
Multi-Agent Programming in GOAL

Philip Bratt Ørum and Nicolai Christian
Christensen

Kongens Lyngby 2013
B.Sc.-2013-19

Technical University of Denmark
DTU Compute
Matematiktorvet, building 303B, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253031, Fax +45 45881399
compute@compute.dtu.dk
www.compute.dtu.dk B.Sc.-2013-19

Summary (English)

The goal of this thesis is to evaluate the ideas and strategies used by the multi-agent
system that won the 2011 Multi-Agent Programming Contest. We aim to determine
whether any of these strategies are useful in the 2012 contest scenario and whether
they can be implemented as part of a competitive solution. We also want to evalu-
ate the usefulness and performance of the multi-agent programming language GOAL,
which was used to write the original multi-agent system.

Evaluation is based on running simulations of the 2012 contest scenario between the
2011 winners and the team from DTU which nearly won the 2012 contest. We evaluate
GOAL based on material provided by its creators as well as by using the programming
language for the duration of the project.

Results show that the team from 2011 is inferior to the 2012 team in almost every
way. Their strategies are too specialized towards the contest structure in 2011 to be
transferred to later editions. For this reason it would not be worth it to adapt this
system to any future contests. The GOAL programming language is intuitive and easy
to use. Several bugs are present but as only alpha releases exist this is to be expected.
We believe that GOAL will be a strong tool for multi-agent systems in the future.

ii

Summary (Danish)

Målet for denne afhandling er at evaluere de ideer og strategier der blev benyttet i det
multi-agent system, som vandt Multi-Agent Programming Contest i 2011. Vores for-
mål er at bestemme om disse strategier er brugbare i 2012 scenariet for konkurrencen
og om de kan implementeres som del af et konkurrencedygtigt program. Vi vil også
evaluere anvendeligheden og ydeevnen af multi-agent programmeringssproget GOAL,
som det pågældende multi-agent system blev skrevet i.

Evalueringen sker på baggrund af simulationer, hvor vinderne fra 2011 dyster mod
holdet fra DTU, som næsten vandt konkurrencen i 2012. GOAL bliver evalueret på
baggrund af det materiale, der er skrevet af dets skabere, samt ved at arbejde med pro-
grammeringssproget gennem hele projektet.

Resultaterne viser at holdet fra 2011 er dårligere end det fra 2012 på næsten alle punk-
ter. Deres strategier er alt for specialiserede i forhold til strukturen på konkurrencen i
2011 til, at de kan overføres til senere udgaver. Af denne grund vil det ikke være tiden
værd at prøve at tilpasse systemet til fremtidige konkurrencer. Programmeringssproget
GOAL er intuitivt og nemt at arbejde med. Der er en række fejl i sproget, men siden
det kun er udgivet i alpha-versioner, er dette forventet. Vi tror at GOAL bliver et vigtigt
værktøj for multi-agent systemer i fremtiden.

iv

Preface

This thesis was prepared at the department of DTU Compute at the Technical Univer-
sity of Denmark in fulfilment of the requirements for acquiring a B.Sc. in Informatics.

The thesis deals with multi-agent systems in general and strategies used in the Multi-
Agent Programming Contest specifically, as well as the agent programming language
GOAL.

The thesis consists of theory about agent systems, GOAL and the Mult-Agent Program-
ming Contest. It concerns the strategy used by the winning team of the 2011 MAPC
and through testing determines whether or not the strategy is good enough to compete
in the 2012 MAPC.

Lyngby, 01-July-2013

Philip Bratt Ørum and Nicolai Christian Christensen

vi

Acknowledgements

We would like to thank our supervisor Jørgen Villadsen for help and guidance through-
out the project.

We would also like to thank Øyvind Grønland Woller and Andreas Viktor Hess for
discussions about GOAL and the bugs we encountered in it.

Finally we would like to thank Mikko Berggren Ettienne and Steen Vester who created
the original Python-DTU system and Andreas Frøsig and Kenneth Balsiger Andersen
who have also worked with Python-DTU for helping us make sense of the original
python code.

viii

Who Did What

Below we list who was mainly responsible for writing each chapter.

Philip:

• Chapter 2

• Section 4.1

• Chapter 5

• Chapter 6

• Chapter 7

Nicolai:

• Chapter 1

• Chapter 3

• Section 4.2

• Chapter 6

• Chapter 8

• Chapter 9

• Appendix A

x

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

Who Did What ix

1 Introduction 1

2 Agent Systems 3
2.1 Rational agents . 3
2.2 Multi-agent Systems . 4

3 GOAL Programming Language 7
3.1 Mental State . 7
3.2 Reasoning Cycle . 10

4 Agents on Mars and the HactarV2 Team 11
4.1 Contest scenario . 11

4.1.1 2011 vs. 2012 . 15
4.2 HactarV2 . 15

4.2.1 Design . 15
4.2.2 Strategy . 16

5 Core Strategy 19
5.1 Buying strategy . 19

xii CONTENTS

5.2 Zone control . 20

6 Adapting to the 2012 scenario 21
6.1 Connecting to the new setup . 21
6.2 Adapting to the new map structure 23

6.2.1 Changing the strategy . 23

7 Testing 31
7.1 Analysis . 32

7.1.1 Zone control . 32
7.1.2 Buying Strategy . 33
7.1.3 Pathing . 34

7.2 In summation . 34

8 Evaluating GOAL 37
8.1 The GOAL language . 37
8.2 Debugging in GOAL . 38
8.3 GOAL bugs . 39

9 Conclusion 41

A Changes to HactarV2 43
A.1 Agent.mas2g . 43
A.2 Eismassimconfig.xml . 44
A.3 Accounts-NPC.xml . 45
A.4 Config.dtd . 45
A.5 2012-3sims-NPC.xml . 45

B Code 47
B.1 Original HactarV2 code . 47
B.2 Final version source code . 47

Bibliography 85

CHAPTER 1

Introduction

The idea of artificial intelligence has existed for many years and the subjects studied
in this field have varied over time. Artificial intelligence started with a desire to build
actual cognitive agents that exhibited human-like intelligent behavior. When people re-
alized implementing such agents was impossible with the knowledge available, focus
shifted to better understanding the constituent parts needed for an intelligent agent1.
As such, the field of artificial intelligence has evolved from focusing solely on agents
with so called artificial general intelligence2 into trying to solving subproblems that
will eventually help to realize the original goal. Even though no agents with even near
human intelligence have been created today, the complexity of agents has evolved a
great deal.

Multi-agent systems are systems for problem solving which employ several intelligent,
autonomous agents. These agents are designed to cooperate, enabling them to solve
complex problems that are too challenging for a single agent. In the study of Multi-
agent Systems an annual contest, the Multi-Agent Programming Contest3, is held to
provide an environment for increasing the knowledge on these systems.

1[Wik13a]
2Also called Strong AI, described in [Wik13d]
3[DKS13]

2 Introduction

In this thesis, we study multi-agent systems in the context of the Multi-Agent Program-
ming Contest. We analyze the HactarV2 team that won the 2011 contest and compare
their strategies to the Python-DTU team that nearly won in 2012. The code for Python-
DTU has since been updated and we now consider it to be the strongest team to have
been created for the 2012 contest.

The HactarV2 multi-agent system is written in the relatively new agent programming
language GOAL so we have chosen to focus on this programming language for our
project. Since this is a new language, it has not been studied in detail before. This
allows us to evaluate its usefulness as an agent programming language.

We start by providing theory on agent systems, GOAL and the Multi-Agent Program-
ming Contest needed to understand our work. We then go on to explain the changes we
made to the HactarV2 code, both to get it to communicate with the new server structure
as well as for its strategies to function on the new map layout. We now analyze the final
version of the HactarV2 code after all our implementations and move on to present our
results gathered from testing. Finally, we briefly describe our experiences with GOAL
as an agent programming language and finally we conclude on our project results.

CHAPTER 2

Agent Systems

We will start by introducing some of the fundamentals of multi-agent systems, like the
concept of an agent and the basic ideas behind multi-agent systems.

2.1 Rational agents

The most basic component of a multi-agent system is the agent. An ‘agent’ is com-
monly defined as any entity, real or virtual, that can perceive its environment and is
capable of acting upon it1. This thesis deals with software agents in particular, but the
term is often used to describe real world entities as well.

The type of agent we are interested in is called a rational agent. Such an agent has
one or more goals which it will try to accomplish by manipulating its environment.
The general idea is that an agent is able to perceive its environment, at least to some
degree. The agent can then process the information it perceives and turn it into a set
of beliefs about the current state of the environment. It uses these beliefs coupled with
any new percepts the agent receives to select what actions it needs to perform in order

1[Hin11] pages 9-10

4 Agent Systems

to achieve its goals. Such an agent is rational because it will pursue its goals to the best
of its ability, based on its understanding of the environment around it2.

An important property of agents which is often used to differentiate agent programs
from other programs is autonomy3. Agents decide what actions to perform autonomously,
i.e. based solely on the agents own beliefs and percepts and without interference from
other agents or entities. Most agents are created to work within specific environments
or solve specific types of problems, and as such they rely on prior knowledge of the
environment when making decisions4. While such agents are not completely indepen-
dently they still make all their decisions independent of other entities, and so it still
makes sense to refer to them as autonomous agents.

An important advantage of using an agent based approach to problem solving is that
rational agents are able to make decisions about what to do and how to react to various
situations at run time. This means that the creator of the system does not need to con-
sider every possible scenario when designing the system, a task that is often impossible
when solving sufficiently complex problems5.

2.2 Multi-agent Systems

While single agents can be useful in a number of circumstances, it is often necessary to
be able to model more complex systems that contain multiple entities, each with their
own set of goals and beliefs6. A group of cooperating agents that are working together
to solve a problem is called a multi-agent system (MAS).

For such agents to be able to cooperate, it is important that the roles of the agents and
the relationships between them are clearly defined. Each agent needs an understanding
of its role in relation to the other agents, and needs to be able to make autonomous
decisions about how to interact with other agents7.

2[RN10] page 4
3[Hin11] page 10
4[RN10] page 39
5[Jen00] page 284
6[Jen00] page 280
7[Jen00] page 280

2.2 Multi-agent Systems 5

The advantage of multi-agent systems over a more centralized approach is that deci-
sions are made locally, making the system much more robust. If an unforeseen situation
occurs, an autonomous agent is able to react to it locally, making the system as a whole
more flexible and responsive8. Additionally, it is natural to use a multi-agent approach
for problems which contain a number of similar entities, since having a close correla-
tion between the theoretical model and the concrete problem being modeled reduces
the complexity of the system9.

8[Jen00] page 285
9[Jen00] page 286

6 Agent Systems

CHAPTER 3

GOAL Programming Language

In this chapter we describe the GOAL programming language. We briefly discuss the
thoughts behind it, then describe the features and the basic structure of programs.

3.1 Mental State

The GOAL programming language is a language developed for creating multi-agent
systems where rational agents operate in a predefined environment. The language has
been designed based on a strategy called the Intentional Stance1. As quoted in the
GOAL manual, it is described by Dennett2 as a strategy that "consists of treating the
object whose behavior you want to predict as a rational agent with beliefs and desires
(...)". This strategy provides an abstraction from data stored in a database by labeling
it with more relatable names such as knowledge, beliefs and goals. These labels make
the language easily accessible and straightforward to use.

1[Hin11] page 11
2[Wik13b]

8 GOAL Programming Language

The agent’s knowledge base, its beliefs about the environment and the goals it wants to
achieve are collectively called the mental state of the agent3. They determine what the
agent knows about the state of the environment, as well as what it desires the environ-
ment state to be like. In addition to having a mental state, as mentioned earlier, an agent
can also handle percepts, communicate with other agents and take actions. GOAL is
designed to facilitate the representation of these aspects of an agent by providing a sim-
ple interface where each of these elements can be represented. Collectively this part of
a GOAL program is called the init module. The init module is shown in Figure 3.1.

1 init module {
2 knowledge{
3 % insert knowledge here, if any, or remove section.
4 }
5

6 beliefs{
7 % insert initial beliefs here, if any, or remove section.
8 }
9

10 goals{
11 % insert initial goals here, if any, or remove section.
12 }
13

14 program {
15 % insert one−time rules here, or remove section
16 }
17

18 actionspec{
19 % insert global action specification here, if any, or remove section.
20 }
21 }

Figure 3.1: Init module skeleton of a newly created MAS in GOAL

To describe an agent’s mental state, as well as its action specifications, a Knowledge
Representation4 language is required. GOAL does not need any specific language, but
uses SWI-Prolog as its standard language.

The knowledge of an agent is represented by a set of predicates in the Knowledge Rep-
resentation language. The knowledge base is static, and prior knowledge which the
agent might possess must be entered here before running the MAS that the agent is part
of. It is recommended to put any rules or definitions into the knowledge base5. This is
the logical thing to do in most cases, as we do not usually want rules and definitions
to change during runtime. Any entries in the knowledge base are considered together

3[Hin11]
4[Hin11] page 19
5[Hin11] page 22

3.1 Mental State 9

with the agent’s beliefs when evaluating mental state conditions in the belief base (see
below). This allows an agent to have a complete “view” of the environment built from
knowledge of rules and definitions, as well as beliefs about the current world state that
it has perceived, provided its belief base is complete. For an agent’s belief base to be
complete, the environment has to be fully observable for the agent. It is also the case
that any goals are evaluated in combination with the knowledge base. Care should be
taken, when letting agents adopt goals, that entries in the knowledge base do not cause
undesired goals to be inferred, and rules should not be defined without considering how
they might impact the agent’s goals6.

The beliefs section of an agent is dynamic, and predicates can be inserted and removed
while the MAS is running. This is used to update the mental state of the agent as it
receives percepts from the environment or messages from other agents. The belief base
usually starts out empty, as any knowledge that the agent has prior to running is usually
certain knowledge rather than a belief. When perceiving the environment, it is crucial
to know whether or not the environment state is fully observable for the agent, as the
current beliefs are used to evaluate rules the agent must follow. If we assume that the
state of the environment, from the point of view of the agent, is complete, then we
can take advantage of the fact that Prolog operates under a closed world assumption7,
meaning that anything not known to be true is assumed to be false. If the state of the
environment is not fully observable, we have to define our rules around the fact that no
assumptions can be made, making rules definitions more demanding.

The goal section of an agent holds definitions about what the agent wants to achieve.
An agent can start with goals that it wants to achieve and never deviate from fulfilling
those specific goals, or it can adopt new goals or drop old ones based on the logic that
defines the agent’s behavior. When a goal is believed to be achieved, i.e. it appears in
the agent’s belief base, it is removed from the goal section automatically. This is done
because it would be irrational to pursue a goal that is already believed to be achieved8.

6[Hin11] page 28 - "Where to Put Rules?"
7[Hin11] page 23 - "Closed world assumption"
8[Hin11] page 37

10 GOAL Programming Language

3.2 Reasoning Cycle

Every time an agent wants to act, it goes through a reasoning cycle9 trying to determine
the best course of action. To represent this reasoning, GOAL suggests using two special
modules, each representing a specific part of the cycle. Only one of these modules is
actually required in an agent, but if both are present they will be executed in a specific
order.

The first one is the event module. This is designed for handling percepts from the envi-
ronment and communication with other agents if necessary. The system goes through
this module first, as it will bring the agent up to speed with all changes that might have
occurred in reaction to last cycle’s actions. The mental state of the agent is updated by
adding and removing predicates from the belief base and possibly changing the goals
of the agent based on new information.

The second module is the main module. This is supposed to contain the actual reason-
ing for picking the correct action. By following rules and utilizing it’s current mental
state, the agent should eventually arrive at an action call. If the precondition for an ac-
tion is fulfilled the action will be executed. GOAL supports additional module creation
for grouping code together. These modules act similarly to functions without return
types and have the option of taking parameters, making it easy not to clutter up the
event and main modules.

9[Hin11] page 44

CHAPTER 4

Agents on Mars and the
HactarV2 Team

The specific multi-agent scenario we study in this thesis is the ‘Agents on Mars’-
scenario from the 2011 - 2012 Multi-Agent Programming Contest1. We will give a
basic explanation of the scenario here.

4.1 Contest scenario

In the ‘Agents on Mars’-scenario, two teams of agents are fighting for control of a
number of water wells on the surface of Mars. Each team consists of a number of in-
dependent agents with different roles (as detailed in the tables below). These agents
must work together to control as many wells as possible, while at the same time pre-
venting the other team from doing the same. Each team receives a number of points
each turn based on the amount and value of the wells they control and the number of
achievement points the team has. Achievement points are awarded for reaching certain
milestones, like controlling an area of a certain size or inspecting a certain number of
enemy agents, so teams are rewarded for being versatile and utilizing all of their op-

1[DKS13]

12 Agents on Mars and the HactarV2 Team

tions. A match consists of 750 rounds, and the winner is the team with the highest
score at the end of the match.

A match is played out on a graph (called a map) consisting of a number of vertices
connected by edges. The vertices represent the water wells, while the edges represent
the paths between them. Each edge has a value which represents the cost, in energy, of
traversing it.

Figure 4.1: A screenshot from a running simulation

4.1 Contest scenario 13

A special coloring algorithm is used to determine what areas of the graph (zones) are
controlled by each team. The algorithm consists of the following four steps2:

1. The first phase of the calculation only involves the coloring of vertices that have
agents standing on them. We say that a vertex v is dominated by a team t if t has
the majority of agents on v.

2. The coloring is extended to empty vertices that are direct neighbors of dominated
vertices. A team needs to dominate at least two neighboring vertices of an empty
vertex to be able to color that empty vertex.

3. Some of the vertices that were colored with a team name t in the previous two
steps might represent a frontier that isolates a part of the graph from all the other
teams’ agents. We say that an empty vertex has been isolated by a team iff for all
agents ag belonging to the other team t2 there is no path from ag to v that does
not include a vertex colored by t. The coloring is extended to all vertices isolated
by each team.

4. A node is not colored iff the other conditions are not satisfied.

This algorithm is run by the server each round and the result is sent to the agents as
percepts, so an agent is always aware of what parts of the graph its team controls.

During each round all agents must choose an action to send to the server, and the server
then determines the result of each agent performing its chosen action. The agents have
a limited amount of time to decide what to do, and if the time limit is exceeded the agent
forfeits its turn. The agents can share some information between them, and percepts
are automatically shared between agents in the same zone of control, but each agent is
responsible for telling the server what it wants to do.

2[BDH+11] page 5

14 Agents on Mars and the HactarV2 Team

A team consists of the agents seen in Table 4.1 and descriptions of all possible actions
can be seen in Table 4.2.

Explorer: skip, goto, probe, survey, buy, recharge

Repairer: skip, goto, parry, survey, buy, repair, recharge

Saboteur: skip, goto, parry, survey, buy, attack, recharge

Sentinel: skip, goto, parry, survey, buy, recharge

Inspector: skip, goto, inspect, survey, buy, recharge

Table 4.1: The available actions for specific roles

Attack: attacks a vehicle.

Buy: buys an item, upgrading the agent.

Goto: moves to a vertex.

Inspect: inspects a visible entity to determine its role and status.

Parry: parries all attacks made against the agent this round.

Probe: probes the current vertex, determining its value.

Recharge: recharges the vehicle, restoring energy.

