
REST based protocol parser

Prototype for future embedded implementation

s042067 – Clausen, Per Boye

IMM-B.Eng-2013-4

Delivery: May 27th, 2013
DTU supervisor: Stig Høgh

B&K supervisor: Helge Egelund Rasmussen

Technical University of Denmark
Informatics and Mathematical Modeling
Building 321, DK-2800 Kongens Lyngby,
Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-B.Eng-2013-4

mailto:reception@imm.dtu.dk
www.imm.dtu.dk

REST based protocol parser i

Summary (English)

This report describes the development of a PC prototype of a parser which shall
eventually run under Windows Embedded Compact 7 on an ARM CPU.

The protocol which the parser is developed for is Web-XI – a REST based protocol
developed specifically for use in the next-generation Brüel & Kjær equipment. Not all
aspects of the protocol are regarded in this first prototype, but focus is in particular
on setting and retrieving values in the data model of the hardware.

When a client sets or retrieves data through the parser prototype, the data is
represented using JSON. The primary effort has been put into parsing and generating
JSON. Data is stored in WebXiCache, a data structure which was provided and
developed somewhat in parallel with this project.

As the prototype should later be able to run on the ARM CPU, options have been
considered regarding how the prototype could be implemented on a PC in much the
same way as it should be on the ARM – as an ISAPI extension. A custom web server
was developed from a simple example which was provided, and modified based on an
analysis of the ISAPI interface.

To verify the functionality of the parser, both internal and external tests were made.
Internal tests run in the same scope as the parser prototype, and they can assert
values directly on the data structure. The external tests use the API which will later
be used in the PC software which shall communicate with the hardware to set and
retrieve values through the parser prototype. This tests the entire chain from the
connector API through the web server and parser prototype to the WebXiCache.

At the end of the project period, attempts were made by others to import the parser
prototype into the actual development environment used for the ARM CPU. With
a minimum of changes the code was able to compile for the ARM CPU, and first
impressions were that the parser should be able to run properly without too much
effort.

IMM-B.Eng-2013-4
s042067

ii REST based protocol parser

IMM-B.Eng-2013-4
s042067

REST based protocol parser iii

Summary (Danish)

Denne rapport beskriver udviklingen af en PC-prototype af en fortolker, som på sigt
skal køre under Windows Embedded Compact 7 på en ARM CPU.

Protokollen, som fortolkeren er udviklet til, er Web-XI – en REST-baseret protokol,
som er udviklet specifikt til brug i næste-generation af Brüel & Kjærs udstyr. Ikke
alle aspekter af protokollen er betragtet i denne første prototype, men fokus har især
været på at sætte og hente værdier i datamodellen på hardwaren.

Når en klient sætter eller henter data gennem fortolker-prototypen, bliver data
repræsenteret vha. JSON. Det primære fokus har været på at fortolke og generere
JSON. Data gemmes i WebXiCache, som er blevet stillet til rådighed og udviklet delvist
i parallel med dette projekt.

Da prototypen senere hen skal kunne køre på en ARM CPU, er forskellige muligheder
for, hvordan prototypen kunne implementeres på en PC på stort set samme måde som
på ARM – som en ISAPI udvidelse – blevet overvejet. En speciel web server er udviklet
ud fra et simpelt eksempel, som var blevet stillet til rådighed, og tilpasset baseret på
analyse af ISAPI interfacet.

For at verificere fortolkerens funktionalitet er både interne og eksterne test blevet
udviklet. De interne test kører i samme miljø som fortolker prototypen, og de kan
direkte tilgå og vurdere værdier på datastrukturen. De eksterne test bruger det
interface, som senere vil blive brugt til den PC software, som skal kommunikere med
hardwaren, til at sætte og hente værdier gennem fortolker prototypen. Dette tester
hele kæden fra interface gennem web server og fortolker prototypen til WebXiCache.

I slutningen af projektperioden forsøgte andre at importere fortolker prototypen i det
rigtige miljo, som bruges til udvikling til ARM CPUen. Med et minimum af ændringer
var det muligt at kompilere koden til ARM CPUen, og indtrykket var, at fortolkeren
burde kunne køre uden de store ændringer.

IMM-B.Eng-2013-4
s042067

iv REST based protocol parser

IMM-B.Eng-2013-4
s042067

REST based protocol parser v

Acknowledgements

I wish to thank the following for help and support during this project period:

Helge Egelund Rasmussen

Stig Høgh

Klaus Elk

Jeppe Kronborg

Lars Thestrup

Carsten Hansen

Special contributions

This project depends on some particular contributions deserving special recognition:

WebXiCache etc. – provided by Helge Egelund Rasmussen

Web server skeleton – provided by Klaus Elk

WebXi .NET/C# connector – provided by Jeppe Kronborg

IMM-B.Eng-2013-4
s042067

vi REST based protocol parser

IMM-B.Eng-2013-4
s042067

REST based protocol parser vii

Table of contents

1 Introduction. 1
1.1 About Brüel & Kjær. 2

1.1.1 The Instrumentation group 3

1.2 LAN-XI hardware . 3

1.3 LAN-XI G2 . 4

1.3.1 Web-XI . 4

1.3.2 Architecture . 5

1.3.3 The ARM CPU . 6

1.3.4 Web server . 7

1.3.5 Parser . 7

1.3.6 Cache. 7

2 Analysis . 9
2.1 Web-XI . 10

2.1.1 REST . 10

2.1.2 JSON . 10

2.1.3 Object model. 12

2.1.4 Protocol . 15

2.1.5 Versioning . 17

2.1.6 Client-side caching . 18

2.1.7 HTTP status . 18

2.2 Project definition . 19

2.2.1 Prototype . 19

2.2.2 PC implementation . 20

2.2.3 Use cases . 20

2.3 Requirements . 21

2.3.1 Environment . 21

2.3.2 Web-XI parser . 22

2.3.3 Risks . 23

2.4 ISAPI . 24

2.4.1 Entry point . 24

2.4.2 EXTENSION_CONTROL_BLOCK 25

2.4.3 Developing the ISAPI extension 27

IMM-B.Eng-2013-4
s042067

viii REST based protocol parser

2.5 Web server . 27

2.6 WebXiCache . 28

2.6.1 Structure . 28

2.6.2 WebXiCache methods . 30

2.6.3 Use. 32

2.6.4 Shortcomings . 33

2.7 DSP Simulator . 34

3 Design . 35
3.1 Overview. 36

3.2 Web server . 36

3.2.1 Parsing an HTTP request into an EXTENSION_CONTROL_BLOCK 37

3.2.2 Getting full request data from the client 38

3.2.3 HTTP response . 38

3.3 Parser entry . 39

3.3.1 Find the requested node 40

3.3.2 Parse query fields . 40

3.3.3 Parse HTTP Method . 44

3.4 Parsing GET requests . 44

3.4.1 Formatting value output 45

3.5 Parsing PUT requests . 48

3.5.1 Tokens . 48

3.5.2 Tokenizer . 49

3.5.3 Parsing JSON . 50

4 Implementation. 53
4.1 General implementation strategies 54

4.1.1 Visual Studio solution . 54

4.1.2 Code documentation . 55

4.1.3 Code structure . 55

4.2 Request path to node . 55

4.3 GET handler . 56

4.4 Tokenizer . 58

4.5 PUT handler . 59

5 Test . 61
5.1 Internal tests. 62

5.1.1 Tests implemented . 62

5.2 External request tests. 64

5.2.1 Test sequence . 65

5.2.2 Outcome . 68

5.3 Misc. tests . 68

IMM-B.Eng-2013-4
s042067

REST based protocol parser ix

6 Process. 71

7 Perspective . 73
7.1 Implementing the parser on the ARM CPU 74

7.2 Future development . 74

7.3 New potentials . 75

7.3.1 Embedded development 75

7.3.2 Hardware development 75

7.3.3 Software development . 76

8 Conclusion. 77

9 Glossary . 79

References. 83

Appendix . A-1

IMM-B.Eng-2013-4
s042067

x REST based protocol parser

Table of figures

1.1 A LAN-XI module with two detached fronts 2

1.2 A LAN-XI module and two frames.. 4

1.3 Connection between a PC, a LAN-XI G2 module and transducers. 5

1.4 Simplified illustration of the LAN-XI G2 architecture. 5

1.5 The blocks "inside" the ARM CPU.. 6

2.1 Illustration of the JSON structure.. 11

2.2 JSON example and corresponding tree interpretation. 12

2.3 Illustration of an example object model. 13

2.4 Use case diagram for the project. 20

2.5 Illustration of a web server running a website and 2 plugins.. 25

2.6 Illustration of the implemented tree structure in WebXiCache. 29

2.7 Interaction between the parser and WebXiCache when searching for a node.32

2.8 Interaction between the parser, WebXiCache and DSP. 33

3.1 Rough overview of the flow of the parser.. 39

3.2 Flow chart of parsing the request path to a node in the object model. . . 41

3.3 Flowchart for the operation of GetQueryParams(...). 43

3.4 Main flow of the GET handler. 46

3.5 Flow of the GET handler for requested branch node with recursive set true. 47

3.6 Valid sequences of JSON tokens. 52

5.1 The logic connections in the internal test. 62

5.2 Illustration of the connections between the external unit test and the parser.64

6.1 GANTT chart used for initial planning of the project. 72

7.1 Illustration of the "shoebox" model. 76

IMM-B.Eng-2013-4
s042067

REST based protocol parser 1

Chapter 1

Introduction

1.1 About Brüel & Kjær 2

1.1.1 The Instrumentation group 3

1.2 LAN-XI hardware . 3

1.3 LAN-XI G2 . 4

1.3.1 Web-XI. 4

1.3.2 Architecture 5

1.3.3 The ARM CPU 6

1.3.4 Web server . 7

1.3.5 Parser . 7

1.3.6 Cache . 7

This chapter gives a brief introduction to Brüel & Kjær and the line of products
relevant to this project.

The introduction does not cover Brüel & Kjær entirely, but focuses on introducing the
aspects relevant to this project. An insight into the Brüel & Kjær history and product
legacy can be found in the book Journey to Greatness – the Story of Brüel & Kjær[1].

As this project concerns a protocol parser – a small (but vital) component residing
deep within the system – some effort is put into placing the parser in the system,
including descriptions of the surroundings, before the actual project is presented.

A glossary is located in Chapter 9.

IMM-B.Eng-2013-4
s042067

2 REST based protocol parser

1.1About Brüel & Kjær

Brüel & Kjær was founded in 1942 by Per V. Brüel and Viggo Kjær. The company
has been leading on the professional market for sound and vibration measurement
– but has also been active in other areas such as long-term condition monitoring of
machinery and medical instruments.

In 1992, following financial trouble, the company was sold to the German AGIV and
split into several more focused companies, one of which is Brüel & Kjær Sound &
Vibration Measurement A/S, which became part of the Spectris Division of AGIV. This
division was later sold to the British Fairey Group Ltd. but was ultimately kept under
the name of Spectris Plc. – still maintaining the Brüel & Kjær Sound & Vibration
Measurement name within.

B&K has for most of its history had the head quarters in Nærum. This is also where
much of the development is still being done.

The products developed by Brüel & Kjær Sound & Vibration Measurement A/S include
the LAN-XI modules which perform data acquisition – measuring from a variety of
different sources, ie. microphones, accelerometers etc. – and do some processing of
the input. Various connection options are achieved through interchangeable fronts.
A LAN-XI module with two detached fronts is shown in figure 1.1. The modules are

Figure 1.1: A LAN-XI module with two detached fronts

connected to an ordinary LAN, and the measurements are processed and presented
on a PC using the PULSE software developed by B&K. Several LAN-XI modules can
be used simultaneously, making the system very flexible and expandable.

Furthermore, the product range includes 2250 range handheld analyzers which are
stand-alone PDA-like devices used to perform and present acoustic or vibration
measurements, systems for environmental monitoring of airports, roads, building

IMM-B.Eng-2013-4
s042067

REST based protocol parser 3

sites etc. – as well as transducers; microphones and accelerometers for vibration
measurement.

1.1.1 The Instrumentation group

The Instrumentation group is part of the R&D department. The group develops
much of the new hardware and embedded software used within the company and the
products. This includes the LAN-XI modules and the 2250 range handheld devices.

Development of a new generation of LAN-XI modules is beginning. This project covers
part of this development.

1.2LAN-XI hardware

LAN-XI is the name of a series of measurement equipment made by Brüel & Kjær. The
first LAN-XI model was released in 2008, and since then many more have followed
with different configurations of inputs and outputs etc. All 1st generation LAN-XI
(LAN-XI G1) modules share the same form factor shown in figure 1.1.

The LAN-XI modules generally perform data acquisition – measuring from a variety of
different sources – transducers, ie. microphones, accelerometers etc. – and do some
processing of the input (most processing is, however, done on a PC using B&K PULSE
software).
Some models are equipped with generators for outputting signals to speakers,
shakers etc.

Connection to the LAN-XI module is made through an ordinary network, and a PC
can use several LAN-XI modules simultaneously – even different models. This makes
the LAN-XI system very versatile and makes it possible to place the modules closer to
the source when measurements are done on large objects such as an airplane. The
modules synchronize their timing through the network as well, ensuring that the PC
will be able to get very accurate timing between the modules even though they may
each produce very different latency due to switches etc.

The modules can be inserted into frames, combining several modules into one unit
which may, depending on frame type, be mountable in a standard 19" rack. LAN-XI
modules connected using frames are shown in figure 1.2. The frames also enable
the addition of battery modules, which makes the system usable in the field without
complicated setups with many separate units and cables. LAN-XI frames are also
network connected. The flexibility of the LAN-XI system is proven by the fact that a
module may be the backbone in an in-car system monitoring a few parameters while
driving (such as identifying unwanted noise and maybe even the source of it) – but

IMM-B.Eng-2013-4
s042067

4 REST based protocol parser

Figure 1.2: A single LAN-XI module, a 5-module frame and an 11-module frame
connected to a network switch.

many of the same modules (typically in frames) set up in a large network can measure
on several hundred channels at once spread over a large structure such as a plane,
turbine etc.

A key feature of the LAN-XI platform is the detachable fronts of the modules. A large
collection of different fronts is available facilitating different number of connectors
and different connector types – BNC, LEMO etc, and the range is continually
expanding to meet new customer demands.

1.3LAN-XI G2

The second generation of the LAN-XI platform – LAN-XI G2 – is now under
development. This uses many of the concepts from the first generation, but it will
also incorporate many of the lessons learned over the years. The changes include e.g.
using Ethernet for internal communication between components rather than custom
made hardware interfaces as in LAN-XI G1 – and using a new REST based protocol –
Web-XI – for controlling each module instead of a custom protocol on top of TCP.

These changes should make some aspects of development easier by using known
technologies, and may provide added options for future use, such as external access to
control the module for developers outside B&K. Connections to a LAN-XI G2 module
is done as with the G1 module – as illustated in figure 1.3.

1.3.1 Web-XI

Web-XI is the name of the new REST based protocol to be used for LAN-XI G2.
The protocol introduces a well-defined structure and aims at completely replacing
previous somewhat fragmented protocols with a single dynamic and well-documented
one.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 5

LAN-XI G2
module

Tran
sd
u
cers

LAN
Web-XI

Figure 1.3: Illustration of the connection between a PC, a LAN-XI G2 module and
transducers.

Web-XI uses JSON for representation of data for controlling the operation of a LAN-
XI G2 module. The protocol is described in detail, and this project focuses on
implementing the specification.

1.3.2 Architecture

The basic architecture has not changed much from G1 to G2. Each LAN-XI module
basically consists of the following1 – as illustrated in figure 1.4:

Input/output hardware providing connections for transducers etc. and performing
analog/digital conversion.

DSP doing the necessary in-module signal processing.

ARM CPU providing the interface to the client over an ordinary LAN.

T
ra

n
sd

u
ce

rs

LAN
Web-XI ARM CPU

(Windows EC 7)

DSP

In
p

u
t/o

u
tp

u
t

Switch

Ethernet

LAN-XI G2
module

Figure 1.4: Simplified illustration of the LAN-XI G2 architecture.

When measuring, the signal will enter the module in the input/output hardware. Here
the signal is digitized and passed on to the DSP.
The DSP applies any configured filters and sends the resulting signal to the ARM CPU

1The model is simplified to give a feel for the components involved for the use in this project

IMM-B.Eng-2013-4
s042067

6 REST based protocol parser

which handles further distribution of the signal to the client(s).
Any client can request access to a data stream on the ARM CPU. It will then pass the
signal received from the DSP on to the client, completing the basic acquisition chain.

When a generator is present in the LAN-XI module, the generator signal path is
reversed compared to the input. This is of course a very simplified model with the
sole purpose of describing the signal path. Many more aspects exist in the acquisition
process, but they are not relevant to the understanding needed for this project.

1.3.3 The ARM CPU

The ARM CPU in the LAN-XI module performs most of the tasks directly visible to
the client (both PC and user), such as providing communication interface over the
external network connection and controlling the display on the device – ie. an arbiter
role.

This description is entirely focused on the tasks of the ARM CPU concerning this
project – the web server, parser and cache. The relevant internals of the ARM CPU
have been illustrated in figure 1.5.

DSP

In
p

u
t/o

u
tp

u
t

Switch

Ethernet

LAN-XI G2
module

ARM CPU

Web server

Web-XI parser

WebXiCache
ISAPI extension

C
lie

n
t

T
ra

n
sd

u
ce

rs

Figure 1.5: The blocks "inside" the ARM CPU relevant to this project and their
connections.

Operating system

The ARM CPU runs Windows Embedded Compact (EC) 7 – formerly known as
Windows CE. This is the ultimate target of the development made in this project,
but initially, a prototype is developed on a PC. This prototype must be aimed at
future implementation on the ARM CPU, but may also provide other benefits, which
is discussed later in Chapter 7.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 7

1.3.4 Web server

Windows EC 7 includes Internet Information Services (IIS), which has been used for
previous web server and protocol implementations for LAN-XI G1.

1.3.5 Parser

The parser runs as an ISAPI extension on the web server. All requests relevant to
Web-XI will be handled by this extension. The parser will bridge the gap between the
client (Web-XI protocol) and the local cache data structure (WebXiCache).

1.3.6 Cache

The WebXiCache has been provided for use in this project.

WebXiCache will ultimately facilitate the connection between the Web-XI parser and
the DSP.

IMM-B.Eng-2013-4
s042067

8 REST based protocol parser

IMM-B.Eng-2013-4
s042067

REST based protocol parser 9

Chapter 2

Analysis

2.1 Web-XI . 10
2.1.1 REST . 10
2.1.2 JSON . 10
2.1.3 Object model 12
2.1.4 Protocol . 15
2.1.5 Versioning . 17
2.1.6 Client-side caching 18
2.1.7 HTTP status 18

2.2 Project definition. 19
2.2.1 Prototype . 19
2.2.2 PC implementation 20
2.2.3 Use cases . 20

2.3 Requirements . 21
2.3.1 Environment 21
2.3.2 Web-XI parser. 22
2.3.3 Risks . 23

2.4 ISAPI . 24
2.4.1 Entry point . 24
2.4.2 EXTENSION_CONTROL_BLOCK 25
2.4.3 Developing the ISAPI extension 27

2.5 Web server . 27
2.6 WebXiCache . 28

2.6.1 Structure . 28
2.6.2 WebXiCache methods 30
2.6.3 Use . 32
2.6.4 Shortcomings 33

2.7 DSP Simulator . 34

This chapter focuses on the analysis of the project – describing the project itself and
the entities surrounding it.

IMM-B.Eng-2013-4
s042067

10 REST based protocol parser

2.1Web-XI

During operation, many parameters can be set on the LAN-XI module. These
paramaters may be related to the analog input/outputs, signal processing – setting
filters and measuring settings etc. These parameters are either related to the
operation of the DSP or controlled by it.

Web-XI is based on REST and defines a tree of parameters which can be changed.
Data is carried in JSON format.

The Web-XI protocol is specified in the Design of Web-XI Communications Protocol
for G2 devices document which can be found in appendix D. This specifies the main
requirements for the Web-XI parser, but not everything specified in the document is
covered by this project.

2.1.1 REST

Representational State Transfer (REST) is a concept for communication between
clients and a server. Clients can retrieve or change a representation of data using an
intermediate representation – the client cannot directly access the underlying data.

In this case, JSON is used to describe parameters for the DSP.

2.1.2 JSON

In Web-XI, JSON is used to represent the parameters set or retrieved by the client.
JSON uses a simple structure for describing a tree data structure, which is very
compact.

An important objective of this project is for the parser to be able to parse and generate
JSON from the cache structure.

The following description of the JSON structure has been partly derived from [2].

JSON operates with the term object which contains sets of any number of name:value
pairs, separated by commas (,).
name is always a string, and value may be another object, or string, number (which
covers both integer or floating point), boolean (true/false), null or array of values.

A more comprehensive illustration of the JSON structure is illustrated in figure 2.1.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 11

Examples:

{ }
{“name1”:value,”name2:value}

object

string value{ }:

,

array
Examples:

[]
[value1, value2]

*In Web-Xi only a limited set of
value types are supported in the
array

[]value*

,

string

number

object

array

true

false

null

value

Examples:

“Some characters” (string)
42 (number, integer)
3,141 (number, float)
{ “name”: value } (object)
[value1, value2] (array)
true
false
null

string

Examples:

“123abc”
“\t\r\n5abc”

Any UNICODE character
except “ or \ or control

character

4 hexadecimal digits

“ “

\ “

\

/

b

f

n

r

t

u

number

Examples:

42
-42
3.141
7e3

-

E

-

e

.

+

0

digit
1-9

digit

digit

digit

Figure 2.1: Illustration of the JSON structure. The illustration has been recreated on
basis of [2].

IMM-B.Eng-2013-4
s042067

12 REST based protocol parser

{
"a": 5,
"b": {
"c": 2,
"d": {
"e": 42

},
"f": {}

}
}

(a) Simple JSON example.

a: 5 b

c: 2 d

e: 42

root

f

(b) Tree representation. The root node is the
outer object container, green nodes are objects
and yellow nodes are name:value pairs.

Figure 2.2: JSON example and corresponding tree interpretation.

An example of a simple JSON structure is shown in figure 2.2. The JSON describes
an object containing a – with value 5 – and b which itself is an object. b contains c
which has a value of 2, and the objects d and f. d contains e with a value of 42, and f
is empty. The figure also shows how the JSON structure can easily be represented as
a tree structure.

2.1.3 Object model

A key element in Web-XI is the object model, which is a tree structure including all
the parameters that can be set on the module.

The tree has a root node which defines the entry point for every operation on the tree.
From the root node there may be any number of branch nodes leading down to leaf
nodes. Branch nodes cannot contain any data apart from their children – other branch
or leaf nodes – and only leaf nodes contain actual values.

