
Spirometry in young children 2-7

Måling af vejrtrækningskapacitet hos mindre børn, ved brug af
biofeedback stimulering.

Respiratory measurements of young children with asthma, cystic
fibrosis and other lunge diseases, using visual feedback stimulation.

Michael Kell Jensen s051154
Vejledere: Finn Gustafsson, Steen Silberg

DTU IT-Diploma Final exam. IMM-B.Eng-2013-3

i

Abstract

Dansk - Danish

Formålet med projektet er at indfange måledata om lungefunktionen hos astma-
og Lunge patienter, målrettet til børn i alderen 2-7 år.

At forbedre kvaliteten af undersøgelses udførslen når børnene er på hospitalet
for at blive undersøgt og sikre at man opnår en brugbar undersøgelse for den
månedlige undersøgelse.

At forbedre målingerne gennem biofeedback i form af et spil der udføres under
undersøgelsen og derved opnå en bedre patient historik om sygdommens forløb
og diagnosticering.

Abstract

English - Engelsk
The goal of this project is to retain measurement data of the lung functionality
in Asthma and Lung Patients, targeted at children in the age range of 2-7 years.

Improving the quality of the examination execution at the time the children is
at the hopsital to be examined and ensure a useful examination result for the
periodic monthly examination.

To improve measurements through biofeedback i the form of a game that is played
during the examination and by that, achieve better patient history data about
the disease progression and betters diagnostics for the patient.

Contents

Contents ii

Introduction ix
project Introduction . ix
Motivation . ix
Issues . x
Ideas . x
Goals . x
Proposed solution . x
Project call name: Spiro . x

I Analysis 1

1 Terminology & concepts 3
1.1 Spirometry & Android terminology . 4
1.2 Project terminology . 5

2 Time plan 7
2.1 Initial planning elements . 8
2.2 Revised plan . 10
2.3 Plan and time plan discussion . 12
2.4 Requirements from requestors RH . 13

2.4.1 Revised requirements . 14
2.4.2 Additional requirements . 14

3 Analysis design Methodologies and tools 15
3.1 Analysis Methods . 15

3.1.1 Analysis, design and planning . 16
3.2 Development Tools chosen . 17
3.3 Technology evaluation . 17

ii

CONTENTS iii

3.3.1 Choice of game/display device . 17
3.3.2 Choice of tablet . 18

3.4 Libraries for android: Charting Graphics Game frameworks, Android API . . 19
3.4.1 Data persistence, storage and exchange 19
3.4.2 Game visualization technology . 20

Descriptions . 20
Evaluation . 20

3.4.3 Game libraries . 21
Game libraries evaluation . 21
Decision . 21
Charts API’s & libraries . 21

3.4.4 Android Charting decision . 21
3.5 Table of chosen technologies . 22
3.6 The RH environment . 23

3.6.1 Technical setup of spirometer measurement system 23
3.6.2 Development setup . 26

3.7 Patient Examination observed protocol . 27
3.8 Use cases and actors . 28

3.8.1 Actors . 28
3.8.2 Use case diagram . 29
3.8.3 Use case descriptions : S1:Patient Examination system 29

3.9 Use cases & actors S2:SpiroGame . 34
3.9.1 Actors S2 . 34
3.9.2 System Observer actor . 35
3.9.3 Use cases S2: SpiroGame . 35

3.10 Games scenarios . 38
3.10.1 Game interactions . 38
3.10.2 Questions for game and interactions 39

4 Project scope: System to be developed 41
4.1 Project formulation . 41
4.2 Scope of project . 42

4.2.1 Parallel tasks . 42
4.2.2 Delimiting . 42
4.2.3 Scope . 43
4.2.4 Integration with external systems . 43

4.3 Splitting up project in system parts . 43
4.3.1 Component block diagram . 45

4.4 Revised requirements . 46
4.5 Domain model . 48
4.6 Domain class diagrams . 48

5 Android concepts 53
5.1 Android: Activity - Intent - Application . 53

5.1.1 Activity . 53

iv CONTENTS

5.1.2 Intents . 55
Implicit Intent . 56
Explicit intent . 56

5.1.3 Intent Filters . 57
5.2 Activity life cycle . 58
5.3 Manifest file : manifest.xml . 60
5.4 Android Structure, Assets resources and layouts 62

5.4.1 Assets . 63
5.4.2 Resources . 65
5.4.3 XML layout to view instance . 66

5.5 The Android Pattern . 66

II Design 69

6 Design 71
6.1 System overview . 71
6.2 User interface & Mockups . 71

6.2.1 Mockup drawings . 71
6.3 Screen navigation diagram . 73

6.3.1 Basic navigation flow concept . 73
6.3.2 Mockup lists . 74

6.4 Separating and isolating system parts . 75
6.4.1 Game and examination separation . 76

6.5 Generic and specific game concepts . 76
6.6 Input and conversion . 78

6.6.1 Limits for patients: patient configuration 80
6.6.2 Events state and cues . 82
6.6.3 Input data game event and the System observer 83

6.7 Design architecture . 86
6.7.1 Architectural requirements . 86

6.8 S1:Spiro Patient Examination System . 89
6.9 Data modelling . 91
6.10 Data . 91

6.10.1 First table layout sketch . 91
6.10.2 database 1. Normal form . 92
6.10.3 database 2. Normal form . 92
6.10.4 Database 3. normal form . 94

6.11 Game design : S2:SpiroGame . 95
6.12 Game flow descriptions . 97
6.13 Game events and state . 98
6.14 Screen division . 98
6.15 Prototype 1 description: SpyroFox . 99
6.16 Prototype 2 description:Spiro PaperBoat . 99

CONTENTS v

IIIImplementation & Test 101

7 Implementation intro 103
7.1 First prototype . 103

7.1.1 Prototype graphics bitmaps & and animation 104
7.1.2 Collision . 106

7.2 DataInput Generator description . 108
7.3 Implementation issues . 110

7.3.1 Scrolling . 110
7.3.2 Active game objects . 110
7.3.3 The GameFieldMap . 111
7.3.4 Setup game patient constraints . 112
7.3.5 Updating game state . 113
7.3.6 Game View . 114
7.3.7 Game Init . 115
7.3.8 Refactoring . 115
7.3.9 Timing and events . 117
7.3.10 Data feed . 117
7.3.11 Performance and architecture . 117
7.3.12 Implementation status . 117

7.4 Test . 119
7.4.1 Test1: Collision test . 119
7.4.2 Test2: Active inactive list test . 120
7.4.3 Graphics artifacts error and stars . 121

8 Evaluation 123
8.1 Planning . 123
8.2 Problems during the project and workarounds 124
8.3 Project goals . 124
8.4 Extensions . 124
8.5 Conclusion . 125

A Terminology & concepts 127
A.1 Spirometry terminology System Glossary . 128
A.2 Android Terminology . 129
A.3 Project terminology . 130

B Risk assessment 131

C Use case collection : Patient Examination system S1 : Game System S2 135
C.1 Actors & use cases . 136

C.1.1 Actors . 136
C.1.2 Use case diagram . 138
C.1.3 Use case descriptions . 138
C.1.4 Use case candidate list . 146

C.2 Use case tech memos . 146

vi CONTENTS

C.3 Requirements note, physical . 152

D Generator S3: simulated input data diagrams 155
D.1 Generator modelling . 155

E Generator and generator design 157
E.1 Generator design . 157

E.1.1 randomized value point interval . 157
E.2 Generator Use cases . 158
E.3 Generator class diagram . 159

F Class responsibility descriptions 161
F.1 S1: PatientExamination System . 161

F.1.1 Examination part . 161
ExaminationData . 161
ExaminationSession . 161
ExaminationProtocol . 161

F.1.2 Patient Part . 162
Patient . 162
PatientAdministration . 162
PatientHistory . 162

F.2 S2: Spiro Game System . 162
F.2.1 InputEvent . 162
F.2.2 GameController . 162
F.2.3 GameFieldMap . 163
F.2.4 Game Objects . 163
F.2.5 GameEvents . 163
F.2.6 Cue . 163
F.2.7 GameState . 163

F.3 S3: DataInput System : Probe Measurement Part 163
F.3.1 SpirometerMeasurementDevice . 163
F.3.2 ProbeDataCalculation . 163

F.4 S1-S2-S3: DataFeeder . 164

G Selected sequence diagrams 165
G.0.1 Patient examination sequence diagrams 165
G.0.2 Game sequence diagrams . 165

H Colour styling of diagram architecture and figures 169
H.1 Colouring legends . 169

H.1.1 Spiro classification system . 169
Analyzing systems and class systems 169
Peter Coad’s classification method 170
Classification method from author:mkj 170

I Xml for patient data transfer between RH system interfaces 173

CONTENTS vii

I.1 JSON or XML . 173

J Test data 177
J.1 Test1: Collision . 177
J.2 Test2: Active inactive . 178
J.3 Entity relationship for Spiro . 180

J.3.1 Keys, candidate, primary, foreign . 180

K Research documentation 181
K.1 Tablet growth . 181
K.2 Source code and project site . 183

List of Figures 185

List of Tables 187

Index 189

Bibliography 191

Introduction

project Introduction
The project is a cooperation between the DTU Software developments department and
Rigshospitalet (RH).

The doctor Kim Gjerum and his coworkers at RigsHospitalet thought it would be of great
benefit to examine the young patients in the form of a game. Especially children in the age
range 2-7. In that way the children could play a game and at the same time complete an
examination trial. Helped by biofeedback.

The patients are each monitored for their health and disease progression/regression once each
month.

Motivation
The hospital have several games but they do not have a game for the type of examination
used for the younger children aged 2-7.

RigsHospitalet have some games already for related examinations but the authors are for
different reasons not able to/interested in developing the games further for this type of
examination.

The game with biofeedback should make it easier to make good quality examinations, because
many times an examination must run it’s course, but with no usable examination results.
This is because the children are not able to complete the examination test in a way that gives
a meaningful and correct picture of the patients current health situation and lung function.

If the patient can play a game, that unconsciously make them perform a better examination,
then there will be less waste of time and resources and importantly a better and more precise
survey of the patients health progression.

ix

x INTRODUCTION

Issues
The younger children doesn’t have a fully developed perception of how they move and react
on "input".

It is difficult to explain to the children AND make them follow the directions of the expla-
nations, even though they might fully understand the explanation, they might not be able
to translate it to the correct actions in the examination trial, breathe slower or faster or
harder or softer, have correct body posture. Timing might be lacking or delayed when to
start breathing, how much force, how fast and so on.

Ideas
The idea is to use the device to give different forms of biofeedback. Shaking, sound, colour,
light and animation. To "guide" the child to react in the proper way to satisfy the examina-
tion procedure.

Goals
The goal of the project is to make a game that helps the young children, alter their behaviour
when breathing, that makes them perform a better and more reliable examination test.

That way a patient history can be build up over time, so progression and regression of lung
function and health can be monitored reliably over time.

Proposed solution
A game prototype will be created to run on an Android tablet, The native Android API will
be used to program The game. A USB probe is acquired if possible to replace the legacy RH
system as the measuring hardware for the system.

Project call name: Spiro
The project are internally called Spiro, it is used as top-level/qualifier names, package names.

Part I

Analysis

1

Chapter 1

Terminology & concepts

3

4 CHAPTER 1. TERMINOLOGY & CONCEPTS

1.1 Spirometry & Android terminology
The Spirometry A.1 on page 128 and Android A.2 on page 129 terminology is described
in the Terminology appendix A on page 128.

1.2. PROJECT TERMINOLOGY 5

1.2 Project terminology
Terminology and concepts used in the project. The terminology might not always match the
one used in the hospital domain, or the Android terminology.

This section should make it clear what is meant in the context of this report and tries to
stay as close as possible to terminology used in Android(TM) and at Rigshospitalet (RH).

Project terminology
Spiro The internal project name Used in packages, and for the

market id
Probe The measurement device that the

patient breathes into
Examination trial, test, examination Measurement procedure of the

patients lung functionality
Patient examination System Responsible for the patient his-

tory &analysis
S1

SpiroGame System The game system that should be
able to support different game
prototypes

S2

DataInput System Representing input to game, from
the probe hardware, or from data
generator

S3

Cue (bio) feedback concept time for the patient to do X. . .
Table 1.1: Project terminology

Chapter 2

Time plan

7

8 CHAPTER 2. TIME PLAN

2.1 Initial planning elements

Time plan tasks:

1. Research project assignment, domain etc.
2. Initial planning
3. Planning concepts
4. Analysis
5. Dividing project tasks
6. Design
7. Development (Thinking about project)
8. Documentation & report
9. Implementation
10. Test
11. Project assignment

2.1.
IN

IT
IA

L
P

LA
N

N
IN

G
E

LE
M

E
N

T
S

9

Ark1

Side 1

Halfweek (½) / Week (1) W1_½ W1_1 W2_½ W2_1 W3_½ W3_1 W4_½ W4_1 W5_½ W5_1 W6_½ W6_1 W7_½ W7_1 W8_½ W8_1 W9_½ W9_1 W10_½W10_1 W11_½W11_1 W12_½W12_1

Analyse:
Interessent diskussioner 1w + 1w Møde efter projekt er færdig, med fremlæggelse etc
domæne analyse ?
Data indsamling, strukturering af informationer, 2w
Dokumentation fremskaffelse af materiale og doku. 2W
Eksperimenter og test udviklings værktøjer, android + tools 3 weeks
Undersøg Alternativer, tablets MS surface Ipad 2W

Dokumenter analyse arbejde og fundne informationer 2W
“Kunde” krav, undersøg og beskriv
System krav overført fra kundekrav

Design:
System arkitektur Mindre analyse, system arkitektur,design upfront
OOAD / UP Diagramming, documenting systems Tilgengæld samler vi op på det når vi har fået noget erfaring gennem implementering og udvikling af del systemer
System diagrams

Development: Impl. Delsystemer
Læs fra fysisk test probe Design Implement Test Analysedel ? Område med analyse først
Kontakt til usb forbindelse, læsning, Læs rå usb data from anywhere Design Implement Test
Android, læs probe data (vis data til konsol)
Android: probe signal skriv til fil
Android prg: læs probe data fil
Android prg: probe signal skriv til fil i XML format Design Implement Test
Android prg: læs probe data XML fil Design Implement Test
Usecase 5: Design Implement Test

Test data generering, til blæse simulering(fake data) Design Implement Test
Generator test data, forskelige kurvedata Design Implement Test
Prg: Generator Cos funktion, data file med data punkter fra funktion Design Implement Test
Prg: Generator Random funktion Design Implement Test
Feed generated data to plot function Design Implement Test
Vis live generator stream
Indlæs generede data, feed til GUI, data per tid(live simulering)
usecase5 Design Implement Test

Gui animationer: Design Implement Test
Gui animationer (uden brug af data blæse data simpel animation) Design Implement Test
Reaktion på gui data Design Implement Test
interaktion mellem probe data og gui elementer Design Implement Test
usecase4 Design Implement Test
usecase5 Design Implement Test

Integrer del systemer: 3 weeks Start når afhængige usecases i del systemer er klar Det bliver lidt sent, det her, kan man starte tidligere med integration af systemer, ()når de første/eller de afhængige use cases i hvert del system har en vis modenhed, har rykketca 3 uger tilbage i tid
Implementation: 3 weeks
Tests: 2 weeks

Documentation: 4 weeks @chk
Rapport skrivning @chk

Figure 2.1: Initial time plan

10 CHAPTER 2. TIME PLAN

2.2 Revised plan

2.2.
R

E
V

ISE
D

P
LA

N
11

Ark1

Side 1

Halfweek (½) / Week (1) W1_½ W1_1 W2_½ W2_1 W3_½ W3_1 W4_½ W4_1 W5_½ W5_1 W6_½ W6_1 W5_½ W7_1 W8_½ W8_1 W5_½ W9_1 W10_½ W10_1 W5_½ W11_1 W12_½ W12_1

Analyse:
Interessent diskussioner 1w + 1w Møde efter projekt er færdig, med fremlæggelse etc
domæne analyse
Data indsamling, strukturering af informationer, 2w
Dokumentation fremskaffelse af materiale og doku. 2W
Eksperimenter og test udviklings værktøjer, android + tools 3 weeks
Undersøg Alternativer, tablets MS surface Ipad 2W

Dokumenter analyse arbejde og fundne informationer 2W
“Kunde” krav, undersøg og beskriv
System krav overført fra kundekrav

Design:
System arkitektur Mindre analyse, system arkitektur,design upfront
OOAD / UP Diagramming, documenting systems Tilgengæld samler vi op på det når vi har fået noget erfaring gennem implementering og udvikling af del systemer
System diagrams

Development: Impl. Delsystemer
Læs fra fysisk test probe Design Implement Test Analysedel ? Område med analyse først
Kontakt til usb forbindelse, læsning, Læs rå usb data from anywhere Design Implement Test
Android, læs probe data (vis data til konsol)
Android: probe signal skriv til fil
Android prg: læs probe data fil
Android prg: probe signal skriv til fil i XML format Design Implement Test
Android prg: læs probe data XML fil Design Implement Test

Design Implement Test

Test data generering, til blæse simulering(fake data) Design Implement Test
Generator test data, forskelige kurvedata Design Implement Test
Prg: Generator Cos funktion, data file med data punkter fra funktion Design Implement Test
Prg: Generator Random funktion Design Implement Test
Feed generated data to plot function Design Implement Test
Vis live generator stream
Indlæs generede data, feed til GUI, data per tid(live simulering) Design Implement Test

Prototype1:game Design Implement Test
Grafik diaplay: SurfaceView implementation, tråde etc, Design Implement Test
Tegninger , sprites bitmaps Design Implement Test
Collision detection Design Implement Test
Application UserInterface Design Implement Test

Design Implement Test

Gui animationer: Design Implement Test
Gui animationer (uden brug af data blæse data simpel animation) Design Implement Test
Reaktion på gui data Design Implement Test
interaktion mellem probe data og gui elementer Design Implement Test
Visualization visual help in movements Design Implement Test
usecase5 Design Implement Test

Integrer del systemer: 3 weeks Start når afhængige usecases i del systemer er klar Det bliver lidt sent, det her, kan man starte tidligere med integration af systemer, ()når de første/eller de afhængige
Implementation: 3 weeks use cases i hvert del system har en vis modenhed, har rykketca 3 uger tilbage i tid
Tests: 2 weeks

Documentation: 4 weeks @chk
Rapport skrivning @chk

Figure 2.2: Revised time plan

12 CHAPTER 2. TIME PLAN

The revised time plan has added prototype tasks and added tasks conceived from the project
scope discussion. 4 on page 41 First the plan tasks was planned to be sub tasks for
completing use cases but instead the tasks was derived from the systems view of S1-S2-S3
and the subsystems they were divided into. 6.1 on page 71

2.3 Plan and time plan discussion
The revised plan is updated with the new task issues. The set duration of 1 sprint of 2 weeks
is marked on the revised time line. 2.2 on page 10

At the start of the project the work flow with sprints of 2 weeks wasn’t decided on, but
it turned out to work very well, it matched the work flow that was "naturally" used when
working efficiently. In Sprint 3 it was formally introduced. It worked very well with a
relatively short time period using one subject focus. Before it was introduced there was a
tendency of to many focus items at the same time.

2.4. REQUIREMENTS FROM REQUESTORS RH 13

2.4 Requirements from requestors RH
Nr: Requirement Comment priority
2) Biofeedback in a game/visual

feedback, that helps small
children age 2-7, to respirate in a
way that creates correct
measurement results.

Test 1: Breath in and out with a
rhythmical frequency about 35 respi-
rations per minute(in and out). Test
2: Expire (blow) and keep pressure
continually (6 sec).

1

3) Getting more precise and
consistent measurements NF

Measurements of patient lung func-
tionality sometimes gives unusable
results, because the patient breathes
improperly. This leads to unusable
results. In those cases it can be nec-
essary to wait until next appoint-
ment date for the patient. Which
is about one month, and that breaks
the patient history.

1

1) Collect live data feedback from
probe and visualize in real time.

2

4) Game to be distributed via
Android/IPad market etc.

2

5) The system must function with
different measurement
systems(max lung capacity CT.).
There are 4 different
measurement systems Airtight
box test. Open door box test, for
children able to complete it. Bike
test(test under physical strain).
CT Scanner Max/Min lung
capacity. NF

The Examination types and proto-
cols look much the same, the inter-
actions when playing can be very dif-
ferent.