Repair: repairs a vehicle that has been damaged by an attack.

Skip: does nothing.

Survey: surveys a visible edge, determining its cost.

Table 4.2: Descriptions of all available actions

All actions except recharge cost some amount of energy, which the agents must peri-
odically recharge. For a more detailed explanation of the actions and their effects, see
[BDH+12] pages 6-7.

4.2 HactarV2 15

4.1.1 2011 vs. 2012

The parts of the contest discussed so far are true for all versions, but there are a few
key differences between the Multi-Agent Programming Contest from 2011, which the
HactarV2 team participated in, and the current3 2012 version. In the 2011 scenario,
each team consisted of 10 agents (2 of each type). Each map had one global optimum
containing the highest value nodes. In the 2012 scenario, each team consists of 20
agents (4 of each), and the maps contain no one global optimum, but instead a number
of local optima, several of which have equal value.

4.2 HactarV2

This is a description of the original HactarV2 agent team, based on the document4 that
was provided by HactarV2’s creators from TU Delft.

4.2.1 Design

HactarV2 is designed as a decentralized MAS where each agent acts autonomously
on the map. Even though the agents make their own decisions they still cooperate
to achieve common goals. Agents will send information about nodes that have been
explored to the other agents. This ensures that the same work is not done twice by
different agents, and this way an agent will quickly get a sense of the entire map which
helps the agent move about more efficiently. Since each agent acts for itself all of them
will navigate around the map computing their own routes using a set of pathing algo-
rithms.

Messages between agents have been kept to a minimum to ensure efficiency in the
program. As a result, agents will only send useful information but never discuss what
actions to take with each other. The message inbox will only be checked at the start of
a cycle, while messages can be sent throughout the cycle. Therefore messages received
will be from the previous step and not the current one. Because of this, the agents have
been designed to rely heavily on their own percepts of the surrounding area rather than
on information from teammates.

3At the time of writing a new 2013 version is forthcoming, but it has not yet been released
4[DHH+12]

16 Agents on Mars and the HactarV2 Team

To ensure coding efficiency and to minimize bugs, the agents have been designed from
the same basic agent template, but with special behavior based on the role of the agent.
This design choice means less duplicate code and a program structure that is easy to
follow. Shared behavior has been put into different modules which each agent can
access when necessary. Each of the different roles also has a module that defines the
special behavior of agents of that type.

4.2.2 Strategy

The HactarV2 team uses a strategy that is divided into two phases. In the first phase
the agents roam around on their own, sending messages to each other about the state of
the map and the opposing team but not directly cooperating. The explorers probe the
nodes on the map looking for the optimum node to capture and hold. As mentioned, in
the 2011 scenario only one global optimum existed on the map and HactarV2 uses this
information to search for nodes of higher and higher value, effectively moving towards
the global optimum.

Meanwhile the saboteurs are taking the fight to the enemy, disrupting their operations
and hopefully keeping them from exploring the map. The saboteurs are made fairly
effective by means of the buying strategy for upgrades that HactarV2 uses. The de-
signers of HactarV2 deemed saboteurs to be the most important agent type because of
the damage they can do to the enemy. For this reason they aggressively buy health and
strength for the saboteurs from the start of the game. This costs them a lot of valuable
achievement points early on and therefore they are often behind in the early stage of a
game. They accept this penalty because they have a very strong technique for securing
the optimum and will make up for the lack of total points later in the game. They are
still aware of the importance of achievement points, however, and have decided not to
buy upgrades for any of the other agents to save points. To generate the most achieve-
ment points they focus heavily on the most worthwhile achievements, like parry, and
as an example their agents will more often use the parry action when enemy saboteurs
are near rather than flee from them.

After the optimum is found the initial phase of hactarV2’s strategy is done. Since the
explorers can search for more and more valuable nodes, this usually does not take long.
The explorers will broadcast the optimum node to the team and the agents will now
all begin to swarm around this optimum node. Explorers will update the optimum if a
higher value node is found later though.

4.2 HactarV2 17

In the swarming phase explorers will probe all nodes around the optimum. Assuming
the found optimum has the maximum value 10, node values decrease gradually from
here due to the map design in 2011. Nodes will then be probed in concentric “cir-
cles” outwards from the optimum until a specific value is reached. The agents will
then spread out from the optimum node to cover what is called the optimum zone. The
agents will maintain coherency and hold this most valuable position on the map. Sabo-
teurs will no longer be aggressive but join the swarming and only attack opponents who
come too close to the optimum zone. Holding this global optimum and the area around
it is what led HactarV2 to victory in the 2011 MAPC.

18 Agents on Mars and the HactarV2 Team

CHAPTER 5

Core Strategy

The main purpose of our program is to evaluate the strategy and performance of Hac-
tarV2 in the 2012 scenario in comparison to Python-DTU, so our final program still
has the same core strategy as the original version. We want to create a system that
works well in the 2012 scenario, while still maintaining the core parts of the HactarV2
strategy. We can then evaluate the viability of those parts in the new scenario. In this
chapter we describe exactly what these core strategies are.

5.1 Buying strategy

HactarV2’s strategy for buying upgrades is for the saboteurs to constantly ensure that
they have higher strength than the highest health they have seen on an enemy and higher
health than the strength of the strongest inspected enemy saboteur. In order to conserve
achievement points, no other agents are ever upgraded. This strategy can cost a lot of
achievement points (resulting in a lower score), but it allows the team’s saboteurs to
defeat any enemy in one attack, while also ensuring that they take at least two attacks
to disable themselves.

20 Core Strategy

5.2 Zone control

When an optimum1 has been determined, all available agents will work together to es-
tablish a zone of control around it. All the teams explorers will immediately prioritize
probing the area inside this optimum zone to ensure that we obtain the full amount of
points from it each round. Saboteurs will still fight the enemies they encounter and
reairers will still repair damaged allies, but otherwise all agents will move towards the
optimum. When they reach it, the agents will try to position themselves in a ring around
the optimum, making sure always to be close enough to each other to maintain a zone
of control2 around the optimum. Agents do this by ensuring that they are at the edge
of the optimum zone while also maintaining a distance of 2 nodes to at least two other
agents. We refer to this behaviour as ”swarming”.

Agents that are busy with other tasks such as defending the zone, probing or repairing
are labeled as ”unreliable” in terms of maintaining the swarm, and are not considered
when the swarm is established. If an enemy enters the optimum zone, the saboteurs
will detach from the swarm to deal with them, but otherwise they will stay defensive
and participate in swarming around the optimum. This makes a lot of sense in an
environment with only one optimum, since maintaining control of the most valuable
nodes is obviously a priority. It is less obvious how well it works in an environment
with multiple possible optima, but that is what we hope to determine by using it here.

1A local maximum in terms of node value
2See [DHH+12] for an explanation of how zone control works

CHAPTER 6

Adapting to the 2012 scenario

The HactarV2 code needed a number of modifications before it could be tested in the
2012 scenario, both in terms of connecting properly to the server and following the
new communication protocols, as well as adapting their strategy to reflect the changes
to the scenario that were introduced in the 2012 contest. In this chapter we describe
this process, including some of the ideas we considered over the course of the project,
and the solution we ended up with.

6.1 Connecting to the new setup

The first thing we had to do was to update the HactarV2 code so it could compete in
the mars 2012 scenario. To differentiate our version of the code from the original, we
changed the team name to NPC (Nicolai-Philip-Complete). The new team name is used
in the code, but for simplicity we will not reference it in the thesis but keep using the
team name HactarV2. Because of the changes in the competition from 2011 to 2012
as well as the new team name, we had to make several minor adjustments to different
files. A file by file list of changes can be found in Appendix A.

22 Adapting to the 2012 scenario

We had to double the number of agents on the team to make it fit the rules of the 2012
scenario. This meant preparing the server for our team, adding new entities to the en-
vironment as well as adding agents in the goal code.

In the configuration for the environment we turned off the scheduling feature as Hac-
tarV2 has designed its own way of scheduling agents between rounds.

In the 2011 version of GOAL, agents were connected to the corresponding entities in
the environment by their type. The type was simply mars2011entity. Unfortunately,
this method of connecting no longer works in the 2012 scenario, even when the year
is changed to 2012. A solution to this is to connect using the individual entity names
instead of using the type, as seen in Figure 6.1.

1 launchpolicy{
2 % Launch all the agents with a type corresponding to the one they have in the simulation
3 when [type=mars2012entityunknown,max=1]@env do launch NPC1:mapc.
4 when [type=mars2012entityunknown,max=1]@env do launch NPC2:mapc.
5 when [type=mars2012entityunknown,max=1]@env do launch NPC3:mapc.
6 when [type=mars2012entityunknown,max=1]@env do launch NPC4:mapc.

Figure 6.1: Connecting to entities by name

This connection issue is due to an error in the implementation of the 2012 environ-
ment. The type of agents were meant to be role specific in the 2012 scenario, i.e.
mars2012entityexplorer , but the specific role part was never added to the definition
of type. Instead the default value unknown was used. Knowing this, it is possible to
connect to entities using types as well, as seen in Figure 6.2.

1 launchpolicy{
2 %Launch all the agents with a name corresponding to the one they have in the simulation
3 when [name=NPC1]@env do launch NPC1:mapc.
4 when [name=NPC2]@env do launch NPC2:mapc.
5 when [name=NPC3]@env do launch NPC3:mapc.
6 when [name=NPC4]@env do launch NPC4:mapc.

Figure 6.2: Connecting to entities by type

6.2 Adapting to the new map structure 23

6.2 Adapting to the new map structure

After getting the HactarV2 code working on the 2012 server, we started testing the
strategy of HactarV2 against the updated Python-DTU team. The Python-DTU team
had come close to winning the 2012 MAPC but ended up in a close second place. They
lost because the buying strategy they were using could be exploited, causing them to
spend too many achievement points. After fixing their strategy to minimize the risk of
exploitation, the team won against every participant from the 2012 contest.

As soon as we pitted the unedited HactarV2 code against Python-DTU, it immediately
became clear that Python-DTU was the strongest. In none of the matches we played
was it ever a question of whether or not they would win, it was always how much would
they win by. Early in a match Python-DTU gained more points from achievements than
the HactarV2 team, and later when both teams tried to establish and control an area they
were significantly more efficient. When the HactarV2 agents were actually able to set
up a perimeter and hold it, they seemed to struggle to maintain control of their optimum
zone.

We had deliberately tested the program after only changing what was needed to connect
to and communicate with the 2012 server in order to see how the original HactarV2
performed in the new setting. When looking at the original code, it quickly became
obvious why it performed so poorly in comparison to Python-DTU. Even though we
had adapted it to the modifications made to the server, parts of the code still relied on
assumptions that were no longer true. For example, we had added the 10 extra agents
for the total of 20 in the 2012 MAPC, but some of the code relied on the number of
agents on a team, but HactarV2 sometimes relied on the exact number of saboteurs on
the enemy team to determine whether or not an agent was endangered by the presence
of an opponent saboteur. When encountering an unknown opponent, they would rule it
out as a saboteur if two other saboteurs had already been inspected. Since there were
now four saboteurs on the enemy team, the predicate determining this was no longer
compatible with the game rules and had to be updated.

6.2.1 Changing the strategy

The strategy, as described earlier, was to find an optimum node and have the agents
swarm around it, giving them control over the area of highest values. We knew from
the beginning that the map design in 2012 would make this kind of strategy less useful,
but the implementation of the swarming part turned out to be practically useless. The
nodes around the global optimum in the 2011 map have values that decrease gradually

24 Adapting to the 2012 scenario

as you get further away from it (see Figure 6.3). The HactarV2 team used this map
design to define their optimum zone by sticking to nodes with fixed values ranging
from 7 up to the maximum value of 10. In 2012 the map is created with several local
optima, but surrounding nodes are not guaranteed to have gradually decreasing values,
and as such it is impossible to define an area based on node values in this way. The idea
was extremely efficient for the 2011 competition but unfortunately could not threaten
the Python-DTU team with the new map layout.

Figure 6.3: Decreasing node values around global optimum - 2011

To be able to test the strategy of the HactarV2 team we had to update a number of
things about it. In the original code, the agents tried to gain control of the optimum
zone as early as possible. Explorers used a greedy strategy, always moving towards
higher value nodes when possible, in search of the optimum. This kind of strategy
makes sense in an environment with only one optimum, since gaining control of the
optimum zone not only ensures that the team get a lot of points but also starves the
other team of points, as there are no other profitable locations on the map.

Because of the multiple optima in the 2012 scenario, however, it is much more diffi-
cult to deny the opponent a good location. In our opinion, this puts a greater emphasis
on exploring and gaining achievement points in the early game, so inspired by the ap-
proach of Python-DTU1, we have implemented an exploration phase in the first 150
steps of the competition. In this phase, agents try to gain achievement points by fulfill-
ing their roles (saboteurs attack, sentinels parry, etc.), while exploring the map. Instead

1[AF12] page 4

6.2 Adapting to the new map structure 25

of stopping as soon as an optimum is found, potential optimum locations are recorded
and compared, and only when we reach step 150 do the agents decide on an optimum
and move to secure it. This behavior is implemented in the searchOptimal module,
which can be seen in Figure 6.4.

1 % Module that contains behavior for explorers to find the optimal value node
2 module searchOptimal {
3 program[order=linearall]{
4 if bel(currentPos(Here), !, vertexValue(Here, Value), optimumValue(Current), Current<Value)
5 then {
6 if bel(step(N), N<150) then insert(tempOptimum(Here), not(optimumValue(Current)), optimumValue(

Value)) + send(allother, tempOptimum(Here)).
7

8 if bel(step(N), N>=150, not(optimum(_)),calcOptimumZone(Here,OZone)) then insert(optimum(Here),
not(optimumValue(Current)), optimumValue(Value)) + send(allother, optimum(Here)) + send(
allother, optimumZone(OZone)).

9 }
10

11 if true then {
12 % find an unprobed neighbouring vertex
13 if bel(neighbour(There), needProbe(There), safePos(There)) then advancedGoto(There).
14

15 % find an unprobed neighbouring vertex
16 if bel(neighbour(There), needProbe(There), not((visibleEntity(_, There, Team, _), enemyTeam(Team))))
17 then advancedGoto(There) + insert(noFlee).
18

19 % find an unprobed neighbouring vertex
20 if bel(neighbour(There), needProbe(There))
21 then advancedGoto(There) + insert(noFlee).
22

23 % Find closest unprobed vertex
24 if bel(currentPos(Start), pathClosestNonProbed(Start, NonProbedVertex, [Here,Next|Path], Dist))
25 then advancedGoto(Next).
26 }
27 }
28 }

Figure 6.4: Module allowing explorers to find the optimum node

26 Adapting to the 2012 scenario

When the simulation reaches step 150 this module is disabled and the best location on
record is set as the optimum. This is a one-time action, meaning that it needs to be
performed by exactly one agent at a certain point in time. In order to achieve this, we
have extended the rank system found in the original HactarV2 code2, see Figure 6.5.

1 % Returns the rank(based on its name) of an agent compared to all other agents of a specific role
2 agentRankRole(Rank, Role) :− me(Name), team(Team), !,
3 setof(Agent, (visibleEntity(Agent,_,Team,normal), role(Agent, Role)), Agents), agentRank(Agents,Name,

Rank).

Figure 6.5: Predicate that allows ranking of agents of a specific role

Using this predicate, we can set Rank =:= 0,Step =:= 150 as preconditions3, which
allows us to create the one-time action described above.

It was also necessary to change how the optimum zone is determined. Originally, when
the optimal optimum was found it would be a node with the value 10. Its neighbors
would have values of either 9 or 10. Generally the values of neighbors of node m
were: 1 <= v(m)−1 <= v(nm)<= v(m)+1 <= 10, where v(nm) is the value of any
neighbor of m.

This provided an easy way of expanding outwards from the optimum by having ex-
plorers probe nodes with gradually lower values and stop at a specified value, see Fig-
ure 6.3.

2This feature is not documented in the extended abstract for HactarV2, but the original version can be
seen in appendix Section B.1

3In the actual implementation this is written as Rank =:= 0,Step >= 150,not(Optimum(_)). This is due
to a bug in GOAL which sometimes causes a step to be skipped

6.2 Adapting to the new map structure 27

1 % When there are no more neighbouring vertices with higher values or unprobed values, the optimum is
found

2 if bel(currentPos(Here), !, vertexValue(Here, Value), not((neighbour(N), vertexValue(N, NValue), (
NValue == unknown; NValue > Value))),

3 Value2 is Value−1, Value3 is Value−2)
4 then insert(optimum(Here), needExploring(Value), needExploring(Value2), needExploring(Value3)) +

send(allother, optimum(Here)) + swarmProbe.

Figure 6.6: Finding the optimum in 2011

As can be seen in Figure 6.6, when an explorer has found what it believes to be the
optimum, it determines what node values correspond to the first three layers around the
optimum and marks them as being in need of probing. All explorers will then focus on
probing the corresponding nodes. Because very little probing is done before the opti-
mum is discovered, the agents can then look at whether a node has been probed or not to
determine where they need to be in order to control the entire area around the optimum.

In the 2012 scenario this is not possible since you cannot predict the values of nodes
around the optimum (see Figure 6.7), so we had to create the perimeter of our optimum
zone based on something else.

Figure 6.7: Decreasing node values from local optimum - 2012

28 Adapting to the 2012 scenario

The first approach considered focused on doing something entirely different from find-
ing a node with value 10. It was based on the fact that nodes in the corners of the
graphical display of the map have fever edges connecting them to neighboring nodes.
The number of edges is two or three for nodes in the corners and three or four from
nodes along the borders compared to four or more edges going out from nodes in the
middle of the map. This means that it should be possible to locate a node in the corner
or at least on the border of the map by counting the number of outgoing edges from
it. Our idea, then, was to find such a corner node and move outwards from there. Tak-
ing advantage of the map coloring algorithm, we would be able to cut off and hold a
huge section of the map (see Figure 6.8). This strategy would attempt to win solely on
quantity of nodes instead of quality.

Figure 6.8: Quantity of nodes strategy

A big problem with this strategy was that it was too easy to disrupt. If the enemy team
sent just one agent behind our perimeter we would lose control of almost all of our
nodes. Another problem was reliably finding a node in a corner to designate as our
optimum node. If we ended up with the optimum node being on the border of the map,
our optimum zone would have a larger circumference to area ratio. This would make
us even more vulnerable to attack and would require more agents to hold the perimeter.
As if these problems were not discouraging enough, the old swarming strategy would
not be particularly useful. It would have had to be rewritten so the agents could spread
out and hold a line. We decided we were not interested in altering the strategy too
much, as we would still like to know if the strategy at its core had any merit. All of
these problems made us discard this idea before wasting too much time on it.

6.2 Adapting to the new map structure 29

Our final solution was to simply calculate an optimum zone of a predetermined size
around the optimum. When the optimum is chosen, one of the explorers (chosen using
the rank system described earlier) determines the optimum zone using the formula seen
in Figure 6.9:

1 calcOptimumZone(Opt, OptZone) :−
2 neighbour(Opt,Primary),
3 findall(X,(member(Y,Primary),neighbour(X,Y),not(member(X,Primary))),Secondary),
4 merge(Primary,Secondary,OptZone).