An example object model is shown in figure 2.3. It is not an actual object model to
be used in a finished LAN-XI G2 system; it is designed to illustrate the concepts of
the Web-XI in a fairly compact tree. The example object model is used as a basis for
development and testing throughout the project.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 13

W
eb

Xi

A
cq

u
is

it
io

n

C
h

a
n

n
el

s

1
2

M
o

d
u

le
Id

In
t3

2
6

2
1

Ti
m

e
In

t6
4

0

R
u

n
B

o
o

l
FA

LS
E

St
ar

tT
im

e
In

t6
4

4
2

G
a

in
Fl

o
a

t3
2

1
.2

1
30

4
9

5

D
e

sc
ri

p
ti

o
n

St
ri

n
g

In
p

u
t

ch
a

n
n

e
l

Fi
lt

er
Ty

p
e

In
t3

2
1

Fi
lt

er
Ty

p
e

In
t3

2
 (

ar
ra

y)
1

 2
 3

Fi
lt

er
P

ar
am

s
Fl

o
a

t6
4

 (
ar

ra
y)

1
.2

 3
.4

 5
.6

 7
.8

9

.0

B
ra

nc
h

 n
od

e

Le
af

 n
o

d
e

R
ea

d
-o

n
ly

 le
a

f
n

o
d

e

U
n

ca
ch

ed
 n

o
d

e

Le
ge
n
d

G
a

in
Fl

o
a

t3
2

0
.1

9
28

3
7

4

Li
m

it
Fl

o
a

t6
4

3
.7

2
51

9
4

30
4

1
7

4
38

3

D
e

sc
ri

p
ti

o
n

St
ri

n
g

O
u

tp
u

t
ch

an
n

e
l

Fi
lt

er
Ty

p
e

In
t3

2
3

Fi
lt

er
Ty

p
e

In
t3

2
 (

ar
ra

y)
5

 2

Fi
lt

er
P

ar
am

s
Fl

o
a

t6
4

 (
ar

ra
y)

7
.1

 2
.0

Sa
m

p
lin

g
Fr

e
q

u
e

n
cy

In
t3

2
6

5
53

6

Fi
lt

er
C

o
n

fi
g

u
ra

ti
o

n
JS

O
N

{“
ty
p
e
”:

2
, “

p
ar
am

”:
 5

.3
}

Li
m

it
Fl

o
a

t6
4

6
.2

8
31

8
5

30
7

1
79

5
8

6

Figure 2.3: Illustration of an example object model.

IMM-B.Eng-2013-4
s042067

14 REST based protocol parser

The object model is published to the cache by the DSP at startup, and only the DSP
can add or remove nodes in the object model. The client can – using Web-XI – change
values of nodes in the object model.

Node value types Leaf nodes in the object model each have a data type assigned
(The names in parenthesis are shorthand names used throughout this report):

• 32-bit Integer (Int32) – arrays supported

• 64-bit Integer (Int64)

• 32-bit Floating point (Float32)

• 64-bit Floating point (Float64) – arrays supported

• Boolean (Bool)

• String

• JSON

Apart from the value types on each node, integer and floating point nodes may also
contain arrays. The value type of array nodes is the same as for scalar nodes. Each
node holds information about the current and maximum length of the value, indicating
whether it is a scalar or an array.

JSON nodes The JSON value type is used for dynamic trees. Rather than creating
nodes for every combination possible in a subtree2, or letting the client create and
delete nodes3, a node may itself carry a JSON data structure for the DSP to parse.

Read-only nodes Some nodes in the object model may be informational only,
meaning that they must not be changed by the client. These nodes carry a read-only
flag.

2A thought example could be an input channel which can be set up with any combination of several
filters which can each have a combination of functions and parameters. This could result in e.g. 16
different filters × 10 possible parameters per filter = 160 nodes per channel – of which just a few
parameters will be used at any time.

3This would make the object model more dynamic and unpredictable, making it much more difficult
to manage the limited resources such as memory consumption.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 15

Cached and uncached nodes Most nodes will only change value when the client
requests it and may be cached on the ARM CPU, relieving the DSP when nodes are
requested by the client. There are, however, some nodes that cannot be cached and
need to be refreshed from the DSP every time their values are requested4. This is
shown by a flag on the nodes.

2.1.4 Protocol

The Web-XI protocol defines the relation between HTTP request, JSON data and the
object model.

The path given in any HTTP request is used to address a node in the object model.
This may be any node, branch or value, and will be the root node of further processing.

The method of a request determines the desired action. For the part of Web-XI
covered in this project, GET and PUT are covered. If a GET request is made, the
requested contents of the object model should be compiled into JSON notation and
sent to the client. The client can specify the query field recursive to control whether
the entire subtree of a node should be returned, or just itself/its children. Recursion
defaults to being false.
In a PUT request, the client sends a JSON structure containing the structure (values)
to write to the object model.

Method examples for getting/setting data

Making a GET request on a leaf node with the path
/WebXi/Acquisition/Channels/1/Gain should return a JSON object with the Gain node
and its value:

{
"Gain": 1.2130495

}

A GET request made on a branch node with the path/query
/WebXi/Acquisition/Channels/1?recursive=false should return the children of the
node named "1". The JSON structure returned to the client would be as follows (note
that Filter is shown with the value null. This is used to indicate that there is a node
called Filter, and that it may have children.):

4An example could be a node carrying the DSP time or number of samples processed by the DSP –
which are values that (may) change without the client doing anything.

IMM-B.Eng-2013-4
s042067

16 REST based protocol parser

{
"Gain": 1.2130495,
"Limit": 6.283185307179586,
"Description": "Input channel",
"Filter": null,
"Type": 1

}

Sending much the same request, but with recursive=true should result in the JSON
below being returned. Now the children of Filter are included in the representation.

{
"Gain": 1.2130495,
"Limit": 6.283185307179586,
"Description": "Input channel",
"Filter": {
FilterType: [1, 2, 3],
FilterParams: [1.2, 3.4, 5.6, 7.8, 9.0]

},
"Type": 1

}

Sending a PUT request to the path /WebXi/Acquisition/Channels/1 with the body
shown below would update the values of Gain, Description and Filter/FilterType to
2.0, "Main microphone" and [5 2] respectively. It is not necessary to specify values
for all children of the requested node, as shown (Limit etc. have been left out).

{
"Gain": 2.0,
"Description": "Main microphone",
"Filter": {
FilterType: [5, 2]

}
}

Action and time related queries

PUT requests can be used to perform certain actions on nodes. This is not true REST,
but it is hard to do without for the LAN-XI modules. This may be used to ask a channel
(represented as a node in the object model) to detect any transducer connected to it.
Actions are set by the Action query field, and the value is a string, which must match
a valid action for the node requested. Actions can have an argument, set by the query
field Argument.

Sending a PUT request with the path/query
/WebXi/Acquisition/Channels/1?Action=Detect&Argument=All should run the Detect

IMM-B.Eng-2013-4
s042067

REST based protocol parser 17

action on the Channel 1 node. Actions are not actually doing anyting in the prototype,
but this action could mean "Detect transducer connected to channel 1". AwaitTrigger,
Time and Delay fields could be added to the query.

Time and triggers

It is possible to schedule PUT (value setting and action performing) operations to be
executed later, using the query fields AwaitTrigger, Time and Delay.

AwaitTrigger takes a number value from 0 to 7. If this is set to a non-zero value, the
action specified in the request will not be performed until the specified trigger
is executed. Several actions can be assigned to the same trigger and thus be
executed at once. The trigger can be executed by sending a PUT request with
the query Action=PerformTrigger&Argument=<TriggerId>.

Time takes a 64-bit unsigned integer as value. When set to a non-zero value,
the action specified in the request will not be performed until the specified
absolute time has been reached on the DSP. The time is described in section
6 of appendix D.

Delay takes an unsigned integer as value. When set to a non-zero value, the
action specified in the request will be performed after the specified number
of milliseconds have elapsed after the request has been received in the module.

Specifying both Time and Delay in the same request is not allowed, but one of them
may be combined with AwaitTrigger. In this case the action is performed when the
first (either AwaitTrigger or Time/Delay) condition is met.

2.1.5 Versioning

In order to identify and support different versions of the Web-XI protocol in the future,
the HTTP header fields Content-Type and Accept can be used to identify the provided
and requested protocol/version.

This can ensure that – in the future, when possibly more versions of the protocol exist
– clients and modules can agree on the correct version to use, rather than having
possibly faulty assumptions.

IMM-B.Eng-2013-4
s042067

18 REST based protocol parser

2.1.6 Client-side caching

The Cache-Control response header field can be used to tell the client if – and for how
long – a response may be cached. This is useful for reducing the number of requests
necessary for the client to make while still maintaining good synchronization between
client and module.

A response with the header-field Cache-Control: no-cache must not be cached,
and if the client needs to use any data from the response at a later point, the request
must be repeated to ensure an up-to-date version. A simple example could be data
containing the absolute time on the module, which is regularly updated.

The header-field may also read e.g. Cache-Control: max-age=3600, telling the
client that the data may be cached and used for 3600 seconds (1 hour). This could
be used for data which is not regularly updated, such as version information or data
exclusively set and controlled by the client.

2.1.7 HTTP status

To indicate the result of an operation standard HTTP status codes are used. These are
described below. When an error status is returned, the response body may contain
information regarding the error that has occurred.

200 ("OK") Operation succeeded. On GET requests the body contains the document
returned.

400 ("Bad Request") Generic client-side error used when no other 4xx status is
appropriate. E.g. used when the client makes a PUT request with semantic
or value type errors.

404 ("Not Found") Indicates that a resource could not be found.

405 ("Method Not Allowed") The HTTP method used in the request is not allowed.
May be used if the client attempts to PUT values to a read-only node.

413 ("Request Entity Too Large") The request is too large for the server (or
parser) to handle.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 19

2.2Project definition

This project definition gives an overview of the goals of the project which are later
further elaborated. The project was initially defined some time before the project
period. This resulted in the Initial project considerations document which is included
in appendix B.

The project is basically the same, but many concepts and goals have changed, as
much has changed since the initial considerations were written.

A few points were changed or removed from the initial considerations at the beginning
of the project. One of these things is porting the DSP unit tests developed during the
internship (see appendix C) to use network and the Web-XI parser to perform the tests.
Another was considerations regarding using another programming language and/or
framework for developing the parser, as this would introduce added complexity, more
unknown factors, and possibly a new programming language which noone at B&K is
familiar with, to the system. The programming language of choice is thus C.

2.2.1 Prototype

The prototype should implement the command part of the Web-XI protocol, described
previously. Versioning and client-side caching are initially not considered. The parser
shall – as previous versions – be installed as an ISAPI extension.

Attempts should be made to be able to communicate with the prototype using the
actual Web-XI API being developed for use in the PULSE PC software which will
ultimately be used to control the LAN-XI G2 modules.

Thus, the prototype should include a web server capable of receiving requests from
a PC, and as the Web-XI parser will eventually be installed as an ISAPI extension on
the ARM CPU, the web server shall at least emulate ISAPI to the extent needed to
implement the prototype, and without making the transition to the embedded web
server on the LAN-XI G2 module too problematic.

With the WebXiCache, a DSP simulator has been provided to receive and handle value
updates from the cache, and a custom object model, such as the one shown in Figure
2.3 on page 13, can be used to verify functionality – but this will not be an actual
object model for some future application of LAN-XI G2, but rather an object model
which can give an idea of the functionality of the parser and be used in validation.

As stability and predictability are key aspects, it is important to ensure that correct
data is committed to the cache. It is important to incorporate some transaction
handling, so that in any errors in the data sent to the parser (semantic, data type

IMM-B.Eng-2013-4
s042067

20 REST based protocol parser

etc.) do not result in some values to be applied to the DSP and others to be skipped.
In this case an error should be returned and the state of the system should be reverted
to before the request was made.

2.2.2 PC implementation

Implementing the prototype on a PC makes development and initial verification much
easier, requiring no special hardware and making it possible to quickly see the effects
of changes.

However, as the target is ultimately IIS on the ARM CPU, efforts should be made
to comply with the limitations it brings. As an effect of this, the parser should be
implemented with the fact in mind that resources are limited, especially memory
should be in focus and potentials for memory fragmentation should be reduced.

The optimal outcome would be an implementation which – using the same code – can
operate on both a PC and the ARM CPU.

2.2.3 Use cases

The use case diagram for the project is displayed in figure 2.4.

A client shall be able to Get parameters from the object model in the module. This
includes getting data and generating a JSON representation.
The client shall also be able to Set parameters in the object model in the module,
which includes parsing JSON data and storing values. If any errors occur, the system
should be returned to a stable state.
Finally, it should be possible for the client to perform actions on nodes in the object
model. All use cases include Finding a node in the object model.

Client

Get parameters
from object model

Set parameters
in object model

Perform action

Parse and store
JSON data

Get data and generate
JSON representation

<<include>>

<<include>>

Find a node in the
object model

<<include>>

<<include>>

<<include>>

Identify errors and return
to a stable state

<<extend>>

Figure 2.4: Use case diagram for the project.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 21

2.3Requirements

The "Design of Web-XI Communications Protocol for G2 devices" document in
appendix D specifies the requirements for the protocol implementation. As only
the command part of the protocol is considered, a breakdown of the requirements
relevant to this project is presented here.

The requirements are divided into categories concerning the environment and
prototype implementation and the actual parser related requirements, and some
are further marked as A-, B- or C- requirements, where A requirements are
success criteria, B requirements should be looked into, but are not essential, and
C requirements are not initially part of this project, but should be developed in the
future.

2.3.1 Environment

1. (A) The parser shall initially be implemented as a prototype running on a PC.

2. (A) Ultimately, the parser shall be ported to run on the ARM CPU, and the parser
must be prepared for this transition.

3. (A) On the ARM CPU, the parser shall run as an ISAPI extension, so a suitable
development solution should be found for the prototype, allowing the parser to
run on a PC while being easily converted into an ISAPI extension.

4. (A) Everything should be developed in C/C++.

5. (A) Visual Studio 2010 with Visual C++ should be used for developing the
system.

6. (A) A provided data structure – WebXiCache – must be used to store and retrieve
data. This is the interface towards the inner parts of the LAN-XI G2 module.

7. (B) For future flexibility, the parser should be able to run on both the ARM CPU
and a PC using the same code and a minimum of changes.

8. (B) A suitable web server should be used/implemented on the PC prototype to
enable the PC to mimic the LAN-XI G2 module properly.

IMM-B.Eng-2013-4
s042067

22 REST based protocol parser

2.3.2 Web-XI parser

This is a breakdown of the relevant parts of the command protocol as described in
appendix D.

1. (A) Request paths should be parsed:

(a) (A) Find the node in WebXiCache corresponding to the request path.

(b) (A) If the requested node does not exists, return an error.

2. (B) All node names are treated as case insensitive.

3. (A) Proper HTTP Status codes should always be returned. In the event of an
error, the status code should be relevant to the error.

4. (A) Query fields should be parsed and their values extracted. Names are case
insensitive:

(a) (A) Recursive: true or false, default false.

(b) (B) Action: String data, default empty.

(c) (B) Argument: String data, default empty.

(d) (B) AwaitTrigger: Int32, default 0.

(e) (B) Time: Int64, default 0.

(f) (B) Delay: Int64, default 0.

5. (A) GET requests should return JSON data to the client:

(a) (A) If the requested node is a leaf node, a JSON object containing the
name:value pair for the requested node should be returned.

(b) (A) If the requested node is a branch node with recursive set false, a JSON
object containing the name:value pairs of the children of the requested
node should be returned. Branch nodes have the value null.

(c) (A) If the requested node is a branch node with recursive set true, a JSON
object containing the name:value pairs of all ancestors of the requested
node should be returned. The value of a branch node is a JSON object with
its children.

(d) (B) All uncached nodes relevant to a request should be refreshed. The
whole tree should not be refreshed every time if not necessary.

(e) (B) Make sure the object model is consistent while generating a JSON
structure – make sure changes are not made to the cache while generating
the response.

6. (A) PUT requests should perform an action or update values in WebXiCache from
the JSON data sent by the client.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 23

(a) (B) If Action query is set (ie. not empty), let the WebXiCache perform
the action (passing the value on as an argument) with the Argument,
AwaitTrigger and Time data from the query. Nothing further should be
done if Action is set.

(b) (A) Parse JSON data sent by the client and set the corresponding values in
WebXiCache.

(c) (B) If a node with value type JSON is encountered, halt parsing and send
the value (whilch should be a JSON object) into the node in WebXiCache as
a string.

(d) (B) Make sure only one client makes changes at any time.

(e) (A) Enforce value types of nodes. E.g. trying to set a string to an integer
node should result in an error.

(f) (B) Enforce JSON semantics. A JSON structure which cannot be interpreted
as valid JSON should cause an error.

(g) (B) If an error occurs during processing, make sure no changes are
committed to the WebXiCache and return it to the previous state.

(h) (B) If AwaitTrigger and/or Time/Delay is set, the values committed to
WebXiCache should be postponed until the trigger or absolute time/delay
time is reached.

(i) (B) Time and Delay may not be set at the same time. This should result in
an error and no action should be taken from the request.

7. (C) Versioning shall at some point be implemented.

8. (C) Client-side cache control headers shall at some point be implemented.

2.3.3 Risks

Being done in a very early stage of the LAN-XI G2 development, there are
uncertainties in many aspects of the development to take care of. Some identified
risks are regarded here, including evaluation of their effect.

Resulting parser is not ARM compatible Probability: Medium – Effect: Minor

As the right tools for developing the ISAPI extension for the ARM CPU are
not available during development, the outcome may be a PC parser prototype
which cannot be ported to the ARM CPU. For the project the impact is minor, as
the target is a PC prototype – but for further development it may be a greater
problem, depending on the exact cause of the incompatibility.

Changes in requirements Probability: High – Effect: Medium

As many requirements, descriptions and systems for the parser prototype
are in development during the project period, requirements may change while
implementation is going on. Mostly, actual changes should have a minor impact,

IMM-B.Eng-2013-4
s042067

24 REST based protocol parser

but a flexible development strategy is important to be able to cope with these
changes.

Lack of support in surrounding systems Probability: Medium – Effect: Medium

As this project concerns a small part in an chain of systems, this project
depends very much on the other systems providing the needed supported for
the things to implement. Some of these other systems are under ongoing
development during the project period. This means that there may be
shortcomings encountered – but help is at hand when they are identified.

ISAPI misunderstandings Probability: Medium – Effect: Minor

As development is done without the right tools for developing ISAPI
extensions at hand, there is a real risk of misunderstandings leading to an
incompatible implementation. The effect of these misunderstandings are,
however, minor, as knowledge about ISAPI extensions in use has been gathered
from previous implementations, and if anything should be wrong, the data used
in the parser is very generic and easily substituted.

2.4ISAPI

Internet Server Application Programming Interface (ISAPI) is an API of Internet
Information Service (IIS), Microsoft’s collection of web server services.

Based on studies of existing ISAPI extension implementations on the LAN-XI G1
hardware the entry point of the prototype has been determined.

An ISAPI extension is in IIS associated with a root path. For Web-XI this is /WebXi,
meaning that any request going to /WebXi/* (on the web server port, default 80) on
the device is being handled by the Web-XI parser. This makes it possible for the
custom Web-XI parser to run on the same web server and port as the web interface
and possibly older protocol implementations. Figure 2.5 shows a web server running
a module website as default application at http://[ip], a WebXi protocol attached
to http://[ip]/WebXi, and an old legacy protocol attached to http://[ip]/LANXI. Any
request made to http://[ip]/WebXi/... would be forwarded to the Web-XI plugin.

2.4.1 Entry point

The entry point of the ISAPI extensions is the function with the following signature:
DWORD5 WINAPI6 HandleRequest(EXTENSION_CONTROL_BLOCK*)

5DWORD: A 32-bit unsigned integer.
6Specifies the calling convention – how the function is called internally.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 25

Web-XI

Module websi te

Old protocol

Web server
http://[ip]/...

/WebXi

default

/LANXI

Figure 2.5: Illustration of a web server running a website and 2 plugins (ISAPI
extensions). The example only for illustrative purpose, and is not related to any real
setup.

This is invoked by the web server when the correct path has been requested by a
client. Control is then handed to the HandleRequest funtion by the web server.

2.4.2 EXTENSION_CONTROL_BLOCK

The EXTENSION_CONTROL_BLOCK structure is defined in the httpext.h library and is
central to parsing. It contains the following members (only the members relevant to
this project are included7):

ConnID (HCONN8) – Refers to the associated connection. This is set and maintained
by the HTTP server and used to distinguish between several different
simultaneous connections being handled by the web server.

lpszMethod (LPSTR9) – A string containing the HTTP method (GET, PUT etc.)

lpszQueryString (LPSTR) – Any query information the URL, ie. the part of the URL
after the question mark, if any.

lpszPathInfo (LPSTR) – String containing the query path – ie. the URL part before
any question mark.

cbTotalBytes (DWORD) – The total number of bytes received in the input buffer.

cbAvailable (DWORD) – The number of bytes left to retrieve from the input buffer.

lpbData (LPBYTE10) – Pointer to the input buffer containing any request body sent
by the client.

lpszContentType (LPSTR) – The content type of the request body.

(WINAPI * WriteClient) () (BOOL) – Pointer to a function for writing data to the
client.

7See http://msdn.microsoft.com/en-us/library/ms525658.aspx for the full documentation.
8HCONN: A unique identifier for an HTTP connection.
9LPSTR: Pointer to an array of characters

10LPBYTE: Pointer to a BYTE value

IMM-B.Eng-2013-4
s042067

http://msdn.microsoft.com/en-us/library/ms525658.aspx

26 REST based protocol parser

The WriteClient function has the signature
BOOL WriteClient(HCONN ConnID, LPVOID11 Buffer, LPDWORD12 lpdwSizeofBuffer,
DWORD dwSync).

ConnID is a connection identifiers for identifying the connection to use.
Buffer is a pointer to the buffer containing the content to send.
lpdwSizeofBuffer is a pointer to the number of bytes to send from Buffer.
dwSync is used to specify whether to run synchronous or asynchronous.

Example

This example illustrates how the EXTENSION_CONTROL_BLOCK is populated from a HTTP
request. If the web server receives a request with the following contents:

PUT /WebXi/Acquisition/Channels/1?AwaitTrigger=3&Time=5000 HTTP/1.1
Content-type: text/json
Content-Length: 54

{
"Gain": 5.3,
"Description": "Monitor channel"

}

– the corresponding EXTENSION_CONTROL_BLOCK will have the following contents:

ConnID [assigned by HTTP server]
lpszMethod PUT
lpszQueryString AwaitTrigger=3&Time=5000
lpszPathInfo /WebXi/Acquisition/Channels/1
cbTotalBytes 54
cbAvailable 54

lpbData

{
"Gain": 5.3,
"Description": "Monitor channel"

}
lpszContentType text/json

11LPVOID: Pointer to a value of unspecified type.
12LPDWORD: Pointer to a DWORD value

IMM-B.Eng-2013-4
s042067

REST based protocol parser 27

2.4.3 Developing the ISAPI extension

ISAPI extension templates and tools have been removed from Visual Studio prior to
the 2010 version. Furthermore, the add-on environment and compiler for developing
for the ARM CPU are also discontinued.

Therefore, the entire development of the parser has been based on the knowledge
summarized here. There has not been put a great effort into examining ISAPI
extensions in detail, as the parser needs very basic information about the request
such as path/query and body – and in case of problems, changing the sources of
that information should be straight forward. The effort has instead been put into
developing the parser.

2.5Web server

The lack of tools to directly implement ISAPI extensions raises the question whether
the PC prototype should run as an actual ISAPI extension, or if some custom solution
should be used instead – of course to the greatest extent possible mimicking an ISAPI
extension.

ISAPI-Capable web server Running the parser as an ISAPI extension obviously has
an advantage when it comes to determining whether or not the final implementation
can run. There are some possible differences between the platforms, ie. Windows 7
on a PC and Windows EC7 on an ARM platform, but the ISAPI interface should be the
same.
The built-in IIS variant in Windows can load ISAPI extensions. The open source
Apache server also has that capability.

Custom web server Some drawbacks of using a complete web server – apart from
possible complications due to the lack of the right templates etc. – include lack of
control. It might not be possible to directly access the stdin/out console and see debug
prints generated by the software, and every time the ISAPI extension is compiled the
web server extension/configuration has to be reloaded. A custom solution can be part
of the parser development project, and compiled at the same time as the parser. Also,
the custom server can initialize specific things only relevant to the prototype (such as
the data structure in WebXiCache and other helpers).

