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Abstract (English)

Odds issued by bookmakers may contain generic biases enforced by typical gam-
bling behaviour, which lead to market ine�cient odds. By employing a com-
prehensive dataset of odds from up to 51 bookmakers on the English Premier
League and the Spanish La Liga, seasons 00/01-12/13, the existences of such
biases are demonstrated. The biases are particularly prominent in the La Liga,
suggesting a more irrational betting behaviour.

A theoretical analysis of odds setting techniques reveals that market ine�cien-
cies may also originate from bookmakers' inherent objective to balance their
books. A neural network classi�er, which applies the odds as input features,
has been combined with a decision framework based on optimization of the
standardized expected return per match to pro�t on the ine�ciencies. Two
modi�cations of the betting model have been proposed. Firstly to accommodate
a model bias to engage odds selections with overestimated posteriors, secondly
to restrict the model to certain probabilistic regions, in which the odds segment
evidently is more pro�table. It has been demonstrated that the model has high
probabilistic accuracy and pro�ts signi�cantly on the La Liga, although the
returns are generally season dependent. With the inclusion of the posterior re-
strictions the model yields the highest and most robust annual return of 16% on
the La Liga. The neural network's predictive accuracy is indi�erent to whether
5, 9 or 37 bookmakers' odds are used as input features, indicating a low data
complexity. Unsolved issues remain regarding the selection bias and re�nements
of the probabilistic restrictive model.
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Abstract (Danish)

Odds udstedt af bookmakere kan indeholde generiske bias, der er frembragt af
almindelig spilleadfærd. Disse bias kan lede til markedsine�ektive odds. Eksi-
stensen af disse bias påvises ved anvendelse af et omfattende datasæt, bestående
af odds fra op til 51 bookmakere på den engelske Premier League og den span-
ske La Liga, sæson 00/01-12/13. Disse bias er særligt tydelige i La Liga, hvilket
indikerer en mere irrationel spilleadfærd.

En teoretisk analyse af hvordan bookmakere sætter odds påviser at ine�kti-
ve odds også kan udspringe fra bookmakeres grundlæggende målsætning om
at balancere odds-sæt. For at pro�tere på ine�ktiviteterne udvikles en neural
netværks classifer, der anvender odds som input features. Netværket kombine-
res med et beslutningsframework, baseret optimering af den standardiserede
forventede gevinst per kamp. Modellen modi�ceres på to måder, dels for at
tage hånd om en generel tendens til at udvælge scenarier med overestimerede
klasse-posteriors, dels for at begrænse modellen til kun at udvælge odds, hvis
tilhørende posteriors ligger i særligt pro�table intervaller. Det demonstreres at
modellen har stor sandsynlighedsmæssig præcision og tjener betydeligt på den
spanske liga. Dog er fortjenesten generelt sæsonafhængig. Den største gevinst
på omkring 16% pr. sæson observeres på den spanske liga ved begrænsing af
klasse-posteriors. Det neurale netværks præcision er uafhængigt af, om der an-
vendes 5, 9 eller 37 bookmakeres odds som input features. Dette indikerer en
lav datakompleksitet. Projektet har en række uafklarede emner, omkring ten-
densen til at overestimere posteriors og om muligheden for at videreudvikle den
restriktive model.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU) in ful�lment of
the requirements for acquiring an M.Sc. in Mathematical Modelling and Com-
putation. The workload has been prepared for 32.5 ECTS points.

The thesis deals with statistical methods and machine learning techniques to
analyse and exploit the market ine�ciencies in the bookmaker industry within
association football, primarily focusing on two major European national leagues.

The thesis consists of three main sections. The �rst section explains preceding
e�orts within the �eld of research, and the basic concepts and issues in odds
setting. The second section encompasses a statistical analysis of a comprehen-
sive odds dataset, and the third section contains proposals and demonstrations
of forecast models to pro�t on the market ine�ciencies. The matlab documen-
tation has been uploaded to DTU CampusNet.

Kongens Lyngby, June 27, 2013

Nicolai Skov Johnsen
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Chapter 1

Introduction

1.1 Background

The bookmaking industry has been a subject to a signi�cant global expansion
during the latest two decades. Improved television coverage and, most im-
portantly, the growing Internet accessibility have created a bene�cial commer-
cial environment for bookmakers to attract customers to their betting services.
While the technological development has led to increased interests from more
bookmaking actors with desires to bene�t on the new conditions, it has also
enhanced the market competition e�ectively pushing the odds upwards. The
intensi�cation has promoted the need for bookmakers to apply more sophisti-
cated odds setting techniques to optimize their books, as ine�cient odds are
increasingly �nancially penalized. Today bookmakers o�er a variety of exciting
betting options to attract customers, while attempting to conceal the inher-
ent goal of earning money. The greater supply and higher odds have attracted
more and more professional gamblers relying on increasingly complex methods
to pro�t on the market. Evidently the battle between bookmakers and gamblers
constitutes an ever ongoing arms race. This thesis jumps into the con�ict and
illuminates the issues related to odds setting with emphasis on association foot-
ball, from now on referred to simply as football, and propose a forecast model
to pro�t on the market and `beat the bookies'.
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1.2 A Historical Review

Betting on sport events has been dated back to Greece more than two thousand
years ago, where wages were made on e.g. the Olympic Games. Gambling
was further developed as a business by the Roman Empire, particularly on the
gladiator games [1]. In modern history betting on horse racing has traditionally
been a part of the British sports culture for centuries.

The UK bookmaker industry has its origins in the 18th century. Initially gam-
bling odds where o�ered on individuals, typically the favoured horse against the
�eld [2, p. 89], but eventually the betting o�erings were expanding by enabling
betting against all horses. This formed the basis of the modern book [2, p. 90] -
i.e. a record of bets placed on a race. Typically the betting contracts were made
with no physical money exchange causing severe social damage including large
debts and hostility [3]. This lead to the enforcement of the 1845 UK Gaming
act, whose main policy was to discourage gambling. The act overturned gam-
bling as legal contract meaning that no gambling debts could be settled by law
[2, p. 90]. The act also restricted betting to take place only on race tracks,
and so special excursion trains were established to transport people to and from
the events. This o�er attracted all classes of society, increasing the popularity
of bookmaking [4]. Soon many thousands of betting shops began to emerge in
the UK. The shops were outlawed by the 1853 Betting Acts but were eventu-
ally legalized by the 1960 Betting and Gaming Act [3]. Today the group of the
largest bookmaker companies in the UK is known as `the big three', consisting
of William Hill, Ladbrokes, and Coral [5].

Gambling has also developed rapidly in many other countries, as a result of
improved TV coverage and modernization of gambling laws. Not least the
massively improved Internet accessibility has encouraged many bookmakers to
establish on-line brands, often combining traditional sports bookmaking with
on-line casino games. The massive explosion of online gambling o�ers is consid-
ered a major cause of the increased gambling addiction in the UK [6]. Today
the majority of televised European sport events are sponsored by bookmakers.
Particularly association football is heavily sponsored, since football fans con-
stitute a signi�cant fraction of the bookmakers' target group. As a result of
the banning of tobacco sponsorships and the growth of the gambling industry
many sponsorships of major European football teams are now taken over by
bookmakers instead of car manufacturers and soft drinks producers.[7]

For a long time each European country has managed its own gambling legis-
lation. However, the forming of the European Union has caused a lot of un-
certainty for the gambling market, as the EU permits open access to all EU
countries gambling markets. Many European counties have tried to enforce
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their laws prior to protect their markets or to gain advantage over other's mar-
kets. [8] In Denmark a liberalization of bookmaking was induced the 1st of
January 2012. Until then `Danske spil', mainly owned by the Danish state [9],
had monopoly on bookmaker business in Denmark [10]. In USA the gambling
laws are regulated by each territory, but almost all states consider gambling a
legal activity. Generally the legislation is relaxed more and more each year [11].
In Asia gambling is illegal in for example China and Japan among others [12].

In the later years an increasing number of gamblers have switched to betting
exchanges. A bet exchange essentially provides a trading facility where punters
(the bettors) can buy or sell gambling contracts to each other. Many consider
bet exchanges more attractive than traditional bookmakers, partly because the
exchanges do not restrict the size of the bets, which are only limited by the
willingness of opposing costumers [13]. Generally exchanges also provide better
odds. Whereas traditional bookmakers earn their money on overrounds, the
exchanges charge a commission on winnings instead. This e�ectively reduces the
bookmakers' percentage pro�t margins on their books, the so-called overrounds,
to zero [14].

1.3 Forecast Methodologies

Publications regarding statistical methods for football predictions have predom-
inantly been appearing over the latest two decades. However, the earliest work
goes back to 50s-70s in which researchers primarily focused on modelling the
distribution of the goals scored in a match and not on the pro�tability of such
models. Not until the 90s, a combination of forecast models and betting strate-
gies were proposed to detect and utilize the ine�ciencies in bookmakers' odds.
The ine�ciencies consist of selections with disproportionally high odds com-
pared to the success probability. In this section some of the major statistical
techniques are outlined, in the �eld of football match prediction.

1.3.1 Negative binomial distribution goal-based analysis

The �rst statistical analysis of football results was released by [15] (1951) focus-
ing on e�ciently modelling the number of goals scores by single teams in football
matches. The author demonstrated that the number of goals was poorly �tted
by the family of Poisson distributions and found that a negative binomial dis-
tribution provided a far more adequate �t to the observations.[16]
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The conclusions were con�rmed by [17] (1971) on a variety of ball games. It
was perceived by the authors that the negative binomial distribution can be
successfully applied to the goal score, provided that the chance of winning is
invariant to the strength of the opposing teams. In situations where the indi-
vidual team skills played a stronger role the model had poor forecast capability,
and the authors concluded that `chance does dominate the game'.

1.3.2 Poisson distribution goal-based analysis

In contrast to [17] it was demonstrated by [18] (1974) that football experts were
indeed able to predict the �nal league positions to a certain extent, indicating
that the strength of the teams dominates the outcome and not simply chance.
Presumably motivated by this conclusion [16] (1982) proposed the �rst model
to predict the outcomes of football matches in games accounting the individual
team strengths. The underlying assumption of the model was that ball posses-
sion is essential to the number of goals scored by the opposing teams. Although
earlier researchers concluded that the Poisson distribution was insu�cient to
model the goal score Ref. [16] recommenced the approach by proposing an in-
dependent Poisson model. If the home team i is playing against team j, the
observed score can be formulated as (xij , yij), where the goal scores xij and yij
follow two independent Poisson distributions with means αiβj and γiδj , respec-
tively. In this con�guration αi and γi represent the strength and weakness of
team i when playing home, and βi and δi represent the strength and weakness
team j when playing away. Hence if 22 teams are playing in a league, a total of
88 parameters is required. However by enforcing the constraints

∑
i αi =

∑
i βi

and
∑
i γi =

∑
i δi only 86 independent parameters need to be uniquely deter-

mined. The author used data from Rothmans Football Yearbook (1973-1975),
which contains results from British football leagues. Maximum likelihood esti-
mates of the parameters α, β, γ and δ revealed that an adequate simpli�cation
only required the parameters α and β, as all teams were found to be equally
a�ected by the signi�cant home team advantage, and thus the scoring power of
each team was diminished by a constant scaling factor K when playing away.
It was demonstrated that the model gave a reasonably good �t to the data by
comparing the expected and observed score distributions in a χ2-test. Although
the author expressed great content with how well the simple model explained
the data, he also stressed the possible insu�ciencies. `A match does not con-
sist of two independent games at opposite ends of the pitch', he remarked.
Consequently, an bivariate Poisson model was proposed in which the marginal
distributions were still Poisson with means αiβj and Kαjβi but with an addi-
tional correlation ρ between the scores. By varying ρ it was found that ρ = 0.2
appeared to be most appropriate. It was demonstrated that this model yielded
a considerably better �t on the di�erences in scores.
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The basic model structure in [16] was re�ned by [19] (1997), as the authors
proposed a set of modi�cations to evade some of the limitations of the origi-
nal model. Unlike preceding publications the primary motivation of [19] was
to pro�t on the ine�ciencies in the bookmakers' odds. It was demonstrated
that independence between scores is a reasonable assumption except for low
scoring games: 1-1, 1-0, 0-1, 0-0 and that the bivariate Poisson distribution
family, as proposed by [16], was unable to account for the varying dependency.
Accordingly, the independent Poisson model was modi�ed as follows

P (Xij = x, Yij = y) = τλ,µ(x, y)Pr(x;λ)Pr(y;µ),

where λ = αiβj and µ = Kαjβi. If x ≤ 1 and y ≤ 1 the dependency is per-
turbed, otherwise the scores are independent, i.e. τλ,µ(x, y) = 1. Additionally
the authors discarded the static strength parameters αi and βi and enforced
dynamic strength parameters instead. The expected return from a unit stake
was formulated as

E(πp) = p
b − 1,

where πp is the punter's return, p is estimated probability on the engaged selec-
tion and b is probability on the selection implied by the odds as the normalized
reciprocal value of the odds. The authors found a reasonable agreement between
p and b and demonstrated that the model yielded a positive return provided that
p
b > r for any r > 1.1.

1.3.3 Probit regression

Unlike the Poisson models all other proposed models restrict the analysis to
forecast match results. Models based on probit regression are among these.
Ref. [20] (2000) proposed a model based on an ordered probit function which
basically is a generalization of the probit function to solve multi-class classi�ca-
tion problems. The author formulated a model to illuminate bookmakers' odds
setting decisions and found that odds market ine�ciencies are possible if book-
makers strive to maximize their expected pro�t. Contrary, if the bookmakers
use a risk-minimizing strategy whereby the odds agree with the subjective prob-
abilities derived by the bookmakers, the market would be e�cient. The probit
model was evaluated using di�erent combinations of odds and publicly available
statistics as explanatory variables. The statistics comprised of a set of di�er-
ences in records between the opposing teams such as points and league positions.
An empirical test on English football leagues with the same decision criterion as
stated in Eq. 1.3.2 proved that market ine�ciencies indeed are prevalent. The
author suspected that the ine�ciencies are consequences of team loyalty which
the bookmakers take advantage of by setting market ine�cient odds.
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Similar studies of probit forecast models that applies published bookmakers'
odds are found in [21] (2005), where the forecast e�ectiveness of a probit model
based on publicly available statistical data is evaluated and compared to the
probabilities implied by the odds. The model was applied on a dataset consisting
of data from British bookmaking �rms during �ve seasons 98/99-02/03. The
authors observed that the probabilistic model was superior in the early seasons.
However, in the later seasons the opposite was true, suggesting an improved
expertise of bookmakers as forecasters, and that bookmakers utilize information
not included in the public statistics. It was perceived that such tendency is
a consequence of increased competition in the bookmaker industry, whereby
inaccurate odds setting is increasingly penalized from a �nancial perspective.

1.3.4 Bayesian networks

Bayesian networks (BN) are probabilistic models that apply a graphical ap-
proach to explain the conditional dependencies of random variables through a
system of directed acyclic graphs. Essentially each node in the graph corre-
sponds to a random variable and the links express the probabilistic relations
between the nodes. [22, pp. 359-662] A Bayesian network can be utilized to
solve decision problems by estimating the probabilities of di�erent events.

In recent years researchers have showed a high potential of BNs which consider
historical data as well as expert judgements to forecast football match results.
Speci�cally [23] (2006) applied an expert constructed BN to forecast matches
involving the Tottenham Hotspurt. The model considered a collection of four
features: 1) A binary variable stating the presence or absence of three key
players on Tottenham Hotspurt; 2) the �eld position of a key player; 3) expert
judgement of the quality of the opposing team; and 4) whether the match was
played on home or away �eld. The authors demonstrated that the expert-based
BN had higher forecast accuracy than four alternative machine learning models:
Naive Bayes, Bayesian learning K-nearest neighbour and decision tree.

In [24] (2012) the authors proposed an expert constructed BN to predict the
outcome of matches in the English Premier League season 10/11, using objec-
tive variables captured by historic statistics as well as subjective variables. The
model considered four generic components on both the home and away teams:
1) strength; 2) form; 3) psychology and; 4) fatigue. Contrary to preceding
approaches the authors replaced each team name in each match by a predeter-
mined team strength distribution derived from the total number of points the
particular team had archived during the considered season. The two opposing
teams' strength distributions were compared which generated an objective fore-
cast. The latter three components were predominantly derived by subjective
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information and were used to revise the objective forecast. The authors pro-
posed a proximity scale from 0 to 1 on each component with 0.5 meaning no
advantage to either of the teams. Using a standard (unspeci�ed) pro�tability
measure with a �xed discrepancy level as betting rule the overall pro�t/loss
ratio was measured in the Premier League season 10/11. In general the model
performed poorly on low discrepancy levels (1%-3%) and much better on higher
discrepancy levels (4% - 11%). The model was tested using the maximum (best)
odds available, the mean odds and the odds from a single major UK bookmaker.
Table 1.1 summarizes the ratios and the percentages of engaged matches with
di�erent discrepancies when applying the best odds. Levels exceeding 11% was
considered to imply too few bet instances to derive meaningful conclusions. Con-
sidering both accuracy and pro�tability measures the authors demonstrated the
signi�cance of the subjective components on the model's forecast capability.

Discrepancy [%] Pro�t/loss [%] Bet fraction [%]
≥ 5 8.40 44.5
≥ 6 13.3 34.5
≥ 7 12.1 28.2
≥ 8 10.0 22.1
≥ 9 16.0 18.7
≥ 10 20.4 13.7

Table 1.1: Pro�tability statistics on di�erent discrepancies on an expert con-
structed Bayesian network by Ref. [24] on Premier League season
10/11.

1.3.5 Neural networks

Arti�cial neural network (NN) models for classi�cation constitute a highly �exi-
ble class of probabilistic models. A further description of NNs is found in section
4.1. Ref. [25] (2011) proposed a simple NN model to estimate the probability of
the possible outcomes which solely considered bookmakers' odds from a variety
of bookmakers as input features. Using an ensemble of NNs a Dirichlet distribu-
tion was �tted to the estimated outcome probabilities. This enabled a further
analysis of the probability of a value bet, that is, a bet with positive expected
return, and the probability of winning on bets. The model was evaluated 5 runs
on the Spanish La Liga seasons 07/08-10/11. Each season contains 380 matches
and so the total match count is 380 · 4 = 1520. The test partition consisted of
400 random samples and the training partition contained the remaining samples.
The simulations yielded an average pro�t per unit bet of 0.16.
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1.4 Common Betting Systems

This section outlines two of the most basic strategies which forex traders among
others use to bet on the �nancial market [26] in an attempt increase the chance
of a long term pro�t. Although extensive literature exists on the mathematical
background of these strategies this is only brie�y described. Focus will be placed
on illuminating the concepts and the prevailing psychological biases that a�ect
the behaviour of many gamblers.

