
Cloud Databases for
Internet-of-Things Data

Thi Anh Mai Phan

Kongens Lyngby 2013

IMM-M.Sc.-2013-48

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2013-48

Summary (English)

The vision of the future Internet of Things is posing new challenges and op-
portunities for data management and analysis technology. Gigabytes of data
are generated everyday by millions of sensors, actuators, RFID tags, and other
devices. As the volume of data is growing dramatically, so is the demand for
performance enhancement. When it comes to this Big Data problem, much at-
tention has been paid to cloud computing and virtualization for their unlimited
resource capacity, �exible resource allocation and management, and distributed
processing ability that promise high scalability and availability.

On the other hand, the types and nature of data are getting more and more
various. Data can come in any format, structured or unstructured, ranging from
text and number to audio, picture, or even video. Data are generated, stored,
and transferred across multiple nodes. Data can be updated and queried in real
time or on demand. Hence, the traditional and dominant relational database
systems have been questioned whether they can still be the best choice for
current systems with all the new requirements. It has been realized that the
emphasis on data consistency and the constraint of using relational data model
cannot �t well with the variety of modern data and their distributed trend. This
led to the emergence of NoSQL databases with their support for a schema-less
data model and horizontal scaling on clusters of nodes. NoSQL databases have
gained much attention from the community and are increasingly considered as
a viable alternative to traditional databases.

In this thesis, we address the issue of choosing the most suitable database
for Internet of Things big data. Speci�cally, we compare NoSQL versus SQL
databases in the cloud environment, using common Internet of Things data

ii

types, namely, sensor readings and multimedia data. We then evaluate their
pros and cons in performance, and their potential to be a cloud database for
the Internet of Things data.

Preface

This thesis was prepared at Aalto University, School of Science, Finland in par-
tial ful�llment of requirements for the M.Sc. double degree in Security and
Mobile Computing (NordSecMob) in Aalto University, School of Science, Fin-
land and Technical University of Denmark (DTU), Denmark.

The thesis deals with extensive experiments to evaluate and compare the perfor-
mance of two classes of database, namely, SQL and NoSQL as cloud databases
for Internet of Things data. The focus is on two popular types of data, that is,
sensor scalar data and multimedia data.

Lyngby, 28-June-2013

Thi Anh Mai Phan

iv

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor at
Aalto University, Prof. Jukka K. Nurminen. Without his invaluable guidance
and advices that came from his immense knowledge and experiences in the �eld,
it would not be possible to �nish this thesis.

I would like to thank my supervisor from my host university DTU, Prof. Nicola
Dragoni, who was always willing to help and give his best guidance and support.

I am grateful to Dr. Mario Di Francessco, my instructor, for his useful instruc-
tions and suggestions that helped me throughout the process of the thesis.

In addition, a special thank to Mr. Mikael Latvala from There corporation, for
his introduction to the Home Energy Management System of There corporation,
and his practical comments that played an important role in my work.

Last but not least, I would like to thank my parents, my elder sister, and my
friends, without whom I would not have been able to complete this thesis.

vi

Contents

Summary (English) i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Problem statement . 2
1.2 Contribution . 3
1.3 Structure . 3

2 Databases 5
2.1 CAP Theorem, ACID vs. BASE 5
2.2 SQL Databases . 7
2.3 NoSQL Databases . 8

2.3.1 NoSQL Properties . 8
2.3.2 NoSQL Categories . 13

2.4 Tested databases . 16
2.4.1 MySQL . 16
2.4.2 CouchDB . 19
2.4.3 MongoDB . 21
2.4.4 Redis . 25

3 Cloud databases for the Internet of Things 29
3.1 Internet of Things . 29

3.1.1 Internet of Things vision 30
3.1.2 Internet of Things data 31

3.2 Cloud Databases . 33
3.2.1 Amazon Web Services . 33

viii CONTENTS

3.2.2 Scalability . 34
3.3 Literature Review . 36

4 Experimental Methodology and Setup 41
4.1 Experiment overview . 41
4.2 Experiment environment . 43

4.2.1 Hardware and Software 43
4.2.2 Database con�guration . 43
4.2.3 Libraries and drivers . 44

4.3 Sensor scalar data benchmark . 44
4.3.1 System description . 44
4.3.2 Data structure . 45
4.3.3 Parameters . 48

4.4 Multimedia data benchmark . 48
4.4.1 System description . 48
4.4.2 Data structure . 49
4.4.3 Parameters . 50

5 Experimental Results 51
5.1 Sensor scalar data benchmark results 51

5.1.1 Bulk insert . 51
5.1.2 MongoDB index . 54
5.1.3 Write latency . 56
5.1.4 Read latency . 58
5.1.5 Database size . 61

5.2 Multimedia data benchmark results 63
5.2.1 Write latency . 63
5.2.2 Read latency . 64

6 Conclusion 67

Bibliography 71

Chapter 1

Introduction

The development of pervasive computing, RFID technology, and sensor networks
has created the ground for the so-called Internet of Things (IoT) [AIM10]. The
major idea behind it is that the Internet will exist as a seamless network of
interconnected �smart� objects that forms a global information and communi-
cation infrastructure. The vision of the Internet of Things consists in a huge,
dynamic, and expandable network of networks, involving billions of entities.
These entities simultaneously generate data and communicate with each other.
A side e�ect is then the massive volume of data that comes to the network.
Everyday, systems of di�erent �elds including manufacturing, social media, or
cloud computing crank out gigabytes of data, which can contain text, pictures,
videos and more. According to IDC 2012 Digital Universe Study [GR12], the
world information is doubling every two years. By 2020, the size of information
is 50 times more than that of 2010, reaching 40 trillion gigabytes, 40% of which
will be either processed or stored in a cloud. This is not only due to the num-
ber of IoT objects, but also because of the massive data generation. Besides,
many of these data are updated in real-time and across multiple nodes. Hence,
the challenge is to handle this large amount of things and data, all in a global
information space, with a performance that can meet real-time requirement.

When it comes to Big Data, cloud computing is closely involved. According
to the related paradigm [AFG+10], hardware and software resources are placed
remotely and accessible over a network. The physical infrastructure is virtual-

2 Introduction

ized and abstract to users, providing virtually unlimited resource capacity on
demand. Cloud databases [MCO10] are an important part in the cloud infras-
tructure. To deal with huge data volumes, cloud databases use cloud computing
to optimize scalability, availability, multitenancy, and resource usage.

The rapid growth in the amount of data is tightly coupled with radical changes
in the data types and how data is generated, collected, processed, and stored.
With all the new sources of data, data tend to be distributed across multiple
nodes and no longer conform to some prede�ned schema de�nition. In fact,
unstructured and semi-structured data make up 90% of the total digital data
space [GR11], including text messages, log �les, blogs, media �les and more.

The problem has boosted the creation of new technologies to handle the data
growth while improving system performance. Several database management
systems (DBMS) have been developed and characterized to this end. Even
though SQL databases have been the classic and dominant type among database
systems so far, questions have been raised whether the traditional relational
databases �t well with all the new data types and performance requirements.
Here comes a new class of database referred to as NoSQL databases. NoSQL
databases store data very di�erently from the traditional relational database
systems. They are meant for data of schema-free structure, and are claimed to
be easily distributed with high scalability and availability. These properties are
actually needed to realize the vision behind Internet of Things data.

1.1 Problem statement

Regarding Internet of Things data, a big question is how to manage the data
system in an e�cient and cost-e�ective way. That depends on a proper planning
on which DBMS is used to store the concerned data and how it is con�gured
to provide adequate performance. As mentioned before, a variety of databases
are currently available, including SQL and NoSQL databases. However, which
model and solution best �t IoT data is still an open problem. As far as we
know, there has not been much research on a general database solution for IoT
data that provides a practical, experimentally-driven characterization of the
e�ciency and suitability of di�erent databases, especially in the cloud environ-
ment. Hence, the thesis addresses this problem and looks for a solution that
can provide the best performance for the various types and the large amount of
IoT data.

1.2 Contribution 3

1.2 Contribution

This thesis investigates di�erent types of cloud databases. The focus is to evalu-
ate and compare NoSQL databases against traditional SQL databases, in order
to point out their di�erences in performance, usage and complexity. Along with
that, the thesis characterizes the typical types of IoT data, and then abstracts
the most common ones to be used in testing the databases, namely, sensor
readings and multimedia data. Extensive tests have been performed under four
popular databases: MySQL, MongoDB, CouchDB and Redis, with the focus on
MongoDB versus MySQL. Besides, all the database servers were located on the
cloud by using the Amazon EC2.

1.3 Structure

The rest of the thesis is organized as follows. Chapter 2 introduces the back-
ground information of databases, including their characteristics and classi�ca-
tion. Chapter 3 explains the main concepts used in the thesis, that is, Internet
of Things and cloud databases, and also reviews the related works. Chapter
4 describes the methodology and setup of the experiments performed to com-
pare the performance of the di�erent database systems considered. Chapter 5
presents the results and the evaluation of the experiments. Finally, Chapter 6
summarizes and concludes the work done, with directions for future research.

4 Introduction

Chapter 2

Databases

This chapter gives an introduction about the two classes of databases presenting
in the thesis: SQL and NoSQL databases. The chapter starts with a brief
de�nition of CAP theorem, which has been used as the paradigm to explore the
variety of distributed systems as well as database systems. Thereafter, SQL and
NoSQL databases are presented along with the main di�erences between them.
In the end, the chapter describes the main features of the four databases that
are targeted in the performance tests.

2.1 CAP Theorem, ACID vs. BASE

The CAP theorem proposed by Eric Brewer [Bre00] states that a shared data
system cannot guarantee all of the following three characteristics at the same
time:

• Consistency means that once an update operation is �nished, everyone
can read that latest version of the data from the database. A system
which not all the readers can view the new data right away does not have
strong consistency and is normally eventual-consistent.

6 Databases

• Availability is achieved if the system always provides continuous opera-
tion, normally achieved by deploying the database as a cluster of nodes,
using replication or partitioning data across multiple nodes so if one node
crashes, the other nodes can still continue to work.

• Partition tolerance means that the system can continue to operate even if a
part of it is inaccessible (e.g. due to network connection, or maintenance
purpose). This can be accomplished by redirecting writes and reads to
nodes that are still available. This property is meaningless for a system
of one single node though.

Most traditional RDBMSes were initially meant to be on a single server and
focus on Consistency, thus having the so-called ACID properties [Bar10]:

• Atomicity : the transactions are all-or-nothing.

• Consistency (di�erent from C in CAP): the system stays in a stable state
before and after the transaction. If a failure occurs, the system reverts to
the previous state.

• Isolation: transactions are processed independently without interference.

• Durability guarantees that committed transactions will not be lost. The
database keeps track of the changes made (in logs) so that the system can
recover from an abnormal termination.

Databases used for banking or accounting data are examples of systems where
consistency is essential. However, there are ones that favour availability and
partition-tolerance over consistency, for instance social networks, blogs, wikis,
and other large scale web sites with high tra�c and low-latency requirement.
For such systems, it is hard to achieve ACID, and hence BASE approach is more
likely to be applied:

• Basic Availability

• Soft-state

• Eventual consistency

The idea is that the system does not have to be strictly available and consistent
all the time, but is more fault-tolerant. Even though clients may encounter an
inconsistent data as updates are in progress (during replication process), the
data will eventually reach the expected consistent state.

2.2 SQL Databases 7

Even though relational databases have been considered the classic kind of databases
for years, NoSQL databases have been using the CAP theorem as an argument
against the traditional ones. As system scale is getting larger, it is di�cult to
leave out the partition tolerance. In the end, the goal is to �nd the best com-
bination of consistency and availability to optimize speci�c applications. The
point of NoSQL databases is to focus on availability �rst then consistency, while
SQL databases with the ACID properties go for the opposite direction.

2.2 SQL Databases

Back in the 1970s, SQL (Structured Query Language) was developed by IBM
when Edgar Codd introduced the so-called relational model of data [Cod70].
Since then, SQL has become the standard query language for relational database
management systems (RDBMS).

In the relational model [Cod70], data are organized into relations, each is rep-
resented by a table consisting of rows and columns. Each column represents an
attribute of the data, the list of columns makes up the header of the table. The
body of the table is a set of rows, one row is an entry of data which is a tuple of
its attributes. Another important concept in the relational model is key, which
is used to order data or to map data to other relations. Primary key is the most
important key of a table, it is used to uniquely identify each row in the table.

To access a relational database, SQL is used to make queries to the database
such as the CRUD basic tasks of Creating, Reading, Updating and Deleting
data. SQL supports indexing mechanism to speed up reading operations, or
creating views which can join data from multiple tables, and other features for
database optimization and maintenance. There are many relational databases
available, such as MySQL, Oracle, SQLServer, and all are using SQL. Although
the concrete syntax for each database can be slightly di�erent, switching from
one to another does not require a signi�cant change in system programs.

One important attribute of SQL databases is that they follow the ACID rules
to ensure the reliability of data at any point of time. This is one of the key
di�erences between SQL and NoSQL databases. To achieve the data integrity,
SQL databases usually support isolated transactions, with two-phase commit
and roll back mechanism [FL05]. This feature, however, contributes to the
processing overhead. The normal sources of processing overhead are [Vol10]:

• Logging : To ensure system durability and consistency, SQL databases
write everything twice, once to the database itself and once to the log, so

8 Databases

the system can recover from failures.

• Locking : Before making a change to a record, a transaction must set a
lock on it and the other transactions can not interfere before the lock is
released.

• Latching : A latch can be understood as a �lightweight, short-term lock�
used to prevent data from unexpected modi�cation. However, while locks
are kept during the entire transaction, latches are only maintained during
the short period when a data page is moved between the cache and the
storage engine.

• Besides, index and bu�er management also require signi�cant CPU and
I/O operations, especially when used on shared data structures (e.g., index
B-trees, bu�er pool). Hence, they also cause processing overhead.

Originally designed to focus on data itegrity, relational databases are nowadays
facing challenges of scaling to meet the growing data volume and workload
demand.

2.3 NoSQL Databases

NoSQL (not only SQL) is another type of DBMS that can be used on the
cloud. Di�erent from SQL databases, NoSQL databases do not divide data into
relations, nor do they use SQL to communicate with the database.

2.3.1 NoSQL Properties

When it comes to NoSQL de�nition, it is likely that SQL is put into perspective.
That is not only because SQL is widely considered as the traditional and popular
type of database, but also the origin for NoSQL movements is to eliminate the
weak points of relational databases. Below is the main characteristics of common
NoSQL databases, which re�ect the motivations for the rise of such databases
and how they are di�erent from relational ones.