Conclusion From the considerations it has been decided to develop the Web-XI
parser with a custom web server. For this web server, a very simple example has been
provided, which can be used as a basis for the development of the server. As the web

IMM-B.Eng-2013-4
s042067

28 REST based protocol parser

server is only part of the PC prototype of the parser, and not the final implementation
on the LAN-XI G2 module, the requirements for the quality of the web server are
reduced, and a greater degree than normal of hard-coded workarounds is allowed.
Support for multiple clients is also optional.

The web server must meet the following demands:

1. Initialize WebXiCache, DSP simulator etc.

2. Listen for TCP connections.

3. Receive an HTTP request from a client13.

4. Parse HTTP requests and generate the corresponding EXTENSION_CONTROL_BLOCK
structure.

5. Invoke the parser.

6. Use the response from the parser to form and send a response to the client.

7. Close connection and set up for a new request.

2.6WebXiCache

WebXiCache is the data structure where the parser stores and retrieves values.
WebXiCache also acts as the interface between the parser and the DSP in the LAN-
XI G2 module. It is developed in C++ and has been provided for this project.
Development of WebXiCache has been ongoing during the parser project period, and
some features have been implemented as needed by the parser.

2.6.1 Structure

WebXiCache models a tree data structure. The tree is realized by each node pointing
to its parent, first child and next sibling. If any of those do not exist, the value will be
NULL. This is illustrated in figure 2.6.

It is thus worth noting that a node does not point to all its children. This would require
a dynamic structure with an unpredictable size for each node, causing overhead on
memory consumption and possible fragmentation.

WebXiCache interacts with the Kiss14 operating system on the DSP. Therefore,
WebXiCache uses the Kiss names for simple data types. Nodes in WebXiCache

13No need to support multiple simultaneous connections.
14Kiss is the operating system of the DSP. It was developed in-house several years ago, and has since

then been adapted for use in new platforms several times.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 29

NULL

NULL

First child
Next sibling
Parent

Legend

NULL

NULL

NULLNULL

NULL

Figure 2.6: Illustration of the implemented tree structure in WebXiCache.

each have an associated value type, which is indicated by values from the
WebXiValueType_t enum. These data types and their C and WebXiValueType_t
representations are shown in table 2.1. The Kiss data types will also be used
extensively in the Web-XI parser.

For boolean values, which are represented as 32-bit integers, FALSE is defined as 0
and TRUE is 1.

Nodes Nodes are modeled by the WebXiNode_t struct (only the members relevant
to the parser are included):

nodeId (u32_t) – Unique ID for the node.

name (char*) – Name of the node.

parent (WebXiNode_t) – Parent node (NULL for the top node).

nextSibling (WebXiNode_t) – Next sibling in the chain. NULL on the last sibling.

firstChild (WebXiNode_t) – First child of the node. NULL on leaf nodes.

isCached (u8_t) – TRUE (1) if the value may be cached on the ARM CPU.

isReadOnly (u8_t) – TRUE (1) if the value of the node may only be modified by the
DSP.

maxVectorLength (u16_t) – Maximum length of array. 0 indicates a scalar, greater
than 0 indicates an array node.

IMM-B.Eng-2013-4
s042067

30 REST based protocol parser

Kiss data type C data type WebXiValueType_t value
Unknown WebXiValueType_Unknown
void void WebXiValueType_None
bool_t int WebXiValueType_Bool
Unsigned integers
u8_t unsigned char —
u16_t unsigned short —
u32_t unsigned int —
u64_t unsigned __int64 —
Signed integers
s8_t char —
s16_t short —
s32_t int WebXiValueType_Int32
s64_t signed __int64 WebXiValueType_Int64
Floating point
f32_t float WebXiValueType_Float32
f64_t double WebXiValueType_Float64
String etc.
char* char* WebXiValueType_String
JSON metatype WebXiValueType_JSON

Table 2.1: Kiss data types and their corresponding C data types.

vectorLength (u16_t) – Actual length of array.

valueType (WebXiValueType_t) – Type of the value.

valueSize (u16_t) – Total size of the value in bytes (value type size × number of
values).

value (void*) – Pointer to value(s) of the node.

2.6.2 WebXiCache methods

The WebXiCache is instantiated and managed by the class WebXiCache. The following
methods are available (methods that are not relevant to the parser are omitted):

WebXiCache(int maxCount) The constructor for the cache. maxCount sets the
maximum number of nodes available in the data structure.

~WebXiCache() Destructor for the cache. Important to use to ensure resources
being freed if the cache is to be taken down.

WebXiNode_t* GetTopNode() Returns a pointer to the top node of the WebXi-
Cache.

WebXiNode_t* FindNode(u32_t nodeId) Returns a pointer to the node with the
nodeId specified. If the desired node does not exist, NULL is returned.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 31

int SetValue(WebXiNode_t* node, void* value, u32_t valueSize) Sets the
value of a node. The value is not committed to the node until Commit is called.
Several SetValue calls can be stacked before committing.
The method returns E_OK (0) if the operation is successful, otherwise an error
code (non-zero).

int Commit(u32_t triggerId, u64_t time) Commits values set using SetValue
to the cache. If triggerId and/or time is not 0, the commit will not take effect
until the specified trigger or time has occurred.
The method returns E_OK (0) if the operation is successful, otherwise an error
code (non-zero).

void Rollback() Cancels all SetValue calls stacked since last Commit. Used
when a request sets a number of values and encounters an irrecoverable error.
Rollback is then used to return to a known "good" state.

int PerformAction(WebXiNode_t* node, char* action, char* argument,

u32_t triggerId, u64_t time) Performs an action on the specified node with
the specified argument. If triggerId and/or time is not 0, the action will not be
performed until the specified trigger or time has occurred.
The method returns E_OK (0) if the operation is successful, otherwise an error
code (non-zero).

int RefreshValues(WebXiNode_t* node, bool_t refreshChildren) Refreshes
the values of the node given (if refreshChildren is FALSE), or for the node
given and any descendants (if refreshChildren is TRUE). This ensures that the
values for uncached nodes are up-to-date.
The method returns E_OK (0) if the refresh is successful, otherwise an error
code (non-zero).

void Lock() Takes a lock, ensuring that no other process can change anything
in the cache15. If the lock has already been taken, the method waits until it is
released.

void Unlock() Releases the lock, enabling other processes to alter the cache.

void LoadFile(char* path) Load the object model file at the path specified into
the cache. This is for test/prototype use only, as the object model will ultimately
be published by the DSP.

void StartKissPoller() Starts the Kiss polling process, which manages the
communication with the DSP for getting updates and values for the cache.

void StopKissPoller() Stop the Kiss polling process.

15Assuming every user of the cache uses the lock correctly.

IMM-B.Eng-2013-4
s042067

32 REST based protocol parser

2.6.3 Use

When the WebXiCache object has been initialized, the Kiss Poller should be started
to enable the DSP to publish the object model to the cache. For the prototype,
LoadFile(...) should be used to populate the cache.

Once ready, the cache can be used. A node can be found by getting the top node with
GetTopNode(), and from there, a specific child can be found by accessing firstChild
on the top node, and the children of the top node can be parsed through by following
the nextSibling on the selected node until the desired node is found (name field
matches the one being searched for) – or a NULL node is reached (no more siblings,
the desired node does not exist). A simplified sequence diagram of this process is
shown in figure 2.7.

Parser :WebXiCache :WebXiNode

GetTopNode()

Node

Lock

firstChild / nextSiblingloop

Until requested node
is found

Unlock

opt

If GET request

RefreshValues(...)

Get the top node of the tree
to start searching for the
requested node

Traverse through the tree
until requested node is found

Refresh values of uncached
nodes if necessary

Figure 2.7: Simplified sequence diagram showing the interaction between the parser
and WebXiCache when searching for a given node in the object model.

When it is important for the values in the cache to be current (ie. uncached nodes
are up-to-date), RefreshValues(...) can be used. This can be done on the node or
subtree which should be refreshed – depending on the refreshChildren value.

Node values can be accessed directly through the value field. The type of the value
is determined by the valueType field. If the maxVectorLength value is greater than
0, the node holds an array.

For setting the value of a node SetValue(...) is used. The method needs a pointer
to the value to be set, and its size in bytes (the size is the size of each value × the
number of values – which is 1 for scalars).

SetValue(...) can be called for each value to be set. When all desired values have
been set, they can be committed to the DSP with Commit(...). If the triggerId and

IMM-B.Eng-2013-4
s042067

REST based protocol parser 33

time of the call are both 0, the values are committed immediately. Otherwise, the
values will not be committed until the specified trigger ID and/or time has occurred.

During operations where it is important to ensure consistency – that no values are
changed while the operations are going on – the lock can be taken using Lock(). This
call will wait until the lock is available (if it is already taken). When the operations
are done, the lock can be released using Unlock().

An illustration of the general flow for setting values in WebXiCache is shown in
figure 2.8.

Parser :WebXiCache :WebXiNode

Lock

SetValue(...)

Unlock

Lock the cache during value
setting

Find node to set, set value
Repeat until all values are set

If everything is OK, commit
new values to DSP.

firstChild/nextSibling

New node

loop

Until next node to set value on is found

loop

While there are values to set

Commit(...)

DSP

Apply values

Figure 2.8: Simplified sequence diagram showing the interaction between the parser,
WebXiCache and DSP setting node values.

2.6.4 Shortcomings

In part due to the lack of an actual DSP, the support for actions, triggers, time and
delay is very limited. It will be possible to implement all but delay, but the there will
be nothing or very little to see when they are used, limiting the verification/testing
possibilities.

IMM-B.Eng-2013-4
s042067

34 REST based protocol parser

2.7DSP Simulator

For the prototype, a simulation of the connection to a DSP is provided alongside the
cache. This provides a very simple simulation of the handling of messages done by
the DSP.

The DSP Simulator is used within the cache, and the parser shall not use it directly. It
is, however, necessary to initialize the simulator for it to work. This is done by calling
the StartDspSimulator() function. Stopping it is done using StopDspSimulator().

IMM-B.Eng-2013-4
s042067

REST based protocol parser 35

Chapter 3

Design

3.1 Overview . 36

3.2 Web server . 36

3.2.1 Parsing an HTTP request into an EXTENSION_CONTROL_BLOCK
37

3.2.2 Getting full request data from the client 38

3.2.3 HTTP response 38

3.3 Parser entry . 39

3.3.1 Find the requested node 40

3.3.2 Parse query fields 40

3.3.3 Parse HTTP Method 44

3.4 Parsing GET requests. 44

3.4.1 Formatting value output 45

3.5 Parsing PUT requests. 48

3.5.1 Tokens. 48

3.5.2 Tokenizer . 49

3.5.3 Parsing JSON 50

This chapter describes in further detail the strategies and structure behind the
prototype implemented.

Flow charts are used extensively to illustrate algorithms and structure of the solution,
rather than long explanations. The diagrams make use of color coding to make it
easier to identify where an operation takes place, or what kind of operation is being
performed. The color coding is not the same in all diagrams, but in those diagrams
where the color coding serves a specific purpose, a legend is displayed.

IMM-B.Eng-2013-4
s042067

36 REST based protocol parser

3.1Overview

Splitting the description and development of the prototype into smaller logic entities
is crucial to keeping an overview.

As an actual ISAPI template has not been available for development it has been
necessary to seek a flexible solution which makes it easy to modify the sources of
certain information – such as the HTTP request body – without having to rewrite the
entire parser.

The approach taken in this development has been from the outside and in, ie.
first examining and developing the simple prototype web server before the parser
development is started. This has further been necessary as the WebXiCache has been
under ongoing development parallel to the parser, meaning that connecting the parser
to the cache has not been an option from the beginning.

Development of the parser is split into 3 parts. One is the entry point of the parser
– the ISAPI extension entry point – another is retrieving data from the cache (GET
requests), and the last is setting values in the cache (PUT requests). The 3 parts do
not have much functionality in common.
The entry point manages parsing of the HTTP request, determining what is to be
done and mapping the requested path to a node in the cache. It then calls one of the
two other parts which either retrieve nodes and values from the cache and returns it
represented as JSON, or parses through JSON data and sets values accordingly in the
cache.

3.2Web server

The web server is needed only for the PC prototype, and the focus on stability
and absolute correctness is reduced. Only the features explicitly needed to make
the prototype behave sufficiently like the final implementation in LAN-XI G2 are
implemented, and not much effort is put into making the implementation "pretty"
or easy to maintain.

For development of the web server a simple example has been provided. This web
server sets up a socket and listens for a connection. When a connection is established,
it receives one chunk of data from the receive buffer containing the HTTP request,
writes back a fixed response header and body, and closes the connection. The web
server can handle multiple simultaneous requests.

For the parser prototype, the web server is modified to instantiate the WebXiCache
with the development object model from Figure 2.3 on page 13, parse the

IMM-B.Eng-2013-4
s042067

REST based protocol parser 37

received HTTP request and populate an EXTENSION_CONTROL_BLOCK structure with
the contents.
The parser is called with this structure as an argument, and when parser execution
is ended, the connection to the client is shut down and the web server listens for new
connections.

In order to enable the parser to write data back to the client, a WriteClient function
is needed as specified in the EXTENSION_CONTROL_BLOCK.

3.2.1 Parsing an HTTP request into an EXTENSION_CONTROL_BLOCK

Again, the following request sent by a client is considered:

PUT /WebXi/Acquisition/Channels/1?AwaitTrigger=3&Time=5000 HTTP/1.1
Content-type: text/json
Content-Length: 54

{
"Gain": 5.3,
"Description": "Monitor channel"

}

Parsing of the header is done line-by-line. The first line has a special format, while
the rest of the lines each follow the same structure.

The first line is split at spaces. The first part is the HTTP Method, and is stored in the
lpszMethod field in the EXTENSION_CONTROL_BLOCK.
The next part is the full request part and optional query. This is split at the
questionmark (?), if it exists, and the first part is stored in lpszPathInfo, while the
other part is stored in lpszQueryString. NULL is stored if there is no questionmark.
The third and final part of the first line is the protocol and version. This is ignored
here.

Subsequent lines follow the [name]:[value] convention. Only the Content-Type field
is to be supported.
For each line, the line is split at colon (:). The first part is then compared to
Content-Type – and if it matches, the value (second part of the line) is stored in
lpszContentType.

Header parsing continues until two consecutive line breaks (/r/n) are encountered.
The rest – terminated by a NULL character – is the body of the request. This is stored
in lpbData. The request may have no body. In this case, the double line breaks are
followed immediately by the NULL character.

IMM-B.Eng-2013-4
s042067

38 REST based protocol parser

3.2.2 Getting full request data from the client

When a client sends a request containing a body (in this case it would be a PUT
request with JSON data attached), the client often sends two chunks to the web
server: 1) The header and 2) The body.

Under certain circumstances the server will receive the header and fetch it before
the body is received, meaning that the body is not received in the first try – otherwise
everything is received before processing begins.

To make sure the entire request is received before processing begins, the Content-
Length field in the header should be examined – if it exists. The value of Content-
Length is evaluated.

If Content-Length is greater than 0, there must be a body in the request. The delimiter
between header and body (double line break) is found, and if the next character is
NULL, no body was sent in the first chunk, and the body should be received separately
and appended.

3.2.3 HTTP response

The HTTP response to a request is slightly different to the request. Instead of HTTP
Method, path/query and protocol/version, the first line contains protocol/version and
a status code/message (See the ones used in this context in section 2.1.7).
The following lines and optional body resemble the request format:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 22

{
"ModuleId": 621

}

The header tells that the request was successful (200 OK status), and that the
returned body contains JSON and has a length of 22 bytes. The body follows after
a double linebreak and shows that the value of the ModuleId node is 621.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 39

3.3Parser entry

The parser entry is the implementation of the ISAPI extension and has the signature
DWORD WINAPI HandleRequest(EXTENSION_CONTROL_BLOCK*)

The HandleRequest function manages the tasks that are common to all requests sent
to the parser, regardless of type. This includes – as illustrated in figure 3.1:

Parse request

Find node specified
in HTTP Request

path

Retrieve nodes
from cache and
generate JSON
representation

Method == GET?

Get any parameters
specified in query

Get HTTP Method

Method == PUT?

Refresh (sub)tree in
cache

Parse JSON
structure from

request body and
set values in cache

Perform action

Commit values
to cache

Return responseaction set?

No

Yes

Yes Yes

No

Method unknown/
unsupported

No

Parser operation

Color legend

Cache operation

Request operation

Figure 3.1: Rough overview of the flow of the parser.

1. Find the requested node from the path in the HTTP request.

Verify that the requested node exists.

2. Parse query fields:

recursive flag (true/false, default false).

action (string, default empty).

argument (string, default empty).

IMM-B.Eng-2013-4
s042067

40 REST based protocol parser

awaittrigger (integer, default 0).

time (64-bit integer, default 0).

delay (64-bit integer, default 0).

3. Parse HTTP Method (GET/PUT/...).

If method is GET, make sure the requested nodes are up-to-date and handle
control to the GET handler.

If method is PUT, and an action is set, perform that action with any argument
set.

If method is PUT, and an action is not set, handle control to the PUT
handler. Afterwards, if everything has succeeded, commit new values to the
cache, otherwise rollback to return to the previous state.

If method is neither GET or PUT, return an error.

4. Send a response to the client.

3.3.1 Find the requested node (RequestPathToNode(...) function)

Finding the requested node is done in a function with the signature
WebXiNode_t* RequestPathToNode(char* requestPath)

Given the request path (e.g. /WebXi/Acquisition/Channels/1) the corresponding node
in the object model should be found. This is done by splitting the path into parts at
every slash (/), first returning "WebXi", next "Acquisition" etc.
On the object model, the top node of the tree is used as the point of reference. The
approach is illustrated in figure 3.2.

The name of the top node of the object model is compared to the first part of the path,
and then, for each part of the path, the children of the previous node selected in the
object model are walked through until a name matches the part of the path.

If at any point no children match the corresponding part, the requested node does not
exist in the object model, and NULL should be returned to indicate this.
When the requested node is found, indicated by no more parts of the path left to
evaulate, the node found (current node) is returned.

3.3.2 Parse query fields (GetQueryParams(...) function)

The query is a string of field-value pairs separated by ampersands (&): Each field and
value is separated by an equals sign (=), but the equals sign and the value may be
omitted.
Example: action=Detect&argument=All&time=512

IMM-B.Eng-2013-4
s042067

REST based protocol parser 41

Find node from
request path

In e.g. the path /Rest/Acquisition/Channels
the parts will be Rest, Acquisition and

Channels

Lock cache

Part == Node? Unlock cache
Return error: not

found

Part == NULL? Unlock cache Return Node

Node == NULL?

Part == Node?

Unlock cache
Return error: not

found

No

Yes

Yes

No

No

Yes

No

Yes

The cache is locked to prevent changes made
to it while requested node is being found.

The cache must be unlocked after parsing or
a deadlock will occur.

The top node is retrieved from the cache

Check if the first part of the
request matches the top node

in the cache

If the next part is NULL, the
path has been parsed

completely and the current
Node is the requested node

Node =
Node.FirstCh

ild

Node =
Node.NextSi

bling

Everything is OK, the requested node
exists and is returned

If Node is at any point
NULL, the requested node

does not exist

Node = Top
node from

cache

Part = first
part of path

Part = next
part of path

Parser operation

Color legend

Cache operation

Request operation

Figure 3.2: Flow chart of parsing the request path to a node in the object model.

IMM-B.Eng-2013-4
s042067

42 REST based protocol parser

The parameters to be identified are:

recursive (bool) – set to true if value is "true" or unset (the query would be
?recursive).

action (string)

argument (string)

awaittrigger (Int32)

time (Int64)

delay (Int64)

Due to the limited number of fields to support, the GetQueryParams function takes
pointers to each variable as arguments for returning the values – as well as a pointer
to the query string. The signature of the function is
void GetQueryParams(char* query, bool_t* pRecursive, char* pAction,
char* pActionArgument, u32_t* pTriggerId, u64_t* pTime, u64_t* pDelay)

• query is a pointer to the query string to parse.

• pRecursive is a pointer to the boolean where an identified recursive value
should be stored.

• pAction is a pointer to the string where the action field value should be stored.

• pActionArgument is a pointer to the string where the argument field value
should be stored.

• pTriggerId is a pointer to the integer where the awaittrigger field value should
be stored.

• pTime is a pointer to the integer where the time field value should be stored.

• pDelay is a pointer to the integer where the delay field value should be stored.

Parsing the query is done by examining each field-value pair. As only a limited number
of different fields are necessary for the parser to understand, a simple construction
can be used, comparing each field with the ones to be supported. Any unsupported
fields will be ignored. All evaluations are case insensitive.

When a supported field is identified, the value is parsed separately, according to the
field. The values are in some cases passed on as strings, and in other cases converted
to integers. The values found are stored at the locations pointed to by the function
arguments. The values must be initialized with their default values prior to running
GetQueryParams(...), as only values identified in the query are set.

The flow of GetQueryParams(...) is illustrated in figure 3.3.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 43

GetQueryParams

Token == NULL?

Point Token to
query start

Field ==
“recursive”?

Value == “true”?

Field ==
“action”?

Field ==
“argument”?

Field ==
“triggerid”?

Field == “time”?

Field = substring
until ‘=’

Value = substring
until ‘&’ or NULL

Point Token at next
‘&’ or NULL

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Yes

No

param1=value1¶m2=value2...

Token

Field = param1

Value = value1

Token

No

No

param1=value1¶m2=value2...

Return values
Yes

Set
Recursive =

false

Set
Recursive =

true

Set Action =
Value

Set
ActionArgum
ent = Value

Set TriggerId
= (uint)Value

Set Time =
(uint64)Valu

e

Field == “delay”?

No

Yes
Set Delay =
(uint64)Valu

e

Prepare Token
for next run

Figure 3.3: Flowchart for the operation of GetQueryParams(...). Recursive, Action,
ActionArgument, TriggerId, Time and Delay are all passed to the function as pointers,
and are thus set directly in the calling scope.

IMM-B.Eng-2013-4
s042067

44 REST based protocol parser

3.3.3 Parse HTTP Method

As only GET and PUT methods are supported by the parser, a string comparison is
done to determine the action to take.

If an unsupported or unknown method is encountered, an HTTP error status 405
METHOD NOT ALLOWED is returned and no action is taken. For GET and PUT, the
appropriate action is taken, preparing and handing over control to the appropriate
handler.

3.4Parsing GET requests

The GET handler takes a root node as argument and returns its output in a char*
buffer. The signature is
void HandleGET(WebXiNode_t* rootNode, bool_t recursive, char* pResponse)

• rootNode A pointer to the root of the subtree – or the leaf – to be handled. This
typically comes from RequestPathToNode(...).

• recursive If TRUE, and if rootNode points to a branch node, the entire subtree
from the root node should be returned. Otherwise, only the children.

• pResponse The string buffer for storing the response to the client.

Depending on the request, there are three different main scenarios to cover,
depending on the request (this is also covered in Section 2.1.4, including examples):

1. The requested node is a leaf node.

2. The requested node is a branch node, and recursive is set false.

3. The requested node is a branch node, and recursive is set true.

In the first case – with a leaf node requested – a JSON object containing a name:value
pair consisting of the node name and its value should be returned. This can be done
directly.

In the second case the children of the requested node should be returned in a JSON
object. This is done by entering the child of the requested node, opening a JSON
object (), and for each sibling output its name:value representation (and a delimiter
(,) if more siblings exist). The output is terminated by closing the JSON object ().

IMM-B.Eng-2013-4
s042067

REST based protocol parser 45

The third case is more complex. A DFS16 approach is used to cover all descendants
of the requested node in the right order.

Due to the limited resources and lack of dynamic data structures in the environment,
it is not feasible to keep track of which nodes have been visited during the run. It
is, however, possible to do a systematic run through the nodes and keep track of the
"direction of travel" – whether the algorithm is processing upwards or downwards in
the tree.