Figure 6.9: Algorithm for determining the optimum zone

This creates a list of all nodes within two steps of the optimum, which is then dis-
tributed to all agents on the team. The algorithm is somewhat time-consuming, but
since it is a one-time calculation performed by one agent on the team, it should not
affect our performance in any meaningful way.

Explorers need to probe the entire optimum zone before they participate in the swarm,
so they maintain another copy of the list which is updated to contain only the unprobed
nodes in the optimum zone, which they then work together to probe (see Figure 6.10).
They use the rank system to ensure that they work on different nodes.

1 %Insert optimum after 150 steps
2 if bel(not(optimum(Opt)), tempOptimum(TOpt), agentRankRole(Rank, ’Explorer’), Rank=:=0, step(N),

N>=150, calcOptimumZone(TOpt, OptZone)) then
3 insert(optimum(TOpt), optZone(OptZone)) + send(allother, optimum(TOpt)) + send(allother, optZone(

OptZone)).
4

5 %Determine what needs to be probed and broadcast to all.
6 if bel(optZone(O), not(exploreZone(E)), findall(Pos,(member(Pos,O),needProbe(Pos)),ExploreZone))

then insert(exploreZone(ExploreZone)) + send(allother, exploreZone(ExploreZone)).
7

8 %If current explore−objective is completed, delete the corresponding belief
9 if bel(currentPos(Here), exploring(Here)) then delete(exploring(Here)).

10

11 %Pick a node to explore, then tell others not to explore it
12 if bel(not(exploring(_)),exploreZone(E), E \= [], agentRankRole(Rank,’Explorer’), nth0(Rank, E, Node))

then insert(exploring(Node)) + send(allother, exploreRemove(Node)).

Figure 6.10: Explorers finding and maintaining optimum zone

The remaining agents use their knowledge of the optimum zone to swarm around the
optimum. They use the original swarming algorithm of HactarV2 to position them-
selves, which allows us to evaluate how it performs in the 2012 setting.

30 Adapting to the 2012 scenario

CHAPTER 7

Testing

In order to evaluate the performance of the improved HactarV2 system, we have tested
its performance against the Python-DTU system. As explained earlier, we consider
the Python-DTU system to be the best existing solution to the 2012 competition even
though it got second place in the actual competition. We have run our program against
Python-DTU 60 times, 20 times on each of the three different map sizes. Unfortunately,
the node values are randomized each time so no test run can be repeated exactly, which
is why we are looking at an average of the final scores instead.

32 Testing

Figure 7.1: Comparison of scores for the two teams during 60 simulations

7.1 Analysis

Despite the high amount of variance in the test results, it is evident that Python-DTU
is consistently outperforming our code on all three map sizes. We believe that this is
because the core strategy of HactarV2 (see chapter 5) is inferior to that of Python-DTU.

7.1.1 Zone control

While reasonable, the swarming strategy of HactarV2 is held back by the fact that
each agent is unable to predict the actions of the rest of its team. Communication
between agents is only received at the start of each step, so the agents have to make

7.1 Analysis 33

their decisions based on outdated information. This makes it very difficult to stay in
formation around the optimum, as well as to distribute tasks between agents. Because
the Python-DTU team coordinate all their actions rather than having each agent act
autonomously, they do not suffer from this problem, and as a result they are much
better at maintaining control of the most valuable areas and distributing their agents
optimally across the map.

Figure 7.2: The Zone Stabilities of each team in each step of a sample run. The Zone
Stability increases for one team, if the team can hold all conquered nodes
over a longer period of time. If nodes are lost, the value decreases.

7.1.2 Buying Strategy

The buying strategy of HactarV2 is much more aggressive than that of Python-DTU.
We spend all of our points early on, resulting in a deficit in achievement points that
we never manage to recover from. This does mean that our agents are better upgraded
than their opponents, so depending on the effectiveness of the rest of the strategy this
may be an acceptable gambit, but it is worth noting that the amount of points lost is
not insignificant, as can be seen below. It gives Python-DTU a significant advantage
in terms of score, and because HactarV2 is significantly worse at zone control than
Python-DTU, we are unable to capitalize on our upgrade advantage.

34 Testing

Figure 7.3: Step score gained from achievement points for the two teams during a
sample run.

7.1.3 Pathing

When we initially tested our code, we found that it was often unable to respond to
the server in time, so we eventually had to increase the maximum response time from
2 seconds to 10 seconds. This is due to the fact that the pathing algorithm used by
HactarV2 is too inefficient to work properly in the 2012 setting. The HactarV2 system
works by having each agent calculate a path to its target each round, so because the
number of agents was increased from 10 to 20, the pathing algorithm of HactarV2
becomes too inefficient and is no longer able to keep up with the server.

7.2 In summation

We are forced to conclude that none of the core strategies and systems of HactarV2
are at the level of the Python-DTU system. Ultimately it is the inability of HactarV2’s
agents to coordinate their actions that prevents them from competing at the level of
Python-DTU, as it renders them unable to take advantage of their aggressive buying

7.2 In summation 35

strategy. As a direct result of that, the team loses a large amount of points on a buying
strategy they are unable to take advantage of, while at the same time being inferior to
Python-DTU in terms of zone control. For the HactarV2 system to have a chance at
winning, most or all of its core functionality would have to be replaced. In addition to
that, the pathing algorithms would need to be optimized for the system to even meet
the requirements of the original 2012 competition.

36 Testing

CHAPTER 8

Evaluating GOAL

In this chapter, we evaluate the GOAL programming language based on our experience
with it over the course of the project. We also briefly describe some of the more serious
bugs we encountered.

8.1 The GOAL language

One of the strategies that GOAL adopts is the Intentional Stance described in Chapter
3. This strategy makes it very simple to understand what the agent programs are de-
signed to do. In addition to this strategy, the GOAL designers have focused on making
their agent programming language practical, transparent and useful1. As Figure 3.1 in
chapter 3 shows, the structure of a GOAL program is intuitive and easy to understand,
accomplishing the desire for transparency. If you pick a Knowledge Representation
language you are already comfortable with, it is easy to get started programming your
agents for whatever task they need to accomplish, making the language practical.

1[Hin11] page 11

38 Evaluating GOAL

8.2 Debugging in GOAL

We spent many hours debugging the HactarV2 code in GOAL. At the beginning of
the project, we were not impressed with the debugging facilities of the language. We
wanted a way to print debug information to the console, to follow the flow of the pro-
gram. It was not possible to use the built-in write/1 predicate of SWI-Prolog, and even
if it had been, it was impossible to follow any information printed in the console, as it
scrolled by too quickly.

We never used the feature of breakpoints and the ability to step into the code. The
use of breakpoints is not described in the GOAL manual and the implementation is not
intuitive enough that we felt we could utilize them.

As we learned more of the language, we found the logging to file feature very useful
in debugging (see Figure 8.2). This allowed us to inspect an agent’s behavior line by
line. The log files get cluttered up with several lines of data printed for each reasoning
cycle, and this can seem unnecessary when you only need one entry within a record
tag, but with the search feature included in most text-editors, this is a minor problem
compared to the level of detail the logs provide in terms of agent behavior. Of course,
logging can only be used after the program has finished execution.

To debug at runtime, GOAL has a feature called the agent introspector, which allows
you to query an agent according to its mental state as well as force the agent to take
specific actions. The query function allows you to insert debug statements in the belief
base at critical parts of the code and query the agent to find out whether or not it has
reached the debug code. The introspector was acceptable, but only because no other
runtime debugging was available to us. It requires you to write entire Prolog queries to
determine if an agent has a specific belief (see Figure 8.1). It is possible to look directly
at an agent’s beliefs but since our agents constantly received percepts that caused them
to update the belief base, it was usually impossible to learn anything from this. The
possibility of pausing an agent was still not useful to us, as this meant it could not send
actions to the server.

8.3 GOAL bugs 39

Figure 8.1: Introspector of an agent in GOAL with an answered query

8.3 GOAL bugs

While working with GOAL, we encountered several strange bugs which gave us a lot
of problems in the first part of the project. After much testing we concluded that the
GOAL versions released did not seem backwards compatible with older versions. This
made it difficult to try out newer GOAL versions, as our program was not guaranteed
to work as expected. Additionally, some of the more recent GOAL releases introduced
new bugs that we could not find the source of.

The most problematic bug we encountered was that some modules created in GOAL
were treated as action calls. Modules have the option of parameters, for passing vari-
ables to them. GOAL believed these modules with parameters to be action calls with
uninstantiated variables, and stopped the agents trying to call them. As seen in line 9

40 Evaluating GOAL

in Figure 8.2, the module call selectSurvey(Rank) has an applicable instantiation, but
instead of calling the module, GOAL just terminates the reasoning cycle because of the
bug.

1 <record>
2 <date>2013−03−10T13:18:55</date>
3 <millis>1362917935659</millis>
4 <sequence>11137</sequence>
5 <level>INFO</level>
6 <class>goal.tools.logging.GOALLogger</class>
7 <method>log</method>
8 <thread>31</thread>
9 <message>Rule if bel(not(disabled) , currentPos(Here) , needSurvey(Here) , agentRankHere(Rank)) then

selectSurvey(Rank)
10 has 1 potentially applicable instantiation(s): [Here/vertex19, Rank/0]</message>
11 </record>
12 <record>
13 <date>2013−03−10T13:18:57</date>
14 <millis>1362917937425</millis>
15 <sequence>15648</sequence>
16 <level>INFO</level>
17 <class>goal.tools.logging.GOALLogger</class>
18 <method>log</method>
19 <thread>31</thread>
20 <message> +++++++ Cycle 2 +++++++ </message>
21 </record>

Figure 8.2: Module call interpreted as action ends the reasoning cycle

To avoid the bug we reverted to the latest working version available, GOAL release
4941. Even though this specific bug was later fixed, no bug free version has been re-
leased, and we have used version 4941 for the remainder of the project.

Another bug we encountered was that our agents would sometimes continue to receive
the same percept each turn, even though that percept was only supposed to be sent once.
For example, the simStart and simEnd percepts, which are supposed to be sent exactly
once when the simulation starts or ends respectively, both continued to be sent to our
agents every turn after the first time they were sent. This meant that our agents did not
know when one simulation ended and the next began, which made it very difficult for
us to test our program, since each test would have to be started and stopped manually.
As far as we can tell it is a problem with either GOAL itself or the environment used
in the competition, and so we could not do anything to fix it, but we eventually found a
workaround that allowed us to test properly.

CHAPTER 9

Conclusion

We have studied the MAS HactarV2 created for the 2011 MAPC. We have updated
the system to run it on the 2012 version of the MAPC server. To test the merits of
the HactarV2 team’s strategy in the MAPC, we have pitted it against the Python-DTU
team, which we believe to be the strongest team designed for the 2012 MAPC.

In working with the HactarV2 code, we have learned what defines a MAS and ex-
perienced its benefits as well as its disadvantages. Apart from studying the theory
of Multi-agent Systems, we have earned this experience by working with the agent
programming language GOAL, a language designed specifically for creating software
agents and Multi-agent Systems.

The winners of the 2011 MAPC are no match for the DTU team. This is due both to the
fact that the efficiency of their code is not optimized as well as the fact that their strat-
egy is too dependent on the map structure from 2011 to be effective on the 2012 server.
Our tests have shown they are inferior in every part of a match. An early aggressive
buying strategy for saboteurs sees their achievement points plummet and they do not
capitalize enough on their stronger agents to validate this choice. The later swarming
strategy was efficient on the 2011 server but it is no longer useful to hold a fixed area
around an optimum as a 2012 map has several local optima and node values are gener-
ated at random.

42 Conclusion

Another disadvantage HactarV2 has compared to Python-DTU is in communication
and the degree of autonomy of the agents. When planning actions, the agents of Python-
DTU use a shared environment to decide the best possible action for each agent at every
step of a simulation. HactarV2’s agents have a higher degree of autonomy; each agent
decides its own actions and only relays its percepts to the other agents with a one step
delay. This makes coordination a lot harder, and the team ends up being much less effi-
cient, as HactarV2 agents perform actions based primarily upon what is most efficient
from their own point of view, as opposed to the point of view of the entire team.

The GOAL programming language is very intuitive and straightforward to use. The
GOAL IDE contains bugs and is missing some desirable features. As we have only
worked with alpha releases, we expect that both the IDE and the language itself will be
a much stronger tool in the future, as it is built on a promising design philosophy.

We have determined that even though the HactarV2 MAS was the best in 2011 it is too
rigid and specialized to provide any challenge for systems developed for later versions
of the MAPC. It is unfortunate we could not develop a MAS based on the HactarV2
team that was able to defeat the Python-DTU system, but since none of the core strate-
gies and ideas of HactarV2 turned out to be suited for the 2012 scenario, we do not
consider it worthwhile to use the HactarV2 code as the basis of a new solution.

In regard to evaluating GOAL, we think it would be interesting to compare it to an
identical Multi-agent System implemented in a different programming language, in
order to test whether or not the GOAL language offers improved performance as well
as its easy understanding of an agent program.

APPENDIX A

Changes to HactarV2

The specific changes required to adapt HactarV2 to the 2012 scenario are described in
this section. For ease of reference, the changes will be broken down and described for
each individual file.

A.1 Agent.mas2g

The first file to change was the agent.mas2g file in the actual GOAL code. It is in this
file that the connection to the environment is made and it is important that it reflects
what the server expects. We made the following changes:

1. Changed team name to NPC

2. Added 10 agents for a total of 20

3. Changed agent names to reflect our new team name

4. Changed environment reference to reflect syntax change in GOAL

5. Changed detection of available entities from type to name

44 Changes to HactarV2

Some of these changes are self-explanatory. The fourth change refers to a syntax
change in GOAL. The HactarV2 code was written for a 2011 version of GOAL and
we are using a newer build. In the newer versions of GOAL the correct code is ’env =
"path/to/environment/here"’, whereas in older versions of GOAL you must put ’"path/-
to/environment/here"’ when referencing the environment.

The fifth change was made because of the definition of type for entities in the mars
2012 scenario. In 2011 the type of an entity was mars2011entity. In 2012 it was not as
simple as changing the year of the competition. The simple workaround for this was
to have our system connect to individual entities based on their name, instead of their
type. This works just fine but is not as convenient if the entities’ names are changed.
We decided find the root of the problem in the environment where the entities were
handled.

It turned out that they had wanted more specific types for entities in the 2012 scenario.
More specifically they wanted the type to include the role the entity was to play in the
competition, for example mars2012entityexplorer. We discovered that this feature was
not fully implemented. The environment never updated the role but instead it remained
at its default, unknown value leaving all entities with the type mars2012entityunknown.

A.2 Eismassimconfig.xml

With a new team name, as well as new names for our agents we had to ensure that the
entities in the environment also had proper names in order for our agents to connect
to them. We used the standard environment configuration file provided for the 2012
competition and modified it with the following changes:

1. Entity name to NPC#

2. Entity username to NPC#

3. Scenario name to mars2012

4. Scheduling disabled

Scheduling is disabled because the HactarV2 code implements its own scheduling.

A.3 Accounts-NPC.xml 45

A.3 Accounts-NPC.xml

There are several files that provide information for the server setup, and one type of
file is an account file that specifies a team of agents. We added an account file under
‘massim-2012-2.0/massim/scripts/conf/helpers/2012’ named accounts-NPC.xml, pro-
viding information about our team. We copied one of the other account files and
changed the following:

1. Account team to NPC#

2. Account username to NPC#

A.4 Config.dtd

This Document Type Definition[Wik13c] file specifies markup language entities that
are used to reference account files in other documents. We added an entity ‘teamNPC’
that references our own account file.

A.5 2012-3sims-NPC.xml

We added a server configuration file to allow our team to play any team with the team
name ‘A’. This file was added under ‘massim-2012-2.0/massim/scripts/conf’.

46 Changes to HactarV2

APPENDIX B

Code

B.1 Original HactarV2 code

code/navigationKnowledge_original.pl
1 % Returns the rank(based on its name) of an agent compared to all other agents on its node
2 agentRankHere(Rank) :− currentPos(Here), me(Name), team(Team), !,
3 setof(Agent, visibleEntity(Agent,Here,Team,normal), Agents), agentRank(Agents,Name,Rank).
4

5 %
6 agentRank(List,Agent,Rank) :− nth0(Rank, List, Agent), !.

B.2 Final version source code

Listing B.1: code/actionProcessing.mod2g
1 module surveyVertices{
2 program[order=linear]{
3 % Search for and update current vertex.
4 if bel(currentPos(Id1), !,vertex(Id1,Value,List),
5 findall([W, Id2], (percept(surveyedEdge(Id1,Id2,W)); percept(surveyedEdge(Id2,Id1,W))), Array))
6 then insert(not(vertex(Id1,Value,List)), vertex(Id1,Value,Array)) + send(allother,vertex(Id1,Value,Array)

).
7 % Other statement is false. Do not search. Insert new vertex
8 if bel(currentPos(Id1), !,

48 Code

9 findall([W, Id2], (percept(surveyedEdge(Id1,Id2,W)); percept(surveyedEdge(Id2,Id1,W))), Array))
10 then insert(vertex(Id1,unknown,Array)) + send(allother,vertex(Id1,unknown,Array)).
11 }
12 }
13

14 module probeVertices{
15 program[order=linear]{
16 % Search for and update current vertex.
17 if bel(percept(probedVertex(Id1,Value)),vertex(Id1,V,List)) then
18 insert(not(vertex(Id1,V,List)), vertex(Id1,Value,List))
19 + send(allother,vertexProbed(Id1,Value)).
20 % Other statement is false. Do not search. Insert new vertex.
21 if bel(percept(probedVertex(Id1,Value))) then
22 insert(vertex(Id1,Value,[])) + send(allother,vertexProbed(Id1,Value)).
23 }
24 }
25

26 module inspectEntityPercept{
27 program[order=linearall]{
28 % When you get a percept of an inspected enemy, replace the last inspection of that entity and send the

percept to all other agents.
29 forall bel(percept(inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth,

Strength, VisRange)), enemyTeam(Team),
30 inspectedEntity(Id, Team, Role, V2, E2, ME2, H2, MH2, S2, VS2))
31 do insert(not(inspectedEntity(Id, Team, Role, V2, E2, ME2, H2, MH2, S2, VS2)),
32 inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth, Strength, VisRange

))
33 + send(allother, inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth,

Strength, VisRange)).
34

35 % When you get a percept of an inspected enemy, and it has never been inspected before, insert it and
send the percept to all other agents.