Non-relational

The types of NoSQL databases are various, including document, graph, key-
value, and column family databases, but the common point is that they are
non-relational. Jon Travis, a principal engineer at Java toolmaker SpringSource,

2.3 NoSQL Databases 9

said �Relational databases give you too much. They force you to twist your
object data to �t a RDBMS� [Lai09]. The truth is the relational model only �ts
a portion of data, many data need a simpler structure, or a �exible one. For
example, a database is built to store student information and the courses that
each student takes. A possible design in the relational model for this data is to
have one table for student, one for course, and one that maps a student with
his courses (Figure 2.1).

STUDENT

Std_ID Std_name

S001 Harry Potter

S002 Ron Weasley

S003 Hermione Granger

STUDENT_COURSE

Std_ID Course_no

S001 C01

S001 C02

S001 C03

S002 C02

S003 C01

S003 C02

COURSE

Course_no Course_name

C01 Mathematics

C02 Physics

C03 Chemistry

Figure 2.1: SQL database - student example

One problem with this design is that it contains extra duplicated data, in this
case the mapping table STUDENT_COURSE repeats the Std_ID multiple
times for each di�erent course. NoSQL approach, however, is �exible enough to
map one student with a list of courses in only one record without this duplicated
data. Figure 2.2 shows the solution using a document-store database.

In fact, NoSQL databases generally do not have many limitations on data struc-
ture. Apart from the normal primitive types, more data types can be supported,
for instance, nested documents or multi-dimensional arrays. Unlike SQL, each
record does not necessarily hold the same set of �elds, and a common �eld can
even have di�erent types in di�erent records. Hence, NoSQL databases are
meant to be schema-free and suitable to store data that is simple, schema-less,
or object-oriented [SSK11]. This seems to be the case in many current appli-
cations. For example, for a library database, each item can have a di�erent
schema, depending on the type of item. In this case, it might be a good idea
to follow a �exible schema-less design instead of creating an SQL table with all
the possible columns and not using all of them for an item.

10 Databases

COURSE

NoR :RC01

Name:RMathematics

NoR :RC02

Name:RPhysics

NoR :RC03

Name:RChemistry

STUDENT

Std_IDR :RS001

Name:RHarryRPotter

Courses:R{C01,RC02,RC03}

Std_IDR :RS002

Name:RRonRWeasley

Courses:R{C02}

Std_IDR :RS003

Name:RHermioneRGranger

Courses:R{C01,RC02}

Figure 2.2: NoSQL database - student example

• Book : Author(s), Book title, Publisher, Publication date.

• Journal : Author(s), Article title, Journal title, Publication date.

• Newspaper : Author(s), Article title, Newspaper name, Section title, Pub-
lication date.

• Thesis: Author, Thesis title, School, Supervisor, Instructor, Date.

Hence, NoSQL databases can handle unstructured data (e.g., email body, multi-
media, metadata, journals, or web pages) more easily and e�ciently. Moreover,
the bene�t of a schema-free data structure also stands out when it comes to data
of dynamic structure. Since it is costly to change the structure of relational ta-
bles1, how data will change (e.g., form and size) over time should be taken into
consideration. However, relational or non-relational also depends on the kind
of queries to be performed. Continue the example of students and courses, we
want to add a new �eld for grade. Figure 2.3 shows two possible solutions using
SQL and NoSQL databases.

In this example, if the user wants to query the average grade of all students
together, that is one simple work for the SQL table, which only works on one
column grade and gets the average value of all grades. Meanwhile, the operation
will be much more complicated with the nested layers in NoSQL collection. On
the other hand, if the system only serves displaying the data, meaning listing the
courses and grades for each student (including student name) then the opposite

1SQL tables store data as one row after another. If a new column is added, there will be
no space for it. Consequently, the entire table needs to be copied to a new location, and for
the time of the copying, the table is locked.

2.3 NoSQL Databases 11

SQL_GRADE

Std_ID Course_no Grade

S001 C01 3

S001 C02 5

S001 C03 4

S002 C02 2

S003 C01 3

S003 C02 5

SQL_STUDENT

Std_ID Std_name

S001 HarryNPotter

S002 RonNWeasley

S003 HermioneNGranger

NoSQL_GRADE

Std_IDN :NS001

Name:NHarryNPotter

Grades:N{

{C:NC01,NG:N3},

{C:NC02,NG:N5},

{C:NC03,NG:N4}}

Std_IDN :NS002

Name:NRonNWeasley

Grades:N{

{C:NC02,NG:N2}}

Std_IDN :NS003

Name:NHermioneNGranger

Grades:N{

{C:NC01,NG:N3},

{C:NC02,NG:N5}}

Figure 2.3: NoSQL vs SQL database - student example

is true. In this case, SQL database has to perform a JOIN query, which is an
expensive operation, on table grade and student to get the student name. As
said by Curt Monash, a blogger and database-analyst, �SQL is an awkward �t
for procedural code, and almost all code is procedural. For data upon which
users expect to do heavy, repeated manipulations, the cost of mapping data
into SQL is well worth paying...But when your database structure is very, very
simple, SQL may not seem that bene�cial�[Lai09].

Horizontal scalability

Most classic RDBMSes were initially designed to run on a single large server.
Joining data over several servers is a di�cult work that makes it uneasy for
relational databases to operate in a distributed manner [Lea10]. The idea of
�one size �ts it all�, however, is not feasible to ful�ll current demand. A better
idea is to partition data across multiple machines.

Unlike SQL databases, most NoSQL databases are able to scale well horizontally
and thus not relying much on hardware capacity. Cluster nodes can be added or
removed without causing a stop in system operation. This can provide higher
availability and distributed parallel processing power that increase performance,
especially for systems with high tra�c. Some NoSQL databases can provide

12 Databases

automatic sharding2 (Section 3.2.2). For example, MongoDB [mon13] can auto
shard data over multiple servers and keep the data load balanced among them,
thus distributing query load over multiple servers.

Availability over Consistency

One main characteristic of SQL databases is that they conform to ACID rules
(Section 2.1), which mainly focus on consistency. Many NoSQL databases have
dropped ACID and adopted BASE. That is to compromise consistency for higher
availability and performance. Applications used for bank transactions, for ex-
ample, require high reliability and therefore, consistency is vital for each data
item. However, in some cases, that merely complicates and slows down the pro-
cess unnecessarily. Social network applications such as Facebook do not require
such high data integrity. The priority here is to be able to serve millions of users
at the same time with the lowest possible latency. One method to reduce query
response time for database systems is to replicate data over multiple servers,
thus distributing the load of reads on the database. Once a data is written to
the master server, that data will be copied to the other servers. An ACID sys-
tem will have to lock all other threads that are trying to access the same record.
This is not an easy job for a cluster of machines, and will lengthen the delayed
time. BASE systems will still allow queries even though the data may not be
the latest. Hence, it can be said that NoSQL databases drop the expense for
data integrity when it is not highly necessary to trade for better performance.

Map Reduce model

Relational databases put computation on reads. For large scale applications,
that will cause long delays for responses. NoSQL databases, however, normally
do not provide or avoid complex queries (e.g., join operations). While SQL
databases all use SQL as their query language, NoSQL databases are so dif-
ferent that there is no such common API among them. Nevertheless, many
NoSQL databases adopt Google's Map-Reduce model [DG08] in querying. The
model provides an e�ective method for big data analysis. It supports parallel
and distributed processing on clusters of nodes. The main idea is to divide the
computation work into smaller sub-problems, distribute them to smaller nodes
(map), then aggregate individual results into a �nal one (reduce). This is suit-
able for sensor data analytic, for example. Generally, sensor data structure is
repetitive and the typical computations are linear, such as sum, average, min,
and max.

In the end, what makes NoSQL di�er from SQL is its �exibility and variety.
Applications for business intelligence, e-commercial, document processing, or

2sharding: horizontal partitioning data across a number of servers

2.3 NoSQL Databases 13

social network go with di�erent data schemas and have di�erent requirements
for consistency, performance, and scalability. NoSQL with various capabilities
and purposes gives users more choices to pick the most suitable database that
meets their needs. Numerous companies have chosen NoSQL over the rich but
unnecessary SQL platform as their solution. Many NoSQL databases were ini-
tially built as a specialized tool, and later released as open source. For instance,
Facebook �rst developed Cassandra data store for their Inbox Search feature.
The motivation was to build a highly available data store that can handle large
data and process a lot of random reads and writes. According to Facebook en-
gineers Avinash Lakshman et al., �No existing production ready solutions in the
market meet these requirements�, and Cassandra can write 50GB data in 0.12
milliseconds, that is 2500 times faster than MySQL does [LMR08].

Table 2.1 summarizes the main di�erences between general SQL databases and
NoSQL databases.

SQL NoSQL
Relational model Non-relational data (schema-less,unstructured,simpler)

Tables Key-value, Document, Graph, Column family stores
ACID BASE

Consistency Availability, Performance
Single server Cluster of servers (Horizontal scalability)
SQL query Simpler and di�erent API

Table 2.1: SQL vs NoSQL

2.3.2 NoSQL Categories

NoSQL databases can be classi�ed into four major categories [Tiw11]:

• Key-Value stores

• Document stores

• Column Family stores

• Graph databases

This thesis, however, just focuses on the �rst two types.

14 Databases

Key-Value stores

This is the simplest kind of NoSQL databases (in term of API). As its name,
key-value databases [Tiw11] store data in pairs of key and value. The value
is just a block of data of any type and any structure. No schema needs to be
de�ned, but the user de�nes the semantics for the values and how to parse the
data himself. The advantage of key/value stores is that it is simple to build,
easy to scale, and tends to have good performance.

Basically, the way to access data in a key/value database is by the key. The
basic API to manipulate data are:

• put(key, value)

• get(key)

• remove(key)

Figure 2.4 is an example of a key-value data structure. Database Student con-
sists of a list of student information, identi�ed by student ID.

Figure 2.4: Key-Value stores - student example

Examples of available key-value stores are Redis [red13], Project Voldermort
[pro13], Amazon Dynamo [Voe12]. If an application �ts this data structure, for
example Amazon's shopping carts and user sessions, and its major query is key
lookup, then signi�cant performance bene�ts can be achieved. That is because
key lookup can be highly enhanced by using hash or tree. Besides, queries are
easy to handle (one request to read, one to write), and so are con�icts (only one
single key to be resolved).

2.3 NoSQL Databases 15

Document stores

A document database [Tiw11] is a higher step of a key/value store where a
database is a collection of document. Each document consists of multiple named
�elds, one of which is a unique documentID. A named �eld is actually a key-value
pair where the key is the name of the �eld. Document databases are schema
free. The data can be of any structure and di�erent among each document.
Therefore, it allows users to store arbitrarily data, from primitive types such
as strings, numbers, dates to more complex data such as trees, dictionaries, or
nested documents. However, it should be noted that the �eld name of the same
�eld will be repeated in multiple documents, so one good practice is to make
the �eld name as short as possible to save storage space.

Unlike key/value stores, the content of the document (the value) is not just a
block of data. Documents are normally stored in a speci�c format, which can be
XML, JSON, or BSON. With such format, the server supports not only simple
key-value lookup but also queries on the document contents. Besides, the known
format also makes it easier to build tools to display and edit the data. Examples
of document-store databases are CouchDB [cou13], and MongoDB [mon13].

The Student database example shown in Figure 2.4 is converted into a document
store, as in Figure 2.5.

Figure 2.5: Document stores - student example

Document stores can easily be the most popular among developers. The docu-
ment format can map nicely to programming language data types. Complicated
join operations can be avoided thanks to the use of embedded documents, ref-
erence documents, and arrays. At the same time, it still provides rich query
capability and high scalability.

16 Databases

2.4 Tested databases

This section gives a description about the particular databases that are to be
tested. Their performance will be recorded and compared.

2.4.1 MySQL

MySQL [MyS13a] is the most popular open-source SQL database in business
currently. The database was developed by MySQL AB, now owned by Oracle.

SQL statements

As a typical relational database, MySQL organizes data in the relational model
with tables, rows and columns, and uses SQL to access databases. MySQL
provides a very rich set of other statements for manipulating data. The basics
are INSERT, SELECT, UPDATE, DELETE, which correspond to the CRUD
operations. Besides, MySQL supports other functionalities such as join, group
by and views for data aggregation over multiple tables; or stored procedures,
functions, triggers, and events that can be run according to schedule or user's
requests.

Take advantage of the fact that database applications often process a lot of
similar statements repeatedly, MySQL provides server-side prepared statements.
These statements only need to compile once while di�erent values for the pa-
rameters can be passed each time the statement is executed. If properly used,
it can help to increase e�ciency.

Bu�ering and Caching

MySQL uses storage engines to store, handle, and get data from database ta-
bles. MySQL supports di�erent storage engines, which have di�erent features
and performance characteristics. InnoDB is the default for versions after 5.5.
InnoDB is ACID compliant. It supports transactions with commit, roll back,
crash-recovery, and foreign key constraints to maintain data integrity.

InnoDB uses bu�er pool to cache data and indexes in memory, thus improving
performance. A bu�er pool is a linked list of pages, keeping heavily accessed
data at the head of the list by using a variation of the least recently used (LRU)
algorithm. To prevent bottleneck as multiple threads access the bu�er pool at
once, users can enable multiple bu�er pools to the maximum of 64 instances.

2.4 Tested databases 17

Additionally, MySQL uses a query cache to store SELECT statements and their
results. If the same statement is queried again, the result will be retrieved from
the cache rather than being executed again. The query cache is shared among
sessions. If a table is modi�ed, all cached queries using the table will be removed.

Indexes

Instead of searching through the whole table, users can create indexes on a single
or multiple columns in a table to increase query performance. InnoDB supports
the following types of index and stores the indexes in B-trees:

• Normal Index: the basic type of index.

• Unique Index: all values must be di�erent (or null).

• Primary Key: all values must be unique and not null.

• Fulltext Index: used in full-text searches.

Each InnoDB table has a clustered index where the rows are actually stored.
The clustered index is the primary key if there is one, which means data is
physically sorted by the primary key. If primary key is not speci�ed, InnoDB
chooses an unique index where all values are not null. If there is no such unique
index, InnoDB generates a hidden index on a synthetic ID column, where the
ID is incremented as insertion order.

Indexes that are not clustered index are secondary indexes. Except from the
columns de�ning the index, each secondary index record includes the primary
key columns as well.

Compared to secondary indexes, queries by the clustered index has optimal
performance because searching through the index means searching through the
physical pages where the real data reside, while with the other indexes, data
and index records are stored separately.