The flow of the GET handler is illustrated in figure 3.4 and 3.5.

3.4.1 Formatting value output

As value formatting is used in many places when generating JSON representation, it
has been extracted into a separate function:
void NodeValueToString(WebXiNode_t* node, char* pOutput)

• node The node whose value should be formatted.

• pOutput Pointer to the output buffer where the formatted value should be
appended to.

For scalar nodes, the node value is simply appended to pOutput with formatting
matching the node value type. Ie. string nodes have the value printed as a string
surrounded by quotes etc.

Floating point nodes are printed as decimals with 7 decimal digits for 32-bit floats
and 16 for 64-bit floats17.

For array values, the values are formatted by making a pointer to the value with the
correct type. When this pointer is incremented it will point to the next array value,
and this is done until the vectorLength times has been reached. A comma (,) is put
between each value, and square brackets ([and]) encase the array.

16Depth-First Search (DFS) is an algorithm for traversing a tree structure, starting at the root and
exploring as far along each branch as possible before returning back and trying different branches.

17These representations should match the precision of the IEEE 754 32- and 64-bit representations:
https://en.wikipedia.org/wiki/IEEE_floating_point

IMM-B.Eng-2013-4
s042067

https://en.wikipedia.org/wiki/IEEE_floating_point

46 REST based protocol parser

H
an

d
le

G
E

T

n
od

e.
fi

rs
tC

hi
ld

==

 N
U

LL
?

R
ec

ur
si

ve
?

JS
O

N
 o

b
je

ct

w
it

h
si

n
gl

e

n
am

e
:v

al
u

e
p

ai
r

n
od

e
=

n
od

e.
fi

rs
tC

hi
ld

n
od

e
==

 N
U

LL
?

“[
n

am
e

]”
:

[v
al

u
e]

n
od

e
=

n
od

e.
n

ex
tS

ib
lin

g
n

od
e

==
 N

U
LL

?
,

{
N

o

Ye
s

N
o

Fa
ls

e

}

Ye
s

R
et

ur
n

R
et

ur
n

Ye
s

N
o Tr

u
e

R
et

ur
n

Le
af

 n
o

de

re
q

ue
st

e
d

G
ET

 t
re

e

Figure 3.4: Main flow of the GET handler. Determines which of the three cases of
output types to apply. The branch node, recursive true case is shown separately in
figure 3.5.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 47

{

n
od

e
=

n
od

e.
fi

rs
tC

hi
ld

n
od

e
==

ro

o
tN

o
d

e?

n
od

e
==

 N
U

LL
?

n
od

e.
fi

rs
tC

hi
ld

!=

 N
U

LL
 &

&

!g
o

in
gU

p
?

n
od

e.
fi

rs
tC

hi
ld

==

 N
U

LLN
o

N
o

N
o

n
od

e
=

N
U

LL

”[
n

am
e

]”
:{

n
od

e
=

n
od

e.
fi

rs
tC

hi
ld

”[
n

am
e

]”
:[

va
lu

e]
n

od
e.

n
ex

tS
ib

lin
g

!=
 N

U
LL

}
go

in
gU

p
=

tr
u

e

,

N
o

Ye
s

Ye
s

Ye
s

G
ET

 t
re

e

R
oo

t
n

od
e

re
ac

h
ed

, p
ar

si
n

g
fi

ni
sh

ed
.

N
o

go
in

gU
p

=
fa

ls
e

n
od

e
=

n
od

e.
p

ar
e

nt

n
od

e
=

n
od

e.
n

ex
tS

ib
lin

g
go

in
gU

p
=

fa
ls

e

Ye
s

,
n

od
e.

n
ex

tS
ib

lin
g

!=
 N

U
LL

n
od

e
=

n
od

e.
n

ex
tS

ib
lin

g
go

in
gU

p
=

fa
ls

e
Ye

s

}
n

od
e

=
n

od
e.

p
ar

e
nt

go
in

gU
p

=
tr

u
e

N
o

R
et

ur
n

B
ra

nc
h

no
d

e,
 fo

rw
ar

d
 p

at
h

.

Le
af

 n
o

de
.

B
ra

nc
h

no
d

e,
 r

et
ur

n
 p

at
h

.
H

as
 m

or
e

 s
ib

lin
gs

.

B
ra

nc
h

no
d

e,
 r

et
ur

n
 p

at
h

.
H

as
 n

o
 m

o
re

 s
ib

lin
gs

.

Ye
s

Figure 3.5: Flow of the GET handler for requested branch node with recursive set
true. Referred to in figure 3.4.

IMM-B.Eng-2013-4
s042067

48 REST based protocol parser

3.5Parsing PUT requests

For parsing the PUT requests, a lexical scan approach is used. The solution is custom-
built from scratch to enable as direct interaction with the WebXiCache as possible.

A tokenizer will walk through the input JSON data until it recognizes a single
character or sequence of characters (token). It will then return the kind of token
– and if it is a value carrying token, the value. Values are parsed into their native
types, ie. Int32, Float64, char* etc.

The parser can now handle the token found, set a value in the cache, select a node
etc. Afterwards, the process is repeated. The tokenizer is set to scan for tokens from
where it left off and so on.

3.5.1 Tokens

The tokens identified by the tokenizer have some characteristics, which are described
here. Each token type has limitations for the sequence – which token types are
allowed before and after – as well as value characteristics.

Token types are defined in the enum JSONToken_t:

• JSONToken_BrL – {

• JSONToken_BrR – }

• JSONToken_SqL – [

• JSONToken_SqR –]

• JSONToken_Colon – :

• JSONToken_Comma – ,

• JSONToken_String – "Some string"

• JSONToken_JSON – {"name":value}

• JSONToken_Int – 42

• JSONToken_Float – 3.141

• JSONToken_True – true

• JSONToken_False – false

• JSONToken_Null – null

More details can be found in appendix E.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 49

3.5.2 Tokenizer

The tokenizer uses a pointer to walk through the JSON structure character by
character. When it encounters a recognizable token it is evaluated and processed.

Conversion from the character data (e.g. a sequence of number characters) in JSON
to the appropriate data type (e.g. an integer) is handled by the tokenizer. To make
sure the right data types are returned (an Integer can be both Int32 and Int64 – and
even Float32 and Float64), the tokenizer must know something about the value type
expected to make sure the tokenizer returns the value in the correct format, avoiding
the need for unnecessary double conversions.

The tokenizer returns a JSON token type, a value (which may be nothing) and a value
length (size in bytes). Furthermore, a status is returned, enabling the tokenizer to tell
when it has reached the end of the JSON structure, if an error has occurred, such as
invalid types for some expected value type etc.

The signature for the tokenizer is
JSONStatus_t GetToken(char** ppInput, JSONToken_t* pType,
WebXiValueType_t valueType, void* pValue, u32_t* pLength)

• ppInput A double-pointer used to indicate where the tokenizer should start
scanning. The pointer is updated during tokenizer execution, so *ppInput after
execution points to the point where the tokenizer left off.

• pType Pointer to the variable where the token type should be returned.

• valueType The value type expected for the node currently being processed.

• pValue Pointer to the value output buffer where any value identified in the token
found is returned.

• pLength Pointer to the variable where the length of any variable found will be
returned.

Example

The following small piece of JSON is examined:

{
"Gain": 1.2130495

}

The tokenizer is called with *ppInput pointing to the first character ({). It
immediately recognizes the character and returns the value type JSONToken_BrL, and

IMM-B.Eng-2013-4
s042067

50 REST based protocol parser

*ppInput is pointed at the next character (the line break). The tokenizer returns
JSONStatus_TOKEN_FOUND as status. This is done under normal operation (no errors
occurring) until the JSON data is terminated.

Next time called, the tokenizer ignores the line break characters and the spacing of
the secondline. The first recognized character is the quote ("). This is recognized as
being a string, the pValue is populated with "Gain" (without the quotes). pLength is
set to 4, and the returned value type is JSONToken_String. The *ppInput pointer now
points to the colon (:).

The next token found by the tokenizer is the colon (:), and the JSONToken_Colon type
is returned.

Next run returns a floating point number. The valueType argument determines if it is
Float32 or Float64. pValue will contain the 32- or 64-bit floating point number and
the pType will be JSONToken_Float.

Next and last tokenizer run will return the token type JSONToken_BrR, and as the
input is terminated at the new *ppInput character, the tokenizer returns the status
JSONStatus_EOF.

3.5.3 Parsing JSON

Parsing of the JSON structure follows the procedure described in Section 2.1.2. Values
are set directly in the cache without an intermediate representation, saving resources
and removing an additional need for dynamic memory allocation, and error handling
relies on the rollback function of the cache.

Throughout the parser operation, a pointer is always maintained to the current node.
This pointer walks through the cache in parallel with the nodes identified in the JSON
data.

The tokenizer is used to find the first token in the request body. This should be an
opening bracket – JSONToken_BrL. The root node (as specified by the request) is set
as the current node.
The tokenizer is used again, and the desired action is decided based on the new token
type and the previous one (which would be JSONToken_BrL from the first run).

For each run of the tokenizer, and based on the token type, it is determined if the
token type is valid (sequence is valid JSON), and any actions that should be done are
performed.
The semantic sequence allowed by the parser is shown in figure 3.6.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 51

All valid successions are shown in the diagram. If a token type is succeeded by one
which is not connected, a semantic error has occurred and the JSON data given is not
valid.

Terminator nodes are not actual token types, but rather tokenizer states.
Control nodes are mostly used for semantic validation. The parser could be designed
to ignore the comma (,) and colon (:) token types completely and still work as
intended, but the JSON semantics might then be incorrect, and potentially the results
might not be quite as intended by the client.
Node selection nodes show token types where the current node pointer may be
changed, ie. to a child, sibling or parent.
The value nodes are nodes where the tokenizer returns a value. At these points a
value may be set in the cache. Note that the String node has a dual function, both
acting as an identifier and as a value. The role of the node is determined by the
sequence; if it is preceded by a Colon (:), it is a value, otherwise it is an identifier.

The diagram illustrates only one check to secure the sanity of the input. Some
sequences which may appear valid in the diagram may be invalid, due to wrong
context. E.g. a String token may only be followed by a Colon (:) token if the String
was used as a node selector – and an Int must only be followed by closing square
bracket (]) if the Int was part of an array.

Setting a value in the cache includes checking if the node is read only, and that – for
arrays – the array length does not exceed that allowed in the cache node.

IMM-B.Eng-2013-4
s042067

52 REST based protocol parser

{ }

[]

JSON

String

Int

Float

Bool

Null

:

,

Start End

Value (set)

Terminator

Control

Node
selection

Figure 3.6: Diagram illustrating the valid sequences of JSON tokens, and
categorization of the actions taken on each node.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 53

Chapter 4

Implementation

4.1 General implementation strategies 54

4.1.1 Visual Studio solution 54

4.1.2 Code documentation 55

4.1.3 Code structure 55

4.2 Request path to node 55

4.3 GET handler . 56

4.4 Tokenizer . 58

4.5 PUT handler . 59

This chapter aims at giving an idea of the structure of the implementation of the
project, including the distribution of entities/tasks, some implementing strategies and
other points.

As development has been done using lower-level C code, most of the code is rather
generic. Only a few condensed code chunks have been included in the description
to illustrate the solution, as full examples would require very large chunks of code,
harming the overview.

IMM-B.Eng-2013-4
s042067

54 REST based protocol parser

4.1General implementation strategies

Some general concepts have been used throughout the project – such as the
development setup and distribution of tasks and code structure.

Due to the limited resources available on the ARM, and to avoid any unnecessary
memory fragmentation, the parser has been implemented without use of malloc18.
Instead, static allocations have been used with fixed sizes. This may result in more
memory being used, but it is predictable and not as prone to fragmentation as
dynamic allocation.

4.1.1 Visual Studio solution

The parser is implemented in a single solution in Visual Studio, containing several
projects. Some of these projects compile into an executable program, others provide
libraries of data structures and functions.

Cache (Provided) The WebXiCache implementation.

CacheTest (Provided) A small program for testing the WebXiCache (has been used
for development of the cache).

DSPSim (Provided) The DSP Simulator.

Kiss (Provided) Data types etc. used for supporting the DSP communication.

Parser The actual Web-XI parser ISAPI extension.

ParserTest A small program for running pseudo-unit test on the parser. Covered in
Section 5.1.

TestServer The custom web server implementation used to emulate the Windows EC
IIS web server on the PC.

The Parser project contains the following implementation files:

WebXiParser.cpp The ISAPI entry point.

HandleGET.cpp Handles GET requests, parsing through the cache and generating
a JSON representation.

18malloc can be used to dynamically allocate memory on the heap. Spaces allocated must be explicitly
freed again when they are no longer used, introducing the potential for memory leaks. May also
fragment the memory.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 55

HandlePUT.cpp Handles PUT requests, parsing through the JSON structure given
and setting values in the cache.

JSONToken.cpp Tokenizer for JSON.

4.1.2 Code documentation

All code is documented using comments throughout the code to ease the
understanding. Furthermore, specially formatted comments have been made for
every function and data structure for use with Doxygen19. Doxygen comments have
also been used in the code provided by others.

Doxygen documentation is useful for finding out where a certain function is
implemented, getting information about a function, or getting an idea of the structure
of the system developed.

4.1.3 Code structure

In general, switch-case statements have been sought used rather than long if-
else constructions. When applicable, the switch-case structure gives much better
readability of the code, and the limits are easier to find.

4.2Request path to node

Parsing a request path to the corresponding node in the cache is implemented as
follows:

/ / Lock the cache to prevent nodes from being changed while finding the requested node
cache−>Lock() ;

/ / Verify the f i r s t part of the requested path matches the root node
char* requestName = strtok_s (path , " / " , &path) ;
i f (_stricmp(requestNode−>name, requestName) != 0)
{

/ / First part of the requested path does not match the root node
/ / Unlock cache and return null
printf ("ERROR: Root node does not match. First level requested : %s \n" , requestName) ;
cache−>Unlock() ;
return NULL;

} / / i f

/ / Process through the rest of the path
requestName = strtok_s (path , " / " , &path) ;
while (requestName != NULL)
{

19www.doxygen.org – Doxygen can read through code in many programming languages and generate
a complete code documentation with cross references etc.

IMM-B.Eng-2013-4
s042067

www.doxygen.org

56 REST based protocol parser

/ / Enter the f i r s t child of node
requestNode = requestNode−>firstChild ;
/ / Go through the siblings unti l the name of the node matches the part of the requested path

or no more siblings exist
while (requestNode != NULL && _stricmp(requestNode−>name, requestName) != 0)
{

requestNode = requestNode−>nextSibling ;
} / / while
i f (requestNode == NULL)
{

/ / No more siblings exist . The requested name does not exist . Processing cannot proceed .
/ / Unlock cache and return null
printf ("ERROR: Request node not found \n") ;
cache−>Unlock() ;
return NULL;

} / / i f
/ / Proceed with next part of the path .
requestName = strtok_s (path , " / " , &path) ;

} / / while

/ / Unlock cache , allowing the subtree to be refreshed
cache−>Unlock() ;

return requestNode;

strtok_s is used to split the request path at the slashes (/) from left to right, giving a
single node name each time it is used. This name is compared to each sibling in the
level of the cache reached, and if a match is found, the examined part has been found
and the process can be repeated.
The requested node has been found when no more parts exist in the request path,
indicated by strtok_s returning a NULL pointer instead of a pointer to a string.

Locking and unlocking of the cache has also been shown in the code fragment. Note
that all paths in the code resulting in a return statement has an Unlock() operation.
If not, deadlocks may occur at runtime.

4.3GET handler

The GET handler uses an if-else construction to determine if a leaf node is requested,
or a branch node is requested, and if recursive is set or not.

When a branch node is requested with recursive set TRUE, a while loop with another
large if-else construction comes into play. This if-else construction implements the
DFS without any state information:

bool_t goingUp = FALSE;
while (node != NULL)
{

i f (node−>nodeId == rootNode−>nodeId) / / We’ve reached the top node after parsing
{

node = NULL;
}
else if (node−>firstChild != NULL && !goingUp) / / Branch node (on forward path)
{

IMM-B.Eng-2013-4
s042067

REST based protocol parser 57

. . .
node = node−>firstChild ;
goingUp = FALSE;

}
else if (node−>firstChild == NULL) / / Leaf node
{

. . .
i f (node−>nextSibling == NULL) / / Last leaf in branch
{

. . .
node = node−>parent ;
. . .
goingUp = TRUE;

}
else / / More nodes exist at this level
{

. . .
node = node−>nextSibling ;
goingUp = FALSE;

} / / i f
}
else if (node−>nextSibling != NULL) / / Branch node (on return path) , has more siblings
{

. . .
node = node−>nextSibling ;
goingUp = FALSE;

}
else / / Branch node (on return path) , no more siblings
{

. . .
node = node−>parent ;
goingUp = TRUE;

} / / i f
} / / while

The cases identified in the construction are:

1. Root node reached (parsing has reached the end).

2. Node has children, and the parsing is on a downward path (ie. the children have
not yet been visited).

3. Node is a leaf node – with two specializations:

Node has no next sibling, ie. all the siblings have been handled.

Node has a next sibling, ie. more siblings need to be handled.

4. Node is a branch node with a next sibling, and the parsing is on the return path.

5. Any uncovered case (branch node on return path without a next sibling).

IMM-B.Eng-2013-4
s042067

58 REST based protocol parser

4.4Tokenizer

The tokenizer evaulates the ppInput string character-by-character. Each character is
evaluated to see if it matches a know token og beginning of a token, and processing is
done accordingly, as shown below (much has been removed to better show the overall
structure of the tokenizer):

/ / Walk through the string buffer char by char unti l i t ends or a token has been found .
while (**ppInput != ’ \0 ’ && !found)
{

/ / Default value for found − i t is set false later i f no token is found at this character .
found = true ;
/ / Evaluate the current character position in the string buffer .
switch (**ppInput)
{

case ’{ ’ : / / Opening bracket found .
i f (valueType == WebXiValueType_JSON)
{

*pType = JSONToken_JSON;
/ / Find JSON value and set pValue etc .
. . .

}
else
{

*pType = JSONToken_BrL;
} / / i f
break;

case ’} ’ : / / Closing bracket found .

*pType = JSONToken_BrR;
break;

. . .
default :

/ / Character not recognized − whitespace or other ignored .
/ / Set found to false to search through next character .
found = false ;

} / / switch

/ / Continue to next character
(*ppInput)++;
i f (found)

break;
} / / while

Value conversion from string to integer and floating point numbers is done using
atof(...) for floating point, and atoi(...)/_atoi64(...) for 32-bit/64-bit integers.
These functions do not support exponential representation of numbers (e.g. 3E8).
Support for exponential number number representation has been left out initially.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 59

4.5PUT handler

The main structure of the HandlePUT function is very similar to that of the tokenizer.
The example below illustrates the main loop of the PUT handler. In every run, the
tokenizer is used to find the next token. Based on the token type found, different
actions are taken. These actions include semantic checks by evaluating the previous
token (which is always stored at the end of the do-while block). The loop runs as long
as no error occurs, and as long as tokens are found:

do / / while (tokenStatus == JSONStatus_TOKEN_FOUND && setValueStatus == SetValueStatus_OK)
{

/ / Get the next token
tokenStatus = GetToken(&input , &token , (currentNode != NULL ? currentNode−>valueType :

WebXiValueType_None) , pValue , &valueSize) ;
switch (token)
{

case JSONToken_BrL: / / {
switch (previousToken)
{

case JSONToken_Start :
currentNode = rootNode;
break;

case JSONToken_Colon:
break;

default :
/ / I l legal token sequence
sprintf_s (pResponse, RESPONSE_MAX_LENGTH, "{\n\ t \ " Error \ " : \ "Unexpected {\" \n

}") ;
return HTTPStatus_Bad_Request ;

} / / switch
break;

case JSONToken_BrR: / / }
switch (previousToken)
{

case JSONToken_BrL: / / Valid previous tokens
case JSONToken_BrR:
case JSONToken_JSON:
case JSONToken_String:
case JSONToken_Int :
case JSONToken_Float :
case JSONToken_True:
case JSONToken_False:
case JSONToken_Null :
case JSONToken_SqR:

currentNode = currentNode−>parent ;
break;

default : / / Invalid previous token
/ / I l legal token sequence
sprintf_s (pResponse, RESPONSE_MAX_LENGTH, "{\n\ t \ " Error \ " : \ "Unexpected }\" \n

}") ;
return HTTPStatus_Bad_Request ;

} / / switch
break;

. . .
}
previousToken = token ;

} / / do
/ / Continue as long as tokens are found , and values are set without errors
while (tokenStatus == JSONStatus_TOKEN_FOUND && setValueStatus == SetValueStatus_OK) ;

IMM-B.Eng-2013-4
s042067

60 REST based protocol parser

IMM-B.Eng-2013-4
s042067

REST based protocol parser 61

Chapter 5

Test

5.1 Internal tests . 62

5.1.1 Tests implemented. 62

5.2 External request tests 64

5.2.1 Test sequence. 65

5.2.2 Outcome . 68

5.3 Misc. tests. 68

Testing of the Web-XI parser has been done using several strategies. The focus has
been on targeting the Web-XI parser itself, and the cache and test server have not
been targeted, although they are to some extent included when testing the parser.

The tests performed include pseudo-unit test performed in the C environment and
external tests validating the entire web server and parser implementation.

During development manual, ie. non-scripted, tests have also been used.

IMM-B.Eng-2013-4
s042067

62 REST based protocol parser

5.1Internal tests

The internal tests are part of the main parser solution and have direct access to
functions etc. within the parser, enabling unit tests examining the inner parts of
the system separately. The connections are illustrated in figure 5.1.

ParserTest

WebXiParser
ISAPI extension

WebXiCache
Data structure

(Provided)

DSPSim
DSP simulator

(Provided)

WebXiParser solution

Test

Evaluate

Figure 5.1: The logic connections in the internal test. The prototype web server is
not part of the test chain, and the ParserTest is able to evaluate data in WebXiCache
directly.

Attempts to find a suitable unit testing framework for the parser have not been
successful. Therefore, a simple pseudo-unit testing framework has been developed
for asserting values from nodes in the cache against specified expected values. These
functions print out an error if an assertion fails. Not all internal tests developed can
use the limited assert-functions. Some tests just print out the result of an operation,
and it is then up to the developer to assess if the result is correct.

Testing in this environment is difficult to comprehend, as the number of lines needed
for a test is rather large, and the test run output is in a text console.

5.1.1 Tests implemented

4 functions have been implemented in the ParserTest.cpp file, along with a few
helper functions. Tests are executed by calling the function in the Main function and
executing the ParserTest project.

The helper functions are InitCache(), which sets up the WebXiCache with the
standard test tree and starts the DSP Simulator etc. Stop() tears down the cache.
A modified WriteClient(...) function has also been implemented to replace the one

IMM-B.Eng-2013-4
s042067

REST based protocol parser 63

from the TestServer. The modified version does not send anything, but prints what it
was asked to send.

The Main(...) function runs the test sequence specified in the function body.

TestPUT() test This test tests the HandlePUT(...) method of the parser by first
asserting the values of several nodes directly in the test tree, then calling HandlePut
with a JSON structure, committing the values, and asserting the values again to verify
that the new values have been applied. This is repeated a few times with different
value sets and root node.

If any errors occur, they will be printed in the console.

TestPUTRequest() test The HandleRequest(...) function is tested for a PUT
request by creating a custom EXTENSION_CONTROL_BLOCK structure with a JSON
structure to apply to the cache. The affected values are asserted before and after
HandleRequest is called.

If any errors occur, they will be printed in the console.