3

6) Tiny mouthpiece for mobile
phone, used for home testing

The mouthpiece ensures a specific
distance to the microphone, so each
measurement has the same param-
eters. If the distance to the mi-
crophone changed all the time for
each test, the measurements would
be highly unstable. The mouthpiece
should also reduce turbulence. C.3

5

Requirement priority table page 154 : Non-Functional requirement NF
Table 2.1: Initial requirement list

14 CHAPTER 2. TIME PLAN

2.4.1 Revised requirements

The revised requirements are based on the initial requirements gathered from the require-
ments from the hospital and our project "requirements" from the developer team (Author:mkj
+ Counsellors). This is revised during the project, learning from the experience and better
understanding of the project issues that is obtained. The revised requirements is listed in
the project scope chapter 4 on page 41

This project is run as a development pilot project and doesn’t need to live up to the strict
requirements and certification that might otherwise be needed in an public service environ-
ment like that on Rigshospitalet Some of the needed extra requirement for that can be seen
in the section additional requirements.

Revised requirements with priorities set is described in the section: Project scope, formulation
and delimiting 4.2.2 on page 42

2.4.2 Additional requirements

At Rigshospitalet there are additional requirements.

1. Storing patient history
2. Analysing patient examination test results(numbers + graphs)
3. Data transfer from system to system(Patient Information, cooperation)
4. Patient data security ("Data tilsynet" laws)
5. Data security, policies, technologies
6. Safe storage of patient data. Encryption, sand boxing
7. Patient interaction support "research"

a) Audio Sound, Music
b) Visuals
c) Light
d) Animations
e) Haptic feedback(Shaking)

The requirements developed against in the project scope is discussed in chapter 4 on page
41 and section 4.2.2 on page 42.

Chapter 3

Analysis design Methodologies and tools

3.1 Analysis Methods

In this chapter the project process and method is described. How steps/iterations are planned.
and how the work and resources are structured.

• Use of a subset of Unified Process artifacts.

– Class diagrams
– Use cases
– Sequence diagrams
– ..

• Scrum Sprints

– Product Backlog - Set of tasks for the project scope to be complete
– Sprint Backlog - The set of tasks chosen from the focus area tasks, needed to

complete the sprint goal
– Sprint goal - The focus of the sprint

A scrum sprint can be seen above, the project uses a slightly different terminology. The table
above the image show the mapping to scrum terminology. 3.1 on page 15

15

16 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

Figure 3.1: Scrum sprint

3.1.1 Analysis, design and planning

The project is developed using object oriented analysis & design and Unified Process artifacts.
We are working with small Scrum like sprints for each iteration.

For each iteration the main focus area is defined for that sprint. The main focus is then
divided up into parts or subsystems. Each part is divided into small tasks that can be ticked
off to keep track of progress. After each sprint, important missing items/features are written
down for the next sprint with the same focus. This functions much like the backlog in Scrum,
except that we might remove tasks in a focus area if time constraints are considered to get
into play.

Punch small holes to breakthrough with functionality: We try to make small break-
throughs to get small pools of working functionality in small development steps.

An iterations focus can be in the following areas:

1. Research
2. Design (Design in the abstract sense of constructing a project)
3. Documentation
4. Implementation & Test

Sprint focus:

3.2. DEVELOPMENT TOOLS CHOSEN 17

Sprint1: focus area: Implementation: Idea:Status , gain new knowledge Implement User
interface and model Android concepts: Parts: Android UI classes, Android events.

Sprint2: Focus: Analysis & design Idea: model domain, and system Find Domain ob-
jects, model DM, requirements and use cases Content: Analysis RH domain and language,
use cases use case diagrams+descriptions, requirements revised.

Sprint3: Focus: Implement prototype

Sprint4: Focus report

Sprint5: Focus Implement

Sprint6: Focus : Tie ends together, report documentation.

3.2 Development Tools chosen

We use the android ADT Eclipse plugin, that is developed by Google that stands behind
Android.

Our CASE tool of choice is Visual paradigm. Which is a CASE tool with a large set of
analysis and design features, diagramming and much more.

Eclipse is used because of the plugin from Google. Frankly it is used because it is easier to
use it than not to use it. but unfortunately there are a lot of inconsistencies in the tool. and
awkward inconsistently changing behaviour.

1. Android tablet technology
2. Visual paradigm CASE tool for analysis & design
3. Eclipse + ADT plugin

3.3 Technology evaluation

3.3.1 Choice of game/display device

Tablet availability: tablets are a technology that are growing steadily and the availability
will probably be better as time goes on for a considerable number of years, so in that way it
is a very safe technology for the future.

18 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

Tablets Features and capabilities comparison table
Feature / mea-
sure

IPadTM MS SurfaceTM AndroidTM

Availability: High Medium/coming High
support: Great Medium Good/(great com-

munity)
libraries good Coming Great
tool support: Great OK good
USB Support
Host/Accessory:

Great NA Varying(Android
V3.1->good)

Programming re-
sources

Great Coming GREAT

Enhancements
and flexibility:

good NA GREAT

platform exten-
sions:

You got what you got NA Large open commu-
nity with projects

Availability: Great Good Great
Language: Object-C ? Java

Table 3.1: Tablets features and capabilities comparison table

Tablets of size about 10" or above are likely to be good for an immersive experience for games
and visualization.

Any tablet could be chosen and be a good candidate.

3.3.2 Choice of tablet

For the project we have chosen the android tablet. For the following reasons.

1. Along with the IPad it has been on the market for some time and has matured a bit.

2. There is a large community around, developing for android and many applications.

3. Personal interest in open source development and communities makes it a good choice for
the project.

4. The Java language along with the Android API ensures that the framework is large and
of robust quality.

Statistics for tablet growth can be seen in the appendix

K.1 on page 181

As we can see the market share is shifting for the IPad and Android tablets to be close to
each other in market share.

3.4. LIBRARIES FOR ANDROID: CHARTING GRAPHICS GAME FRAMEWORKS,
ANDROID API 19

Both Apple and Android total devices is estimated to have more than a < 1
2
billion units out.

Most importantly we can gather that tablets is estimated to rise to almost double figures in
2016. Other sources varies a lot, but all predict large growth in tablets.

3.4 Libraries for android: Charting Graphics Game
frameworks, Android API

IBM (2010)

3.4.1 Data persistence, storage and exchange

To store the data for the test we have a few different solutions.

XML, JSON, SQLite.

XML is the "most used" and commonplace, JSON is a simpler more compact way to structure
the data.

Android have large support for XML there are a lot of API’s for manipulating XML, docu-
mentation seems to be a bit lacking, especially since many of the API’s has several ways of
doing the same thing. Which is confusing since most XML tasks are pretty basic..

It is not documented why one approach is used instead of another, in several of the most
frequently used libraries, Dom4J XmlPullparser, KxmPullParser, Sax Parser.

JSON is frequently used instead of XML in web services. SOA, Service oriented Architectures
and similar technologies. and is often preferred in the python community.

XML is used in many many places for many types of data exchange. Among other the
danish public institutes use it for interchange between their multitude of systems. SKAT.dk,
exchange between tax departments f.ex. Hospitals use it to communicate to other public
institutions and to connect different IT system together.

SQLite is used for saving data on android and have inbuilt support to make it easy to
manipulate data to and from an SQLite database.

Data storage for android
Feature / measure XML JSON SQLite
API real world us-
age

Extremely high Good Good

Size (for transfer) Large Small Large / inflexible
Exchange capabil-
ity

Fantastic Good not build with ex-
change in mind

Library manipula-
tion support

Great OK Great

Table 3.2: Data Storage & persistence

20 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

SQLite is chosen for saving data, because of it’s ease of use on the Android systems.

XML would be the best choose for a genuine hospital product. Because it is used for many
data exchange tasks. If the system later needs to integrate with other systems at Righospitalet
or other systems for example in the public service, XML would be the exchange technology
of choose.

3.4.2 Game visualization technology

Descriptions

Canvas and View:

Views is the elements used to make up user interfaces. For that reason it is not very light
weight. Because of all the functionality attached to these visual elements. Also the view "by
default" are running in the application main thread also known as the UI thread. UI thread,
in Android description ?? on page ??. All views are drawn upon the canvas and all views
have rectangle shaped boundaries. The Views are placed "inside" a layout, and the smallest
unit of screen update is the bounding rectangle of the view.

SurfaceView and Canvas: SurfaceView is a more "intelligent" version of the standard
views and canvas. It knows more about which part of the screen is updated, so a view that
changes partly doesn’t have to be completely updated. The SurfaceView runs in it’s own
thread.

?? on page ??

OpenGL Java API

Has almost all capabilities of the OpenGL lib’s. Exposed through an relatively easy to use
Java API.

there is some setup code to be included, that makes it’s ease of use less than using the view
and SurfaceView.

Renderscript RenderScript are C scripts written to be executed from the android java code.
it is OpenGL code in C. And can be used to optimize to a specific architecture and GPU.
this off course makes it very specialized and might not be needed but for the most demanding
applications of graphics.

Evaluation

It was decided to use SurfaceView as implementation API since it is close to standard UI
android programming. But has better performance, because of running in its own thread.
And more "intelligent" partial screen update compared to standard Canvas and view use.

LibGDX is the most extensive framework of high quality. It is a collection of frameworks, for
sound, graphics, physics engine. etcetera. LibGDX (2013) Box2D (2013) OpenAL (2013)
OpenGL (2013)

3.4. LIBRARIES FOR ANDROID: CHARTING GRAPHICS GAME FRAMEWORKS,
ANDROID API 21

Game Visualization technology
Game Visual-
ization

Canvas View SurfaceView OpenGL
(Java API)

Renderscript

Ease of use: Extremely high High OK bad
Speed OK Good Great / acceler-

ated
GREAT

Capabilities not so good OK Great great for it’s
purpose

API ma-
nipulation
support

Great Great Great not so good

Figure 3.2: Game Visualization technology

3.4.3 Game libraries
Graphics libraries & frameworks

Library/ Frame-
work

LibGDX AppInventor SurfaceView An-
droid Graphics
API

Ease of use: High Very high High, using knowl-
edge from standard
android program-
ming

Performance Great (OpenGL behind) OK Good
Music & sound
support

Great OK Supported via An-
droid sound API

Figure 3.3: Graphics and Game libraries

Game libraries evaluation

LibGDX. Interesting libraries, where all parts of games music sound graphics, etcetera is
gathered through one cohesive Framework & API’s. Has very high performance. it uses
OpenGL for graphics, and whole set of well known longtime supported libraries, OpenAL,
OpenGL. Java lightweight game framework LWJGL, Box2D. and more.

Decision

The decision is to use the native SurfaceView framework with bitmap graphics. That way
we can use our previous known Android Java API’s and libraries.

Charts API’s & libraries

3.4.4 Android Charting decision

Android API for charting is chosen for initial simple charting. Chosen because of the famil-
iarity with the Android API.

22 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

Charting
Library/
Framework

AndroidChart AiChart ChartDroid Android Can-
vas view API

Free / Open
source:

Yes/Yes LGPL 150$/No Yes/Apache Li-
cense 2.0

Yes/User space:
Apache License
2.0, Kernel
& internals:
ASL2.0

Clickable
parts

Yes Yes no need implemen-
tation

Live updating Yes Yes Maybe/not
documented

needs imple-
mentation

Language JavaScript Java Java Library
and Android
Intent based

Android API

Figure 3.4: Chart API & Libraries

The best library choice is evaluated to be AChartEngine.

AChartEngine:

1. it is free AND open Source 2. It has large selection of different charts 3. it has documented
live update of data

If needs arise for more than very simple charting this is the library of choice. AChartEngine
(2013)

3.5 Table of chosen technologies

3.6. THE RH ENVIRONMENT 23

3.6 The RH environment

3.6.1 Technical setup of spirometer measurement system

1 2

3 4

5
6

7

8

Figure 3.5: Visual elements of the RH measurement system

24 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

1

The PC monitor. The games
are displayed for the open
box test The examination
is started from the screen,
Flow, Volume, and rhythm
can be seen

2
the airtight box for making
the test, there is a weight
sensor in the chair

3
The cold test box, for test-
ing with provoked asthma
symptoms

4

The measurement device,
what we call the probe, the
patient breathes into a 1
time mouthpiece attached
to the probe, the airflow is
filtered to get a laminar flow
before it passes the measure-
ment sensors

5

Small screen attached to a
long metal stick so it can
reach into a CT scanner for
max/min volume capacity
measurements

6
The Jaeger measurement
instrument, used for calcu-
lating the flows volume, etc.

7

The laptop for access to
measurements for the CT
scan examination, and the
cycling examination, also
the respiration probe with a
small Jaeger box

8
The apparatus for measuring
weight and height, in the
beginning of the examination

In the top figure we can see the legacy pin outs for the hospital. The hospital use the 37, 15
and 9 pin.

The bottom schematics we can see the current system as it is at Rigshospitalet, the system
box outlines the components and functionality that the tablet will replace. The connectors
should all be considered outside the systembox.

The USB converter point is where the placement of an adapter or a conversion plug can be
placed. IT is possible to only create one converter and that way connect with all the RH
examination systems described in the line drawing of the system.

3.6. THE RH ENVIRONMENT 25

Figure 3.6: Connectors

Figure 3.7: Line drawing of the Spirometry measurement system, current system

26 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

3.6.2 Development setup

Figure 3.8: The project development setup: Tablet - SpiroBank Spirometer with USB
connection(Blue device), and OTG cable connection(Yellow device)

The development setup consists of a spirometer SpiroBank G, Android Galaxy tablet v.1.
And OTG cable to enable the USB Device host and make the spirometer an accessory device
controlled by the tablet.

SpiroBank G: the white tube is where the patient breathes into. Several different examination
types can be chosen. The OTG cable connects a pin in the connector attaching to the tablet
that enables the USB Host device controller(The tablet is host for the SpiroBank device and
controls the USB connection and power).

The development setup makes us able to work independently of the hospitals equipment.
Unfortunately this probe doesn’t work with the tablet because it has a USB version 1.0.
Precisely this makes it incompatible with the tablet. Any other USB version should work,
1.1 2.0 3.0. The Android USB controller and USB connection 1.0 has an undocumented
incompatibility.

The Spirometer can’t be accessed from the tablet so we cannot get a live stream. Also it
seems the live stream data are not recorded on the SpiroBank device, only the calculated

3.7. PATIENT EXAMINATION OBSERVED PROTOCOL 27

figures. This mean that another spirometer device is needed to test live stream and that we
need to use the data generator.

The spirometer can be used for testing to get a feel for the examination procedure. So it can
be used for helping with game concepts.

The Spirometer is sponsored from Maribo Medico. http://www.maribomedico.dk/
http://webshop.maribomedico.dk/en/spirometry-15/mir-spirobank-g-68.html

3.7 Patient Examination observed protocol
An informal protocol description derived after observing several tests at the hospital, and
after talking to nurses and doctors.

Informal examination protocol:

• step1: patient and follower(Parent) is arriving,
Examination supervisor/nurse gets ready.
• step2: patient is led/coming into the the examination room, and are weighted (Weight)

and measured in height(Height). Age and birthday is noted.
• step3: The equipment is readied, new clean tube is put on the probe.

Patients are instructed. System is readied(button click on test type)
• step4: The patient executes the test(test observed was the open box test,

where the patient must keep the airflow steady)
• step5: The test is executed several times, the difficulty is adjusted,

difficulty is how hard the patient must exhale to progress.
• step6: the Examination session is ended, the patient is offered a toy,

goes to the waiting room.
• step7: A doctor comes after the test and talks with the patient and

relatives about the examination and treatment.
Table 3.3: Informal examination protocol

http://www.maribomedico.dk/
http://webshop.maribomedico.dk/en/spirometry-15/mir-spirobank-g-68.html

28 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

3.8 Use cases and actors

3.8.1 Actors

Actor: Test person/Patient
Description: The patient that are about to be tested and measured.
Goal: To measure the current state of lung function/health and to add that to

a data collection, so that progress can be followed. Creating a history of
health progression/regression.

Actor: Supervisor
Description: The doctor or nurse, that supervises the test, initializes the machine,

instructs the test person and observes that the test is valid, useful and
done correct.

Goal: To make it easier to "instruct" or "guide" the patient through an Exami-
nation test

Actor: Treatment analyzer
Description: The doctor / nurse, check test data, compare patient progress, browses

and analyzes patient statistics
Goal: To see if the patients treatment is giving progress, analyzing the data over

time to see progression/regression.

Actor: Information browser
Description: The test person: can check the data visualized for the test, and see progress

from earlier test measurements
Goal: To let the patient follow and their relatives(followers) their progression and

status without requiring deep knowledge of the subject

NOTE: the test person gets access to a simplified view of the data, or maybe a replay of test
ie. the game replays the session.

Actor: Advisor
Description: Follows the patient and comes with input, advice and support to the patient,

has access to all historic data, and might also be the observer(?), so that
s/he can counsel the patient

Goal: The advisor is the specialist/doctor etc, that follows the patient and gives
advice on progress and status.

3.8. USE CASES AND ACTORS 29

3.8.2 Use case diagram

System S1 Patient Examination

InitializeExaminationSession: Lung flow, capacity
& resistance examination, lung measurement

AnalyzeTest
Observe ExaminationSession
extension points

Begin Spirometer examination, following examination
pr protocol

Observe
ExaminationSessi

on

Get patient History
extension points

Compare patient examination data and
patient progress

Calibrate spirometer
measurement

device

Follow examination test
results by patient

AnalyzeTest

addPatient

Get patient History
:extending use case

Doctor/Nurse/Supervisor

Patient/Testperson

InformationBrowser

Advisor

Treatment Analyzer

Administrator

<<Extend>>

<<Extend>>

<<Extend>>

Figure 3.9: Use case diagram: Patient Examination System

3.8.3 Use case descriptions : S1:Patient Examination system

A collection of all use cases can be found in the appendix. App: C on page 135

There are not use cases for each examination type. The work flow is similar. If work flow
differs significantly, named extensions is used.

30 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

Use case Id: UC:PE1

Use Case Title:
Examination initialization

Primary actor: Supervisor
Level: wip: Work in progress
Stakeholders: Doctors, Nurses, Patients
Precondition: Patient has arrived
Success Scenario System has existing patient data and lung capacity and flow

limits for the patient. Meta data is recorded, (metadata: name,
birthday, ID data, weight, height). The examination is ready
to proceed.

Trigger:
Standard Scenario:

1. Patient Id data and height, weight, name are registered
in to the application.

2. Patient flow and capacity limits are set or read from earlier
examination.

3. The examination is started according to protocol (see ex-
tensions):

4. Patient breathes in to the probe, recording, biofeedback
and game is started(See Use case for Examination: ?? on
page 140)

Extensions:

1. Faulty equipment: test is aborted:
2. Other measurements and calculations not yet thought of

might occur.
3. Closed Box lung resistance, Cold air, Cycle test, CT

Max/min Scan.

Comments: This use case is extended by the different examination types
available. ex: use case "Lung flow and capacity examination,
lung resistance examination test(closed Box)". (@all examina-
tion type use cases)

Figure 3.10: UC PE1: Initialise examination

3.8. USE CASES AND ACTORS 31

Use case Id: UC:PE2

Use Case Title: Closed Box Examination (lung resistance
examination

Level: wip
Stakeholders: Doctors, Nurses, Patients, Follower
Precondition: Use case Examination initialization is done
Minimal Guarantee:
Success Guarantee: The patient keeps an steady respiration rhythm and a suffi-

cient strength amplitude, so that the measurement is usable.
The measurements are recorded in detail and the data are
stored away.

Trigger: ...
Standard Scenario: Patient breathes in to the probe, recording is started,

1. - The game tries to adjust the test persons breathing if
it is to slow or to fast.

2. - Feedback to test person, to ensure the correct strength-
/amplitude of the breathing.

3. - The game tries to help the user to correct breathing
with feedback.

4. - When the patient is doing well the game can adjust
difficulty up, or down if the patient errors again.

5. (@other detection? of bad measurements.)

Extensions: 1. If the game is unsuccessful at correcting the respiration of
the patient the game can restart, and reintroduce the patient
to the execution of the examination.
2.Patient breathes to fast or to slow, and can’t adjust to cor-
rect breathing pattern, the session times out and ends with an
overview, The game signals for manual intervention.

Comments: This use case provides a description for examination. But it
doesn’t specify the exact nature of the feedback, also use cases
like use visualization or give visual hint doesn’t give informa-
tion of the system. @see Game Scenarios section.
NOTE: this is a use case for general types of examinations.