Replication

Replication in MySQL follows the master-slave model. Changes in the master
will be recorded to a binary log as events. Each slave receives a copy of the
log and continues reading and executing the events. The slaves do not need to
connect to the master permanently. Each will keep track of the position before
which the log has been processed and so the slave can catch up with the master
whenever it is ready. Besides, users can con�gure the master to specify which

18 Databases

databases to write to this log, and con�gure each slave to �lter which events
from the log to execute. Hence, it is possible to replicate di�erent databases to
di�erent slaves.

Replication in MySQL is asynchronous by default which means the master does
not know when the slaves get and process the binary log. Nevertheless, semi-
synchronous replication can be enabled on at least one slave. In this case, after
a transaction has been committed on the master, the thread blocks and waits
until receiving a receipt from the slave indicating that the binary log has been
copied to the slave.

MySQL does not provide an o�cial solution for auto failover between master
and slaves. That means in case of failure, the user is responsible for checking
whether the master is up, and switching the role to a slave.

Sharding

MySQL supports partitioning an individual table into portions, and then dis-
tributing the storage to multiple directories and disks. As a result, queries can
be performed on a smaller set of data. This might also help to reduce I/O
contention as multiple partitions are placed on di�erent physical drives.

For MySQL, sharding is external to the database. Auto-sharding is supported
by MySQLCluster [MyS13b]. However, basic MySQL does not provide an o�-
cial sharding feature. An alternative is to perform sharding at application level.
The approach works by having multiple databases of the same structure in mul-
tiple servers, and dividing the data across these servers based on a selected shard
key (a set of columns of the table). The application is in charge of coordinating
data access across multiple shards, directing read and write requests to the right
shard. This approach, however, adds a lot of complexity to database develop-
ment and administration work. First, it is a di�cult job to manually ensure load
balance between the shards. Second, MySQL features that are to ensure data
integrity such as foreign key constraints or transactions are incapable across
multiple shards. Additionally, horizontal queries (such as sum or average) that
need to be resolved against all of these nodes can have a signi�cant latency as
data access time increases along with the number of nodes. MySQL does not
have a proper asynchronous communication API (such as MapReduce) that can
parallelize the operation and aggregate the results. Consequently, implementa-
tion can be highly complicated and unsafe with a lot of forking and connections
in the child processes.

Sharding can also be done at MySQL Proxy layer. MySQL Proxy is an appli-
cation that is placed between MySQL servers and clients, able to intercept and
direct queries to a speci�c server. However, MySQL Proxy is currently at Alpha

2.4 Tested databases 19

version and not used within production environment.

2.4.2 CouchDB

CouchDB [ALS10] is a NoSQL database. It is an open source project done by
Apache, written in Erlang and �rst released in 2005.

Document-store

CouchDB falls on the category of document-stores. A CouchDB database is a
set of documents which are schema-free. Data is stored in JSON format [Cro06],
which is a lightweight, human readable format. Each document is basically a
collection of key-value pairs (�elds), including a unique _id �eld. If the _id
is not explicitly speci�ed by the user, the database will automatically generate
one. Arrays and nesting are supported in the documents.

RESTful API

CouchDB was designed as �A Database for the Web� [cou13]. The database
provides a RESTful API [Rod08], that is to use HTTP methods POST, GET,
PUT, and DELETE for the four CRUD operations on data. Hence, users can
access data using a web browser. Web applications can also be served directly
from a CouchDB database.

MVCC

CouchDB implements Multiversion concurrency control (MVCC) method [BHG87]
to manage concurrent access to the database. That is for each write on a data
item (insert or update), the system creates a new version of that item. Hence,
in each document there is a _rev �eld that stores the revision number. All revi-
sions of a document will be kept even if the document is deleted, and users can
retrieve any version they ask for. That way, the system can avoid the need to
use locks, operations can be performed in parallel, thus increasing speed. The
system provides automatic con�ict detection, it stores all the versions of the
concerned document and marks it as con�icted. It is then up to the application
to handle the con�icts. However, one major drawback of this approach is the
growth in storage space.

Querying by views

CouchDB does not support adhoc queries. Data is queried using views (except
for single query-by-IDs which can be a GET HTTP request). Each view is de-

20 Databases

�ned with Javascript functions, using MapReduce paradigm. View de�nition is
stored in a special document called design document. However, this view mech-
anism can put more burden on the programmers than normal query language,
and the storage needed is increased to store the view indexes.

CouchDB uses append-only B+ trees [Hed13] to store documents and view in-
dexes, with the idea of trading space for speed. The views are updated on read
requests. In fact, all views in the same design document are indexed as a group,
and so they will be updated together even though only one is accessed. The �rst
time the view is read, CouchDB takes some time to build the B-tree. On subse-
quent reads, it will check for the changed documents (using revision numbers)
and update the view indexes incrementally. As a result, the more changes there
are, the longer the view query takes. Since CouchDB keeps all data versions,
the changes made by insert, update or even delete operations will be appended
to the database �le, this also applies for view �les. The result is that the data
�les grow constantly. In this case, compaction can be run, which removes all
the old revisions and deleted documents. The procedure can be con�gured to
run periodically or when the database �le exceeds a threshold.

Bulk Document Inserts

CouchDB provides a bulk insert/update feature via the _bulk_docs endpoint.
This is the fastest way to import data into the database. Users can send a
collection of documents in a single POST request and only one single index
operation needs to be done. With CouchDB usage of append-only B+ tree, this
also means saving a lot of storage space.

Consistency

ACID properties is ensured by the system. Since data is stored in an append-
only B-tree, the existing data is never overwritten and stays stable. The changes
are added to the end of the database �le, then added a �le footer (with a
checksum) storing the new length twice. This keeps the database �le robust in
case of corruption. If there is a failure when �ushing data to disk, the old length
will be kept and the system stays as before the update.

Scalability

Scalability in CouchDB is achieved by incremental replication. The changes can
be periodically copied among servers, or when a device turns back to online
after o�ine time (multi-master replication). Hence, the database is eventually
consistent. This makes CouchDB a good choice to be used as a mobile embedded
database, also for the fact that CouchDB does not cache anything internally
(although it can make use of the �le system cache, for example, when loading

2.4 Tested databases 21

the B-trees).

However, basic CouchDB does not support sharding. If users want to partition
their data, they need to do it manually, or using a project called CouchDB
Lounge [ALS10], which provides sharding on top of CouchDB.

2.4.3 MongoDB

MongoDB [mon13] is an open source document store database, developed by
10gen and written in C++. The database is meant to work with large amount
of data, thus being scalable and fast.

Document-store

As CouchDB, MongoDB is a document-oriented database, meaning that its data
has a �exible schema. The database contains multiple collections, each in turn
contains multiple documents. In practice, the documents in a collection nor-
mally have similar structure, representing one kind of application-level object.

Data is stored in BSON format, which is a binary-encoded format of JSON.
The format makes the data easily parsable as JSON, highly traversable, fast to
encode and decode [bso13].

MongoDB does not keep di�erent versions of the data. Therefore, there is no
_rev �eld needed as in CouchDB. Each document in a collection is identi�ed
by an unique _id. If the user does not assign a value to _id, the system will
automatically generate it with an ObjectID. ObjectID is 12 bytes, structured as
shown in Figure 2.6.

Figure 2.6: MongoDB ObjectID

Querying

Unlike CouchDB, MongoDB supports a very rich set of adhoc queries. Users
do not need to write MapReduce functions for simple queries. It comes with a

22 Databases

JavasScript shell (the mongo shell) which is actually a stand-alone MongoDB
client that can interact with the database from the command line.

CRUD operations are executed with the commands insert, �nd, update, remove
respectively. There is no need for an explicit create command for databases
and collections, they are automatically created once the collection is referred to.
MongoDB supports search by �elds, range of values, and regular expressions.
Users can choose which �elds to be returned in the result. The results are
returned in batches, through cursors. A cursor is automatically closed after
some con�gured time, or once the client iterates to its end.

For aggregation tasks, clients can use either MapReduce operations or the sim-
pler aggregation framework which is similar to GROUP BY in SQL.

Indexes

Indexes in MongoDB are on a per-collection level. MongoDB automatically
creates an unique index on the _id �eld. It also supports secondary index, which
means users can create indexes on any other �elds in the documents, including
compound index, index on sub-document, and index on sub-document �elds.

Capped Collections and Tailable Cursor

A capped collection is a �xed-size collection that works similarly to a circular
bu�er. Data are stored on disk in the insertion order. Therefore updates that
increase document size are not allowed. When the space for the collection runs
out, the round turns over and the new documents automatically replace the
oldest ones. Hence, capped collections are suitable for queries based on insertion
order. That is analogous to tail function to get the most recently added records,
for example for logging service. Because of its natural order, capped collection
cannot be sharded. Di�erent from normal collections, capped collections require
an explicit create command in order to preallocate the space. The command
can be time consuming, but it is only needed in the �rst run.

Capped collections allow the use of tailable cursors which stay open even after
the cursors have been exhausted. If there are new documents added, the cursors
will continue to retrieve these documents. Tailable cursors do not use indexes.
Therefore, it might take some time for the initial scan, but subsequent retrievals
are inexpensive.

GridFS

While MySQL uses BLOB data type, MongoDB provides GridFS to store and
retrieve data �les of large size. The GridFS database structure is shown in

2.4 Tested databases 23

Figure 2.7. A GridFS bucket (default named fs) comprises of two collections:
�les collection stores the �le metadata, and chunks collection stores the actually
binary data, divided into smaller chunks. This approach makes storing the �le
easier and more scalable, also possible for range operations (such as getting
speci�c parts of a �le).

MongoDByGridFS

fs

fs.files fs.chunks

”_id” :r<ObjectID>

”length” :r<num>rkfilersizerinrKiB’

”chunkSize” :r<num>rkdefaultr256rKiB’

”uploadDate” :r<timestamp>

”md5” :r<hash>

”filename” :r<string>rkoptional’

”contentType” :r<string>rkoptional’

”aliases”y:r<stringrarray>rkoptional’

”metadata”y:r<dataObject>rkoptional’

“_id”:r<ObjectID>

“files_id”:y<string>rk_idrofrther“parent”rfile document’

“n”:r<num>rksequencernumberrofrtherchunk’

“data”:r<binary>rktherchunk’srpayload’

Figure 2.7: GridFS structure

Storage

MongoDB does not implement a query cache but it uses memory mapped �les
for fast accessing and manipulating data. Data are mapped to memory when
the database accesses it, thus being treated as if they are residing in the primary
memory. This way of using operating system cache as the database cache yields
no redundant cache. Cache management is, therefore, di�erent depending on
the operating system. MongoDB automatically utilizes as much free memory on
the machine as possible [Tiw11]. Hence, the database is at its best performance
if the working set can �t in RAM.

Data are stored in several preallocated �les, starting from 64 MB, 128 MB and
so on, up to 2 GB, after that all �les are 2 GB. That way small databases
do not take up so much space while preventing large databases from �le system
fragmentation. Hence, there can be space that is unused but for large databases,
this space is relatively small.

Consistency

MongoDB is not ACID compliant but eventually consistent. It writes all update
operations to a write ahead logging called journal. If an unexpected termination
occurs, MongoDB can re-run the updates and maintain the system in a consis-

24 Databases

tent state. By default, changes in memory are �ushed to data �les once every
minute. Users can con�gure a smaller sync interval to increase consistency with
the expense of decreased performance.

Sharding

MongoDB o�ers automatic sharding as a solution for horizontal scaling. Shard-
ing is enabled on a per-database basis. It partitions a collection and distributes
the partitions to di�erent machines. Data storage is automatically balanced
across the shards.

Data are divided according to the ranges of a shard key, which is a �eld (or
multiple �elds) existing in all the documents in the collection. In each partition
(or shard), data are divided further into chunks. Chunk size can be speci�ed by
users. Small chunks lead to a more even data distribution while large chunks
limit data migration during load balancing. The choice of the shard key can
directly a�ect the performance. The shard key should be easily divisible, likely
to distribute write operations to multiple shards, but route the search queries
to a single one (query isolation). Queries that do not involve the shard key will
take longer time as it must query all shards.

A minimal shard cluster includes:

• Several mongod3 server instances, each serves as a shard.

• A mongod instance to become a con�g server, maintaining the shard meta-
data.

• A mongos4 instance acts as a single point of access to a sharded cluster.
It appears as a normal single MongoDB server instance.

The mongos instance receives queries from clients, then uses metadata stored
in the con�g server to route the queries to the right mongod instances.

Replication

Replication in MongoDB is used to provide backup, distributing read load, and
automatic failover. Replication copies data to a group of servers, forming a
replica set. A replica set is a cluster of two or more mongod instances, one is the
(only) primary, the others are secondary instances. Write operations can only be

3mongod: the primary daemon process for the MongoDB system, handling data requests
and background management operations [mon13].

4mongos: provides routing service for MongoDB shard clusters.

2.4 Tested databases 25

performed on the primary, data will then be copied to the secondaries. For read
operations, users can choose a preference to read from primary or secondaries or
the nearest machine. In case the primary is unreachable, one secondary will be
automatically chosen to become the new primary. This process is called failover.
This way, MongoDB can provide high availability.

In production, the system usually combines both replication and sharding to
increase reliability, availability, and partition tolerance. Figure 2.8 shows an
example of a system architecture in practice. The system provides no single
point of failure with multiple points of access, data are partitioned across three
shards, each is a replica set.

Config server Config serverConfig server

Application Server Application Server

mongos mongos

Application Server

mongos

mongod
primary

mongod
secondary

mongod
secondary

SHARD 2

mongod
primary

mongod
secondary

mongod
secondary

SHARD 1

mongod
primary

mongod
secondary

mongod
secondary

SHARD 3

Figure 2.8: Scalable system architecture of MongoDB

2.4.4 Redis

Redis [Seg10] is an opensource in-memory key-value store. The database promises
very fast performance, and more �exibility than the basic key-value structure.

Data model

In Redis, a database is identi�ed by a number, the default database is number
0. The number of databases can be con�gured but default is 16 databases.
Basically, a Redis database is a dictionary of key and value pairs. Nevertheless,
apart from the classic key-value structure where value is a string and users are
responsible to parse it at the application level, Redis o�ers more choices of data
structures, where a value can be stored as:

• A string

• A list of strings: Insertions at either the head or tail of the list are sup-

26 Databases

ported. Besides, querying for items near the two ends of the list is ex-
tremely fast, while querying for one in the middle of a long list is slower.