TestGET() test Several combinations of root node and recursive flag values are
fed into the HandleGET(...) function, and the response generated is printed in the
console. The cases covered are:

• Full tree (top node), recursive

• Full tree (top node), non-recursive

• Subtree (branch node), recursive

• Subtree (branch node), non-recursive

• Leaf node

This test does not automatically assert the responses generated, but execution will
halt between each HandleGET call, and will not continue until ENTER is pressed.

TestGETRequest() test Similarly to the TestPUTRequest test, an
EXTENSION_CONTROL_BLOCK is constructed to emulate a GET request to
HandleRequest(...). No automatic assertions are made, but the response from
HandleRequest is printed for visual inspection.

IMM-B.Eng-2013-4
s042067

64 REST based protocol parser

5.2External request tests

Requests have been tested by an external test, sending PUT and GET requests and
evaluating the outcome. This test strategy does not facilitate direct assertions on the
cache, and it is not possible to intercept values or calls anywhere in the parser, so
only the parser as a complete black box is tested – including the web server.

In order to aid the test and ensure perfect repeatability, a small addition has been
made to the prototype web server. If the path /reset is requested, the web server will
reset the cache, ensuring that the initial values have not been overwritten.

Conveniently, the connector for use in the PULSE PC software has been developed
to a point where it can be used. This not only simplifies the creation of the test
environment, but it also verifies the function of the parser against the client to be
used in the future.

The WebXi connector uses the built-in .NET HTTPWebRequest framework to handle
the requests, and Json.NET20 to manage JSON data.

The request tests have been developed in a separate solution – WebXiParserTest –
using .NET/C#. NUnit21 has been used as unit testing framework. These choices
were made as the connector is implemented in .NET/C#, and because NUnit is used
throughout B&K for software unit test. An illustration of the connection between the
external test and parser elements is shown in figure 5.2.

WebXiParserTest
(NUnit)

WebXi
connector

(Provided)

TestServer
Simple prototype

web server

WebXiParser
ISAPI extension

WebXiCache
Data structure

(Provided)

DSPSim
DSP simulator

(Provided)

WebXiParser solution

ISAPI

Web-XIJSON

Running on one PC

WebXiParserTest solution

Figure 5.2: Illustration of the connections between the external unit test and the
parser. Everything is described as running on a single PC, but the test and the parser
may run on different computers.

20Json.NET is developed by James Newton-King – www.james.newtonking.com/pages/json-net.aspx
21www.nunit.org – A unit-testing framework for all .NET languages.

IMM-B.Eng-2013-4
s042067

www.james.newtonking.com/pages/json-net.aspx
www.nunit.org

REST based protocol parser 65

Being separate from the implementation of the parser, this test may with a minimum
of changes be able to form the basis in a protocol accept test, which can be used both
during implementation and maintenance on the LAN-XI G2 modules to verify that the
parser and cache have not been broken.

5.2.1 Test sequence

The tests are divided into 5 fixtures, each handling a different aspect of the protocol:

GET Tests retrieving data from the prototype by issuing GET requests.

PUTTypesSuccess Tests setting values in the prototype by issuing value PUT
requests with JSON data.

PUTTypesMismatch Verifies that errors are returned when the client attempts to
apply the wrong data types to nodes.

Semantics Verifies that errors are returned when the client attempts to send
semantically incorrect JSON to the parser.

Misc Tests various aspects not covered by the other tests, such as query parameters.

Certain aspects of the test setup has been placed in a separate class – Setup – which
is used to set up the test fixtures. Here the hostname of the UUT (the parser instance)
can be specified. It is possible to run the test server with the parser manually
before running the tests – but if the RUN_TESTSERVER flag is set to true, the test
will start the test server and stop it before and after each test22. This requires the
WebXiParser solution to reside in the same directory as WebXiParserTest – and that
the WebXiParser solution is compiled properly.

Each test fixture begins with a cache reset to ensure predictability.

GET

The GET request test tests different combinations of recursive flag use, and requests
on the root, branches and leafs.

All tests validate each node returned from the requests with the default values of the
cache.

The following cases are covered:

22This assumes that the WebXiParser and WebXiParserTest solution reside in the same directory.
Otherwise, the path may be changed to match the correct path.

IMM-B.Eng-2013-4
s042067

66 REST based protocol parser

• Requesting the top node (WebXi) with the recursive flag set true, returning the
full object model tree.

• Requesting the top node with recursive set false, returning the children of
WebXi.

• Requesting a branch node with recursive set true, returning a full subtree.

• Requesting a branch node with recursive set false, returning the children of the
requested node.

• Requesting one leaf node of each data type.

• Various requests, evaluating an uncached node, verifying that its value is
updated properly – and only when it is recovered in a request.

PUTTypesSuccess

In this test fixture, setting values of each supported value type is tested by PUTting
a value on an appropriate node, GETting the same node and verifying that the new
value was set.

Read only behavior is also verified by attempting to set a value on a read-only node,
verifying the HTTP Status returned to be an error, and verifying by retrieving the
node value that the value is unchanged.

The following cases are covered:

• Setting an assorted tree of values (all value types covered).

• Setting each of the different types of value.

• Setting each of the supported types of array with values.

• Setting each of the supported types of array with empty arrays.

• Attempting to set a value on a read-only node.

PUTTypesMismatch

This test fixture tries to set values to nodes where the data types mismatch. The
HTTP status is evaluated in all the cases, and for each node, the value is afterwards
retrieved and verified to be unchanged from the default value.

The combinations tried are shown in the matrix in Table 5.1. X’es mark illegal illegal
combinations of node value type and JSON data type which are tested.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 67

Node JSON data type
type Bool Int Float String Null Int[] Float[]
Boolean X X X X X X
Int32 X X X X X X
Int64 X X X X X X
Float32 X X X X X
Float64 X X X X X
String X X X X X X
JSON X X X X X X X
Int32 array X X X X X
Float64 array X X X X

Table 5.1: Matrix showing the combinations of illegal value type assignments covered
in the PUTTypesMismatch test fixture.

Semantics

Handling of semantic errors is covered in this test fixture. Various bits of JSON are
sent to the parser, each with a particular semantic error, and the HTTP status is
evaluated. The semantic errors are constructed around a JSON structure trying to
set data on one or two specific nodes. The values of these nodes are checked at the
end of each test, and at the end of the test fixture, the entire tree is validated. This is
done using test code from the GET test fixture.

The semantic tests are not complete, but they cover many cases of missing/misplaced
tokens. Focus has been on covering the errors that may be thought to cause problems
by either being faultily accepted or to cause the parser to enter an illegal state.

One example of such an illegal state could be a valid JSON structure, which has
an extra } appended. When the "legal" part of the JSON is parsed, the parser has
returned to the root node of the request. The extra } would then cause the parser to
jump to the parent of the root node. Any further JSON after the stray } would then
potentially be handled, and the parser would operate outside the subtree requested.

Another possibly worse problem would be if the top node of the object model (WebXi)
was requested. An extra } would cause the parser to jump to the parent of WebXi,
which is null. This could lead to the parser crashing.

Misc

This test fixture contains single tests of various scenarios:

SuccessfulPUTAction Due to very limited support of the action query in the cache,
only a very sparse test of Actions is implemented, verifying that the return status
is 200 OK when a valid action is sent.

IMM-B.Eng-2013-4
s042067

68 REST based protocol parser

TimeSet A request is made with time set. This should be accepted by the parser.

DelaySet A request is made with delay set. This should be accepted by the parser.

TimeDelayConflict A request is made with both time and delay set. This should
result in an error.

5.2.2 Outcome

A total of 53 test cases have been implemented. All tests run properly and report
success.

This test setup has aided in improving the prototype web server and fixing small
problems in the parser. It has been a useful tool for verifying the functionality of
small changes made toward the end of the project period – being able to quickly run a
batch of tests frequently to establish that everything still works, and in case of errors,
be able to pinpoint the change that led to the error.

5.3Misc. tests

During the development many small non-scripted tests have been run. The methods
used vary a lot.

For testing HTTP GET requests, internet browsers23 have been used. A nice feature
when using HTTP and JSON is that a browser can send the request and get the
response – and the response is readable without any need for special parsing.
To get values using a browser, it should be pointed to e.g.
http://localhost/WebXi/Acquisition?recursive=true – assuming that the prototype and
the browser both run on the same computer.

For testing HTTP PUT requests, cURL24 has been used.
Running cURL in a command prompt with the following arguments will send the
contents of the PUT.json file to the specified URL in a PUT request:
curl -H "Accept: application/json" -H "Content-type: application/json" -X PUT -d
@PUT.json -v http://localhost/WebXi/Acquisition/Channels/1

The response from the server is written in the console. For a successful PUT request,
the output may look like this:

23Google Chrome has been the preferred browser, as it displays the JSON text in the browser window
when retrieving values – Internet Explorer instead wants to download a .json file.

24cURL (www.curl.haxx.se) is a command line tool for transferring data, e.g. performing PUT
requests.

IMM-B.Eng-2013-4
s042067

www.curl.haxx.se

REST based protocol parser 69

* About to connect() to localhost port 80 (#0)

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 80 (#0)
> PUT /WebXi/Acquisition HTTP/1.1
> User-Agent: curl/7.29.0
> Host: localhost
> Accept: application/json
> Content-type: application/json
> Content-Length: 301
>

* upload completely sent off: 301 out of 301 bytes

* HTTP 1.0, assume close after body
< HTTP/1.0 200 OK
< Content-Length: 0
< Content-Type: application/json
<

* Closing connection 0

IMM-B.Eng-2013-4
s042067

70 REST based protocol parser

IMM-B.Eng-2013-4
s042067

REST based protocol parser 71

Chapter 6

Process

The project has been developed using an iterative process. From the beginning a
set of rough tasks were laid out and their development times were estimated. Each
task was intended to be examined closer when they would begin, and they should
each result in a prototype, meaning that each task would result in running code. The
planning was done using a GANTT chart, which is shown in figure 6.1.

In the plan, documentation was set as an ongoing activity throughout the project
period, but a large buffer was also left at the end of the project for misc. activities
such as testing, bug fixing and report finishing. The buffer would also leave room for
the compulsory colloquium which took place on April 22nd – and the preparations it
required.

The original plan worked well to get going, but as the work progressed, many changes
would be made to the it. Time wise the plan would hold, but when a task was
examined it would often turn out to be better to integrate another task into the
solution, eventually changing the sequence of the original plan quite a lot.

Despite the changes, the original plan would still provide a good baseline for assessing
the progress of the project, as the tasks and their (partial) completion would still sum
up to give an idea of how much was still left.

As the WebXiCache – which the parser depends on – has been developed somewhat
in parallel with the parser, the focus on the parser implementation has occasionally
been dictated by the that. In the beginning the WebXiCache was not available at all,
which forced an approach from the outside in, beginning with the web server and
considerations regarding it.

IMM-B.Eng-2013-4
s042067

72 REST based protocol parser

U
nt

itl
ed

 G
an

tt
P

ro
je

ct
M

ay
 2

5,
 2

01
3

G
an

tt
C

ha
rt

5

N
am

e
Be

gi
n

da
te

En
d

da
te

Pr
oj

ec
t

ac
tiv

iti
es

02
-0

4
05

-2
4

Pl
an

ni
ng

02
-0

4
02

-0
6

Pr
ep

ar
e

re
po

rt
 s

et
up

02
-0

8
02

-0
8

Re
po

rt
 d

el
iv

er
y

05
-2

7
05

-2
7

An
al

ys
is

02
-0

8
02

-1
5

Re
qu

ire
m

en
ts

02
-0

8
02

-1
5

Sc
op

e
an

d
lim

ita
tio

ns
02

-0
8

02
-1

5

Es
ta

bl
is

h
de

ve
lo

pm
en

t
en

...
02

-0
8

02
-1

5

St
ud

y
pr

ot
oc

ol
 b

as
ic

s
02

-0
8

02
-1

5

Ex
am

in
e

ex
is

tin
g

AR
M

 im
...

02
-0

8
02

-1
5

1s
t

pr
ot

ot
yp

e:
 B

as
ic

 W
eb

-X
I

02
-1

8
03

-1
9

W
eb

 S
er

ve
r

02
-1

8
02

-2
2

St
at

ic
 R

ES
T

G
ET

/P
U

T
02

-2
5

03
-0

1

JS
O

N
 s

up
po

rt
03

-0
4

03
-1

2

Co
nn

ec
t

to
 d

at
a

st
ru

ct
ur

e
03

-1
4

03
-1

9

Pr
ot

ot
yp

e
#

1:
 b

as
ic

03
-2

1
03

-2
1

2n
d

pr
ot

ot
yp

e:
 R

ec
ur

si
on

03
-2

1
04

-1
2

Er
ro

r
ha

nd
lin

g
03

-2
1

03
-2

6

Re
cu

rs
io

n
03

-2
7

04
-1

2

Pr
ot

ot
yp

e
#

2:
 r

ec
ur

si
on

04
-1

5
04

-1
5

3r
d

pr
ot

ot
yp

e:
 F

ul
l c

on
tr

ol
04

-1
5

04
-2

9

Ac
tio

n
04

-1
5

04
-1

9

Ca
ch

e
co

nt
ro

l
04

-2
2

04
-2

9

Pr
ot

ot
yp

e
#

3:
 f

ul
l c

on
tr

ol
04

-3
0

04
-3

0

D
oc

um
en

ta
tio

n
02

-0
4

05
-2

4

20
13

W
ee

k
6

W
ee

k
7

W
ee

k
8

W
ee

k
9

W
ee

k
10

W
ee

k
11

W
ee

k
12

W
ee

k
13

W
ee

k
14

W
ee

k
15

W
ee

k
16

W
ee

k
17

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

02
-0

3
02

-1
0

02
-1

7
02

-2
4

03
-0

3
03

-1
0

03
-1

7
03

-2
4

03
-3

1
04

-0
7

04
-1

4
04

-2
1

04
-2

8
05

-0
5

05
-1

2
05

-1
9

05
-2

6
06

-0
2

06
-0

9

R
ep

or
t d

el
iv

er
y

P
ro

to
ty

pe
 #

3:
 fu

ll
co

nt
ro

l
P

ro
to

ty
pe

 #
1:

 b
as

ic
P

ro
to

ty
pe

 #
2:

 re
cu

rs
io

n

Figure 6.1: GANTT chart used for initial planning of the project.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 73

Chapter 7

Perspective

7.1 Implementing the parser on the ARM CPU 74

7.2 Future development 74

7.3 New potentials . 75

7.3.1 Embedded development 75

7.3.2 Hardware development 75

7.3.3 Software development 76

This project has introduced a different approach to developing for the ARM system
compared to previous development by developing a prototype on an ordinary PC with
the fact in mind that it should eventually be able to run on the ARM CPU.

The project has given new experience and led to many new options for development
and testing. These have been described briefly here.

IMM-B.Eng-2013-4
s042067

74 REST based protocol parser

7.1Implementing the parser on the ARM CPU

At the end of the project period, attempts were made to import the Web-XI parser and
cache into the development environment used for the ARM. This was done by others
familiar with the tools.

The outcome of the initial attempt was, that the code was successfully imported and
compiled with minor changes. Attempts have not yet been made to run the code on
an ARM CPU.

The preliminary conclusion was, that a shared code base between PC prototype and
the final ARM implementation seemed feasible, and that it seemed like the it would
be possible to make the system work on the ARM platform.

7.2Future development

The implemented Web-XI parser does not completely implement the Web-XI protocol.
The parser itself lacks the version and caching support towards the client, and
streaming of data has not been considered.

The WebXiCache and other helpers will eventually also need to have the correct
interface for communicating with the DSP – and the Action/AwaitTrigger/Time/Delay
fields shall be fully implemented and verified.

At the end of the project period major changes were made to the Web-XI connector
used for the external tests. This happened after the tests were developed, and thus
the tests in this project still use the old connector. To give a valid base line throughout
the chain of communications, this could be changed, but the existing tests are still
valid for verifying the web server/parser implementation.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 75

7.3New potentials

The new approach to development provides a lot of opportunities for easing the
development process for LAN-XI G2.

7.3.1 Embedded development

Developing new larger subsystems can be done using PC prototypes. Targeting the
PC will in some cases give advantages of more streamlined development, as things
can be compiled and examined immediately without bringing in special hardware.
Running the systems on a PC also typically gives access to easier debugging than
when running on an external system.

For continued development of existing implementations PC prototypes are, however,
not feasible, as this would mean having to port the entire existing application to a PC
platform, and in many cases only a limited number of changes would have to be made
to the existing system.

7.3.2 Hardware development

Since the LAN-XI G2 platform uses Ethernet for internal communication, a "shoebox
model" can be used for development. The shoebox model is a concept where a
complete module can be built without having the final parts. A lot of development
can be done with each part – I/O board, DSP and ARM CPU – individually, but not the
communication between them.

The following substitutions could be regarded as illustrated in figure 7.1 – connected
to each other using an ordinary network switch:

I/O board A LAN-XI G1 module with a few modifications making the LAN-interface
mimic the final G2 I/O board.

DSP A DSP evaluation board with a DSP and a network port.

ARM CPU A PC running the Web-XI parser prototype – with some changes/exten-
sions – or an ARM evaluation board running Windows EC7 and the final Web-XI
parser.

Using such a setup, it would theoretically be possible to implement the DSP
completely without any of the final hardware available – and with only a few
modifications switch to the final DSP when all hardware is ready.

IMM-B.Eng-2013-4
s042067

76 REST based protocol parser

LAN-XI 3160 module

Network switch

DSP
Evaluation

board

PC running
WebXiParser prototype

Client PC

Web-XI

”Shoebox” LAN-XI G2 setup

Figure 7.1: Illustration of the "shoebox" model with the ARM CPU replaced by a PC
running the prototype Web-XI parser, a DSP evaluation board and a LAN-XI G1 module
acting as input/output hardware.

The shoebox model may also be used to develop a set of tests for verifying the function
of the modules. Such a test could then be used when implementing the final hardware
modules to quickly tell if things work as intended, and thus create a valuable baseline
for development – possibly exposing errors that would otherwise stay hidden for long
during the final development phases, or even beyond.

7.3.3 Software development

When new hardware is released, it is necessary to support it in the associated
software. Thus, software developers need access to the hardware during development
– while the hardware is also being developed.

A simulator based on the parser prototype could suffice in many aspects and could
reduce the need for the developers to have the vastly more expensive real hardware.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 77

Chapter 8

Conclusion

A PC-based prototype protocol parser for Web-XI has been developed covering most
of the command protocol.

Being able to interpret JSON and store the results in the provided WebXiCache data
structure – and retrieve data from the cache and present it as JSON – was a major
goal, and the parser is able to do that.

An attempt has been made to implement the parser as an ISAPI extension without
having access to the correct tools, but rather by examining the ISAPI interface and
data structure. The parser should also ultimately be able to run on Windows EC7 on
an ARM platform. These things seem to have been quite successful, as the system
(parser and cache) was imported into the correct environment and would compile
with a minimum of changes.

The PC prototype has been set up against the connector to be used in the PC software,
and data exchange works fine. For this, a unit test has been developed for externally
testing the functionality of the parser – which includes the whole chain from connector
to the web server, through the parser and into the cache.

There are still things to be done before a complete prototype for the Web-XI protocol is
a reality, but the concepts selected for this first prototype have all been implemented.
Some of the things implemented have not really been verified, as there is little or no
support for their function in the cache. This includes actions, triggers and time/delay
parameters. These should, however, be fairly simple and might mostly work as they
are implemented now, otherwise changes should be straight forward to make.

This project has given opportunities to consider new ways of developing hardware,
which may lead to quicker development, better utilization of resources, and/or better
quality.

IMM-B.Eng-2013-4
s042067

78 REST based protocol parser

If this parser prototype is eventually fully developed to support all Web-XI features, it
may be used as a basis for a PC-based LAN-XI simulator, enabling software developers
to target a new device before the hardware is ready. It may also be used to replace
the ARM CPU for development, making it possible to test DSP and/or I/O board
implementations before the ARM CPU is ready to use.

All in all, this project realizes a part of a mass of new considerations and optimizations
for the entire development process – both regarding hardware and software.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 79

Chapter 9

Glossary

In order to provide a better understanding and avoid a lot of descriptions, this
glossary is provided to give a quick definition of some key expressions commonly
used through this report.

Many of the terms are described in more detail elsewhere.

ARM (Advanced Risc Machine) is a computer processor architecture used in many
embedded applications such as mobile phones. LAN-XI devices incorporate an
ARM CPU running an embedded Windows version for managing communication
with client computers and controlling the internal devices of the LAN-XI module.

B&K Shorthand for Brüel & Kjær (Sound & Vibration A/S in this context).

Branch node A tree node with children. In this case, a branch holds no value.

Client In this scope a client is typically a computer receiving measurements done
with a LAN-XI module. The client runs B&K Pulse software for acquiring and
processing the measurements.

DSP Digital Signal Processing – the DSP unit handles processing of e.g. the
measured signals before they are sent to the client PC.

Ethernet The physical layer of the standard local area network.

(HTTP Request) Body Data part of a request sent by a client to the HTTP server.

(HTTP Request) Method Identifies the desired action. May be GET, PUT, POST or
DELETE (more do exist) where GET shows a request to get data, PUT desires
to update data on the server, POST will add data to the server and DELETE will
delete data from the server. The actual use of these methods depends on the
server application running.

IMM-B.Eng-2013-4
s042067

80 REST based protocol parser

(HTTP Request) Path Usually points to a (sub) directory on a web server,
but may be used to identify other resources. The path is on the form
/Rest/Aquisition/Channels/1/Gain.

(HTTP Request) Query An optional set of field-value parameter to send with the
path in an HTTP Request. The query follows the path, separated by a
questionmark (?), field-value instances are separated byan ampersand (&), ie.
if /Rest/Aquisition?parameter1=value1& parameter2=value2 is requested, the
query is two field-value instances (parameter1,value1) and (parameter2,value2).

(HTTP) Request The term covers any HTTP requests received. A request consists
of a header containing among other things a path, optional query, a method and
optional body.

ISAPI Internet Server Application Programming Interface – an API of Internet
Information Services (IIS), Microsoft’s web server.

ISAPI extension An application that runs on IIS. The interface is examined in
section 2.4.

Kiss The operating system running on the DSP in e.g. LAN-XI modules. Kiss is an
abbreviation of "Keep It Simple, Stupid", which refers to the simple structure of
the operating system.

LAN Local Area Network – An ordinary Ethernet network for connecting computers
and other devices.

LAN-XI A series of acquisition hardware centered around network-attached modules
to which transducers can be attached. Described further in section 1.2.

LAN-XI G1 The first (and current) generation of LAN-XI hardware first released in
2008.

LAN-XI G2 The next generation of LAN-XI hardware which this project is a part of.
Described in section 1.3.

Leaf node A tree node without children. Leaf nodes hold values.

Module When dealing with LAN-XI system, module refers to a single LAN-XI unit.

Parent node In a tree data structure, a parent is the node above the current node.

Parser Interprets a language and performs actions based on it. Refers to the Web-XI
parser which is the central element in this project.

PULSE The software suite developed by B&K used to work with the LAN-XI
hardware. Ultimately, Pulse is going to use the Web-XI protocol to communicate
with the WEb-XI parser in the LAN-XI G2 modules.

REST REpresentation State Transfer – a design model for a client-server web API
used in Web-XI.

Root node The top node of a tree data structure. The root node has no parent and
no siblings. In some cases a root node may refer to the top node of a subtree.

IMM-B.Eng-2013-4
s042067

REST based protocol parser 81

Sibling In the tree data structure, a sibling is a node at the same level as the current
one which has the same parent.

Subtree A part of a tree constisting of a node and all its successors.

Tree A data structure consisting of a single root node and multiple branch and leaf
nodes.

Transducer A measuring device such as a microphone or accelerometer.

UUT Unit Under Test – When testing UUT refers to the system, function etc. being
tested.