Figure 3.11: fig:Lung resistance test, closed box

32 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

Use case Id: UC:PE3

Use Case Title: Use Case Title: Analyze examination data
& patient progress

Primary actor: Treatment analyzer, Advisor
Level: wip -
Stakeholders: Doctors, Nurses, Supervisors, treatment analyzer
Precondition: Minimum one examination test is executed before.
Minimal Guarantee:
Success Guarantee:
Trigger:
Standard Scenario:

1. The actor searches and compares examination data.
2. The Treatment analyzer chooses, Analyse Patient.
3. Chooses 1 patient.
4. Chooses a time period.
5. The patient data for that time period is displayed on

screen (graph).
6. The data and progression can be visualized and data

can be chosen or added.

Extensions: 1. The Analyser can go back and pick patient and examina-
tion and a new time period.

Comments: This use case are not directly involved with the system "the
Game" we want to develop. But it is important to be able to
use the data after, and the way the data can be assessed and
evaluated can be important for the system to be a success.
That is why we want to make the game.

Figure 3.12: Compare data and patient progress

3.8. USE CASES AND ACTORS 33

Use case Id: UC:PE7
Use Case Title: Choose existing patient for examination

Primary actor: Supervisor, Nurse
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: The patient MUST exist in the system.
Minimal Guarantee:
Success Guarantee: The chosen patients data comes on the screen and is ready to

start examination.
Trigger: Examination started
Standard Scenario:

1. Supervisor chooses a patient in the system, by name or
Id

2. Patient data appear

a) PatientID (CPR)
b) Name
c) Birthday
d) Weight
e) Height
f) Test date
g) Limits (lung capacity, amplitude/strength etc.) are

set or adjusted.
3. Supervisor confirms patient and examination is ready to

start.

Extensions: 1. Limits are altered, because of patients condition (took
medicine recently, sick, etc.) This is examination initializing
with existing user, this includes the initialize examination use
case ?? on page 139 it describes the first 2 steps in more
detail

Comments:
Figure 3.13: Choose existing patient for examination

34 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

3.9 Use cases & actors S2:SpiroGame

C.2 on page 147

use cases S2: SpiroGame

S2:SpiroGame

Exspiration/inspirati
on to slow

Ex/inspiration
frequency to fast

Amplitude to
large

Amplitude to
small

Patient
hyperventilating

Irregular breathing
pattern

StartGame

Child Player

Observer

Follower

Figure 3.14: Game Generic use cases

3.9.1 Actors S2

Actor: Child player
Description: The patient to be examined and measured, the human player.
Goal: To complete an examination, by playing a game,

Actor: Observer (System observer)
Description: The System observer, watches actions and events generated by the human

player.
Goal: To react to events that the player generates

The use case diagram shows a actor called follower, this is often the parent. And is displayed
on the diagram, because it is an important person in the process. But not active in the
process, the follower works as a guide to the children patients.

3.9. USE CASES & ACTORS S2:SPIROGAME 35

3.9.2 System Observer actor

The System observer is a special actor that watches all the input event that are initiated by
the patient actor.

The system observer do not initiate any action itself, but reacts to the events and actions
that it observes.

3.9.3 Use cases S2: SpiroGame

DING Use case Id: UC:SG1

Use Case Title: Init game

Primary actor: Patient
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: Patient Examination Session is started.
Minimal Guarantee:
Success Guarantee:
Trigger:
Standard Scenario:

1. Patient chose start game.
2. The game starts Init setup.
3. Objects are placed on the screen.
4. The game map is initialized
5. Game State is set to running state.
6. The input data from the probe is read throughout the

game.

Extensions:
Comments:

Figure 3.15: Game is initialized,ready to start

SpiroGame Use Case list & suggestions:

1. Existing list:

a) StartGame
b) Exspiration/Inspiration to slow
c) Exspiration/Inspiration to fast
d) Amplitude to large
e) Amplitude to small
f) Patient Hyperventilating
g) Irregular breathing pattern.

2. Suggestions:

36 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

DING Use case Id: UC:SG3

Use Case Title: Patient amplitude to large(exercise to
much force in breathing)

Primary actor: Patient
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: game is active.
Minimal Guarantee:
Success Guarantee: game on
Trigger:
Standard Scenario:

1. Patient Breathes into the probe.
2. The patient breathes with excessive force into the probe.

getting above optimal path().
3. The game detects that the patient breathes above ca-

pacity/flow limits (How?)
4. The Patient is signalled to breathe in a relaxed fashion

(only, closed box ex.?)
5. Waiting for patient to react to signal and be stable for

period of time
6. Patient has reacted to the signal and have been breath-

ing with the correct speed for some time.
7. Signals?

Extensions: The patient does not react to the biofeedback cue, and doesn’t
speed up the respiration.
The Game sends a new signal/Event to try get the user to
react.
1. Player figure gets different colour (blue)
2. Visual hints (Eyes are tilting in the direction it want to go)
3. player figure tries to signal that it want to speed
up(fidgeting)
4. The path or something on the path begins to lighten up
5. music plays faster
6. Voice says to blow

Comments:
Figure 3.16: UC:Child Player breathing rhythm to slow

3.9. USE CASES & ACTORS S2:SPIROGAME 37

DING Use case Id: UC:SG5

Use Case Title: Patient breathes correctly

Primary actor: Patient
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: game is active.
Minimal Guarantee:
Success Guarantee: game on
Trigger:
Standard Scenario:

1. Patient Breathes into the probe.
2. Game encourages the path
3. Points are gained,
4. Game visible Objects display cue for correct behavior
5. Adjust difficulty ?
6. System observe capacity limits
7. System observe flow limits
8. Patient has maybe reacted to the signal and have been

breathing properly
9. How do we find if encouragement works, and keeps the

patient in range
10. Cue Signals?

Extensions: The misbehaviour Use cases are all extensions of this one
Comments: This us case is important because it touches on what the user

gets from the system when doing good, continuously encourag-
ing correct behavior, but it is hard to know when it is needed.
A flow diagram might be a good way to show this)

Figure 3.17: UC:Child Player breathing rhythm perfect

a)

Other SpiroGame Use Case game scenario suggestions:

1. Generic Basic game scenarios:

a) Collision
b) Direction mark lights up
c) Collected X objects

2. Scenario:

38 CHAPTER 3. ANALYSIS DESIGN METHODOLOGIES AND TOOLS

a) To far from optimal path
b) irregular rhythm for to long
c) No reaction to biofeedback clue

3.10 Games scenarios
Use cases have a non-optimal format for description of some of the game interactions. See
Game scenarios describe in details how the game is to react in certain circumstances to
support the patient interaction with the game. These scenarios change from game concept
to game concept. While use cases are better suited for generally describing the goal for the
user.

The reactions to and interactions between system and the patient is developed and examined
via the game prototypes and their game play and concepts.

Craig Larman on using Use cases and alternatives for finding requirements etc. Larman
(2004) page 63-66.

However there is a base part of the interactions that concentrates on the examination issues,
that the game should support.

This means that there is a set of use cases that deals with executing the examination correctly,
and another part where we are more game centric, and create game scenarios, that might not
directly be of help to the examination process and result, but frees us to think in game terms
and think about human behaviour. These game scenarios actions and components should
off course support a better measurement technique and create useful biofeedback concepts or
items.

3.10.1 Game interactions

In the games we define an optimal breathing pattern, amplitude and frequency. For design
only Closed Box examination is used because that is the most interesting for RH.

Time durations are defined, with states. For example if the state ’breathing to slowly’ is kept.
and we send biofeedback clues back, but that doesn’t bring the patient back on the correct
track we can enhance the feed back clues, try other clues, sound, blinking objects and so on.

The game environment can be affected too f.ex. by moving the player back on the right track
nearer the optimal path. The game could slow down so there is more time to react. Let
the patient go through some steps we know that they can do before the game / examination
continues measurements.

We measure how far we been away from an optimal path, (this is the openBox scenario
and it is dependent on the examination type/protocol). Also we measure if the rhythm is
unsteady for to much time. A score could be made for the quality of the measurements of
the examination results.

3.10. GAMES SCENARIOS 39

3.10.2 Questions for game and interactions

Tech memo:

Questions asked for game interactions.

• Girl Boy differences?
• Easy slow rhythm.
• Fast involving.
• Hiding the test from the patient.
• Enhancing the test for the patient. (Visualized the test and add the patient to

follow the correct test procedure).
• Age mobility dexterity levels

List of considerations that went in to the R&D for the game prototype concept designs.

Chapter 4

Project scope: System to be developed

4.1 Project formulation
Children in the age range 2-7 have difficulties following instructions from the supervisor.
It is difficult to explain children at that age range, in words how to "do" the examination
procedure.

The patients have an appointment once each month and sometimes an examination is exe-
cuted poorly so that no usable results are obtained. It can be because the patient get sad,
afraid, scared or because the examination is carried out but "incorrectly leading to invalid
results".

The patients are measured examined and tracked for Flow and lung volume capacity and
strength:

1. Test where cold air is blown into the lung while the child breathes(respirate) through the
measurement device(spirometer). This can provoke asthma symptoms.

2. Lung function with controlled rhythmic respiration.

3. Lung Volume capacity, measuring max. expiration and max inspiration of air volume.

In test 1 and 2 the test person must breathe with a amplitude /strength, near normal breath-
ing amplitude, with a relaxed rhythm and frequency.

Then our system should measure data and records it live and gives biofeedback to the patient
via the tablet unit.

The biofeedback is provided by developing a game, that provides clues that tells the patient
to adjust his/her breathing in some way. Until the patient is in to a stable and correct
breathing pattern again.

41

42 CHAPTER 4. PROJECT SCOPE: SYSTEM TO BE DEVELOPED

The clues tells the patient if they should breathe with more power or breathe with a faster
or slower speed(frequency).

The objective is to increase the quality of the examination tests, so the results are more
stable and provides a solid picture of the patient actual health status.

To avoid a inappropriate respiration pattern that could affect the measurements results,

.... without getting detected, so we can initiate a new test.

With a more reliable measurement procedure, the patients development(progression) over
time can be monitored and show the correct development.

A game prototype will be developed on a tablet unit. And will be published on the tablets
respective markets or distribution channel.

The set of requirements gathered from the analysis from the initial talks with stakeholders
from the hospital.

Using the prioritized requirements, we can define a scope for the project time and resource
constraints.

4.2 Scope of project

4.2.1 Parallel tasks

The project tasks are sorted and split in to sub systems

USB access, Graphics, Data storage. User interface. Game design.

That way the tasks are not dependent and if progress stops on one task, another part of the
system can be developed.

a task usually is worked on 2-5 days, with some design, implementation. then we work on a
another task in the focus area of the sprint.

4.2.2 Delimiting

We have isolated the RH system the hospitals "legacy" hardware and abstracted from that,
That means wee do not try to integrate our game and tablet system into the RH system in
the scope of this project and the time allotted.

This is done so we can develop our system independently from the hospital and do not have
to rely on their equipment for testing.

The drawback from this is that we get a separate system, that doesn’t integrate with the
hospitals other systems.

4.3. SPLITTING UP PROJECT IN SYSTEM PARTS 43

Early in the project we will develop a data generator to be used for simulation, that way we
can test the game, even if access to the probe doesn’t succeed.

The focus area is on the game and how it interacts with the patient, to be successful.

The next focus area is to have access to usable data, to be able to visualize the test.

We try to reach these focus areas by developing several mini apps Each developing one piece
of functionality.

App1: input user data, transfer to new activity(think the game) here it is just the input
values from one activity displayed in activity 2.

App2: Views and Layouts, play.

app3: animation, touch control, collision detection. Simple object movement.

App4: prototype1: Android SurfaceView for efficient screen updating, running in own
thread, game state. plus graphics and bitmaps, animation.

4.2.3 Scope

4.2.4 Integration with external systems

Ideally it would be nice to integrate the game/examination system with the systems at
RH and have information sharing between systems. Integration with patient journal, the
examination data could be automatically stored/referenced from the patient journal. That
would have the added benefit, that if the hospitals external system began to share information
from hospital to hospital, then examination and measurement data information could also
propagate with it automatically.

We have decided not to store the data via XML as a time constraint issue.

XML is the standard for coupling independent systems data transfer and sharing in the public
service institutions. Each new system that is developed to be used isolated from the other
equipment, burdens the personnel focus ie. their knowledge and time is used on making
devices and systems work together, instead of concentrating on the patient and "doctoring"
tasks. Therefore integration at some point is important.

4.3 Splitting up project in system parts
Systems: S1 S2 S3

S1: Patient Examination system - Hardware respiration instruments
- Reading data USB connection.

44 CHAPTER 4. PROJECT SCOPE: SYSTEM TO BE DEVELOPED

- Data Feeder
- Patient Examination Analysis
- Patient Information Storage

S2: Game System
- Generic game parts
- Specific game parts.
- Cue

S3: Generator System
- Input data
- File input
- Function input
- Data converted to discrete list of values.

S2_spirogame S3_generatorS1_patientexamination

<<access>><<access>>

S1: Patient Examination System: Has responsibility for the patient data, it is the part
that later could be integrated with parts of the patients journal system.

The PatientExamination part of the system stores the patients data- It is the system
from where the doctors and nurses add new patients, look up patient examinations, set
up examination, and input patient information such as weight height and age before the
examination itself begins.

The Patient Examination System part takes care of the persistence, while the SpiroGame
part just uses the input values from the probe or the data Generator.

S2: Game System: The game system is the most important part of the system. The other
systems is supporting the game part.

2. The Game(SpiroGame) part, where the patent play the game and without noticing it to
much! do the lung capacity test or other test, while playing the game.

4.3. SPLITTING UP PROJECT IN SYSTEM PARTS 45

The Game receives input from the patient via the probe and reacts to it, If the patient needs
guidance The game system sends a cue, the biofeedback to try and get the patients breathing
pattern adjusted. The adjustment depends on the examination type.

S3: DataInput responsible for the input, both the hardware input from the probe and the
generator

DataInput is a abstraction for the way data input enters the system.

The generator can create different data sets from a mathematical function. It also is respon-
sible for delivering simulated respiration data, should we not have access to the hardware
spirometer instrument.

The need for the generator was discovered early in the project to mitigate the risk of
not getting access to either the hospital probe or the more modern USB probe that we later
acquired. That’s why it is already in the domain model, but a case could be made for not
including the Generator as part of the domain model.

The game might also only use a subset of the read data for manipulation for performance
issue reasons. But all the probe data input should be recorded so it can be used in later
analysis.

The model shows the system integrated with the Hospital domain.

View the requirements 2.1 on page 13 or the navigation chart in ?? on page ??

4.3.1 Component block diagram

The block diagram shows the systems components and their placements, accord....

46 CHAPTER 4. PROJECT SCOPE: SYSTEM TO BE DEVELOPED

Figure 4.1: title

Figure 4.2: S2 architecture component block diagram

4.4 Revised requirements

See the revised requirements list in appendix: C.3 on page 154

See next section (ref:section domain model)for the system overview.

4.4. REVISED REQUIREMENTS 47

Tasks in project scope & time.

Implement small prototype for game

1. Animation
2. Moving position on the screen
3. Draw sprites and background
4. Collision detection

Major tasks in the project scope

1. Measure patient lung function: Flow:

a) capacity
b) volume

2. Control and adjust to the patients reaction, help the patient breathe in the correct way.
3. Access USB spirometer.
4. Measure Flow with USB equipment.
5. Display Graph visualization of examination for perusal by doctors and nurses
6. Comments for each Examination.
7. Game prototype for the Closed Box examination
8. Publish to AndroidTMmarket
9. Integration concerns

48 CHAPTER 4. PROJECT SCOPE: SYSTEM TO BE DEVELOPED

4.5 Domain model
?? on page ?? Peter Coad (1999)

Figure 4.3: System overview S1 S2 S3

Spiro System

S3:DataInputSystem

S3:ProbeMeasurementSystem

S3:Generator

S1:PatientExaminationSystem

S2:SpiroGameSystem

DataFeeder
Probe

Generator

ExaminationSession

SpiroGame

ExternalSystem

External
PatientHistory

SpiroGamePrototype

PatientAnalysis

Patient

Patientcard

transfer

Showing the systems with each responsibility: S1:PatientExamination is responsible for
the patient information, examination procedure and storage. S2:SpiroGame responsibility
for the game, S3:DataInput is responsible for the input data.

The most significant class concepts are shown in the system overview. They can be referenced
in the Class description index. F.1 on page 161

The DataInput is divided into the live stream from the probe and a generated and simulated
output. Both are sharing data to the DataFeeder. The DataFeeder supplies data to the
ExaminationSession and the Game. The Patient has a PatientCard with information for
each examination session or examination date. The patients data is analyzed via the Pa-
tientAnalysis. The collected analysis of the patient history is stored in the PatientHistory.
The PatientHistory can be transferred to an external system, maybe for better analysis or
integration with other information systems at RH.

4.6 Domain class diagrams

4.6.
D

O
M

A
IN

C
LA

SS
D

IA
G

R
A

M
S

49

Figure 4.4: S1:Patient Examination System Domain

+ : Examination&

ExaminationSession

-cprID
-Name

Patient

PatientAnalysis

PatientHistory

SpiroGame

-examinationType

Examination

-cardID
-Date
-Age
-height
-weight
-capacity
- f l ow
- l imi ts

+getPatientExaminationCard()

PatientExaminationCard

ExaminationTypeProtocols

CTScannerExamination

CyclingExamination

BoxExamination

MaxMinCapacityExamination

-patientCard
-probeDataPosition

ExaminationData

-protocolPerExaminationType
-protocolStep

ExaminationProtocol

-Flow
-volumeAmplitude
-frequency
-posit ion
-optimalMeasurement[]

Game

ProtypeGame1

Position

-dataPool

DataFeeder

PatientAdministration

-f lowLimit
-capacityLimits

Limits

ProtocolSet

Name S1DomainPatientExamination2

Documentation

Model Domain Patient examination model

System part S1: Patient Examination system part

GameRunState

1
1

1

0..*

1

0..1

11

1

1

1

1

1

0..*

1

1

S3:DataInput

-UsbConnection2
-UsbRawData2 : byte

+connectionReady() : boolean

SpirometerMeasuringDevice

-InputData : byte[]
-transfer
-Flow
-Volume
-Freqency
-Ampli tude

ProbeDataCalculation

reads

measured

feeds

startsGame

has

analyze

executes

Analyzes

has

50
C

H
A

P
T

E
R

4.
P

R
O

JE
C

T
SC

O
P

E
:SY

ST
E

M
T

O
B

E
D

E
V

E
LO

P
E

D

Figure 4.5: S2:SpiroGame Domain

-speed
-posit ion
-points

Player

-cordinates_x_y
-playSoundMusic
-displayGraphics
-Flow
-inputEvents

GameController

-posit ion
-speed
-objectAttributes
-gameValue

MovingObject

-Obstacles
-NPCs
-Player
-attr ibute

GameFieldMap

-posit ion
-size
-material

StillObject

-starIsCollected
-goalsReached
-gameTestEnd
-EventAction

GameCueEvents

S3:InputData

GameObjects

-dataPool1

DataFeeder

Generator

GameState

InputEvents

-usbConnection
-usbRawData

SpirometerMeasu
ringDevice

-InputData[]
-transfer
-Flow
-Frequency
-Ampli tude
-Volume

ProbeDataCalculation

Name S2DomainSpiroGame

Documentation

Model Game Domain model

System part S2: game system part

GameRunState

1

*

feeds

reads

4.6. DOMAIN CLASS DIAGRAMS 51

The class diagrams shows the concepts used in the project. The patient system part is the
entry of the patient, the journal and and patient information. After that the examination
can start and the examination game starts..

In both the Patient Examination and SpiroGame system we have added the DataInput system
S3 to the diagram because the Input affects both systems. The DataFeeder class appears in
both S1 and S2 because the systems are developed in parallel.

Coloring: The coloring divides a system after responsibility and behaviour, controlling,
description. The description of the color scheme can be found in appendix H on page 169

Chapter 5

Android concepts

5.1 Android: Activity - Intent - Application

Application - Activities - Intents - Context

The 2 most important Android concepts to understand in Android development is Activities
and Intents .

An application on Android is generally made of a set of activities , where each activity
can fulfill an intent

We need an activity to run for the user to interact with and for controlling the application,
without the activity, there is no application life cycle to take responsibility for resuming and
pausing applications. 5.4

An Intent can be used to communicate between activities to send data between activities,
and to start a new activity.