1.4.1 The martingale system

A martingale system is a betting management system where the investment
continuously increases after each loss on a betting market. The most simple
and possibly best known example of a martingale system is a coin �ip, where
the actor wins her/his stake should the coin come up head and loses the stake
otherwise. Whenever a loss occurs the stake is doubled in anticipation of the
statistical guarantee of a future increase in fortune. Although it is perceived
by many as a lucrative strategy it is simply an example of a cognitive bias to
neglect the importance of low probability events, such as a series of losses. The
martingale strategy only proves itself as a winning strategy if the gambler has
in�nite wealth and time, and if the market provider has no limits on the bet
sizes. These assumptions limit the application of the strategy.

The coin �ip is a fair game, i.e. a game where the expected return on each
�ip is equal the last observation. This is an example of a martingale sequence,
de�ned as a stochastic process in which a sequence (Xn) of random variables at
any discrete time n ∈ N satis�es

E[Xn] <∞ (1.1)

E[Xn+1 | X1, . . . , Xn] = Xn (1.2)

From the properties of conditional expectation it is seen that E[Xn+1] = E[Xn]
and accordingly E[Xn] = c, ∀n ∈ N for some constant c [27, p. 150]. Hence
the expected net return of the coin �ip is in fact zero, since E[Xn] = 0.
The concept of martingales can generalized to cases, where the expected value
of future observations need not be equal the last observation known as sub-
martingales where E[Xn+1 | X1, . . . , Xn] ≥ Xn,∀n ∈ N and super-martingales
where E[Xn+1 | X1, . . . , Xn] ≤ Xn,∀n ∈ N. The latter sequence constitutes
a game series that is unfavourable to the gambler [28, p. 96] which represents
set-up in casinos etc. Essentially you cannot beat the system, since the odds
are never fair to the gambler. The former sequence is unfavourable to the book-
maker. A sequence of bets with positive expected return would ideally guarantee
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a positive net pro�t. However, the inherent limitation of wealth makes the ap-
plication questionable.

1.4.2 The anti-martingale system

Contrary to the martingale system the anti-martingale system urges the gambler
to increase bets after a win and reduce bets after a loss [29]. The approach is
based on the perception of that the gambler can bene�t from a sequence of
wins, while reducing losses on a sequence of losses. However, if single bets are
independent of each other the notion of such streaks is absurd and is simply
an example of the Monte Carlo fallacy. It basically means that the gambler is
biased to believe that the probability of outcome O after a series of outcomes
O is less than before the series [30]. On the other hand, if the bets are serially
correlated, one could bene�t from the strategy. Many on-line traders consider
the anti-martingale less risky than the conventional martingale system, since
it is perceived to be less risky to increase trade sizes during a streak of wins
than during a streak of losses. [26] Presumably the trading system constitutes a
dynamic system, where economic booms and slumps appear in cycles, whereby
the trades indeed are correlated.

1.5 Markowitz Portfolio Optimization

A far more general concept in �nance and a cornerstone in modern portfolio
theory is the so-called e�cient frontier. Given a desired expected return R, the
e�cient frontier represents the minimum risk portfolio. In portfolio theory the
risk corresponds to the standard deviation σ of the portfolio's return, and hence
the e�cient frontier essentially de�nes the line in the risk-return space (σ,R),
which optimizes the trade-o� between risk and expected return.

Consider a portfolio of N assets with return y ∼ N(µ,C), y,µ ∈ RN , C ∈
RN×N where yi and µi denote the return and expected return, respectively, of
the ith asset and C holds the covariance among the assets. Furthermore denote
the weight of the assets w ∈ RN with the constraint

∑N
i=1 wi = 1, where wi is

the weight of the ith asset. The equations that govern the e�cient frontier can
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then be stated as a convex quadratic optimization problem

minimize
w

wTCw

subject to wTµ = R,

N∑
i=1

wi = 1
(1.3)

wherewTCw is the portfolio variance. Accordingly, for a given desired expected
return R, there is an optimal portfolio characterized by w with a corresponding
point on the e�cient frontier (σ,R). The line of optimal weights is commonly
referred to as the minimum-risk weight line. The problem is convex since C is
positive semi-de�nite, and thus the minimum-risk weight line forms a convex
curve in the (R, σ) space, commonly known as the Markovitz bullet. [31, pp.
41-60]

1.6 Thesis Statement

The purpose of this thesis is to perform a statistical analysis of a dataset con-
sisting of full time result odds from association football matches and to develop
and test a probabilistic betting model on the dataset.

The dataset will be obtained by implementing a matlab API to extract free
on-line statistics on odds from 51 bookmakers covering the English Premier
League and the Spanish La Liga, seasons 00/01-12/13. The data will be used
to investigate the extension of cognitive biases in gambling behaviour and odds
setting, and if there is evidence of a non-stationary odds market with increased
market competition. Additionally the data will be utilized to derive statistical
characteristics of odds in terms of match outcomes and to examine to what
extend bookmakers di�erentiate in odds setting.

Based on the odds analysis a betting model will be proposed, consisting of a
neural network classi�er combined with a decision framework, to address the
issues of when and how much to bet to obtain a long term pro�t. The quality of
the model will be evaluated in terms of probabilistic accuracy and pro�tability,
and the model will be used to elaborate the prospective biases inherited in the
odds.



Chapter 2

Concepts and Operational
Procedures in Odds Setting

2.1 Odds Representations and Common Bet Types

The most prevalent type of odds in bookmaking and the only type processed in
this thesis is called �xed odds. Fixed odds refer to a market where the bookmaker
and punter sign a contract on a �xed rate of return and on a �xed amount staked
on a given selection. The return or gain refers to the total amount of money
gained by the punter if she/he wins, and the selection refers to the result of an
event that the punter bets on.

The most widely used meaning of quoted odds (except in USA) are decimal
odds and fractional odds. The decimal odds notation is favoured in Europe, and
corresponds to the factor by which the punter (bettor) may multiply his/her bet
which yields the return if the punter wins on his/her selection. The examples
and mathematical notation in this thesis are solely based on the decimal odds
notation.

The fractional odds notation is preferred in the UK. A fractional odds is often
noted as x/y, x − y or x : y, x, y ∈ N+. A chance of e.g. 2-to-9, meaning a
fractional odds of x/y = 2/9, is equivalent to a decimal odds value of xy + 1 =
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11
9 . Hence the fractional odds describe the relative occurrences of winnings
compared to all other alternatives. A special case is the 1/1 fraction which
is often shortened to an `evens' and quoted as 2.0 in decimal odds. [32] The
fractional odds notation will not be used in this thesis.

The bookmaker market comprises a variety of di�erent odds con�gurations. The
next sections describe some of the most common betting strategies in football,
where the selections encapsulate the full time results. That is, only odds for
home win, draw and away win are considered. The reader should be aware
that there are many other popular types of bets in football such as the �rst
goal scorer, the correct full time score, the �rst yellow card in the match, etc.
[33]. Another popular strategy is the each-way bet, consisting of a win bet and a
place bet of equal size with a major and minor return, respectively. In football
each-way bets are typically used in e.g. the �nishing positions of teams or the
top score list in domestic leagues. The win bet gives a return if the selection
wins and the place bet gives a return if the selection either wins or obtain a
second place [34]. All these betting strategies are omitted in the thesis. For
convenience the following useful notation is introduced:

Let τmB denote the return of the punter (incl. bets), where B > 0 is the amount
waged and τm > 0 is the overall odds multiplier. τm is the combined factor of
all decimal odds a�ecting the bet.

2.1.1 Multiple bets

The full time result bet is a member of a larger class of bets known as single
bets, which is the simplest betting strategy as money is waged on a single event.
Another widely popular class of bets is multiple bets, where money is waged
simultaneously on di�erent events. Only if all selections win, the punter receives
a return. Suppose oA, oB , oC , . . . are the odds then τm = Πi={A,B,C,D,...}oi.
Speci�cally if two or three selections are engaged, the bet is called a double or
treble, respectively. If more than three selections are engaged it is known as an
accumulator.[35]

While multiple bets generally o�er high returns, the chances of winning are
relatively small, since all selections must win. An alternative family of bets
where not all selections need to win, is known as full cover bets as discussed in
the next section.
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2.1.2 Full cover bets

The main idea of full cover bets is to o�er a betting strategy, where all selections
do not need to win to ensure a return. While there are many full-cover con�gu-
rations, the general idea is to cover a large amount of the possible combinations
of single bets and multiple bets on N ≥ 3 selections. The greater coverage
compared to multiple bets makes it a very popular betting strategy. The full
cover bets can be divided into two subclasses, where one subclass contains the
singles and the other does not.

2.1.2.1 Full cover bets with singles

In all full cover bets with singles the punter is guaranteed a return if at least one
of the selections wins. A patent is the smallest member of the family consisting
of 3 selections with

τm = (oA + 1)(oB + 1)(oC + 1)− 1 (2.1)

= oAoBoC + oAoB + oBoC + oAoC + oA + oB + oC (2.2)

The bet consists of 1 treble, 3 doubles and 3 singles yielding a total of 7 se-
lections. Hence a 1 coin patent bet actually needs a stake of 7 coins. Suppose
only two selections win (e.g. A and B), then the odds multiplier is reduced to
τm = oAoB + oA + oB . If only one selection wins (e.g. A), then τm = oA. So
one selection is enough to guarantee a return.

Full cover bets with singles with N = 4, 5, 6 are known as Lucky 15, Lucky 31
and Lucky 63, respectively. These bets follow the same principles as the patent.
Lucky 15 consists of 1 fourfold accumulator, 4 trebles, 6 doubles and 4 singles
which gives a total of 15 selections, i.e. τm = Πi={A,B,C,D}(oi + 1) − 1. Hence
the name Lucky 15. Similarly Lucky 31 and Lucky 63 have 31 and 61 selections,
respectively. [35]

2.1.2.2 Full cover bets without singles

In all full cover bets with singles, the punter is guaranteed a return if at least
two of the selections wins. The smallest member of this subclass is known as a
trixie, consisting of three selections. Using the same notation as in subsection
2.1.2.1, τm can be expressed as

τm = (oA + 1)(oB + 1)(oC + 1)− oA − oB − oC − 1 (2.3)

= oAoBoC + oAoB + oBoC + oAoC (2.4)
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The bet consists of 1 treble and 3 doubles, i.e. a total 4 selections. Therefore
a 1 coin trixie bet requires a stake of 4 coins. In case only two selections win,
τm will only be equal the winning double. Full cover bets without singles with
N = 4, 5, 6, 7, 8 are known as Yankee, Super Yankee, Henz, Super Henz and
Goliath, respectively. [35]

Compared to the full cover bets with singles, the full cover bets without singles
have less coverage, but require a smaller stake for the same number of selections.
The largest contributions to τm is the highest order multiple bets, so if a punter is
mainly interested in these, the full cover bets without singles might be preferred.

2.2 The Concept of Overround

A bookmaker's long term pro�t, denoted π, depends the the so-called overround.
This is the amount by which a book exceeds 100%, corresponding to a pro�t
margin. A book is a set of odds covering di�erent outcomes of an event. To put
it more formally:

Consider a sport event with a book consisting of N odds, denoted oi, i =
1, . . . , N . The overround, denoted by η, is then found as

η =

N∑
i=1

o−1i − 1 (2.5)

where o−1i can be interpreted as the relative probability of the i'th result of
the event. The overround η serves as a general measure of the bookmaker's
margin of safety.

In general bookmakers have high pro�ts in markets with many possible outcomes
on single events. The more possible outcomes the less probable the individual
outcomes will be [36]. Suppose e.g. that an event comprises N selections on
which a given bookmaker perceives equal chances of successes p = 1

N . Accord-

ingly, the odds oi, i = 1, . . . , N are set equally as oi = o∗ = 1
p(η+1) = N

η+1 ,

where η is the bookmaker's pro�t margin. Without loss of generality assume
that a unit bet is made on each selection. The bookmaker's pro�t is then

π = N − N
η+1 =

(
1− 1

η+1

)
N . Provided that η > 0 the pro�t increases propor-

tionally with N .

Another highly lucrative con�guration for bookmakers is multiple bets, see sec-
tion 2.1, where the punter bets on a series of events. The overall overround η′ on



2.3 Modelling the Odds Setting 15

multiple selections increases as the overround η on each event is compounded.
To formalize this insight suppose e.g. that a punter chooses to bet on a series
of two events provided by a given bookmaker, each with N selections. For sim-
plicity assume that the overround η is the same on both events. Further let oij
denote the odds on the j'th selection in the ith match, which is found as

oij =
1

pij(η + 1)
, i = 1, 2, j = 1, . . . , N (2.6)

If the punter chooses single selections m and n in each match, the total prize
on a unit bet if the punter succeed in both selections is o1mo2n = 1

pmpn(1+η)2
.

Thus the overall overround is η′ = (1 + η)2 − 1 = η2 + 2η. Provided that η > 0
it is seen than η′ > η. The bookmakers' high margins of safety on multiple bets
are unattractive to the punters.

In a fair bet the overround is zero, but such a zero-sum con�guration is obviously
undesirable for any bookmaker. The higher the overround the more the book-
maker should statistically earn. However, strong competition in the bookmaker
industry drives the odds up and the overround down.

2.3 Modelling the Odds Setting

The main objective of any bookmaker is to guarantee pro�t by archiving what
is commonly known as a balanced book. This risk management procedure essen-
tially means that the bookmaker strives to obtain a bet distribution so that the
bookmaker pro�ts equally on an event regardless of the outcome. Bookmakers
do not pro�t from the bets themselves but operates as a market makers. That
is, bookmakers o�er odds at a price that is higher than the expected payout
to the punters, cf. section 2.2. The concepts are similar to actuary in e.g.
the insurance industry, where one attempts to balance the �nancial outcome of
events. [37]

When setting the odds values in a book the bookmakers subjectively estimate
the probabilities of the outcomes from which they set the odds. However, no
bookmaker wants to render its intentions too visible. Instead the odds are set at
what is perceived by public to correspond to the 'true' probabilities in order to
reduce the imbalance of the book. The potential market ine�ciency enforced by
the public opinion is important in order for punters to make a long term pro�t.
In the remainder of the thesis only full time result (FTR) odds on football
matches are considered, that is the home, draw and away odds, denoted o1, o2
and o3, respectively.
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2.3.1 Ideal balancing of books

Suppose that a bookmaker o�ers a book on the market and that the odds are
completely �xed. The following de�nition states the ideally required distribution
of bets on each selection in order to obtain a perfectly balanced book.

Consider a football match and let oi, i = 1, 2, 3 denote the odds on the ith
selection (home, draw and away) for a given bookmaker X. Assume that the
total money waged on X is B = b1 + b2 + b3, where bi is the bet on the i'th
result. Given B and oi, i = 1, 2, 3 so that η > 0, the bets bi, i = 1, 2, 3 are
uniquely determined in order to ensure that the bet is balanced. (See proof in
app. A.1.) The value of these unique bets are given by (see proof in app. A.2)

b = [b1, b2, b3]
T

=

[
π

ηo1
,
π

ηo2
,
π

ηo3

]T
(2.7)

where bookmaker X's pro�t, regardless of the outcome, π is given by

π = B
η

η + 1
(2.8)

Hence, for every 1 +η coins betted, the bookmaker pro�ts η coins. The fraction
η
η+1 is therefore the bookmaker's relative pro�t on the book if the book is
balanced. The example below demonstrates this result.

Example: Balancing odds Consider a football match with odds

o = [o1, o2, o3]
T

= [1.25, 5.80, 7.25]
T

The overround is then

η =

3∑
i=1

o−1i − 1 ≈ 0.1103 (2.9)

The bookmaker produces an equal return, if and only if the waged money on
the selections is ideally proportioned to the odds, c.f. the de�nition above.
Assuming a total amount bet of B = 100(1 + η) ≈ 111.03 the amount betted on
each selection to ensure a balanced bet is found as, cf. Eq. 2.7

b ≈ [80.00, 17.25, 13.79]
T

(2.10)

with the return equals, cf. Eq. (2.8)

π ≈ 111.03 · 0.1103

1.1103
= 11.03 (2.11)
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I.e. for every 111.03 coins betted in a balanced bet the bookmaker gains π ≈
11.03, since η ≈ 0.1103.

2.3.2 The dynamics of book balancing

Although all bookmakers' main goal is to balance their books, a perfect balance
is hardly achievable, due to the dynamics in the bookmaker market. Typically
the odds are adjusted all the way up to the match, as the bookmakers per-
sistently attempt to optimize the odds setting when new bets are made. The
simplifying examples below provide insight into how these mechanisms interact.
1

Example: Balancing odds in a progressive market Consider a book-
maker X engaging in a football match with the same odds as in (2.9), yielding
η = 0.1103. Suppose the following amounts are waged B = 503.12. Assume
that the bet initially is perfectly balanced, cf. Eq. (2.7) and Eq. (2.8)

b = [b1, b2, b3]
T

= [362.5, 78.12, 62.5]
T

(2.12)

π = 503.13 · η

η + 1
≈ 50 (2.13)

Hence the bookmaker has a perfectly balanced bet with a relative pro�t of

πrel =
π

B
=

η

η + 1
= 0.0994 (2.14)

Obviously this fraction is smaller than η, since

η =
π

B − π
>
π

B
= πrel (2.15)

Normally early released odds are very conservative in the sense that η is very
large, since the strength of the opposing teams is less clear, than just before
kick-o� [36]. Suppose now that a minor injury has been reported on one of the
key players on the away team, implying that b̃1 = 300 more is bet on the home
team. The bookmaker's pro�t πi on the ith match outcome is then

π1 = b2 + b3 − (b1 + b̃1)(o1 − 1) = −25 (2.16)

π2 = (b1 + b̃1) + b3 − b2(o2 − 1) = 350 (2.17)

π3 = (b1 + b̃1) + b2 − b3(o3 − 1) = 350 (2.18)

1The examples have been adapted from [36].
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The bet is now unbalanced to the extent that the bookmaker losses money
on home win, and the bookmaker could strive at re-balance the odds. To do
so it might adjust the odds to õ = [1.2, 6.6, 7.95]

T
, e�ectively increasing the

attractiveness on the draw and away odds. In this situation many punters
make their long term pro�t, since the increment in draw and away odds are
possibly better odds valued than it should compared to the true probability
of these outcomes [36]. Note than the overround almost remains unchanged,
η =

∑
i õ
−1
i − 1 ≈ 0.1106. Suppose now that the odds adjustments leads to that

additionally b̃2 = 56.82 and b̃3 = 47.17 are betted on draw and away odds. The
bet is now re-balanced with new gains equal

π̃1 = b2 + b̃2 + b3 + b̃3 − (b1 + b̃1)(o1 − 1) = 78.99 (2.19)

π̃2 = b1 + b̃1 + b3 + b̃3 − b2(o2 − 1)− b̃2(õ2 − 1) = 78.99 (2.20)

π̃3 = b1 + b̃1 + b2 + b̃2 − b3(o3 − 1)− b̃3(õ3 − 1) = 78.99 (2.21)

The relative pro�t has now declined to

π̃rel =
π̃i
B

= 0.0871, i = 1, 2, 3 (2.22)

This example emphasizes that if a book is imbalanced, and adjustments must be
made to re-balance, it may reduce πrel. It is of obvious and strong interest that
bookmakers initially model an accurate punter reaction function to optimize the
expected pro�t. Too many adjustments possibly reduces the bookmakers' gains,
and so bookmakers must �nd an equilibrium between the degree of adjustments
and the degree of bet balance. Bookmakers are generally not interested in
the gain on single events, but on the long run, so the bets are never perfectly
balanced. These adjustments are of great importance to punters seeking a long
term pro�t, when the odds are adjusted higher values, than the `true' probability
represents.