Web-XI The new HTTP REST based protocol to be used for communication with LAN-
XI G2 hardware. Described in section 1.3 and section 2.1.

Windows CE The previous embedded version of the Windows Operation System.
LAN-XI G1 runs Windows CE 5 on the ARM CPU.

Windows Embedded Compact (Windows EC) The new name for the Windows CE
series. Windows EC 7 is used in LAN-XI G2.

IMM-B.Eng-2013-4
s042067

82 REST based protocol parser

IMM-B.Eng-2013-4
s042067

REST based protocol parser 83

Bibliography

[1] Jackson Mowry and Ghita Borring. Journey to Greatness – The Story of Brüel &
Kjær. Acoustical Publications, Inc., 2012. ISBN 978-0-9769816-3-3.

[2] Introducing json. http://www.json.org.

IMM-B.Eng-2013-4
s042067

http://www.json.org

84 REST based protocol parser

IMM-B.Eng-2013-4
s042067

BIBLIOGRAPHY A-1

Appendix

Table of contents

A Compiling and running the parser. A-3
A.1 WebXiParser solution . A-4

A.1.1 ParserTest . A-4

A.1.2 TestServer . A-4

A.2 WebXiParserTest solution A-4

BInitial project considerations. A-7
B.1 Scope . A-7

B.2 Requirements . A-8

B.3 Additional tasks . A-9

B.4 Process thoughts . A-9

C Internship report . A-11

DDesign of Web-XI Communications Protocol for G2
devices . A-23

E Tokens used in the JSON tokenizer A-61

IMM-B.Eng-2013-4
s042067

A-2 BIBLIOGRAPHY

IMM-B.Eng-2013-4
s042067

APPENDIX A. COMPILING AND RUNNING THE PARSER A-3

Appendix A

Compiling and running the parser

The Web-XI parser and associated support programs and tests have been developed
using Microsoft Visual Studio 2010 with Visual C# and Visual C++. Other versions
may be used, and compiling and running may be possible without Visual Studio, but
this walkthrough only covers Visual Studio. Knowledge on how to use Visual Studio is
assumed.

The project is assumed to be structured like this – with the major directory structure
and key locations pointed out:

WebXiParser – The Visual C++ solution containing the parser, internal test and
prototype web server.

Debug – Contains the compiled libraries and programs.

ParserTest – Console program project running internal tests on the parser.

TestServer – Project implementing a simple prototype web server.

WebXiParserTest – .NET 4/C# solution defining external tests. Requires projects
from the WebXi solution.

WebXiParserTest.nunit – NUnit project for running the external tests.

WebXiParserTest/BK – The B&K WebXi connector DLLs
(BK.Pulse.FrontendDrivers.RestClient.dll and BK.Pulse.FrontendDrivers.WebXi.dll)
should be here.

WebXiParserTest/JSON – An appropriate Json.NET library (Newtonsoft.Json.dll)
should be here.

WebXiParserTest/NUnit – An appropriate NUnit test library (nunit.framework.dll)
should be here.

Setup.cs – A class containing common parameters concerning the connection
to the parser, such as hostname and functionality to start the test web
server automatically.

IMM-B.Eng-2013-4
s042067

A-4 APPENDIX A. COMPILING AND RUNNING THE PARSER

A.1WebXiParser solution

The solution contains 2 executable projects; ParserTest and TestServer.

Compiling the solution requires Microsoft Visual Studio 2010 with Visual C++
including runtime.

As there are two executable projects in the solution, it is important to be aware of
which one is being executed, ie. marked as StartUp project.

An alternative is to run already compiled versions. These are found in the Debug
folder of the WebXiParser solution directory.

A.1.1 ParserTest

The ParserTest runs the internal test of the parser, described in section 5.1.

The test runs in a console, and pauses itself several times during the run so that the
output can be evaluated. Pressing ENTER continues execution.

A.1.2 TestServer

The prototype web server runs in a console as with the ParserTest. It will run in an
infinite loop and will not shut down unless a critical error occurs or it is forced to
close.

The server can be terminated by using the normal close button (X) in the upper-right
corner of the window.

A.2WebXiParserTest solution

The solution requires the BK.Pulse.FrontendDrivers.RestClient.dll,
BK.Pulse.FrontendDrivers.WebXi.dll, Newtonsoft.Json.dll25 and nunit.framework.dll26.

Running the tests requires NUnit 2.6.2 and Microsoft .NET Framework 2.0.

The tests included in the solution are described in section 5.2.
25Version 5.0.4.16025 of the DLL has been used during development.
26Version 2.6.2.12296 of the DLL has been used during development.

IMM-B.Eng-2013-4
s042067

APPENDIX A. COMPILING AND RUNNING THE PARSER A-5

It may be necessary to disable strong naming checks for the WebXi connector. This is
done by issuing the following command in a command prompt27:
sn.exe -Vr *,d64412599724c860

Parameters such as which hostname to use when testing and whether or not the test
web server should be automatically started are located in the Setup class in Setup.cs.

When the WebXiParserTest project is compiled, a DLL is generated. This contains the
NUnit tests to run. The WebXiParserTest.nunit file in the WebXiParserTest solution
directory is a NUnit project file containing the setup for the tests. This can be loaded
in NUnit, and tests can be run.

27If the sn.exe utility is not in the system PATH, navigate to the folder in which it resides, e.g.
C:/Program Files/Microsoft SDKs/Windows/v6.0A/Bin/x64/ for a 64-bit Windows 7

IMM-B.Eng-2013-4
s042067

A-6 APPENDIX A. COMPILING AND RUNNING THE PARSER

IMM-B.Eng-2013-4
s042067

APPENDIX B. INITIAL PROJECT CONSIDERATIONS A-7

Appendix B

Initial project considerations

These are the considerations used in the initial definition of the project. The actual
project has been derived from this.

Some things may not be completely accurate in the considerations, as several factors
have changed from the considerations were made till the project work was actually
started.

B.1Scope

The LAN-XI G2 platform will incorporate a new protocol based on REST. This means
that both hardware and software needs to be implemented with support for the
new protocol. This project focuses on the hardware-side implementation of the new
protocol. The figure below shows roughly how communication between the PC and
the components of the LAN-XI device should work.

The PC communicates with the LAN-XI module using REST messages on an ordinary
network connection. On the LAN-XI module, the ARM processor (running Windows
CE) will receive the REST messages via its web server and do some parsing.

It is currently unclear, how much of the parsing will be performed on the ARM CPU.
The ARM CPU will handle some of the commands received itself, but other commands
should be forwarded (possibly somewhat unprocessed) to other onboard devices such
as the onboard DSP or the FPGA. The communication is illustrated in fig. B.1 on
page A-8.

IMM-B.Eng-2013-4
s042067

A-8 APPENDIX B. INITIAL PROJECT CONSIDERATIONS

Figure B.1: Illustration of the communication chain between a PC and the devices
within the LAN-XI module

The REST protocol command set - part of which is often referred to as "the new
protocol" or "Web-XI" - is defined prior to this project, so the project concerns
implementing the protocol efficiently.

B.2Requirements

These requirements are part of the initial input for defining the project and will be
elaborated more during the analysis phase of the project.

• The development of the system must be based on C, as this is used on the ARM
CPU.

• The system must be able to receive the specified REST commands through a
network connection. Based on the contents of a received command, it can be
handled on the Windows CE system or forwarded to another onboard device, i.e.
the DSP or FPGA.

• Parsing of commands must be efficient and easy to manage for future changes.
Huge if-else if-else blocks should be avoided, and efficient table setups should
be sought.

• Tests developed during the internship must be ported to run on the new setup.

• The system must be flexible, communication with e.g. the DSP should be easily
substituted, as the final means of communication with other devices are not yet
clear.

IMM-B.Eng-2013-4
s042067

APPENDIX B. INITIAL PROJECT CONSIDERATIONS A-9

B.3Additional tasks

• A higher-level programming language (i.e. Python) can be considered, but the
advantages must ratify any added load or memory consumption.

• As an intermediate step, the REST interpreter can be implemented on a PC,
using already known methods of communicating with the DSP.

• As commands received on the ARM CPU may effectively have different - or
maybe even multiple - recipients, there should be a flexible and clear system
for handling these individual cases.

B.4Process thoughts

Currently, following the internship project, a PC can control the DSP using specially
formatted Kiss Items28 through a JTAG connection. Tests have been implemented for
verifying functionality on the DSP. This is illustrated in figure B.2.

Figure B.2: Internship product – communication between PC and DSP

The first step of development can be implementing the REST interpreter on a PC,
using the existing JTAG connection to the DSP – as illustrated in figure B.3 on page A-
10. The existing tests can be rewritten to use the REST protocol. For simplicity, the
REST protocol can be used to wrap Kiss Items initially. These Items will later on be
substituted with the actual final commands.

Implementing on a PC makes debugging and development easier and quicker, as well
as it can provide a good benchmark for implementation and evaluation of the REST
protocol.

When functionality of the REST interpreter has been verified, the interpreter can be
implemented on Windows CE on the ARM CPU. Initially, the DSP might be the only
target for commands, and communication may still consist of wrapped Kiss Items.
The existing tests could still be used for verifying the functionality of the interpreter.
This is illustrated in figure B.4 on page A-10.

28Kiss Items are the data structures used for communication internally in the LAN-XI module, ie. on
the ARM CPU and the DSP.

IMM-B.Eng-2013-4
s042067

A-10 APPENDIX B. INITIAL PROJECT CONSIDERATIONS

Figure B.3: Possible prototype setup with the ARM CPU substituted by a PC

Figure B.4: Final setup with ARM CPU

With a basic command chain running, the full command set can be implemented, and
more onboard devices can be added in addition to the DSP.

IMM-B.Eng-2013-4
s042067

APPENDIX C. INTERNSHIP REPORT A-11

Appendix C

Internship report

My internship was completed one year prior to this project. The main internship
project involved creating a unit testing framework for the DSP to be used with LAN-
XI G2. One consideration regarding the Web-XI Parser project was to change the
internship project so use the Web-XI parser.

IMM-B.Eng-2013-4
s042067

Internship report

Testing DSP implementation

Made by:

Handed in via CampusNet

s042067 - Clausen, Per Boye

Delivered: July 18th, 2012
This report contains 10 pages incl. front page

Abstract

This report describes my internship stay at Brüel & Kjær Sound & Vibration Measurement
A/S, in the Instrumentation group of the R&D department.

The internship was carried out during the Spring semester of 2012 and was focused
on testing tasks for a DSP for next-generation products. These tasks would include
developing a means of measuring and comparing performance of different routines
on the DSP, debugging of a faulty routine for formatting a float when writing to a
serial console, as well as the development of a framework for unit testing the DSP
implementation.

The unit testing framework had to meet several requirements regarding the implemen-
tation into existing routines and systems at Brüel & Kjær, and tests would be written for
these.

i Testing DSP implementation

Table of contents

1 Introduction . 1

1.1 About Brüel & Kjær . 1

1.1.1 The Instrumentation group 2

2 Internship Project . 3

2.1 Performance measuring . 3

2.2 Debugging . 4

2.3 Unit testing framework . 4

2.3.1 Entry point . 4

2.3.2 Framework . 5

2.3.3 Usage . 5

2.3.4 Automation . 6

3 Conclusion. 7

s042067

Testing DSP implementation 1

Chapter 1

Introduction

1.1 About Brüel & Kjær 1
1.1.1 The Instrumentation group 2

This report describes briefly my internship stay in the Instrumentation group at Brüel &
Kjær Sound & Vibration A/S during the Spring semester of 2012 – February 1st until July
2nd.

Having some experience with Brüel & Kjær measuring equipment from previous
interests and studies, the company was my number one choice for the internship.
Throughout my studies, I have been focused towards the lower levels of the IT
studies – hardware and embedded systems – while gaining experience in higher-level
development. This broad spectrum was the entry point for the planning of the internship
project.

1.1About Brüel & Kjær

Brüel & Kjær was founded in 1942 by Per V. Brüel and Viggo Kjær. The company has
been leading on the professional marked for sound and vibration measurement – but has
also been active in other areas such as long-term condition monitoring of machinery and
medical instruments.

In 1992, following financial trouble, the company was sold to the German AGIV and split
into several more focused companies, one of which is Brüel & Kjær Sound & Vibration
Measurement A/S, which was part of the Spectris Division of AGIV. This division was
later sold to the British Fairey Group Ltd. but was ultimately kept under the name of
Spectris Plc. – still maintaining the Brüel & Kjær Sound & Vibration Measurement name
within.

s042067

Testing DSP implementation 2

The products developed by Brüel & Kjær Sound & Vibration Measurement A/S include
the LAN-XI modules which perform data aquisition – measuring from a variety of
different sources, ie. microphones, accelerometers etc. – and do some processing of
the input. Various connection options are achieved through interchangeable fronts. A
LAN-XI module with two detached fronts is shown in figure 1.1.

Figure 1.1: A LAN-XI module with two detached fronts

The modules are connected to an ordinary LAN, and the measurements are processed
and presented on a PC using the PULSE software. Several LAN-XI modules can be used
simultaneously, making the system very flexible.

Furthermore, the product range includes 2250 range handheld analyzers which are stand-
alone PDA-like devices used to perform and present acoustic or vibration measurements
– as well as transducers; microphones and accelerometers for vibration measurement.

1.1.1 The Instrumentation group

The Instrumentation group is part of the R&D department. The group develops much of
the new hardware and embedded software used within the company and the products.
This includes the LAN-XI modules and the 2250 range handheld devices.

Presently, the group is beginning development of a new generation of LAN-XI modules,
which is where my work has been focused.

s042067

Testing DSP implementation 3

Chapter 2

Internship Project

2.1 Performance measuring 3
2.2 Debugging . 4
2.3 Unit testing framework 4

2.3.1 Entry point 4
2.3.2 Framework 5
2.3.3 Usage . 5
2.3.4 Automation 6

During the internship at Brüel & Kjær, I have been working with a new DSP
implementation for next-generation products. I have not done any actual development
on the DSP software, but rather been performing testing tasks, which includes
performance measurements, debugging and development of a unit testing framework.

2.1Performance measuring

The first task was to develop means of measuring an approximate number of CPU
cycles used to perform various tasks. This was used to compare the cost of various
implementations of a Sine function.

The performance measurements are performed by placing small bits of code before and
after the code, logging internal CPU cycle count values1. These values are passed to
a performance monitor process, which gathers and summarizes data, and outputs a
summary to a serial console.

1The CPU cycle count is an absolute value. Therefore, if the monitored code region allows another
process to run (the DSP operating system uses non-preemptive scheduling), the cycle count will include the
cycles used by the other process(es). Furthermore, caching will affect subsequent runs of a code region, but
when used correctly, this can also be utilized to assess the performance when caching is applied.

s042067

Testing DSP implementation 4

2.2Debugging

When printing floats to the serial console, a special formatting function is used to
convert a IEEE 754 formatted (sign-exponent-mantissa) to integer and decimal parts. This
function would in some cases produce the desired output, but in many cases it would
seemingly round up the number to the next integer.

The function is written in Assembly, and the debugging involved understanding the
method of the function, including examining contents of registers at each step of the
execution for certain start conditions.

The error was found to be in a right-shift operation of what was to be the decimal part of
the number. Here, a sign-extended right-shift was used, which would in many cases pad
the number with 1’s, giving a large (unsigned) decimal part, which would in turn round
up to the next integer. Replacing the right-shift with a zero-extended right-shift solved
the problem.

2.3Unit testing framework

The majority of the internship was spent developing a unit testing framework for the
DSP.

2.3.1 Entry point

The DSP is connected to a PC through a JTAG socket and a USB emulator, and the DSP
operating system was already fitted with a LinkHandler process for exchanging messages
through JTAG. A small set of Java methods was also provided, which used Java libraries
provided by Texas Instruments to interface with the DSP. These methods were previously
used from Matlab to create test scripts to verify the functionality of the DSP algorithms.
All communication between the processes on the DSP uses simple message passing with
messages called Items. The Java methods would use a similar Item structure to represent
data.

Within Brüel & Kjær, C#/.NET is used for development, and NUnit for unit testing. Thus,
an objective of the project was to enable unit tests to be run on the DSP from NUnit – and
to put as much of the functionality as possible in a C# environment.

Futhermore, Jenkins CI2 is being introduced for managing automated test runs. Another
objective was to use Jenkins for managing nightly test routines and presenting the results.

The final setup is illustrated in figure 2.1 on the next page.

2Jenkins CI, http://jenkins-ci.org/ is an automated build/test system with high extensibility
through plugins

s042067

Testing DSP implementation 5

Figure 2.1: Illustration of the final setup.

2.3.2 Framework

The system needed to bridge the gap between the Texas Instruments Java libraries and
a C# environment. This has been done by developing a small server application in Java
– DSPServer. This is used by the C# Test environment through a socket connection and
a self-developed pseudo-RPC approach, which means that the C# environment controls
the DSP using roughly the same methods as the Java libraries provide.

On top of the connection to the DSPServer, the C# environment consists of 3 layers, each
raising the level of abstraction.
The lower layer provides basic Item functions and requires the programmer to manage
polling when exchanging Items with the DSP.
The middle layer does the polling and introduces queues of Items, from which Items
matching certain conditions can be requested.
The top layer is based on data and signals and avoids the use of Items. The layers are
interchangeable, and in the future, the two bottom layers may be replaced by other means
of communication with the DSP3, when development reaches a later stage.

2.3.3 Usage

The framework is still usable from Matlab, and several Matlab scripts have been
developed for providing a graphical representation of the data to be evaluated in the

3In particular, the network connection which will be present on the final product.

s042067

Testing DSP implementation 6

unit tests. Furthermore, the Matlab connection is being used for an early interface for
evaluating the functionality of the DSP without needing any other parts, e.g. PC software
and embedded PC for controlling the DSP.

NUnit can use the framework directly, and a number of Unit tests have been developed
for verifying the functionality of the DSP software and algorithms.

The test environment can access the DSPServer over a network connection, enabling
developers to share one DSP – as long as they do not try to connect at the same time.

2.3.4 Automation

A build/test server has been set up. This computer is connected to a development board
and runs as a Jenkins slave.

The Jenkins master server has jobs defined for various tasks, which are executed on the
build/test server:

• (Re)configure and (re)start the Java server, compiling the program from the latest
source available on the SVN server

• Compile and publish documentation of source code from SVN using Doxygen4 and
a local web server on the build/test server

• Compile DSP software, C# framework and unit tests from latest source available in
the SVN repository and execute the unit tests

These tasks are managed by the Jenkins master and Windows Command scripts
committed to the SVN repository. The first two are set up to automatically check for
new SVN revisions every 5 minutes and execute if new revisions are detected, whereas
the unit test job is executed every night.

For the unit test job, Jenkins gathers the test results and displays results and trends for
every run, which makes it easy to monitor the progress of the development, as well as
verify that no previously developed features are broken.

4www.doxygen.org - tool for generating code documentation from source code with specially
formatted comments

s042067

Testing DSP implementation 7

Chapter 3

Conclusion

During the internship stay at Brüel & Kjær, I have learned a lot about daily work in a
development department. In particular, I have learned to be aware of prioritizing and
balancing the tasks for productivity rather than absolute correctness.

Another important experience has been working on a project alone, without others doing
the same work at the same time. This requires problems to be either solved by myself, or
turned into some more general problem which others are able to understand.

I have enjoyed having a very broad area of work, using 6 different programming/script-
ing languages spread across systems ranging from Assembly and C in the embedded
operating system on the DSP over developing the framework in Java and C# to unit test-
ing and Matlab scripting – and finally automating executions using Windows command
scripting. Furthermore, I have had the opportunity to work with many different tools
during development and had to learn how to use each of them efficiently.

Getting to know the new systems and routines – especially familiarizing myself with
the DSP – was greatly helped by a gradual beginning with the smaller performance
monitoring and debugging tasks, meaning that I had a good understanding of the basics
and uses of the DSP and its operating system before the greater task of implementing the
testing framework was initiated.

The studies at DTU – as well as my own projects through the years – have given me a lot
of skills, many of which I have had the chance to use, ranging widely among the courses
I have attended. Seeing a constructive use for these skills has been very rewarding.

s042067

A-22 APPENDIX C. INTERNSHIP REPORT

IMM-B.Eng-2013-4
s042067

APPENDIX D. DESIGN OF WEB-XI COMMUNICATIONS PROTOCOL FOR G2
DEVICES A-23

Appendix D

Design of Web-XI Communications
Protocol for G2 devices

This document describes the design of the Web-XI protocol and is the main source for
the definition of the project requirements.

The document has been modified slightly to be presented in this appendix, but no
points relevant to this project have been altered.

IMM-B.Eng-2013-4
s042067

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 1 of 36 CONFIDENTIAL

Design of

Web-XI Communications Protocol for G2 devices

Revision History:
Initials Date Revision Comments

HELGERAS 14-01-2010 1 First Version started

HELGERAS 18-03-2010 2 First Version complete

KONS_LMJOR

GENSEN

06-03-2012 3 Update after first implementation

HELGERAS 09-10-2012 4 Updated with suggestions/clarifications

from CHANSEN

HELGERAS 12-09-2012 5 Changed Signaldata message type to

include interpretation data. Removed

Interpretation message type. Introduced

padding to multiples of 4 bytes.

HELGERAS 13-11-2012 6 Changed to used WebSocket protocol for

streaming.

CHANSEN 18-12-2012 7 Minor edits

HELGERAS 15-01-2013 8 Added section about “Triggered actions

and PUTs”

HELGERAS 20-02-2013 9 Added information about timed actions

and PUTs.

HELGERAS 08-05-2013 10 Fixed a few inconsistencies in the

description of actions and arguments.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 2 of 36 CONFIDENTIAL

Contents

1 PURPOSE .. 4

2 TERMINOLOGY ... 4

3 INTRODUCTION ... 5

4 GENERAL GUIDELINES FOR COMMAND PROTOCOL .. 6

4.1 REST ... 6
4.2 JSON ... 6

4.2.1 Example ... 7
4.3 ACTIONS .. 8
4.4 TRIGGERED ACTIONS AND PUTS .. 9

4.5 VERSIONING .. 9
4.6 CACHING ... 10
4.7 GUIDELINES FOR REPRESENTING OBJECT MODEL IN REST .. 10

4.7.1 Selection of a branch in the object model ... 10
4.7.2 PUT errors and constraint handling .. 11

5 CHESS.. 12

6 TIME .. 13

6.1.1 The PULSE Reflex Relative time ... 13
6.1.2 The GISP absolute time .. 13
6.1.3 Important notes about the time format .. 14

7 DATA FROM THE DEVICE .. 15

7.1 STREAMING ... 15
7.1.1 Managing streaming ... 15
7.1.2 Timing of messages in the stream.. 16
7.1.3 Data types and value domains ... 16
7.1.4 Strings ... 17
7.1.5 Streaming message format ... 17

7.2 EVENT MANAGER ... 18
7.3 MONITORING A SIGNAL ... 19
7.4 MESSAGE TYPES ... 19

7.4.1 SignalData .. 20
7.4.2 DataQuality ... 21
7.4.3 State .. 23
7.4.4 Status .. 24
7.4.5 Trigger ... 27
7.4.6 Configuration .. 28
7.4.7 Heartbeat ... 29
7.4.8 Interpretation.. 30
7.4.9 DebugMessage .. 33

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 3 of 36 CONFIDENTIAL

8 ERROR CODE USAGE ... 34

8.1 101 (“SWITCHING PROTOCOL”) ... 34
8.2 200 (“OK”) .. 34
8.3 201 (“CREATED”) .. 34
8.4 202 (“ACCEPTED”) .. 34
8.5 400 (“BAD REQUEST”) .. 34
8.6 401 (“UNAUTHORIZED”) ... 35
8.7 403 (“FORBIDDEN”) .. 35
8.8 404 (“NOT FOUND”) .. 35
8.9 405 (“METHOD NOT ALLOWED”) .. 35
8.10 408 (“REQUEST TIMEOUT”) ... 35
8.11 409 (“CONFLICT”) .. 36
8.12 411 (“LENGTH REQUIRED”) ... 36
8.13 413 (“REQUEST ENTITY TOO LARGE”) ... 36
8.14 415 (“UNSUPPORTED MEDIA TYPE”) ... 36

8.15 500 (“INTERNAL SERVER ERROR”) .. 36
8.16 503 (“SERVICE UNAVAILABLE”) .. 36

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 4 of 36 CONFIDENTIAL

1 Purpose
This Design Document is based on the requirement Specification for the Web-XI protocol, and

defines an architecture that fulfils these requirements.