36 forall bel(percept(inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth,
Strength, VisRange)), enemyTeam(Team),

37 not(inspectedEntity(Id, _, _, _, _, _, _, _, _, _)))
38 do insert(inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth, Strength,

VisRange))
39 + send(allother, inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth,

Strength, VisRange)).
40

41 % Insert last time I inspected an agent.
42 if bel(percept(inspectedEntity(Id,_,’Saboteur’,_,_,_,_,_,_,_)), lastInspect(Id,LI), step(S)) then insert(not(

lastInspect(Id,LI)), lastInspect(Id,S)).
43 if bel(percept(inspectedEntity(Id,_,’Saboteur’,_,_,_,_,_,_,_)), step(S)) then insert(lastInspect(Id,S)).
44 }
45 }

Listing B.2: code/AgentV1.goal
1 init module {
2 knowledge{
3 % Contains general reasoning rules
4 #import "generalKnowledge.pl".
5

6 % Contains some rules that allow the agent to extract information from the percepts

B.2 Final version source code 49

7 #import "perceptKnowledge.pl".
8

9 % Contains role specific knowledge rules
10 #import "roleKnowledge.pl".
11

12 % Contains algorithms used for pathfinding
13 #import "dijkstra.pl".
14

15 % Contains rules about navigational subjects
16 #import "navigationKnowledge.pl".
17 }
18

19 beliefs{
20 % Makes sure the agent doesnt try to execute actions while the server is not started on startup
21 doneAction.
22 donePercepts.
23 doneMailing.
24

25 % Change this to our team name!
26 team(’NPC’).
27

28 ready.
29 }
30

31 goals{
32 % goals are dynamically inserted in the percept rules later on
33 }
34

35 % Define actions that can be sent to the environment interface
36 % Also specify what needs to be true in order to perform the actio
37 % and what should be inserted into the belief base afterwards
38 actionspec{
39 % Insert doneAction after each action to make sure no new actions are performed in this step(manual

scheduling)
40 % All actions check if the agent meets the energy requirements, and for actions that require the agent to

be enabled it will check if they are not disabled
41

42 recharge {
43 pre { true }
44 post { doneAction }
45 }
46 buy(Upgrade) {
47 pre { not(disabled), moneyGE(2), energyGE(2) }
48 post { doneAction }
49 }
50 probe {
51 pre { not(disabled), energyGE(1) }
52 post { doneAction }
53 }
54 parry {
55 pre { not(disabled), energyGE(2) }
56 post { doneAction }
57 }
58 survey {
59 pre { not(disabled), energyGE(1) }

50 Code

60 post { doneAction }
61 }
62 % Only move over an edge when you actually have enough energy to do so
63 % Sometimes the edge you want to cross is not surveyed yet, but do make sure you try to move to a

neighbour
64 goto(There) {
65 pre { currentPos(Here), shouldGoTo(Here,There) }
66 post{ doneAction }
67 }
68 skip {
69 pre { true }
70 post { doneAction }
71 }
72 % Only repair agents of the same team, on your location, and not yourself!
73 repair(Agent) {
74 pre { energyGE(3), currentPos(Here), team(Team), me(Me), visibleEntity(Agent, Here, Team, _), not(

Agent == Me) }
75 post { doneAction }
76 }
77 % Only attack enemies on your location. Keep track of who you last attacked for strategic purposes
78 attack(Agent) {
79 pre { not(disabled), energyGE(2), currentPos(Here), visibleEntity(Agent, Here, Team, _), enemyTeam(

Team), lastAttacked(X) }
80 post { not(lastAttacked(X)), lastAttacked(Agent), doneAction }
81 }
82 inspect {
83 pre { not(disabled), energyGE(2) }
84 post { doneAction }
85 }
86 }
87 }
88

89 % Main module which is executed every cycle, rules are considered linearly by default
90 main module{
91 program[order=linearall] {
92 % Only try to find a new action when one was not chosen in this step yet
93 if bel(not(doneAction)) then {
94

95 % If disabled get yourself fixed as soon as possible
96 if bel(disabled, not(role(’Repairer’))) then disabled.
97

98 % Otherwise enter your role specific module to do something useful with your role
99 if bel(role(’Repairer’)) then repairerAction.

100 if bel(role(’Inspector’)) then inspectorAction.
101 if bel(role(’Explorer’)) then explorerAction.
102 if bel(role(’Saboteur’)) then saboteurAction.
103 if bel(role(’Sentinel’)) then sentinelAction.
104

105 % Aparently you had nothing role specific to do, so do some exploring
106 if bel(true) then explore.
107

108 % If no action could be found just send a skip to ’no valid action received in time’
109 if bel(true) then skip.
110 }
111 }

B.2 Final version source code 51

112 }
113

114 % Importing all the modules that are used for choosing an action
115

116 % This module contains behavior for when we have (almost) the entire map
117 #import "superiority.mod2g".
118 % This is a module that contains common behavior that each agent should perform
119 #import "common.mod2g".
120 % This module contains role specific behavior for the explorers
121 #import "explorer.mod2g".
122 % This module contains role specific behavior for the saboteurs
123 #import "saboteur.mod2g".
124 % This module contains role specific behavior for the repairers
125 #import "repairer.mod2g".
126 % This module contains role specific behavior for the sentinels
127 #import "sentinel.mod2g".
128 % This module contains role specific behavior for the inspectors
129 #import "inspector.mod2g".
130 % This module contains general behavior for disabled agents, but not repairers
131 #import "disabled.mod2g".
132 % This module contains behavior for agents that have to swarm to secure an area
133 #import "swarm.mod2g".
134 % This module contains some administrative rules that have to be performed after specific actions
135 #import "actionProcessing.mod2g".
136 % This module contains rules that allow for pathfinding and moving
137 #import "pathing.mod2g".
138 % This module contains rules required by an agent to defend itself in times of danger
139 #import "defense.mod2g".
140

141 % Event module which is called every GOAL cycle and is used for handling percepts, as well as updating
the belief and goal base before an action is selected

142 event module{
143 program[order=linearall]{
144 % When a new step is detected allow the program to process the percepts, mails from other agents and

choose a new action
145 if bel(percept(step(Current)), step(Old), !, Old \= Current) then {
146 if bel(Old == unknown)
147 then insert(not(step(Old)), not(donePercepts), not(doneMailing), not(doneAction), step(Current)).
148 %the integer part is to keep unknown from getting in the arithmetic.. should be catched by the rule

above but sometimes isn’t
149 if bel((integer(Old), Current >= Old + 1))% =:= changed to >=
150 then insert(not(step(Old)), not(donePercepts), not(doneMailing), not(doneAction), step(Current)).
151 }
152

153 % if the percepts and mails are not handled do so, and make sure it doesn’t happen again before the next
step

154 if bel(not(donePercepts)) then selectPercepts + insert(donePercepts).
155 if bel(donePercepts, not(doneMailing)) then selectReceiveMail + insert(doneMailing).
156

157 % simStart percepted and ready, handle the simStartpercepts and allow the program to send actions again
158 if bel(percept(simStart), ready) then delete(ready) + simStartPercepts.
159 }
160 }

Listing B.3: code/AgentV1.mas2g

52 Code

1 % the agent teams mas2g file
2 % this file contains several parameters required for launching the GOAL agent team
3

4 environment {
5 "eismassim−2.0.jar".
6 }
7

8 agentfiles {
9 "AgentV1.goal" [name=mapc].

10 }
11

12 launchpolicy{
13 % Launch all the agents with a type corresponding to the one they have in the simulation
14 when [type=mars2012entityunknown,max=1]@env do launch NPC1:mapc.
15 when [type=mars2012entityunknown,max=1]@env do launch NPC2:mapc.
16 when [type=mars2012entityunknown,max=1]@env do launch NPC3:mapc.
17 when [type=mars2012entityunknown,max=1]@env do launch NPC4:mapc.
18 when [type=mars2012entityunknown,max=1]@env do launch NPC5:mapc.
19 when [type=mars2012entityunknown,max=1]@env do launch NPC6:mapc.
20 when [type=mars2012entityunknown,max=1]@env do launch NPC7:mapc.
21 when [type=mars2012entityunknown,max=1]@env do launch NPC8:mapc.
22 when [type=mars2012entityunknown,max=1]@env do launch NPC9:mapc.
23 when [type=mars2012entityunknown,max=1]@env do launch NPC10:mapc.
24 when [type=mars2012entityunknown,max=1]@env do launch NPC11:mapc.
25 when [type=mars2012entityunknown,max=1]@env do launch NPC12:mapc.
26 when [type=mars2012entityunknown,max=1]@env do launch NPC13:mapc.
27 when [type=mars2012entityunknown,max=1]@env do launch NPC14:mapc.
28 when [type=mars2012entityunknown,max=1]@env do launch NPC15:mapc.
29 when [type=mars2012entityunknown,max=1]@env do launch NPC16:mapc.
30 when [type=mars2012entityunknown,max=1]@env do launch NPC17:mapc.
31 when [type=mars2012entityunknown,max=1]@env do launch NPC18:mapc.
32 when [type=mars2012entityunknown,max=1]@env do launch NPC19:mapc.
33 when [type=mars2012entityunknown,max=1]@env do launch NPC20:mapc.
34 }

Listing B.4: code/common.mod2g
1 % Makes sure agents process percepts that are relevant to their role
2 module selectPercepts{
3 program[order=linearall]{
4 % Handle percepts that everyone uses.
5 if true then commonPercepts.
6

7 % Handle percepts that are specific to actions
8 if bel(lastAction(survey), lastActionResult(successful)) then surveyVertices.
9

10 % Handle percepts specific for your role.
11 if bel(role(’Explorer’)) then explorerPercepts.
12 if bel(role(’Saboteur’)) then saboteurPercepts.
13 if bel(role(’Repairer’)) then repairerPercepts.
14 if bel(role(’Inspector’)) then inspectorPercepts.
15 if bel(role(’Sentinel’)) then sentinelPercepts.
16 }
17 }
18

B.2 Final version source code 53

19 % Makes sure agents process mail that is relevant to their role
20 module selectReceiveMail{
21 program[order=linearall]{
22 % Handle mails that everyone uses.
23 if true then commonReceiveMail.
24

25 % Handle mails specific for your role.
26 if bel(role(’Explorer’)) then explorerReceiveMail.
27 if bel(role(’Saboteur’)) then saboteurReceiveMail.
28 if bel(role(’Repairer’)) then repairerReceiveMail.
29 if bel(role(’Inspector’)) then inspectorReceiveMail.
30 if bel(role(’Sentinel’)) then sentinelReceiveMail.
31

32 % Handle mails that disabled agents need.
33 if bel(disabled) then disabledReceiveMail.
34

35 % Clean up mailbox.
36 if true then clearMailbox.
37 }
38 }
39

40 % Module that performs some initial percept handling and allows the agent to start sending actions
41 module simStartPercepts{
42 program [order=linearall] {
43 % Insert some dummy values for certain predicates, to allow updating them
44 if true then insert(oldZone(unknown), lastPos(unknown), step(unknown), optimumInfo([], [], []),
45 currentPos(unknown), zoneScore(unknown), health(unknown), optimumValue(5)).
46

47 % Tell the others your role
48 if bel(percept(role(R)), me(Id), not(role(Id, _)))
49 then insert(role(Id, R)) + send(allother,role(R)).
50

51 % Insert some info about the match and the map
52 if bel(percept(steps(X))) then insert(steps(X)).
53 if bel(percept(edges(X))) then insert(edges(X)).
54 if bel(percept(vertices(X))) then insert(vertices(X)).
55

56 % Dummyvalue for lastattacked for saboteur
57 if bel(role(’Saboteur’)) then insert(lastAttacked(’’)).
58

59 % Explore should have a goal to find an optimal node
60 if bel(role(’Explorer’))
61 then adopt(optimum).
62

63

64 }
65 }
66

67 % Module that can be called to reset the agent to a clean state ready to start a new match
68 module resetBeliefs{
69 program[order=linearall]{
70 % Delete some role specific information(deleting takes a bit of time, hence the role check)
71 if bel(role(’Saboteur’), lastAttacked(X)) then delete(lastAttacked(X)).
72 if bel(role(’Inspector’)) then {
73 forall bel(lastInspect(Id, X)) do delete(lastInspect(Id, X)).

54 Code

74 }
75

76 if bel(role(’Repairer’), repairing(X)) then delete(repairing(X)).
77

78 % Throw out information from the previous match
79 if bel(health(H)) then delete(health(H)).
80 if bel(steps(X)) then delete(steps(X)).
81 if bel(vertices(X)) then delete(vertices(X)).
82 if bel(optimumInfo(X,Y,Z)) then delete(optimumInfo(X,Y,Z)).
83 if bel(edges(X)) then delete(edges(X)).
84 if bel(optimum(X)) then delete(optimum(X)).
85

86 % Forget your mates roles(in case of a new random assignment)
87 forall bel(role(Id, Role)) do delete(role(Id, Role)).
88

89 % More garbage deleting
90 forall bel(enemyStatus(Id, Vertex, State)) do delete(enemyStatus(Id, Vertex, State)).
91 if bel(currentPos(X)) then delete(currentPos(X)).
92 if bel(lastPos(X)) then delete(lastPos(X)).
93 if bel(step(X)) then insert(not(step(X))).
94 if bel(zoneScore(X)) then delete(zoneScore(X)).
95 if bel(oldZone(X)) then delete(oldZone(X)).
96 forall bel(vertex(Id, Value, List)) do delete(vertex(Id, Value, List)).
97 forall bel(repairerLoc(Agent,Loc)) do delete(repairerLoc(Agent,Loc)).
98 forall bel(inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth, Strength,

VisRange))
99 do delete(inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth, Strength,

VisRange)).
100

101

102 % After deleting all garbage make sure no new actions are sent, and the agent is ready for a new simstart
103 if true then insert(donePercepts, doneMailing, doneAction, ready).
104 }
105 }
106

107 % Module that processes percepts that are received from the environment
108 module commonPercepts{
109 program[order=linearall]{
110 %Keep track of zoneScore
111 if bel(percept(zoneScore(Z)), zoneScore(X), oldZone(Y)) then insert(not(zoneScore(X)), not(oldZone(Y

)), oldZone(X), zoneScore(Z)).
112

113 % Keep track of the vertex you were on before you got here.
114 if bel(percept(position(Cur)), currentPos(Old), !, Old \= Cur) then {
115 if bel(lastPos(P)) then insert (not(lastPos(P)), lastPos(Old)).
116 }
117

118 % Update current location
119 if bel(percept(position(Cur)), currentPos(Old))
120 then insert(not(currentPos(Old)), currentPos(Cur)).
121

122 % Updates the info about the optimum swarm
123 if bel(optimumInfo(A,B,C), allInformationOptimumZone(Agents, Vertices, FirstDegree))
124 then insert(not(optimumInfo(A,B,C)), optimumInfo(Agents, Vertices, FirstDegree)).
125

B.2 Final version source code 55

126 % Swarm goal managing, when in optimum zone your goal is to swarm along
127 if not(goal(swarm)), bel(inOptimumZone) then adopt(swarm).
128 if goal(swarm), bel(not(inOptimumZone)) then drop(swarm).
129

130 % Check if the found optimum wasn’t wrong
131 if bel(optimum(O), currentPos(Here), vertex(Here, Value, _), vertex(O, OValue, _), Value \= unknown,

Value > OValue, optimumZone(OldZone), calcOptimumZone(Here,OZone), findall(Pos,(member(
Pos,OZone),needProbe(Pos)),ExploreZone))

132 then insert(not(optimum(O)), optimum(Here), not(optimumZone(OldZone)), optimumZone(OZone)) +
send(allother, optimum(Here)) + send(allother,optimumZone(OZone)) + send(allother,
exploreZone(ExploreZone)).

133

134 % Request repairs when broken and notify repairer when fixed, also update the agents health
135 if bel(percept(health(H)), health(Current), !, H \= Current) then {
136 if bel(H == 0) then insert(not(health(Current)), health(H)).
137 forall bel(Current == 0, role(Agent,’Repairer’)) do insert(not(health(Current)), health(H)) + send(

Agent,fixed).
138 if true then insert(not(health(Current)), health(H)).
139 }
140

141 % Keep track of the status of enemy agents, disabled agents are not scary
142 if bel(enemyStatus(ID,StoredVertex,StoredStatus), visibleEntity(ID,ActualVertex,_,ActualStatus))
143 then insert(not(enemyStatus(ID,StoredVertex,StoredStatus)), enemyStatus(ID,ActualVertex,

ActualStatus)).
144

145 % If you find an enemy send that a saboteur can’t see himself, inform the saboteur of the enemy and it’s
location

146 forall bel(visibleEntity(EID,Vertex,Team,X), enemyTeam(Team), role(ID,’Saboteur’), not(visibleEntity(
ID,_,_,_)))

147 do send(ID,visibleEntity(EID,Vertex,Team,X)).
148

149 % The enemy is no longer at the reported location, make sure the saboteur does not have incorrect info
150 forall bel(percept(visibleVertex(Vertex,Team)), enemyStatus(EID,Vertex,X), enemyTeam(Team), not(

visibleEntity(EID,_,_,_)),
151 role(ID,’Saboteur’), not(visibleEntity(ID,_,_,_)))
152 do send(ID,not(visibleEntity(EID,Vertex,Team,X))).
153 }
154 }
155

156 % Module that processes messages from other agents
157 module commonReceiveMail{
158 program[order=linearall]{
159 % Update edge/node values for (non)existing vertices
160 forall bel(received(A,vertex(Id,Value,NewList)), not(vertex(Id,_,_))) do
161 delete(received(A,vertex(Id,Value,NewList))) + insert(vertex(Id,Value,NewList)).
162 forall bel(received(A,vertex(Id,Value,NewList)), vertex(Id,Value,OldList)) do
163 delete(received(A,vertex(Id,Value,NewList))) + insert(not(vertex(Id,Value,OldList)), vertex(Id,Value,

NewList)).
164

165 % Update probe values for (non)existing vertices
166 forall bel(received(A,vertexProbed(Id,Value)), not(vertex(Id,_,_)), not(role(’Explorer’)))
167 do delete(received(A,vertexProbed(Id,Value))) + insert(vertex(Id,Value,[])).
168 forall bel(received(A,vertexProbed(Id,Value)), vertex(Id,unknown,List), not(role(’Explorer’)))
169 do delete(received(A,vertexProbed(Id,Value))) + insert(not(vertex(Id,unknown,List)), vertex(Id,Value,

List)).

56 Code

170

171 % Optimum location receiving
172 if bel(received(Agent, optimum(Opt)), optimumValue(OldVal), vertexValue(Opt,NewVal), not(role(’

Explorer’))) then {
173 if bel(optimum(O)) then insert(not(optimum(O)), optimum(Opt), not(optimumValue(OldVal)),

optimumValue(NewVal)) + delete(received(Agent, optimum(Opt))).
174 if true then insert(optimum(Opt), not(optimumValue(OldVal)), optimumValue(NewVal)) + delete(

received(Agent, optimum(Opt))).
175 }
176

177 % Receiving data about the optimum zone
178 if bel(received(Agent, optZone(OptZone))) then {
179 if bel(optZone(O)) then insert(not(optZone(O)), optZone(OptZone)) + delete(received(Agent, optZone(

OptZone))).
180 if true then insert(optZone(OptZone)) + delete(received(Agent, optZone(OptZone))).
181 }
182

183 % Agent roles
184 forall bel(received(Agent,role(Role))) do insert(role(Agent,Role)) + delete(received(Agent,role(Role))).
185

186 % inspectedEntities
187 % When you get a percept of an inspected enemy, replace the last inspection of that entity.
188 forall bel(received(_, inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth,

Strength, VisRange)),
189 inspectedEntity(Id, Team, Role, V2, E2, ME2, H2, MH2, S2, VS2))
190 do insert(not(inspectedEntity(Id, Team, Role, V2, E2, ME2, H2, MH2, S2, VS2)),
191 inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth, Strength, VisRange))

.
192 % When you get a percept of an inspected enemy, and it has never been inspected before, insert it.
193 forall bel(received(_, inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth,

Strength, VisRange)),
194 not(inspectedEntity(Id, _, _, _, _, _, _, _, _, _)))
195 do insert(inspectedEntity(Id, Team, Role, Vertex, Energy, MaxEnergy, Health, MaxHealth, Strength,

VisRange)).
196

197 % When send location info about enemies save it.
198 forall bel(received(Sender,visibleEntity(EID,Vertex,Team,X)),enemyStatus(EID,OVertex,Y))
199 do delete(received(Sender,visibleEntity(EID,Vertex,Team,X))) +
200 insert(not(enemyStatus(EID,OVertex,Y)), enemyStatus(EID,Vertex,X)).
201

202 forall bel(received(Sender,visibleEntity(EID,Vertex,Team,X)),not(enemyStatus(EID,_,_)))
203 do delete(received(Sender,visibleEntity(EID,Vertex,Team,X))) +
204 insert(enemyStatus(EID,Vertex,X)).
205

206 % Disapearing enemies should be removed so we don’t go on wild chases.
207 forall bel(received(Sender, not(visibleEntity(EID,Vertex,Team,X))),enemyStatus(EID,Vertex,Y))
208 do delete(received(Sender, not(visibleEntity(EID,Vertex,Team,X))), enemyStatus(EID,Vertex,Y)).
209 }
210 }
211

212 % Clears out received messages and sent messages, these are now processed and irrelevant, hence slowing
down the queries for no reason

213 module clearMailbox{
214 program[order=linearall]{
215 forall bel(received(Agent,Message)) do delete(received(Agent,Message)).