• A set of strings: This is a non-duplicated collection of strings which means
adding the same string repeatedly yields only one single copy. Add and
remove operations only take constant time (O(1)).

• A sorted set of strings: Similar to set but in a sorted set, each string
is associated with a score speci�ed by clients. This score is used as the
criteria for sorting and can be the same among multiple members of the
set.

• A hash: In this case, each value itself is a map of �elds and values. This
data type is very useful for representing objects. For example, a student
object will have multiple �elds, for example, name, age, and GPA.

Querying

Each type of data structures has its own set of commands available [red13].
Redis does not support secondary index, all queries are based on the keys,
which means it is impossible to query for students that are at the age of 20 (i.e.,
students whose value of �eld age is 20).

Persistence

To achieve high performance, Redis stores the entire data set in memory. How-
ever, an obvious drawback is that this makes Redis depend highly on RAM and
limits the database storage capacity, as RAM is an expensive piece of hardware.

On the other hand, Redis persists data on disk as well. Hence, the dataset can
be reloaded to the memory at server startup. Nevertheless, data persistence can
be disabled in case users only need to keep the data while the server is active,
for instance, for cache purpose.

There are two main methods for data persistence, that is, by snapshots or by
append-only �le, or a combination of the two. As regards snapshots which is the
default option, Redis can be con�gured to save dataset snapshots periodically if
a speci�ed number of keys changed. For example, the con�guration save 300 10
will automatically save the database after 300 seconds if at least 10 keys have
changed. A disadvantage of this approach is the weak durability, for data can be
lost before the snapshot is taken if a sudden termination occurs. The alternative
is to use the append-only �le that logs all the write operations. However, the
append-only �le is normally bigger than the snapshot �le, plus it can be slower
depending on how often the �le is con�gured to be dumped on disk.

2.4 Tested databases 27

Scalability

Redis databases can be replicated using the master-slave model. However, it
does not support automatic failover, which means if the master crashes, a slave
has to be manually promoted to replace it. A slave can have other slaves of its
own, so it can also accept write requests, though a slave is in read-only mode
by default.

At the time being, sharding is not o�cially supported, although it is provided
by some particular drivers. Nevertheless, a project called Redis Cluster is now
being developed which promises horizontal scalability along with other useful
features for a distributed Redis system.

28 Databases

Chapter 3

Cloud databases for the
Internet of Things

This chapter explains the two main concepts of the thesis: Internet of Things
and cloud databases. Additionally, it gives an overview of the previous related
work done on the topic of Cloud Databases for IoT data.

3.1 Internet of Things

The phrase �Internet of Things� started life in 1999 by Kevin Ashton, co-founder
and executive director of Auto-ID Center [SGFW10].

�Internet of Things (IoT) is an integrated part of Future Inter-
net and could be de�ned as a dynamic global network infrastructure
with self con�guring capabilities based on standard and interopera-
ble communication protocols where physical and virtual things have
identities, physical attributes, and virtual personalities and use intel-
ligent interfaces, and are seamlessly integrated into the information
network.�

30 Cloud databases for the Internet of Things

To make it simpler, IoT refers to a world of physical and virtual objects (things)
which are uniquely identi�ed and capable of interacting with each other, with
people, and with the environment. It allows people and things to be connected
at anytime and anyplace, with anything and anyone. Communication among the
things is achieved by exchanging the data and information sensed and generated
during their interactions.

3.1.1 Internet of Things vision

The broad future vision of IoT is to make the things able to react to physical
events with suitable behavior, to understand and adapt to their environment,
to learn from, collaborate with and manage other things, and all these are
autonomous with or without direct human intervention. To achieve such a goal,
numerous researches have been carried out, which emphasize on di�erent aspects
of the IoT. The followings are the three main concrete visions of the IoT that
most of the researches are focusing on [AAS13] [AIM10]:

Things-oriented Vision

Originally, the IoT started with the development of RFID (Radio Frequency
Identi�cation) tagged objects that communicate over the Internet. RFID along
with the Electronic Product Code (EPC) global framework [TAB+05] is one of
the key components of the IoT architecture. The technology targets a global
EPC system of RFID tags that provide object identi�cation and traceability.

However, the vision is not limited to RFID. Many other technologies are involved
in the things-vision of IoT, including Universally Unique IDenti�er (UUID)
[LMS05], Near Field Communications (NFC) [Wan11], and Wireless Sensor
and Actuator Networks [VDMC10]. Those in conjunction with RFID are to
be the core components that make up the Internet of Things. Applying these
technologies, the concept of things has been expanded to be of any kind: from
human to electronic devices such as computers, sensors, actuators, phones. In
fact, any everyday object might be made smart and become a thing in the
network. For example, TVs, vehicles, books, clothes, medicines, or food can be
equipped with embedded sensor devices that make them uniquely addressable,
be able to collect information, connect to the Internet, and build a network of
networks of IoT objects.

Internet-oriented Vision

A focus of the Internet-oriented vision is on the IP for Smart Objects (IPSO)
[VD10] which proposes to use the Internet Protocol to support smart objects

3.1 Internet of Things 31

connection around the world. As a result, this vision poses the challenge of
developing the Internet infrastructure with an IP address space that can ac-
commodate the huge number of connecting things. The development of IPv6
has been recognized as a direction to deal with the issue.

Another focus of this vision is the development of the Web of Things [GT09],
in which the Web standards and protocols are used to connect embedded de-
vices installed on everyday objects. That is to make use of the current popular
standards such as URI, HTTP, RESTful API to access physical devices, and
integrate those objects into the Web.

Semantic-oriented Vision

The heterogeneity of IoT things along with the huge number of objects involved
impose a signi�cant challenge for the interoperability among them. Semantic
technologies [BWHT12] have shown potential for a solution to represent, ex-
change, integrate, and manage information in a way that conforms with the
global nature of the Internet of Things. The idea is to create a standardized
description for heterogeneous resources, develop comprehensive shared informa-
tion models, provide semantic mediators and execution environments [Sen10],
thus accommodating semantic interoperability and integration for data coming
from various sources.

3.1.2 Internet of Things data

With its powerful ability, the scope of the Internet of Things is wide. It can
provide applicability and pro�ts for users and organizations in a variety of �elds,
including environmental monitoring, inventory and product management, cus-
tomer pro�ling, market research, health care, smart homes, or security and
surveillance [MSPC12]. For instance, digital billboards use face recognition
to analyze passing shoppers, identify their gender and age range, and change
the advertisement content accordingly. A smart refrigerator keeps track of
food items' availability and expiry date, then autonomously orders new ones
if needed. A sensor network used to monitor crop conditions can control farm-
ing equipments to spray fertilizer on areas that are lack of nutrients. Examples
for such applications of IoT are countless. Therefore, the types of data trans-
mitted in the Internet of Things are also unlimited. It could be either discrete
or continuous, input by humans or auto-generated. Generally, IoT data include,
but not limited to, the following categories [CJ+09][CLR10].

RFID Data. Radio Frequency Identi�cation [Wan06] systems are said to be
a main component of the IoT [AIM10]. The technique uses radio wave for

32 Cloud databases for the Internet of Things

identi�cation and tracking purposes. An RFID tagging system includes several
RFID tags that are uniquely identi�ed and can be attached to everyday objects.
The tag can store information internally and transmit data as radio waves to
an RFID reader through an antenna. Hence, the technology can be used to
monitor objects in real time. For example, it can replace bar codes in supply
chain management, stock control, or used to track livestock and wildlife. In
healthcare, VeriChip [GH06] is an RFID tag that can be injected under human's
skin. It is used to biometrically identify patients and provide critical information
about their medical records.

Sensor Data. Sensor networks [ASSC02] have been widely spread nowadays
from small to large scale. They are also a key component in the Internet of
Things. Their usage varies from recording and monitoring environment param-
eters or patient conditions in real time to tracking customer behavior and other
applications. Several common parameters are temperature, power, humidity,
electricity, sound, blood pressure, and heart rate. Data format can also be dif-
ferent, from numeric or text based to multimedia data. For this data type, the
normal question is how often the data is to be captured, whether continuously,
periodically, or when queried. In any case, the result could be an enormous
volume of data, which in turn raises a challenge of storage as well as how to
do querying, data mining, and data analysis on such an amount of data with a
real-time demand. Additionally, sensor data generation tends to be continuous.
As time goes by, some data become old and less valuable. Hence, the system is
responsible to decide which data to keep, when to remove or archive old data, or
how to distribute new data to active data warehouses used for frequent querying.

In the thesis, one of our focus is on sensor scalar data. The context for the sensor
data benchmark is based on the Home Energy Management System (HEMS)
developed by There corporation [the13]. The system uses smart metering sen-
sors to monitor the electric energy consumption of households. The energy is
periodically measured and recorded data are sent to a central database. Cus-
tomers can then get the real time report about the energy usage in their house
via a provided web service.

Multimedia Data. The term refers to the convergence of text, picture, audio,
and video into a single form. Multimedia data �nds its application in numerous
areas including surveillance, entertainment, journalism, advertisement, educa-
tion and more. As a result, it can easily contribute a large source of data to the
Internet of Things.

Positional Data. This data represents the location of an object within a
positioning system, for example a global positioning system (GPS). Positional
data is highly relevant in the work of mobile computing where objects are either
static or mobile, or geographical information system.

3.2 Cloud Databases 33

Descriptive Data and Metadata about Objects (or Processes and Sys-
tems). This kind of data describes the attributes of a certain object, to help
identify the object type, to address the object, and to di�erentiate it with other
objects. For example, an IoT object might have data �TV�, �Samsung�, �40
inches� and the corresponding metadata for it are �Type�, �Brand�, �Size�.

Command Data. Some of the data coming into the network will be command
data which are used to control devices such as actuators. The interfaces of each
system are di�erent, and so the format of command data will be di�erent as
well.

3.2 Cloud Databases

By its name, a cloud database [MCO10] is a database that runs on a cloud
computing platform, such as Amazon Web Services, Rackspace and Microsoft
Azure. The cloud platform can provide databases as a specialized service, or
provide virtual machines to deploy any databases on. Cloud databases could
be either relational or non-relational databases. Compared to local databases,
cloud databases are guaranteed higher scalability as well as availability and
stability. Thanks to the elasticity of cloud computing, hardware and software
resources can be added to and removed from the cloud without much e�ort.
Users only need to pay for the consumed resource while the expenses for physical
servers, networking equipments, infrastructure maintenance and administration
are shared among clients, thus reducing the overall cost. Additionally, database
service is normally provided along with automated features such as backup and
recovery, failover, on-the-go scaling, and load balancing.

3.2.1 Amazon Web Services

The most prominent cloud computing provider these days is Amazon with its
Amazon Web Services (AWS) [ama13]. Clients can purchase a database service
from a set of choices:

Amazon RDS. Amazon Relational Database Service is used to build up a
relational database system in the cloud with high scalability and little admin-
istration e�ort. The service comes with a choice of the three popular SQL
databases including MySQL, Oracle, and Microsoft SQL Server.

34 Cloud databases for the Internet of Things

Amazon DynamoDB, Amazon SimpleDB. These are the key-value NoSQL
databases provided by Amazon. The administrative work here is also minimal.
DynamoDB o�ers very high performance and scalability but simple query ca-
pability. Meanwhile, SimpleDB is suitable for a smaller data set that requires
query �exibility, but with a limitation on storage (10GB) and request capacity
(normally 25 writes/second).

Amazon S3. The Simple Storage Service provides a simple web service inter-
face (REST or SOAP) to store and retrieve unstructured blobs of data, each is
up to 5 TB size and has a unique key. Therefore, it is suitable for storing large
objects or data that is not accessed frequently.

Amazon EC2 (Amazon Elastic Compute Cloud). When clients require
a particular database or full administrative control over their databases, the
database can be deployed on an Amazon EC2 instance, and their data can be
stored temporarily on an Amazon EC2 Instance Store or persistently on an
Amazon Elastic Block Store (Amazon EBS) volume.

3.2.2 Scalability

Scalability is one key point of cloud databases that make them more advan-
tageous and suitable for large systems than local databases. Scalability is the
ability of a system to expand to handle load increases. The dramatic growth in
data volumes and the demand to process more data in a shorter time are putting
a pressure on current database systems. The question is to �nd a cost-e�ective
solution for scalability, which is essential for cloud computing and large-scale
Web sites such as Facebook, Amazon, or eBay. Scalability can be achieved by
either scaling vertically or horizontally [Pri08]. Vertical scaling (scale up) means
to use a more powerful machine by adding processors and storage. This way
of scaling can only go to a certain extent. To get beyond that extent, hori-
zontal scaling (scale out) should be used. That is to use a cluster of multiple
independent servers to increase processing power.

Currently, there are two methods that can be used to achieve horizontal scala-
bility, that is, replication and sharding.

Replication

Replication is the process of copying data to more than one server. It increases
the robustness of the system by reducing the risk of data loss and one single

3.2 Cloud Databases 35

point of failure. The nodes can be distributed closer to clients, thus reducing
latency in some cases, but also making the nodes far away from each other
lengthens the data propagating process. Besides, replication can e�ectively im-
prove read performance as read queries are spreaded across multiple nodes.
However, write performance normally decreases as data have to be written to
multiple nodes. Depending on the database system, replication can be syn-
chronous, asynchronous, or semi-synchronous [Siv13]. A database using syn-
chronous replication only returns a write call when it has �nished on the slaves
(usually a majority of the slaves) and received their acknowledgements. On
the other hand, in asynchronous replication, a write is considered complete as
soon as the data is written on the master while there might be a lag in up-
dating the slaves. Semi-synchronous replication is in between which means an
acknowledgement can be sent as soon as the write operation is written to a log
�le.

Replication can either be master-slave or multi-master. In case of master-slave
replication, one single node of the cluster is designated as the master, and data
modi�cations can only be performed on that node. Allowing one single master
makes it easier to ensure system consistency, and that node can be dedicated to
write operations while the others (slaves) take care of read operations. Mean-
while, multi-master replication is more �exible as all nodes can receive write
calls from clients, but they are responsible for resolving con�icts during data
synchronization.

Replication can provide some useful features, such as automatic load balancing
(for example on a round-robin basis), or failover which is the ability to automat-
ically switch from a primary system component (for example server, database)
to a secondary one in case of a sudden failure.

Sharding

In short, sharding [Cod13] means horizontal partitioning data across a number
of servers. One database (or one table) is divided into smaller ones, all have
the same or similar structure. Each partition is called a shard. Partitioning is
done with a �shared-nothing� approach, that is, the servers are CPU, memory
and disk independent. Hence, sharding solution is needed for systems that have
data sets larger than the storage capacity of a single node, or systems that are
write-intensive in which one node cannot write data fast enough to meet the
demand.