Each activity has a context , Which can be seen as the applications environment. Via the
context there is access to the applications resources and assets.

5.1.1 Activity

An activity services the user via a UI associated to the activity, through which the user
interacts with the application.

The activity is responsible for displaying the UI to the user and for controlling the activity
when the user navigates to other activities and it goes to the background.

53

54 CHAPTER 5. ANDROID CONCEPTS

Figure 5.1: Android application

When an activity is displayed on the screen it must be running otherwise it would be
unresponsive. When a new activity comes to the foreground of the screen the "old" activity
pauses. when the activity is paused the OS can decide to stop the activity.

The activity is responsible for starting, pausing, resuming the app and for saving state of the
application. i.e. when the app is closed down, or the device is turned off.

The high level abstraction of an Activity , would be asking the question, "what activity your
kid doing now", possible answers: he is playing, he is reading, he is bathing.

On the phone or tablet devices the activities are called reading mail, reading pdf, phoning,
videoing, i mean watching videos.

It is about the user do-ing something. So the user have the intent of reading mail, the intent
starts up an activity that is capable of reading mail. The user express the intent of phoning
somebody and a phone dialer activity is started.

The intents will then start a specific activity, Playing music intent could start the Winamp
Music player activity.

5.1. ANDROID: ACTIVITY - INTENT - APPLICATION 55

Other Intents could be:

1. Finding public transport
2. Reading feeder
3. Playing music
4. Texting an SMS

Figure 5.2: fig:andr:Intent type examples

Figure 5.3: Opening a pdf file, the app shows all apps that can work with pdf files, more
precisely, the window shows all apps that have registered a VIEW action for pdf types in
the manifest file

5.1.2 Intents

Intents are used to start up a new activity, send data to a new activity and for asking for
results by another activity. The Intents system is used to decouple applications and activities
from each other, this makes it easy to use another installed application for a task, that way
the developer don’t need to develop a feature for his own app but can reuse other existing
activities. One of the most reused components is Google maps which can be invoked via an
intent with a URL with geo position data. Google maps are reused in countless applications
on the market.

In Android what the user wants to do is expressed via Intents. If the user wants to be reading
mail, the user has the intent of reading mail, so if it is the users Intent to read the mail from

56 CHAPTER 5. ANDROID CONCEPTS

inside an application, he chooses the applications send mail option. Then all the applications
that can send email is presented to the user via a list displayed on the screen for the user
to choose between. The user can choose a default application on the list, then next time he
chooses to send mail, the list will not be presented, the application will be routed to chosen
default email sending activity.

Implicit Intent

Implicit intent is when we request an action" but not a specific application or activity to
execute it.

1 In tent i n t en t = new Intent (" android . content . In tent .ACTION_VIEW" ,
2 "http ://www. facebook . com") ;
3 s t a r tAc t i v i t y (i n t en t) ;

Listing 5.1: implicit intent, calling the URL, with any activity installed ,that can do the
action ACTION_VIEW, with a web URL

Here the first parameter is an action request, action "VIEW" is requested on the URL
http://www.facebook.com Any application that has registered an intent-filter in their mani-
fest that matches the action "view". and also matches the URL full fills the requirements to
display the web page, for example the web page can be shown in the default browser on the
device, or maybe the user want to display it in a window of another application, for example
an application that show the src in one part of the screen and the web page on the second
part of the screen.

The activity/activities suggested or chosen are based on the type of activity the category and
the data type.

Example: suppose that you have 2 document readers.

Document reader app1, can read, txt, docx and pdf Document reader app2 can read, txt
and pdf.

If the user clicks on a pdf "link" both app1 and app2 are suggested. If the user picks a
docx document only app1 is suggested.

When you create an application, the capabilities of the application is registered. This is
done via the manifest file for each application. described later. 5.3 on page 60

This process is called intent filtering. and (0000)

Explicit intent

An explicit Intent is when a specific activity is called via the Intent. While a implicit Intent
could display a list of apps, that can fulfill the implicit Intent.

5.1. ANDROID: ACTIVITY - INTENT - APPLICATION 57

1 In tent i n t en t = ge t In t en t (th i s , MyEmailCl ientActivity . c l a s s) ;
2 s t a r tAc t i v i t y (i n t en t) ;

Listing 5.2: Explicit intent, calling my own (MyEmail) email client

The intent is called from an Activity, where the the this parameter gives the context of the
activity to the intent.

1 In tent i n t en t = ge t In t en t (app . packackage . name . AppClass) ;
2 s t a r tAc t i v i t y (i n t en t) ;

Listing 5.3: Explicit intent, calling my own (MyEmail) email client

Here you are calling a specific application on the device, already installed. However you have
to know the package name and class.

This is not how you would normally call the activity and the method might not be supported
because the application developers can change the naming from version to version.

Activity ContextThemeWrapper ContextWrapper

Context Object

The intent can carry additional information, this information is called extras. The extras are
used to bundle and package data to and from activities.

5.1.3 Intent Filters

An intent is broadcast to the system, application are registered to the system via their
manifest.xml file. The intents that can be handled are described in the manifest file in the
< intent− filter.. < /intent− filter > section for the activity.

1 <mani fe s t xmlns :andro id=" ht tp : // schemas . android . com/apk/ r e s / android "
2 package="com . example . android . notepad">
3 <app l i c a t i o n andro id : i c on="@drawable/app_notes"
4 and r o i d : l a b e l="@str ing /app_name" >
5
6 <prov ide r android:name="NotePadProvider "
7 and r o i d : a u t h o r i t i e s="com . goog l e . p rov ide r . NotePad" />
8 . . .
9 <a c t i v i t y android:name="T i t l eEd i t o r "

10 and r o i d : l a b e l="@str ing / t i t l e_ e d i t_ t i t l e "
11 android:theme="@andro id : s ty l e /Theme . Dia log ">

58 CHAPTER 5. ANDROID CONCEPTS

12 <intent− f i l t e r a nd r o i d : l a b e l="@str ing / r e s o l v e_ t i t l e ">
13 <act i on android:name="com . android . notepad . ac t i on .EDIT_TITLE" /

>
14 <category android:name="android . i n t en t . category .DEFAULT" />
15 <category android:name="android . i n t en t . category .ALTERNATIVE" /

>
16 <category android:name="android . i n t en t . category .

SELECTED_ALTERNATIVE" />
17 <data android:mimeType="vnd . android . cu r so r . item/vnd . goog l e .

note " />
18 </ intent− f i l t e r>
19 </ a c t i v i t y>

Listing 5.4: Intent filter

As we can see each registered activity has an intent-filter this manifest is from a notepad
application.

The intent-filter nested in the activity "TitleEditor" describes what the activity can do. the
Intent filter describes action categories and data types that the activity can work with.

When an (implicit)intent object is send it is filtered by the intent filters registered to the
activity in the manifest files. The intent object is first checked if it can full fill the action
f.ex. ACTION_CALL⇐ can the activity phone out. Then category is checked, and implicit
intent must have the DEFAULT category set otherwise all implicit intents are rejected.

5.2 Activity life cycle

The Activity is the basis for your application, it controls what happens when your app is
started for the first time on your device.

The idea of the activity , is based on the assumption that the mobile device has a relative
small screen. and therefore each activity must be optimized for the related task.

If your application looses focus because a new application/activity starts up, the activity is
responsible for saving needed state.

The Activity is responsible for saving the state of the application, f.ex when a calls comes
in your application loses focus, and might be teared down by the OS. i.e. if you talk for a
really long time. and when you end the call you have lost some of your work, it could be you
were in the middle of entering a new contact to your contact book and only confirmation of
the data were left when the phone ringed, when you get back the data you entered in the
contact page is gone.

Another example is if the phone or tablet is flipped and change view mode between portrait
and landscape the Activity is actually teared down and restored, and entered data is erased.
this is seldom what the user wants.

5.2. ACTIVITY LIFE CYCLE 59

Figure 5.4: The life cycle of an activity

60 CHAPTER 5. ANDROID CONCEPTS

If views are designated an ID it should automatically be saved and restored by the life cycle
system.

When the application is started the first time the following methods are called.

onCreate - onStart - onResume

if the application is paused onPause is called just before System pauses. So state information
must be saved here. After the system is paused, the Android OS can prioritize what should
happen to the application. the OS can stop the app if the app hasn’t run for some time or
if resources are needed.

If the app is paused the OS can choose to stop it. Which means it is no longer scheduled to
run, it is removed from the run queue.

OnDestroy If the app is stopped, it can be destroyed. which means its process is removed
from the system.

The important thing to note is that you are guaranteed to run through the described
callbacks in order.

If onCreate is called, onStart is called, after that onResume is called. which means you can
setup your app in these steps. if your app is running you cannot destroy the running app.
you have to pause it first, then stop it and then destroy.

This is guaranteed, so you can save your state before your app is removed, and that you can
restart sound and external connections when resuming(onResume).

5.3 Manifest file : manifest.xml
Each application has a manifest file, the manifest.xml file setup the the application. Defines
the activities and intents the app exists of. The actions it can handle.

The documentation it a bit vague on how the manifest is used when transferred from the
development workstation over to the Android device, not explaining exactly how is is mapping
from the manifest file to the resources. However each element used in the setup is well
documented.

The manifest can be seen as a filter, where the application registers it’s capabilities: where
the capabilities can be anything, :

Permissions, what action the application handle, phone, write pdf, read pdf, display WWW
links, access to external storage(SD card), what android versions to use and be compatible
with, screen orientation, access to sensor, USB access and more.

5.3. MANIFEST FILE : MANIFEST.XML 61

are compiled
Figure 5.5: Android build apk package

1 <?xml ve r s i on=" 1 .0 " encoding="utf−8"?>
2 <mani fe s t xmlns :andro id=" ht tp : // schemas . android . com/apk/ r e s / android "
3 package="net . micrun . an ima t i on s c r o l l s u r f a c ev i ew "
4 andro id :ver s ionCode="1"
5 android:vers ionName=" 1 .0 " >
6
7 <uses−sdk
8 android:minSdkVers ion="16"
9 andro id : ta rge tSdkVers i on="16" />

10
11 <!−− and ro i d : s c r e enOr i en ta t i on=" landscape " : landscape a l l a pp l i c a t i o n −−>
12 <app l i c a t i o n
13 android:a l lowBackup=" true "
14 andro id : i c on="@drawable/ ic_launcher "
15 and r o i d : l a b e l="@str ing /app_name"
16 android:theme="@style /AppTheme" >
17 <!−− <a c t i v i t y and ro id : s c r e enOr i en t a t i on=" landscape " : landscape f o r

t h i s a c t i v i t y −−>
18 <a c t i v i t y and ro id : s c r e enOr i en t a t i on=" landscape "
19 android:name="net . micrun . an ima t i on s c r o l l s u r f a c ev i ew . F lyAct iv i ty "
20 andro id : con f igChanges=" o r i e n t a t i o n | keyboardHidden | s c r e enS i z e "
21 and r o i d : l a b e l="@str ing /app_name"
22 android:theme="@style /FullscreenTheme" >
23 <intent− f i l t e r>
24 <act i on android:name="android . i n t en t . a c t i on .MAIN" />
25
26 <category android:name="android . i n t en t . category .LAUNCHER" />
27 </ intent− f i l t e r>
28 </ a c t i v i t y>
29 </ app l i c a t i o n>
30
31 </mani f e s t>

Listing 5.5: Manifest example: AndroidManifest.xml

All the resource and assets files and class files and the manifest is packaged into an apk file.

The figure shows how the compiled apk packaged is structured. This happens before the apk
is transferred to the device. The Manifest is the "map" that shows where and what resources

62 CHAPTER 5. ANDROID CONCEPTS

are available for the application.

5.4 Android Structure, Assets resources and layouts
The Android setup for developing has a flat file tree structure for the types of resources, so
the file structure cannot be nested If a nested file structure is needed it can be placed under
the assets folder.

5.4. ANDROID STRUCTURE, ASSETS RESOURCES AND LAYOUTS 63

(a) a) the src directory and files folders

Resource dir

(b) the assets and resource directory
structure

(c) a list of the basic drawables for the
games (bitmaps etc)

Figure 5.6: The structure of the project tree, directories and files

5.4.1 Assets

An asset is a raw resource, there is no packaging/compression of files as the files under the
res resource folder. So raw data files that doesn’t need to be processed can be placed here.

Assets are accessed via the assets manager. Official (2013) Assets are accessed by file name.

EXAMPLE:
1 %Resources . ge tAsse t s
2 pub l i c S t r ing readFromAssetsFolder (Context c , S t r ing dir , S t r ing f i l ename) {
3
4 i f (d i r . equa l s ("") && f i l ename . equa l s ("")) {
5 d i r = "probedata " ;
6 f i l ename=" sp i robank_tr ia l s_export . txt " ;
7 }
8
9 AssetManager am = getAsse t s () ;

10
11 St r ing [] l i s t F i l e s=nu l l ;
12 t ry {

64 CHAPTER 5. ANDROID CONCEPTS

13 l i s t F i l e s = am. l i s t (d i r) ;
14 } catch (IOException e) {
15 e . pr intStackTrace () ;
16 }
17
18 /// get Assets v ia Assets Manager : am
19 St r ing s t r = l i s t F i l e s B u i l d e r . t oS t r i ng () ;
20 InputStream i s = nu l l ;
21 t ry {
22 i s = am. open (d i r + "/" + f i l ename) ;
23 } catch (IOException e) {
24 e . pr intStackTrace () ;
25 }
26
27 BufferedReader br = new BufferedReader (new InputStreamReader (i s)) ;
28 St r i ngBu f f e r sb = new St r i ngBu f f e r () ;
29 St r ing readL ineSt r ing ;
30 t ry {
31 whi le ((r eadL ineSt r ing = br . readLine ()) != nu l l) {
32 sb . append (readL ineSt r ing) ;
33 }
34 } catch (IOException e) {
35 e . pr intStackTrace () ;
36 }
37 . . .
38 /// Return a s s e t s manager f i l e as s t r i n g l i s t
39 re turn sb . t oS t r i ng () ;
40 }

Listing 5.6: Accessing assets

On line 9 the assets manager object is created, line 13 listing files in directory probedata/
(line 5), Line 22 the file assets/probedata/spirobank_trials_export.txt is opened, on line
27-33 its appended to a StringBuffer.

1 // read from raw r e s ou r c e s under r e s /raw
2 pub l i c S t r ing [] readRawResourceFile (Context context , Resources res , S t r ing

f i l ename) {
3 i n t r Id = 0x7f090001 ; // cheat ing by look ing i t up in R. java f i l e
4 St r ing resName = context . getResources () . getResourceName (r Id) ;
5 St r ing resPkgName = context . getResources () . getResourcePackageName (r Id) ;
6 St r ing resEntryName = context . getResources () . getResourceEntryName (r Id) ;
7 St r ing resTypeName = context . getResources () . getResourceTypeName (r Id) ;
8 St r ing pkgName = context . getAppl i cat ionContext () . getPackageName () ;
9 St r ing pkgResPath = context . getAppl i cat ionContext () .

getPackageResourcePath () ;
10
11 Log . v ("DisplayData" , pkgName + "\n"+ pkgResPath) ;
12 Log . v ("DisplayData" , resName + "\n"+ resPkgName + "\n"+ resEntryName + "\n

"+ resTypeName) ;
13
14 // omit ex tens i on o f f i l ename
15 // :TODO: make func t i on that s t r i p s ex tens i on i f the St r ing has i t .
16

5.4. ANDROID STRUCTURE, ASSETS RESOURCES AND LAYOUTS 65

17 // f i l ename var f o r s p i r o
18 i n t id = r e s . g e t I d e n t i f i e r (pkgName + " : raw/" + f i l ename , nu l l , nu l l) ; //

defType , defPackage) ; //
19
20 // Should be i n e f f i c i e n t a c c e s s i n g v ia name , should be a c c e s s i n g by id .
21 InputStream i s = r e s . openRawResource (id) ;
22
23 byte [] bu f f e r = new byte [1 0 2 4] ;
24
25 i n t i =0;
26 BufferedReader br = new BufferedReader (new InputStreamReader (i s)) ;
27
28 // S t r i ngBu f f e r i s synchronized
29 // S t r i ngBu f f e r sb = new St r i ngBu f f e r () ;
30 // St r i ngBu i l d e r i s ∗∗NOT∗∗ synchronized
31 St r i ngBu i l d e r sb = new St r ingBu i l d e r () ;
32 ArrayList<Str ing> l i n e s = new ArrayList<Str ing >(100) ;
33 St r ing readL ineSt r ing = nu l l ;
34 t ry {
35 // CHK: TODO: we are not us ing S t r i ngBu i l d e r s Strengths here ?
36 whi le ((r eadL ineSt r ing = br . readLine ()) != nu l l) {
37 l i n e s . add (readL ineSt r ing) ;
38 }
39 } catch (IOException e) {
40 e . pr intStackTrace () ;
41 }
42 // List<Str ing> l i s t = . . ;
43 St r ing [] s t rArray = l i n e s . toArray (new St r ing [l i n e s . s i z e ()]) ;
44 re turn strArray ;
45 }

Listing 5.7: Accessing raw resources

Reading a raw resource, simulating that only the filename of the resource is know, the context
is used to get the resources for the application. Then we get the package names form the
resources append the filename and then get the resourceId.

5.4.2 Resources

Resources are assets that are "compiled" and packaged into the application, the exception is
files under the xml/ and raw/ folders.

• Images
• Sound bits
• Music
• Strings resources
• localisation
• etcetera

66 CHAPTER 5. ANDROID CONCEPTS

They are accessed via the Resource manager.
1 // from an a c t i v i t y c l a s s
2 Resources r e s = getResources () ;
3 . . .
4 // from a non−a c t i v i t y c l a s s , with the context passed
5 Resources r e s = context . getResources () ;

Listing 5.8: Accessing resources, and finding a resource by ID

From the resource reference res we now have access to all resources associated with the
application.

5.4.3 XML layout to view instance

A User Interface can be build declaratively via the xml files. the layout files are stored in the
resource folder res/layouts When the application launches, onCreate callback is executed.
The method setContentView(layoutView); is called, this reads the packaged layout xml files
and instantiate them as java objects. and are ready for display. The views cannot be
manipulated before setContentView is called because the java objects doesn’t exist before
that time.

5.5 The Android Pattern
The Android pattern resembles MVP : Model View Presenter or MVC. The Android frame-
work has it own structure that divides the responsibilities

The activity is the life cycle control and fit into part of the role as the controller/presenter
in a Model-View-Presenter pattern.

The Views are usually instantiated from the Activity class, this means that the separation
of concerns is somewhat restricted in the standard practice of how a project is build.

The Model is then the data model to be presented in the view. The data model updates the
view data via the presenter/controller and back again.

5.5. THE ANDROID PATTERN 67

Figure 5.7: Model-View-Presenter/Controller

Part II

Design

69

Chapter 6

Design

6.1 System overview
The 3 systems S1 S2 and S3 are describedthe analysis section. ?? on page 48

S2_spirogame S3_generatorS1_patientexamination

<<access>><<access>>

Figure 6.1: Systems packaging

The systems S1-S2-S3 that makes up the complete project. The reason for system division
is explained in the project scope chapter where the project is partitioned in a hopefully
efficient way, that separates concerns and isolate errors or other mishaps from influencing the
continued development on the other systems. The systems should in large part be able to be
developed individually.

:ref:

6.2 User interface & Mockups

6.2.1 Mockup drawings

71

72
C

H
A

P
T

E
R

6.
D

E
SIG

N

Figure 6.2: Mockup Application screens: a1) Analyse
Examination(s), a2) Initialize Examination(Ready
Test), a3) Add Patient, 4) Start Examination(Test)

Figure 6.3: Mockup Application screens: b1) Add pa-
tient, b2) Test Examination overview, b3) Graph and
data set display sketch, b4) Game Prototype Sketch

Figure 6.4: The figures are numbered from top left to bottom right 1
3
2
4

6.3. SCREEN NAVIGATION DIAGRAM 73

6.2 on page 72 a2) Ready Test/Examination, is the application start page, Starting a test i
the default user activity, because most of the time the user wants start an examination, next
screen is the examination session/game b4).

6.2 on page 72 in a1) Test Analyse overview patient and examination can be chosen from
a list of examinations sorted by date. When the examination to view/analyse is chosen we
move to graph display window.