B.2 Final version source code 57

216 forall bel(sent(Agent,Message)) do delete(sent(Agent,Message)).
217 }
218 }
219

220 % The common explore module that works for every agent and explores the graph and its edges
221 module explore {
222 program {
223 % if there are edges with unknown weight around the current node survey them
224 if bel(currentPos(Here), !, needSurvey(Here), agentRankHere(Rank))
225 then selectSurvey(Rank).
226

227 % Find closest unsurveyed vertex
228 if bel(foreverAlone, currentPos(Start), pathClosestNonSurveyed(Start, NonSurveyedVertex, [Here,Next|

Path], Dist))
229 then advancedGoto(Next).
230

231 % When multiple agents are on the node and there is an unsurveyed neighbour, try to split up.
232 if bel(not(foreverAlone), agentRankHere(Rank), neighbourNeedSurvey(Any)) then gotoNeighbour(Rank

, true, false).
233

234 % find a better(higher value) node to chill on
235 if bel(currentPos(Here), !, neighbour(There), safePos(There),
236 vertexValue(Here,Value1), vertexValue(There,Value2), Value2 >= Value1)
237 then advancedGoto(There).
238

239 % lack of better node, go to an unprobed one.
240 if bel(neighbour(There), vertexValue(There,unknown), safePos(There))
241 then advancedGoto(There).
242

243 % find a safe place to stand
244 if bel(neighbour(There), safePos(There))
245 then advancedGoto(There).
246

247 % keep moving
248 if bel(currentPos(Here), not(safePos(Here)), neighbour(Here, There))
249 then advancedGoto(There).
250

251 if bel(neighbour(There))
252 then advancedGoto(There).
253 }
254 }

Listing B.5: code/defense.mod2g
1 module defense{
2 program{
3 % Enemy on your position and the agent can parry
4 if bel(not(role(’Explorer’)), not(role(’Inspector’)), needToParry) then defenseParry.
5

6 % Wait for the saboteur to beat the shit out of you for parry achievements
7 if bel(not(role(’Explorer’)), not(role(’Inspector’)), maxEnergy(E), not(energy(E)), !, neighbour(There),
8 visibleEntity(Id, There, Team, _), enemyTeam(Team), inspectedEnemy(Id, ’Saboteur’)) then recharge.
9

10 % If you cant parry then just run away
11 if true then defenseFlee.

58 Code

12 }
13 }
14

15 module defenseParry{
16 program{
17 % randomly pick flee or parry when last parry was useless.
18 if bel(lastAction(parry), lastActionResult(useless)) then randomDefense.
19 if true then parry.
20 if true then recharge.
21 }
22 }
23

24 module randomDefense{
25 program{
26 % Keep 50% chance to Parry or Flee, not 33% chance to parry, recharge or continue role.
27 if bel(random(0.0, 1.0, R), R > 0.5) then {
28 if true then parry.
29 if true then recharge.
30 }
31 if true then defenseFlee.
32 }
33 }
34

35 module defenseFlee{
36 program{
37 if goal(swarm), bel(team(Team)) then {
38 % run away if needed.
39 if bel(currentPos(Here), not(needSurvey(Here))) then {
40 % try to move to the edge safely
41 if bel(safeEdgeDest(List), agentRankHere(Rank)) then moveSplit(Rank, List).
42

43 % try to expand safely
44 if bel(safeExpandDest(List), agentRankHere(Rank)) then gotoSplit(Rank, List).
45

46 % otherwise just move to a safe spot, probably collapsing the swarm
47 if bel(neighbour(N), vertexOwner(N,Team), safePos(N)) then advancedGoto(N).
48 }
49

50 % max edge Weight is 9.
51 if bel(energyGE(9), currentPos(Here)) then {
52 % to a safe spot.
53 if bel(visibleEdge(Here,N), vertexOwner(N,Team), safePos(N)) then advancedGoto(N).
54 % to a safer spot which isn’t where I was last step.
55 if bel(visibleEdge(Here,N), vertexOwner(N,Team), not((visibleEntity(_, N, ETeam, _), enemyTeam(

ETeam))), not(lastPos(N))) then advancedGoto(N).
56 % to a safer spot.
57 if bel(visibleEdge(Here,N), vertexOwner(N,Team), not((visibleEntity(_, N, ETeam, _), enemyTeam(

ETeam)))) then advancedGoto(N).
58 }
59 }
60

61 % run away if needed.
62 if bel(currentPos(Here), not(needSurvey(Here))) then {
63 % to a safe spot.
64 if bel(neighbour(N), safePos(N)) then advancedGoto(N).

B.2 Final version source code 59

65 % to a safer spot which isn’t where I was last step.
66 if bel(neighbour(N), not((visibleEntity(_, N, Team, _), enemyTeam(Team))), not(lastPos(N))) then

advancedGoto(N).
67 % to a safer spot.
68 if bel(neighbour(N), not((visibleEntity(_, N, Team, _), enemyTeam(Team)))) then advancedGoto(N).
69 }
70

71 % max edge Weight is 9.
72 if bel(energyGE(9), currentPos(Here)) then {
73 % to a safe spot.
74 if bel(visibleEdge(Here,N), safePos(N)) then advancedGoto(N).
75 % to a safer spot which isn’t where I was last step.
76 if bel(visibleEdge(Here,N), not((visibleEntity(_, N, Team, _), enemyTeam(Team))), not(lastPos(N)))

then advancedGoto(N).
77 % to a safer spot.
78 if bel(visibleEdge(Here,N), not((visibleEntity(_, N, Team, _), enemyTeam(Team)))) then

advancedGoto(N).
79 }
80

81 if true then recharge.
82 }
83 }

Listing B.6: code/dijkstra.pl
1 % Dijkstra from S to T
2 % Code is adapted from: http://colin.barker.pagesperso−orange.fr/lpa/dijkstra.htm
3

4 % main predicate
5

6 % path(Vertex0, Vertex, Path, Dist) is true if Path is the shortest path from
7 % Vertex0 to Vertex, and the length of the path is Dist. The graph is defined
8 % by e/3.
9 % e.g. path(penzance, london, Path, Dist)

10 path(Start, Target, Path, Dist) :−
11 dijkstra2(Start, Target, s(Target,Dist,Path)), !.
12

13 % helping predicates
14

15 dijkstra2(Start, Target, ResultingS):−
16 create(Start, [Start], Ds),
17 recharge(ERecharge),
18 dijkstra_2(Ds, ERecharge, [s(Start,0,[])], Target, ResultingS).
19

20 dijkstra_2([], _, _, _, _) :− !, fail.
21 dijkstra_2([D|Ds], ERecharge, _, Target, s(Target,Distance2,Path1)):−
22 best(Ds,D,s(Target,Distance,Path)),
23 delete2([D|Ds], [s(Target,Distance,Path)], _),
24 reverse([Target|Path], Path1),
25 Distance2 is Distance + ERecharge, !. % the ’!’ makes sure only 1 solution (the shortest) is correct.
26

27 dijkstra_2([D|Ds], ERecharge, Ss0, Target, ResultingS):−
28 best(Ds, D, S),
29 delete2([D|Ds], [S], Ds1),
30 S=s(Vertex,Distance,Path),

60 Code

31 reverse([Vertex|Path], Path1),
32 Distance2 is Distance + ERecharge,
33 merge2(Ss0, [s(Vertex,Distance2,Path1)], Ss1),
34 create(Vertex, [Vertex|Path], Ds2),
35 delete2(Ds2, Ss1, Ds3),
36 incr(Ds3, Distance2, Ds4),
37 merge2(Ds1, Ds4, Ds5),
38 dijkstra_2(Ds5, ERecharge, Ss1, Target, ResultingS).
39

40 % Algorithm for calculating optimum zone
41

42 calcOptimumZone(Opt, OptZone) :−
43 neighbour(Opt,Primary),
44 findall(X,(member(Y,Primary),neighbour(X,Y),not(member(X,Primary))),Secondary),
45 merge(Primary,Secondary,OptZone).
46

47 % Dijkstra for closest non−probed vertex
48 %% Code is adapted from: http://colin.barker.pagesperso−orange.fr/lpa/dijkstra.htm
49

50 % main predicate
51

52 pathClosestNonProbed(Start, NonProbedVertex, Path, Dist) :−
53 dijkstra3(Start, s(NonProbedVertex, Dist, Path)), !.
54

55 % helping predicates
56

57 dijkstra3(Start, ResultingS):−
58 create(Start, [Start], Ds),
59 recharge(ERecharge),
60 dijkstra_3(Ds, ERecharge, [s(Start,0,[])], ResultingS).
61

62 dijkstra_3([], _, _, _) :− !, fail.
63 dijkstra_3([D|Ds], ERecharge, _, s(Vertex,Distance2,Path1)):−
64 best(Ds,D,s(Vertex,Distance,Path)),
65 needProbe(Vertex),
66 delete2([D|Ds], [s(Vertex,Distance,Path)], _),
67 reverse([Vertex|Path], Path1),
68 Distance2 is Distance + ERecharge, !.
69

70 dijkstra_3([D|Ds], ERecharge, Ss0, ResultingS):−
71 best(Ds, D, S),
72 delete2([D|Ds], [S], Ds1),
73 S=s(Vertex,Distance,Path),
74 reverse([Vertex|Path], Path1),
75 Distance2 is Distance + ERecharge,
76 merge2(Ss0, [s(Vertex,Distance2,Path1)], Ss1),
77 create(Vertex, [Vertex|Path], Ds2),
78 delete2(Ds2, Ss1, Ds3),
79 incr(Ds3, Distance2, Ds4),
80 merge2(Ds1, Ds4, Ds5),
81 dijkstra_3(Ds5, ERecharge, Ss1, ResultingS).
82

83 % Dijkstra for closest non−probed vertex, with some additional checks
84 % Code is adapted from: http://colin.barker.pagesperso−orange.fr/lpa/dijkstra.htm
85

B.2 Final version source code 61

86 % main predicate
87

88 pathClosestNonProbedWithExtraChecks(Start, NonProbedVertex, Path, Dist) :−
89 dijkstra9(Start, s(NonProbedVertex, Dist, Path)), !.
90

91 % helping predicates
92

93 dijkstra9(Start, ResultingS):−
94 create(Start, [Start], Ds),
95 recharge(ERecharge),
96 dijkstra_9(Ds, ERecharge, [s(Start,0,[])], ResultingS).
97

98 dijkstra_9([], _, _, _) :− !, fail.
99 dijkstra_9([D|Ds], ERecharge, _, s(Vertex,Distance2,Path1)):−

100 best(Ds,D,s(Vertex,Distance,Path)),
101 needProbe(Vertex),
102 e(Vertex, NeedExploring, _), team(Team), vertexOwner(NeedExploring, Team),
103 delete2([D|Ds], [s(Vertex,Distance,Path)], _),
104 reverse([Vertex|Path], Path1),
105 Distance2 is Distance + ERecharge.
106

107 dijkstra_9([D|Ds], ERecharge, Ss0, ResultingS):−
108 best(Ds, D, S),
109 delete2([D|Ds], [S], Ds1),
110 S=s(Vertex,Distance,Path),
111 reverse([Vertex|Path], Path1),
112 Distance2 is Distance + ERecharge,
113 merge2(Ss0, [s(Vertex,Distance2,Path1)], Ss1),
114 create(Vertex, [Vertex|Path], Ds2),
115 delete2(Ds2, Ss1, Ds3),
116 incr(Ds3, Distance2, Ds4),
117 merge2(Ds1, Ds4, Ds5),
118 dijkstra_9(Ds5, ERecharge, Ss1, ResultingS).
119

120 % Dijkstra for closest non−surveyed vertex
121 % Code is adapted from: http://colin.barker.pagesperso−orange.fr/lpa/dijkstra.htm
122

123 % main predicate
124

125 pathClosestNonSurveyed(Start, NonSurveyedVertex, Path, Dist) :−
126 dijkstra4(Start, s(NonSurveyedVertex, Dist, Path)), !.
127

128 % helping predicates
129

130 dijkstra4(Start, ResultingS):−
131 create(Start, [Start], Ds),
132 recharge(ERecharge),
133 dijkstra_4(Ds, ERecharge, [s(Start,0,[])], ResultingS).
134

135 dijkstra_4([], _, _, _) :− !, fail.
136 dijkstra_4([D|Ds], ERecharge, _, s(Vertex,Distance2,Path1)):−
137 best(Ds,D,s(Vertex,Distance,Path)),
138 needSurvey(Vertex),
139 delete2([D|Ds], [s(Vertex,Distance,Path)], _),
140 reverse([Vertex|Path], Path1),

62 Code

141 Distance2 is Distance + ERecharge, !. % the ’!’ makes sure only 1 solution (the shortest) is correct.
142

143 dijkstra_4([D|Ds], ERecharge, Ss0, ResultingS):−
144 best(Ds, D, S),
145 delete2([D|Ds], [S], Ds1),
146 S=s(Vertex,Distance,Path),
147 reverse([Vertex|Path], Path1),
148 Distance2 is Distance + ERecharge,
149 merge2(Ss0, [s(Vertex,Distance2,Path1)], Ss1),
150 create(Vertex, [Vertex|Path], Ds2),
151 delete2(Ds2, Ss1, Ds3),
152 incr(Ds3, Distance2, Ds4),
153 merge2(Ds1, Ds4, Ds5),
154 dijkstra_4(Ds5, ERecharge, Ss1, ResultingS).
155

156 % Dijkstra for closest Repairer
157 % Code is adapted from: http://colin.barker.pagesperso−orange.fr/lpa/dijkstra.htm
158

159 % main predicate
160

161 pathClosestRepairer(Start, LocationRepairer, NameAgent, Path, Dist) :−
162 dijkstra5(Start, s(LocationRepairer, Dist, Path), NameAgent), !.
163

164 % helping predicates
165

166 dijkstra5(Start, ResultingS, NameAgent):−
167 create(Start, [Start], Ds),
168 recharge(ERecharge),
169 dijkstra_5(Ds, ERecharge, [s(Start,0,[])], ResultingS, NameAgent).
170

171 dijkstra_5([], _, _, _, _) :− !, fail.
172 dijkstra_5([D|Ds], ERecharge, _, s(Vertex,Distance2,Path1), NameAgent):−
173 best(Ds,D,s(Vertex,Distance,Path)),
174 repairerLoc(NameAgent, Vertex),
175 delete2([D|Ds], [s(Vertex,Distance,Path)], _),
176 reverse([Vertex|Path], Path1),
177 Distance2 is Distance + ERecharge, !. % the ’!’ makes sure only 1 solution (the shortest) is correct.
178

179 dijkstra_5([D|Ds], ERecharge, Ss0, ResultingS, NameAgent):−
180 best(Ds, D, S),
181 delete2([D|Ds], [S], Ds1),
182 S=s(Vertex,Distance,Path),
183 reverse([Vertex|Path], Path1),
184 Distance2 is Distance + ERecharge,
185 merge2(Ss0, [s(Vertex,Distance2,Path1)], Ss1),
186 create(Vertex, [Vertex|Path], Ds2),
187 delete2(Ds2, Ss1, Ds3),
188 incr(Ds3, Distance2, Ds4),
189 merge2(Ds1, Ds4, Ds5),
190 dijkstra_5(Ds5, ERecharge, Ss1, ResultingS, NameAgent).
191

192

193 % Dijkstra for closest Enemy
194 % Code is adapted from: http://colin.barker.pagesperso−orange.fr/lpa/dijkstra.htm
195

B.2 Final version source code 63

196 % main predicate
197

198 pathClosestEnemy(Start, LocationEnemy, NameEnemy, Path, Dist) :−
199 dijkstra6(Start, s(LocationEnemy, Dist, Path), NameEnemy), !.
200

201 % helping predicates
202

203 dijkstra6(Start, ResultingS, NameAgent):−
204 create(Start, [Start], Ds),
205 recharge(ERecharge),
206 dijkstra_6(Ds, ERecharge, [s(Start,0,[])], ResultingS, NameAgent).
207

208 dijkstra_6([], _, _, _, _) :− !, fail.
209 dijkstra_6([D|Ds], ERecharge, _, s(Vertex,Distance2,Path1), NameAgent):−
210 best(Ds,D,s(Vertex,Distance,Path)),
211 enabledEnemy(NameAgent, Vertex), %Enemy must be active by last info.
212 delete2([D|Ds], [s(Vertex,Distance,Path)], _),
213 reverse([Vertex|Path], Path1),
214 Distance2 is Distance + ERecharge, !. % the ’!’ makes sure only 1 solution (the shortest) is correct.
215

216 dijkstra_6([D|Ds], ERecharge, Ss0, ResultingS, NameAgent):−
217 best(Ds, D, S),
218 delete2([D|Ds], [S], Ds1),
219 S=s(Vertex,Distance,Path),
220 reverse([Vertex|Path], Path1),
221 Distance2 is Distance + ERecharge,
222 merge2(Ss0, [s(Vertex,Distance2,Path1)], Ss1),
223 create(Vertex, [Vertex|Path], Ds2),
224 delete2(Ds2, Ss1, Ds3),
225 incr(Ds3, Distance2, Ds4),
226 merge2(Ds1, Ds4, Ds5),
227 dijkstra_6(Ds5, ERecharge, Ss1, ResultingS, NameAgent).
228

229 % List all the information in the optimum zone
230

231 allInformationOptimumZone([],[],[]) :− not(optimum(_)), !.
232 allInformationOptimumZone(Agents, Nodes, Neighbours) :− optimum(Opt), team(Team),
233 allInformationOptimumZone([Opt], [], Nodes, Agents, Neighbours, Team), !.
234