Scalability by sharding is achieved through the distribution of processing (both
reads and writes) across multiple shards. A smaller data set can also outper-

36 Cloud databases for the Internet of Things

form a large one. Moreover, sharding is cost-e�ective as it is possible to use
commodity hardware rather than an expensive high-end multi-core server.

On the other hand, sharding also poses several challenges. First and foremost
is choosing an e�ective sharding strategy, since using a wrong one can actu-
ally inhibit performance. A database table can be divided in many ways, for
example, based on the value ranges of one or several �elds that appear in all
data items, or using a hash function to perform on an item �eld. The ideal
option is the one that can distribute data and load evenly, take advantage of
distributed processing while avoiding cross-shard joins. However, which solu-
tion to choose highly depends on the query orientation, data structures, and
key distribution nature of the system. At the same time, sharding increases
the complexity of a system. The system highly relies on its coordinating and
rebalancing functionalities. Scattered data complicates the process of manage-
ment, backup, and maintaining data integrity, especially when there is a change
in the data schema. Besides, partitioning data causes single points of failure.
Corruption of one shard due to network or hardware can lead to a failure of
the entire table. To avoid this, large systems usually apply a combination of
sharding and replication, where each shard is a replicated set of nodes.

3.3 Literature Review

Database characteristics of SQL vs. NoSQL

A lot of work has been done on studying the characteristics and features of di�er-
ent kinds of databases. Many reviews and surveys comparing SQL versus NoSQL
as well as comparing multiple NoSQL databases are available [TB11][HHLD11][Ore10].

Padhy et al. [PPS11] characterized the three main types of NoSQL databases,
that is, key-value, column-oriented, and document stores. Simultaneously, the
authors gave detailed description about the data model and architecture of
several popular databases, namely, Amazon SimpleDB, CouchDB, Google Big
Table, Cassandra, MongoDB, and HBase.

Hecht et al. [HJ11] evaluated the four NoSQL database classes, the three above
along with the graph databases. The underlying technologies were compared
from di�erent aspects, from data models, queries, concurrency controls, to scal-
ability, but all were evaluated under the consideration of the database applica-
bility for systems of di�erent requirements.

3.3 Literature Review 37

Meanwhile, Jatana1 et al. [JPA+12] studied the two broad categories of databases:
relational and non-relational. The authors gave an overview of each database
class, along with their advantages and disadvantages. Several widely used
databases were also brie�y introduced. Finally, the paper highlighted the key
di�erences between the two classes of database.

Database performance of SQL vs. NoSQL

As regards database performance measurement, countless tests have been run,
but most are individual, small scale, or case speci�c local tests. Nevertheless,
there are several researches have been carried out in an attempt to demonstrate
the performance with real world loads.

Datastax Corporation examined three NoSQL databases: key-value store Apache
Cassandra, column oriented Apache HBase, and document store MongoDB on
Amazon EC2 m1 extra large instances [Dat13]. The results showed that Cas-
sandra outperformed the other two by a large margin, while MongoDB was the
worst. However, there was no SQL database involved, nor was there any other
document database to compare with MongoDB, which is one of the main focus
in our tests.

In the paper written by Konstantinou et al. [KAB+11], the elasticity of NoSQL
databases, including HBase, Cassandra, and Riak, was veri�ed and compared as
the authors examined the changes in query throughput when the server cluster
size changed. The results showed HBase as the fastest and most scalable when
the system was read intensive, whereas Cassandra performed and scaled well in
a write intensive environment, and nodes could be added without a transitional
delay time. Apart from that, the authors proposed a prototype for an automatic
cluster resize module that could �t the system requirements.

Meanwhile, Rabl et al. [RGVS+12] addressed the challenge of storing appli-
cation performance management data, and analyzed the scalability and per-
formance of six databases including MySQL and �ve NoSQL databases. The
benchmark showed the latency and throughput of those databases under dif-
ferent workload test cases. Again Cassandra was the clear winner throughout
the experiments, while HBase got the lowest throughput. When it comes to
sharding, MySQL achieved nearly as high throughput as Cassandra. Although
a standalone Redis outperformed the others when the system was read inten-
sive, its performance of a sharded implementation dropped with an increasing
number of nodes. The same case applied for VoltDB in a sharded system, thus
Redis and VoltDB did not scale very well.

38 Cloud databases for the Internet of Things

Tudorica et al. [TB11] compared MySQL, Cassandra, HBase, and Sherpa. The
experiments concluded that the SQL database was not as e�cient as the NoSQL
ones when it comes to data of massive volume, especially on write intensive
systems. However, MySQL could have relatively high performance on read
intensive systems.

One common point of those papers is their use of Yahoo! Cloud Serving Bench-
mark (YCSB), a generic framework for the evaluation of key-value stores, which
helped to perform the tests with sets of big data, hundreds of millions of records,
hundreds of clients and multiple data nodes, simultaneously they provide the
setup for di�erent read and write intensity. However, little attention was paid
on the structure and variety of data.

Internet of Things storage

As regards more types of data related to IoT data, van der Veen et al. [vdVvdWM12]
compared PostgreSQL, Cassandra, and MongoDB as a storage for sensor data.
The tests were not run in a cloud environment, but run in a comparison between
a physical server and a virtual machine. The paper is closely related to our work
for the similar used data structure. The result did not show a solely winner as
MongoDB won at single writes and PostgreSQL at multiple reads. The impact
of virtualization was unclear for it was di�erent in each case.

Other solutions for storing IoT data have also been proposed. One is a storage
management solution called IOTMDB which is based on NoSQL [LLT+12]. The
system came with the strategies for a common IoT data expression in the form
of key-value, as well as a data preprocessing and sharing mechanism.

Pintus et al. [PCP12] introduced a system called Paraimpu, a social scalable
Web-based platform that allowed clients to connect, use, share data and func-
tionalities, and build a Web of Things connecting HTTP-enabled smart devices
like sensors, actuators with virtual things such as services, social networks, and
APIs. The platform uses MongoDB as the database server, provides models and
interfaces that help to abstract and adopt di�erent kinds of things and data.

Another solution is the SeaCloudDM [DXY12], a cloud data management frame-
work for sensor data. The solution addressed the challenges that the data are
dynamic, various, massive, and spatial-temporal (i.e., each data sampling corre-
sponds to a speci�c time and location). To provide a uniformed storage mech-
anism for heterogeneous sensor sampling data, the system combined the use
of the relational model and the key-value model, and was implemented with
PostgreSQL database. Its multi-layer architecture was claimed to reduce the

3.3 Literature Review 39

amount of data to be processed at the cloud management layer. Besides, the
paper also came with several experiments that showed a promising result for the
performance of the system when storing and querying a huge volume of data.

Meanwhile, Di Francesco et al.[DFLRD12] proposed a document-oriented data
model and storage infrastructure for IoT heterogeneous as well as multimedia
data. The system used CouchDB as the database server, taking advantage of its
RESTful API, and supporting other features such as replication, batch process-
ing, and change noti�cations. The authors also provided an optimized document
uploading scheme for multimedia data that showed a clear enhancement in per-
formance.

In this thesis, we also target the same data types as [DFLRD12], but we will
provide more intense experiments, focus on sensor data and run on the cloud
with multiple databases.

40 Cloud databases for the Internet of Things

Chapter 4

Experimental Methodology
and Setup

In this chapter, we describe in details the methodology used to assess the per-
formance of SQL and NoSQL databases. Many tests were carried out on four
databases: MySQL, MongoDB, CouchDB, and Redis. The set-up of the tests,
including the test environment, materials, design, and procedure, will be pre-
sented. By the end of the chapter, we will thoroughly explain what, how, and
why these tests were taken.

4.1 Experiment overview

The main goal of the tests was to compare the performance of di�erent databases
as cloud databases. Hence, the database servers were placed on the cloud. A
system was implemented to play the role of the database clients. The system
can perform very basic read/write operations on the databases. The tests were
to run these operations with di�erent workload, measure the average request
latency, and compare them among the databases.

The choice of the databases was based on the fact that those were among the
most popular databases available, and that they were the representatives for

42 Experimental Methodology and Setup

their kinds. Many large organizations have been using them in production, such
as Facebook, Google, Wikipedia, LinkedIn, Instagram, and more. On the other
hand, each database has its own promising strength that is worth exploring.
MySQL so far has been the most popular open source SQL database. MongoDB
was built to work with very large sets of data. CouchDB has its user-friendly
RESTful API. Meanwhile, Redis is said to be very fast thanks to its in-memory
storage.

To benchmark the database performance, many works in the literature have used
Yahoo! Cloud Serving Benchmark (YCSB) [Dat13][KAB+11][RGVS+12][TB11].
The databases themselves also provide their own benchmarks. However, these
benchmarks only allow setting the record size without specifying its actual data
types, which we believe to have a great impact on the database performance.
Our tests targeted two particular data types: sensor scalar data and multimedia
data which were expected to contribute a large portion to the whole Internet of
Things data. Therefore, we built our own system with two benchmarks to test
on the two speci�c data structures.

As mentioned before, the tests were to evaluate the performance of the basic
read and write operations. Each operation was assessed separately, meaning at
any point, only one kind of database was tested, only one test was running, and
the system was under 100% read load or 100% write load. A test was a single
or a continuous series of either read or write requests sending from clients to a
database. Di�erent tests were setup using di�erent values of parameters, which
could be the number of records, the number of concurrent clients (simulated by
multi-threads) and so on. More details will be given later for each benchmark.

The performance measurement was done on the client side. The time taken to
complete the requests in each test was measured. Separated time was recorded
for connecting to the database and for actually executing the requests. One
limitation was that the network connection between clients and servers was not
dedicated to the tests and could not be controlled. Hence, in order to increase
reliability, each test of the same input were run multiple times (at least 10
times). The �nal result for a test was then the average of these individual runs.

4.2 Experiment environment 43

4.2 Experiment environment

4.2.1 Hardware and Software

The test system was implemented in Java and ran on the Java 7 Virtual Machine
(JVM). The system included machines for database servers and their clients that
either wrote data to or read data from the server:

• Server : Each server was deployed on a virtual machine instance running
64-bit Ubuntu 12.10 on an Amazon EC2 m1.large instance (7.5 GiB mem-
ory, dual-core with total 4 Compute Units, 840 GiB instance store volume,
moderate I/O performance, European region [ama13]).

• Client : a local machine running 64-bit Ubuntu 12.04, with 7.5 GiB mem-
ory and Intel Core 2 Q6600 2.40GHz quad-core processor.

4.2.2 Database con�guration

Used versions of the databases:

• MySQL 5.6.10

• MongoDB 2.4.3

• CouchDB 1.2.0

• Redis 2.6.12

All databases ran with default con�gurations, except for the followings:

• Data and log �le path changed to the Amazon instance store volume.

• bind-address = 0.0.0.0 (to enable connections from any remote client and
not have to recon�gure when the server IP address is dynamically as-
signed).

• MongoDB nssize = 100 (This is to increase the namespace �le size to
100MB, thus increasing the limitation of namespaces including the number
of collections and indexes. By default the size is 16MB which corresponds
to about 24000 namespaces)

44 Experimental Methodology and Setup

4.2.3 Libraries and drivers

In order to connect and interact with the database servers, the following libraries
and drivers were used in the implementation of the database clients:

• MySQL JDBC1 Connector version 5.1.22

• MongoDB Java Driver2 2.10.1

• Ektorp3 1.2.2 for CouchDB

• Jedis4 2.1.0 for Redis

4.3 Sensor scalar data benchmark

This benchmark is the focus of the thesis. It was used to test the e�ciency
of MySQL, MongoDB, CouchDB, and Redis when it comes to storing scalar
readings generated by sensors. The benchmark was built based on the Home
Energy Management System developed by There corporation [the13].

4.3.1 System description

The system implemented for the tests simulated a sensor network, the archi-
tecture is shown in Figure 4.1. The network comprised of one central database
server (located on the cloud) and multiple uniquely identi�ed sensor nodes. The
nodes were divided into smaller groups and each group was monitored by a data
sender. Each node generated a reading record once in an interval. The interval
was common for all nodes and could be set by the user. The data sender was re-
sponsible for collecting individual records and sending them all to the database
server. The user could con�gure the data sender to send the data individually
or in a bulk, send once every interval or store the data in an internal bu�er and
send later when the bu�er is full. Multiple database clients can read these data
from the server. In the implementation, instead of multiple sensor nodes per
node group, we used a data generator that periodically created a series of sensor
records with random values, simulating the interval readings coming from the

1http://dev.mysql.com/downloads/connector/j/
2http://docs.mongodb.org/ecosystem/drivers/java/
3http://www.ektorp.org/
4http://code.google.com/p/jedis/

http://dev.mysql.com/downloads/connector/j/
http://docs.mongodb.org/ecosystem/drivers/java/
http://www.ektorp.org/
http://code.google.com/p/jedis/

4.3 Sensor scalar data benchmark 45

nodes. The data series would then be passed to the data sender to be inserted
in the database.

For such system, we made the following assumptions:

• The data had the same structure for all records.

• Performance and availability had higher priority than data integrity.

• The system was highly write intensive, i.e., data were sent continuously
at a short interval.

• In practice, the writing thread is meant to run continuously without dis-
connection. However, in the tests, we only measured the time taken to
execute a particular number of writes.

• The system was expected to serve clients in real time which means that
once the data were generated, they would be sent immediately to the
database and ready for clients to query.

• Queries were simple, possible queries were: fetching all data in the database,
fetching all data belonging to one node, continuouly fetching new data of
one node. Note that the queries were considered �nished when the re-
turned list of records had been iterated through.

• Update and delete requests rarely happened and so were not considered.

4.3.2 Data structure

The common data structure for all records is shown in Table 4.1. When stor-

Name Type
nodeID String
time Date
value double

Table 4.1: Sensor scalar data structure

ing this data type in di�erent databases, there was a slight di�erence in the
database storage structures. Figure 4.2 shows how the databases appeared to
users in each case. The databases were grouped based on their structure. We
tested MongoDB with both types of structure (denoted as Mongo_1set and
Mongo_mset from now on).