2 Terminology

Term/Acronym/Abbreviation Description

BIST Built In Self-Test

CHESS Channel Embedded System Sheet: A description

of a channel that contains information about

settings and possible values for these.

GISP General Instrumentation Solution Platform

GISP device A device that implements GISP. Such a device

will have a IP/Ethernet connection and must

implement the GISP protocol.

Web-XI protocol The new name for the “GISP protocol” for G2

devices

IDAe protocol The communications protocol used for older B&K

acquisition hardware. The protocol is

implemented on top of TCP/IP. The IDAe protocol

has a command that can send a KISS item to a

device.

IVI driver A driver for test instruments that conforms to the

standard set forth by the IVI Foundation. See

http://www.ivifoundation.org/ for details.

KISS B&K Proprietary DSP Real-time operating System

KISS item A message in the KISS operating system. A lot of

commands for IDAe modules are described as

KISS items.

PTP Precision Time Protocol

REST REST (representational state transfer) is an

approach for getting information content from a

Web site by reading a designated Web page that

contains an XML (Extensible Mark-up Language)

or JSON (JavaScript Object Notation) file that

describes and includes the desired content.

SLM Sound Level Meter

PULSE Labshop This is the “old” PULSE including the PULSE Time

Data Recorder.

Client Software that communicates with a GISP device

such as a web browser running NOTAR, PULSE

Reflex, PULSE Labshop.

Websocket protocol A protocol for a two-way streaming protocol. The

protocol is documented in RFC 6455.

See also http://www.websocket.org/

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 5 of 36 CONFIDENTIAL

3 Introduction
This document describes the design for the new Web-XI protocol.

This is the protocol that will be implemented for LAN-XI G2 devices.

The document was written before the name Web-XI was invented, so it often talks about the GISP

protocol and about GISP devices. This is synonymous to Web-XI protocol and to G2 devices.

The protocol will be divided in two parts. First part is the command protocol. This protocol is used to

issue commands to a GISP device, receive events, and receive data for monitoring purposes. The

other part is the Streaming Protocol. This is used to receive a stream of sample data and of relevant

supporting data such as data quality information, certain events etc.

The first chapters of this document contain general design decisions, such as the structure of

commands, how asynchronous events are handled etc.

The later chapters contain descriptions of the actual commands in the protocol.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 6 of 36 CONFIDENTIAL

4 General guidelines for command protocol
The command protocol is used to issue commands to a GISP device, receive events, and receive

data for monitoring purposes.

4.1 REST
The command protocol will be based on REST. See “Restful Web Services” by Leonard Richardson

and Sam Ruby for details.

Guidelines for using the 5 HTTP methods:

 GET: Used to get information. There must be no side effects

 DELETE: Delete something.

 PUT: Used to set/change information on existing resource.

 POST: Used to create a resource and possibly set values on it. Typically the POST command

will return the address of the new resource, so it can be accessed and maybe deleted later.

 OPTIONS: Used to get information about what’s possible to do on the resource.

In general we are going to place as much detail in the URL as possible, only properties and values

are left out.

4.2 JSON
The body part of REST commands and of replies will be transmitted as JSON (see

http://www.json.org). The encoding is Utf-8.

It is possible to request a recursive data structure by setting “recursive” to true on the URI.:

GET /rest/a/b?recursive=<Boolean>

Where <Boolean> is either true or false (the default is false).

If recursive is true, then all child nodes are returned fully unless otherwise stated:

Certain node types may be left out of a recursive GET, the user will have to get those explicitly. This

will be documented on the relevant resources

The body for a leaf node contains an object with the name and value for this node.

The body for a non-leaf node contains values for all immediate children. Child leaf nodes are

returned fully, child non-leaf nodes will only contain the names of the nodes, the value will be null.

On SET methods the body may (but is not required to) contain information about children. The

information will be set if given.

Resources may be left out when setting values; only resources specifically mentioned will be

modified.

See the example below.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 7 of 36 CONFIDENTIAL

4.2.1 Example

Assume we have the following REST structure:

/rest/a /

/rest/a/b (value 2)

/rest/a/c

/rest/a/c/d (value 4)

GET /rest/a returns:
{

 “b” : 2,

 “c” : null

}

GET /rest/a?recursive=true:
{

 “b”: 2,

 “c” : { “d” : 4 }

}

GET /rest/a/b returns:
{ “b” : 2 }

GET /rest/a/b?recursive=true:
{ “b” : 2 }

GET /rest/a/c returns:
{ “d” : 4 }

GET /rest/a/c?recursive=true returns:
{ “d” : 4 }

GET /rest/a/c/d returns:
{ “d” : 4 }

GET /rest/a/c/d?recursive=true returns:
{ “d” : 4 }

PUT on /rest/a that sets the b’s value:
{ “b” : 22 }

PUT on /rest/a that changes b and d:
{

 “b” : 22,

 “c” : { “d” : 44 }

}

PUT on /rest/a that only changes d:
{

“c” : { “d” : 44 }

}

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 8 of 36 CONFIDENTIAL

4.3 Actions
Actions, such as resetting the device, doing a TEDS detect or starting the generator is done with a

PUT command using the ?= notation in the URI:

PUT <URI>?Action=<WantedAction>

Where <URI> is the address of the relevant REST node, and <WantedAction> describes what to do.

It is possible to specify an argument using “&Argument=<argument>”

Example:

TEDS detect might be initiated on all commands with

PUT /rest/channels/all/transducer?Action=Detect

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 9 of 36 CONFIDENTIAL

4.4 Triggered actions and PUTs
Actions and assigning values to nodes can be synchronized by stating that the PUTs and/or actions

should be performed at a trigger.

When this is done, the action/PUTs are not executed until a module is asked to activate the trigger.

The system then guarantees that the actions and PUTs are executed at the same time.

This is the syntax for stating that a PUT should be triggered:

PUT <URI>?AwaitTrigger=<TriggerId>

All puts to nodes listed in the PUT will await the given trigger.

The syntax for stating that an action should be triggered is:

PUT <URI>?Action=<WantedAction>&Argument=<arg>&AwaitTrigger=<TriggerId>

Here <TriggerId> is a number from 0 to 7.

The trigger is then executed by sending the command “PerformTrig” to module:

PUT /Rest/Device?Action=PerformTrigger&Argument=<TriggerId>

This command can be sent to any of the modules in the domain.

The module receiving this action is then responsible for multicasting a UDP trigger package to all

modules.

It is also possible to specify a time for the execution of an action or a PUT. This is done by

specifying:

 &Time=<Time>

Where <Time> is an absolute time.

It is also possible to specify a delay:

 &Delay=<Delay in milliseconds>

If this is used, then the command will be executed this amount of time after the command has been

received in the module.

It is illegal to specify both an absolute time and a delay.

You can specify the time or delay together with “&AwaitTrigger=” or without it. If both are

specified, then the action is done when the first of the two conditions are fulfilled.

4.5 Versioning
New firmware should work together with old pc software. This means that the pc should inform the

device what version of the protocol it is using. The device will then either handle the request, or

report an error.

In general all changes to the protocol should be backwards compatible (e.g. by only adding optional

resources to the protocol).

If a more complex change is needed (which we strive to avoid as much as possible), then the

version of the protocol will be changed.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 10 of 36 CONFIDENTIAL

Versioning is handled using content negotiation:

 The client sends a request, filling out the Accept header.

 This tells the server which version of the protocol the client understands. If no header is

given, then the server will use the latest version.

 The server returns the relevant answer and sets the Content type header accordingly

Note that the version is optional in the request; this is to allow for a normal web browser to query

the module. All application should, however, specify the version in the request to be more

stable for version changes.

Example:

===>

GET /rest/Inputs/1/SampleRate HTTP/1.1

Accept: application/GISP2

<===

HTTP/1.1 200 OK

Content-Type: application/GISP2

..data in version 2 format here..

4.6 Caching
Use of the Cache-Control header is important for use of the applications.

In general caching of a response can be turned off by using the following header:

Cache-Control: no-cache

Allowing caching of a response for a certain number of seconds can be done with:

Cache-Control: max-age=3600

The rules for caching and disallowing caching are not set in stone, but here are some examples of

what to disable caching on:

 Any URI containing a query string (?=). E.g. …/generator1?action=start

 Any resource containing volatile information, such as a property that another client might

change, or a property that is changed by the device.

 Any URI that has a side effect when GET is used. (We shouldn’t have any of these)

It is ok to uses cache for

 Resources that change slowly such as CHESS information, version numbers etc.

4.7 Guidelines for representing object model in REST

4.7.1 Selection of a branch in the object model

If only one branch can be active at the same time:

When a node only can has several child nodes, where only one of these can be active at a time, then

the active node is chosen by a leaf node with the name “Select”. Its value is the name of the active

node.

Example:

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 11 of 36 CONFIDENTIAL

 ../Functions/Select (value “Preamp”)

 ../Functions/Direct (has child nodes)

 ../Functions/Preamp (has child nodes)

 ../Functions/CCLD (has child nodes)

In this example the active function is “Preamp”, the other possibilities (“Direct” and “CCLD”) are not

active in the hardware. The user may set values on these nodes, but these values will not be used

until the relevant node is selected.

If more than one branch can be active at the same time:

When a node can have several child nodes, where more than one can be active at a time, then the

child nodes all have a leaf node with the name “Active”. Its value is true for the active nodes,

false for others.

Example:

 ../Analog1/Input1 (has child nodes)

 ../Analog1/Input1/Active (value “true”)

 ../Analog1/Input2 (has child nodes)

 ../Analog1/Input2/Active (value “false”)

 ../Analog1/Input3 (has child nodes)

 ../Analog1/Input3/Active (value “true”)

“Input1” and “Input3” are active in this example.

4.7.2 PUT errors and constraint handling

If there are constraints between properties (such as the sum of the values must be less than

something), then an error (409 “Conflict”) should be issued when the constraint is broken. The

device should not try to modify values to satisfy the constraint.

If a PUT fails, then it will return one of the following errors:

 403 (“Forbidden”): The property cannot bet set at this time (because of e.g. wrong state).

 409 (“Conflict”): A constraint between several values would be broken if the property is

set.

 400 (“Bad Request”): The property cannot be set to the given value.

If one of these error codes is returned, then the answer contains the following information:

 Whether the request was partially performed or it was not performed at all.

 The address of the resource where the update failed.

 A message in English describing what went wrong.

This is a JSON object:
{

“Partial” : <true or false>,

“URI”: <uri>,

“Message” : <Error message>

}

The “Partial” field is set to true if this is a compound update (more than one property is set), and

the update was partially performed. It will be false if none of the properties were changed.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 12 of 36 CONFIDENTIAL

5 CHESS

CHESS stands for “Channel Embedded System Sheet” and is the idea of having a way to query a

device of its capabilities.

This includes stuff like: Number of channels, available sample frequencies, possible attenuator

settings etc.

Chess information about a resource can be requested using the OPTIONS method.

This answer to such a request should list the allowable methods in the Allow header, e.g.:¨

Allow: GET, PUT

The answer should contain GISP specific CHESS information.

We have not yet decided the format, but the following types of information should at least be

included:

 A description of the resource in English.

 A list of child nodes.

 If the URI is a leaf node, then there should be a specification of the value domain.

 If actions are legal on this node, then the actions should be listed (GET, PUT etc.).

 A list of the states where its possible to update the node)

The value domain can be either an enumeration or an interval:

An enumeration lists a set of possible values and corresponding descriptions (in English) of these

values, furthermore it defines a Unit and a data type.

An interval is defined by a minimum and maximum value (both min and max are included in the

interval) plus a resolution. Furthermore it defines a Unit and a data type.

TBD: Find another name for this. It is not just for channels.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 13 of 36 CONFIDENTIAL

6 Time

We are going to use the concepts from the PULSE Reflex time format in the GISP protocol, but

expand it to be an absolute time

6.1.1 The PULSE Reflex Relative time

The relative time in PULSE Reflex is contained in a 64 bit integer, and contains a number of “ticks”.

There are
222 *

23 *
35 *

27 ticks per second, so each tick is approximately 4.33 picoseconds. The

maximum duration of this time is approximately 461 days.

We can specify the following sample frequency families with this:

Name Frequency Frequency Range

65 kHz family n2 *
03 *

05 *
07 From 1 to

222 Hz (4 MHz)

51,2 kHz family n2 *
03 *

25 *
07 From 25 to

222 * 25 Hz (105 MHz)

256 kHz family n2 *
03 *

35 *
07 From 125 to

222 * 125 Hz (524 MHz)

48 kHz family n2 *
13 *

35 *
07 From 375 to

222 * 375 Hz (1.6 GHz)

44,1 kHz family n2 *
23 *

25 *
27 From 11025 to

222 * 11025 Hz (46 GHz)

Here a family is defined as a group of frequencies which are equal except for a factor of
n2 .

The frequency listed in the family “name” is just a typical frequency within the family.

Note that this time wraps in 64 bit after 461 days. We are not satisfied with such a short wrap time,

and we need an absolute time, so this leads to the format described in the next section.

6.1.2 The GISP absolute time

The time for GISP is based on the ideas in the PULSE Reflex time described above.

It is a 12 byte quantity in 2 parts:

The first part is the Family; it is a 32 bit quantity defining the exponents used for 2, 3, 5 and 7

(one byte for each). This defines the size of a clock tick:

Name Description Size in bytes

K Exponent for 2 1

L Exponent for 3 1

M Exponent for 5 1

N Exponent for 7 1

This family corresponds to a tick size of:

k2 *

l3 *
m5 *

n7 seconds

The second part is the Count; it contains the number of ticks since 0 hours on 1 January 1970

(Modified Julian Day 40 587.0).

This is a 64 bit number.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 14 of 36 CONFIDENTIAL

6.1.3 Important notes about the time format

Compatibility with PULSE Reflex

Note that PULSE Reflex signal analysis only support part of the values that this time format

supports.

PULSE Reflex sample frequencies that can be expressed by:

nmlk 7532 Hz

Where

 2,3,2,22 nmlk

Wrap

To avoid wraps the family should be chosen so that the time to wrap, which is:

nmlk 7*5*3*2

264

seconds

is longer than 100 years.

The following table contains suggested values for n that allows for this:

Name Family Max Frequency Time until wrap

65 kHz family 322 *
03 *

05 *
07 4.2 GHz 136 years

51,2 kHz family 272 *
03 *

25 *
07 3.3 GHz 174 years

256 kHz family 252 *
03 *

35 *
07 4.2 GHz 139 years

48 kHz family 232 *
13 *

35 *
07 3.1 GHz 186 years

44,1 kHz family 182 *
23 *

25 *
27 2.9 GHz 202 years

PTP and LXI Compatibility

The PTP timestamp format (as defined by IEEE 1588) is different from the above proposed format:

Name Data type Description

Seconds 6 bytes Time in seconds. In LXI this value is split in two

parts: The 4 byte “Seconds” field and the 2 byte

“Epoch” field in the header

Nanoseconds 6 bytes In LXI this is divided in the 32 bit “Nanoseconds”

field and the 16 bit “Fractional_Nanoseconds”

field.

Zero time for this is 0 hours on 1 January 1970 (Modified Julian Day 40 587.0), which is the same as proposed
for GISP format above.

The GISP application will have to convert to and from this format when implementing LXI and PTP specific
protocols.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 15 of 36 CONFIDENTIAL

7 Data from the device
The device generates data of different kinds:

 Results are for instance measured data or the result of some signal analysis done on the

device. Results come from a “Signal” in the object model.

 Data Quality is also a kind of result, but is classified separately here because it is handled a

bit different. (Value changes are transmitted instead of all values)

 Events describe something that has happened on the device, such as a state change, a

trigger or a configuration change.

Such data is sent to the client as Messages and can be sent with one of the following methods:

 Streaming: The Client can request that certain message types be streamed to it. A stream

can contain all message types.

 EventManager: The client can request messages containing events that have happened

since a client specified time. Only events can be requested this way.

 Monitor: The client can request Results from a signal for monitoring purposes. The client is

not guaranteed to receive all data if using this method.

This chapter first describes the different methods for sending data to the client.

The final sections of the chapter describe the different types of messages that can be sent.

7.1 Streaming
The device can deliver results, quality data and events over a Websocket1 connection. It is also

possible to request that the data be written to storage on the device (such as a SD card).

This is called streaming. The protocol tries to transfer all requested data and guarantees that any

data loss will be reported as a status event.

The protocol allows for several clients to request data streaming. The first implementation will

probably only will allow the controlling client to create a single stream.

7.1.1 Managing streaming

The client configures the data streaming by using REST.

This is done by executing a POST:

===>

POST /rest/StreamManager HTTP/1.1

{

 “Destination” : <Destination>,

 “Name” : <Name>,

 “Signals” :

 [

 <SignalId>, <SignalId>, …

]

 “MessageTypes” :

 [

 <MessageType>, <MessageType>, …

]

}

<===

HTTP/1.1 200 OK

URI to new Stream Resource

1 Websocket is a standard internet protocol defined in RFC 6455

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 16 of 36 CONFIDENTIAL

Here <Destination> is either “WebSocket” for streaming to a Web Socket, “Broadcast” for UDP

broadcast or “SD” for streaming to SD card. Version 1 will probably only implement “WebSocket”.

<Name> is the name of the stream, on SD cards it will be the name of the file (with optional added

extra characters to make it unique).

<SignalId> identifies which signals to stream. Id 0 should never be used for a signal.

<MessageType> lists what message types to stream.

The following commands are available on the returned stream resource:

GET <URI>/Destination: Returns the destination

GET <URI>/Name: Returns the name

GET/PUT <URI>/MessageTypes: Get/set the message types that will be written to this stream.

GET/PUT <URI>/Signals: Get/set the signals that will be written to this stream.

PUT <URI>?Action=OpenWebSocket: Open WebSocket connection on this URI

NOTE: Maybe “Action=OpenPort” instead of OpenWebSocket if it is too difficult to

implement Websockets.

DELETE <URI>: Closes the stream and deletes the resource. This also happens automatically when

the WebSocket connection to the stream is closed or if no connection is made within a minute.

7.1.2 Timing of messages in the stream

Each message in the stream contains a time stamp, this is however not enough information for the

client to efficiently handle the data.

For instance, the client will need to

 Match quality data to sample data

 Be sure to not discard any data before knowing if a trigger event is happening in the data.

The device must follow certain guidelines to help the application with these tasks:

 Data describing an input channels data must be transmitted before the data they describe

(e.g. quality of channel 1 before channel 1.)

 General status data must be sent before any of the input data.

The problem is that the client needs to know when it is ok to discard old data.

To facilitate this, the device should emit a “heartbeat” in the data stream at certain intervals.

The device guarantees that no more data will be sent with a timestamp before the one given in the

heartbeat message.

7.1.3 Data types and value domains

Data types below are typically specified as being signed, even when the value domain obviously is in

fact unsigned (such as the number of values in a message). The reason for this is to be compliant

with the Microsoft “Common Language Specification” (CLS).

It will of course be an error to specify a negative number of values for a count even though it in fact

is possible.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 17 of 36 CONFIDENTIAL

Ids (such as SignalId) are also signed, in this case all values except for 0 are valid ids unless

otherwise specified.

The value 0 is used to indicate an unknown Id.

7.1.4 Strings

Strings are in UTF-8 format. They are represented as a byte count followed by that number of bytes

when part of binary data:

Name Length (in bytes) Contents

Count 2 The number of bytes (not characters) in the UTF8 string as an

Int16, excluding padding bytes (see below). If Count is 0, then

the string is empty. Count may not be negative.

Bytes Count rounded up

to a multiple of 4

bytes

The actual content of the string. (Note that Count may not equal

the number of characters in the string since a single character

may be from 1 to 4 bytes in length).

Note that the number of bytes transmitted is rounded up to a

multiple of 4 bytes, so any remaining bytes should be set to 0

With 4 byte padding rule, the Count is not necessarily the number of bytes following, it is the

number of relevant bytes. The actual number of bytes is Count rounded up to a multiple of 4.

7.1.5 Streaming message format

The stream consists of a messages transmitted after each other. The format of a message is a

header followed by content:

Name Length (in bytes) Contents

Magic 2 The ASCII characters “BK”.

HeaderLength 2 The length of the rest of the

header up to but not including

the content length. Currently

this is 202.

MessageType 2 Identifies the content of the

message

Reserved1 2 For future use. Set to 0

DebugSupport 4 Reserved for debugging

Timestamp 12 Time of message

ContentLength 4 Length of the message content

in bytes

This header is followed by the content part of the message:

Content ContentLength Depends on the message type.

The actual content depends on the message type. See the chapter on Message Types below.

All multi-byte values in a message are transmitted in little endian byte order.

2 If new fields are needed in the header, then they should be appended after the “Timestamp” field.

Existing fields must never be removed from the header, and the length of the header should always

be a multiple of 4 bytes. If these rules are followed, then the header length will always increase for

each new header version. The client can use HeaderLength as a kind of Header version field.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 18 of 36 CONFIDENTIAL

7.2 Event Manager
In order to receive events, the client will have to send a request to an event manager.

The request looks like this:

===>

GET /rest/EventManager HTTP/1.1

{

 “Time” : <RequestedTime>,
 “EventTypes” :

 [

 <MessageType>, <MessageType>, …

]

}

<===

HTTP/1.1 200 OK

{

 “Time” : <ActualTime>,

 “EventsMissed” : <Boolean>,

 “Events” :

 [

 <Message>, <Message>, …

]

}

Here <Message> has the format:
{

 “MessageType” : “<Type of Message>”,

 “TimeStamp” :

{

 “Family”: <Time Family>

 “Count”: <Time Count>

},

<Message data as described in the following sections>

}

The client specifies that it wants events after the given time, and which events it wants.

It is not possible to request SignalData and DataQuality messages from the event manager.

Signal data can be requested from Monitor nodes, and if the application request status events, then

it will receive events about data quality as well.

The reply contains the current actual time of the device; the reply contains events up to this time.

“EventsMissed” will be true if there was an event overrun, and finally the reply contains an array of

the actual events.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 19 of 36 CONFIDENTIAL

7.3 Monitoring a signal
The client may obtain a number of results from a given channel by issuing a GET to a monitor

resource.

The client specifies that it wants a certain number of values. The count is optional; it defaults to 1 if

not specified.

===>

GET /rest/…/Signal7/Monitor HTTP/1.1

{

 “Count” : 1024
}

The reply contains a SignalData message (see below) with the requested values.

The device does NOT guarantee that 2 requests sent after each other will result in consecutive data;

there may be a gap.

7.4 Message Types
This section describes the different types of messages that can be sent to the client.

Message Type Value Description

SignalData 1 Data values from a signal. This cannot be requested from

the event manager. It is available via the stream protocol

and from Monitor resources.

DataQuality 2 Indicates the data quality of a certain signals data. The

quality message is typically only generated when the

quality of a signal changes. It is only available via the

stream protocol.

State 3 Indicates the state of the device.

Status 4 Status event, such as PTP sync lost.