Example: Lay-o� odds (Continuing the preceding example.) The book-
makers also have the option to `lay-o�' some incoming bets on a selection s
with high potential liability on bet exchanges or other bookmakers, o�ering
better odds at s = 1, 2, 3. Suppose that e.g. no additional bets are made on
bookmaker X after the adjustment of the odds to õ. To eliminate the liabil-
ity, should the home team win X might re-invest in another bookmaker Y or
bet exchange Y , o�ering a slightly higher home odds ô1 = 1.22. If X wages
b̂1 = 307.38 coins on home wins at Y it will gain

π1 = b2 + b3 + b̂1(ô1 − 1)− b̃1(o1 − 1) ≈ 42.62 (2.23)

π1 = b1 + b3 − b2(o2 − 1)− b̂1 ≈ 42.62 (2.24)

π1 = b1 + b2 − b3(o3 − 1)− b̂1 ≈ 42.62 (2.25)
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Hence the bet has been re-balanced with a pro�t of πrel = πi

B = 0.0847, i =
1, 2, 3.

Evidently the bookmaker market constitutes a very complex system. The book-
makers not only strive to o�er the most attractive odds but also wage on each
other if the di�erences in odds are attractive. This e�ectively means that the
�nal odds may deviate signi�cantly from the `ideal' odds, re�ecting the book-
makers' subjective probabilities. Hence the implied probabilities from the odds
may deviate strongly from the `true' selection probabilities.

2.3.3 The favourite/long-shot bias

A prevalent phenomenon in virtually all betting markets is the favourite/long-
shot bias which bookmakers implement into the odds settings to balance the
bets. The bias is motivated by the fact that punters are generally biased to over-
estimate the chances of the weak team in a match with a very strong favourite.
This is an example of risk seeking behaviour, as the punters aim at the selection
with highest potential return although the expected return on both the favourite
and weak team selections may be indi�erent. While this is very pro�table to
the bookmaker if the favourite win it also exposes the bookmaker to a very high
liability should the weak team win, since the odds on the weak team are very
high. To reduce the vulnerability the bookmakers tend to reduce the odds on
the weak team and increase odds on the favourite team. This will drag more
punters to the favourite team thereby balancing the odds [36]. The bias can be
regarded as a special feature, which bookmakers take into account when bal-
ancing their books. The existence of such discrepancy between the bookmakers'
and the public's perception of the outcome probabilities and accordingly the
appropriate odds creates an apparent market ine�ciency.

Example: Adjusting odds to bias At a given football match, suppose
bookmaker X estimates the probability of a home team win at 85%, draw at
10% and away team win at 5%. On this basis X should set the odds around
1

0.85 ≈ 1.18, 1
0.10 = 10 and 1

0.05 = 20. Adding an appropriate overround the

odds is set at e.g. o = [1.15, 7.50, 15]T , yielding η =
∑3
i=1 o

−1
i − 1 ≈ 0.070. To

incorporate the bias X might adjust the odds to õ = [1.25, 5.40, 11.90]T , still

yielding η =
∑3
i=1 õ

−1
i − 1 ≈ 0.070.

The bias e�ectively means that the favourite odds are often more attractive
than the long-shot odds. Though the di�erence sometimes is small it is of
great signi�cance to punters, seeking a long term pro�t [36]. It should however,



20 Concepts and Operational Procedures in Odds Setting

be emphasized that the favourite/long-shot bias may the dominated by other
dynamic factors related to the temporal development in bet proportions on the
di�erent selections as demonstrated in section 2.3.2.



Chapter 3

Data Collection and
Analysis

The dataset consists of the full time results (FTR), the FTR odds and the
opposing team names from from two major European football leagues: The
English Barclay's Premier League and the Spanish La Liga. For convenience
the abbreviations PL and LL shall be used for the English and Spanish league
respectively. The dataset captures statistics from seasons 00/01-12/13 with
varying number of registered bookmakers present in each season and in each
match. For the remainder of the thesis the FTR odds will be referred to as
simply the odds.

In both leagues 20 national top teams compete each season in a complete combi-
natorial system, where all teams are playing against one another on home ground
and away ground. Denoting n = 2 the number of matches between two �xed
teams in a season, t = 20 the number of teams in a season andm = 2 the number
of teams in each match each season comprises a total of n ·

(
t
m

)
= 2

(
20
2

)
= 380

matches. A brief review of each league is provided below.

Barclay's Premier League or simply Premier League is the top of the En-
glish professional football league system. The league was founded in 1992 and
has hosted 42 di�erent teams. Since the establishment 5 di�erent teams have
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won the league, with a superior number of titles to Manchester United (13 ti-
tles) followed by Arsenal and Chelsea (3 titles both), and Blackburn Rovers and
Manchester City (1 title both).[38]

La Liga or formally the Primera División is the top of the Spanish professional
football league system. It was founded in 1929 and has hosted 59 teams. For
a long period of time the championship has been dominated by Real Madrid
and F.C. Barcelona with 32 and 22 titles respectively. However, in the past two
decades other teams have earned the title as well.[39]

3.1 Data Retrieval and Format

The dataset has been created from football and odds statistics extracted from
two websites providing freely available football data. These are:

• www.football-data.co.uk

• www.betexplorer.com

The �rst website o�ers free download of data �les (.csv format) covering odds
data and match data from the two leagues from seasons 00/01-12/13. Odds
from 13 di�erent bookmakers have been collected on the website, although at
most 9 are present in single seasons. The relevant data in the �les has been
extracted and converted into .mat �les in matlab.

The second website does not o�er downloadable data �les with odds and match
results. Instead it has a comprehensive free database of odds stored in tables
on numerous sub pages. The website o�ers odds from 47 di�erent bookmakers
from seasons 08/09-12/13. Not all bookmakers are present in all matches. To
easily retrieve and update all data, an API has been implemented in matlab

to download and store the data as .mat �les.

For each season in each of the two leagues, the two data sources have been
merged to create single .mat �les. Whenever odds are present in both data
sources, the odds from the latter and also largest data source is used. The
dataset has been cleared of prospective outliers by discarding any odds which
deviate by more than 75% from the mean odds value. Let okij , i = 1, . . . ,Mt

,j = 1, 2, 3, k = 1, . . . Nt denote the odds value of the kth bookmaker in the
jth selection in match i, where Mt and Nt is the total number of available

www.football-data.co.uk
www.betexplorer.com
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matches and bookmakers respectively. Further let ōij = 1
Nt

∑Nt

k=1 o
k
ij denote

the mean odds value among the Nt bookmakers. The required criteria to retain
[oki1, o

k
i2, o

k
i3] for bookmaker k can then be formalized as

|ōij − okij |
ōij

≤ 0.75, j = 1, 2, 3 (3.1)

In the PL dataset 22 books and 1 book have been rejected in seasons 08/09 and
12/13 respectively. In the LL dataset 23, 9 and 4 books have been rejected in
seasons 08/09, 11/12 and 12/13 respectively.

The basic content of the data set, one for each league and for each season, can
then be summarized as:

• Full time result: Home win (1), draw (2) away win (3), stored in anMt×1
array.

• Full time result odds from di�erent bookmakers: Home odds o1, draw
odds o2 and away odds o3, stored in an Mt × (3 ·Nt) array.

• Opposing teams in each match, stored in an Mt × 1 cell structure.

Missing or removed odds values are replaced by empty elements. The times at
which the odds have been registered on the websites are unclear. On footba

ll-data.co.uk there is no information available. betexplorer.com o�ers the
possibility of tracking the odds movement about 24 hours before each match at
the current season 12/13. A random check of di�erent bookmakers and matches
shows that most odds have been registered about 1-4 hours before the match
kick-o�.

3.2 Data Content

Figures 3.1a and 3.1b depict the presence of each bookmaker across seasons
00/01-12/13 in PL and LL respectively. Seasons 00/01-07/08 only contain data
from football-data.co.uk, which only o�ers odds from few bookmakers com-
pared to betexplorer.com. This explains the signi�cant change in the number
of registered bookmakers in seasons 07/08-08/09. It should also be empha-
sized that many of the bookmakers were not founded before the later seasons
including 188Bet (founded in 2006), Betsafe (2006), FortunaWin (2009), Jet-
bull (2007), Leon Bets (2007), Noxwin (2007) and Titan Bet (2009). The most

football-data.co.uk
football-data.co.uk
betexplorer.com
football-data.co.uk
betexplorer.com
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covered bookmakers which are present in all seasons in both leagues are Game-
bookers (1998), Interwetten (1990), Ladbrokes (1886), Sporting bet (1998) and
William Hill (1934) which are also among the oldest bookmakers. [40] Evidently
these bookmakers are not present in all matches as they are exceeded by the
theoretical maximum number of odds per bookmaker, 380 · 13 = 4940. A closer
examination of the datasets reveal that many bookmakers have missing matches
in seasons where they are present. Accordingly, the number of matches covered
by all bookmakers is very limited, and in order to obtain a good coverage with
a given number of bookmakers N ≤ Nt it would seem reasonable to collect odds
from the N most recorded bookmakers. For the remainder of the thesis only
N = 5, N = 9 and N = 37 will be considered, as they provide a good odds
coverage relative to N , see Table 3.1. In case N = 5 these are: Gamebookers,
Interwetten, Ladbrokes, Sportingbet, and William Hill. In case N = 9 these
are: bet365, bwin, Gamebookers, Interwetten, Ladbrokes, Sportingbet, Stan
James, VC Bet, and William Hill. In case N = 37 this corresponds to all the
37 bookmakers present in seasons 08/09-12/13 in both leagues.

No missing odds
League Missing odds N = 5 N = 9 N = 37
Premier League 4940 4647 2929 1160
La Liga 4938 4567 2913 1039

Table 3.1: Number of matches with and without removal of matches with miss-
ing odds, seasons 00/01-12/13. N refers to the number bookmakers
with most individually covered matches.
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Figure 3.1: Presence of bookmakers according to season. The parentheses
state the total number of odds for each bookmaker. Note that the
number of present bookmakers is signi�cantly larger in the latest
�ve seasons, as these seasons are covered by both data sources.

3.3 Odds Analysis

3.3.1 Outcome frequencies

Table 3.2 shows the distribution among the outcomes home (1), draw (2) and
away (3), and the distribution among the bookmakers' favourite selections. The
odds have been collected over all 13 seasons available. The favourite selections
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have been determined as the the selection with smallest mean odds value. Let
okij , i = 1, . . . ,M , j = 1, 2, 3, k = 1, . . . N denote the odds value of the kth
bookmaker in the jth selection in match i, where M and N are the numbers
of matches and bookmakers respectively. The favourite selection T̃i = 1, 2, 3 in
match i can then be formalized as

T̃i = arg min
j

oij , i = 1, . . . ,M (3.2)

where

oij =
1

N

N∑
k=1

okij (3.3)

In Table 3.2 all Nt = 51 bookmakers have been used and consequently MPL =
4940 and MLL = 4938. Missing odds are omitted when evaluating the mean
odds for each match. Evidently the home teams are biased to win, as almost
50% of all matches are won by the home team. This strongly emphasizes the
importance of the home team advantage as a factor of the overall performance
of each team. In both leagues draws and away wins are overall equally likely, as
each of these outcomes account for approximately 25% of all outcomes.

Wins [%] Favourites [%]
League H D A H D A
Premier League 46.7 26.1 27.2 74.0 0.00 26.1
La Liga 48.5 24.8 26.8 79.1 0.00 20.9

Table 3.2: Distribution of match results (Wins) and selections favoured by
the bookmakers (Favourites), seasons 00/01-12/13. The favourite
in each match is determined as the selection with smallest mean
odds.

The bookmakers consistently never favour the draw selection even though al-
most 25% of all matches are draws. The away selection is generally also less
favoured than the actual frequency of away wins. Consequently, the home teams
are heavily favoured compared to the actual frequency of home wins, which in-
dicates a strong home team bias in the odds. In summary two levels of bias are
observed: A competitive home ground bias and a home team favouring bias in
the odds, whose cumulative e�ects lead to a distinct bookmaker favouring of
home selections.
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3.3.2 Odds distribution

The books from each of the two leagues have been divided into three subsets
containing books from home wins, draws and away wins. Speci�cally the data
including all bookmakers and seasons has been divided into three subsets

Ohome = {
[
oki1, o

k
i2, o

k
i3

]T | Ti = 1}, (3.4)

Odraw = {
[
oki1, o

k
i2, o

k
i3

]T | Ti = 2}, (3.5)

Oaway = {
[
oki1, o

k
i2, o

k
i3

]T | Ti = 3}, i = 1, . . . ,Mt, k = 1, . . . , Nt (3.6)

Figure 3.2 depicts the odds distribution on each selection in Ohome, Odraw and
Oaway in both leagues. Each selection contains signi�cant outliers regardless
of the outcome which essentially capture the statistically uneven matches with
extreme single odds values. For illustration purposes the outliers have been
removed. Supplementary statistics are summarized in Table 3.3.
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Figure 3.2: Odds distribution by selection, seasons 00/01-12/13.

In general all distributions are strongly right-skewed, as there are numerous
extreme odds values identi�ed as outliers. In home win matches the distribution
of the home odds indicates that the home team is generally favoured and that
this is a persistent perception, as the variance is very low. Contrary there is no
clear favouring of the away team in away win matches. In fact the home and
away teams are considered to be more or less equal, emphasizing the immense
e�ect of the home ground advantage. The odds on away selections have a
generally higher variance than the odds on the other two selections, suggesting
that the probabilistic span implied by the bookmakers' odds is signi�cantly larger
on the away team. Speci�cally a very weak away team will have a far lower
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Home win
PL LL

mean median var. mean median var.

Home 1.99 1.85 0.970 2.06 1.82 1.12
Draw 4.13 3.40 3.25 3.98 3.50 1.29
Away 6.05 4.00 29.0 6.00 4.31 18.9

Draw
PL LL

mean median var. mean median var.

Home 2.56 2.10 3.20 2.60 2.20 1.95
Draw 3.55 3.30 0.548 3.56 3.35 0.373
Away 3.84 3.40 4.80 4.04 3.25 6.90

Away win
PL LL

mean median var. mean median var.

Home 3.49 2.40 8.09 3.50 2.60 4.62
Draw 3.67 3.35 0.738 3.57 3.35 0.347
Away 3.18 2.85 3.78 3.08 2.62 4.16

Table 3.3: Basic statistics on the Premier League (PL) and La Liga (LL)
datasets, seasons 00/01-12/13 on home, draw and away selections
conditioned on the type of outcome.

chance of success than a very weak home team, according to the probabilities
implied by the odds.

The draw and away odds are predominantly large on home wins compared to
draw and away wins. In fact the sum of odds averaged over all bookmakers and
all matches in each of the sets Ohome, Odraw and Oaway are 12.0, 10.2, and 10.2
for the PL dataset and 12.1, 9.95 and 10.3 for the LL dataset, respectively. This
indicates that odds are generally higher on home wins and could be perceived
as more attractive. However, the average overrounds are very similar valued at
0.07 in the PL dataset and 0.08 in the LL dataset regardless of the outcome.
Evidently the odds on home wins are simply distributed in a convenient way that
allows high odds on single selections while maintaining an indi�erent overround.
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3.3.3 Temporal development of overround

Figure 3.3 depicts the temporal development of the overround across all avail-
able seasons with N = 5 bookmakers. A set of N overrounds, one for each
bookmaker, has been extracted from each match. Evidently the average over-
round is monotonically decreasing as a function of the seasons, and has nearly
halved during the past 13 seasons. The clear tendency is presumably a result of
increased market competition, e�ectively augmenting the odds values. Ref. [20]
demonstrated that the overround was remarkably constant at around 0.115,
when evaluating on odds from an unspeci�ed set of bookmakers on on 3382
matches from two English leagues (1993-1994). Thus the observed overrounds
from the current dataset at hand, indicates slightly higher overrounds on early
seasons than demonstrated by [20].

Comparing the two leagues reveals that the overround is slightly lower on the PL
dataset in all seasons, cf. Table 3.4, which suggests that the odds are generally
more attractive in the Premier league compared to the La Liga.
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Figure 3.3: Temporal development
of overround. Top:
Premier League (PL),
bottom: La Liga (LL).

Overround
Season PL LL

00/01 0.1329 0.1345
01/02 0.1223 0.1259
02/03 0.1170 0.1199
03/04 0.1073 0.1166
04/05 0.1038 0.1112
05/06 0.1015 0.1037
06/07 0.0995 0.1001
07/08 0.0942 0.0977
08/09 0.0843 0.0938
09/10 0.0747 0.0858
10/11 0.0755 0.0800
11/12 0.0725 0.0759
12/13 0.0641 0.0703

Table 3.4: Mean overround
in PL and LL per
season.
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3.3.4 Spatial odds distribution by class

One of the central challenges is to discriminate between the characteristics of the
odds conditioned on the three di�erent outcomes. In order to e�ectively extract
and visualize the data information a principal component analysis (PCA) has
been performed on both datasets. Each match i is represented by a 3·N×1 array
containing [oi1, oi2, oi3]

T
, j = 1, . . . , N . With N = 5 a total of MPL = 4647

and MLL = 4567 matches (no missing values) have been recorded on the PL
and LL sets respectively, c.f. Table 3.1, and the data projections onto the �rst
3 principal components (PCs) are depicted in �gures 3.5 and 3.4.