46 Experimental Methodology and Setup

{(node5, t1, v1),
(node5, t2, v2),
(node5, t3, v3)}

DATABASE

Node 5 Node 6Node 4

Node 7 Node 8 Node 9

Data Sender

Data Sender

Node 1

Node 2

Node 3

Data Sender

DB Client

DB Client

{(node4, t, v4),
(node5, t, v5),
(node6, t, v6)}

Figure 4.1: System architecture of the Sensor Scalar Data Benchmark

One data set: MySQL, Mongo_1set, CouchDB. For these databases,
records of all nodes were stored as one common set only. The advantage of
this structure is that it was easy to make use of bulk insert and improve write
performance, as there was only one destination storage.

• MySQL: The database contained only one table data of structure {nodeID,
time, value} where {nodeID, time} was the primary key. It is worth noting
that the primary key was automatically indexed.

• Mongo_1set: The database contained only one collection data. In each
document, a �eld_id of ObjectId type was automatically added to uniquely
identify the documents. The _id �eld was automatically indexed as well.
For Mongo_1set, we could have created a structure more similar to the
one in MySQL by grouping {nodeID, time} as a nested document and
making it the _id. However, we decided to discard this approach, for it
would complicate and slow down indexing as well as querying for data of
a single node.

• CouchDB: The database itself was a set of all documents. _id and _rev

4.3 Sensor scalar data benchmark 47

�elds were automatically added by the system.

Multi data sets: Mongo_mset, Redis. In this case, one database consisted
of multiple subsets, each dedicated to one node, the subset name was the nodeID.
Data sent to the database were distributed to the corresponding subset. This
design reduced the duplication of nodeID �eld in every record. Besides, querying
for data of a single node, which we considered the most popular query, was
simpler and only worked on a small set of data rather than all the data.

• Mongo_mset: Each node corresponded to a collection. Inside a collection,
a document had type {_id, value}. Here the time itself ensured unique-
ness, therefore we used it as the _id, thus saving up the space used for
ObjectIds.

• Redis: The database was made up of multiple hashes, the hash keys were
the nodeIDs. Each hash was a map of all the time �elds and their corre-
sponding values.

Figure 4.2: Sensor database structure for the di�erent solutions considered

48 Experimental Methodology and Setup

4.3.3 Parameters

In the following, we list the parameters that can be tuned to assess the perfor-
mance from di�erent aspects:

• Type of database: MySQL, Mongo_1set, Mongo_mset, CouchDB, Redis.

• The number of clients, i.e., the number of concurrent threads doing the
same task.

• For Mongo_1set only: whether to create an index on nodeID.

• For write operations:

� The number of records to be sent to the database, i.e., the number
of nodes multiplied by the number of data generations.

� The size of bulk insert, i.e., the number of records that were to be
sent together in one request.

• For read operations:

� The query to perform: get database size, get all data, get all data of
one node.

� NodeID: the nodeID to be used when querying for all data of one
node. In case of multi-clients, each queried for a di�erent node.

4.4 Multimedia data benchmark

The purpose of this benchmark is to evaluate the performance of SQL and
NoSQL databases when used for multimedia storage on the cloud. MySQL and
MongoDB were chosen as representative databases in this case.

4.4.1 System description

The system architecture is illustrated in Figure 4.3, which is similar to that
of the sensor scalar data benchmark. The system consisted of multiple media
senders and multiple database clients connecting to the central cloud database.
The media senders were capable of sending multimedia �les to the server, one at
a time, while the database clients could query for the content of the �les. The
multimedia �le could be of any type: audio, video, picture or text.

4.4 Multimedia data benchmark 49

fileX

DATABASE

Media Sender

DB Client

file1, file2, file3,..,fileN

Media Sender

Media Sender

DB Client

Figure 4.3: System architecture of the Multimedia Data Benchmark

The following assumptions were made during the tests:

• All data �les had the same size and format.

• The writing threads ran without disconnection, sending the data �les con-
tinuously, one after another.

• Queries were simple, the tested query was the one querying for one par-
ticular �le.

• Update and delete requests rarely happened and so were not considered.

4.4.2 Data structure

MySQL and MongoDB provide di�erent data types for storing data of large
size. Since multimedia data can be larger than normal database items, we used
those special data types to store multimedia �les.

• MongoDB : the database contained one GridFS bucket in which data �les
were automatically divided and stored in small chunks (refer to Section
2.4.3). Each �le was set with a unique �lename which was a counter
incremented by 1 for each �le inserted.

50 Experimental Methodology and Setup

• MySQL: the database consisted of one table with the structure shown in
Table 4.2. Here the whole �le content was stored as a BLOB (a binary
large object of various size), and each �le was uniquely identi�ed by an id
(the primary key) which corresponded to the �lename in MongoDB case.

Name Type
id integer

data longblob

Table 4.2: MySQL multimedia data structure

4.4.3 Parameters

The following parameters can be con�gured di�erently for di�erent tests:

• Type of database: MySQL, MongoDB

• The number of clients, i.e., the number of concurrent threads doing the
same task.

• For write operations:

� The data �le to be inserted.

� The number of inserts (the above �le will be written repeatedly and
continuously)

• For read operations:

� The query to perform: get database size, get all �les, get one �le of a
particular ID. Note that the get �le operation was considered �nished
when the data �le was queried and written to a local �le.

� FileID: the �le ID to query. In case of no FileID speci�ed or multi-
clients, each thread would query for a di�erent random �le.

Chapter 5

Experimental Results

In this chapter, we detail the results of all the tests taken. Additionally, evalu-
ation for each result will also be presented.

`

5.1 Sensor scalar data benchmark results

5.1.1 Bulk insert

Instead of inserting data to the database once at a time, clients can use a feature
called bulk insert, which means to insert multiple records at the same time in
one operation. Bulk insert is expected to improve write performance. Hence,
the purpose of this test is to examine the e�ciency of bulk insert over individual
inserts, also to check the write latency when it comes to bulk insert with di�erent
number of records.

Bulk insert is supported by all the considered databases. However, between the
two data types introduced in Section 4.3.2, we chose to implement bulk insert
feature only on the group of databases with one data set (MySQL, Mongo_1set,

52 Experimental Results

CouchDB). This is reasonable because: �rst, bulk insert only works on one
table/collection (or one data set), meaning a list of data cannot be distributively
inserted to multiple data sets at once; second, each node generated one record
at a time but all nodes generated data at the same time; �nally, these data were
meant for real time query.

Parameters

The benchmark was carried out on MySQL, Mongo_1set and CouchDB. Except
from the bulk size (i.e., the maximum number of records to be inserted at once)
which was changed for each test, the parameters shown in Table 5.1 were set
the same for all databases and for all tests.

Parameter Value
The total number of records 10,000

The number of nodes 100
The number of data generations 100

The number of concurrent writing threads 1
MongoDB index for NodeID True

Table 5.1: Parameters of the bulk insert test

Results and Evaluation

Each test was run 10 times. The average values for the write latency (excluding
connection time) are shown in Figure 5.1.

The latency values for individual insert (where bulk size equals to 1) were not
put into the graph due to the huge di�erence with the other values, but they
are included in the data table. As can be seen, applying bulk insert has a great
impact on the performance of the three databases, as individual inserts cost
the greatest latency compared to bulk inserts. In the table, the maximum and
minimum latency values for each database were marked. The biggest di�erence
between maximum and minimum values was in MongoDB with approximately
350 times, for it took only more than 1 second to insert 10000 records in one
operation, but it took nearly 8 minutes to insert the same amount of data
individually. Those di�erences for MySQL and CouchDB were around 175 times
and 200 times respectively.

According to the graph, among the three databases, MongoDB had the best
results in general. The insert time decreased gradually along with the increase

5.1 Sensor scalar data benchmark results 53

0

2

4

6

8

10

12

14

16

18

20

22

24

100 200 400 800 1600 3200 6400 12800

La
te

n
cy

g9
se

c)

Bulkgsizeg9records)

Bulkginsertg910,000grecords)

MySQL

Mongo_1set

CouchDB

Bulkgsize 1 100 200 400 800 1600 3200 6400 12800

MySQL 483.51 5.55 3.48 2.74 3.22 4.53 7.21 10.77 19.32

Mongo_1set 476.20 6.45 4.18 3.60 2.99 2.44 1.82 1.89 1.38

CouchDB 1851.07 21.45 14.39 13.03 11.19 10.19 9.86 9.71 9.57

Figure 5.1: Bulk insert latency

in bulk size. A similar pattern applied for CouchDB, but CouchDB was outper-
formed by MongoDB in all cases. In the meantime, MySQL produced a decrease
until reaching the lowest at the bulk size of 400 records, after this point, the
latency signi�cantly climbed up again. However, in the beginning with a smaller
bulk size, MySQL achieved a slightly better latency than MongoDB, although
the reverse was applied when it comes to individual insert.

It is worth noting that individual insert in MySQL was implemented using pre-
pared statements. Hence, performance can be greatly improved compared to
using normal statements. This is because all the inserts had the exact same
syntax, therefore using prepared statements would eliminate the cost of con-
structing and compiling the statement at every request. Meanwhile, we chose
not to implement MySQL bulk insert with prepared statements. The reason
is that while bulk insert functions in CouchDB and MongoDB can accept a
data list of any size, doing the task by a prepared statement in MySQL will
limit the number of records inserted in one statement to a �xed bulk size. As
a result, if a node fails to generate its data or the number of records per each
write is di�erent, the prepared statement cannot be ful�lled, thus leading to a
failure in writing data of the whole group of nodes. Therefore, a bulk insert
query in MySQL was built dynamically as a normal statement each time it was

54 Experimental Results

called. The construction of such a statement normally takes time, consequently,
the insert latency for MySQL started to grow after some point as the bulk size
increased.

Apart from a�ecting the write latency, bulk insert also caused an e�ect on the
data size of CouchDB, although it was not the case for the other databases.
As mentioned in Section 2.4.2, this was due to the use of append-only Btree to
store documents. As can be seen in Figure 5.2, the di�erence is obvious between
individual insert and the rest, for the data storage when using individual insert
was around 14 times more than that of using a bulk insert of size 100. The
data size afterward also reduced as the bulk size increased although with a very
slight di�erence.

34364

2460 2304 2248 2216 2208 2196 2196 2188

0

5000

10000

15000

20000

25000

30000

35000

40000

1 100 200 400 800 1600 3200 6400 12800

D
at

ah
Si

ze
h(

b
yt

es
)

Bulkhsizeh(records)

CouchDBhdatahsize

Figure 5.2: CouchDB data size for bulk insert

5.1.2 MongoDB index

In this scenario, the main query that we focused on is to query data by nodeID.
Hence, it was expected that creating an index on the nodeID �eld would make
an enhancement in the query performance. The following test was to check the
impact of creating the index on read and write latency.

5.1 Sensor scalar data benchmark results 55

Parameters

The test con�guration was shown in Table 5.2.

Parameter Value
The total number of records 1,000,000

The number of nodes 1000
The number of data generations 1000
The number of inserting threads 1
The number of querying threads multiple

Bulk insert size 1000

Table 5.2: Parameters of the MongoDB index test

Results and Evaluation

The average values for read and write latency were illustrated in Figure 5.3.

0

5

10

15

20

25

30

35

40

45

1 10 20 40 80

La
te

n
cy

i7
se

c)

Numberiofithreads

MongoDBiindexediqueryi71,000/1,000,000irecords)

Index NoiIndex

101

94

0

10

20

30

40

50

60

70

80

90

100

110

Index NoiIndex

La
te

n
cy

i7
se

c)

MongoDBiindexediinserti71,000,000irecords)

Figure 5.3: MongoDB index latency

As expected, the index had a great impact on the quey performance, as it dra-
matically reduced the read latency. The e�ect was clearer when more concurrent
querying threads were added. For instance, with 80 threads, the reading latency
with the index was less than 3 seconds on average, whereas it was more than 40
seconds without it. Meanwhile, the write latency (excluding connection time)
showed much less di�erence between the two cases, which we considered accept-
able for this system to compromise for the improvement in querying. From this

56 Experimental Results

point onwards, the index for nodeID in Mongo_1set was created in all later
tests. However, more indexes will cause a greater degradation in the write per-
formance. Hence, in practice, it is necessary to analyze the system use cases
and requirements to decide whether to sacri�ce writes for reads or vice versa
before creating secondary indexes in the database.

5.1.3 Write latency

This is one of the main benchmarks that were carried out. As its name, the
benchmark is used to evaluate the write performance of the system when im-
plemented with di�erent databases.

Parameters

The write performance was to be assessed in a multi-threaded environment
(not only multiple sensor nodes but multiple data senders), therefore di�erent
numbers of threads were set for di�erent test suites. Apart from that, the other
parameters were set as in Table 5.3 for all the tests.

Parameter Value
The number of nodes per thread per generation 1000

The number of data generations 100
MongoDB index for NodeID True

MySQL, Mongo_1set, CouchDB bulk insert size 1000
Mongo_mset, Redis bulk insert size 1 (individual insert)

Table 5.3: Parameters of the write latency test

Results and Evaluation

Figure 5.4 illustrates the average values of write latency with respect to di�er-
ent numbers of concurrent writing threads. The values exclude the connection
time, since we expected the sensor nodes to send data continuously without
disconnection in real life.

The graph shows an obvious discrimination between the multi data set group
that used individual insert (Mongo_mset, Redis) with higher latency and the
one data set group that used bulk insert. In the previous section, the bulk insert

5.1 Sensor scalar data benchmark results 57

0

25

50

75

100

125

150

175

200

225

1 2 4 8 16

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Write latencyb_100R000brecordsC

La
te

n
cy

b_
se

cC

Number of Threads

MySQL Mongo_1set CouchDB Mongo_mset Redis

Figure 5.4: Write latency

benchmark has shown the important role of the bulk size to insert performance,
although its e�ectiveness only applied to a subset of database types with the
current system design. In this benchmark, the choice for bulk size was made as
a compromise that could re�ect how the system could be used in real life, while
providing a general comparable view among the databases. That is to say the
result does not mean that Redis writes much slower than the other databases,
but it has an disadvantage for this particular type of system and data.

In the lower group of databases with one data set, Mongo_1set got the best
result out of the three. With a single thread, the database took about 10 seconds
to insert 100,000 records, followed by MySQL which was three times slower,
while the latency of CouchDB was 10 times larger. Meanwhile, Mongo_mset

58 Experimental Results

and Redis results were close at more or less 5000 seconds with a small number
of threads, but as there were more threads, the former became slower than the
latter.

