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ABSTRACT

Due to the large amount of options offered by the vast num-
ber of adjustable parameters in modern digital hearing aids,
it is becoming increasingly daunting—even for a fine-tuning
professional—to perform parameter fine tuning to satisfac-
torily meet the preference of the hearing aid user. In ad-
dition, the communication between the fine-tuning profes-
sional and the hearing aid user might muddle the task. In
the present paper, an interactive system is proposed to ease
and speed up fine tuning of hearing aids to suit the preference
of the individual user. The system simultaneously makes the
user conscious of his own preferences while the system itself
learns the user’s preference. Since the learning is based on
probabilistic modeling concepts, the system handles incon-
sistent user feedback efficiently. Experiments with hearing
impaired subjects show that the system quickly discovers in-
dividual preferred hearing-aid settings which are consistent
across consecutive fine-tuning sessions for each user.

Index Terms— Hearing aid personalization, Bayesian
learning, Gaussian processes, Active learning, Preference
learning

1. INTRODUCTION

Modern digital hearing aids (HAs) contain a vast number of
adjustable parameters that offer an almost infinite number of
possible settings. Different settings make the hearing aids em-
phasize parts of the incoming sound to make it more or less
comfortable, audible, intelligible etc. for the hearing impaired
(HI). The procedure of fitting the HAs to the user is performed
by skilled professionals like an audiologist.

Having fitted a set of HAs to the hearing loss of the
HI user to ensure audibility and intelligibility of incoming
sounds, several options are still left for the audiologist to
choose from. Some of those are related to the preference of
the user. Fine tuning of these parameters is normally done
manually by adjusting a number of handles available in the
supplied fitting software. At this point, two aspects should be
considered. First, due to the large number of parameters—
and thus the number of settings—a manual procedure may

not be adequate for finding optimal settings for all parameters
even for a fine-tuning expert like an audiologist. Secondly,
the success of the fine-tuning process depends on the commu-
nication between the HA user and the audiologist. Typically,
the HA user has not recognized his own preference before-
hand, which may muddle the communication and result in an
inadequate fine tuning.

To take full advantage of modern digital hearing aids,
more sophisticated fine tuning tools are needed. These
should discover the best setting for each individual in ro-
bust and time-efficient procedures to take full advantage of
the flexibility of the HAs.

In this paper, an interactive system is considered that lets
the HA user recognize his own preference by comparing dif-
ferent settings simply by listening to the resulting sounds. By
letting the user report how much one setting is preferred over
another in a sequence of such comparisons, the interactive
system starts to learn the preference of the user. At the end,
the interactive system is able to suggest which setting (or sub-
set of settings) that is preferred by the HA user. The system
builds on the assumption that each user has an unobserved in-
ternal representation of preference (IRP), which is a stochas-
tic function (or process) of hearing aid settings. In the inter-
active system, the mean response of the IRP is modeled by a
Gaussian process (GP) [1], which loosely speaking defines a
distribution of functions and thus of possible mean responses
of the IRP. In the remainder of the article the IRP is used to re-
fer to the mean response of the IRP. The distribution of IRPs is
updated iteratively each time the user compares and chooses
between two HA settings using the GP framework previously
proposed in [2]. To reduce the required number of compar-
isons needed for the system to learn the user’s preference, the
distribution of IRP provided by the GP is used to decide the
next setting pair to compare. In the literature, this is referred
to as active learning, and in this paper, a bivariate version of
Expected Improvement (EI) [3] is used.

Several directions have been pursued to develop systems
capable of fine-tuning settings of HAs and other devices.
Some of the very first attempts used a modified simplex pro-
cedure [4], but required an unrealistic amount of preference
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assessments to converge. Other tournament based attempts
have used genetic algorithms [5, 6], but the convergence time
tend to scale badly with the number of tunable parameters.
One of the most promising suggestions [7] is also proba-
bilistic and contains at least two ideas that are similar to
the ideas underlying the work presented here. Firstly, the
method is also based on probabilistic modeling of the user’s
IRP, but does not use state-of-the-art GPs for this. These are
included later in a slightly different context in for instance
[8]. Secondly, the two methods also rely on probabilistic
choice models that directly address the fact that humans are
in general not completely consistent performing perceptual
evaluations. However, the two methods are based only on
forced choices (discrete decisions) using the choice model
and framework from [9, 10, 11], in which subjects only select
the option they prefer (discrete choice). This is in contrast
to the choice model proposed in [11], in which subjects also
decide how much they prefer the selected setting (continu-
ous decision). The results in [2] give reason to believe that
the additional information contained in continuous decisions
reduces the number of required comparisons needed to learn
a user’s preferred setting. This is really the key for the ap-
plication considered in this work. It is, however, beyond the
scope of this work to actually compare results obtained with
discrete choices to those obtained with continuous decisions.
Nevertheless, this is definitely of great interest for future
research. Instead, the focus is to investigate the variability
between IRP and thus the preferred setting suggested by the
system using continuous decisions.