235 allInformationOptimumZone([], _, [], [], [], _).
236 allInformationOptimumZone([First|ToConsider], Visited, [First|Nodes], Agents, Neighbours, Team) :−
237 vertexOwner(First, Team),
238 findall([NameAgent, First], visibleEntity(NameAgent, First, Team, normal), FoundAgents),
239 findall(Node, (e4(First, Node, _), not(member(Node, Visited))), FoundNodesTemp), list_to_set(

FoundNodesTemp, FoundNodes),
240 union(FoundNodes, ToConsider, NewToConsider),
241 allInformationOptimumZone(NewToConsider, [First|Visited], Nodes, NewAgents, Neighbours, Team),
242 union(NewAgents, FoundAgents, Agents).
243 allInformationOptimumZone([First|ToConsider], Visited, Nodes, Agents, [First|Neighbours], Team) :−
244 not(vertexOwner(First, Team)),
245 allInformationOptimumZone(ToConsider, [First|Visited], Nodes, Agents, Neighbours, Team).
246

247 % Dijkstra for closest Visible Enemy
248 % Code is adapted from: http://colin.barker.pagesperso−orange.fr/lpa/dijkstra.htm
249

64 Code

250 % main predicate
251

252 pathClosestVisibleEnemy(Start, LocationEnemy, NameEnemy, Path, Dist) :−
253 dijkstra8(Start, s(LocationEnemy, Dist, Path), NameEnemy), !.
254

255 % helping predicates
256

257 dijkstra8(Start, ResultingS, NameAgent):−
258 create(Start, [Start], Ds),
259 recharge(ERecharge),
260 dijkstra_8(Ds, ERecharge, [s(Start,0,[])], ResultingS, NameAgent).
261

262 dijkstra_8([], _, _, _, _) :− !, fail.
263 dijkstra_8([D|Ds], ERecharge, _, s(Vertex,Distance2,Path1), NameAgent):−
264 best(Ds,D,s(Vertex,Distance,Path)),
265 enabledEnemy(NameAgent, Vertex),
266 visibleEntity(NameAgent,_,_,_), %Enemy must be visible in current step.
267 delete2([D|Ds], [s(Vertex,Distance,Path)], _),
268 reverse([Vertex|Path], Path1),
269 Distance2 is Distance + ERecharge, !. % the ’!’ makes sure only 1 solution (the shortest) is correct.
270

271 dijkstra_8([D|Ds], ERecharge, Ss0, ResultingS, NameAgent):−
272 best(Ds, D, S),
273 delete2([D|Ds], [S], Ds1),
274 S=s(Vertex,Distance,Path),
275 reverse([Vertex|Path], Path1),
276 Distance2 is Distance + ERecharge,
277 merge2(Ss0, [s(Vertex,Distance2,Path1)], Ss1),
278 create(Vertex, [Vertex|Path], Ds2),
279 delete2(Ds2, Ss1, Ds3),
280 incr(Ds3, Distance2, Ds4),
281 merge2(Ds1, Ds4, Ds5),
282 dijkstra_8(Ds5, ERecharge, Ss1, ResultingS, NameAgent).
283

284 % General Dijkstra helping predicates
285 % Code is adapted from: http://colin.barker.pagesperso−orange.fr/lpa/dijkstra.htm
286

287 % create(Start, Path, Edges) is true if Edges is a list of structures s(Vertex,
288 % Distance, Path) containing, for each Vertex accessible from Start, the
289 % Distance from the Vertex and the specified Path. The list is sorted by the
290 % name of the Vertex.
291 create(Start, Path, Edges):−
292 maxEnergy(E), setof(s(Vertex,Edge,Path), (e(Start,Vertex,Edge), Edge =< E), Edges), !.
293 create(_, _, []).
294

295 % best(Edges, Edge0, Edge) is true if Edge is the element of Edges, a list of
296 % structures s(Vertex, Distance, Path), having the smallest Distance. Edge0
297 % constitutes an upper bound.
298 best([], s(A,B,C), s(A,B,C)).
299 best([s(A,B,C)|Edges], Best0, Best):−
300 shorter(s(A,B,C), Best0), !,
301 best(Edges, s(A,B,C), Best).
302 best([_|Edges], Best0, Best):−
303 best(Edges, Best0, Best).
304

B.2 Final version source code 65

305 shorter(s(_,X,_), s(_,Y,_)):−X < Y.
306

307 % delete2(Xs, Ys, Zs) is true if Xs, Ys and Zs are lists of structures s(Vertex,
308 % Distance, Path) ordered by Vertex, and Zs is the result of deleting from Xs
309 % those elements having the same Vertex as elements in Ys.
310 delete2([], _, []).
311 delete2([X|Xs], [], [X|Xs]):−!.
312 delete2([X|Xs], [Y|Ys], Ds):−
313 eq(X, Y), !,
314 delete2(Xs, Ys, Ds).
315 delete2([X|Xs], [Y|Ys], [X|Ds]):−
316 lt(X, Y), !, delete2(Xs, [Y|Ys], Ds).
317 delete2([X|Xs], [_|Ys], Ds):−
318 delete2([X|Xs], Ys, Ds).
319

320 % merge2(Xs, Ys, Zs) is true if Zs is the result of merging Xs and Ys, where Xs,
321 % Ys and Zs are lists of structures s(Vertex, Distance, Path), and are
322 % ordered by Vertex. If an element in Xs has the same Vertex as an element
323 % in Ys, the element with the shorter Distance will be in Zs.
324 merge2([], Ys, Ys).
325 merge2([X|Xs], [], [X|Xs]):−!.
326 merge2([X|Xs], [Y|Ys], [X|Zs]):−
327 eq(X, Y), shorter(X, Y), !,
328 merge2(Xs, Ys, Zs).
329 merge2([X|Xs], [Y|Ys], [Y|Zs]):−
330 eq(X, Y), !,
331 merge2(Xs, Ys, Zs).
332 merge2([X|Xs], [Y|Ys], [X|Zs]):−
333 lt(X, Y), !,
334 merge2(Xs, [Y|Ys], Zs).
335 merge2([X|Xs], [Y|Ys], [Y|Zs]):−
336 merge2([X|Xs], Ys, Zs).
337

338 eq(s(X,_,_), s(X,_,_)).
339

340 lt(s(X,_,_), s(Y,_,_)):−X @< Y.
341

342 % incr(Xs, Incr, Ys) is true if Xs and Ys are lists of structures s(Vertex,
343 % Distance, Path), the only difference being that the value of Distance in Ys
344 % is Incr more than that in Xs.
345 incr([], _, []).
346 incr([s(V,D1,P)|Xs], Incr, [s(V,D2,P)|Ys]):−
347 D2 is D1 + Incr,
348 incr(Xs, Incr, Ys).
349

350 % predicate that finds all surveyed edges, and checks both ways to make sure not an edge is missed
351 e(X, Y, Z):− vertex(X, _, List), member([Z,Y], List), not(Z == unknown).
352 e(X, Y, Z):− vertex(Y, _, List), member([Z,X], List), not(Z == unknown).
353 e(X, Y, 5):− vertex(X, _, List), member([unknown,Y], List), vertex(Y, _, List2), member([unknown, X],

List2).
354 e(X, Y, 5):− vertex(Y, _, List), member([unknown,X], List), vertex(X, _, List2), member([unknown, Y],

List2).
355

356 % predicate that finds all survyed edges, but requires at least one of the sides of the edge to be in our zone

66 Code

357 e4(X, Y, Z):− vertex(X, _, List), member([Z,Y], List), not(Z == unknown), team(OurTeam), (vertexOwner
(X,OurTeam);vertexOwner(Y,OurTeam)).

358 e4(X, Y, Z):− vertex(Y, _, List), member([Z,X], List), not(Z == unknown), team(OurTeam), (vertexOwner
(X,OurTeam);vertexOwner(Y,OurTeam)).

359 e4(X, Y, 5):− vertex(X, _, List), member([unknown,Y], List), vertex(Y, _, List2), member([unknown, X],
List2), team(OurTeam), (vertexOwner(X,OurTeam);vertexOwner(Y,OurTeam)).

360 e4(X, Y, 5):− vertex(Y, _, List), member([unknown,X], List), vertex(X, _, List2), member([unknown, Y],
List2), team(OurTeam), (vertexOwner(X,OurTeam);vertexOwner(Y,OurTeam)).

Listing B.7: code/disabled.mod2g
1 module disabledReceiveMail{
2 program[order=linearall]{
3 % Process the locations of our repairers.
4 forall bel(repairerLoc(Agent,Loc)) do delete(repairerLoc(Agent,Loc)).
5 forall bel(received(Agent,currentLoc(Loc))) do insert(repairerLoc(Agent,Loc)) + delete(received(Agent,

currentLoc(Loc))).
6 }
7 }
8

9 module disabled{
10 program{
11 % Wait for nearby repairer when you are a repairer and other repairer has a higher priority.
12 if bel(role(’Repairer’), role(Agent,’Repairer’), me(Name), Agent \= Name, visibleEntity(Agent,Pos,_,_),
13 (neighbour(Pos) ; currentPos(Pos)), compareAgents(Name,Agent,Agent))
14 then recharge.
15

16 % Wait for nearby repairer when you are not a repairer.
17 if bel(not(role(’Repairer’)), role(Agent,’Repairer’), me(Name), Agent \= Name, visibleEntity(Agent,Pos,

,),
18 (neighbour(Pos) ; currentPos(Pos)))
19 then recharge.
20

21 % Find nearest repairer.
22 if bel(currentPos(Here), pathClosestRepairer(Here,Loc,Agent,[Here,Next|Path],_), reverse([Here,Next|

Path],Reversed))
23 then gotoRepairer(Here,Next,Path,Reversed,Agent).
24

25 % Goto random neighbour.
26 if bel(neighbour(There), not(lastPos(There))) then advancedGoto(There).
27 if bel(currentPos(Here), visibleEdge(Here,There), not(lastPos(There))) then advancedGoto(There).
28 }
29 }
30

31 module gotoRepairer(Here,Next,Path,Reversed,Agent){
32 program{
33 % Move towards closest repairer and signal repairer.
34 if true then advancedGoto(Next) + send(Agent,helpPath(Reversed,Here)).
35 }
36 }

Listing B.8: code/explorer.mod2g
1 % Belief base management specific to the explorer
2 module explorerPercepts{

B.2 Final version source code 67

3 program[order=linearall]{
4 % If our last goto failed we are potentially under attack, feeling might be nescessary
5 if bel(noFlee, lastAction(goto), lastActionResult(failed)) then delete(noFlee).
6

7 % Makes sure the graph administration is performed after a probe and other agents receive this new
correct information

8 if bel(lastAction(probe), lastActionResult(successful)) then probeVertices.
9

10 if bel(currentPos(Here), safePos(Here), noFlee) then delete(noFlee).
11 }
12 }
13

14 % Sending messages specific for the explorer
15 module explorerReceiveMail{
16 program[order=linearall]{
17 % makes sure the explorer doesnt do work the other explorer already did
18

19 forall bel(received(A,vertexProbed(Id,Value)), not(vertex(Id,_,_)))
20 do delete(received(A,vertexProbed(Id,Value))) + insert(vertex(Id,Value,[])).
21

22 forall bel(received(A,vertexProbed(Id,Value)), vertex(Id,unknown,List))
23 do delete(received(A,vertexProbed(Id,Value))) + insert(not(vertex(Id,unknown,List)), vertex(Id,Value,

List)).
24

25 % the other agent found an optimum, determine which nodes now need exploring(probing) for the next
phase

26 if bel(received(Agent, optimum(Opt))) then {
27 if true
28 then insert(optimum(Opt))
29 + delete(received(Agent, optimum(Opt))).
30 }
31 if bel(received(Agent, tempOptimum(Opt))) then {
32 if true
33 then insert(tempOptimum(Opt))
34 + delete(received(Agent, tempOptimum(Opt))).
35 }
36

37 if bel(received(Agent, exploreZone(EZone))) then {
38 if bel(exploreZone(E)) then insert(not(exploreZone(E)), exploreZone(EZone)) + delete(received(Agent,

exploreZone(EZone))).
39 if true then insert(exploreZone(EZone)) + delete(received(Agent, exploreZone(EZone))).
40 }
41

42 if bel(received(Agent, exploreRemove(X)), exploreZone(O), select(X,O,O2)) then insert(not(
exploreZone(O)), exploreZone(O2)) + delete(received(Agent, exploreRemove(X))).

43 }
44 }
45

46 % Module that makes sure an action is chosen for the explorer
47 module explorerAction{
48 program[order=linearall]{
49 %Drop the optimum goal when we exit the initial phase
50 if a−goal(optimum) then {
51 if bel(step(N), N>=150) then drop(optimum).
52 }

68 Code

53

54 %Insert optimum after 150 steps
55 if bel(not(optimum(Opt)), tempOptimum(TOpt), agentRankRole(Rank, ’Explorer’), Rank=:=0, step(N),

N>=150, calcOptimumZone(TOpt, OptZone)) then
56 insert(optimum(TOpt), optZone(OptZone)) + send(allother, optimum(TOpt)) + send(allother, optZone(

OptZone)).
57

58 %Determine what needs to be probed and broadcast to all.
59 if bel(optZone(O), not(exploreZone(E)), findall(Pos,(member(Pos,O),needProbe(Pos)),ExploreZone))

then insert(exploreZone(ExploreZone)) + send(allother, exploreZone(ExploreZone)).
60

61 %If current explore−objective is completed, delete the corresponding belief
62 if bel(currentPos(Here), exploring(Here)) then delete(exploring(Here)).
63

64 %Pick a node to explore, then tell others not to explore it
65 if bel(not(exploring(_)),exploreZone(E), E \= [], agentRankRole(Rank,’Explorer’), nth0(Rank, E, Node))

then insert(exploring(Node)) + send(allother, exploreRemove(Node)).
66

67

68 if true then {
69 % Agent is not safe, defend yourself
70 if bel(not(noFlee), currentPos(Here), not(safePos(Here))) then defense.
71

72 % if there are edges with unknown weight around the current node survey them
73 if bel(not(disabled), currentPos(Here), needSurvey(Here), agentRankHere(Rank))
74 then selectSurvey(Rank).
75

76 % probe your node if it is unprobed
77 if bel(not(disabled), currentPos(Here), needProbe(Here), me(Name), team(Team),
78 findall(Agent, (visibleEntity(Agent,Here,Team,_), role(Agent,’Explorer’)), Agents), agentRank(

Agents,Name,Rank))
79 then selectProbe(Rank).
80

81 % If we are looking for an optimum enter the module that has optimum finding behavior
82 if a−goal(optimum) then searchOptimal.
83

84 % When optimum is found but certain nodevalues still need exploring enter the module that makes sure
this happens

85 if true then swarmProbe.
86

87 % An optimum is found but im not in the swarm, move a step closer to the optimum
88 if bel(currentPos(Pos), not(swarmPos(Pos)), optimum(Opt), path(Pos, Opt, [Here,Next|_], _))
89 then advancedGoto(Next).
90

91 % When in the swarm swarm along with the rest
92 if a−goal(swarm) then swarm.
93 }
94 }
95 }
96

97 % Explorer behavior when we have the entire map, probe as much as possible for maximum zone score!
98 module explorerSuperiority{
99 program{

100 % Probe the current node if required
101 if bel(not(disabled), currentPos(Here), needProbe(Here), me(Name), team(Team),

B.2 Final version source code 69

102 findall(Agent, (visibleEntity(Agent,Here,Team,_), role(Agent,’Explorer’)), Agents), agentRank(Agents
,Name,Rank))

103 then selectProbe(Rank).
104

105 % Go towards to closest node that still needs probing
106 if bel(currentPos(Start), pathClosestNonProbed(Start, NonProbedVertex, [Here,Next|Path], Dist))
107 then advancedGoto(Next).
108 }
109 }
110

111 % Module that contains behavior for explorers to find the optimal value node
112 module searchOptimal {
113 program[order=linearall]{
114 if bel(currentPos(Here), !, vertexValue(Here, Value), optimumValue(Current), Current<Value)
115 then {
116 if bel(step(N), N<150) then insert(tempOptimum(Here), not(optimumValue(Current)), optimumValue(

Value)) + send(allother, tempOptimum(Here)).
117

118 if bel(step(N), N>=150, not(optimum(_)),calcOptimumZone(Here,OZone)) then insert(optimum(Here),
not(optimumValue(Current)), optimumValue(Value)) + send(allother, optimum(Here)) + send(
allother, optimumZone(OZone)).

119 }
120

121 if true then {
122 % find an unprobed neighbouring vertex
123 if bel(neighbour(There), needProbe(There), safePos(There)) then advancedGoto(There).
124

125 % find an unprobed neighbouring vertex
126 if bel(neighbour(There), needProbe(There), not((visibleEntity(_, There, Team, _), enemyTeam(Team))))
127 then advancedGoto(There) + insert(noFlee).
128

129 % find an unprobed neighbouring vertex
130 if bel(neighbour(There), needProbe(There))
131 then advancedGoto(There) + insert(noFlee).
132

133 % Find closest unprobed vertex
134 if bel(currentPos(Start), pathClosestNonProbed(Start, NonProbedVertex, [Here,Next|Path], Dist))
135 then advancedGoto(Next).
136 }
137 }
138 }
139

140 % Module that makes sure probing is handled in swarmphase
141 module swarmProbe {
142 program {
143 % If this vertex needs to be explored then goto an unprobed neighbour to probe it.
144 if bel(currentPos(Here), vertexValue(Here, Value), neighbour(Here, There), needProbe(There), team(

Team), vertexOwner(There, Team))
145 then advancedGoto(There).
146

147 if bel(exploring(X), path(Here,Vertex,[Here,Next|Path],_))
148 then advancedGoto(Next).
149 % Find the closest unprobed vertex which is a neighbour of a vertex which needs to be explored
150 % if bel(currentPos(Here), pathClosestNonProbedWithExtraChecks(Here, NonProbedVertex, [Here,

Next | Path], _))

70 Code

151 % then advancedGoto(Next).
152 }
153 }

Listing B.9: code/generalBeliefs.pl
1 % some variables so that they can be updated later
2 lastPos(unknown).
3 oldZone(unknown).
4 step(unknown).
5

6 % predicate that will contain info about the optimum zone, updated each round in common percepts
7 optimumInfo([], [], []).
8

9 % makes sure agents wait for mails from other agents in first round.
10 doneAction.
11 donePercepts.
12 doneMailing.