Regarding concurrency, Redis, for which all operations were performed in RAM,
was hardly a�ected by the number of threads. However, the case was di�erent for
the other databases as the latency increased along with the number of threads.
In the benchmark implementation, in order to avoid con�icts, each thread wrote
data of a di�erent node. That means for Redis and Mongo_mset writes were
distributed to di�erent data sets, but for the others the writes still concentrated
on one data set. In MySQL, the default InnoDB storage engine uses row locking
which helps to eliminate the possible overhead of table locking (for example in
MyISAM storage engine) in this case. In case of MongoDB, not only the system
processing power was shared among the threads, but also MongoDB has locks on
a per-database basis, which means only one write operation can be performed
in the database at a time, causing some overhead for both Mongo_1set and
Mongo_mset.

5.1.4 Read latency

The following set of tests is to assess the query performance of the databases
on di�erent loads, including data of di�erent volumes and di�erent number of
concurrent queries. For this system, we assumed that the most popular query
was the one to get all the data of one particular node, hence, we used that query
for all the tests.

Parameters

As mentioned before, the number of threads and the number of records varied
for each test suite, but the con�guration in Table 5.4 was kept the same. Note
that each thread queried for a di�erent node and all nodes had the same amount
of data.

Parameter Value
Query Fetch all data of one node

The number of nodes 1000
MongoDB index for NodeID True

Table 5.4: Parameters of the read latency test

5.1 Sensor scalar data benchmark results 59

Results and Evaluation

0

1

2

3

4

5

6

7

1 10 20 40 80

La
te

n
cy

/g
se

c_

Number of Threads

Get 1000/1,000,000 records

0

4

8

12

16

20

24

28

1 10 20 40 80

La
te

n
cy

/g
se

c_
Number of Threads

Get 10,000/10,000,000 records

0

10

20

30

40

50

60

1 10 20 40 80

La
te

n
cy

/g
se

c_

Number of Threads

Get 20,000/20,000,000 records

0

10

20

30

40

50

60

1 10 20 40

La
te

n
cy

/g
se

c_

Number of Threads

Get 40,000/40,000,000 records

MySQL Mongo_1set Mongo_msetCouchDB Redis

Figure 5.5: Query latency as a function of the number of threads

Figure 5.5 shows the average query latency (including connection time) with
respect to di�erent numbers of threads in four test suites, each with a di�erent
database size. From the �rst glance, it can be seen that CouchDB was signi�-
cantly outperformed by all the other databases while the di�erences among the
rest were less remarkable. For example, a data set of total 20 million records,
with 80 concurrent clients, to retrieve 20000 records of a node, it took CouchDB
nearly 50 seconds but only less than 7 seconds for MySQL and Redis, with Redis
slightly faster. This latency of Mongo_1set and Mongo_mset were 15 and 12
seconds respectively.

In general, Redis got the best results of all thanks to its in-memory storage
and the nature of querying by key in this case. Simultaneously, in cases where
the database size was large (10,000,000 records or more), MySQL closely kept

60 Experimental Results

up with Redis and also queried very quick. As mentioned in Section 2.4.1,
querying by the primary key index in MySQL, as in this case, would receive
optimal performance since the data were physically sorted by the primary key.

Meanwhile, between the two types of MongoDB, the change in data structure
from Mongo_1set to Mongo_mset (meaning switching from all data in one
collection to multiple collections) improved the performance of the query in all
cases as espected. Moreover, in some cases with a single thread, Mongo_mset
even slightly read faster than the others.

0

10

20

30

40

50

60

70

80

90

1000 10000 20000 40000 80000

La
te

nc
yh

Ss
ec

Q

Number of records retrieved

1 thread

1000 10000 20000 40000 80000

10 threads

1000 10000 20000 40000 80000

20 threads

1000 10000 20000 40000

40 threads

Query latency

MySQL Mongo_1set Mongo_msetCouchDB Redis

Figure 5.6: Query latency as a function of the database size

It is worth noting that all the queries were run after the databases had been
�warmed up�, which means they were run once at the server side before. This
was to make the data ready to be queried in the quickest mode. The warm-up
did not have an impact on Redis since all data had already been in the RAM.
Nevertheless, it had great e�ect on CouchDB, since the view index was created
in the �rst run, which took up a lot of time. For the other databases, the �rst
run loaded the data set of MongoDB into memory and the query results of
MySQL into the query cache, which highly boosted up the performance after-
ward. However, in practice, the impact of this warm-up can be not as much
as in the tests because data are bound to be changed and added continuously,
or the amount of data can not �t in the cache. The latter case happened for
MongoDB as shown in Figure 5.6. The �gure is another view of the data dis-
played in Figure 5.5, now showing the latency with respect to di�erent number
of records retrieved, with the add of the case where the database size is 80 mil-
lion records, and the query returns 80000 of them. In this case, the working set
was too big to be loaded into memory, as a result, queries had to read from disk,

5.1 Sensor scalar data benchmark results 61

causing a sudden degradation of performance for Mongo_1set. For example, for
one single thread, querying for 40000 records took only 4 seconds, while that
of querying for 80000 records climbed up to more than 75 seconds which was
20 times slower. Hence, MongoDB query performance is very poor when the
working set cannot �t into memory, in this case, a horizontal scaling solution
should be considered.

On the other hand, the latency trend for all databases shared the same pattern
in all cases in the sense that the latency grew as the number of threads or the
database size grew. However, if we leave out the case where MongoDB and
Redis could not �t the RAM, CouchDB performance dropped the most when
serving more clients or more data, while MySQL and Redis stayed more stable
under the increasing load.

5.1.5 Database size

Although storage space is a cheap factor compared to performance as the ca-
pacity of hard disks is ascending dramatically while the price is descending, for
the issue of Big Data, storage space is still an aspect that is worth considering.
The bar chart in Figure 5.7 illustrates the database size made up of 10 million
records for di�erent database types. The database size was calculated as the
sum of the actual data size plus the index size.

In the chart, CouchDB was shown to take up much more space than the rest,
nearly 20 GiB for the 10 million records, which was around 40 times more than
that of MySQL, the one with the smallest size. A large portion of CouchDB huge
size came from the view indexes, that was nearly 90% of the total. Moreover, in
this test, there was only one index (built for the query of fetching data of each
node), the size would have been greater if more views had been created.

Meanwhile, there was no extra index in Redis or MySQL. That was because
Redis did not support secondary index, and for this system, there was no need
to build a secondary index for MySQL apart from the automatic indexed primary
key which physically ordered the data on disks. However, since Redis is an in-
memory database, it has the greatest disadvantage in storage compared to the
other ones, as the storage capacity is limited by RAM, not to mention the fact
that the database size itself was larger than that of MySQL, and Mongo_mset
which had the same design of multiple data sets.

For MongoDB, the design of Mongo_mset saved some space compared to Mongo_1set,
since it eliminated the duplication of the nodeID �eld and promoted the time
to be the unique _id instead of using a system-generated ObjectId. This made

62 Experimental Results

479

1566
616

19757

1256

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

MYSQL MONGO_1set MONGO_mset COUCHDB REDIS

D
at

ab
as

eb
Si

ze
bc

M
iB

o

DatabasebSizebc10x000x000brecordso

Data Index

Figure 5.7: Database size

Mongo_mset quite e�cient in space usage, only slightly larger than MySQL.
Besides, Mongo_1set, in this case, took up some space for the index of nodeID,
although it could be turned o�, it was necessary for a better query performance.
Even without nodeID index, all MongoDB databases will have at least one index
automatically created for the _id �eld.

Besides, compared to MySQL, document stores like CouchDB or MongoDB
caused an extra space for storing the �eld names repeatedly (for instance: �time�,
�value�) and the_id or_rev �elds generated in all documents. In practice, those
kinds of databases can follow some tips to improve the storage usage, which in
turn can help improve the performance since the smaller the data set the quicker.
Firstly is to use short �eld names, for example if the string name �nodeID� is
6 bytes, making it just �id� will save 4 bytes for each document. Secondly, in
MongoDB, an auto-generated _id �eld of type ObjectId contains itself a 4-byte
value of timestamp. Although the granularity is only to second, this value can
be used instead of an extra time �eld. For the implemented system, the time
�eld is of type BSON Date, a 8-byte representation of time in milliseconds.

5.2 Multimedia data benchmark results 63

5.2 Multimedia data benchmark results

5.2.1 Write latency

The tests below were run to compare the write performance of the two databases
MySQL and MongoDB when storing multimedia �les. Since we assumed that all
the �les had the same size and format, the two parameters that could in�uence
the result and therefore were set with various values in di�erent tests were:

• The size of each data item

• The number of concurrent inserting threads

In addition, the write latency was measured as the time taken to �nish inserting
1000 mp4 video �les per thread (excluding connection time, since we assumed
that the system generated data continually).

1 2 4 8 1 2 4 8 1 2 4 8

0

20

40

60

80

100

120

140

La
te

n
cy

S(
m

in
s)

NumberSofSThreads

MediaSwriteSlatencyS(1000Srecords)

MySQL MongoDB

1 2 4 8

1MiB file 2MiB file 8MiB file4MiB file

Figure 5.8: Media write latency

The results for the tests are shown in Figure 5.8. The graph demonstrates a clear
discrimination between MySQL and MongoDB, where the former outperformed
the latter. It can also be seen that the performance of both databases highly
depended on the �le size and the number of threads, as the latency increased
proportionally with the increase of the item size and threads. Nevertheless, the
graph shows that MongoDB shortened the di�erence with MySQL when the
servers served more clients at the same time. In case where the �le size was
8 MiB, the latency of one thread inserting was 28 and 56 minutes for MySQL

64 Experimental Results

and MongoDB, whereas the response time was 105 and 115 respectively when
there were 8 concurrent threads. While MySQL database stored the �le as one
single blob, MongoDB's GridFS divided and stored it as small chunks along
with the �le metadata, which added extra information and some more latency
to the operation. However, the latter approach bene�ts more if the clients want
to query for a sub-part of the �le, or if the system requires high scalability.

5.2.2 Read latency

Among the parameters that could be con�gured in the system, these three are
potential to have an impact on the query performance of the database:

• The size of each data item

• The total number of items in the database

• The number of concurrent querying threads

The purpose of the following tests is, therefore, to �nd out the e�ect of these
parameters on the latency of querying for a speci�c �le in the database. The
latency recorded in the tests includes both the connecting and querying time,
remind that the querying time itself consists of the time to scan through the
database to �nd the right record (for MongoDB it means searching through both
the �les and chunks collections) plus the time to read the binary data from the
database and write it to a local �le.

Impact of �le size

Figure 5.9 illustrates the di�erent read latency when it comes to querying for
�les of di�erent size. The data set in all cases contained 1000 mp4 video �les
of the same size. The latency was grouped according to the di�erent number of
concurrent querying threads, each queried for a random �le.

From a �rst glance, the graph does not show a great di�erence between MySQL
and MongoDB in this case, for the two graph lines closely follow each other.
The graph, however, does show a clear impact of the data item size on the read
performance, since the time taken for reading one item roughly doubled as the
�le size doubled. For instance, for 40 concurrent threads querying for data of
1 MiB, it took MongoDB and MySQL more than 4 and 5 seconds, while the

5.2 Multimedia data benchmark results 65

1 2 4 8

1Sthread

1 2 4 8

10Sthreads

1 2 4 8

20Sthreads

1 2 4 8

40Sthreads

0

5

10

15

20

25

30

35

La
te

n
cy

S(
se

c)

RecordSsizeS(MiB)

QuerySlatencyS(1/1000Srecords)

MySQL MongoDB

Figure 5.9: Media query latency as a function of the �le size

latency when the data size raised to 8 MiB was more than 29 and 30 seconds
respectively.

Impact of database number of items

0

2

4

6

8

10

12

La
te

n
cy

f(
se

c)

MySQL MongoDB

1000 2000 4000 8000

1fthread

1000 2000 4000 8000

10fthreads

1000 2000 4000 8000

20fthreads

1000 2000 4000 8000

40fthreads

Query latency (record of 2MiB)

Numberfoffrecords

Figure 5.10: Media query latency as a function of the total number of �les

The graph in Figure 5.10 shows the time taken to search for one �le among a
database consisting of a di�erent number of �les. Despite the number of records,
each item in all the tests was an mp4 video �le of 2 MiB. Now that the queried

66 Experimental Results

data were of the same size, the di�erence in latency was purely due to the time
taken to locate and read the chunks of data. However, the graph does not show
a consistent di�erence when it comes to di�erent total number of items, either
between MongoDB and MySQL, or when only one database was concerned.
Hence we believe that the total database size does not have a great impact on
querying for a �le, or the time taken to locate the �le is very small compared to
the actual time of reading the binary data and writing it to a local �le.

In general, the two graphs share several common points. First, it can be seen
that the performance dropped when there were more threads querying at the
same time. Second, the di�erence between MySQL and MongoDB was incon-
sistent and small (most of the cases it was less than 1 second). Although it
seems that MongoDB slightly performed better when there were more threads,
it is hard to compare and conclude about the query performance of the two
databases.

Chapter 6

Conclusion

The purpose of this thesis work is to investigate how di�erent database systems
can e�ectively handle the heterogeneous and large amount of data of the Internet
of Things on the cloud, in order to meet the increasing demand on load and
performance. Two classes of databases were studied, namely, SQL and NoSQL
databases. While SQL databases are relational and focus on data consistency,
NoSQL databases are normally schema-less and provide higher scalability and
availability.

In order to assess the performance of each type of databases, several benchmarks
were conducted on four di�erent solutions: MySQL, MongoDB, CouchDB, and
Redis. They represent the most widely used database systems in di�erent con-
texts, and each of them has its own advantages and disadvantages. The bench-
marks evaluated and compared the read and write performance of the databases
as a storage for two popular kinds of IoT data: sensor scalar data and multime-
dia data.

The sensor scalar data benchmark showed good results for NoSQL databases,
especially MongoDB. With respect to write performance, MongoDB got the
smallest latency by using bulk insert with the design of all data stored in one
collection, followed by MySQL, CouchDB, and Redis. However, the performance
was close in query tests. Although Redis managed to achieve the best results in
general, MySQL performed nearly as fast in most cases, while MongoDB lagged

68 Conclusion

behind. In contrast, the performance of CouchDB was very poor in this test
as well, not to mention its huge database size compared to the others. Redis
also had similar issues. This key-value in-memory database, although being
very fast for querying, is limited by the database size, data structure, and query
capabilities. Using a key-value store like Redis for IoT data may cause excessive
computational overhead, since the variety of possible queries is not restricted
to keys. Hence, the two solutions do not appear to be good candidates for a
system serving IoT big data and real-time queries.