The explained cumulative variance ([%]) with one, two and three PCs, are
0.6726, 0.9652, and 0.9728 for the PL dataset and 0.6272, 0.9697, and 0.9767 for
the LL dataset, respectively. The shape of the data combined with the amount
of explained variance indicate that the features stem from a one-dimensional
manifold in a two-dimensional space. Hence the inherent complexity of the
odds has two degrees of freedom. This observation is reasonable considering
that 1) the bookmakers' odds are presumably very similar, which e�ectively
reduces the degrees of freedom to 3; 2) the overround remains reasonably con-
stant, which further reduces the degrees of freedom to 2. Therefore the two
�rst PCs primarily address the general odds structure, whereas the remaining
variance, primarily explained by the third PC, explains the distinction between
the bookmakers.

Quite interestingly the samples are arranged in a U-shape, where the two end
segments are dominated by the home and away win classes respectively. The
odds from the draw class are located all around in the data cloud. Most sam-
ples are concentrated in the `bend' of the data cloud, corresponding to the
matches where there is no clear team favourite, which also comprises the ma-
jority of matches. In both end segments the remaining two classes are sporadi-
cally present, corresponding to matches in which the bookmakers' anticipations
strongly con�ict with the outcome. A careful inspection of the plots reveals
considerably more of these outliers are present in the home class end segment in
the PL dataset, indicating that more matches results in draws despite signi�cant
home team favourings.
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Figure 3.4: PCA on Premier League dataset, seasons 00/01-12/13. Each sam-
ple (match) consists of the odds from the 5 most covered book-
makers.

0

5

10

15

20

0

5

10

15

20

25

−2

0

2

 

PC1
PC2 

P
C

3

Home win
Draw
Away win

Figure 3.5: PCA on La Liga dataset, seasons 00/01-12/13. Each sample
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3.4 Bookmaker Comparison

3.4.1 Overround comparison

Figure 3.6 depicts the distribution of the overround η of the 37 most recorded the
LL dataset in seasons 08/09-12/13. Similar distributions are obtained using the

PL dataset. η has been collected using Eq. (2.5) on all odds, i.e.
[
oki1, o

k
i2, o

k
i3

]T
,

i = 1, . . . ,M , j = 1, . . . , 37. Missing odds are omitted. So each bookmaker is
covered di�erently in the matches, cf. �gure 3.1b. Quite remarkably η varies a
lot amongst many bookmakers and the mean overround is di�erent. Pinnacle
Sports has the lowest mean overround of η = 0.0218 closely followed by 5Dimes
(0.0245), 188BET (0.0360) and Betfair (0.0380). BetCRIS holds the highest
mean overround of η = 0.1022 followed by Interwetten (0.0944) and Sportingbet
(0.0910). While one may question how the latter are competitive with the former
it should be emphasized that the overround is a combined measure over all three
selections and does not necessarily re�ect the attractiveness on speci�c selections
in speci�c matches. The variety of overround distributions indicates that the
bookmakers use very di�erent strategies to determine their odds, and suggests
that each bookmaker encompasses di�erent latent features of each match.
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Figure 3.6: Distribution of overround of the 37 most covered bookmakers in
the La Liga dataset, seasons 08/09-12/13. The brackets hold the
sample count.
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3.4.2 Cross-comparison of bookmakers

The N = 9 most recorded bookmakers are compared against each other to
identify possible atypical bookmakers and the main sources of the variation.

First the correlation matrix R ∈ R9×9 has been considered. The correlations
are determined as the mean correlations across each outcome class. Speci�cally
each element Rmn, is found as

Rmn =
1

3

(
σmn,h
σm,hσn,h

+
σmn,d
σm,dσn,d

+
σmn,a
σm,aσn,a

)
, m, n = 1, . . . , 9 (3.7)

where

σmn,h = Cov(om1,h,o
n
1,h), σn,h =

√
Var(on1,h) (3.8)

σmn,d = Cov(om1,d,o
n
1,d), σn,d =

√
Var(on1,d) (3.9)

σmn,a = Cov(om1,a,o
n
1,a), σn,a =

√
Var(on1,a) (3.10)

where on1,h,o
n
1,d,o

n
1,a ∈ RM contain all home, draw and away odds, respectively,

for the nth bookmaker in temporal order. Figure 3.7 depicts the correlation us-
ing the LL dataset, seasons 05/06-12/13. All bookmakers are highly correlated,
but some bookmakers stand out slightly. Especially VC Bet and Interwetten
di�er from the remaining 8 bookmakers, and particularly they di�er from each
other. Stan James and bet365 have the highest correlation with ρ = 0.984.

The contributions to the di�erences between bookmakers' odds have been sep-
arated on the 3 selections. Figure 3.8 illustrates the mean absolute distance e
between the 9 bookmakers on each odds selection, i.e. emn,j = 1

M

∑M
i=1|omij−onij |,

where j = 1, 2, 3 indicates the selection on the LL dataset, seasons 05/06-12/13.
Evidently the largest error contribution comes from the away odds with a mean
residual of e3 = 0.4033. The bookmakers are very indi�erent on the home and
draw odds, as the mean residuals are e1 = 0.1285 and e2 = 0.1729 respectively.
In accordance with �gure 3.7 VC Bet and Interwetten di�ers much from the re-
maining bookmakers an in particular from each other. Also Stan James di�ers
from the rest, except from bet365.

In order to obtain a global distance measure between each of the 9 bookmakers
a PCA has been performed on 9 samples on the LL dataset, seasons 05/06-
12/13, containing odds from all matches where all 9 bookmakers are present.

The odds
[
oki1, o

k
i2, o

k
i3

]T
, i = 1, . . . ,M for k = 1, . . . , 9 have been stacked into

single vectors of size 3 ·M = 3 · 2825 = 8739. Figure 3.9 displays the �rst three
principal components, explaining 52.6% of the data variation.



34 Data Collection and Analysis

Figure 3.7: Correlation between the 9 most covered bookmakers from the La
Liga dataset, seasons 05/06-12/13.

Figure 3.8: Mean residuals between the 9 most covered bookmakers from the
La Liga dataset, seasons 05/06-12/13. The indices on the axes
refer to the bookmakers in �gure 3.7.

Since the PCA decomposes the covariance of the data, the plot indicates to
which extend the samples vary together. Evidently the bookmakers have very
low covariances due to the poor amount of variance explained by the �rst PCs.
Comparing the low covariance with the high correlation observed �gure 3.7, sug-
gests that the odds setting of each bookmaker strongly a�ects the odds setting
of the rest of the bookmakers. Although the bookmakers generally agree on
the magnitude of the odds the individual odds strategies are highly separable,
expressed by the low covariance. This is an important insight as there now
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is strong evidence that bookmakers constitute a committee of partly indepen-
dent experts which can be utilized to obtain robust estimates of the posterior
probabilities on each selection, given the odds from the various bookmakers.
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Figure 3.9: PCA on the 9 most covered bookmakers from La Liga dataset,
seasons 05/06-12/13. Each bookmaker is represented by all its
odds, corresponding to a 8739 dimensional data point.

3.5 Team Bias

An natural question that arises is whether the probability implied by the odds
re�ects the true probability of a given teams success or whether the e�ects of
odds balancing, particularly the favourite/long-shot bias, in�uence the implied
probability on the individual teams. This question will be answered by esti-
mating the empirical probability of a given teams success with the probability
implied by the odds. To clarify the procedure the following formalism is intro-
duced. Let p̃ij denote the implied mean probability among N bookmakers in
match i on selection j de�ned as

p̃ij =
1

N

N∑
k=1

1

okij(1 + ηki )
(3.11)

where ηki is the overround of bookmaker k = 1, . . . , N in match i = 1, . . . ,M ,
de�ned as (cf. Eq. (2.5))

ηki =

 3∑
j=1

1

okij

− 1 (3.12)
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Further let δij de�ne a binary function indicating whether the jth selection in
match i came true or not,

δij(x) =

{
1, Ti = j
0, otherwise

(3.13)

where Ti = 1, 2, 3 states the outcome of the ith match. Accordingly, δij can
be regarded as the empirical probability for the jth selection in the ith match,
with a probability of either 0 or 1. Now let Sp̃kl denote the set containing all
probabilities p̃ij ∈ Ik, and Sδkl corresponding binary value δij for team l =
1, . . . , L among all L recorded teams, with j = 1, 3, i = 1, . . . ,M , k = 1, . . . , 10
and where

I1 = [0, 0.1[, I2 = [0.1, 0, 2[, . . . , I10 = [0.9, 1] (3.14)

denote subintervals of [0, 1]. A reasonable measure of deviation between the
empirical (true) probabilities and implied probabilities can then be found as the
weighted mean value of the di�erence between mean success rate, E[Sδkl], and

mean implied probability, E[Sp̃kl], across the k subintervals. To put it explicitly,

rl =

∑10
k=1Nkl(E[Sδkl]− E[Sp̃kl])∑10

k=1Nkl
, l = 1, . . . , L (3.15)

where Nkl it the number of elements in the set Sδkl.

Figures 3.10a and 3.10b depict the residuals on the PL and LL datasets re-
spectively, seasons 05/06-12/13 with N = 9 including all participating teams,
ordered according to success rate. If rl > 0 it will indicate that team l is gen-
erally underestimated and vice versa if rl < 0. Neglecting the smallest (noisy)
residuals there is a tendency towards underestimating the strongest teams while
overestimating the weakest teams. In particular the superior performances of
Manchester United and Real Madrid are heavily understated, while the perfor-
mances of e.g. QPR and Hercules are heavily overestimated. Although some
teams are even stronger overestimated these teams are only weakly represented
due to few active seasons, and should therefore be processed with caution. These
observations demonstrate that the favourite/long-shot bias cf. section 2.3.3 in-
deed is prevalent in both leagues and suggest the presence of signi�cant team
loyalty on small, unfavoured teams.
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Figure 3.10: Estimated di�erences between empirical probabilities and prob-
abilities implied by the odds, seasons 05/06-12/13. The brackets
hold (#matches, success rate).
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Chapter 4

Model De�nition

The proposed model is based on a neural network (NN) for multi-class classi�-
cation combined with a decision framework based on determining the expected
returns on di�erent combinations of engaged selections per match. Section 4.1
provides an overview of the basic components and procedures involved in appli-
cation of NNs, section 4.2 a brief description of the applied matlab toolbox, and
section 4.3 gives an explicit formulation of the input features and the decision
framework.

4.1 Arti�cial Neural Networks for Multi-class Clas-

si�cation

Arti�cial Neural Networks (NN) constitute a class of highly �exible models
for regression problems and classi�cations problem. The term `neural network'
originates from the attempts to mimic the behaviour in biological systems, par-
ticularly the cognitive structure of the brain and are widely used in pattern
recognition.

A NN admits itself to a feed-forward architecture, where the input signal prop-
agates though a set of (non-linear) functional transformations which are linked
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through a directed acyclic graph to ensure deterministic outputs of the inputs.
NNs consist of layers of neurons; an input layer, one or more hidden layers, and
an output layer. For the sake of relevance only NNs with one hidden layer are
considered with full links between the input and hidden layers, and the hidden
and output layers. Figure 4.1 depicts a NN with four input units, �ve hidden
units in a single layer and one output unit.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 4.1: An example of a neural network with �ve hidden units in one
hidden layer, four input units, and one output unit. For simplicity,
the bias parameters have not been included.

The input variables xi, i = 1, . . . , Nx are passed on to the hidden layer by
Nz linear combinations, which are transformed using a non-linear activation
function h(·),

zk = h(ahk) = h

Nx∑
j=0

whkjxj

 , k = 1, . . . , Nz (4.1)

where zk it the activation energy in the kth hidden unit, Nz is the number of
hidden units, ahk refers to the activation of the kth hidden unit, and whkj to the
weight of the link between the jth input and the kth hidden unit. For conve-
nience the indexing begins at zero to encompass the bias/threshold parameters
wh0j , as x0 is �xed at x0 = 1. For multi-class classi�cation the posterior proba-
bilities (output units) yk for a given input sample xk are given by the softmax
function of linear combinations of the hidden unit variables,

p(Ck|x,w) = yk =
exp aok∑Nz
j=0 exp aoj

, k = 1, . . . , Ny (4.2)
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where Ny is the number of output units (or classes), w is the set of all weights,
and the output activations aok are given by

aok =

Nz∑
j=0

wokjzj , k = 1, . . . , Ny (4.3)

where wokj is the weight of the link between the jth hidden and the kth output

unit. It is noted that
∑Ny

k=1 yk = 1 and yk ∈ [0, 1], ∀k ∈ 0, . . . , Ny whereby
yk indeed have the characteristics of class posteriors. As with Eq. (4.1) the
indexing starts at zero to encompass the bias parameters wo0j , as z0 = 1.

The task is now to optimize the weights w, by maximizing the likelihood. In-
troduce a binary target variables tnk ∈ {0, 1} with a 1-of-C coding scheme to
indicate the class of input sample xn ∈ RNx among C mutually exclusive classes.
Assuming independence between class labels and input samples, the likelihood
can then be formulated as

p(T |w,x) =

Nsamples∏
n=1

C∏
k=1

p(Ck|w, xn)tnk =

Nsamples∏
n=1

C∏
k=1

ytnk

k (4.4)

where tnk is a 1-of-K coding scheme and T is a Nsamples×C matrix with elements
tnk, and Nsamples is the number of input samples. Eq. (4.4) is essentially a
product of the `active' (independent) posteriors which should be maximized. For
convenience the likelihood is transformed leading to an equivalent minimization
problem, expressed by the cross-entropy error function for multi-class

E(w) = − ln p(T |w,x) = −
Nsamples∑
n=1

C∑
k=1

tnk ln yk (4.5)

Since the error function is smooth, its minimum will occur in the weight space
where the gradient is zero, i.e. ∇E(w) = 0. Evidently there is no chance of
�nding an analytical solution to the problem, so it should be solved numerically
by non-linear numerical optimization techniques which predominantly strive to
optimize the parameters w in the weight space though iterative updating proce-
dures. The simplest approach is gradient descend, where the gradient informa-
tion is utilized to choose the weight update opposite of the gradient direction,

w(new) = w(old) − λ∇E(w(old)) (4.6)

where λ denotes the learning rate or step size. [22, pp. 226-240]

An e�cient technique for evaluating ∇E(w) can be achieved by using a local
information passing scheme commonly known as back-propagation. By dividing
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the error function into a sum of terms, one for each input sample, i.e.

E(w) =

Nsample∑
n=1

En(w) (4.7)

it can be shown that the partial derivatives with respect to w can be found as

δEn
δwoji

= δoj zi = (yj − tj)zi (4.8)

δEn
δwhji

= δhj zi =

h′(ahj )

Ny∑
k=0

wokjδ
o
k

xi (4.9)

where the δs, often referred to as errors, are a useful notation to promote the
transparency and e�ciency of the calculations, as δoj is reused in both Eqs.
(4.8) and (4.9). See Appendix C.1 for a derivation of the partial derivatives.
Eq. (4.9) reveals that the partial derivatives with respect to whji are found as a
backwards propagation of the errors δok from the output layer, contrary to the
forward propagation found in Eqs. (4.1) and (4.2) [22, pp. 240-244]. Intuitively
this makes sense, as the magnitude of δEn

δwh
ji

is determined by the magnitude of

the each error δoj = yj − tj from the output layer, weighted by the strength of
the individual error signals, i.e. weighted by wokj .

While the gradient descend method only applies �rst order derivatives, a variety
of potentially more e�cient second order algorithms are available as well, such
as Newton, Levenberg-Marquardt, Gauss-Newton and pseudo-Gauss-Newton.
These can be developed from a second order Taylor expansion of the cost func-
tion E(w) around a point ŵ in the weight space,

E(w) = E(ŵ) + (w − ŵ)T∇E(ŵ) +
1

2
(w − ŵ)THŵ(w − ŵ) (4.10)

where Hŵ denotes the Hessian at ŵ. Similarly to the gradient ∇E(w), the
Hessian can be e�ciently evaluated by means of the back propagation procedure
The gradient is vanishing at a (local) minimum w0, i.e.

∇E(w0) = ∇E(ŵ) +Hŵ(w0 − ŵ) = 0 (4.11)

which implies that

w0 = w −H−1ŵ ∇E(ŵ) (4.12)

Accordingly, the inverse of the Hessian is required, which may cause numerical
di�culties. [41, pp. 4-5] For this reason there have been interests in using the
diagonal Hessian instead, as its inverse is easily evaluated. However, the Hessian
is often strongly non-diagonal and so the diagonal Hessian should be used with
care [22, p. 250].
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4.2 DTU Neural Classi�cation Toolbox

The applied toolbox, nc_toolbox, is an older version of the current toolbox
nc_multiclass provided by DTU Compute, which can be applied freely in re-
search and other non-pro�t applications.1 The older version has been applied as
the computation time is signi�cantly lower than with the newer toolboxes, while
the probabilistic accuracy of the toolboxes are indi�erent to the classi�cation
problem at hand.

nc_toolbox uses the hyperbolic tangent function as activation function, cf. Eq.
(4.1) and applies gradient descent followed by pseudo-Gauss-Newton using a di-
agonal Hessian approximation. The program has been set to perform 10 gradi-
ent descend iterations and 50 pseudo-Gauss-Newton iterations unless a gradient
norm stopping criteria of λ = 10−4 has been reached. The `optimal' step size
λ in each iteration is determined by a simple line search in the weight space
with iterative bisection. Although the implementation o�ers adjustment of reg-
ularization parameters, controlling the learning rate on the weights w, these
have been set to the default values. A further analysis of the sensitivity of the
parameters have been omitted.

The implementation relies on a random initialization of the weight w with de-

fault ranges (wh)ij ∈
[
−0.5
Nh

, 0.5Nh

]
and (wo)ij ∈

[
−0.5
No

, 0.5No

]
where Nh and No

denote the number of hidden units and output units respectively. As the es-
timated (local) minima w0 in the weight space potentially relies on the initial
value of w, a simple regularization has been proposed. This consists of perform-
ing three training repetitions with di�erent random weight initializations and
use the mean outputs as the posteriors.

4.3 Decision Framework

In section 2.1 a variety of popular betting options on the full time results has
been presented, covering di�erent classes of multiple bets. For simplicity and
transparency only single bets will be considered from this point. In addition
operations with only the simplest possible bets strengthens the applicability of
the model as the model may be expanded to cover multiple bets. Provided
that the involved matches are independent the probability can be determined
by simply multiplying the partial probabilities. Accordingly, section 2.1 can be
regarded as providing insight into the potential model expansions.