Trigger 5 Trigger events from a signal

Configuration 6 Sent when the device’s configuration has changed.

Heartbeat 7 Sent from the device. It is guaranteed that there will be

no further messages with a timestamp before the

heartbeat message’s timestamp. It is only available via

the stream protocol.

Interpretation 8 Describes how to interpret Signal Data. It is only

available via the streaming protocol

DebugMessage 9 A message containing debug information

Each message type has an associated structure that is sent whenever the event happens.

The following sections describe the structures. The description covers both the streaming format and

the REST event format.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 20 of 36 CONFIDENTIAL

7.4.1 SignalData

Messages of this type contain data values from a signal. It will not be available as an event via

REST; it is only available via the stream protocol. It, however, will be possible to monitor signals via

the REST protocol by issuing a GET to a monitor resource under the individual channel.

The message content is:

Name Stream

type

REST type Description

NumberOfSignals Int16 Number Number of signals with data in

this message.3 The number of

signals in the message must be

greater than zero.

Reserved Int16 Reserved. Set to 0

The following structure is then repeated “NumberOfSignal” times:

Name Stream type REST type Description

SignalId Int16 Number Identifies the signal that

produced the following values.

NumberOfValues Int16 Number Number of values. The number

of values must be greater than

zero.

Values Array of values Array of Number Data from the signal. In the

case of a vector a value means

a single vector. This means that

the actual number of scalar

values (e.g. floats) transmitted

is NumberOfValues *

VectorLength from the

interpretation message.

3 It is up to the device to decide whether it wants to group signals into one message or not.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 21 of 36 CONFIDENTIAL

7.4.2 DataQuality

Messages of this type contain quality information about a certain signal. The quality message is

typically only generated when the quality of a signal changes.

The message content is:

Name Stream

type

REST type Description

NumberOfSignals Int16 Number Number of signals with data in

this message. The number of

signals in the message must be

greater than zero.

The following structure is repeated “NumberOfSignal” times:

Name Stream

Type

REST type Description

SignalId Int16 Number Identifies the signal that

produced the quality.

Validity DataValidity

flags

String Quality info

SettlingLevel SettlingLevel

enum

String Settling level

DataValidity flags (Int16)

The DataValidity flags (Int16) is exactly as it is in Reflex. The values are “flags” that can be OR’ed

together if more than one condition exist.

Name Value Description

Valid 0 Data is valid

Unknown 1 Data quality is unknown

Clipped 2 Data is clipped

Settling 4 Data is settling

Invalid 8 Data is invalid

Overrun 16 Overrun happened right before this value.

SettlingLevel enum (Int16)

The SettlingLevel enum (Int16) gives more detail about settling than the Settling flag above.

Name Value Description

Unsettled 0 Unsettled

Above10 1 Settling level is at or above 10 %

Above50 2 Settling level is at or above 50 %

Above90 3 Settling level is at or above 90 %

Settled 4 Settling done.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 22 of 36 CONFIDENTIAL

When settling starts, the device always should output the Unsettled level, and end with the Settled

level.

The value of the Settling flag in the DataValidity enum is false when (and only when) Settling level is

“Settled”.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 23 of 36 CONFIDENTIAL

7.4.3 State

This message contains the state of the device. It is typically only sent when the state changes.

The message content is:

Name Stream

type

REST type Description

State State

enum

String: Name from state

enum

16 bit enumeration of the

possible states.

State enum (Int16)

Possible values for “State”:

Name Value Description

Unknown 0 State not set (should never happen)

?? Idle

?? Measuring

?? Armed

??

The size of the enum is Int16.

TBD: The possible states will be determined later.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 24 of 36 CONFIDENTIAL

7.4.4 Status

Status event, such as PTP sync lost.

The message content is:

Name Stream

type

REST type Description

SignalId Header Number Optionally Identifies the signal

that produced the event. (0 if

irrelevant)

Status Status

enum

String: Name from Status

enum

16 bit enumeration of the

possible stati.

Value1 Int32 Number Content depending on “Status”

Value2 Int32 Number Content depending on “Status”

String See

Strings7.1.4

string Optional String describing the

status.

Status enum (Int16)

Possible values for “Status”:

Name Value Contents of the

Value fields

Description

Unknown 0 Not used Status not set (should never

happen)

CCLDOverload 1 Value1: Overload

enum

Indicates change in CCLD overload

status.

CVLDOverload 2 Value1: Overload

enum

Indicates change in CVLD overload

status.

CommonModeOverload 3 Value1: Overload

enum

Indicates a change in Common mode

overload status.

InputProtection 4 Value1: 1: Input

protection on, 0:

Input protection off

Indicates a change in Input

protection status.

CableBreak 5 Value1: Overload

enum

Indicates change in Cable Break

status

Fan 6 Value1: Fan speed

in %

Fan event

Temperature 7 Value1: Alarm level

(0-5).

Value2:

Temperature in

degree Celcius

If Value is non-zero, then

temperature is high, otherwise

temperature is ok.

Power 8 Value1:

PowerSource enum in

top 16 bit,

PowerMode enum in

low 16 bit.

Value2: Current

estimated power

consumption in mW.

Power status

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 25 of 36 CONFIDENTIAL

PowerAlarm 9 Value1: Estimated

remaining time

before power is gone

in seconds

This status is sent when power is

getting low

Synchronization 10 Value1: Precision in

nanoseconds.

Value2:

SynchronizationState

enum

Synchronization status

Command completed 11 Value1: Completion

status (0: Ok)

String: The

command that

completed

This status is sent when an

asynchronous command has

completed

Overload enum (Int16)

The Overload enum (Int16) contains:

Name Value Description

Unknown 0 Overload status is unknown.

Ok 1 Value is ok

Low 2 Value is to low

High 3 Value is too high

OutOfRange 4 Value is overloaded, we do not know if its too low or high

PowerSource enum (Int16)

The PowerSource enum (Int16) contains:

Name Value Description

Unknown 0 Unknown power source. Should not be used.

PoE 1 Power over Ethernet

DC 2

AC 3

Battery 4

USB 5

Backup 6

PowerMode enum (Int16)

The PowerMode enum (Int16) contains:

Name Value Description

Unknown 0 Unknown mode.

Normal 1 Normal operations mode

PowerSave 2 Power save mode.

Off 3 Power is off (after this message)

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 26 of 36 CONFIDENTIAL

SynchronizationState enum (Int16)

The SynchronizationState enum (Int16) contains:

Name Value Description

Unknown 0 Unknown synchronization state

OutOfLock 1 Device is not locked to anything

Locking 2 The device is trying to lock

Locked 3 The device has locked synchronization

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 27 of 36 CONFIDENTIAL

7.4.5 Trigger

Trigger events from a signal (input or output)

The message content is:

Name Stream

Type

REST type Description

SignalId Header Number Identifies the signal that

produced the trigger.

TriggerType TriggerType

enum

Number Identifies the trigger.

TriggerType enum (Int16)

The TriggerType enum (Int16) contains:

Name Value Description

Unknown 0 Unknown trigger

Level 1 Level trigger

Start 2 Waveform start on output signal.

?? 3

?? 4

TBD: To be determined when implementing

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 28 of 36 CONFIDENTIAL

7.4.6 Configuration

This event is generated when the device’s configuration has changed.

The message content is:

Name Stream type REST type Description

URI See Strings7.1.4 String URI for the resource that was

changed.

DataType ContentDataType

enum

String Type of the value

Value Depends on

“DataType”

Depends on “DataType” The new value for the

resource identified by URI.

The ContentDataType enum is described in section ContentDataType enum (Int16).

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 29 of 36 CONFIDENTIAL

7.4.7 Heartbeat

This event is generated at certain intervals (defined by the device). The device guarantees that

there won’t be any messages with a timestamp earlier than the timestamp in the heartbeat

message.

There is no message content.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 30 of 36 CONFIDENTIAL

7.4.8 Interpretation

This event is generated when information about one or more signals changes.

A piece of information about a signal, such as for instance its unit, is called a descriptor.

All relevant descriptors are sent automatically when a new stream is opened.

The message contains one or more descriptors.

The content of a single descriptor is as follows:

Name Stream type REST type Description

SignalId Int16 Number Identifies the signal

that this descriptor

refers to. If SignalId is

0 then the descriptor is

for all signals.

DescriptorType DescriptorType enum String Identifies the

descriptor, see table of

possible descriptor

types below

Reserved Int16 Reserved for future

use, set to 0

ValueLength Int16 Number Length of value in

bytes, not including

any padding that may

have been added to

Value to make it a

multiple of 32 bit word

Value Depends on descriptor

type

Depends on descriptor

type

The value of the

descriptor. This value

must be a multiple of

32 bit word

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 31 of 36 CONFIDENTIAL

DescriptorType enum (Int16):

The DescriptorType enum (Int16) contains:

Name Value Description Type of

corresponding

descriptor

value

Default value

DataType 1 Data type of a

single value in

signal

ContentDataType

enum

None

ScaleFactor 2 Scale factor to

multiply on each

value in signal

data to obtain a

value in the

specified unit.4

Float64 1.0

Offset 3 Offset to add to

each value in

signal data to

obtain a value in

the specified unit.

Float64 0.0

PeriodTime 4 Time between 2

consecutive values

of the signal.

Timestamp None

Unit 5 The SI unit of the

signal. The

corrected value

(after applying

scale factor and

offset) will be in

this unit.

See Strings 7.1.4 Empty string

VectorLength 6 Length of one

value. 0 means

scalar.

Int16 0

This table is certain to grow in the future. Applications that do not support a given descriptor should

just ignore it and skip to the next descriptor in the message.

4 The scale factor is applied before the offset (CorrectedValue = ScaleFactor * signalValue + Offset)

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 32 of 36 CONFIDENTIAL

ContentDataType enum (Int16)

The ContentDataType (Int16) enum has the following possibilities:

Name Value Description

Unknown 0 ContentDataType not set (should never happen)

Byte 1 8 bit byte

Int16 2 16 bit integer

Int24 3 24 bit integer

Int32 4 32 bit integer

Int64 5 64 bit integer

Float32 6 32 bit float

Float64 7 64 bit float

Complex32 8 32 bit complex float

Complex64 9 64 bit complex float

String 10 UTF8 string. Content is an Int16 length followed by that number of

bytes. See Strings 7.1.4

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 33 of 36 CONFIDENTIAL

7.4.9 DebugMessage

This event is generated when the device wants to output a debug message.

The message content is:

Name Stream type REST type Description

Severity Severity enum String Severity of message

Domain Int16 Number Id indicating what subsystem

of the device that reported

the message.

String See Strings7.1.4 String Text message

Count Int16 Number Number of Type+Value pairs

below.

TypeAndValue ContentDataType

enum followed

by a value

String, String or

Number

Data type followed by a value

of that data type

Domain (Int16)

The Domain can have the following values:

Name Value Description

Unknown 0 Domain is not specified

??? 1 TBD

Severity enum (Int16)

The Severity enum (Int16) has the following possibilities:

Name Value Description

Information 0 Message is informational

Warning 1 Message is a warning message

Error 2 Message is an error message

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 34 of 36 CONFIDENTIAL

8 Error code usage

This chapter describes which error codes the device should return, and what they mean

8.1 101 (“Switching Protocol”)
The host has accepted a WebSocket connection.

After this is received the WebSocket connection is established, and the connection is in the OPEN

state.

The WebSocket protocol is described in RFC 6455 (See http://tools.ietf.org/html/rfc6455)

8.2 200 (“Ok”)
Operation succeeded. On GET the resulting document is the body of the message.

Entity-body: For GET requests, a representation of the resource the client requested. For other

requests, a representation of the current state of the selected resource, or a description of the

action just performed.

GISP: This is the default ok response. Use this unless 201 (“Created”) or 202 (“Accepted”) should

be used. Place the answer in JSON format in the Entity-Body.

8.3 201 (“Created”)
The server sends this status code when it creates at the client’s request.

Response headers: The Location header should contain the canonical URI to the new resource.

Entity-body: Should describe and link to the newly created resource. A representation of that

resource is acceptable, if you use the Location header to tell the client where the resource actually

is.

GISP: Use this answer when the user uses POST to create a child node (e.g. creating a

Measurement). Return the URI for the child node

8.4 202 (“Accepted”)
The client’s request can’t or won’t be handled in real time. It will be processed later

The pending request should be exposed as a resource so the client can check up on it later.

Response header: The pending request should be exposed as a resource so the client can check up

on it later. The Location header can contain the URI to this resource.

Entity-body: If there’s no way for the client to check up on the request later, at least give an

estimate of when the request will be processed.

GISP: Use this answer when the user uses POST to create a child node for something that is not

completed at once. The user should be able to wait for completion by accessing the child node:

GET <child URI>?action=WaitForCompletion

8.5 400 (“Bad Request”)
This is the generic client-side error status, used when no other 4xx error code is appropriate. It’s

commonly used when the client submits a representation along with a PUT or POST request, and the

representation is in the right format, but it doesn’t make any sense.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 35 of 36 CONFIDENTIAL

Entity-body: May contain a document describing why the server thinks there’s a client-side error.

GISP: Use this to report a malformed or otherwise bad request. Use one of other 4xx messages

instead if one is applicable.

8.6 401 (“Unauthorized”)
The client tried to operate on a protected resource without providing the proper authentication

credentials.

If the server doesn’t want to acknowledge the existence of the resource to unauthorized users, it

may lie and send a 404 (“Not Found”) instead of a 401.

Response headers: The WWW-Authenticate header describes what kind of authentication the server

will accept.

Entity-body: A document describing the failure: why the credentials (if any were provided) were

rejected, and what credentials would be accepted. If the end user can get credentials by signing up

on a web site, or creating a “user account” resource, a link to the sign up URI is useful.

GISP: Use this to tell the user that he isn’t authorized to perform the action. Examples of use: The

user tries to change the setup, but is not the controlling client.

8.7 403 (“Forbidden”)
The client’s request is formed correctly, but the server doesn’t want to carry it out. This is not

merely a case of insufficient credentials: that would be 401 (“Unauthorized”). This is more like a

resource that is only accessible at certain times, or from a certain IP address.

Entity-body: Optionally, a document describing why the request was denied.

GISP: Use this if the state of the device forbids execution of the request. Example: Requesting a

TEDS detect while measuring.

8.8 404 (“Not Found”)
404 indicates that the server can’t map the client’s URI to a resource.

GISP: Use this response if the user specifies an URI that we do not recognize.

8.9 405 (“Method Not Allowed”)
The client tried to use an HTTP method that this resource doesn’t support. For instance, a read-only

resource may support only GET and HEAD. Another resource may allow GET and POST, but not PUT

and DELETE.

Response headers: The Allow header lists the HTTP methods that this resource does support. The

following is a sample header:

 Allow: GET, POST

GISP: Use if the client uses a method that is not supported at this resource.

8.10 408 (“Request Timeout”)
If an HTTP client opens a connection to the server, but never sends a request (or never sends the

blank line that signals the end of the request), the server should eventually send a 408 response

code and close the connection.

GISP: I assume that the web server handles this.

File DD17323.doc Brüel & Kjær A/S

Last saved 5/21/2013 20:05:00 Design Document
Author HELGERAS;KKLUNDSGAA;KONS_LMJORGENSEN;KELK Internal document
Page 36 of 36 CONFIDENTIAL

8.11 409 (“Conflict”)
This is sent when the client tries to perform an operation that would leave one or more resources in

an inconsistent state.

Response headers: If the conflict is caused by the existence of some other resource, the Location

header should point to the URI of that resource: that is, the source of the conflict.

Entity-body: Should contain a document that describes the conflicts, so that the user can resolve

them if possible.

GISP: Use this in cases where a constraint between properties would be broken.

8.12 411 (“Length Required”)
Content-Length header field expected but wasn’t given.

GISP: Probably handled by the web server.

8.13 413 (“Request Entity Too Large”)
The request is too large for the server to handle.

GISP: Probably handled by the web server.

8.14 415 (“Unsupported Media Type”)
The server sends this status code when the client sends a representation in a media type it doesn’t

understand.

GISP: We us the media type field for protocol versioning, so use this error code if the device does

not support the requested version. Be sure to place a description in the entity body.

8.15 500 (“Internal Server Error”)
This is the generic server error response. Most web frameworks send this status code if they run

request handler code that raises an exception.

GISP: There is a serious problem on the device. There is a text in the body describing the problem.

This should be used for non-recoverable errors such as asserts etc.

8.16 503 (“Service Unavailable”)
This status code means that the HTTP server is up, but the underlying web service isn’t working

properly. The most likely cause is resource starvation: Too many requests are coming in at once for

the service to handle them all.

Since repeated client requests are probably what’s causing the problem, the HTTP server always has

the option of refusing to accept a client request, rather than accepting it only to send a 503

response.

GISP: We may need to deny requests from monitoring clients if the device is very busy serving the

controlling client. This answer can be used in this case.

A-60
APPENDIX D. DESIGN OF WEB-XI COMMUNICATIONS PROTOCOL FOR G2

DEVICES

IMM-B.Eng-2013-4
s042067

APPENDIX E. TOKENS USED IN THE JSON TOKENIZER A-61

Appendix E

Tokens used in the JSON tokenizer

The following is a description of the token types identified by the JSON tokenizer
described in Section 3.5.2. They are all part of the enum JSONToken_t

Each token type is presented with valid predecessors and successors, as well as
information regarding any value they may return.

JSONToken_Start – Beginning of JSON
Used as initial state when parsing begins.

Valid predecessors None
Valid successors JSONToken_BrL
Value No value associated

JSONToken_BrL – Left bracket ({)
The token signals the beginning of a JSON object.

Valid predecessors JSONToken_Start, JSONToken_Colon
Valid successors JSONToken_BrR, JSONToken_String
Value No value associated

JSONToken_BrR – Right bracket (})
Signals the end of a JSON object.

IMM-B.Eng-2013-4
s042067

A-62 APPENDIX E. TOKENS USED IN THE JSON TOKENIZER

Valid predecessors JSONToken_BrL, JSONToken_BrR, JSONToken_SqR,
JSONToken_JSON, JSONToken_String, JSONToken_Int,
JSONToken_Float, JSONToken_True, JSONToken_False,
JSONToken_Null

Valid successors JSONToken_BrR, JSONToken_Comma
Value No value associated.

JSONToken_SqL – Left square bracket ([)
Starts an array of values. From this point the parser should be in an array building
state.

Valid predecessors JSONToken_Colon
Valid successors JSONToken_SqR, JSONToken_Int, JSONToken_Float
Value No value associated.

JSONToken_SqR – Right square bracket (])
Ends an array of values. The array parsed has been built, and the value should be set
on the selected node. From this point the parser should return to normal mode.

Valid predecessors JSONToken_Int, JSONToken_Float
Valid successors JSONToken_BrR, JSONToken_SqL, JSONToken_Comma
Value The array of values built since JSONToken_SqL.

JSONToken_Colon – Colon (:)
Delimiter between an identifier (string, node name) and a value.

Valid predecessors JSONToken_String
Valid successors JSONToken_BrL, JSONToken_SqL, JSONToken_JSON,

JSONToken_String, JSONToken_Int, JSONToken_Float,
JSONToken_True, JSONToken_False, JSONToken_Null

Value No value associated.

JSONToken_Comma – Comma (,)
Separator between name:value pairs and between values in an array.

Valid predecessors JSONToken_BrR, JSONToken_SqR, JSONToken_JSON,
JSONToken_String, JSONToken_Int, JSONToken_Float,
JSONToken_True, JSONToken_False, JSONToken_Null

Valid successors JSONToken_String, JSONToken_Int, JSONToken_Float
Value No value associated.

IMM-B.Eng-2013-4
s042067

APPENDIX E. TOKENS USED IN THE JSON TOKENIZER A-63

JSONToken_String – Character string ("some string")
A sequence of ASCII characters (including escaped characters). Recognized by quotes
before and after the string value. Used as an identifier and as a value.

Valid predecessors JSONToken_BrL, JSONToken_Comma, JSONToken_Colon
Valid successors JSONToken_BrR, JSONToken_Comma, JSONToken_Colon
Value Character string without the quotes.

JSONToken_JSON – JSON data ({"name1":value1,"name2":value2})
A JSON structure in a string. This token type only applies when a node in the cache
is of the JSON type.

Valid predecessors JSONToken_Colon
Valid successors JSONToken_BrR, JSONToken_Comma
Value Character string with the begin and end brackets.

JSONToken_Int – Integer (42)
Positive or negative number. If the parser is in array building mode, the integer is the
next (or first) value in the array, otherwise it is a scalar.

Valid predecessors JSONToken_SqL, JSONToken_Comma, JSONToken_Colon
Valid successors JSONToken_BrR, JSONToken_SqR, JSONToken_Comma
Value The numeric value of the JSON value.

JSONToken_Float – Float (3.141)
Positive or negative floating point number. If the parser is in array building mode, the
float is the next (or first) value in the array, otherwise it is a scalar. An integer JSON
value may be parsed as a float if the selected node is a float type.

Valid predecessors JSONToken_SqL, JSONToken_Comma, JSONToken_Colon
Valid successors JSONToken_BrR, JSONToken_SqR, JSONToken_Comma
Value The floating point value of the JSON value.

JSONToken_True – Boolean true (true)
Valid predecessors JSONToken_Colon
Valid successors JSONToken_BrR, JSONToken_Comma
Value TRUE (1)

JSONToken_False – Boolean False (false)
Valid predecessors JSONToken_Colon
Valid successors JSONToken_BrR, JSONToken_Comma
Value FALSE (0)

IMM-B.Eng-2013-4
s042067

A-64 APPENDIX E. TOKENS USED IN THE JSON TOKENIZER

JSONToken_Null – Null value (null)
The null value type is only set on branch nodes, and it may be used to set an empty
tree on a JSON node.

Valid predecessors JSONToken_Colon
Valid successors JSONToken_BrR, JSONToken_Comma
Value NULL

IMM-B.Eng-2013-4
s042067

	Introduction
	About Brüel & Kjær
	The Instrumentation group

	LAN-XI hardware
	LAN-XI G2
	Web-XI
	Architecture
	The ARM CPU
	Web server
	Parser
	Cache

	Analysis
	Web-XI
	REST
	JSON
	Object model
	Protocol
	Versioning
	Client-side caching
	HTTP status

	Project definition
	Prototype
	PC implementation
	Use cases

	Requirements
	Environment
	Web-XI parser
	Risks

	ISAPI
	Entry point
	EXTENSION_CONTROL_BLOCK
	Developing the ISAPI extension

	Web server
	WebXiCache
	Structure
	WebXiCache methods
	Use
	Shortcomings

	DSP Simulator

	Design
	Overview
	Web server
	Parsing an HTTP request into an EXTENSION_CONTROL_BLOCK
	Getting full request data from the client
	HTTP response

	Parser entry
	Find the requested node
	Parse query fields
	Parse HTTP Method

	Parsing GET requests
	Formatting value output

	Parsing PUT requests
	Tokens
	Tokenizer
	Parsing JSON

	Implementation
	General implementation strategies
	Visual Studio solution
	Code documentation
	Code structure

	Request path to node
	GET handler
	Tokenizer
	PUT handler

	Test
	Internal tests
	Tests implemented

	External request tests
	Test sequence
	Outcome

	Misc. tests

	Process
	Perspective
	Implementing the parser on the ARM CPU
	Future development
	New potentials
	Embedded development
	Hardware development
	Software development

	Conclusion
	Glossary
	References
	Appendix
	Compiling and running the parser
	WebXiParser solution
	ParserTest
	TestServer

	WebXiParserTest solution

	Initial project considerations
	Scope
	Requirements
	Additional tasks
	Process thoughts

	Internship report
	Design of Web-XI Communications Protocol for G2 devices
	Tokens used in the JSON tokenizer