To test the fine-tuning abilities of the proposed interactive
system, two adjustable parameters of a HA were fine-tuned
individually to five different HI users. By comparing the re-
sults from two similar sessions with each subject, the vari-
ability of the found best setting can be investigated. The two
HA parameters that were adjusted in the experiments changed
how both noise reduction and speech enhancement algorithms
should react to the incoming sound.

This article is organized as followed: In section 2, the
interactive system is outlined and an explanation of the ex-
periments is provided in section 3. Results are presented in
section 4, and finally, section 5 contains the discussion.

2. MODELING FRAMEWORK

A user’s internal representation of preference (IRP)—referred
to as f : X → R—is modeled by a (zero-mean) Gaussian
process (GP) [1]. The set X = {xi ∈ Rd : i = 1...n} is
the entire set of the n possible settings of the d = 2 HA
parameters. A GP is a non-parametric—and thus flexible—
discriminative Bayesian approach, which defines a distri-
bution of entire functions, ”any finite number of which
have a joint Gaussian distribution” [1, Def. 2.1]. This
simply implies that any finite number of function values,
f = [f(x1), ..., f(xn)]>, have a distribution given by a mul-

tivariate Gaussian distribution as

p(f) = N (0,K), (1)

with the elements of K given by [K]i,j = k(xi,xj), where
k(·, ·) is a covariance function (or kernel), which generally
speaking defines the smoothness of the functions. For an in-
troduction to kernels, see [1, Chap. 4] or [12, Chap. 6].

The fundamental benefit from the GP is that Eq. 1 can be
used as a prior distribution of a user’s IRP before any pref-
erence assessments have been performed by the user. In the
Bayesian framework, the distribution of the user’s IRP is re-
calculated conditioned on the preference assessment(s) that
have been observed to give the posterior distribution of the
user’s IRP as

p(f |Y) ∝ p(Y|f)p(f), (2)

where p(Y|f) is the likelihood which is defined by a specific
observational model (choice model). In this work, users as-
sess their degree of preference (continuous decision) between
two particular HA settings. To update the posterior (and pre-
dictive) distribution in the GP framework at any given point
in the experiment with a particular number of performed pref-
erence assessments, the model proposed in [2] is used. The
specific functional form of that observational model as well
as details about inference and predictions are provided in [2]
and will therefore not be presented here.

To reduce the number of preference assessments required
to discover the optimal setting, active learning is used. Ac-
tive learning can be formulated in several ways, but the statis-
tics provided by the GP framework makes it possible to use a
slightly modified version of Expected Improvement (EI) [3].
In contrast to the original formulation [3], the modification
also includes the correlation between function values when
calculating the (modified) EI. The added correlations are di-
rectly available from the GP framework. The EI for a possible
new setting xi is thus calculated in closed form as

EI(xi) = σEI · φ
(
µEI

σEI

)
+ µEI · Φ

(
µEI

σEI

)
, (3)

where φ(·) and Φ(·) is the standard normal distribution and
standard normal cumulative distribution functions, respec-
tively, µEI = µi − µmax and σ2

EI = σ2
i + σ2

max − 2 · covi,max.
Here, the max index refers to the point with the current largest
predicted IRP and the notation

p

([
fmax

fi

])
= N

([
µmax

µi

]
,

[
σ2
i covi,max

covi,max σ2
max

])
(4)

has been used for the two-variate marginal of the predictive
normal distribution given by the GP framework.

Typically in active learning theory, an explicit trade-off
between exploration (of unseen regions of input space) and
exploitation (of ”known” regions of input space) must be
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made. Generally, a system will exhibit slow convergence
with too much emphasis on exploration, but will quickly get
stuck in a sub-optimal solution, if too much emphasis is put
on exploitation. In this work, the next proposed setting to
compare with the current best one is sampled from a multi-
nomial distribution, where the probability of a given setting
is proportional to its EI given by Eq. 3. This was done to put
slightly more emphasis on exploration.

3. MEASUREMENT PROCEDURE

To illustrate the behavior of the suggested interactive fine-
tuning system, an experiment with five (native danish) HI sub-
jects was conducted. To obtain an indicate of the expected
variability in the proposed settings for individual HI users be-
tween consecutive fine-tuning sessions, the experiment con-
sisted of both a test session and a re-test session. The two
sessions were conducted on two separate days.

Fig. 1. The (danish) graphical user interface used in the exper-
iments. The buttons, ’A’ and ’B’, were used to switch between
the two current settings. The slider—currently positioned far
to the left—was used to indicate the degree of preference be-
tween the two settings by how far it was positioned towards
either of the two settings, ’A’ or ’B’. No preference was indi-
cated by leaving the slider at the center. After positioning the
slider, the user continued to the next comparison be clicking
the button in the lower-right corner.