1http://cogsys.imm.dtu.dk/toolbox/ann/

http://cogsys.imm.dtu.dk/toolbox/ann/
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The input features to the NN consists of the bookmakers' odds from a speci�ed
set of bookmakers. As discussed in section 3.2 3 convenient sets of bookmakers
will be considered of N ∈ {5, 9, 37} bookmakers. This means that each input
sample has dimension xk ∈ R3·N , k = 1, . . . ,M . The input features have been

standardized prior to the application of the NN, i.e. (x̃k)i = (xk)i−xi

σi
, where xi

and σi are the mean value and standard deviation, respectively, of the ith input
feature on the training set.

The posteriors emitted by the NN are subsequently passed on to a decision
framework that determines which selections to bet on and how much to bet. It
is assumed that all output samples and hence matches are independent. The
possibility of at most two selections per match is modelled as triple selections
are assumed to be unpro�table by nature. The decision framework relies on
estimates of the standardized expected return (SER) per match i,

E [πi]√
Var [πi]

(4.13)

where πi is the return on the match, given a set of engaged selections. The
standardization is reasonable, as the expected return is penalized by the the
uncertainty of the investment. In �nance this uncertainty is referred to as the
volatility � a measure of price variation over time for a given asset � which in
this context is de�ned as the standard deviation of the return. Obviously the
performance of the approach relies heavily on how well-calibrated the NN is.
This question will be covered in Chapter 5.

Consider a match i ∈ {1, . . . ,M} and assume that a single bet has been made
on one of the three selections j ∈ {1, 2, 3}, of size bij . The expected return on
match i is de�ned as (see Appendix B.1)

E [πi] = (ôijpij − 1)bij (4.14)

where ôij = maxk∈{1,...,Nt} o
k
ij is the highest o�ered odds among all Nt = 51

bookmakers. The variance of the return on single selections is (see Appendix
B.1)

Var [πi] = b2ij ô
2
ijpij(1− pij) (4.15)

Assuming ôij = 1
pij

Eq. (4.15) reduces to b2ij
1−pij
pij

. Hence a small probability

pij will have a large variance and a large probability pij a small variance. This
yields the SER in match i on a singly engaged selection

E [πi]√
Var [πi]

=
ô2ijpijbij − bij√
b2ij ô

2
ijpij(1− pij)

=
ôijpij − 1

ôij
√
pij(1− pij)

(4.16)
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Note that the ratio is invariant to the bet size.

The framework is now expanded to include the possibility of betting on two
selections in a single match. Suppose that two selections m,n ∈ {1, 2, 3}, m 6= n
are made. For simplicity it will be assumed that the same amount, bi, is waged
on each selection. The expected return is then (see Appendix B.1)

E [πi] = E [πim] + E [πin] = bi (ôimpim + ôinpin − 2) (4.17)

and the variance is (see Appendix B.1)

Var [πi] = Var [πim] + Var [πin]− 2b2ôimôinpimpin (4.18)

where πim and πin denote the return on selections m and n respectively. The
SER on two selections in match i is then

E [πi]√
Var [πi]

=
bi (ôimpim + ôinpin − 2)√

Var [πim] + Var [πin]− 2b2i ôimôinpimpin
(4.19)

=
bi (ôimpim + ôinpin − 2)√

b2i ô
2
impim(1− pim) + b2i ô

2
inpin(1− pin)− 2b2i ôimôinpimpin

(4.20)

=
ôimpim + ôinpin − 2√

ô2impim(1− pim) + ô2inpin(1− pin)− 2ôimôinpimpin
(4.21)

The expressions obtained on single selections and double selections are now
combined into a single decision criterion formulation. Let πi(s) denote the
return on match i on a given selection combination s ∈ S, where

S = {1, 2, 3, {1, 2}, {2, 3}, {1, 3}}

is the set of all selection combinations disregarding the full selection. A decision
criterion can then be formulated as

Di =

{
arg max
s∈S

ri(s) if max
s∈S

ri(s) > τ

∅ otherwise
(4.22)

where τ ≥ 0 is a speci�ed threshold value, and

ri(s) =
E [πi(s)]√
Var [πi(s)]

, (4.23)

and Di ∈ S denotes the selections to bet on in the ith match. Eq. (4.23) is de-
termined by Eqs. (4.16) and (4.21) for single and double selections respectively.
The size of the bet on the engaged selections should be re�ected by the size of
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the SER. The higher SER, the more attractive relation between the potential
return and the risk. A simple solution is to let the size be proportional to the
SER, speci�cally equal to the SER, i.e.

bi = ri(Di) (4.24)

where bi is the bet size on all selections in the set Di. This of course assumes
Di 6= ∅, otherwise bi = 0.

The proposed decision framework has some conceptual resemblance to Markowitz'
e�cient frontier, although the framework is far simpler. The frontier, cf. section
1.5, represents the optimal trade-o� between the expected return and the risk,
de�ned as the standard deviation of the return for a given set of assets. Similarly
the SER approach penalizes selections with high risk, cf. Eq. (4.23), where the
individual matches can be regarded as a portfolio with three assets/selections.



Chapter 5

Model Evaluation and
Revision

The quality of the model has been evaluated by considering two aspects. Firstly
the probabilistic accuracy of the model is examined, whereby it can be deduced
how well the data variation in bookmakers' odds can be used as features in a
forecast model. Secondly it is demonstrated how pro�table the model is, as a
punter in the football odds market. Based on these results extensions of the
model cf. section 4.3 are proposed and tested.

5.1 Input Feature Selection

As discussed in section 3.3.4 the inherent structure of the odds predominantly
originates from a two dimensional feature space. It was deduced that the
bookmakers generally agree on the odds setting although minor disparities are
present. Accordingly, a relevant issue is, how many bookmakers that are su�-
cient as input features to cover the data variation.

Three di�erent feature sets S5, S9, S37 have been proposed containing the N =
5, 9, 37 most recorded bookmakers, cf. Table 3.1. This gives an input feature
dimensionality of 15, 27 or 111, respectively. It is noted that S5 ⊂ S9 ⊂ S37,
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whereby the large feature sets contain at least the same data variation as the
smallest set. The performance has been evaluated in a 10 fold cross-validation
on seasons 08/09-12/13 in both leagues. The evaluation is limited to the latest
�ve seasons because it is the largest joint set of odds between the feature sets
S5, S9, and S37, and since the latest seasons are obviously of most interest.

The NN may be regularized in many ways e.g. by the number of hidden units,
adjustment of the decay parameters and by early stopping criteria. The anal-
ysis is here restricted only to vary the number of hidden units to the proposed
input feature set sizes. The decay parameters are set as the default values
in the applied NN toolbox. It should be emphasized that the application of
cross-validation may be considered an evasion of the of the most fundamental
principles in machine learning, as future (test) data is potentially used to tune
the current model. However, as shall be demonstrated, the number of hidden
units and the number of bookmakers hardly change the performance. A thor-
ough sensitivity analysis of the regularization parameters has been omitted, as
it is considered of little importance due to low input feature complexity, cf.
section 3.3.4.

The overall purpose of the model is to properly estimate the expected return on
di�erent selection combinations in each match, and accordingly it is essential to
consider the accuracy of all three class posteriors. Forecasts of the match results
are of less importance, and so the classi�cation error is an insu�cient measure
of accuracy. Instead the model has been evaluated in terms of the Brier score, as
it encapsulates the accuracy of all three posteriors. For a three of more classes
the Brier score is de�ned as [42, p. 1]

EBrier =
1

M

M∑
i=1

C∑
j=1

(pij − δij)2 (5.1)

where M is the number of samples, C = 3 is the number of classes, pij is the
posterior of class j in match i an δij indicates whether the event occurred in
class j (1) or not (0). Table 5.1 summarizes the mean Brier scores.

Evidently the score is about 0.02 lower on the LL dataset regardless of the
con�guration, which suggests that the model is better calibrated on the Spanish
league. The Brier score is almost invariant to the number of hidden units,
suggesting a low complexity in the input features, as discussed in section 3.3.4,
although N = 37 with one hidden units shows slight under-�tting. It also
indicates that the default weight decay parameters in the neural network toolbox
successfully regularize the complex models to reduce over-�tting.

In the proceeding analysis only N = 9 bookmakers are used, covering seasons
05/06-12/13. This choice is based on several motives. Firstly the earliest seasons
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are of least interest, and so the advantage of the temporal broadness of N = 5
diminishes. Secondly N = 9 is at least as robust as N = 5, making N = 9
preferable. Thirdly N = 37 is computationally expensive, and does not improve
performance. The number of hidden units is prospectively set at 6, although
there is no statistical evidence for a superior number of hidden units.

League # hidden units

N = 5
1 3 5 10

Premier League 0.577 (0.016) 0.577 (0.014) 0.577 (0.015) 0.577 (0.014)
La Liga 0.554 (0.026) 0.553 (0.025) 0.553 (0.025) 0.553 (0.025)

N = 9
1 6 9 18

Premier League 0.576 (0.017) 0.577 (0.018) 0.577 (0.019) 0.576 (0.019)
La Liga 0.555 (0.017) 0.553 (0.016) 0.553 (0.017) 0.554 (0.017)

N = 37
1 10 20 40

Premier League 0.585 (0.024) 0.576 (0.029) 0.575 (0.031) 0.576 (0.028)
La Liga 0.563 (0.021) 0.554 (0.023) 0.554 (0.026) 0.553 (0.025)

Table 5.1: Mean brier score in a 10-fold cross validation on seasons 08/09-
12/13 with varying number of hidden units. The brackets hold
the standard deviation of the scores. The applied seasons are the
largest subset of seasons containing N = 5, 9, 37 bookmakers.

5.2 Decision Boundaries

The complexities of the posterior class distributions have been assessed by pro-
jecting the data and distributions onto the �rst two principal components of the
input feature space. Figures 5.1a, 5.1b and 5.1c depict the posterior distribu-
tions when training a NN on all data in the LL set, seasons 05/06-12/13 with 9
bookmakers. Based on these distributions the decision boundary between each
class has been deduced by considering the most likely of the three classes, see
�gure 5.1d. Evidently the decision boundary between the home and away class
separates the two end-segments of the characteristic U-shaped data cloud. The
separation line is almost linear, and since a PCA basically is a linear transfor-
mation of standardized input features this indicates that a linear model, such as
a Generalized Linear Model, may solve the classi�cation problem equally well
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as the NN. However, emphasis should be put on the distribution of the class
posteriors, as outlined in section 5.1. The contour lines reveal that the distribu-
tions are complex in the high density regions (the bend of the U-shape), which
justi�es the use of a non-linear model. The distribution on the draw class is
generally low in the relevant PC space range and grows in the most opposite
direction of the home and away classes, identi�ed as the two end segments of the
U-shape. The draw class only dominates in the central part of the data cloud,
where all 3 class posteriors are similar.
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Figure 5.1: Contours of class-conditional probabilities (a+b+c) and decision
boundary (d) on the La Liga dataset, seasons 05/06-12/13 with 9
bookmakers' odds.
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5.3 Simulations

5.3.1 Test con�guration

The pro�tability has been evaluated separately on the PL (Premier league) and
LL (La Liga) datasets by simulating a realistic betting scenario in which the
model have to decide when to bet and how much to wage. In the test set-up
an initial stock of zero coins is assumed, and the player is assumed to have
in�nite wealth so that any negative returns can be managed. For simplicity the
currency is unit-less. The development of the stock, expressed as the cumulated
return, is subsequently monitored as the model completes the betting scenarios.
The threshold value τ , cf. Eq. (4.22), is varied at τ = 0, 0.05, 0.1, 0.2, re�ecting
di�erent levels of strictness, with τ = 0.2 being the most conservative model.

As discussed in section 5.1, 9 bookmakers' odds will be used as input features.
This restricts the seasons to 05/06-12/13, cf. �gure 3.6, which is a reason-
able time horizon as earlier seasons are considered outdated. The data has
been chronologically ordered on both leagues and prospective missing odds are
handled by replacing the missing books with the mean book values from the
remaining bookmakers.

The model is repeatedly presented with a batch of test matches corresponding
to the average number of matches per week. Table 5.2 shows the duration of the
3 latest seasons of each league1, yielding an average duration of approximately
274 days. This gives a test batch size of 7 days

week ·
380 matches
274 days = 9.7 ≈ 10matches

week .

League, season Start-end dates Days

PL, 10/11 14/08/10 - 22/05/11 282
PL 11/12 13/08/11 - 13/05/12 275
PL, 12/13 18/08/12 - 19/05/13 275
LL, 10/11 28/08/10 - 21/05/11 267
LL, 11/12 27/08/11 - 13/05/12 261
LL, 12/13 18/08/12 - 01/06/13 288

Table 5.2: Duration of the three recent seasons in the Premier League (PL)
and the La Liga (LL), including the start and end dates.

Since the characteristics of the odds may be season dependent, a shifting train-
ing set has been proposed. The training set consists of a moving frame, which
encapsulates the most recent 2 · 380 = 760 matches, corresponding to the infor-
mation from two seasons. Whenever the model has processed a test batch, the

1en.wikipedia.org/wiki/Premier_League, en.wikipedia.org/wiki/La_liga

en.wikipedia.org/wiki/Premier_League
en.wikipedia.org/wiki/La_liga
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training frame shifts matches to encapsulate the most recent batch and thereby
disregards the oldest batch. Since the training set comprises 760 matches, this
set-up e�ectively means that the model is an `active punter' in seasons 07/08-
12/13.

The pro�tability may be assessed in may ways. The most central measure is
the rate of return (ROR) de�ned as total return

total stake , as it captures the pro�t relative
to the risk involved. For consistency the rate is de�ned to be zero if no bets
are made. Another important supplementary measure is the number of engaged
matches (bet fraction), as it indicates the level of applicability of the model and
the robustness of the pro�t. For instance a set-up that yields a high ROR with
few bets is hardly applicable and contains high variance in terms of performance.

5.3.2 Basic model

In the �rst simulations the set-up described in Chapter 4 has been directly
applied. This shall be referred to as the basic model, as forthcoming evidence
will encourage the use of di�erent variations of the basic model. Figure 5.2
depicts the cumulated return and expected return for the basic model. Statistics
regarding the simulation are summarized in section 5.3.5, and will be discussed
later.

Evidently the model perform poorly on the PL with no clear trends. Although
the model encounter a series of signi�cantly pro�table matches in seasons 08/09,
which is also re�ected in the cumulated expected return, these returns are bal-
anced out by a series of unpro�table matches in season 11/12. The �uctuations
are less distinct on the most conservative set-up τ = 0.2. On the LL dataset
the cumulated return is steadily increasing in seasons 08/09-10/11 and slightly
decreasing in seasons 11/12-12/13 with a global peak in season 11/12. With in-
creasing τ the total return is reduced, as obviously fewer bets are made although
the same tendency is observed.

An interesting observation is found in the cumulative expected return, as the ex-
pected return signi�cantly exceeds the actual return. Naturally the cumulative
expected return is monotonically increasing, as bets are only made on selections
with non-negative expected return. The expected return and actual return
should statistically, however, agree provided that the model is well-calibrated.
To access how well-calibrated the model is, the estimated probabilities are com-
pared to the actual outcome of the matches. For each class (home, draw and
away) the posterior probability from the model of selection j in match i is held
up against a binary function δij indicating whether the jth selection came true
or not, cf. Eq. (3.13). The samples are constructed as a coordinates with the



5.3 Simulations 53

380 760 1140 1520 1900 2280
−6

−4

−2

0

2

4

6

8

10

12

Time [matches]

C
um

ul
at

ed
 r

et
ur

n

 

 

τ = 0
τ = 0.1
τ = 0.2

(a) Cumulated return (PL).

380 760 1140 1520 1900 2280
0

10

20

30

40

50

60

70

80

90

Time [matches]

C
um

ul
at

ed
 r

et
ur

n

 

 

τ = 0
τ = 0.1
τ = 0.2

(b) Cumulated expected return (PL).
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(c) Cumulated return (LL).
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(d) Cumulated expected return (LL).

Figure 5.2: Basic model: Cumulated return and expected return on the Pre-
mier League (PL) and La Liga (LL) datasets, seasons 07/08-12/13.
The vertical grid lines refer to the transition between seasons.

accumulated estimated probabilities and cumulated empirical probabilities(
k∑
i=1

pij ,

k∑
i=1

δij

)
, k = 1, . . . ,M, j = 1, 2, 3 (5.2)

where the matches are sorted according to ascending pij . Figures 5.3 and 5.4
depict the cumulated probabilities on each selection on the PL and LL datasets
respectively, with τ = 0. The axes have been appropriately modi�ed to state
the probabilities, rather that the cumulative probabilities. Evidently the model
is well-calibrated, when considering all selections, cf. �gures 5.3a, 5.3b, 5.3c,
5.4a, 5.4b, and 5.4c. However, on engaged selections the opposite is true, cf.
�gures 5.3d, 5.3e, 5.3f, 5.4d, 5.4e, and 5.4f, on which the posteriors are generally
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overestimated. This tendency towards overstating the posterior probabilities on
selections is an inherent bias in the decision procedure. The following example
elaborates the issue.
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Figure 5.3: Basic model with τ = 0, seasons 07/08-12/13: Comparison of
cumulative outcomes and posteriors in the Premier League on all
selections (a+b+c) and engaged selections (d+e+f).

Without loss of generality let τ = 0 and consider a series of posteriors (pi),
i = 1, . . . ,M ′ on a series of events with identical odds value o on a given selection
type. Assume that pi, ∀i = 1, . . . ,M ′ are realizations from a mutual Gaussian
with mean p = 1

o and unknown variance σ2, i.e P ∼ N(p, σ2). Since the model
is well-calibrated, p can be assumed to be the true class probability. In order to
bet on event i the model must yield a positive expected return which requires
that pi > p. Denote Q = {pi|p > 1

o} the discrete set of realizations, which
are bet on, with M ′Q ∈ N number of elements, where M ′ ≥ M ′Q > 0. Due
to the properties of the normal distribution it is guaranteed that Q 6= ∅ for
su�ciently largeM ′. Clearly then, the mean value of Q exceeds p̄. Accordingly,
the model performs a series ofM ′Q bets on selections, where the expected return
is estimated as positive, although the true return is in fact zero.

The property can be generalized to include cases where p ≤ 1
o , i.e. where (pi),

i = 1, . . . ,M ′ constitutes any series of selections with non-positive expected
returns originating from a mutual Gaussian P ∼ N(p, σ2). The properties of
the normal distribution will again guarantee Q 6= ∅ for su�ciently large M ′.
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Figure 5.4: Basic model with τ = 0, seasons 07/08-12/13: Comparison of
cumulative outcomes and posteriors in the La Liga on all selections
(a+b+c) and engaged selections (d+e+f).