6.3 on page 72 b3) This is the graph display to visualize and print data recorded from the
patient respiration in to the probe(flow measurements). The graph display is created so we
can visualize data early in the development phase, and help us to analyse behaviour in the
game prototype later, with regards to the input received. We can reuse this without the first
screen.

The patient add page a3), and confirmation page b1) that is used to visualize the special
steps needed in the system to add a new patient. this should help us understand what the
"requirements" and the needs are when a new patient arrives at the hospital.

The confirmation screen pattern is useful for touch devices, after the data for the patient is en-
tered an overview page with the supplied info is displayed, and the operator can quickly see if
things are correct before confirming the data, or go back to change information. the confirma-
tions screens are a4) Start Test overview, b1) Add patient overview, b2) Test(Examination)
overview.

6.3 Screen navigation diagram
The main activity is where the application starts up (Launcher activity), from here we can
navigate to our designated activity, adding new patient (A1), looking at patient history
from the AnalyseTest (examination) activity (A2). Change configuration (A3), change flow
and capacity limits for patient. So the examination can use these measurements to ensure
challenging but not to hard tests/examinations.

6.3.1 Basic navigation flow concept

The application follows a simple navigation flow pattern.

• The user navigates from the main screen,
• choose the wanted activity, on the chosen activity screen,
• choose object and set constraints (Object=the patient, constraints=upper and lower

flow limits)
• A confirmation screen, overview of the chosen input data.
• then the activity that uses the input object and constraints, the game, and the graph

data set display.
• When finished the user returns the same way back, and then reaches the MainActivity

where a new action can be chosen.

74 CHAPTER 6. DESIGN

Figure 6.5: Application UI navigation diagram: Basic navigation mockup screens:
a) StartActivity, b) A1: addpatient activity, c) A2: Examination analysis, d) Game
screen(S2) e) Graph & data set screen

There is another alternative flow after an examination game. Going directly to analyse test
to the examination results, this can be used to check if the examination results are valid and
useful.

6.3.2 Mockup lists

1. AddPatient: Add New patient
2. PatientConfiguration: Change patient information limits (Flow, Capacity limits)
3. GameConfiguration: Game difficulty speeds , extra: how would that work
4. FindPatient: find patient history : Analysis
5. StartExaminationGame : start Examination : StartGame

a) StartGame Screen
b) Game Information help screens(plural)

6.4. SEPARATING AND ISOLATING SYSTEM PARTS 75

6.4 Separating and isolating system parts

76 CHAPTER 6. DESIGN

6.4.1 Game and examination separation

The game is part of the examination protocol, the Examination Session is where the
examination protocol begins and ends. 4.4 on page 47

Figure 6.6: ExaminationSession to GameController

Protocol start − > initial examination preparation − > ready to start test
− > go to game ready − > start test/game, record probe data from patient
− > end examination − > confirm − > end game.

6.5 Generic and specific game concepts

Basic Game

ConceptExtension

Game2

BitmapManipulation

CameConcept

GameEvents

Sound

GameState

We try to seperate the basic generic

GameConceptEvents GameConceptState

Graphics2

Music

Name GenericGameDomainClass

Documentation

Model S2: Spiro Game Generic and specific concepts

Cues
GameFieldMap

GameFieldMap

<<merge>>

Figure 6.7: Game Top level class: generic and extended specific game concepts

The Game design is split up so specific prototypes can build upon the basic game concepts.
Each prototype is an extension of the basic game concept design/impl. The diagram shows
the classes that are suited to be extended and provide Functionality to the extension games.

The basic game implementation deals mostly with the game part that directly supports the
examination of the patients.

6.5. GENERIC AND SPECIFIC GAME CONCEPTS 77

All prototypes or games are an abstraction of one(or more) of the examination types. The
extensions should make it possible to add almost any type of game on top of the generic
system. Providing a passable variety of games both for new examination types but also
games where the input probe is just working as another type of input, like a joystick, screen
touch input and so on.

The basic game skeleton provides object position, speed, events from probe input, events and
Points etc in the game.

78 CHAPTER 6. DESIGN

6.6 Input and conversion
The DataInput system (S3) is responsible for providing data from the probe or the gener-
ator, The data input is then available for the DataFeeder class.

it would be natural to put the DataFeeder in the DataInput system. But it is placed both
in the patient examination system and in the game system.

The reasons are:

1. The DataFeeder is not directly related to the hardware probe or the generator. It is there
for providing the input at the correct intervals and provide pre-calculated data like frequency,
amplitude and other values to the examination session & game.

2. The systems are developed separately and the DataFeeder concept is just on the edge of
the system and for simplicity it’s concept is used at each developed subsystem, also because
the subsystems are developed in parallel

We need to measure:

• Frequency
• Amplitude
• Direction
• Speed (speed vector)
• Acceleration -> for what
• Changing direction, bottom top(local minimum maximum on a curve)

Values are derived from the probe data and calculated into the specific value type(speed,
ampl)

The data from the probe device are converted and recalculated into frequency, Amplitude
and the other values in the list.

Taking multiple samples over time to decide flow. Some action and events much be
watched over time, observing if patient interaction tendency continues. If the patient just
gets a out of rhythm for an instance the Cue might be unnecessary or might even confuse
or disturb the patient.

When some times has passed and a tendency has kept on for some time the System Observer
decide it is a pattern. For example if the patient breathes to slowly we don’t want to interfere
before we see that the patient doesn’t get back on track.

If the patient performs stable and good performance the game must encourage the patient
to continue that behaviour

6.6. INPUT AND CONVERSION 79

Figure 6.8: Data flow input to game system, flow with ExaminationSession

Figure 6.9: Data flow input to game system, flow in Patient system S2 excluded

80 CHAPTER 6. DESIGN

The data flows from the probe and into the game and examination session. Conversion of
raw bytes from probe to flow frequency and amplitude numbers. followed by calculation of
speed, acceleration and timing information. After those calculation the data "arrive" at the
DataFeeder. The DataFeeder supplies the InputEvent entity with data at timed intervals.
The InputEvent entity supply the game with specific value,types (acc, speed, frequency
amplitude). The GameController compares the InputEvent data values with the game state
and send a cue to GameFieldMap process that forward it to the correct game object.

6.6.1 Limits for patients: patient configuration

The game must use the flow and capacity limits of the patient to set the boundaries for
the optimal path. The limits are then adjusted to the screen size of the tablet. all players
move on the same space on the screen the limits of the patient are scaled to fit the screen
dimensions and division.

Figure 6.10: Breathing pattern

The graph is showing a breathing pattern. On the Y-Axis is the breathing volume capacity
on the X-Axis is the time passed.

The graph shows the maximum top and the minimum bottom at the two small yellow circles.
To the right the larger yellow circle shows 3 lines indicating the slope, this can be used to
calculate the turning point before it happens. Another way is to sample and see when the
values change, but that would be after the fact, with the slope approach we can calculate the
turning point time before it happens when the slope approaches zero.

The specification states 35 BPM(Breaths Per Minute) for the examination is an optimal
breathing frequency.

6.6. INPUT AND CONVERSION 81

T =
60s

35BPM
(6.1)

(6.2)
2 ∗ π
T

= f f =
2 ∗ π ∗ 35

60
(6.3)

(6.4)

f =
70π

60
f = 1.1667 ∗ π = 3.66 (6.5)

(6.6)
f = 0.5833hz (6.7)

(6.8)

The breathing frequency is about 0.58. That corresponds to a a high scrolling speed in
prototype 1. which means that the prototype 1 might have a weak point because the patient
must move very fast from top to bottom of the screen to pick up the sunstars.

82 CHAPTER 6. DESIGN

6.6.2 Events state and cues

The Concept cue is defined as: A cue is like the a hint to do something, on theatres the
actors waiting to get on stage are waiting for a Cue, "That’s my cue". Thus an appropriate
cue is selected according to the recent behaviour and actions of the patient/player.

First some basis cues are defined later new Cue types can be added by extending the table
of Cues and events or by extending the Cue class.

The design of Cues is not completely finished, the first cue model is a simple event model
in the game.

6.6. INPUT AND CONVERSION 83

Cues:

• Blow faster
• Blow Slower
• Blow softer
• Blow Harder
• Breathing irregularly, relax
• Not Breathing, go go go
• Doing Fine, keep going.

Figure 6.11: Events and input data cue decision

6.6.3 Input data game event and the System observer

We can see that the input data, the actions from the patient and the game actions and event
data, what happens in the game, flows into a process that compares the incoming data and
decides if a cue is necessary, if it is a cue signal is send to the corresponding object.

The process that observes this, is the system observer concept, the System observer watches
the incoming actions and decide if a cue is needed.

84
C

H
A

P
T

E
R

6.
D

E
SIG

N

Cue table
Cue Cue signal Reaction Time/or repe-

tition
Text description

go back to path Twist eyes Yes/no
Good behavior Blink nose, flip tail Yes/no time=60
Breathing to fast Sound(Slow down) Yes/no
Breathing to hard Sound(take it easy) Yes/no

Table 6.1: Cue table

Table Legend:

Cue The purpose of the cue

Cue signal The cue "appearance"

Reaction Is the patient behavior changing

Time or reception Set a time for the cue trigger event

Text description

6.6. INPUT AND CONVERSION 85

The Cue table is used to check if events in the game or for the player requires correction, it
checks if a behaviour of the player continues for some time or a behaviour repeats, including
"good" behaviour. The Cue table decides if a cue for the user is needed, if it decides that
a cue signal is needed, it is send to the game/player object or the GameFieldMap, which is
then displayed for the patient player.

The flow diagram shows how input data from the patient and games events are going into
the cue process and used to decide the cue signal to be send.

86 CHAPTER 6. DESIGN

6.7 Design architecture

6.7.1 Architectural requirements
Table 6.2: FURPS+ Architecture requirements

Extensibility Extensibility and ease of use
for building new games

Reliability No
Scalability Not needed
Integration Integration of data ex-

change with other RH
systems desired

Storage Storage of data on SD card
is not protected

Needs encryption

Security Patient data is confidential,
and must be kept secure

There a laws hat needs
to be followed

6.7.
D

E
SIG

N
A

R
C

H
IT

E
C

T
U

R
E

87

Figure 6.12: Architecture overview diagram: MVP

UiView

S1:PatientExaminationView

Model

Presenter/Controller

S3:DataInputModel

PatientViews

Generator

S1:PatientExaminationController

DataFeeder

PatientAdministration

S2:SpiroGameController

Examination

GraphDisplayView
GameControllerS2:SpiroGameView

GameView

S1:PatientExaminationModel

PatientExaminationDataProbeData

PatientHistory

feed pool

update

update

Figure 6.13: System architecture

88 CHAPTER 6. DESIGN

The architecture follows the MVP/MVC design pattern architecture as described in the
Android concepts chapter. 5.5 on page 66

The orange package system is the View, Blue package is the presenter/controller package and
the Green package is the Model.

The architecture make the application communication simple, Model updates view via the
presenter/controller that tells the View, the View asks the Presenter/Controller to
update the Model. The Presenter/Controller has the business logic, it manipulates the
data and controls how to store and update the model and how to represent the data to the
view.

6.8. S1:SPIRO PATIENT EXAMINATION SYSTEM 89

6.8 S1:Spiro Patient Examination System

Model S1: Patient Examination System

90
C

H
A

P
T

E
R

6.
D

E
SIG

N

Figure 6.14: S1:Patient Examination diagram

S1:patientExaminationS3:DataInput

+ExaminationRecord
-examinationTestResult

+recordExamination()
+startTestSession()

ExaminationSession

-UsbConnection2
-UsbRawData2 : byte

+connectionReady() : boolean

SpirometerMeasuringDevice

+analyzeExamination()
+analyzePatient(PTC [])

PatientAnalysis

-cprID
-Name
-birthday

+newPatient(metaData)
+getPatient(pid)

Patient

+getPatientCard(pID)
+storePatientData(Patient)

PatientHistory

-examinationType

+initExamination()
+confirmExaminationResult()
+confimTest()
+chooseProtocol()

Examination

-InputData : byte[]
-transfer
-Flow
-Volume
-Freqency
-Ampli tude

SpirometerProbeData

ExaminationTypeProtocols

-cardID
-Date
-Age
-height
-weight

+addCard(PatientID)
+getPatientExaminationCard()
+storePatientExCard(patient)

PatientExaminationCard

CTScannerE
xamination

CyclingExa
mination

BoxExamina
tion

MaxMinCapacityEx
amination

-patientCard
-probeDataPosition

ExaminationData

S2:GameSystem

-protocolPerExaminationType
-protocolStep

+startExamination(type : boxTest)

ExaminationProtocol

ProtypeGame

-Flow
-volumeAmplitude
-posit ion
-frequency
-optimalMeasurement[]

Game Position

-dataPool

+dataReady()

DataFeeder

+addNewPatient()
+ExaminationConfiguration()

PatientAdministration

-Capacity
-Flow

Limits

ExaminationProtocols

Name S1DesignPatientExamination

Model Patient Examination Design diagram

1

0..1

1

1

1

1

1

0..*

1

1

1
1

1
1

has

Administrate

feeds

startsGame

has

has

executes Analyzes

has

reads

6.9. DATA MODELLING 91

The diagrams are coloured according to a the rules described in appendix H on page 169

An alternative design class diagram ?? on page ?? created with analysis colouring, exploring
COAD’s color rules described at H.1.1 on page 170 See also a selected set of sequence
diagrams created use for the use case realization and extension into design diagrams. G on
page 165

6.9 Data modelling
The data model comes from the patient system DataFeeder system.

The DataFeeder and the probe data we have made part of the same system, it could be
argued that the hardware access and data reading could be another part of the system. But
it doesn’t provide any benefits for the analysis the design or the project overall.

However there is a set of classes responsible only for communicating with the probe and the
USB access, (which could later be substituted with the RH legacy system component.

The reason we haven’t bothered with that is because USB is a technology that is used more
and more also in the Medico business. Probably the Hospital might be equipped with USB
equipment in the "near" future. This can be verified by looking in ware catalogues for current
hospital equipment.

Furthermore, in the research phase it was determined that we could probably couple all the
measurements system we were presented with via some wiring, into the existing system, into
a standard RS Serial cable and from there, connect it with a USB adapter. To be clear an
adapter plugin and wiring could be made so all Examination types, Open/Closed Box, Cold
air test, CT scanner test, cycling test could be connected and connected to USB adapter, if
that is the case we can with a small single effort in creating the adapter and wiring tap into
all the systems and connect our device, to work with all the systems, off course the games
might need to be adapted to each examination type.

That means that our development most probably could be independent on the specific hard-
ware system that is measured on in the near future.

6.10 Data
Data modelling and databases.

6.10.1 First table layout sketch

A number of tables with column attributes that are seemingly needed, filled out informally,
PatientHistory is filled up with all information about patient history that was likely. The
PatientHistory table has more duplicates with other table than any other table, because
almost everything is in it.

92 CHAPTER 6. DESIGN

1. Patient tables

a) PatientInfo
b) PatientExamintionCard
c) PatientLimits
d) Patient

2. Examination tables

a) ExaminationInfo
b) ExaminationSession
c) ExaminationProbeData
d) ExaminationData

3. Game tables

a) GameInfo
b) GameCuesDispatched

GameCues should count what cues are used and at what time.

GameInfo Collects info about point scoring and collected objects. There is examination
quality, which should express how well the examination was done.

PatientLimits table, lists the limit we could think of at the time.

6.10.2 database 1. Normal form

Now there exists set of tables is created with a logical and topically division, the duplicate
elements are removed and the tables are cleaned up. At last 1. NF. is applied, All attribute
must be atomic.

6.10.3 database 2. Normal form

Define or identify pieces of information in each table. Find out how the tables are related.

Finding candidate keys:

A patient is uniquely identified by his/her social security number so that is an easy and logic
choice.

PatientExaminationCard, what identifies that? this is much harder or easier if more choices
means it easier. examinationId is invented, but what will it look like, should it uniquely
identify or should it be combined with something else, should it be unique for all records or
just fro records for one patient.

We could also identify by data and or time.

6.10. DATA 93

cprId integer(10)

name varchar(255)

surname varchar(255)

exRawProbeData varbinary(20000)

height real(10)

weight real(10)

age integer(10)

Limits integer(10)

Capacity integer(10)

t ime time(7)

medicineTaken b i t

medicineNote varchar(65535)

PatientHistoryS1

exRawData varbinary(20000)

ExaminationRawProbeDataS1

cprId integer(10)

name varchar(255)

surname varchar(255)

PatientInfoS1

cprId integer(10)

examinationID integer(10)

medicineTaken b i t

medicineNotes varchar(65535)

examinationNotes varchar(65535)

ExaminationInfoS1

examinationId integer(10)

height real(10)

weight real(10)

age integer(10)

date date

time time(7)

Limits real(10)

Capacity real(10)

medicineTaken b i t

medicinNote varchar(65535)

PatientExaminationCardS1

upperLimitFlow real(10)

lowerLimitFlow real(10)

upperLimitCapacity real(10)

lowerLimitCapacity real(10)

PatientLimitsS1

frequency real(10)

amplitude real(10)

speed real(10)

accelaration real(10)

ExaminationDataS1

aPatient integer(10)

aTestType integer(10)

protocol integer(10)

ExaminationSessionS1

points integer(10)

collectedObj integer(10)

testQaulity real(10)

awayFromOptPath30 real(10)

GameInfoS1

Which Cues are used integer(10)

timeOfCue time(7)

GameCuesDispatchedS1

Figure 6.15: First sketch of tables

Define rules for examinations:

rule1: a patient is registered only once when they meet for the examination summoning"
rule2a: a patient might need more than one examination rule2b: a patient might take an
examination over again, or do something repeatedly which constitutes multiple examinations

with those two simple rules, information can be divided between the information that are
registered when they arrive at the hospital, and information gathered for each examination

ID’s:

Patient: cprId; PatientExaminationCard: examinationId (date + nr) Still cprId is needed to
determine the record in the cardTable, but does cprId need to be primary key.

How the tuples are identified depends on how we define the examinationId and cardId.
Because the names suggest identification or uniqueness, they are renamed to cardNum and
examinationNum.

94 CHAPTER 6. DESIGN

6.10.4 Database 3. normal form

The tuples must not depend on part of a non candidate key. Any column not part of a key
must not uniquely identify a row in the table.

Studying the set of created and manipulated tables it seems that we have no such dependen-
cies. This is probable because of the initial table partitioning, where we intuitively created
separate tables with information "logically" belonging to a specific table. Patient personal
data, examination info, patient limits game score.

cprId integer(10)

name varchar(255)

surname varchar(255)

PatientInfocprId integer(10)

examinationNum integer(10)

t ime time(7)

exRawData varbinary(20000)

examinationNotes varchar(65535)

testType integer(10)

protocol integer(10)

cardNum integer(10)

date date

ExaminationInfo

cardNum integer(10)

date date

height real(10)

weight real(10)

age integer(10)

medicineTaken b i t

medicineNote varchar(3000)

cprId integer(10)

PatientExaminationCard

upperLimitFlow real(10)

lowerLimitFlow real(10)

upperLimitCapacity real(10)

lowerLimitCapacity real(10)

Limits real(10)

Capacity real(10)

PatientExaminationCarddate date

cardNum integer(10)

PatientExaminationCardcprId integer(10)

PatientLimits

frequency varbinary(20000)

amplitude varbinary(20000)

speed varbinary(20000)

accelaration varbinary(20000)

cprId integer(10)

examinationNum integer(10)

ExaminationData

points integer(10)

collectedObj integer(10)

testQuality real(10)

awayFromOptPath30 real(10)

GameCuesDispatchedcueId integer(10)

GameCuesDispatchedexaminationNum integer(10)

GameCuesDispatchedcprId integer(10)

GameInfo

examinationNum integer(10)

cprId integer(10)

cueId integer(10)

cueName varchar(255)

timeOfCue time(7)

GameCuesDispatched

Figure 6.16: First sketch of tables

Some information that could uniquely be in one table is split out in several tables, this will
simplify some queries, it is expected that the information that will be queried fits the table
schema that is designed.

6.11. GAME DESIGN : S2:SPIROGAME 95

6.11 Game design : S2:SpiroGame

Model S2: Spiro Game System

SpiroGame is the skeleton for the game. It is partly build as the game itself and partly built
to be extensible and provide functionality for the new games to be developed.

The game is designed to be extensible, as seen in diagram at 6.7 on page 76.

Description of game input and control:

- GameInputEvents: Receives the data input and translate it to a specific type of input event.