On the other hand, although MongoDB had greater query latency than MySQL,
the di�erence was acceptable, especially considering that the system was write-
intensive and MongoDB outperformed the rest when executing data insertions.
In those tests, MongoDB was applied with two di�erent designs, between which
the design of one collection is more suitable for this system than the other one
with multiple collections. That is because switching from the former to the
latter may result in a slight improvement in querying but cause a huge lost in
write performance. The lesson learned is to take advantage of the schemaless
and �exible data model and consider the best �t for the system, since the change
in the data model can make a huge change in performance.

Based on the results of the sensor scalar data benchmark, we conducted a similar
benchmark with multimedia data on the two potential databases MySQL and
MongoDB. The results show a reversed win for MySQL using BLOB storage
against MongoDB's GridFS when it comes to inserting multimedia �les. For
query performance, the di�erence between the two was less pronounced, though
MongoDB was slightly faster when serving more clients simultaneously. How-
ever, since multimedia systems tend to be large, the approach of MongoDB's
GridFS makes it easier to shard the database across several machines, thus
distributing the loads and increasing scalability.

In conclusion, it is hard to point out a clear winner for the best cloud database
of IoT data, since the data types are various and the scope of use cases is vast.
Moreover, each database has its own pros and cons, and its own area of appli-
cation. Which database to choose therefore highly depends on the properties
and requirements of the speci�c system. However, for such systems that were
studied here, the thesis has shown the potential of NoSQL databases against
the popularity of traditional relational database systems.

There are still much more room for future research about this problem. One
is to expand the current benchmarks to further explore the performance of the
databases with other more complicated types of IoT data, for example an object-
oriented data model that involves multiple object types. That is to investigate
the strength of the schema-free data model against the powerful (but expensive)
use of joining data across multiple SQL tables. Another direction of research is to

69

assess the e�ciency of scaling the system by sharding and replication, also when
dealing with system failures, which was mentioned but is limited in this thesis.
Scalability is actually one key point that can potentially make NoSQL win over
SQL databases, considering the fact that most NoSQL databases were originally
designed to scale out seamlessly to meet the growing demand of Internet data.

70 Conclusion

Bibliography

[AAS13] Charu C Aggarwal, Naveen Ashish, and Amit Sheth. The in-
ternet of things: A survey from the data-centric perspective. In
Managing and Mining Sensor Data, pages 383�428. Springer,
2013.

[AFG+10] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Pat-
terson, Ariel Rabkin, Ion Stoica, et al. A view of cloud comput-
ing. Communications of the ACM, 53(4):50�58, 2010.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet
of things: A survey. Computer Networks, 54(15):2787�2805,
2010.

[ALS10] J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB:
The De�nitive Guide: Time to Relax. O'Reilly Media, 2010.

[ama13] Amazon web services. http://aws.amazon.com/, Accessed:
14.05.2013.

[ASSC02] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and
Erdal Cayirci. Wireless sensor networks: a survey. Computer
networks, 38(4):393�422, 2002.

[Bar10] Daniel Bartholomew. Sql vs. nosql. Linux Journal, 2010(195):4,
2010.

[BHG87] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman.
Concurrency control and recovery in database systems, volume
370. Addison-wesley New York, 1987.

http://aws.amazon.com/

72 BIBLIOGRAPHY

[Bre00] Eric A Brewer. Towards robust distributed systems. In Proceed-
ings of the Annual ACM Symposium on Principles of Distributed
Computing, volume 19, pages 7�10, 2000.

[bso13] Bson speci�cation. http://bsonspec.org, Accessed:
17.03.2013.

[BWHT12] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry Taylor.
Semantics for the internet of things: early progress and back to
the future. International Journal on Semantic Web and Infor-
mation Systems (IJSWIS), 8(1):1�21, 2012.

[CJ+09] Joshua Cooper, Anne James, et al. Challenges for database
management in the internet of things. IETE Technical Review,
26(5):320, 2009.

[CLR10] Michael Chui, Markus Lö�er, and Roger Roberts. The internet
of things. McKinsey Quarterly, 2:1�9, 2010.

[Cod70] Edgar F Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377�387, 1970.

[Cod13] CodeFutures Corporation. Database sharding. http:

//www.codefutures.com/database-sharding/, Accessed:
17.05.2013.

[cou13] Couchdb, a database for the web. http://couchdb.apache.

org/, Accessed: 16.05.2013.

[Cro06] D Crockford. Rfc 4627-the application/json media type for
javascript object notation. Technical report, Technical report,
Internet Engineering Task Force, 2006.

[Dat13] Datastax Corporation. Benchmarking Top NoSQL Databases.
Datastax, 2013.

[DFLRD12] Mario Di Francesco, Na Li, Mayank Raj, and Sajal K Das. A
storage infrastructure for heterogeneous and multimedia data
in the internet of things. In Green Computing and Communi-
cations (GreenCom), 2012 IEEE International Conference on,
pages 26�33. IEEE, 2012.

[DG08] Je�rey Dean and Sanjay Ghemawat. Mapreduce: simpli�ed
data processing on large clusters. Communications of the ACM,
51(1):107�113, 2008.

http://bsonspec.org
http://www.codefutures.com/database-sharding/
http://www.codefutures.com/database-sharding/
http://couchdb.apache.org/
http://couchdb.apache.org/

BIBLIOGRAPHY 73

[DXY12] Zhiming Ding, Jiajie Xu, and Qi Yang. Seaclouddm: a database
cluster framework for managing and querying massive hetero-
geneous sensor sampling data. The Journal of Supercomputing,
pages 1�25, 2012.

[FL05] Steve Fogel and Paul Lane. Oracle database administrator's
guide, 2005.

[GH06] Simson Gar�nkel and Henry Holtzman. Understanding r�d tech-
nology. RFID, pages 15�36, 2006.

[GR11] John Gantz and David Reinsel. Extracting value from chaos.
IDC iView, pages 1�12, 2011.

[GR12] John Gantz and David Reinsel. The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth in the far
east. Technical report, Technical report, IDC, 2012.

[GT09] Dominique Guinard and Vlad Trifa. Towards the web of things:
Web mashups for embedded devices. In Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web
(MEM 2009), in proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain, 2009.

[Hed13] Martin Hedenfalk. How the append-only btree works,
2011. http://www.bzero.se/ldapd/btree.html, Accessed:
17.03.2013.

[HHLD11] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql
database. In Pervasive computing and applications (ICPCA),
2011 6th international conference on, pages 363�366. IEEE,
2011.

[HJ11] Robin Hecht and Stefan Jablonski. Nosql evaluation: A use case
oriented survey. In Cloud and Service Computing (CSC), 2011
International Conference on, pages 336�341. IEEE, 2011.

[JPA+12] Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and
Dishant Gosain. A survey and comparison of relational and non-
relational database. International Journal of Engineering, 1(6),
2012.

[KAB+11] Ioannis Konstantinou, Evangelos Angelou, Christina
Boumpouka, Dimitrios Tsoumakos, and Nectarios Koziris.
On the elasticity of nosql databases over cloud management
platforms. In Proceedings of the 20th ACM international
conference on Information and knowledge management, pages
2385�2388. ACM, 2011.

http://www.bzero.se/ldapd/btree.html

74 BIBLIOGRAPHY

[Lai09] Eric Lai. No to sql? anti-database movement gains steam. Com-
puterworld Software, July, 1, 2009.

[Lea10] Neal Leavitt. Will nosql databases live up to their promise?
Computer, 43(2):12�14, 2010.

[LLT+12] Tingli Li, Yang Liu, Ye Tian, Shuo Shen, and Wei Mao. A
storage solution for massive iot data based on nosql. In Green
Computing and Communications (GreenCom), 2012 IEEE In-
ternational Conference on, pages 50�57. IEEE, 2012.

[LMR08] Avinash Lakshman, Prashant Malik, and K Ranganathan. Cas-
sandra: Structured storage system over a p2p network, 2008.

[LMS05] Paul J Leach, Michael Mealling, and Rich Salz. A universally
unique identi�er (uuid) urn namespace. 2005.

[MCO10] Vladimir Mateljan, D Cisic, and D Ogrizovic. Cloud database-
as-a-service (daas) � ROI. In MIPRO, 2010 Proceedings of the
33rd International Convention, pages 1185�1188. IEEE, 2010.

[mon13] The mongodb manual. http://docs.mongodb.org/manual, Ac-
cessed: 16.05.2013.

[MSPC12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and
Imrich Chlamtac. Internet of things: Vision, applications &
research challenges. Ad Hoc Networks, 2012.

[MyS13a] MySql Developer. Mysql documentation: Mysql 5.6 refer-
ence manual. http://dev.mysql.com/doc/refman/5.6/en/,
Accessed: 16.05.2013.

[MyS13b] MySql Developer. Mysql documentation: Mysql cluster. http:
//www.mysql.com/products/cluster/, Accessed: 17.03.2013.

[Ore10] Kai Orend. Analysis and classi�cation of nosql databases and
evaluation of their ability to replace an object-relational persis-
tence layer. Master's thesis, Technische Universität München,
2010.

[PCP12] Antonio Pintus, Davide Carboni, and Andrea Piras. Paraimpu:
a platform for a social web of things. In Proceedings of the 21st
international conference companion on World Wide Web, pages
401�404. ACM, 2012.

[PPS11] Rabi Prasad Padhy, Manas Ranjan Patra, and Suresh Chandra
Satapathy. Rdbms to nosql: Reviewing some next-generation
non-relational databases. International Journal of Advanced En-
gineering Science and Technologies, 11(1):15�30, 2011.

http://docs.mongodb.org/manual
http://dev.mysql.com/doc/refman/5.6/en/
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

BIBLIOGRAPHY 75

[Pri08] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48�55,
2008.

[pro13] Project voldemort, a distributed database. http://www.

project-voldemort.com/voldemort/, Accessed: 11.03.2013.

[red13] Redis. http://redis.io/, Accessed: 04.06.2013.

[RGVS+12] Tilmann Rabl, Sergio Gómez-Villamor, Mohammad Sadoghi,
Victor Muntés-Mulero, Hans-Arno Jacobsen, and Serge
Mankovskii. Solving big data challenges for enterprise appli-
cation performance management. Proceedings of the VLDB En-
dowment, 5(12):1724�1735, 2012.

[Rod08] Alex Rodriguez. Restful web services: The basics. Online article
in IBM DeveloperWorks Technical Library, 36, 2008.

[Seg10] Karl Seguin. The little redis book. Karl Seguin, 2010.

[Sen10] Jaydip Sen. Internet of things-a standardization perspective.
This article is property of Tata Consultancy Services, 2010.

[SGFW10] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie
Woel�é. Vision and challenges for realising the internet of
things. Cluster of European Research Projects on the Internet
of Things (CERP-IoT), 2010.

[Siv13] Swami Sivasubramanian. Synchronous vs. asynchronous replica-
tion strategy: Which one is better? http://scalingsystems.

com/, Accessed: 17.05.2013.

[SSK11] Christof Strauch, Ultra-Large Scale Sites, and Walter Kriha.
Nosql databases. Lecture Notes, Stuttgart Media University,
2011.

[TAB+05] Ken Traub, Greg Allgair, Henri Barthel, L Bustein, John Gar-
rett, Bernie Hogan, Bryan Rodrigues, Sanjay Sarma, Johannes
Schmidt, Chuck Schramek, et al. The epcglobal architecture
framework. EPCglobal Rati�ed speci�cation, 2005.

[TB11] Bodgan George Tudorica and Cristian Bucur. A comparison be-
tween several nosql databases with comments and notes. In Roe-
dunet International Conference (RoEduNet), 2011 10th, pages
1�5. IEEE, 2011.

[the13] There corporation. http://www.therecorporation.com/en/

products/, Accessed: 04.06.2013.

http://www.project-voldemort.com/voldemort/
http://www.project-voldemort.com/voldemort/
http://redis.io/
http://scalingsystems.com/
http://scalingsystems.com/
http://www.therecorporation.com/en/products/
http://www.therecorporation.com/en/products/

76 BIBLIOGRAPHY

[Tiw11] Shashank Tiwari. Professional NoSQL. Wrox, 2011.

[VD10] Jean-Philippe Vasseur and Adam Dunkels. Interconnecting
smart objects with ip: The next internet. Morgan Kaufmann,
2010.

[VDMC10] Roberto Verdone, Davide Dardari, Gianluca Mazzini, and An-
drea Conti. Wireless sensor and actuator networks: technolo-
gies, analysis and design. Academic Press, 2010.

[vdVvdWM12] Jan Sipke van der Veen, Bram van der Waaij, and Robert J
Meijer. Sensor data storage performance: Sql or nosql, physi-
cal or virtual. In Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 431�438. IEEE, 2012.

[Voe12] W Voegels. Amazon dynamodb�a fast and scalable nosql
database service designed for internet-scale applications. Re-
trieved July, 30:2012, 2012.

[Vol10] VoltDB LLC. Voltdb technical overview, 2010.

[Wan06] Roy Want. An introduction to r�d technology. Pervasive Com-
puting, IEEE, 5(1):25�33, 2006.

[Wan11] Roy Want. Near �eld communication. Pervasive Computing,
IEEE, 10(3):4�7, 2011.

	Summary (English)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Contribution
	1.3 Structure

	2 Databases
	2.1 CAP Theorem, ACID vs. BASE
	2.2 SQL Databases
	2.3 NoSQL Databases
	2.3.1 NoSQL Properties
	2.3.2 NoSQL Categories

	2.4 Tested databases
	2.4.1 MySQL
	2.4.2 CouchDB
	2.4.3 MongoDB
	2.4.4 Redis

	3 Cloud databases for the Internet of Things
	3.1 Internet of Things
	3.1.1 Internet of Things vision
	3.1.2 Internet of Things data

	3.2 Cloud Databases
	3.2.1 Amazon Web Services
	3.2.2 Scalability

	3.3 Literature Review

	4 Experimental Methodology and Setup
	4.1 Experiment overview
	4.2 Experiment environment
	4.2.1 Hardware and Software
	4.2.2 Database configuration
	4.2.3 Libraries and drivers

	4.3 Sensor scalar data benchmark
	4.3.1 System description
	4.3.2 Data structure
	4.3.3 Parameters

	4.4 Multimedia data benchmark
	4.4.1 System description
	4.4.2 Data structure
	4.4.3 Parameters

	5 Experimental Results
	5.1 Sensor scalar data benchmark results
	5.1.1 Bulk insert
	5.1.2 MongoDB index
	5.1.3 Write latency
	5.1.4 Read latency
	5.1.5 Database size

	5.2 Multimedia data benchmark results
	5.2.1 Write latency
	5.2.2 Read latency

	6 Conclusion
	Bibliography