In each of the two sessions, each subject conducted thirty
comparisons between pairs of HA settings. Subjects wore
(experimental) hearing aids fitted (binaurally) in advance to
compensate for each individual’s hearing loss, and listened
to running speech in car noise played back over loudspeak-
ers. Via a graphical user interface (see Fig. 1), the user could
switch between the two current HA settings and report their
degree of preference. The users were not instructed to fo-
cus on particular parts of the sound or on particular attributes,
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Fig. 2. Audiograms of each individual subject. Crosses and
circles correspond to the left and right ear, respectively.

but were only provided with an introduction to the acousti-
cal scene reflected in the sound file. The hearing loss of each
individual subject is found in Fig. 2

4. RESULTS

In Fig. 3, the predictions of the IRP for both the test and re-
test sessions for each of the five test subjects are depicted.
Since the IRPs are unit free, the reader should be aware that
the colors cannot be compared across subjects, and similarly,
high-preference regions should in general not be interpreted
as being ”good”, but only as being ”better than” blue or green.
Hence, the predicted IRP only reflects relative properties.

Considering that a parameter change from one end of the
space to the other is extremely subtle, the predicted high- and
low-preference regions between test and re-tests within each
subject are consistent, except for subject 5. The results with
subject 5 do, however, coincide with what subject 5 expressed
after the sessions, namely that the subject was unable to hear
any differences between any of the pairs of presented settings.
For this reason, subject 5 chose only occasionally to move the
slider, and when the subject did, the subject moved it as little
as possible.

A statistic significance test using forced choices was per-
formed to prove significance between the most and least pre-
ferred settings discovered by the system in the two sessions.
Options 1 and 2 were mixed randomly in eleven trials, yet this
only proved significance (p < 0.005) for subject 3.
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(a) Subject 1 - test (b) Subject 1 - retest

(c) Subject 2 - test (d) Subject 2 - retest

(e) Subject 3 - test (f) Subject 3 - retest

(g) Subject 4 - test (h) Subject 4 - retest

(i) Subject 5 - test (j) Subject 5 - retest

Fig. 3. IRP as a function of the two HA parameters, x1 and
x2, predicted by the fine-tuning algorithm after 30 compar-
isons for the test (left column) and re-test (right column) ses-
sions. Red and blue colors indicate high and low preference
regions, respectively. Crosses connected with a dashed line
indicate comparisons. Note, the IRPs are unit-free.

5 10 15 20 25 30

number of loop iterations k

C
u
m
u
la
ti
v
e
ch
a
n
g
e
in

x

Convergence

 

 

subj. 1
subj. 2
subj. 3
subj. 4
average

Fig. 4. The cumulative euclidean change in the location of the
maximum point of the predicted IPR after a each new assess-
ment as a function of the number of assessments.

The number of assessments that each subject needs to per-
form before the algorithm discovers a steady preferred setting
is visualized in Fig. 4 (see caption for an explanation). Note,
that subject 5 has not been included, since subject 5 did not
prefer any setting over others and hence did not convergence.

5. SUMMARY AND DISCUSSION

Overall, the reproducibility of the found preferred settings
is satisfactory given the subtle differences between param-
eter settings and is found well before the 30th assessment.
However, since the perceptual differences between settings
are very subtle, it was not possible to prove or to reject sig-
nificance of the preferred settings overall. However, the ap-
parent good reproducibility indicates that the found preferred
settings are actually a result of the subjects’ individual pref-
erences and not a results of a random effect.

The variability in the preferred settings across users from
the results in Fig. 3 corroborates previous findings in the liter-
ature [13] that individual preferences among HA users do ex-
ist, and the system proposed here discovers such preferences
before the subjects have performed twenty comparisons in a
worst case scenario (see Fig. 4). In case of parameter settings
that are perceptually easier to distinguish, the required num-
ber of comparisons would presumably be even smaller.

The results presented here are preliminary and serve
merely to visualize how the system works. In future work,
especially the scaling issue with respect to the number of
required comparisons in relation to the number of adjustable
parameters is of interest. Also, a similar experiment should
be conducted in the future, but with parameter settings that
are easier to distinguish from each other, to verify that set-
tings that are suggested by the system to be preferred are
significantly different from settings that are not suggested to
be preferred. Next, better convergence measures based on
the actual statistics provided by the probabilistic modeling
framework should be studied. One possible suggestion could
be the mean of the EI across settings. Finally, investigation of
suitable metrics for expressing the similarity between test/re-
test results would be interesting. One (Bayesian) suggestion
could be based on the likelihood of the test data given the
re-test data or vice versa.
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