Hence the mean value of the set will exceed 1
o , and since p̄ ≤ 1

o the posteriors
on engaged selections will be overestimated.

Without loss of consistency this property can be extended to cover three selec-
tion events with home, draw and away outcomes. Provided that the model is
presented with su�ciently many matches M this means that the posteriors are
generally overstated on engaged selections, whereby the expected return gener-
ally exceeds the actual return on engaged selection. For convenience, this bias
shall be referred to as a selection bias.

Figure 5.5 illustrates the distributions of engaged selections according to poste-
riors. Seemingly the distributions of the home and away selections consist of two
bell-shaped components. The major component has an average value around 0.5
on the home selection and around 0.4 on the away selection. The minor compo-
nent has an average of about 0.7−0.8. This component indicates that the model
is capable of detecting and subsequently betting on market ine�cient odds af-
fected by the favourite/long-shot bias. It is noted that away favourites have
generally lower posteriors than home favourites, presumably due to the home
ground advantage. The distinction of the components is particularly clear on the
LL dataset, suggesting a more pronounced favourite/long-shot bias. The draw
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selection has generally low posteriors on engaged selections, peaking around
0.3. This is consistent with �gure 5.1b. Evidently the model includes more
draw selections in the PL dataset than in the LL dataset.
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Figure 5.5: Basic model with τ = 0, seasons 07/08-12/13: Posterior distribu-
tions.

5.3.3 Ensemble model

In an attempt to remove the selection bias a bootstrap aggregation of neural
networks has been proposed. The basic idea of this ensemble model is to apply
the lowest posteriors from a committee of networks on the engaged selections
to reduce the risk of overestimated posteriors. A total of 19 bootstrap training
sets with Mtrain = 760 samples are applied. It is noted that the new training
sets on average contain

1−
(

1− 1

Mtrain

)Mtrain

≈ 0.632 = 63.2% (5.3)

of the samples in the original training set [43, p. 188]. This yields 20 training
sets (including the full training set), which have been used to train 20 separate
NN. The decision criterion for the basic model, cf. Eq. (4.22), has been modi�ed
as follows

D′i =

{
arg max
s∈S

r′i(s) if max
s∈S

r′i(s) > τ

∅ otherwise
(5.4)
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where

r′i(s) = min
j∈{1,2,...,20}

(
E [πij(s)]√
Var [πij(s)]

)
(5.5)

where πij(s) is the return in match i, with a unit bet on each selection in s, when
applying the posterior estimates from model j in the ensemble. S is the set of all
allowable selection combinations, S = {1, 2, 3, {1, 2}, {2, 3}, {1, 3}} as discussed
in section 4.3. The bet size bi on selections speci�ed by s in match i is the
same as with the basic model, i.e. bi = r′i(s), cf. section 4.3. Consequently, the
ensemble model applies a `max-min' criterion on each match, which e�ectively
should remove any overstated posteriors on engaged selections.

Figure 5.6 depicts the cumulated return and expected return with the ensemble
model. Statistics regarding the simulations and comparisons of the models are
stated in section 5.3.5. The total return developments contain many similar pat-
terns to the basic model, although the number of bets are signi�cantly reduced,
due to the more conservative `max-min' strategy, cf. Bet fraction in Tables 5.3
and 5.5. It is observed that both the cumulated return and expected return
on the PL dataset increase signi�cantly in season 08/09, suggesting a series of
matches where the bookmakers generally fail to produce market e�cient books.
Similar e�ect is observed with the basic model.

Figures 5.7 and 5.8 depict the cumulated probabilities with τ = 0, cf. Eg (5.2),
on each selection in the PL and LL datasets respectively. The black lines state
the cumulated average posteriors of the ensemble with errorbars denoting the
lower and upper limits of these posterior estimates. It is noted that the `max-
min' strategy yields generally lower posteriors than the mean posteriors of the
ensemble. This is reasonable, as the `max-min' strategy is applied separately on
each match i, whereby the model is allowed to choose the highest value of r′i(s),
s ∈ S from the ensemble.

It is noted that the draw and away selections in the PL dataset are generally
underestimated, suggesting that the `max-min' approach is too conservative in
terms of determining the posteriors. This means that the model may overlook
valuable selections that statistically will lead to pro�t. Contrary posteriors on
the home selection are still a�ected by the selection bias. A likely explanation
is the nature of the `max-min' approach as the combined posteriors on the
combination of engaged selections per match are minimized, cf. Eg. (5.2).
Accordingly, there is no guarantee that all posteriors per match are minimized.
In summary the ensemble model have di�culties with the PL dataset as the
model does not seem to be perfectly well-calibrated on either selections. This
might explain why the model performs poorly in the PL dataset, cf. �gure 5.6a.
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Unlike the PL data the ensemble model is very well-calibrated in the LL dataset
and there is a reasonable similarity between the cumulated return and cumulated
expected return. This leads to a better pro�t, cf. �gure 5.6c.
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(b) Cumulated expected return (PL).
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(c) Cumulated return (LL).

380 760 1140 1520 1900 2280
0

2

4

6

8

10

12

Time [matches]

C
um

ul
at

ed
 r

et
ur

n

 

 

τ = 0
τ = 0.05
τ = 0.1

(d) Cumulated expected return (LL).

Figure 5.6: Ensemble model: Cumulated return and expected return on the
Premier League (PL) and La Liga (LL) datasets, seasons 07/08-
12/13. The vertical grid lines refer to the transition between sea-
sons.

5.3.4 Posterior restrictive model

Consider once again the basic model. Figure 5.9 depicts the cumulated rate
of return (ROR) of the selections on engaged matches with the basic strategy
with τ = 0. The RORs per match i = 1, . . . ,M have been sorted according
to ascending sum of posteriors, pi,sum =

∑
j=Di

pij , on the engaged selections,
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Figure 5.7: Ensemble model with τ = 0, seasons 07/08-12/13: Comparison of
cumulative outcomes and posteriors in the Premier League on all
selections (a+b+c) and engaged selections (d+e+f).

where Di ∈ S encapsulates the engaged selections in the ith match using the
basic model, cf. Eq. (4.22). Quite interestingly there are probabilistic regions
where the ROR appears to be larger than others. Particularly on the LL dataset
there is a distinctively high pro�tability on engaged selections with pi,sum ∈
[0.4, 0.5]. Motivated by this empirical evidence of an uneven distribution of
pro�tability potentials, an extension of the basic model that restricts pi,sum has
been proposed.

The basic idea is to apply an additional set of eight `passive' models Mk,
k = 1, . . . , 8 simultaneously with the `active' model, each capturing mutually
exclusive subsets of the matches engaged by the basic model. For a given match
i, the kth passive model only allowed to pick up Di if pi,sum ∈ Ik, where Ik is
the kth subintervals of [0, 1], de�ned as

I1 = [0, 0.2], (5.6)

Ik = [0.1k, 0.1(k + 1)[, k = 2, . . . , 7, (5.7)

I8 = [0.8, 1] (5.8)

The rate of return (ROR) of each passive model of each match is added as the
models are presented with new batches of test matches. For convenience the
ROR equals zero if no bets are made. Similar to the basic model a limited
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Figure 5.8: Ensemble model with τ = 0, seasons 07/08-12/13: Comparison of
cumulative outcomes and posteriors in the La Liga on all selections
(a+b+c) and engaged selections (d+e+f).
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Figure 5.9: Basic model with τ = 0, seasons 07/08-12/13: Cumulated rate of
return on engaged selections, sorted by ascending sum of posteriors
per match.

memory system has been proposed, whereby RORs from only the past 760
matches are collected. Consequently, the `passive' models are saturated only
when at least 760 test matches has been encountered, which means that the
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posterior restrictive model is only saturated when at least two test seasons
have been processed. For a given test batch the model only engages match
i if the selections Di have pi,sum restricted to the interval Iki , corresponding
to the `passive' modelMki with highest sum of RORs across the past 760 test
matches. The procedure has been formalized below.

Let Rki denote the cumulated ROR over the most recent 760 matches up to
match i satisfying pl,sum =

∑
j=Dl

plj ∈ Ik, ∀l = max(1, i− 760), . . . , i− 1. Rki
can then formulated as

Rki =
∑

n∈{m|pm,sum∈Jk,

m=max(1,i−760),...,i−1}

πn(Dn)

Bn
(5.9)

where Bn is the total amount betted in match n on selectionsDn ∈ S engaged by
the basic model. The best subinterval Iki is then found as the interval yielding
the highest cumulated ROR on the past 760 matches, i.e.

ki = arg max
k∈{1,...,8}

Rki (5.10)

The decision criterion in the basic model, cf. Eq. (4.22), is then extended by
adding an additional layer of restrictions

D′′i =

{
Di if pi,sum ∈ Iki
∅ otherwise

(5.11)

where ri(s) is de�ned as in Eq. (4.23), Di is the selections to bet on from
the basic model, and D′′i contains the selections to bet on with the posterior
restrictive model. Consequently, the new model engages a subset of the selection
engaged by the basic model.

Figure 5.10 depicts the cumulated return and expected cumulated return on the
PL and LL datasets, as well as the choice of Iki in each batch. The performance
has only been evaluated on the latest four seasons 09/10-12/13, due to the train-
ing phase of the passive models, as previously discussed. By application of both
the basic model and the ensemble model it was observed that the cumulative
return reached a global peak in season 11/12 in the LL dataset, cf. �gures 5.2
and 5.6. This trend is however, not present with the posterior restrictive model
which pro�ts very steadily on the LL dataset, except minor drops in for instance
season 12/13. A reasonably steady increase in pro�t is also observed in the PL
dataset during the latest three seasons. Statistics regarding the simulation are
summarized in the next section. Contrary to the basic model, the restrictive
model yields very similar developments of the expected return and true return.

The acceptable posterior region Iki in the PL dataset lies steadily at [0.3, 0.4]
in season 09/10, and [0.4, 0.5] in seasons 10/11-12/13. With the LL dataset
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the posteriors are generally restricted to [0.6, 0.7] in seasons 09/10-10/11 and
[0.4, 0.5] in season 11/12-12/13. This is coherent with �gure 5.9b, as I4 and
I6 are posterior regions with positive ROR on many engaged selections by the
basic model.
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(b) Cumulated return (LL).
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(c) Cumulated expected return (PL).
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(d) Cumulated expected return (LL).
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Figure 5.10: Posterior restrictive model: Cumulated return and expected re-
turn on the Premier League (PL) and La Liga (LL) datasets,
seasons 09/10-12/13, and developments of posterior restrictions,
cf. eq (5.10).
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5.3.5 Summary of results

Tables 5.3 and 5.4 summarize key statistics of the model performance when
applying on the PL dataset with varying threshold value τ . Tables 5.5 and
5.6 summarize the same statistics with application of the LL dataset. Although
most of the statistics are self-explanatory some important features are described
below.

5.3.5.1 Basic model, Premier League

The basic model yields minor negative pro�ts and accordingly negative RORs,
with τ = 0, 0.2. Using τ = 0.1 the loss magnitude is signi�cantly higher. Re-
gardless of τ the pro�t is, however, very high on the latest season 12/13. Quite
remarkably the model bets on virtually all matches with τ = 0, which is halved
with τ = 0.1 and further reduced signi�cantly with τ = 0.2.

The error rate, corresponding to the fraction of engaged matches with negative
pro�t, is about 50 % regardless of τ . The error is partly balanced out by the
high mean odds of about 3, and winning selections with high odds, cf. the
maximum odds won. This is true for the ensemble model and the posterior
restrictive model, as well. The selection distributions are very similar for all
values of τ . Half the bets are made on home-draw doubles, followed by singles
on home and draw-away doubles. Evidently betting on multiple selections yields
high expected returns, which in addition reduces the vulnerability of losses.

5.3.5.2 Basic model, La Liga

The total return and accordingly the overall ROR is positive for all τ , although
all con�gurations lose a signi�cant amount of money on season 12/13. The bet
fraction is generally higher and the error rate lower compared to the PL dataset,
and possibly this combination of positive factors explains why the model gains
signi�cantly more with the LL dataset. On the other hand the mean and max
odds won are signi�cantly lower, suggesting that the model generally gains less
per engaged match but wins on more bets. The model bets predominantly on
single home selections, weakly followed by away singles. Thus single selections
are preferred, contrary to the PL dataset. Evidently the characteristics of the
betting pattern is very di�erent between the two datasets.
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5.3.5.3 Ensemble model, Premier League

The ensemble model yields minor positive total returns for all thresholds. τ =
0.1 implies very few bets and accordingly the ROR is very high. The error
rate with τ = 0, 0.05 is similar to the basic model. With τ = 0.2 the error is
signi�cantly lower, which most likely is a consequence of the high variance on
the statistics, as only 2.57% of all matches have been engaged.

The max-min approach, cf. Eqs. (5.4) and (5.5), implies that the posteriors on
engaged selections are generally lower than the equivalent posteriors with the
basic model. Accordingly, the bet sizes, which are equal to the the standardized
expected return (SER), will likewise be lower. This is evident in Table 5.4, as
the bets are several factors smaller.

The clear majority of bets are made on home-draw doubles, followed by home
singles. Compared with the basic model, the ensemble model cuts away many
home singles and draw-away doubles, presumably because the variances of the
posteriors with these combinations are substantial, whereby the SER is reduced.
Consequently, fewer matches are engaged with these combinations.

5.3.5.4 Ensemble model, La Liga

Similar to the basic model the error rate is generally lower and the bet fraction is
higher compared to the PL dataset. Except for τe = 0.1, the model demonstrates
similar total ROR to the basic model, although the return on season 12/13 is
now positive. This indicates that the model is strongly a�ected by the selection
bias in season 12/13. As with the basic model generally lower winning odds are
observed, compared to the PL dataset, and the selections are focused on home
singles followed by home-draw doubles.

5.3.5.5 Posterior restrictive model, Premier League

The posterior restrictive model produces relatively high returns as well as high
ROR. However, with τ = 0.1 the model losses on all engaged selections in season
09/10. The bet fraction is halved as τ is doubled. It is observed that the error
rate is about 62%, regardless of τ . This is consistent with the fact that Iki
predominantly assumes the intervals [0.3, 0.4] and [0.4, 0.5], whereby an error
rate of about 60% is expected. Speci�cally in the �rst season the error rate is
large, as the model chooses a low interval index ki, cf. �gure 5.10e.
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The generally low values of the acceptable posteriors can be perceived as a high
risk-willingness, which is supported by generally higher mean odds values, com-
pared to the latter two models. The low posteriors also implies that relatively
fewer bets are made on doubles, as these selection combinations typically have
higher sums of posteriors. With τ = 0, 0.05 bets are frequently made on home
and draw singles. Away selections are primarily represented in doubles with
draw selections. The model never bets on home-away doubles, possibly because
the sum of posteriors consistently exceeds Iki , as one of the teams is considered
at least a weak favourite.

5.3.5.6 Posterior restrictive model, La Liga

The ROR is signi�cantly higher than any of the other models. Although the
mean winning odds are small compared to the PL dataset, the signi�cantly
lower error rates imply very high pro�ts. The model mainly applies the intervals
[0.4, 0.5] and [0.6, 0.7] in equal proportions, yielding an expected success rate of
about 55% which is consistent with the error rate around 47%. As the other
two models, mainly home single selections are engaged.
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Set-up Total return ROR [%] Bet frac. [%] Error [%]

τb = 0 -0.938 -0.313 99.1 51.8
(-4.54,1.89, (-8.54,2.23, (99.2,98.7, (50.9,45.9,

-3.92,5.63) -4.82,7.00) 99.7,98.9) 59.4,50.8)

τb = 0.1 -6.89 -3.06 53.9 51.1
(-4.53,0.387, (-12.9,0.565, (47.4,63.4, (50.0,43.6,

-6.11,3.37) -9.80,5.67) 52.4,52.6) 58.8,53.5)

τb = 0.2 -0.176 -0.293 9.41 53.1
(-0.468,-3.64, (-4.87,-34.1, (9.21,6.84, (45.7,61.5,

-1.24,5.17) -5.60,29.5) 11.8,9.74) 62.2,43.2)

τe = 0 0.105 0.284 32.4 50.9
(-0.0764,0.122, (-1.61,0.751, (23.7,46.3, (50.0,42.0,

-0.374,0.434) -3.30,9.25) 38.9,20.8) 61.5,51.9)

τe = 0.05 0.0633 0.272 9.93 45.7
(0.109,-0.106, (4.07,-0.965, (6.32,17.4, (41.7,43.9,

-0.415,0.475) -5.58,22.5) 12.4,3.68) 53.2,35.7)

τe = 0.1 1.38 15.9 2.57 38.5
(0.498,1.28, (37.9,35.0, (2.37,3.95, (22.2,26.7,

-0.143,-0.254) -4.17,-100) 3.68,0.263) 57.1,100)

τr = 0 3.17 6.21 29.3 62.3
(-2.95,3.27, (-46.5,22.2, (22.9,41.6, (78.2,54.4,

1.85,1.00) 10.7,7.91) 28.2,24.7) 62.6,60.6)

τr = 0.05 3.10 6.92 16.4 61.6
(-3.10,2.84, (-65.3,22.3, (10.5,27.6, (85.0,54.3,

2.20,1.15) 13.9,10.1) 14.5,13.2) 60.0,60.0)

τr = 0.1 0.269 0.750 8.42 65.6
(-2.74,0.716, (-100,7.68, (3.95,12.1, (100,63.0,

1.15,1.15) 7.55,13.5) 10.3,7.37) 61.5,57.1)

Table 5.3: Statistics on model pro�tability on the Premier League dataset,
seasons 09/10-12/13. τb, τe and τr refer to the basic model, the en-
semble model and the posterior restrictive model, respectively. The
brackets hold the statistics per season, ordered chronologically. The
error states the fraction of engaged matches with negative pro�t.
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Set-up Mean bet
(min./max.)

Mean odds won
(min./max.)