- GameController: this is a large block of functionality, that coordinates the rest of the
game functionality, it is a object might be given to much responsibility if not careful. The
GameController also contains the System observer that oversees input and game events and
control the cues to be send to the player.

The design is preparing to move some of the responsibilities to the InputEvent and Game-
FieldMap classes. as seen in the diagrams. The prototype(s) are working towards that design
goal, but also focuses on getting working functionality.

96
C

H
A

P
T

E
R

6.
D

E
SIG

N

Figure 6.17: S2:Spiro game prototype design

S2: SpiroGame

-speed
-points

Player

-cordinates_x_y
-playSoundMusic
-displayGraphics
-Flow
-posit ion
-frequency
-volumeAmplitude
-optimalMeasurement : float[]

+startGameSession(data : float...
+setupGame()

RHGame

-speed
-objectAttributes
-gameValue

MovingObject

-Obstacles
-NPCs
-Player
-startPositions : float = 0,0

+setupGameField() : void
+initalizeGameObjects(val) : void

GameFieldMap

-s ize
-material

StillObject

-starIsCollected
-goalsReached
-gameTestEnd
-EventAction

GameEventsS3:DataInput

Generator

-position : float

GameObject

-dataPool

+sendFrequencyData() : float []
+sendAmplitudeData() []
+sendAccelarationData() []
+sendTimeData()
+dataReady() : boolean

DataFeeder

Generator

Control what happens for different

GameState

+respirationSpeed()
+respirationAmplitude()
+processInputEvent()

InputEvents

Name S2DesignGame2

Model S2:Game Design Model

-HW
-UsbConnection
-UsbRawData
-UsbConnection2
-UsbRawData2 : byte

+connectionReady() : boolean

SpirometerMeasuringDevice

-InputData : byte[]
-transfer
-Flow
-Volume
-Freqency
-Ampli tude

SpirometerProbeData
GameRunState

GameObjectSet

*

1

1
1

1
*

STATES?

reads

6.12. GAME FLOW DESCRIPTIONS 97

6.12 Game flow descriptions

Update game

End GameControl

Start GameControl

Points
given

Check

Check Frequency

Check Amplitude

outputData

inputData

Check Player path

Cue Frequency

Cue Amplitude

Cue Path

Update player

Update time

Update time

check time

......

Check Collision

end game

time limit exceeded

OK

!OK

!OK

!OK

OK

OK

yes

no

yes

o k

no

yes

no

yes

Figure 6.18: Control flow diagram when game is playing

A flow control diagram of the ingame flow. The flow diagram shows that there is a game
loop, for each loop the game tests for collision, if collision, pick up the object(Sunstar) and
get points awarded. Return to check input data. Different kinds of input data is tested
(type,val) where type can be (frequency, amplitude, player path, etc) If the value of the type

98 CHAPTER 6. DESIGN

is not ok (!OK), if there is a problem then send a cue and continue to next test. repeat for all
tests. Some cues are time based not only does the type value check need to fail, but a time
restraint much be considered also before a cue is send. After that the game updates all the
different game objects etc. and the tests are redone again until the game loop is interrupted.

The flow control diagram uses prototype 1 for finding which actions need done. So it lacks
generality and would have to be updated for new games or for generality.

6.13 Game events and state
The event system is developed to react to game events. The first idea was to complex for a
short project The idea was to create a Game event for each object type, and also for the game
and the GameFieldMap. this is to complex I wanted the game to create events based on input
and on position. and on object type. that would mean each object, the GameFieldMap, and
the input. Would have a kind of event action matrix, the matrices could then be put on top
of each other. And the actions possible would be where the matrix masks fitted.

This would be very complex((ACTIONS∗EV ENT)3) very flexible and probably not needed.

Instead a more simple approach is giving the GameFieldMap or the GameController an
Event table. when something that triggers an event in the game, the GameFieldMap that
knows the game objects can propagate and execute the event.

6.14 Screen division
The screen division for the tablet is shown we divide the screen into sections, the left axis
shows the division of the tablets, we will not go to near the edges of the screen.

Drawing a approximated curve of the breathing pattern of the patient we have a path of a
certain width(Max/min visual border). The Maximal and minimal visual border should give
visual hints for the patient to follow, that is the width of the "road" the patient should keep
inside. The Maximal and Minimal invisible borders are the area that the patient should keep
inside to maintain a good breathing rhythm and strength. If outside the invisible borders
the game might intervene in a drastic way to keep the patient breathing properly. This
could f.ex. be halting the game and guide the patients breathing, before continuing the
game.(Examination continue recording under pause)

6.15. PROTOTYPE 1 DESCRIPTION: SPYROFOX 99

Figure 6.19: S2:Spiro game prototype design

6.15 Prototype 1 description: SpyroFox
SpyroFox: a little foxy hero is trying to get to the end of the field, and while doing it collection
as many sunny smiley’s as possible.

The smileys comes in the top and in the bottom of the screen, if you blow to hard you will
pass the Sunstar over the visible max border or under visible min border.

The idea is to collect as many sunstars as possible, if you miss your outside a good breathing
pattern. And the game will send a cue to the player. If you collect a certain amount of stars
in a row with out missing one, there will be an encouragement cue.

6.16 Prototype 2 description:Spiro PaperBoat
A paper boat sails on the big garden tub, it has a sail. Blow out to blow wind in the sail,
blowing near the best limit for the patient, gives the fastest sailing , which mean you will
catch another boat/fish, seagull , something and overtake, if you blow to hard the water
Resistance gets so high that you slow down faster, if patient blows under limit the boat
doesn’t sail as fast as possible. When breathing in, i don’t have a clear idea, but paper boats
take in water, because it made of paper. So maybe the patient should shovel water out or
maybe the sail slacks or something...

Part III

Implementation & Test

101

Chapter 7

Implementation intro

7.1 First prototype
Prototype 1 is designed so that the game movements of the player resembles the optimal
breathing curve. The player must move along the optimal breathing curve as closely as
possible. If the player follows the optimal path all the Sunstar objects is collected. The
optimal path can be seen as the apex of the "road" that must be followed, the road has a
certain width and if the player keeps inside the width of the road all Sunstars Will be picked
up.

If a graph is drawn for the breathing of the patient that equals the position of the player. In
an optimally" performed examination the breathing graph of the patient and the graph of
the optimal path will overlap. This prototype helps in development because the abstraction
of the game and the breathing pattern is close.

Prototype1 is a game that scrolls from right to left, the player starts in the middle of the
screen, and must collect Sunstars The Sunstars appear on the right side of the screen with
even timing intervals, matching the breathing frequency wanted. the appear on top and
bottom of the imaginary curve that the optimal" breathing pattern would draw, the player
must move to pick them up and get points for picking them up.

The Sunstars are always at the same height on the screen, but the effort to move to pick
them up is adjusted by the flow and capacity limits read from the patients data. That how
the game is configured for each patient.

Issue: The game speed might be fast or restricted by this pattern More game prototypes are
needed, so we can test out what work on the patients.

?? on ??

103

104 CHAPTER 7. IMPLEMENTATION INTRO

7.1.1 Prototype graphics bitmaps & and animation

Graphics is designed simply, since there are no artist "resources" assigned to the project.

The drawings are inspired in its simplicity from the drawings of danish cartoonist Martin
Strid. http://www.strid.dk/

The graphics is being designed to be simple but expressive. The graphics of the player figure
can then assist the human player by letting the eyes move to the direction it wants to move.
Also a tail should be added to assist the feeling of the movement direction, the tail will bend
to follow the path movement.

http://www.strid.dk/

7.1. FIRST PROTOTYPE 105

(a) (b) (c)
Figure 7.1: The player figure, simple but expressive drawing

(a) (b) (c)
Figure 7.2: A selection of the Sunstars

The sprite in figure 7.3 to the left in the middle of the screen is the player. The player must
pick up the Sunstars, that is the yellow and orange smiley with rays. If the player breathes
correctly all Sunstars will be picked up by the player.

106 CHAPTER 7. IMPLEMENTATION INTRO

Figure 7.3: S2:Spiro game prototype design

7.1.2 Collision
1
2 scrol lPosBG+=5;
3 i f (newBgPos <= 0) {
4
5 scrol lPosBG=0;
6 }
7 }
8
9

10 // What should updateStars () do
11 pub l i c void updateStars () {
12 synchronized (gameThread) {
13 //Log . v (" updateStars3 " , Float . t oS t r i ng (sunstar3 . ob j e c tPo s i t i on . x) + " :

" + Float . t oS t r i ng (sunstar3 . objectSpeed . x)) ;
14 // inac t iveArray . add (act iveArray . get (index)) ;
15 // act iveArray . remove (index) ;
16 // }
17 gameState=GAME_STATE_RUNNING;
18 }
19
20
21 // CHK: put in gameObject handler c l a s s
22 pub l i c boolean c o l l i s i o nD e t e c t i o n (MovableObject object , MovableObject

otherObject) {

7.1. FIRST PROTOTYPE 107

23 // CHK: TODO: get c ente r p o s i t i o n o f ob j e c t
24 f l o a t xd i s t = Math . abs (ob j e c t . ob j e c tPo s i t i o n . x − otherObject .

ob j e c tPo s i t i on . x) ;
25 f l o a t yd i s t = Math . abs (ob j e c t . ob j e c tPo s i t i o n . y − otherObject .

ob j e c tPo s i t i on . y) ;
26
27 Log . v (" c o l l i s i o nD e t e c t i o n " , "x1 , y1 " + Float . t oS t r i ng (ob j e c t .

ob j e c tPo s i t i on . x) + " " +
28 Float . t oS t r i ng (ob j e c t . ob j e c tPo s i t i o n . y)) ;
29
30 Log . v (" c o l l i s i o nD e t e c t i o n " , "x2 , y2 " + Float . t oS t r i ng (otherObject .

ob j e c tPo s i t i on . x) + " " +
31 Float . t oS t r i ng (otherObject . ob j e c tPo s i t i on . y)) ;
32
33
34 Log . v (" c o l l i s i o nD e t e c t i o n " , " xd i s t , yd i s t " + Float . t oS t r i ng (xd i s t) + "

" + Float . t oS t r i ng (yd i s t)) ;
35 Log . v (" c o l l i s i o nD e t e c t i o n " , "width , he ight " + Float . t oS t r i ng (ob j e c t .

moWidth/2) + " " + Float . t oS t r i ng (ob j e c t . moHeight /2)) ;
36 i f (xd i s t < ob j e c t .moWidth/2+0 && yd i s t < ob j e c t . moHeight/2+0){
37 re turn true ;
38 } e l s e {
39 re turn f a l s e ;

Listing 7.1: Collision detection file

After each collision between the player and the Sunstar, the Sunstar is removed from the
active to the inactive list as described earlier.

108 CHAPTER 7. IMPLEMENTATION INTRO

7.2 DataInput Generator description

Figure 7.4: S1:graph curve

Figure 7.5: S1:graph curve

Images taken from the application development of the simulated DataInput via the generator.
The 1. image ?? is of the input values screen, The range along the X-axis is chosen, function
and resolution of the graph is chosen.

On the second image ?? the graph for the chosen values, resolution and function is displayed.

The data is generated by the Generator system as described in D on page 155. On the
diagram an artifact on the graph display can be seen, a line from the point at the rightmost

7.2. DATAINPUT GENERATOR DESCRIPTION 109

x value to point 0,0. This is an error in the conversion of the graph data where the last
value in the conversion doesn’t get assigned a value, and the default value 0,0 is displayed
for the last point, because the graph is put together of small line fragments is drawn across
the screen.

110 CHAPTER 7. IMPLEMENTATION INTRO

g

7.3 Implementation issues

7.3.1 Scrolling

The scrolling (Prototype 1) is implemented by splicing 2 of the same background image side
by side, each sized to match the screen resolution. It works like a torus that repeats itself.
The spliced image is moved from right to left with the calculated speed that match 35 breaths
per minute.

7.3.2 Active game objects

The GameFieldMap class is responsible for control of which game objects are active at any
moment in prototype 1 "SunFox", an active objects is any object visible on the screen area,
when the game objects in this case the Sunstars leave the screen they are moved to the
inactiveObject list.

One issue is synchronization because a new Sunstar appearing on the screen is just added
to the active list. We have created 5 Sunstars, because that’s the most that are needed to
be displayed on the screen in our game. See description at ?? on page ?? screen division
section.

The first prototype defined the screen width length as 4 ∗ π. The Sunstars are placed with a
distance of

π. 0π ↔ 1π ↔ 2π ↔ 3π ↔ 4π

As we can see 5 stars is the most that can be displayed on screen at an instance when the
Sunstars are placed with a distance of pi including the edge of the screen.

1 pub l i c void updateStars () {
2 synchronized (gameThread) {
3 MovableObject moDel ;
4
5 // update a c t i v e s t a r p o s i t i o n s
6 f o r (MovableObject mo: gfm . activeGameObj) {
7 Log . v (LOG_SPYRO_V + "updateStars : a c t i v eS t a r s " , I n t eg e r . t oS t r i ng (mo.

sunNumber) +" : " + Float . t oS t r i ng (mo. ob j e c tPo s i t i o n . x)
8 + " : "+ Float . t oS t r i ng (mo. ob j e c tPo s i t i o n . y)) ;
9 mo. ob j e c tPo s i t i on . x −= mo. objectSpeed . x ;

10 Log . v (LOG_SPYRO_V + "updateStars : a c t i v eS t a r s " , I n t eg e r . t oS t r i ng (mo.
sunNumber) +" : " + Float . t oS t r i ng (mo. ob j e c tPo s i t i o n . x)

11 + " : "+ Float . t oS t r i ng (mo. ob j e c tPo s i t i o n . y)) ;
12 }
13 // check p o s i t i o n s o f game ob j e c t s :
14 // TMPFIX;

7.3. IMPLEMENTATION ISSUES 111

15 i n t index=−1;
16 f o r (i n t i =0 ; i < gfm . activeGameObj . s i z e () ; i++) {
17 moDel = gfm . activeGameObj . get (i) ;
18
19 // d i sappear on the l e f t o f the game area : remove from ac t i v e obj
20 i f (moDel . ob j e c tPo s i t i o n . x + moDel . objectBitmap . getWidth () < 5) {
21 Log . v (LOG_SPYRO_V + "updateStars : forRemoval " , I n t eg e r . t oS t r i ng (moDel

. sunNumber) +" : " + Float . t oS t r i ng (moDel . ob j e c tPo s i t i o n . x) + " : "
+ Float . t oS t r i ng (moDel . ob j e c tPo s i t i o n . y)) ;

22 // move to Ina c t i v e Queue and remove from ac t i v e Queue .
23 index=i ;
24 }
25 }
26 // : FIX : only one s t a r can be removed per round , : Remove c o r r e c t l y from

ar r ayL i s t : @chk
27 // This change seems to have f i x ed something now we have s t a r s on the

screen , be f o r e no s t a r s appeared
28 i f (index != −1) {
29 moDel = gfm . activeGameObj . remove (index) ;
30 gfm . inactiveGameObj . add (moDel) ;
31 }
32 }
33 }

Listing 7.2: Active and inactive game objects

A fix for the active inactive list is underway, the activeGame list seems correct, but the
inactive list keeps growing. See test2. ?? on page ??.

The test data shows that new objects are created instead of changing between the active and
inactive list. The cause is probably because of they way ArrayList is used we add and remove
while we should use a index on the range 0-4 instead. Looking at the references to the objects
in the inactiveList we will probably see that there are only 5 unique references, let’s look...
As it shows we have multiple references to the same object in the list. Solution is, using
a closed index set 0-4 or choose another List type. There has also been Some Concurrent
modifications errors, so maybe a Concurrent container can be used. Maybe the game object
bitmap flickering is related to a thread issue. Thats were we look next.

7.3.3 The GameFieldMap
1 pub l i c c l a s s GameFieldMap {
2 pub l i c s t a t i c f i n a l S t r ing LOG_GAMEFIELD = "GameField : " ;
3 // :CHK: ScrDiv | GameFieldMap
4 Context context ;
5 // game Fie ld Map
6 i n t yStart =300; i n t xStart =100; // should be c a l c u l a t ed v ia s c r e enDiv i s i on

, height , width
7
8 // these are not performance c r i t i c a l , use s e t t e r and make non pub l i c
9 pub l i c i n t screenXReso lut ion ;

10 pub l i c i n t screenYReso lut ion ;
11

112 CHAPTER 7. IMPLEMENTATION INTRO

12 // game ob j e c t on the s c r e en to be d i sp layed
13 pub l i c ArrayList<MovableObject> inactiveGameObj = new ArrayList<

MovableObject >() ;
14 // game ob j e c t s that goes o f f s c r e en / or are i n a c t i v e but are ready to

be used
15 pub l i c ArrayList<MovableObject> activeGameObj = new ArrayList<

MovableObject >() ;
16 // ! TODO: i n a c t i v e ob j e c t s are de l e t ed . . . when !
17
18 // ! Creat ing the p laye r and s p r i t e ob j e c t s on the f i e l d i n c l u s i v e i n i t i a l

p o s i t i o n e tc
19 pub l i c StarPlayer s t a rP laye r ;
20 pr i va t e i n t movePlayer=0;
21
22 pub l i c SunStar sunstar1 ;
23 pub l i c SunStar sunstar2 ;
24 pub l i c SunStar sunstar3 ;
25 pub l i c SunStar sunstar4 ;
26 pub l i c SunStar sunstar5 ;
27
28 // chk :TODO:maybe t h i s should be i n s i d e GameFieldMap
29 ScreenDiv i s i on s c r e enD iv i s i on = new ScreenDiv i s i on (screenXResolut ion ,

screenYResolut ion , context) ;

Listing 7.3: GameFieldMap

The GameFieldMap determines placement and state of all type of game objects, it should
control the events and user interactions it gets from the GameController and process the
received game event and input event data and process execute or delegate the decided action.

It responsible for collision control and must know where the objects are on the screen and the
screen resolution to place them properly on different Android devices(Using theScreenDivision
class).

7.3.4 Setup game patient constraints
1 // @chk : whats the d i f f e r e n c e in implementing runnable and not do i t
2 // run () s t i l l e x i s t s
3 // runnable doesn ’ t need to extend thread , you j u s t have to c r e a t e a thread
4 // and send the runnable as parameter to the Thread cons t ruc to r
5 pub l i c c l a s s SpyroSlalomGameViewThread extends Thread // implements Runnable
6 {
7 pub l i c f i n a l i n t BLOWS_PER_MINUTE = 35 ; //
8 pub l i c f i n a l i n t INV_BPM= 1/35 ; // 2∗1714L
9 pub l i c f i n a l i n t TIME_MILLIS_PER_BLOW = 35 / 60 ∗ 1000 ;

10
11 pub l i c f i n a l i n t GAME_STATE_RUNNING=0; // Game i s s t a r t ed
12 pub l i c f i n a l i n t GAME_STATE_INIT=1; // game p i e c e s and s t a t e are setup
13 pub l i c f i n a l i n t GAME_STATE_PLAY=2; // game play i s s ta r ted , the game i s

going on
14 pub l i c f i n a l i n t GAME_STATE_PAUSE=3;
15 pub l i c f i n a l i n t GAME_STATE_LOSE=4;

7.3. IMPLEMENTATION ISSUES 113

16 pub l i c f i n a l i n t GAME_STATE_WIN=5;
17 pr i va t e i n t gameState=GAME_STATE_INIT;
18
19 pr i va t e Sur faceHolder msHolder ;
20 pr i va t e Handler handler ;
21 pr i va t e Context context ;
22 pr i va t e SpyroSlalomGameView spyroSGameView ;
23
24 //GameFieldMap gfm = new GameFieldMap(gameThread . context) ;
25 GameFieldMap gfm ;
26
27 ScreenDiv i s i on s c r e enD iv i s i on ;
28
29 boolean isRunning=f a l s e ;
30
31 // ! Access to r e s ou r c e s e t c
32 Resources r e s ; // what i s i t we get here
33
34 // Background par t s
35 pub l i c Bitmap mBackgroundSky ;
36 pub l i c i n t scrol lPosBG=0;
37 pub l i c i n t newBgPos=0;
38
39 pr i va t e Paint mPaint ;
40 pr i va t e Point mScreenCenter ;
41
42 Canvas gameCanvas=nu l l ;

Listing 7.4: Patient constraints

This is the game thread, where the state variables for the running game state is defined and
controlled. The optimal blow frequency and the calcualted time in milliseconds between each
top and bottom point. The GAME_STATE that controls initilazation and Game running,
pause and ending. The GameFieldMap reference and ScreenDivision.