Listing B.10: code/generalKnowledge.pl
1 % energy/money checks
2 energyGE(Nr) :− energy(E), E >= Nr.
3 moneyGE(Nr) :− money(M), M >= Nr.
4 maxEnergy(E) :− disabled, maxEnergyDisabled(E), !.
5 maxEnergy(E) :− not(disabled), maxEnergyWorking(E).
6 recharge(Nr) :− not(disabled), maxEnergy(E), Nr is round(0.5∗E).
7 recharge(Nr) :− disabled, maxEnergy(E), Nr is round(0.3∗E).
8

9 % Short predicate for current position of agent
10 role(Role) :− me(Id), role(Id, Role).
11

12 % Predicate that defines when an agent can not be trusted within the swarm
13 % This means the agent will not take the swarm into account when making its moves
14 independableAgent(Agent) :− me(Agent).
15 independableAgent(Agent) :− currentPos(Agent, Pos), insideZone(Pos).
16 independableAgent(Agent) :− role(Agent, ’Saboteur’), visibleEntity(_,_,Team,normal), enemyTeam(Team)

.
17 independableAgent(Agent) :− role(Agent, ’Repairer’), team(Team), visibleEntity(Id,Vertex,Team,disabled)

, not(currentPos(Agent, Vertex)).
18

19 % Two agents are connected when there are one or two edges between them
20 connectedAgent(Agent1, Agent2) :− team(Team), visibleEntity(Agent1,Pos1,Team,normal), visibleEntity(

Agent2,Pos2,Team,normal),
21 visibleEdge(Pos1, Pos2), not(independableAgent(Agent2)), vertexOwner(Pos1, Team), vertexOwner(Pos2

, Team).
22 connectedAgent(Agent1, Agent2) :− team(Team), visibleEntity(Agent1,Pos1,Team,normal), visibleEntity(

Agent2,Pos2,Team,normal),
23 visibleEdge(Pos1, Pos3), visibleEdge(Pos3,Pos2), not(Pos1 == Pos2), not(independableAgent(Agent2)),
24 vertexOwner(Pos1, Team), vertexOwner(Pos2, Team), vertexOwner(Pos3, Team).
25

26 % Some short predicates for information about our optimum zone(the swarm around the found optimum)
27 agentsInOptimumZone(A) :− optimumInfo(A, _, _).
28 neighboursOfOptimumZone(F) :− optimumInfo(_, _, F).
29

B.2 Final version source code 71

30 % Team determination
31 enemyTeam(T) :− inspectedEntity(_, T, _, _, _, _, _, _, _, _).
32 enemyTeam(T) :− not(team(T)), T \= none.
33 % defines when an agent is disabled
34 disabled :− health(0).
35

36 % predicates for determining when a node or it’s neighbour needs surveying
37 needSurvey(Vertex) :− vertex(Vertex,_,[]),!.
38 needSurvey(Vertex) :− not(vertex(Vertex,_,_)).
39 neighbourNeedSurvey(ID) :− currentPos(Here), neighbourNeedSurvey(Here,ID).
40 neighbourNeedSurvey(Vertex,ID) :− vertex(Vertex,_,List), member([_,ID],List), needSurvey(ID).
41

42 % true when an optimum is found
43 optimum :− optimum(_).
44

45 % Defines whether an enemy is to be considered dangerous for sure
46 dangerousEnemy(Id) :− inspectedEnemy(Id, ’Saboteur’), !.
47 dangerousEnemy(Id) :− not(inspectedEnemy(Id, _)), !, not((inspectedEnemy(Id2, ’Saboteur’), !,
48 inspectedEnemy(Id3, ’Saboteur’), Id2 \= Id3, !, inspectedEnemy(Id4, ’Saboteur’), Id2\=Id4, Id3\=Id4, !,
49 inspectedEnemy(Id5, ’Saboteur’), Id2\=Id5, Id3\=Id5, Id4\=Id5)).
50 % Enemy is passive when disabled, can also be used on allies.
51 passiveEnemy(Id) :− visibleEntity(Id,_,_,disabled), !.
52 passiveEnemy(Id) :− inspectedEnemy(Id,Role), !, Role \= ’Saboteur’.
53 passiveEnemy(Id) :− not(inspectedEnemy(Id,_)), !, inspectedEnemy(Id2, ’Saboteur’), !,
54 inspectedEnemy(Id3, ’Saboteur’), Id2 \= Id3, !, inspectedEnemy(Id4, ’Saboteur’), Id2\=Id4, Id3\=Id4, !,
55 inspectedEnemy(Id5, ’Saboteur’), Id2\=Id5, Id3\=Id5, Id4\=Id5.
56

57 % Short predicate to extract the most useful information from an inspected enemy
58 inspectedEnemy(Id,Role) :− inspectedEntity(Id, _, Role, _, _, _, _, _, _, _).
59

60 % True when we have 90 percent or more of all nodes in our posession
61 allMapAreBelongToUs :− team(Team), findall(Vertex, vertexOwner(Vertex, Team), List), vertices(V), V2

is 0.9∗V, length(List, V3), V3 > V2.
62

63 % Rule that defines whether it is requires to parry, speaks for itself ;)
64 needToParry :− currentPos(Here), !, visibleEntity(Agent,Here,_,normal), dangerousEnemy(Agent).

Listing B.11: code/inspector.mod2g
1 module inspectorPercepts{
2 program[order=linearall]{
3 % Process inspect data.
4 if bel(lastAction(inspect), lastActionResult(successful)) then inspectEntityPercept.
5 }
6 }
7

8 module inspectorReceiveMail{
9 program[order=linearall]{

10 % No special inspector mails need to be handled.
11 if true then exit−module.
12 }
13 }
14

15 module inspectorAction {
16 program {

72 Code

17 % inspect when possible
18 if bel(uninspectedNear) then {
19 if true then inspect.
20 if true then recharge.
21 }
22

23 % defend yourself when not safe
24 if bel(currentPos(Here), not(safePos(Here))) then defense.
25

26 % find someone to inspect
27 if bel(currentPos(Here), !, visibleEntity(Agent, There, Team, _), enemyTeam(Team),
28 (uninspectedEntity(Agent); (inspectedEnemy(Agent, ’Saboteur’),lastInspect(Agent,LI), step(S), LI2 is

LI + 50, LI2 < S)), !,
29 path(Here, There, [Here,Next|GotoPath],_), !)
30 then advancedGoto(Next).
31

32 % swarm
33 if a−goal(swarm) then swarm.
34

35 % walk to the optimum
36 if bel(optimum(X), currentPos(Pos), path(Pos,X,[Here,Next|Path],_))
37 then advancedGoto(Next).
38

39 % randomly explore
40 if true then explore.
41 }
42 }
43

44 module inspectorSuperiority{
45 program{
46 % Stay idle.
47 if true then recharge.
48 }
49 }

Listing B.12: code/navigationKnowledge.pl
1 % Finds all neighbouring nodes of the current position
2 neighbour(Neighbour) :− currentPos(Id),!, neighbour(Id,_,Neighbour).
3

4 % Finds all neighbouring nodes of a given node
5 neighbour(Id,Neighbour) :− neighbour(Id,_,Neighbour).
6

7 % Finds all neighbouring nodes of a given node, and the weight of their connection
8 neighbour(Id,Weight,Neighbour) :− vertex(Id,_,List), member([Weight,Neighbour],List).
9

10 %Fix to earlier double Goto actionspecs
11 shouldGoTo(Here,There) :− (neighbour(Here,Weight,There), energyGE(Weight)) ; (not(neighbour(Here,

There)), visibleEdge(Here,There)).
12

13 % This predicate determines when a node is to be considered safe to stand on, this means no unknown role
agent or saboteur can be at this location

14 safePos(P) :− not((visibleEntity(A, P, T, normal), enemyTeam(T), not(passiveEnemy(A)))),
15 not((neighbour(P, P2), visibleEntity(A2, P2, T, normal), enemyTeam(T), inspectedEnemy(A2,’Saboteur’)

)).

B.2 Final version source code 73

16

17 % This is true when the agent has the highest rank(based on its name) of all agents on this node
18 kingOfTheHill :− agentRankHere(0).
19

20 % Determines if the agent is the only agent on its position
21 foreverAlone :− not((currentPos(Pos), me(Me), team(Team), !, visibleEntity(ID, Pos, Team ,_), Me \= ID)

).
22

23 % Compares agents names to find which name has a higher ’value’
24 compareAgents(Agent1,Agent2,Agent2) :− Agent1 @< Agent2.
25 compareAgents(Agent1,Agent2,Agent1) :− Agent1 @> Agent2.
26

27 % Returns the rank(based on its name) of an agent compared to all other agents on its node
28 agentRankHere(Rank) :− currentPos(Here), me(Name), team(Team), !,
29 setof(Agent, visibleEntity(Agent,Here,Team,normal), Agents), agentRank(Agents,Name,Rank).
30

31 % Returns the rank(based on its name) of an agent compared to all other agents on its node of a specific
role

32 agentRankHere(Rank, Role) :− currentPos(Here), me(Name), team(Team), !,
33 setof(Agent, (visibleEntity(Agent,Here,Team,normal), role(Agent, Role)), Agents), agentRank(Agents,

Name,Rank).
34

35 % Returns the rank(based on its name) of an agent compared to all other agents of a specific role
36 agentRankRole(Rank, Role) :− me(Name), team(Team), !,
37 setof(Agent, (visibleEntity(Agent,_,Team,normal), role(Agent, Role)), Agents), agentRank(Agents,Name,

Rank).
38

39 %Ranks the agents using the nth0 predicate
40 agentRank(List,Agent,Rank) :− nth0(Rank, List, Agent), !.
41

42 % Predicate that selects a Neighbour on index Number from the list of Neighbours, useful in combination
with agentrank for splitting up, agent with rank 0 will not get a neighbour

43 selectNeighbour(List, Number, Neighbour) :− length(List, Size), Num is mod(Number,Size), nth1(Num,
List, Neighbour), !.

44

45 % Predicate that selects a Destination on index Number from the list of Destinations, useful for splitting up
in combination with agentrank when multiple destinations are available

46 selectDestination(List, Number, Destination) :− length(List,Size), Num is mod(Number,Size), nth0(Num,
List, Destination), !.

47

48 % Short predicates for vertex information
49 vertexValue(Id,Value) :− vertex(Id,Value,_).
50 vertexValue(Id,unknown) :− not(vertex(Id,_,_)).
51

52 % predicate that determines if a position results situation where the agent maintains connection with
another agent

53 connectedPos(X, Agent) :− currentPos(Agent, Y), not(independableAgent(Agent)), visibleEdge(X,Y).
54 connectedPos(X, Agent) :− currentPos(Agent, Z), not(independableAgent(Agent)), X \== Z,
55 visibleEdge(Z,Y), team(Team), vertexOwner(Y, Team), visibleEdge(Y,X).
56

57 % a vertex that is a swarmpos is a position that makes sure the agent is still connected to 2 other agents
58 swarmPos(X) :− connectedPos(X, Agent1), connectedPos(X, Agent2), Agent1 \== Agent2, !.
59

60 % check if the agent is currently in the zone that contains the found optimum
61 inOptimumZone :− me(Id), agentsInOptimumZone(A), member([Id,_], A).

74 Code

62

63 %Counts enemy saboteurs on this vertex
64 getEnemySaboteurCount(Sabs, Vertex) :− setof(ID,(enemyTeam(Team), visibleEntity(ID, Vertex, Team, _)

, inspectedEnemy(ID,’Saboteur’)),List), length(List, Sabs).
65

66 %Counts our saboteurs on this vertex
67 getSaboteurCount(Sabs, Vertex) :− setof(ID,(team(Team), visibleEntity(ID, Vertex, Team, _), role(ID, ’

saboteur’)),List), length(List, Sabs).

Listing B.13: code/pathing.mod2g
1 module gotoSplit(Rank,List){
2 knowledge{
3 % Data reformatting
4 stripList([],[]).
5 stripList([[Value,Vertex]|List],[Vertex|SList]) :− stripList(List,SList).
6 }
7 program{
8 % List = [[Value,Vertex],[...]] Highest after!
9 if bel(stripList(List,SList), selectDestination(SList,Rank,Vertex)) then advancedGoto(Vertex).

10 % List = [Vertex,...,Vertex]
11 if bel(selectDestination(List,Rank,Vertex)) then advancedGoto(Vertex).
12 }
13 }
14

15 module moveSplit(Rank,List){
16 program{
17 % List = [[Value,Vertex],[...],[Value,Vertex]]
18 if bel(stripList(List,SList), selectDestination(SList,Rank,Vertex), currentPos(Here), path(Here,Vertex,[

Here,Next|Path],_))
19 then advancedGoto(Next).
20 % List = [Vertex,...,Vertex]
21 if bel(selectDestination(List,Rank,Vertex), currentPos(Here), path(Here,Vertex,[Here,Next|Path],_))
22 then advancedGoto(Next).
23 }
24 }
25

26 module gotoNeighbour(Rank,Unknown,Safe){
27 program{
28 if bel(Unknown == true, Safe == true, maxEnergy(E), energyGE(E), currentPos(Here), setof(Neighbour,

(visibleEdge(Here,Neighbour),
29 safePos(Neighbour)), Neighbours), selectNeighbour(Neighbours,Rank,Vertex))
30 then advancedGoto(Vertex).
31

32 if bel(Unknown == true, maxEnergy(E), energyGE(E), currentPos(Here),setof(Neighbour, visibleEdge(
Here,Neighbour), Neighbours),

33 selectNeighbour(Neighbours,Rank,Vertex))
34 then advancedGoto(Vertex).
35

36 if bel(Safe == true, X is Rank + 1, setof(Neighbour, (neighbour(Neighbour), safePos(Neighbour)),
Neighbours), selectNeighbour(Neighbours,X,Vertex))

37 then advancedGoto(Vertex).
38

39 if bel(X is Rank + 1, setof(Neighbour, neighbour(Neighbour), Neighbours), selectNeighbour(
Neighbours,X,Vertex))

B.2 Final version source code 75

40 then advancedGoto(Vertex).
41 }
42 }
43

44 module advancedGoto(Destination){
45 program{
46 % Goto pre condition checks if we can move over explored edges.
47 if bel(currentPos(Here), not(needSurvey(Here))) then {
48 if true then goto(Destination).
49 if true then recharge.
50 }
51

52 % Recharge to at least 9 energy before moving over an unsurveyed edge.
53 if bel(energyGE(9)) then goto(Destination).
54 if true then recharge.
55 }
56 }
57

58 module selectProbe(Rank){
59 program{
60 % Use probe action when I am rank 0 (Highest)
61 if bel(Rank == 0) then probe.
62 % Go to a neighbour if I am not rank 0
63 if true then gotoNeighbour(Rank,true,false).
64 if true then recharge.
65 }
66 }
67

68 module selectSurvey(Rank){
69 program{
70 % Use survey action when I am rank 0 (Highest)
71 if bel(Rank == 0) then survey.
72 % Go to a neighbour if I am not rank 0
73 if true then gotoNeighbour(Rank,true,false).
74 if true then recharge.
75 }
76 }

Listing B.14: code/perceptKnowledge.pl
1 % Extraction some information about the agent itself from the percepts
2 money(M) :− percept(money(M)).
3 energy(E) :− percept(energy(E)).
4 maxEnergyWorking(E) :− percept(maxEnergy(E)).
5 maxEnergyDisabled(E) :− percept(maxEnergyDisabled(E)).
6 strength(S) :− percept(strength(S)).
7 maxHealth(H) :− percept(maxHealth(H)).
8

9 % Extracting visible entities, vertices and edges from the percepts
10 visibleEntity(Id,Vertex,Team,Status) :− percept(visibleEntity(Id,Vertex,Team,Status)).
11 vertexOwner(Vertex,Team) :− percept(visibleVertex(Vertex, Team)).
12 visibleEdge(Vertex1,Vertex2) :− percept(visibleEdge(Vertex1,Vertex2)).
13 visibleEdge(Vertex1,Vertex2) :− percept(visibleEdge(Vertex2,Vertex1)).
14

15 % Extracting the agents current position from the percepts

76 Code

16 currentPos(Agent,Vertex) :− percept(visibleEntity(Agent,Vertex,_,_)).
17

18 % Extracting round information from the percepts
19 lastAction(Action) :− percept(lastAction(Action)).
20 lastActionResult(Result) :− percept(lastActionResult(Result)).

Listing B.15: code/repairer.mod2g
1 module repairerPercepts{
2 program[order=linearall]{
3 % Send own location to other agents.
4 if bel(currentPos(Pos)) then send(allother,currentLoc(Pos)).
5 forall bel(repairPath(Path)) do delete(repairPath(Path)).
6 if bel(currentPos(Here),team(Team),!,visibleEntity(EID,Here,ETeam,_),enemyTeam(ETeam),

inspectedEnemy(EID,’saboteur’),!,
7 not((visibleEntity(AID,Here,Team,_), role(AID,’ saboteur’))),!, role(SID,’saboteur’)) then send(SID,

neededHere(Here)).
8

9 }
10 }
11

12 module repairerReceiveMail{
13 program[order=linearall]{
14 % Cancel moving to an agent that is repaired.
15 if bel(received(Agent,fixed), repairing(Agent)) then delete(repairing(Agent), received(Agent,fixed)).
16

17 % Plan correct path towards disabled agents.
18 % Drop current help path and start helping another repairer.
19 if bel(received(Agent,helpPath([First,Second|Path],Destination)), repairing(Someone), role(Agent,’

Repairer’), Someone \= Agent)
20 then delete(repairing(Someone)) + buildPath(First,Second,Path,Agent,Destination).
21 % Keep moving towards the agent I am currently repairing.
22 if bel(received(Agent,helpPath([First,Second|Path],Destination)), repairing(Agent))
23 then delete(repairing(Agent)) + buildPath(First,Second,Path,Agent,Destination).
24 % Move towards an agent that needs repair when I am not repairing anything.
25 if bel(received(Agent,helpPath([First,Second|Path],Destination)), not(repairing(_)))
26 then buildPath(First,Second,Path,Agent,Destination).
27 }
28 }
29

30 module buildPath(First,Second,Path,Agent,Destination){
31 program{
32 if bel(currentPos(First)) then insert(repairPath(Second), repairing(Agent)).
33 if bel(neighbour(First)) then insert(repairPath(First), repairing(Agent)).
34 if bel(lastPos(Pos)) then insert(repairPath(Pos), repairing(Agent)).
35 }
36 }
37

38 module repairerAction{
39 program{
40 % Fix a nearby ally.
41 if bel(disabledAllyNear(ID,Vertex)) then repairerRepair(ID,Vertex).
42

43 % Move to a not nearby ally that needs repairs.
44 if bel(repairing(_), repairPath(Next)) then advancedGoto(Next).