Singles [%] Doubles [%]

τb = 0 0.118 2.91 (18.9, 8.16, 5.77) (46.6, 15.3, 5.91)
(< 0.01/0.453) (1.12/29.0)

τb = 0.1 0.160 3.01 (18.0, 5.24, 6.59) (52.7, 14.5, 3.78)
(0.100/0.453) (1.17/15.0)

τb = 0.2 0.254 3.45 (16.8, 4.20, 14.0) (51.7, 11.9, 1.40)
(0.201/0.453) (1.20/15.0)

τe = 0 0.0423 2.93 (10.8, 9.74, 4.26) (63.7, 5.48, 7.10)
(< 0.01/0.296) (1.17/29.0)

τe = 0.05 0.0868 2.90 (12.6, 6.62, 5.96) (68.9, 5.30, 1.99)
(0.0502/0.296) (1.25/6.50)

τe = 0.1 0.129 2.98 (15.4, 7.69, 10.3) (69.2, 0.00, 0.00)
(0.101/0.296) (1.30/6.00)

τr = 0 0.0851 3.67 (37.7, 22.6, 5.16) (14.8, 19.7, 0.00)
(< 0.01/0.357) (1.99/10.0)

τr = 0.05 0.128 3.96 (37.6, 20.0, 2.40) (23.2, 16.8, 0.00)
(0.0501/0.357) (1.99/10.0)

τr = 0.1 0.177 4.60 (31.3, 8.59, 2.34) (45.3, 12.5, 0.00)
(0.100/0.357) (2.15/10.0)

Table 5.4: Odds statistics on model on the Premier League dataset, seasons
09/10-12/13. τb, τe and τr refer to the basic model, the ensemble
model and the posterior restrictive model, respectively. `Singles'
refers to fraction of bets on selection (H,D,A) and `Doubles' to
fraction of bets on selections (H + D,D + A,H + A), where H, D
and A refer to home, draw, and away selections, respectively.
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Set-up Total return ROR [%] Bet frac. [%] Error [%]

τb = 0 10.9 4.28 99.8 48.7
(6.02,7.45, (7.99,11.3, (99.7,99.7, (45.1,40.1,

2.61,-5.21) 4.01,-11.0) 100,99.7) 52.4,57.3)

τb = 0.1 9.79 4.86 62.7 48.3
(4.82,6.53, (7.30,12.5, (74.5,62.4, (43.8,39.7,

2.18,-3.75) 3.99,-13.1) 69.7,44.2) 55.1,57.1)

τb = 0.2 6.52 7.76 17.0 42.1
(2.39,2.08, (6.51,9.68, (28.7,17.4, (36.7,40.9,

3.33,-1.27) 15.6,-27.2) 17.6,4.47) 49.3,52.9)

τe = 0 2.81 5.67 42.8 46.2
(0.434,1.16, (2.95,9.12, (41.3,42.9, (42.7,37.4,

1.21,<0.01) 8.15,0.0288) 48.9,37.9) 50.0,54.9)

τe = 0.05 1.63 4.10 20.6 41.9
(0.126,0.805, (0.992,7.67, (23.9,21.6, (34.1,37.8,

0.483,0.216) 3.91,5.14) 26.3,10.5) 53.0,40.0)

τe = 0.1 -0.344 -1.40 9.01 40.9
(-0.157,-0.425, (-1.67,-7.32, (13.4,8.42, (33.3,43.8,

0.0421,0.195) 0.571,9.45) 10.5,3.68) 47.5,42.9)

τr = 0 7.73 16.2 25.1 45.7
(2.22,2.38, (18.5,14.9, (22.1,28.7, (33.3,38.5,

2.26,0.871) 22.7,8.83) 20.3,29.2) 55.8,55.0)

τr = 0.05 6.99 15.1 20.3 46.9
(2.66,2.23, (23.4,13.6, (16.1,24.5, (32.8,39.8,

2.08,0.0207) 21.5,0.232) 18.4,22.4) 57.1,56.5)

τr = 0.1 5.52 16.2 12.2 47.8
(2.26,1.15, (23.4,10.3, (12.6,12.9, (35.4,44.9,

1.69,0.426) 20.7,8.37) 13.9,9.47) 56.6,55.6)

Table 5.5: Statistics on model pro�tability on the La Liga dataset, seasons
09/10-12/13. τb, τe and τr refer to the basic model, the ensemble
model and the posterior restrictive model, respectively. The brack-
ets hold the statistics per season, ordered chronologically. The error
states the fraction of engaged matches with negative pro�t.
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Set-up Mean bet
(min./max.)

Mean odds won
(min./max.)

Singles [%] Doubles [%]

τb = 0 0.134 2.22 (65.0, 1.85, 8.24) (7.25, 5.21, 12.7)
(< 0.01/1.19) (1.08/13.4)

τb = 0.1 0.178 2.21 (70.5, 2.31, 8.50) (6.51, 5.88, 6.51)
(0.100/1.19) (1.08/11.5)

τb = 0.2 0.286 2.02 (75.7, 3.09, 7.72) (3.47, 6.18, 3.86)
(0.201/1.19) (1.13/8.50)

τe = 0 0.0615 2.23 (69.5, 1.85, 5.08) (12.9, 1.85, 9.08)
(< 0.01/0.648) (1.12/8.50)

τe = 0.05 0.109 2.07 (79.2, 1.92, 3.19) (10.5, 1.92, 3.83)
(0.0500/0.648) (1.13/7.84)

τe = 0.1 0.162 1.86 (86.1, 0.730, 2.19) (5.84, 1.46, 3.65)
(0.100/0.648) (1.13/3.50)

τr = 0 0.105 2.51 (64.6, 0.262, 15.2) (12.1, 6.56, 1.31)
(< 0.01/0.513) (1.53/6.00)

τr = 0.05 0.133 2.33 (74.1, 1.29, 11.7) (8.09, 3.88, 0.971)
(0.0512/0.513) (1.53/4.10)

τr = 0.1 0.170 2.31 (82.8, 0.538, 9.14) (3.23, 3.76, 0.538)
(0.101/0.513) (1.61/3.80)

Table 5.6: Odds statistics on model on the La Liga dataset, seasons 09/10-
12/13. τb, τe and τr refer to the basic model, the ensemble model
and the posterior restrictive model, respectively. `Singles' refers to
fraction of bets on selection (H,D,A) and `Doubles' to fraction of
bets on selections (H + D,D + A,H + A), where H, D A refer to
home, draw, and away, respectively.
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5.4 Quantile Analysis of Posteriors

A central issue is whether the probabilities implied by the odds, denoted p̃ij , cor-
respond to the posterior probabilities pij estimated by the model. A reasonable
assumption is that p̃ij is captured by the reciprocal odds value normalized by
the bookmakers' pro�t margin. Accordingly, de�ne p̃ij as

p̃ij =
1

N

N∑
k=1

1

okij(η
k
i + 1)

, i = 1, . . . ,M, j = 1, 2, 3 (5.12)

where ηki is the overround of bookmaker k = 1, . . . , N in match i = 1, . . . ,M ,
cf. Eq. (3.12).

The distributions of p̃ij and pij , j = 1, 2, 3 have been compared using a Q-Q
plot on each selection j with the N = 9 most recorded bookmakers on both
datasets, seasons 05/06-12/13. A hold-out validation has been carried out with
3
4 of the data as training set and 1

4 as test set.

Figure 5.11 depicts the Q-Q-plots comparing p̃ij and pij , j = 1, 2, 3 on the test
set. The Q-Q plot is a probability plot, where the quantiles of two distributions
are compared by plotting their respective quantiles against each other. If the
quantiles of p̃ij and pij constitute a straight line y = αx the distributions are
linearly related, speci�cally if α = 1 the distributions are identical. If α < 1
in a given quantile region R the distribution of p̃ij is more dispersed than the
distribution of pij in R. Contrary pij is more dispersed than p̃ij in R, provided
that α > 1 in R.

The distributions around the median are very similar on the home and away
selections, as the central quantiles seem equally spaced. This indicates that the
odds indeed agree with the class probabilities on matches with roughly even
opposing teams. However, the lower and upper quantiles on the two selections
demonstrate that the distributions of pi1 and pi3 are far more dense than p̃i1
and p̃i3 respectively in those regions. Since the model is well-calibrated, cf.
�gures 5.3a, 5.3b, 5.3c, 5.4a, 5.4b, and 5.4c, these characteristics can be directly
interpreted as biases in the odds.

On home selections the bookmakers generally understate the winning chances
of clear favourites by setting the favourite odds too high and simultaneously
overstate the winning chances of very weak teams by setting odds too low. This
`regularization' of odds in matches with extremely uneven teams, con�rms the
existence of the favourite/long-shot bias, cf. section 2.3.3. Quite interestingly
the bias far more signi�cant in the LL dataset. Presumably the Spanish pun-
ters bets more irrationally as more bets are made on highly unlikely outcomes,
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Figure 5.11: Q-Q-plots comparing the distribution of the probabilities directly
extracted from the odds with the posteriors estimated by the
model. The data consists of odds data from seasons 05/06-12/13
from the 9 most recorded bookmakers in the Premier League
(PL) and the La Liga (LL) datasets.

forcing the bookmakers to enhance the bias in the odds. This could be caused
by e.g. strong team loyalty to small weak teams in matches where the opponent
is far stronger. This conclusion is consistent with �gure 5.5, from which it was
also deduced that the bias is more prevalent in the Spanish league.

Although p̃i3 is signi�cantly more dispersed than pi3 in the high quantiles, the
values of p̃i3 are generally higher than pi3. This contradicts with the observa-
tions on the home selections, as the winning chances of strong away favourites
are generally overrated, i.e. the odds are too low. The curves indicate that the
actual winning frequency of away favourites is more persistent and smaller at
pi3 ∈ [0.6, 0.7], than the odds appear to reveal. The tendency is particularly
profound on the LL dataset. Presumably bookmakers have di�culties estimat-
ing the strength of strong away teams, leading to very conservative away odds.
A further discussion of this issue is found in section 6.4. This e�ect completely
dominates the favourite/long-shot bias.

It is noted that maxi pi1 ≈ 0.9 on the LL dataset and maxi pi1 ≈ 0.82 on the
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PL dataset. Thus, whenever the home team is a clear favourite, the probability
of a home win is signi�cantly higher in the LL. This either suggests that the
home team advantage is more profound in the LL with strong home teams, or
that strong teams in the PL are simply relatively stronger than weak teams in
the league. Indeed �gure 3.10 shows that the Spanish League have two superior
teams (Real Madrid and F.C. Barcelona) whereas the English league only has
one (Manchester Unitied) with winning rates exceeding 70 %.

Additionally it is observed that maxi pi3 ≈ 0.675 on both datasets, which is
signi�cantly lower than maxi pi1. This indicates a generally higher con�dence
in home wins, when the home team is the favourite, compared to away wins
when the away team is the favourite. This is consistent with �gure 3.2b, stating
that the away odds on away wins generally exceed the home odds on home wins,
as a consequence of the bookmakers' substantial con�dence in the home ground
advantage.

The distribution of the draw selection di�ers from the other. There is no indi-
cation of an S-shape, as the favourite/long-shot bias does not directly a�ect the
draw selection. The probabilities are generally small, maxi pi2 ≈ 0.35 = 35%,
on both datasets as draws are unlikely. Particularly the LL dataset contains
many low posteriors (pi2 < 0.1) on the draw selection, showing that draws are
more unlikely in the Spanish league. Additionally pi2 is generally lower than
p̃i2 in the LL set, suggesting that odds are generally unattractive on the draw
selection. This is supported by Tables 5.4 and 5.6, as the fraction on bets on
single draw selections are consistently much lower in the LL dataset.
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Chapter 6

Discussion

6.1 Research Impact

The content of this thesis is motivated by the conclusions from former researches.
It is, however, perceived that many of the results presented this thesis have not
been elaborated to this extend before as generally little research is publicly
available. This includes the statistical analysis of a large odds dataset, which
reveals strong evidence of notorious bias phenomena within the odds setting
framework in association football, causing market ine�ciencies. Additionally it
illuminates the existences of distinguishable odds characteristics regarding the
three di�erent outcome classes, and league characteristics.

The proposed betting model has been successfully applied to a La Liga (LL)
odds dataset, demonstrating that a simple model solely based on a small class
publicly accessible statistics is able to pro�t on the odds market. The key
assumptions of this approach are that 1) the bookmakers have already done
the research to accurately subjectively estimates the outcome probabilities, 2)
this distribution is concealed by a `social �lter' to encompass biases and, 3) the
model is capable of �ltering out the biases. Accordingly, the proposed model
outsources the statistical work to a crowd of external experts (bookmakers) to
pro�t on the bookmakers themselves. Given the generalizability of the model
it may be applied to other football leagues possibly with even better results,
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other types of bets or even other sports, which are su�ciently covered with
odds statistics.

6.2 Model Performance

The initially proposed model is based on maximizing the standardized expected
return in each match by engaging an appropriate combination of outcome se-
lections. Evidently this basic model performs very well on the La Liga (LL)
data set in earlier seasons 08/09-10/11. However, on recent seasons which are
of most interest the model yields a negative return. Contrary the model gives
positive return on the Premier League (PL) dataset in the latest season, 12/13,
and overall insigni�cant returns in preceding seasons. Overall the basic model
is not a robust betting model, and the practical application in future seasons is
questionable.

The performance measures are generally similar with the ensemble model, al-
though it demonstrates the existence of a selections bias and how one could
handle it. Figure 5.6 depicts the cumulated returns and expected returns. Al-
though the model is reasonably calibrated, particularly on the LL dataset, cf.
�gures 5.8d, 5.8e and 5.8f, the expected returns still exceeds the actual return.
A central contribution to the prevailing deviation is allegedly the betting sizes,
cf. Eq. (4.24), as overestimated matches will always have the highest bets.
Consequently the cumulated expected returns are dominated by bets, where
the selection bias is not completely removed.

A highly relevant question is whether it is even necessary to apply an ensemble,
as the threshold value τ may su�ce as a safety margin. The selection bias may
be handled su�ciently by an appropriate value of τ , as it �lters out critical
selections balancing between positive and negative returns, which are highly
likely to be dominated by the selection bias. Although the bias would still
present, the model should not be penalized by it.

The posterior restrictive model di�ers signi�cantly from the latter two models, as
it also applies empirical evidence, rather than acknowledged statistical methods.
It utilizes league speci�c characteristics incorporated in the rate of return to
properly adjust selection restrictions. The performance of this model exceeds
the latter two with generally steady returns and clearly demonstrates practical
applicability. Quite remarkably the true return and expected return are very
similar with the LL dataset, cf. �gures 5.10b and 5.10d. Since the model is
well-calibrated in the whole posterior range, cf. �gure 5.4, and not particularly
in the posterior region speci�ed by Iki , it would seem that the selection bias
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is particularly low in Iki . Despite several attempts no clear evidence has been
found in this regard.

According to the favourite/long-shot bias theory one would anticipate the best
selections to be on favourite teams. This is, however, not the case. Generally the
posterior restrictive model limits its scope of posteriors to [0.4, 0.5] on the recent
seasons 11/12-12/13 in both leagues, which comprises a `gray area' between the
highly likely and highly unlikely selections. It is a well-known phenomenon
that humans are poor probability estimators. Possibly few people are willing to
bet on these unclear selections, and the bookmakers are subsequently forced to
increase the odds on those selections to obtain balanced books. Alternatively,
and more likely, the selections in the `gray area' may encourage punters to
put their bets on the selections that they want to be realized rather than the
statistically superior selection, which leads to the signi�cant ine�ciencies in the
posterior range [0.4, 0.5].

If the scope is broadened to all 4 test seasons 09/10-12/13, it is observed that the
mean odds lie between 3.67-4.6 in the PL dataset and 2.32-2.51 in the LL dataset,
cf. Tables 5.4 and 5.6, depending on the threshold value. The mean odds are
generally higher in the English leagues as the acceptable interval Iki generally
restricts the model to selections with lower posteriors and consequently higher
odds. This means that the selections in the PL dataset are generally biased
against the punter due to the favourite/long-shot bias. Even so the model still
pro�ts on the latest 3 seasons in the English league, and if the bias was not
present the pro�t would possibly be even higher.

In sections 1.3.5 and 1.3.4 the pro�tability capacities of other betting models
have been outlined and may be used for comparison. Ref. [24] proposed an
expert constructed Bayesian network and used a standard (unspeci�ed) prof-
itability measure with varying discrepancy levels as betting criterion on the PL
season 10/11. Among other statistics the performance was measured by the
overall pro�t/loss ratio, which is identical to the rate of return (ROR) measure-
ment in Table 5.3. Therefore the models can be directly compared in season
10/11. By application of the posterior restrictive model with τr = 0, 0.05, 0.1
the RORs are 22.2%, 22.3% and 7.68%, respectively, and the bet fractions are
41.6%, 27.6% and 12.1%, respectively. Similar bet fractions in [24] are found
using discrepancy levels ≥ 5%, ≥ 7% and ≥ 10% yielding RORs equal to 8.4%,
12.1% and 20.4%, cf. Table 1.1. Apart from the most conservative set-up with
τr = 0.1 the posterior restrictive model is at least on par with the Bayesian
network model. It is considered unsuitable to derive more precise conclusions
due to the relatively low number of engaged matches.

Ref. [25] applied a NN model and tested it on 400 random matches from the
LL seasons 07/08-10/11 in 5 runs. The model yielded an average pro�t of 0.16
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per unit bet which corresponds to a ROR of 16 %. A direct comparison is not
possible since the samples are mixed from di�erent seasons and chronologically
unordered. In seasons 09/10 and 10/11 the most pro�table posterior restrictive
model (τr = 0) yields RORs equal to 22.1% and 28.7%. These seasons may
coincide with the test samples in [25] and indicate that the posterior restrictive
model is at least on par with the pro�tability capacity of the model in [25].

6.3 League Characteristics

The odds analysis and model simulations provide statistical characteristics of the
two considered leagues and odds datasets. Although both leagues are a�ected by
several biases consisting of the home ground advantage and the favourite/long-
shot bias, with team bias being a special case, the biases are more prominent
in the LL dataset, cf. �gure 5.11. Since the odds re�ect the public opinion,
this observation indicates that punters on the Spanish league bet less rationally
and more `by heart'. Speci�cally Spanish fans may display higher team loyalty
to weak teams. In contrast, evidence suggests that the Premier League is more
irregular than La Liga in terms of match outcomes. Figures 3.4 and 3.5 indicates
a more `noisy' PL dataset with less distinct separation between the classes. In
addition the Brier score, cf. section 5.1 is higher on the PL dataset, inevitably
leading to generally poorer forecast capabilities, cf. section 5.3. Even though it
has been demonstrated that PL odds are slightly more attractive, cf. Table 3.4,
this clearly does not su�ciently compensate for the outcome irregularities. In
order to better account for the irregularities the information span in the input
features must be expanded by incorporating e.g. expert knowledge as proposed
by Refs. [23] and [24] such as quanti�able measures of team spirit, key player's
form, fatigue, etc.