The ScreenDivision are going to be refactored. into the GameFieldMap, but needs informa-
tion that is announced via callbacks from the GameView(SurfaceView Android class).

The Patients constraint should be injected here from the PatientExaminationSystem S1.

7.3.5 Updating game state
1 pub l i c void run () {
2 gameCanvas = nu l l ;
3 whi le (isRunning) { // While game i s running , i n c l ud ing on pause
4 // try {
5 gameCanvas = msHolder . lockCanvas (nu l l) ;
6 synchronized (gameCanvas) {
7
8 i f (gameCanvas != nu l l) {
9 doDraw(gameCanvas) ;

10 }

114 CHAPTER 7. IMPLEMENTATION INTRO

11 }// Synchronized
12
13 // ready to be updated
14 msHolder . unlockCanvasAndPost (gameCanvas) ;
15
16 // updating game be f o r e r epo s t i ng f o r drawing
17 stateChange () ;
18 updatePlayer (5) ;
19 updateStars () ;
20
21 sc ro l lBackground () ;
22 . . .

Listing 7.5: Updating game state

This code locks the drawing canvas so the SurfaceView thread can update the graphics
values. When the canvas is unlocked the updated graphics is displayed on the screen. While
the canvas is locked the screen will not be updated, when the canvas is unlocked the drawn
canvas is displayed to the screen. doDraw is a method where all the Android drawing methods
is executed inside the canvas lock. After the synchronized section, we unlock the canvas and
call all game update methods, updating game objects and scroll the background. Test for
collision and events. and are ready to draw again. This is the general game loop.

All the update methods should be moved to the GameFieldMap class. Then only one public
call or interface GameFieldMap.update() from GameController initiates all the specific up-
date methods in the GameFieldMap class. this way our game is upholding the data flow for
the game system and the design architecture. 6.9 on page 79

7.3.6 Game View
1 pub l i c c l a s s SpyroSlalomGameView extends SurfaceView implements Sur faceHolder .

Cal lback {
2 pub l i c f i n a l s t a t i c S t r ing LOG_SPYRO_V="SpyroView : " ;
3
4 EditText p l ay e rPo s i t i on ;
5 Bitmap iconBitmap ; // :CHK <− why i s t h i s bitmap here
6 SpyroSlalomGameViewThread gameThread ;
7
8 GameInfoView g iv ;
9

10 // Screen max min
11 pub l i c i n t screenXReso lut ion ;
12 pub l i c i n t screenYReso lut ion ;
13
14 RoadShape r s ;
15
16 pub l i c SpyroSlalomGameView (Context context) {// , Att r ibuteSet a t t r s) {
17 super (context) ; // , a t t r s) ;
18
19 s e tFocusab l e (t rue) ;
20 requestFocus () ;

7.3. IMPLEMENTATION ISSUES 115

21 g iv = new GameInfoView (context) ;
22
23 f i n a l Rect gameViewRect = th i s . getHolder () . getSurfaceFrame () ;

Listing 7.6: Game initialization

This is the GameView that is updated via the secondary nested thread class. This part runs
on the main thread (UI thread) where the graphics ’state’ is drawn. ScreenXYResolution is
here since we can first access the screen size information after the callback surfaceCreated is
executed, that is a method in the SurfaceView class (SurfaceHolder.Callback)

7.3.7 Game Init
1 case GAME_STATE_INIT:
2 in i tSetGameFie ld () ;
3
4 canvas . drawBitmap (mBackgroundSky , +newBgPos , 0 , nu l l) ; // : chk : why

can i t be nu l l
5 canvas . drawBitmap (mBackgroundSky , −scrollPosBG , 0 , nu l l) ;
6 canvas . drawBitmap (iconBitmap , 10 , 10 , nu l l) ;
7
8 Log . v ("onDraw : i n i t : gameobj_size " , I n t eg e r . t oS t r i ng (gfm . activeGameObj .

s i z e ()) + " " + In t eg e r . t oS t r i ng (gfm . inactiveGameObj . s i z e ())) ;
9 f o r (MovableObject mo : gfm . inactiveGameObj) {

10 Log . v ("onDraw : i n i t : gameobj_num" , In t eg e r . t oS t r i ng (mo. sunNumber)) ;
11 }
12 i n t i =0;
13 whi le (! gfm . inactiveGameObj . isEmpty ()) {
14 MovableObject mo;
15 gfm . activeGameObj . add (mo = gfm . inactiveGameObj . remove (0)) ;
16 canvas . drawBitmap (mo. objectBitmap , mo. ob j e c tPo s i t i o n . x , mo.

ob j e c tPo s i t i on . y , nu l l) ;
17 Log . v ("onDraw : INIT" , Float . t oS t r i ng (mo. ob j e c tPo s i t i o n . x) + " " +

Float . t oS t r i ng (mo. ob j e c tPo s i t i on . y)) ;
18 i++;
19 }
20 Log . v ("onDraw : i n i t : gameobj_size " , I n t eg e r . t oS t r i ng (gfm . activeGameObj .

s i z e ()) + " " + In t eg e r . t oS t r i ng (gfm . inactiveGameObj . s i z e ())) ;
21 f o r (MovableObject mo : gfm . activeGameObj) {
22 Log . v ("onDraw : i n i t : gameobj_num" , In t eg e r . t oS t r i ng (mo. sunNumber)) ;
23 }
24 gameState=GAME_STATE_PLAY;
25 . . .

Listing 7.7: game Init

The GAME_STATE_INIT state sets up the gaming field and places the game objects on
the field. The background is drawn. All game objects are transferred to the activeGameObj
list(this is wrong!) , only one game object should move into the activeGameObj list.

7.3.8 Refactoring

116 CHAPTER 7. IMPLEMENTATION INTRO

1 @Override
2 pub l i c void surfaceChanged (Sur faceHolder holder , i n t format , i n t width ,
3 i n t he ight) {
4 screenXReso lut ion = width ;
5 screenYReso lut ion = he ight ;
6 // t r a n s f e r s c r e en r e s o l u t i o n to gamemap
7 gameThread . gmf . screenXReso lut ion=screenXReso lut ion ;
8 gameThread . gmf . screenYReso lut ion=screenYReso lut ion ;
9 // chk : ScrDiv : update here f o r changed su r f a c e ?

10 }

Listing 7.8: Refactor from GameController to GameFieldmap

This is a callback from SurfaceView, it is called when the canvas has changed structurally
NOT after a canvas draw update(doDraw), it is always called on creation of the GameView(class
name SpyroSlamomGameView) when the game starts. In the game system the game view
is mixed with the GameController. gmf is the GameFieldMap reference and because the
GameFieldMap has to know the screenXresolution when it places objects on the screen(the
usable screen space) it has to update via the thread since GameFieldMap is created in the
thread for the SurfaceView.

screenXYResolution might be redundant in the GameView but until refactoring is finished
we have it in two places. This is ongoing work with refactoring as much as possible away
from the GameView so the achitectural design can be maintained where feasible.

1 // CHK: TODO: load these in inac t i v e , and then put in a c t i v e when some
cond i t i on i s s e t .

2 // Move to gamef i e ld map
3 gfm . inactiveGameObj . add (gfm . sunstar1) ;
4 gfm . inactiveGameObj . add (gfm . sunstar2) ;
5 gfm . inactiveGameObj . add (gfm . sunstar3) ;
6 gfm . inactiveGameObj . add (gfm . sunstar4) ;
7 gfm . inactiveGameObj . add (gfm . sunstar5) ;

Listing 7.9: Before refactoring from GameController to GameFieldMap

Here is an example of code for refactoring, first code try placed the removal and adding of
active and inactive objects in the GameView − > GameController. Looking at this code it
is obvious that it can be moved to the GameFieldMap That is repsonsible for adding game
objects. The code in GameFieldMap would look like this.

1 inactiveGameObj . add (sunstar1) ;
2 inactiveGameObj . add (sunstar2) ;
3 inactiveGameObj . add (sunstar3) ;
4 inactiveGameObj . add (sunstar4) ;
5 inactiveGameObj . add (sunstar5) ;

Listing 7.10: After refactoring from GameController to GameFieldMap

Simpler and following architecture responsibility design.

7.3. IMPLEMENTATION ISSUES 117

7.3.9 Timing and events

A timer is set for running with a frequency of 35 Breaths per minute. The system timer is
used to create a game timer.

1 // CHK: MKJ: TODO: i want to make a t imer c l a s s so i can c r e a t e c l a s s e s
2 // with d i f f e r e n t t iming uses .
3 // funct ionTiming
4 i f (t iming < SystemClock . upt imeMi l l i s () − PI_INTERVAL) {
5 Log . v (" t iming " , " time f o r new gameObject") ;
6
7 // ! belong to own c l a s s StarGameClass StarGame{ Sunstar s [] ; . . .
8 gfm . placeNewStar (new Point ()) ;
9 t iming = SystemClock . upt imeMi l l i s () ;

10 }

Listing 7.11: 1. Timer code

The 1. working timer code. Tested out several timer and events implementations The
quick fix approach is to package the timer code into class and add startTimer, stopTimer,
timeStamp methods. So we can time actions in the game object. objectTime time since
object creation, actionTime : time since some action started Then the game objects could
have a timer object as general timer and action event timer. A similar idea is worked on for
events in game objects to work with the cue system.

7.3.10 Data feed

DataFeeder:

DataFeeder supplying data to game and player object is not implemented.

7.3.11 Performance and architecture

In games performance is important. The Dalvik Java Virtual Machine for Android has a
bad performance characteristics, when using getter and setters, the standard java runtime
from OracleTMoptimizes getters and setters to work in most cases as fast as direct variable
manipulation(Write/read address). This makes some of the architecture decisions and sep-
aration problematic from a performance perspective Package partitioning can be a problem
because we need public access to write directly to variables if they are in different packages,
this breaks encapsulation.

Some methods and Fields are public for efficient access mostly position and velocity updates.

7.3.12 Implementation status

1. Modules need to be integrated

118 CHAPTER 7. IMPLEMENTATION INTRO

2. Systems and application parts
3. GraphDisplay doesn’t work through DataFeeder
4. Architecture division

Mini apps for system parts functionality
Name Description Development status
SpiroGame Prototype1 game keyboard and screen touch

input, SurfaceView and
thread

InfoInputOutput Accessing raw resources, re-
sources and assets

done

SpiroPatientExamination The patient system, storing
patient data in DB

Simple information stored,
needs extended queries

MkjAndroid Sends message with Extras
information

done (simple program)

TimerTool Class for keeping game time Repeatable task problem,
almost done

BouncingBall Moving and collision testing
graphics updating

Works, some touch and di-
rection problem

GraphCharting Display graphs of function
generated data

Almost done

Generator Generate different function
values

Some problems with the
scaling to screen sometimes,
works for cos function

CustomView Bitmap object custom view Done
USB Access Access USB as Host and ac-

cessory
Lacks testing

7.4. TEST 119

7.4 Test

1. Active Inactive Objects
2. Collision test
3. Graphics error test, disappearing stars + many stars in "wave"
4. Movement speed
5. Events read
6. graphics test

7.4.1 Test1: Collision test

Collision test: test coordinates with player object vs game object.

Testnr 1.1 player lower than game object:

Testnr 1.2 player higher than game object:

Figure 7.6: The overlap of the game objects for collision

Figure of two overlapping game objects, the player and a Sunstar, if the 2 figures are of equal
size they will cover about 25 percent of their bounding box area, before a collision is detected,
this makes the collision seem natural. The SunStars with very thin rays are be hard to make
look like they collide bacause of the large area of the bounding rectangle that is not part of
the Sunstar drawing, later this will be improved by tracing closer to the shape of the bitmap
picture.

1 pub l i c boolean c o l l i s i o nD e t e c t i o n (MovableObject object , MovableObject
otherObject) {

2 // CHK: TODO: get c ente r p o s i t i o n o f ob j e c t
3 f l o a t xd i s t = Math . abs (ob j e c t . ob j e c tPo s i t i o n . x − otherObject .

ob j e c tPo s i t i on . x) ;
4 f l o a t yd i s t = Math . abs (ob j e c t . ob j e c tPo s i t i o n . y − otherObject .

ob j e c tPo s i t i on . y) ;
5
6 Log . v (" c o l l i s i o nD e t e c t i o n " , "x1 , y1 " + Float . t oS t r i ng (ob j e c t .

ob j e c tPo s i t i on . x) + " " +
7 Float . t oS t r i ng (ob j e c t . ob j e c tPo s i t i o n . y)) ;

120 CHAPTER 7. IMPLEMENTATION INTRO

8 Log . v (" c o l l i s i o nD e t e c t i o n " , "x2 , y2 " + Float . t oS t r i ng (otherObject .
ob j e c tPo s i t i on . x) + " " +

9 Float . t oS t r i ng (otherObject . ob j e c tPo s i t i on . y)) ;
10
11 Log . v (" c o l l i s i o nD e t e c t i o n " , " xd i s t , yd i s t " + Float . t oS t r i ng (xd i s t) + "

" + Float . t oS t r i ng (yd i s t)) ;
12 Log . v (" c o l l i s i o nD e t e c t i o n " , "width , he ight " + Float . t oS t r i ng (ob j e c t .

moWidth/2) + " " + Float . t oS t r i ng (ob j e c t . moHeight /2)) ;
13 i f (xd i s t < ob j e c t .moWidth/2 && yd i s t < ob j e c t . moHeight /2) {
14 // i f (xd i s t < ob j e c t .moWidth/2+63 && yd i s t < ob j e c t . moHeight/2+63){
15 re turn true ;
16 } e l s e {
17 re turn f a l s e ;
18 }
19 }

Listing 7.12: Collission center

The collisionDetection method calculates bitmap center of the game objects from the top
left position, otherwise the collision is skewed

Test1: Collision
TestName Expected result Actual result
collison player above ob-
ject

25 percent area overlap 1
2
x

1
2
y

Pass

collison player above ob-
ject

25 percent area overlap 1
2
x

1
2
y

Pass

In the test i will show how close the objects align and check that it looks like the objects
collide properly on the screen. After a code change in collisionDetection line 13 the collsion
fitted the 25 percent area coverage tha wa predicted.

7.4.2 Test2: Active inactive list test
1 pub l i c void updateStars () {
2 synchronized (gameThread) {
3 MovableObject moDel ;
4 // update a c t i v e s t a r p o s i t i o n s
5 f o r (MovableObject mo: gfm . activeGameObj) {
6 Log . v (LOG_SPYRO_V + "updateStars : a c t i v eS t a r s " , I n t eg e r .

t oS t r i ng (mo. sunNumber) +" : " + Float . t oS t r i ng (mo.
ob j e c tPo s i t i on . x)

7 + ":"+ Float . t oS t r i ng (mo. ob j e c tPo s i t i o n . y)) ;
8 mo. ob j e c tPo s i t i on . x −= mo. objectSpeed . x ;
9 Log . v (LOG_SPYRO_V + "updateStars : a c t i v eS t a r s " , I n t eg e r .

t oS t r i ng (mo. sunNumber) +" : " + Float . t oS t r i ng (mo.
ob j e c tPo s i t i on . x)

10 + ":"+ Float . t oS t r i ng (mo. ob j e c tPo s i t i o n . y)) ;
11 }
12 // :TMPFIX: check p o s i t i o n s o f game ob j e c t s :
13 i n t index=−1;

7.4. TEST 121

14 f o r (i n t i =0 ; i < gfm . activeGameObj . s i z e () ; i++) {
15 moDel = gfm . activeGameObj . get (i) ;
16
17 // d i sappear on the l e f t o f the game area : remove from ac t i v e

obj
18 i f (moDel . ob j e c tPo s i t i o n . x + moDel . objectBitmap . getWidth () < 5) {
19 Log . v (LOG_SPYRO_V + "updateStars : forRemoval " , I n t eg e r .

t oS t r i ng (moDel . sunNumber) +" : " + Float . t oS t r i ng (moDel
. ob j e c tPo s i t i o n . x) + ":"+ Float . t oS t r i ng (moDel .
ob j e c tPo s i t i on . y)) ;

20 // move to Ina c t i v e Queue and remove from ac t i v e Queue .
21 index=i ;
22 }
23 }
24 // only one s t a r can be removed per round , : Remove c o r r e c t l y from

ar r ayL i s t : @chk
25 // This change seems to have f i x ed something , now we have s t a r s on

the screen , be f o r e no s t a r s appeared
26 i f (index != −1) {
27 moDel = gfm . activeGameObj . remove (index) ;
28 gfm . inactiveGameObj . add (moDel) ;
29 }

Listing 7.13: active Inactive game object lists

In the listing the Game Objects are updated

Test the list list size act + list size inact = 5

After object removal actlistsizebefore - 1 = actlistsizeafter; inactlistsizebefore + 1 =
inactlistsizeafter;

After object add actlistsizebefore+ 1 = actlistsizeafter; inactlistsizebefore - 1 = inactlistsizeafter;

Test2: Active inactive game obejct list re-
moval and add

TestName Expected result Actual result
start game: inactive ac-
tive list size

inactive 5 active 0 Failed

after object removal:
after object add: actlistsizebefore + 1

= actlistsizeafter;
inactlistsizebefore - 1
= inactlistsizeafter;

Failed

Both tests failed. The inactive list keeps growing linear in time. While the active list goes
up to 5 items and stop there. A discussion as to why can be found here. 7.3.2 on page 110

7.4.3 Graphics artifacts error and stars

In the game new Sunstars should appear at the start of the screen to right and move to the
left one at the time. There is an error in the game where the stars comes in a close row

122 CHAPTER 7. IMPLEMENTATION INTRO

almost on top of each other.
1 pub l i c Point placeNewStar (Point po s i t i on , ArrayList<MovableObject> act iveArray

) {
2 // c r e a t e new sunstar , s e t i t s p o s i t i o n
3
4 //SunStar s = new SunStar (context) ; //
5 // PROBLEM : Sunstar might have some pos i t i on , we must add a non used

MO ob j e c t (i n a c t i v e)
6 SunStar s = gmf . sunstar1 ;
7
8 i f (updown == −1){
9 y = y ∗0 .6 f ; // screenYReso lut ion ∗0 .6 f ;

10 } e l s e i f (updown == 1) {
11 y = y ∗0 .6 f ; // screenYReso lut ion ∗0 .1 f ;
12 }
13 s . ob j e c tPo s i t i o n . x = x ;
14 s . ob j e c tPo s i t i o n . y = y ;
15 s . objectSpeed . x = 10 f ;
16
17 updown = updown∗−1;
18
19 f l o a t roadXLength = (f l o a t)Math . PI ∗2∗3 ; // 3 waves
20 f l o a t stepLengthX = roadXLength /((f l o a t)Math . PI ∗6) ;
21 f l o a t xPerPixe l = roadXLength/x ;
22 f l o a t r e l S i z e = x/roadXLength ;
23
24 act iveArray . add (s) ;
25 re turn new Point ((i n t) 0 , (i n t) 0) ;
26 }

This code explains the error with the disappearing Sunstars. The active inactive object
lists aren’t used in this place and only sunstar1 is reused and updated. (residual bug from
testing 1 Sunstars behaviour). The commented solution above on line 3, creating a new
sunstar won’t work either since this will create a new Sunstar each time a new sunstar enters
the screen instead of using those already created and stored away in the inactiveGameObj
activeGameObj list, this happens continously through the game so that would create more
and more objects as time passes.

The solution is to use the inactive list and move the objects to the active object list.

Test:

Chapter 8

Evaluation

8.1 Planning

Before the project started it was decided to use UP Unified Process and planning with
vision, elaboration, construction and transition phases. Shortly into the project it was decided
to change to a scrum like process instead. The danger of UP is to include too many artifacts,
which seems to be a common mistake. Scrum methodology is easier, the difference in my
perception is that in UP you have a large pool to choose from and deciding what is necessary
to use can be overwhelming, Scrum on the other hand is a work planning method at the start
there nothing in it(artifacts). You then find out what you need to use for for specific tasks.

Planning in small sprint iterations with a specific focus worked well, especially in the begin-
ning and middle phase.

The 14 days of one sprint makes sure that a satisfactory progress can be made and some
detailed work can be done.

There is time to reflect on the subject, do research and test out solutions. There is time to
accomplish a level of completeness, so progress is easily evident. This creates energy for the
next sprint that you can see a clear progress on each item or focus area.

