art, proposed and OFA/SPD
methods
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Appendix B

Images

(a) Input (b) SPD (c) MDA (d) Input (e) SPD (f) MDA

Figure B.1: Images of �nal density maps of unaltered �ngerprints.
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(a) Input (b) SPD (c) MDA (d) Input (e) SPD (f) MDA

Figure B.2: Images of �nal density maps of unaltered �ngerprints.
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(a) Input (b) SPD (c) MDA (d) Input (e) SPD (f) MDA

Figure B.3: Images of �nal density maps of unaltered �ngerprints.
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(a) Input (b) SPD (c) MDA (d) Input (e) SPD (f) MDA

Figure B.4: Images of �nal density maps of altered �ngerprints.
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(a) Input (b) SPD (c) MDA (d) Input (e) SPD (f) MDA

Figure B.5: Images of �nal density maps of altered �ngerprints.
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(a) Input (b) SPD (c) MDA (d) Input (e) SPD (f) MDA

Figure B.6: Images of �nal density maps of altered �ngerprints.
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Acronyms

AFIS Automated Fingerprint Identi�cation System. 1, 15, 21, 81, 87, 91, 92

APC Attack Presentation Characteristic. 2

CPL Center Point Location. 35

FADR False Altered Detection Rate. 79

FFT Fast Fourier Transform. 39, 40

FNADR False Non-Altered Detection Rate. 79, 80, 85, 86, 94, 95

MDA Minutia Distribution Analysis. 14, 23, 61, 82, 86, 93, 94, 97�102

MOA Minutia Orientation Analysis. 61, 73, 76, 82, 86, 93, 94

NBIS NIST Biometric Image Software. 15, 21, 32, 69

NFIQ NIST Fingerprint Image Quality. 9, 38, 90

OCL Orientation Certainty Level. 46, 47

OFA Orientation Field Analysis. 14, 20�23, 61, 82, 83, 86, 87, 91, 93�95

ROI Region Of Interest. 32, 33, 35, 37, 44, 51, 66, 72

SPD Singular Point Density Analysis. 45, 82, 83, 86, 87, 91, 93�95, 97�102



114 Acronyms

STFT Short Time Fourier Transform. 41

SVM Support Vector Machine. 14, 20, 23, 26�29, 82, 85, Glossary: SVM

TADR True Altered Detection Rate. 79, 80, 85, 86, 94, 95

TNADR True Non-Altered Detection Rate. 79

VIS Visa Information System. 1, 2



Glossary

core The core is de�ned as the topmost point on the innermost recurving ridge-
line of a �ngerprint [ISO11]. It can be seen as the point of maximum
curvature of the concave ridges in the �ngerprint image [JPHP00]. 35, 45

delta The delta is de�ned as a point on a ridge at or nearest to the point of
divergence of two typelines and located at or directly in front of the point
of divergence [ISO11]. Delta points are located at the center point where
three di�erent directions �ows meet [KMKA10]. 45

friction ridges Flow-like patterns of ridges and valleys that exist on the surface
of the palms and soles. On the �ngers, the distinctive patterns formed by
the friction ridges make up the �ngerprints. 1

minutia Friction ridge characteristics that are used to individualize a �nger-
print image. Minutia(e) are local discontinuities in the �ngerprint pattern
where friction ridges begin, terminate, or split into two or more ridges.
14, 21, 35, 61, 76

singular point Belongs to the set of features that can be detected at the global
level. Singular points, called core and delta, act as control points around
which the ridge lines are �wrapped� [MMJP09]. 13, 19, 27, 35, 45, 46, 51,
59, 66, 91

SVM A Support Vector Machine (SVM) performs classi�cation by constructing
a N-dimensional hyperplane that optimally separates the data into two
categories. 109
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visa shopping The practice of making further visa applications to other mem-
ber states when a �rst application has been rejected. 2
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