6.4 Odds Characteristics

In section 5.1 it was demonstrated that the predictive precision of the neural
network is highly indi�erent to whether 5, 9 or 37 bookmakers' odds are used
as input features. The accuracy improvement of using a committee of models
(bookmakers) strongly depends on the correlation between the models, as high
correlation implies generally small accuracy improvements, cf. [22, p. 657].
Since strong correlation has been observed between the bookmakers in individ-
ual matches, cf. �gure 3.7, the performance improvements are insigni�cant to
whether 5, 9 or 37 bookmakers are used, as few bookmakers su�ciently cover
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the data information of all bookmakers. This observation suggests that the
data consists of two major components. The �rst component is the highly dom-
inating low frequency features, adequately captured by few bookmakers. The
other component consists of high frequency features, encapsulating the individ-
ual bookmakers' characteristics, which the model mainly recognizes as white
noise. From this perspective the initial idea of applying a large crowd of experts
(bookmakers), seems unnecessary as the disagreements between the bookmakers
hardly contribute to the model's forecast capability. Most likely the �uctuations
are simply the result of each bookmaker's attempts to balance its books. This
is consistent with �gures 3.4 and 3.5 which demonstrate low data complexity.
Indeed the model's performance is inherently limited by the information in the
low frequency component, and signi�cant performance improvements should be
archived by uncorrelated information from e.g. other statistics or expert judge-
ments, as already discussed in section 6.3.

Despite strong correlations the bookmakers disagree remarkably more on the
away selection than the other two selections, cf. �gure 3.8. In addition the
winning chances of strong away teams are generally underrated, cf. �gures
5.11c and 5.11f, as a consequence of conservative odds setting. Presumably
this is an expression of that the winning chances of away teams are generally
di�cult to estimate. Intuitively this is reasonable, as the home team advantage
contributes negatively to the away team's strength and positively to the home
team's strength. Essentially the home team is biased to win, and the away team
must predominately rely of internal factors, such as morale and fatigue, which
may be harder to estimate by the bookmakers.

Evidence suggests that bookmakers apply risk management procedures individu-
ally on each match by balancing the books. This risk-minimizing approach leads
to ine�ciencies due to biases an other irregularities in the bet distributions.
Although these biases are well-known e�ects in virtually all betting markets,
bookmakers accept the ine�ciencies as the risk-minimizing approach minimizes
the potential liability. One could however, speculate if such risk management
is appropriate in the long run. If bookmakers instead act as pro�t-maximizers
and accept losses on some matches, the pro�t would probably exceed that of the
risk-minimizing approach. This can be regarded as a more global risk manage-
ment. Presumably bookmakers are reluctant to bind large means despite that
pro�t is statistically guaranteed in the long run, as it would require signi�cantly
larger cash capacity to accommodate potential series of adverse outcomes. This
may explain the existence of many odds ine�ciencies.

The simulations demonstrate that the model performance is highly seasons de-
pendent, especially the basic model and the ensemble model pro�t very di�er-
ently on each season. The posterior restrictive model also indicates that the
regions with most lucrative bets vary according to seasons, cf. �gures 5.10e and
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5.10f. Additionally the odds analysis indicates an overround reduction. Ob-
viously there are many contributing factors to this non-stationary behaviour,
including the following:

Firstly the football sport evolves. New training techniques, strategic formations,
talent development programs, etc. are enforced, as well as revised �nancial
legislations, e.g. �nancial fair-play.

Secondly, the bookmaker industry evolves. Evidence indicates that the compe-
tition in the odds market is ever intensifying, as the overround is consistently
decreasing in both leagues, cf. �gure 3.3. Additionally bookmakers have be-
come increasingly more accurate at setting lucrative books, as ine�cient odds
are increasingly penalized due to the intensi�ed market competition [21]. This
shows that odds setting models are constantly revised.

Thirdly, season and match speci�c circumstances apply. Coincidences such as
injuries, suspensions, rowdy spectators, and pure luck during a match may in-
�uence the outcome. Additionally reinforcing mechanisms during a season may
apply. A team may be superior in a long wave of matches due to increasingly
high morale, or contrary be inferior in a wave due to reducing morale. Thirdly
the match may be a�ected by match �xing possibly leading to unanticipated
match results. A further meta-data analysis of seasons speci�c factors could
have been carried out to elaborate on this subject.

6.5 Future Work

An interesting subject of further investigation is the team bias, as discussed
in section 3.5. The current analysis demonstrates the existence of a team bias
on the signi�cantly strong and weak teams in both leagues by considering all
engaged matches by all teams. A more selective analysis, where only particularly
strong and weak teams are compared to each other, could possibly elaborate the
results and give more relevant residual measures, as the matches una�ected by
the bias are sorted out.

The team residual measure could further be applied to formulate a proximity
measure between teams in matches with strong favourites, which should be
used as an additional input feature. Instead of an explicit proximity measure
one could also consider applying a binary input feature stating the home and
away teams, whereby the model implicitly should detect the bias. Although this
approach has been brie�y examined with no apparent improvements in forecast
precision, a more thorough analysis could have been performed.
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The employed odds dataset consists of statistics from two independent sources.
As discussed in section 3.1 the times at which these have been registered di�ers
from each match, and the temporal odds movements are only available in the
most recent season 12/13 at betexplorer.com. A further analysis of the tem-
poral odds movements and its impact on the model performance could be of
interests to illuminate if the overround changes and if opening or closing odds
are generally better.

The decision framework may be revised as it applies the critical simpli�ca-
tion that bet sizes are equal on engaged selections. Ideally the bets should be
weighted to the expected return on the individual selections, such that large
bets are made on single selections with high expected returns, and small best
are made on selections with low expected returns. This modi�cation drastically
complicates the decision procedure, possibly leading to an optimization problem
with respect to the weight of the bets on single selections which is very similar
to Markowitz portfolio optimization, cf. section 1.5.

The ensemble model demonstrates that the selection bias can be reasonably han-
dled by applying a `max-min' strategy of the posteriors, where the standardized
expected return is maximized with respect to combinations of selections, where
the minimum posteriors from the ensemble is used. The results yield a reason-
able reduction in the selection bias, but also indicate that the model occasionally
understates the odds, suggesting a reverse selection bias. A further analysis and
theoretical study could have been made on the impact of the approach, e.g. how
does the number of members in the committee (networks) a�ect the bias.

The posterior restrictive model demonstrates high pro�tability capability and
may be re�ned to improve the performance. In its current state the restrictions
are primitively formulated with only eight possible intervals. A further analysis
of the impact on di�erent interval granularities could have been performed to
optimize the �exibility. Alternatively a continuous penalty function may be
applied to smoothly promote certain subintervals of the probabilistic range [0, 1].
Evidently the model oscillates between di�erent subintervals Iki , cf. �gures 5.10e
and 5.10f, indicating more than one strongly lucrative subinterval is present.

The unit-less currency in the simulations emphasizes the generalizability of the
results, as the bets size may be arbitrarily scaled to represent realistic wages
while preserving the rate of return. Another, yet more interesting, adjustment
of the bet sizes could be archived by applying a common betting system, such
as a Martingale system, cf. section 1.4, where the bet sizes are time dependent.
Thus one could simulate a full season with an initially �xed amount of money
in a real currency, and obtain more tangible results in terms of pro�t.

betexplorer.com
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Chapter 7

Conclusion

Bookmakers can be regarded as risk-adverse market providers, whose main ob-
jective is to obtain balanced books, whereby the pro�t per event ideally is in-
di�erent to the outcome. Consequently, the odds must be adjusted according
to the public opinion, which may lead to market ine�cient odds. These adjust-
ments re�ect cognitive biases in common gambling behaviour. A special case is
the `favourite/long-shot' bias, whereby odds on strong favourites are overrated,
and underrated on weak teams to compensate for a general tendency to bet on
the risky weak team. Among the two considered leagues, the English Premier
League and the Spanish La Liga, the bias is particularly strong in the La Liga,
suggesting a more irrational betting behaviour in this league. A special vari-
ant of the bias is found on the individual teams, where strong teams, such as
Real Madrid and Manchester United, are generally underrated. Additionally it
has been demonstrated that bookmakers are biased to favour the home team,
due to the home ground advantage. The data also indicates that odds setting
techniques are temporarily non-stationary, as the overround � a measure of the
bookmakers' pro�t safety margin � is consistently decreasing. This is most likely
a consequence of increased market competition.

The proposed betting model uses the odds from a speci�ed number of bookmak-
ers as input features to a neural network and applies the emitted class posteriors
in a decision framework. In this framework the standardized expected return
per match is maximized by engaging an appropriate combination of outcome
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selections. It has been demonstrated that the model is well-calibrated in both
leagues, and that the accuracy is indi�erent to whether 5, 9 or 37 bookmak-
ers' odds are used as inputs. This indicates a generally low data complexity,
and suggests that the variations between books at a given match basically are
implications of odds balancing, which can be regarded as white noise.

Two extensions of the model have been proposed. Evidently the model is biased
to engage selections where the posteriors are overestimated, and accordingly an
ensemble method has been proposed, whereby the minimum posteriors from an
ensemble of neural networks is applied in the decision framework, which rea-
sonably e�ciently removes the bias. Both the basic model and ensemble model
are strongly season dependent in terms of pro�tability and practical application
is questionable. The second extension relies on a restriction of the acceptable
size of the class posteriors, yielding the generally highest rate of returns in
both leagues. The model generally restricts the posteriors to [0.4, 0.5] on recent
seasons in both leagues. By nature people are poor probability estimators of
intermediate probabilities and so bets on selections in this probability region are
possibly strongly irregular, leading to signi�cant odds ine�ciencies. The model
pro�ts signi�cantly more on the La Liga with a total pro�t/stake ratio of 16%
across seasons 09/10-12/13, and is at least on par with former betting models
in season 10/11 in the Premier League and seasons 09/10-10/11 in the La Liga.



Appendix A

Concepts and Operational
Procedures in Odds Setting

A.1 Uniqueness of b in π = Σb in a balanced bet

Proof. Let σ1, σ2 and σ3 denote the odds on home wins (result 1), draw (result
2) and away wins (result 3), respectively, for a given bookmaker X. Further let
B = b1 + b2 + b3 denote the total amount betted on X, with bi, i = 1, 2, 3 being
the bet on the i'th result. Assume that the overround η =

∑3
i=1 σ

−1
i − 1 > 0,

with σi > 1, i = 1, 2, 3.

In order to make the bet balanced, the pro�t must be is �xed, regardless of the
result. Denoting the �xed pro�t by π, the pro�t in case of result 1 can be stated
as

π = b2 + b3 − b1(σ1 − 1) (A.1)

Similar expressions can be made for results 2 and 3, yielding the following set
of equations ππ

π

 =

1− σ1 1 1
1 1− σ2 1
1 1 1− σ3

 ·
b1b2
b3

 (A.2)
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or written compactly,

π = Σb (A.3)

where π = [π, π, π]
T
, Σ ∈ R3×3 and b = [b1, b2, b3]

T
. The determinant of the

system matrix is given by

det(Σ) = σ1σ2 + σ2σ3 + σ1σ3 − σ1σ2σ3 (A.4)

By assumption η > 0. Hence

η =
1

σ1
+

1

σ2
+

1

σ3
− 1 (A.5)

=
σ1σ2 + σ2σ3 + σ1σ3 − σ1σ2σ3

σ1σ2σ3
> 0 (A.6)

By assumption σi > 1, i = 1, 2, 3 implying that σ1σ2σ3 > 0 and therefore Eq.
(A.6) can be reduced to

σ1σ2 + σ2σ3 + σ1σ3 − σ1σ2σ3 > 0 (A.7)

Hence det(Σ) > 0, provided that η > 0, and there exists a unique solution b to
Eq. (A.3), ensuring that the bet is balanced. �

A.2 Relation between η, π and B in a balanced

bet

Proof. The unique solution to Eq. (A.3), provided that η > 0, is given by

b1 =
πσ2σ3

σ2σ3 + σ1σ3 + σ1σ2 − σ1σ2σ3
(A.8)

b2 =
πσ1σ3

σ2σ3 + σ1σ3 + σ1σ2 − σ1σ2σ3
(A.9)

b3 =
πσ1σ2

σ2σ3 + σ1σ3 + σ1σ2 − σ1σ2σ3
(A.10)

Since

η =
1

σ1
+

1

σ2
+

1

σ3
− 1 (A.11)

=
σ1σ1 + σ2σ3 + σ1σ3 − σ1σ2σ3

σ1σ2σ3
⇔ (A.12)

ησ1σ2σ3 = σ1σ2 + σ2σ3 + σ1σ3 − σ1σ2σ3 (A.13)



A.2 Relation between η, π and B in a balanced bet 87

Eq. (A.10) reduces to

b1 =
πσ2σ3
ησ1σ2σ3

=
π

ησ1
(A.14)

b2 =
πσ1σ3
ησ1σ2σ3

=
π

ησ2
(A.15)

b3 =
πσ1σ2
ησ1σ2σ3

=
π

ησ3
(A.16)

This gives

B = b1 + b2 + b3 (A.17)

=
π

η

(
1

σ1
+

1

σ2
+

1

σ3

)
(A.18)

=
π(η + 1)

η
⇔ (A.19)

π = B
η

η + 1
(A.20)

This �nishes the proof. �
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Appendix B

Betting Strategies

B.1 Deriving expected gain and variance of gain

Let i = 1, 2, 3 denote the selections on a given match with home win (i =
1), draw (i = 2), and away win (i = 3). Assuming that the matches are
independent, the expected gain E [π] and variance on the gain Var [π] can be
derived individually on each match.

Consider now a single match. Let oi, i = 1, 2, 3 denote the odds on selection i,
and let b ∈ R3 denote a decision vector, where the ith element bi, indicates how
much to bet on selection i. Further, let c ∈ R3 denote a binary vector with the
actual outcome of the match, where ci = 1 indicates outcome i and

∑3
i=1 ci = 1.

If no bets are made then obviously E[π] = 0. If one bet is made on selection
j ∈ {1, 2, 3}, the gain π is

π = bj (ojcj − 1) (B.1)

and the expected gain is

E [π] = E [bj (ojcj − 1)] (B.2)

= bj (ojE [cj ]− 1) (B.3)

= bj (ojpj − 1) (B.4)
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where pj denotes the probability of selection j as the outcome. Since

E
[
π2
]

= E
[
b2j (ojcj − 1)2

]
(B.5)

= E
[
b2jo

2
jc

2
j − 2b2jojc

2
j + b2j

]
(B.6)

= E
[
b2jo

2
jcj − 2b2jojcj + b2j

]
(B.7)

= b2jo
2
jE [cj ]− 2b2jojE [cj ] + b2j (B.8)

= b2jo
2
jpj − 2b2jojpj + b2j , (B.9)

the variance can be expressed as

Var [π] = E
[
π2
]
− E2 [π] (B.10)

= b2jo
2
jpj − 2b2jojpj + b2j − b2j (ojpj − 1)

2
(B.11)

= b2jo
2
jpj − 2b2jojpj + b2j −

(
b2jo

2
jp

2
j − 2b2jojpj + b2j

)
(B.12)

= b2jo
2
jpj(1− pj) (B.13)

Assume now that two bets are made on distinct selections j and k, j, k ∈
{1, 2, 3}. For simplicity also assume that the same amount is waged on each
selection, i.e. b = bj = bk. The gain is then

π = πj + πk = b (ojcj − 1) + b (okck − 1) = b (ojcj + okck − 2) (B.14)

and consequently the expected gain, cf. Eq. (B.4) is

E [π] = E [πj ] + E [πk] = b (ojpj + okpk − 2) (B.15)

Exploiting that cjck = 0, j 6= k and c2i = ci, i = 1, 2, 3 yields

E
[
π2
]

= E
[
b2 (ojcj + okck − 2)

2
]

(B.16)

= E
[
b2o2jc

2
j − 4b2ojcj + 2b2ojcjokck + 4b2 − 4b2okck + b2o2kc

2
k

]
(B.17)

= b2o2jE [cj ]− 4b2ojE [cj ] + 4b2 − 4b2okE [ck] + b2o2kE [ck] (B.18)

= b2o2jpj − 4b2ojpj + 4b2 − 4b2okpk + b2o2kpk, (B.19)

and since

E2 [π] = b2 (ojpj + okpk − 2)
2
, (B.20)

the variance can be expressed as

Var [π] = E
[
π2
]
− E2 [π] (B.21)

= b2o2jpj − b2o2jp2j + b2o2kpk − b2o2kp2k − 2b2ojokpjpk (B.22)

= Var [πj ] + Var [πk]− 2b2ojokpjpk (B.23)

This �nishes the derivation.
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Model De�nition

C.1 Derivation of cost function gradient

Following the notation in section 4.1, application of the chain rule yields

δEn
δwji

=
δEn
δaj

δaj
δwji

(C.1)

For convenience, denote

δhj =
δEn
δahj

(C.2)

δoj =
δEn
δaoj

(C.3)

First, consider δEn

δwo
ji
. By Eq. (4.3) it is seen that

δaoj
δwoji

= zi (C.4)

Repeated use of the chain rule yields

δoj =

Ny∑
k=1

δEn
δyk

δyk
δaoj

(C.5)
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It is noted that the partial derivatives of the softmax function, yk, cf. Eq. (4.2)
are given by [22, p. 209],

δyk
δaoj

= yk (Ikj − yj) (C.6)

where Ikj are the elements of the identity matrix, and

δEn
δyk

=
δ

δyk

(
−

C∑
k′=1

tk′ ln yk′

)
= − tk

yk
(C.7)

Combining Eqs. (C.6) and (C.7) gives

δoj = −
Ny∑
k=1

tk
yk
yk (Ikj − yj) = −

tj − yj Ny∑
k=1

tk

 = yj − tj (C.8)

Hence, using Eqs. (C.4) and (C.8),

δEn
δwoji

= (yj − tj)zi (C.9)

Now consider δEn

δwh
ji

. By Eq. (4.1) it follows that

δahj
δwhji

= xi (C.10)

Repeated use of the chain rule yields

δhj =

Ny∑
k=1

δEn
δaok

δaok
δahj

(C.11)

By combining Eqs. (4.1) and (4.3) it is seen that

aok =

Nz∑
i=0

wokih(ahi ) ⇒ δaok
δahj

= h′(ahj )wokj (C.12)

Using Eqs. (C.3), (C.11), and (C.12) yields

δhj = h′(ahj )

Ny∑
k=0

δokw
o
kj (C.13)

whereby it is �nally deduced from Eqs. (C.10) and (C.13) that

δEn
δwhji

=

h′(ahj )

Ny∑
k=0

wokjδ
o
k

xi (C.14)

This �nishes the derivation. [22, pp. 241-245],[44, pp. 39-42]
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