B.2 Final version source code 77

45

46 % Find help, because I am disabled.
47 if bel(disabled) then disabled.
48

49 % Defend if my current location has dangerous enemies nearby.
50 if bel(currentPos(Here), not(safePos(Here))) then defense.
51

52 % Swarm if I am in the optimum zone.
53 if a−goal(swarm) then swarm.
54

55 % Move towards the optimum zone if I am not in it.
56 if bel(optimum(X), currentPos(Pos), path(Pos,X,[Here,Next|Path],_))
57 then advancedGoto(Next).
58

59 % Explore the map.
60 if true then explore.
61 }
62 }
63

64 module repairerSuperiority{
65 program{
66 % Fix a nearby ally.
67 if bel(disabledAllyNear(ID,Vertex)) then repairerRepair(ID,Vertex).
68

69 % Move to a not nearby ally that needs repairs.
70 if bel(repairing(_), repairPath([Next|_])) then advancedGoto(Next).
71

72 % Find help, because I am disabled.
73 if bel(disabled) then disabled.
74

75 % Do nothing.
76 if true then recharge.
77 }
78 }
79

80 module repairerRepair(ID,Vertex){
81 program{
82 % Repair target.
83 if bel(currentPos(Vertex)) then {
84 if true then repair(ID).
85 if true then recharge.
86 }
87 % Goto vertex with disabled agent.
88 if true then advancedGoto(Vertex).
89 }
90 }

Listing B.16: code/roleKnowledge.pl
1 %% Explorer specific knowledge
2 needProbe(Vertex) :− vertex(Vertex,unknown,_).
3 needProbe(Vertex) :− not(vertex(Vertex,_,_)).
4

5 %% Saboteur specific knowledge
6

78 Code

7 %Because a target cannor be permanently disabled your never done hunting it.
8 hunt(ID) :− !, fail.
9

10 % To determine which enemies are on the current position
11 enemyHere(ID) :− currentPos(Vertex),!, visibleEntity(ID,Vertex,Team,_), enemyTeam(Team).
12

13 % To deterine which enemies are close to the current position
14 enemyNear(ID,Vertex) :− enemyHere(ID).
15 enemyNear(Id,Pos) :− neighbour(Pos), visibleEntity(Id,Pos,Team,_), enemyTeam(Team).
16

17 % To determine when a non−disabled enemy is at your position
18 enabledEnemyHere(Id) :− currentPos(Vertex),!, visibleEntity(Id,Vertex,Team,normal), enemyTeam(Team).
19

20 % when an non−disabled enemy is at or next to your position
21 enabledEnemyNear(ID,Vertex) :− enabledEnemyHere(ID).
22 enabledEnemyNear(Id,Pos) :− neighbour(Pos), visibleEntity(Id,Pos,Team,normal), enemyTeam(Team).
23

24 % A list of all locations near where there are enemies and we do not have superiority
25 attackEnemiesNear(List) :− setof(Vertex, (enabledEnemyNear(ID,Vertex), not(vertexSuperiority(Vertex))),

List).
26

27 %Determines if we have stricly more sabs than the enemy on a given vertex
28 vertexSuperiority(Vertex) :− getEnemySaboteurCount(ESabs, Vertex), getSaboteurCount(Sabs, Vertex),

Sabs>=ESabs.
29

30 % Predicate to find all enemy repairers
31 enemyRepairerList(List) :− setof(ID,(inspectedEnemy(ID,’Repairer’)),List).
32

33 % Short predicate for finding enemies worth attacking
34 enabledEnemy(ID,Vertex) :− enemyStatus(ID,Vertex,normal), not(vertexSuperiority(Vertex)).
35

36 %% Repairer specific knowledge
37

38 % Predicate that returns disabled allies near or on the current position
39 disabledAllyNear(ID,Here) :− currentPos(Here), team(Team), me(Me), visibleEntity(ID,Here,Team,

disabled), ID \= Me, !.
40 disabledAllyNear(ID,Vertex) :− team(Team), neighbour(Vertex), visibleEntity(ID,Vertex,Team,disabled), !.
41 disabledAllyNear(ID,Vertex) :− currentPos(Here), team(Team), visibleEdge(Here,Vertex), visibleEntity(ID

,Vertex,Team,disabled), !.
42

43 %% Inspector specific knowledge
44

45 % Predicate that returns uninspected agents close to the inspector
46 % This also makes sure enemy saboteurs are suitable for inspection again when last inspection is older than

50 steps
47 uninspectedNear :− visibleEntity(Agent,Vertex,Team,_), enemyTeam(Team), (currentPos(Vertex) ;

neighbour(Vertex)),
48 (not(inspectedEntity(Agent,_,_,_,_,_,_,_,_,_)); (inspectedEnemy(Agent, ’Saboteur’), lastInspect(Agent,LI

), step(S), LI2 is LI + 50, LI2 < S)).
49 uninspectedEntity(Agent) :− not(inspectedEntity(Agent,_,_,_,_,_,_,_,_,_)).

Listing B.17: code/saboteur.mod2g
1 %Saboteur specific Percept handeling
2 module saboteurPercepts{

B.2 Final version source code 79

3 program[order=linearall]{
4 if true then exit−module.
5 }
6 }
7

8 module saboteurReceiveMail{
9 program[order=linearall]{

10 % When receiving location info about enemies save it if enemy is not currently seen by you.
11 forall bel(received(Sender,visibleEntity(EID,Vertex,Team,X)),enemyStatus(EID,OVertex,Y), not(

visibleEntity(EID,_,_,_)))
12 do delete(received(A,visibleEntity(EID,Vertex,Team,X))) +
13 insert(not(enemyStatus(EID,OVertex,Y)), enemyStatus(EID,Vertex,X)).
14

15 forall bel(received(Sender,visibleEntity(EID,Vertex,Team,X)),not(enemyStatus(EID,_,_)), not(
visibleEntity(EID,_,_,_)))

16 do delete(received(A,visibleEntity(EID,Vertex,Team,X))) + insert(enemyStatus(EID,Vertex,X)).
17

18 % Disapearing enemies should be removed so we don’t go on wild chases.
19 forall bel(received(Sender, not(visibleEntity(EID,Vertex,Team,X))),enemyStatus(EID,Vertex,Y), not(

visibleEntity(EID,_,_,_)))
20 do delete(received(A, not(visibleEntity(EID,Vertex,Team,X))), enemyStatus(EID,Vertex,Y)).
21

22 % When help is demanded by a repairer go help.
23 if bel(received(Sender,neededHere(Target)),currentPos(Target)) then delete(received(_,neededHere(

Target))).
24 if bel(received(Sender,neededHere(Target)),currentPos(Pos), path(Pos, Target, [Here,Next|Path],Dist))
25 then delete(received(_,neededHere(Target))) + advancedGoto(Next).
26 }
27 }
28

29 module saboteurAction{
30 program{
31 %Clean up for Superiority module
32 if goal(hunt(ID)) then drop(hunt(ID)).
33

34 %Just walk away if this vertex is covered by other sabs
35 if bel(enabledEnemyHere(ID), inspectedEnemy(ID,’Saboteur’), currentPos(Vertex),

getEnemySaboteurCount(Sabs, Vertex),
36 Sabs=\=0, agentRankHere(Rank, ’Saboteur’), Rank >= Sabs) then gotoNeighbour(Rank,false,false).
37

38 % Attack enemy on this vertex
39 % Preference to hit Saboteur and Repairer above other targets
40 if bel(enabledEnemyHere(ID), currentPos(Vertex), (inspectedEnemy(ID,’Saboteur’) ; inspectedEnemy(

ID,’Repairer’)))
41 then saboteurAttack(ID,Vertex).
42 if bel(enabledEnemyHere(ID), currentPos(Vertex)) then saboteurAttack(ID,Vertex).
43

44 % if the other saboteur is also at your location split up. %AgentRankHere is fine, changed to avoid
superior vertices

45 if bel(currentPos(Vertex),enabledEnemyNear(_,Y),!, visibleEntity(ID,Vertex,_,_), role(ID,’Saboteur’),
not(me(ID)),!,

46 attackEnemiesNear(List), agentRankHere(Rank)) then gotoSplit(Rank,List).
47

48 %Attack enemy on nearby vertex

80 Code

49 if bel(enabledEnemyNear(ID,Vertex), not(visibleEntity(ID,Vertex,Team,_)), team(Team), role(ID,’
Saboteur’)) then {

50 if bel(inspectedEnemy(ID,’Saboteur’) ; inspectedEnemy(ID,’Repairer’)) then saboteurAttack(ID,Vertex
).

51 if true then saboteurAttack(ID,Vertex).
52 }
53

54 % buy strength upgrade according to highest inspected health
55 if bel(strength(S), !, inspectedEntity(_, _, _, _, _, _, _, MaxHealth, _, _), S < MaxHealth, money(M), !, M

>= 4) then {
56 if true then buy(sabotageDevice).
57 if true then recharge.
58 }
59

60 % buy health upgrade according to highest inspect enemy strength
61 if bel(maxHealth(H), !, inspectedEntity(_, _,’Saboteur’, _, _, _, _, _, Strength, _), H =< Strength, money(

M), !, M >= 4)
62 then {
63 if true then buy(shield).
64 if true then recharge.
65 }
66

67 %attack nearest visible enemy (only works in zones because otherwise it would have already been
handled above)

68 if bel(currentPos(Start), pathClosestVisibleEnemy(Start, LocationEnemy, NameEnemy, [Here,Next|Path
], Dist),!)

69 then advancedGoto(Next).
70

71 %Head to optimal zone if we are not yet in there, ie. we are not in the swarm.
72 if not(goal(swarm)), bel(currentPos(Pos), optimum(Opt), !, path(Pos, Opt, [Here,Next|List], _),!) then

advancedGoto(Next).
73

74 % Go into swarming mode.
75 if a−goal(swarm) then swarm.
76

77 %attack nearest enemy. This works for all known enemies and is used before we have found an optimal
position.

78 if bel(currentPos(Start), pathClosestEnemy(Start, LocationEnemy, NameEnemy, [Here,Next|Path], Dist)
,!)

79 then advancedGoto(Next).
80

81 %Fail save
82 if true then explore.
83 }
84 }
85

86 module saboteurAttack(ID,Vertex){
87 program{
88 % Attack target if on this location.
89 if bel(currentPos(Vertex)) then {
90 %If your last attack action was at the same target who parried and there is another active target hit the

other instead
91 if bel(lastActionResult(’Parried’), lastAttacked(ID),!, enabledEnemyHere(AID), AID \== ID) then

attack(AID).
92 if true then attack(ID).

B.2 Final version source code 81

93 if true then recharge.
94 }
95 % Goto vertex with enemy agent.
96 if true then advancedGoto(Vertex).
97 }
98 }
99

100 module saboteurSuperiority{
101 knowledge{
102 %pick a target per saboteur
103 selectTarget(List, Number, Target) :− length(List,Size), Num is mod(Number,Size), nth0(Num, List,

Target), !.
104

105 %get the rank of the saboteur
106 saboteurRank(Rank) :− me(Name),!,setof(ID, role(ID,’saboteur’), Agents), agentRank(Agents,Name,

Rank).
107

108 }
109 program{
110 %hunt if you can
111 if goal(hunt(ID)) then hunt.
112 if bel(saboteurRank(Rank), enemyRepairerList(List),selectTarget(List,Rank,Target)) then adopt(hunt(

Target)) + hunt.
113 }
114 }
115

116 %Chase after and attack your target.
117 module hunt{
118 program{
119 if goal(hunt(ID)), bel(enemyNear(ID,Vertex)) then saboteurAttack(ID,Vertex).
120 if goal(hunt(ID)), bel(enemyStatus(ID,Vertex,_),currentPos(Here),!,path(Here,Vertex,[Here,Next|List],_))
121 then advancedGoto(Next).
122 % if you can’t find target walk around random to find him.
123 if bel(neighbour(Next)) then advancedGoto(Next).
124 }
125 }

Listing B.18: code/sentinel.mod2g
1 module sentinelPercepts{
2 program[order=linearall]{
3 % No special sentinel percepts need to be handled.
4 if true then exit−module.
5 }
6 }
7

8 module sentinelReceiveMail{
9 program[order=linearall]{

10 % No special sentinel mails need to be handled.
11 if true then exit−module.
12 }
13 }
14

15 module sentinelAction{
16 program{

82 Code

17 % Defend if my current location has dangerous enemies nearby.
18 if bel(currentPos(Here), not(safePos(Here))) then defense.
19

20 % Swarm if I am in the optimum zone.
21 if a−goal(swarm) then swarm.
22

23 % Move towards the optimum zone if I am not in it.
24 if bel(optimum(X), currentPos(Pos), path(Pos,X,[Here,Next|Path],_))
25 then advancedGoto(Next).
26

27 % Explore the map.
28 if true then explore.
29 }
30 }
31

32 module sentinelSuperiority{
33 program{
34 % Survey entire map for additional achievement points.
35 if true then superiorityExplore.
36 }
37 }

Listing B.19: code/superiority.mod2g
1 module superioritySelect{
2 program{
3 % Perform behavior that is specific for your role when we have most of the map
4 if bel(role(’Repairer’)) then repairerSuperiority.
5 if bel(role(’Saboteur’)) then saboteurSuperiority.
6 if bel(role(’Inspector’)) then inspectorSuperiority.
7 if bel(role(’Explorer’)) then explorerSuperiority.
8 if bel(role(’Sentinel’)) then sentinelSuperiority.
9 }

10 }
11

12 module superiorityExplore{
13 program{
14 % if there are edges with unknown weight around the current node survey them
15 if bel(currentPos(Here), !, needSurvey(Here), agentRankHere(Rank))
16 then selectSurvey(Rank).
17

18 % Find closest unsurveyed vertex and move in that direction
19 if bel(foreverAlone, currentPos(Start), pathClosestNonSurveyed(Start, NonSurveyedVertex, [Here,Next|

Path], Dist))
20 then advancedGoto(Next).
21

22 % When multiple agents are on the node and there are an unsurveyed neighbours, try to split up over
these neighbours

23 if bel(not(foreverAlone), agentRankHere(Rank), neighbourNeedSurvey(Any)) then gotoNeighbour(Rank
, true, false).

24

25 % recharge when you got nothing better to do
26 if true then recharge.
27 }
28 }

B.2 Final version source code 83

Listing B.20: code/swarm.mod2g
1 module swarm{
2 knowledge {
3 expandPos(ID) :− vertexOwner(ID,none), swarmPos(ID).
4

5 expandDest(List3, Pos) :− findall([Value, Neighbour], (neighbour(Pos, Neighbour), expandPos(
Neighbour), vertexValue(Neighbour, Value), Value \== unknown), List), not(List == []), sort(List,
List2), reverse(List2, List3).

6 safeExpandDest(List3, Pos) :− findall([Value, Neighbour], (neighbour(Pos, Neighbour), expandPos(
Neighbour), safePos(Neighbour), vertexValue(Neighbour, Value), Value \== unknown), List), not(
List == []), sort(List, List2), reverse(List2, List3).

7 expandDest(List) :− currentPos(Pos), expandDest(List, Pos).
8 safeExpandDest(List) :− currentPos(Pos), safeExpandDest(List, Pos).
9

10 bestExpandDest(ID, Value, Pos):− expandDest(List, Pos), List = [[Value, ID]|_].
11

12 edgeDest(List3) :− neighboursOfOptimumZone(F), !, findall([Value, Vertex], (member(Vertex, F),
vertexValue(Vertex, Value), Value \== unknown), List), not(List == []), sort(List, List2), reverse(
List2, List3).

13 safeEdgeDest(List3) :− neighboursOfOptimumZone(F), !, findall([Value, Vertex], (member(Vertex, F),
safePos(Vertex), vertexValue(Vertex, Value), Value \== unknown), List), not(List == []), sort(List,
List2), reverse(List2, List3).

14

15 insideZone(Pos) :− not((neighbour(Pos, There), vertexOwner(There, Team), not(team(Team)))).
16 insideZone :− currentPos(Pos), insideZone(Pos).
17 }
18

19 program{
20 % If surrounded by swarm move to the edges
21 if bel(insideZone, edgeDest(List), agentRankHere(Rank)) then moveSplit(Rank, List).
22

23 if bel(expandDest(List), List = [[Value, Vertex]|_], me(Id), agentRankHere(Rank)) then {
24 if bel (not((connectedAgent(Id, Agent), currentPos(Agent, Pos), bestExpandDest(_, Value2, Pos),

Value2 >= Value))) then gotoSplit(Rank, List).
25 if bel (not(kingOfTheHill), Rank2 is Rank−1) then gotoSplit(Rank2, List).
26

27 % im in the optimum zone but not on a swarm position, so im basically derping. Move back to opt and
try again

28 if bel (currentPos(Pos), not(swarmPos(Pos)), optimum(Opt), path(Pos, Opt, [Here,Next|Path], _)) then
advancedGoto(Next).

29 }
30

31 if true then recharge.
32 }
33 }

84 Code

Bibliography

[AF12] Kenneth Balsiger Andersen and Andreas Frøsig. On the multi-agent pro-
gramming contest. 2012.

[BDH+11] Tristan Behrens, Jürgen Dix, Jomi Hübner, Michael Köster, and Federico
Schlesinger. Multi-agent programming contest 2011 edition - documenta-
tion. 2011.

[BDH+12] Tristan Behrens, Jürgen Dix, Jomi Hübner, Michael Köster, and Federico
Schlesinger. Multi-agent programming contest scenario description - 2012
edition. http://www.multiagentcontest.org/2012/, April 2012.

[DHH+12] Marc Dekker, Pieter Hameete, Michiel Hegemans, Sebastiaan Leysen,
Joris Oever, Jeff Smits, and Koen V. Hindriks. HactarV2: An Agent Team
Strategy Based on Implicit Coordination, volume 7217 of Lecture Notes in
Computer Science, pages 173–184. Springer Berlin Heidelberg, 2012.

[DKS13] Jürgen Dix, Michael Köster, and Federico Schesinger. Multi-agent pro-
gramming contest. http://www.multiagentcontest.org/, 2013.

[Hin11] Koen V. Hindriks. GOAL manual, May 2011. http://mmi.tudelft.nl/
trac/goal.

[Jen00] Nicholas R. Jennings. On agent-based software engineering. Artificial
Intelligence, 117(8):277–296, 2000.

[RN10] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach, 3rd ed. Prentice Hall, 2010.

[Wik13a] Wikipedia. Artificial intelligence. http://en.wikipedia.org/wiki/
Artificial_intelligence, 2013.

http://www.multiagentcontest.org/2012/
http://www.multiagentcontest.org/
http://mmi.tudelft.nl/trac/goal
http://mmi.tudelft.nl/trac/goal
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Artificial_intelligence

86 BIBLIOGRAPHY

[Wik13b] Wikipedia. Daniel dennett. http://en.wikipedia.org/wiki/Daniel_
Dennett, 2013.

[Wik13c] Wikipedia. Document type definition. http://en.wikipedia.org/
wiki/Document_Type_Definition, 2013.

[Wik13d] Wikipedia. Strong ai. http://en.wikipedia.org/wiki/Strong_AI,
May 2013.

http://en.wikipedia.org/wiki/Daniel_Dennett
http://en.wikipedia.org/wiki/Daniel_Dennett
http://en.wikipedia.org/wiki/Document_Type_Definition
http://en.wikipedia.org/wiki/Document_Type_Definition
http://en.wikipedia.org/wiki/Strong_AI

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Who Did What
	Contents
	1 Introduction
	2 Agent Systems
	2.1 Rational agents
	2.2 Multi-agent Systems

	3 GOAL Programming Language
	3.1 Mental State
	3.2 Reasoning Cycle

	4 Agents on Mars and the HactarV2 Team
	4.1 Contest scenario
	4.1.1 2011 vs. 2012

	4.2 HactarV2
	4.2.1 Design
	4.2.2 Strategy

	5 Core Strategy
	5.1 Buying strategy
	5.2 Zone control

	6 Adapting to the 2012 scenario
	6.1 Connecting to the new setup
	6.2 Adapting to the new map structure
	6.2.1 Changing the strategy

	7 Testing
	7.1 Analysis
	7.1.1 Zone control
	7.1.2 Buying Strategy
	7.1.3 Pathing

	7.2 In summation

	8 Evaluating GOAL
	8.1 The GOAL language
	8.2 Debugging in GOAL
	8.3 GOAL bugs

	9 Conclusion
	A Changes to HactarV2
	A.1 Agent.mas2g
	A.2 Eismassimconfig.xml
	A.3 Accounts-NPC.xml
	A.4 Config.dtd
	A.5 2012-3sims-NPC.xml

	B Code
	B.1 Original HactarV2 code
	B.2 Final version source code

	Bibliography