When reaching the last third of the project period the planning sprint began to slide. Causes
for that is that i had to focus on to many subjects in one sprint in the later phases of the
project, which made me do to many things at once. Especially sprint 5 simply went wrong
after a good start, this happened because of multiple focus on report writing while the sprint
focus was implementing and extending the prototype.

123

124 CHAPTER 8. EVALUATION

8.2 Problems during the project and workarounds
Eclipse development environment: The Eclipse development system created several
problems during the project. For every new feature that was used, consistently there was a
learning curve of how to use it and how not to use it to get it to work properly. Examples
are that you need to clean files in some circumstances but it is not clear how to know when,
sometimes the application wouldn’t run unless the log entries were removed from the console
and or the logcat log window. The biggest fault was that debugging didn’t work, breakpoints
in the eclipse debugger, plain did not work, this is an important feature as the application
grows in size and complexity. Also the game runs with more than 1 thread for performance
reasons It much more efficient if you can use a thread aware debugger. ??

USB access: A USB spirometer probe was sponsored by Maribo Medico. Unfortunate it
seemed to not work with the USB controller. A newer probe with USB 2.0 was ordered but
did not arrive in time for development.

USB to Android connection and rooting: Enabling root on the Android was tried to
enable and install USB drivers to be able to work with USB 1.0. The tablet was run the
newest Android version was tried without success. Because of that the development had to
go ahead with simulated data.

It is not possible to test the system on the patients before we have a probe, preferably USB
2.0. An alternative could be building the adapter and test on the RH equipment.

8.3 Project goals
The project goals still lacks test and user feedback. Some examinations has been observed.
But the game concepts needs to be tested on the patients to ensure the interaction ideas are
valid.

There is a growing mini framework to build new games on. And a sound basis knowledge of
android is obtained.

8.4 Extensions
The parallel development of functionality makes the integration of the different modules a
little more complex, the focus on working functionality cause the Implementation and the
architecture to be out of sync. The architecture is the ideal it is not the goal.

In S2 the game system part, only few of the classes are designed between generic game
functionality and specific game concepts. To be able to extend the Generic system with new
games easily more of the game system must be refactored. The GameFieldMap and Game
objects and game player classes are ready to be extended. Other classes need more work.

Implementation features:

8.5. CONCLUSION 125

The cue system used to signal the user and observing if signals are reacted to, is early in
design/implementation stage. I expect this system to generalize the interaction and obser-
vation of the users and hereby make it easier to extend new interactions as we learn more
about the interaction with child patients.

The graph chart is not very flexible and the chart cannot be manipulated, The user can create
a new graph with a new data set, but cannot manipulate the selected data set interactively.
This could be developed with one of the researched Chart libraries for Android.

8.5 Conclusion
I was very happy with how the partitioning of the system was done, it made a clear separation
of the different major tasks and made it clear to me how the systems should work together,
Actually the patient examination was first introduced to improve the visualization of what
input would enter into the game system.

A problem was that to much time was used on the supporting systems related to the game.
More work should have been used to create more game system functionality.

There is in my opinion very well structured documentation for development support for
working on and extending the project.

During the project i rediscovered some methods and tools and discovered certain tools that
i had derided earlier, especially the data flow diagrams, which i always thought to be quite
useless, those helped me a lot to find out where responsibility for different tasks should be in
the system.

I wanted the implementation more complete, but there a lot of small applications that are
are developed and can be used a as base for further development(see 7.3.12 on page 117).

Developed functionality includes: Touch screen, moving objects, direction change, colli-
sion detection, patient database(small but it is mostly more SQL queries and their supporting
query classes used with SQLite). There is an application for plotting graph data, there is
code for access to raw resources, standard resources, assets and more.

A lot is learned about Android development not just coding, but how it to build good
applications following the Android Google developer guidelines and create applications that
works efficiently for the user. For example input types for helping the user to be more efficient
when entering data. Internationalization and more. This is achieved by using the Android
API basis and not use any 3rd party libraries. Now that the basic knowledge is founded,
development speed and features can be speed up by using specialized libraries for some of
the new or extended features.

The extension design of the generic game concepts still needs to be validated by producing
more prototypes. Also the first prototype seems to be unsuited for real testing, the patient
simply has to move to fast up and down the screen.

126 CHAPTER 8. EVALUATION

A lot of preparation for later integration with the hospital system is done. With the large
amount of design of the patient Examination system. an XML schema is developed.

Appendix A

Terminology & concepts

127

128 APPENDIX A. TERMINOLOGY & CONCEPTS

A.1 Spirometry terminology System Glossary

Spirometry terminology System Glossary
VC Vital capacity
RV Residual capacity
ITGV Intra Thoracal Gas Volume (VC + RV =

ITGV) The famous circle graph
PEF FEV1 & FVC
FEV1 Force expiration volume
FVC Force Vital Capacity

BF
Breathing Frequency (exha-
lations and inhalations per
minute)

Plethysmograph Whole body measurement , can measure re-
sistance in the complete respiratory system

BPM Breaths per minute
Probe Spirometer Measurement device: the device that the pa-

tient breathes into, and that measures flow
and capacity.

Examination an examination is the evaluation of a patient,
sometimes called test or trial (The trial and
test the complete examination, but a tool in
the examination, however sometimes in the
text, the words are used interchangeably)

Inspire inhale, breath in.
exspire exhale, breathe out.
respiration inspire + exspire, to breathe.
Asthma Illness that makes the lung thick or inflexible
Cystic fibrosis Illness that scars the lunge tissue and affects

other organs also
Table A.1: Terminology for spirometry measurements

A.2. ANDROID TERMINOLOGY 129

A.2 Android Terminology

Android Terminology
AndroidManifest The setup of the application, capabilities,

permissions, required features on device. etc.
Activity The activity a user want to perform
Intent The intent to do something via an activity,

also sending messages and data between Ac-
tivities

Intent-filter a filter in the manifest file, that specify
among other which actions the application
can fulfill, f.ex reading mail

Resources The strings, images, files, databases etc. that
the application uses

Broadcast service Broadcast for an activity, all apps that can
fulfill the request will get notified.

Context Each application has a context. The context
gives access to the resources, assets and much
more

Services A service can be made if something need to
be run while not having screen focus (music
etc.)

Views The graphics elements used to create user in-
terfaces & layouts

UI thread The application MAIN thread, all views are
displayed in this thread

Table A.2: Android terminology

130 APPENDIX A. TERMINOLOGY & CONCEPTS

A.3 Project terminology
Terminology and concepts used in the project. The terminology might not always match the
one used in the hospital domain, or the Android terminology.

This section should make it clear what is meant in the context of this report and tries to
stay as close as possible to terminology used in Android(TM) and at Righospitalet (RH).

Project terminology
Spiro The internal project name Used in packages, and for the

market id
Probe The measurement device that the

patient breathes into
Examination trial, test, examination Measurement procedure of the

patients lung functionality
Patient examination System Responsible for the patient his-

tory &analysis
S1

SpiroGame System The game system that should be
able to support different game
prototypes

S2

DataInput System Representing input to game, from
the probe hardware, or from data
generator

S3

Cue (bio) feedback concept time for the patient to do X. . .
Table A.3: Project terminology

Appendix B

Risk assessment

Risk Description Issue Risk
level

Solution

Sickness Have previous
longtime illness

Causes tiredness and
pain, and decreases
the time work can be
done on project, also
treatments take time
out of the day

High Keep
tabs on
tired-
ness
level,
organize
treat-
ments
ahead,
regular
inter-
vals,

Cannot ac-
cess RH
probe hard-
ware

RH has legacy
hardware

We cannot borrow for
extended time, be-
cause the have only
the equipment that is
in use at the hospital

Medium We try
to iso-
late this
problem
away.

131

132 APPENDIX B. RISK ASSESSMENT

Cannot ac-
cess USB

For some reason we
might not be able to
access the probe and
get data

Because of fragmenta-
tion of the Android
hardware, some things
might work on on de-
vice but not on other,
USB has a history of
trouble on the android
device

Low Make
a gen-
erator
early on
to sim-
ulate
probe
mea-
sure-
ments.
Android
Os ver-
sion
3.1+
should
have
im-
proved
USB
sup-
port,
so run
with
newest
pos-
sible,
that is
4.2

Android
tablet crashes

If the Android tablet
crashes we will be un-
able to test with the
probe and test with
children. Also there is
no money to buy new
tablet.

Low Can
use own
phone
for de-
vice
test, not
optimal
be-
cause of
screen
size.

133

Computer
loses some
or all project
data

Medium
/ low

Backup
to cen-
tral
server.
Use
version
con-
trol of
source
code
and
report.

Appendix C

Use case collection : Patient
Examination system S1 : Game System
S2

135

136
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

C.1 Actors & use cases

C.1.1 Actors

Overview of actors:

• - Patient/test person : the person to be tested for lunge function
• - Doctor : The Evaluator of the examinations.
• - Nurse: Performs the tests and observes the execution and correctness of the test

oversees the procedure of the examination session.

Actor: Test person/Patient
Description: The patient that are about to be tested and measured, for lung functionality.
Goal: To measure the current state of lung function/health and to add that to

a data collection, so that progress can be followed. Creating a history of
health progression/regression.

Actor: Supervisor
Description: The doctor or nurse, that supervises the test, initializes the equipment,

instructs the patient and observes that the examination is valid, useful
and done correct.

Goal: To make it easier to "instruct" / "guide" the patient through an Exami-
nation test

Actor: Treatment analyser
Description: The doctor / nurse, check test data, compare patient progress, browses

and analyses patient statistics
Goal: To see if the patients treatment is giving progress, analysing the data over

time to see progression/regression.

Actor: Information browser
Description: The test person: can check the data visualized for the test, and see progress

from earlier test measurements
Goal: To let the patient follow and their relatives(followers) their progression and

status without requiring deep knowledge of the subject

NOTE: the test person gets access to a simplified view of the data, or maybe a replay of test
i.e. the game replays the session.

C.1. ACTORS & USE CASES 137

Actor: Advisor
Description: Follows the patient and comes with input advice and support to the patient.

H as access to all historic data, and might also be the observer(?), so that
s/he can counsel the patient

Goal: The advisor is the specialist/doctor, that follows the patient and gives advice
on progress and status.

138
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

C.1.2 Use case diagram

System S1 Patient Examination

InitializeExaminationSession: Lung flow, capacity
& resistance examination, lung measurement

AnalyzeTest
Observe ExaminationSession
extension points

Begin Spirometer examination, following examination
pr protocol

Observe
ExaminationSessi

on

Get patient History
extension points

Compare patient examination data and
patient progress

Calibrate spirometer
measurement

device

Follow examination test
results by patient

AnalyzeTest

addPatient

Get patient History
:extending use case

Doctor/Nurse/Supervisor

Patient/Testperson

InformationBrowser

Advisor

Treatment Analyzer

Administrator

<<Extend>>

<<Extend>>

<<Extend>>

Figure C.1: Use case diagram: Patient Examination System

C.1.3 Use case descriptions

NOTE: this is a sub use case from general types of tests. Use cases for each test is not needed,
since the work flow is almost the same. If the work flow differs significantly it’s extended
with named extensions.

C.1. ACTORS & USE CASES 139

Use case Id: UC:PE1

Use Case Title:
Examination initialization

Primary actor: Supervisor
Level: wip: Work in progress
Stakeholders: Doctors, Nurses, Patients
Precondition: Patient has arrived
Success Scenario System has existing patient data and lung capacity and flow

limits for the patient. Meta data is recorded, (metadata: name,
birthday, ID data, weight, height). The examination is ready
to proceed.

Trigger:
Standard Scenario:

1. Patient Id data and height, weight, name are registered
in to the application.

2. Patient flow and capacity limits are set or read from earlier
examination.

3. The examination is started according to protocol (see ex-
tensions):

4. Patient breathes in to the probe, recording, biofeedback
and game is started(See Use case for Examination: ?? on
page 140)

Extensions:

1. Faulty equipment: test is aborted:
2. Other measurements and calculations not yet thought of

might occur.
3. Closed Box lung resistance, Cold air, Cycle test, CT

Max/min Scan.

Comments: This use case is extended by the different examination types
available. ex: use case "Lung flow and capacity examination,
lung resistance examination test(closed Box)". (@all examina-
tion type use cases)

Figure C.2: UC PE1: Initialise examination

140
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

Use case Id: UC:PE2

Use Case Title: Closed Box Examination (lung resistance
examination

Level: wip
Stakeholders: Doctors, Nurses, Patients, Follower
Precondition: Use case Examination initialization is done
Minimal Guarantee:
Success Guarantee: The patient keeps an steady respiration rhythm and a suffi-

cient strength amplitude, so that the measurement is usable.
The measurements are recorded in detail and the data are
stored away.

Trigger: ...
Standard Scenario: Patient breathes in to the probe, recording is started,

1. - The game tries to adjust the test persons breathing if
it is to slow or to fast.

2. - Feedback to test person, to ensure the correct strength-
/amplitude of the breathing.

3. - The game tries to help the user to correct breathing
with feedback.

4. - When the patient is doing well the game can adjust
difficulty up, or down if the patient errors again.

5. (@other detection? of bad measurements.)

Extensions: 1. If the game is unsuccessful at correcting the respiration of
the patient the game can restart, and reintroduce the patient
to the execution of the examination.
2.Patient breathes to fast or to slow, and can’t adjust to cor-
rect breathing pattern, the session times out and ends with an
overview, The game signals for manual intervention.

Comments: This use case provides a description for examination. But it
doesn’t specify the exact nature of the feedback, also use cases
like use visualization or give visual hint doesn’t give informa-
tion of the system. @see Game Scenarios section.
NOTE: this is a use case for general types of examinations.

Figure C.3: fig:Lung resistance test, closed box

C.1. ACTORS & USE CASES 141

Use case Id: UC:PE3

Use Case Title: Use Case Title: Analyze examination data
& patient progress

Primary actor: Treatment analyzer, Advisor
Level: wip -
Stakeholders: Doctors, Nurses, Supervisors, treatment analyzer
Precondition: Minimum one examination test is executed before.
Minimal Guarantee:
Success Guarantee:
Trigger:
Standard Scenario:

1. The actor searches and compares examination data.
2. The Treatment analyzer chooses, Analyse Patient.
3. Chooses 1 patient.
4. Chooses a time period.
5. The patient data for that time period is displayed on

screen (graph).
6. The data and progression can be visualized and data

can be chosen or added.

Extensions: 1. The Analyser can go back and pick patient and examina-
tion and a new time period.

Comments: This use case are not directly involved with the system "the
Game" we want to develop. But it is important to be able to
use the data after, and the way the data can be assessed and
evaluated can be important for the system to be a success.
That is why we want to make the game.

Figure C.4: Compare data and patient progress

142
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

Use case Id: UC:PE4
Use Case Title: Observe spirometry examination trial

Primary actor: Supervisor
Level: wip
Stakeholders: Supervisor, Advisor, Patient, Observer
Precondition: Use Case for Examination is started.
Trigger:
Standard Scenario: The supervisor can see the screen with the measurement data.

He observes the patient, and the biofeedback game.
The supervisor can watch if the test is executed correct by
watching the measurements screen and the patient.
generally the supervisor aids the patient, all through the exam-
ination.

Extensions: If the test is not done correctly and the game has unsuccessfully
tried to change the way the patient breathes. The supervisor
can take note of that or intervene, do a new test or other deci-
sions.

Comments: The game can return to a base line behaviour, reintroducing
the patient to the game/test.
i.e. the active game stops, asks the patient to relax. gives intro-
ductory instructions to start up again. (should be in extension!)
The game should be forgiving in the first while the patient set-
tles in.
This use case will be explored under game use cases (?? on page
??) Because this use case describes a mostly manual process we
will see where the system can aid or take over some of the tasks.
The idea is that the patient should be able to play and during
play as a side effect, "execute" the examination trial with high
quality in measurement reliability etc.
Figure C.5: Observe spirometry tests

C.1. ACTORS & USE CASES 143

Use case Id: UC:PE5
Use Case Title: Follow (watch) test results

Primary actor: Patient, advisor
Level: wip
Stakeholders: Patient, advisor
Precondition:
Minimal Guarantee:
Success Guarantee: Test person can follow his her measurements and progress in

a comprehensible way for a layman.
Trigger:
Standard Scenario: The Patient or test person, want to follow his her own progress,

starts the application chooses the wanted examination and can
watch it.

Extensions: None
Comments: examples: The user might want to see how the last test was

executed, or how well the lung functioned. A time period
might be chosen.

Figure C.6: Follow test results

144
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

Use case Id: UC:PE6

Use Case Title: Add patient to system

Primary actor: Supervisor, Nurse
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: The patient cannot already exist.
Minimal Guarantee:
Success Guarantee: A patient is added to the patient information database, and

can now start a testing program
Trigger: New patient coming
Standard Scenario:

1. Supervisor chooses add patient
2. Patient data is entered

a) PatientID (CPR)
b) Name
c) Birthday

3. Patient Initial data is registered. (First patient exami-
nation card is registered.)

a) Weight
b) Height
c) Date of registering/examination

4. Supervisor confirms patient data
5. Data is stored

Extensions:
Comments:

Figure C.7: Add patient data

C.1. ACTORS & USE CASES 145

Use case Id: UC:PE7
Use Case Title: Choose existing patient for examination

Primary actor: Supervisor, Nurse
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: The patient MUST exist in the system.
Minimal Guarantee:
Success Guarantee: The chosen patients data comes on the screen and is ready to

start examination.
Trigger: Examination started
Standard Scenario:

1. Supervisor chooses a patient in the system, by name or
Id

2. Patient data appear

a) PatientID (CPR)
b) Name
c) Birthday
d) Weight
e) Height
f) Test date
g) Limits (lung capacity, amplitude/strength etc.) are

set or adjusted.
3. Supervisor confirms patient and examination is ready to

start.

Extensions: 1. Limits are altered, because of patients condition (took
medicine recently, sick, etc.) This is examination initializing
with existing user, this includes the initialize examination use
case ?? on page 139 it describes the first 2 steps in more
detail

Comments:
Figure C.8: Choose existing patient for examination

146
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

C.1.4 Use case candidate list

1. Add Patient
2. Choose existing patient in system
3. Accept test session: after a test, the observer can OK the test, or discard it. if it is

discarded it will be thrown away otherwise it is stored.
4. Compare patient data: alt. scenarios how well the test is performed, patient progression

(how is it measured), flow, limits, volume
5. Analyse patient measurement just performed.(check it the test can be OK’ed).

C.2 Use case tech memos
Technote: Test observation Emilie, test types

test type question for Kim Gjerum
Note: there must be two test types Kim described one test where you breath slowly,
with a respiratory speed of about 30-35 breaths per minute Also the breathing should
have a specific strength / amplitude.
The Test i was watching with nurse Nadia and test person Emillie(8 years)(?) was
another test, here the box was open and the test was done like this: the child is ready
an breathes normally, easily, at some point in time the nurse tells the patient to exhale,
maintaining the exhalation for some extended time. The difficulty can be changed So
that the patient have to apply more respiratory strength, to keep up. if the patient stops
in the middle to let in breath, the test must be redone.

C.2. USE CASE TECH MEMOS 147

include this form included file in appendix

DING Use case Id: UC:SG1

Use Case Title: Init game

Primary actor: Patient
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: Patient Examination Session is started.
Minimal Guarantee:
Success Guarantee:
Trigger:
Standard Scenario:

1. Patient chose start game.
2. The game starts Init setup.
3. Objects are placed on the screen.
4. The game map is initialized
5. Game State is set to running state.
6. The input data from the probe is read throughout the

game.

Extensions:
Comments:

Figure C.9: Game is initialized,ready to start

148
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

DING Use case Id: UC:SG2

Use Case Title: Patient breathes to slowly

Primary actor: Patient
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: game is active. UC: start game is executed
Minimal Guarantee:
Success Guarantee: game on
Trigger:
Standard Scenario:

1. Patient Breathes into the probe.
2. The patient breathes to slowly. Getting behind the op-

timal path.
3. The game detects to slow breathing
4. The Patient is signalled to breathe faster.
5. Waiting for patient to react to signal and be stable for

period of time
6. Patient has reacted to the signal and have been breath-

ing with the correct speed for some time.
7. Signals?

Extensions: The patient does not react to the biofeedback cue, and doesn’t
speed up the respiration.
The Game sends a new signal/Event to try get the user to
react.
1. Player figure gets different colour (blue)
2. Visual hints (Eyes are tilting in the direction it want to go)
3. player figure tries to signal that it want to speed
up(fidgeting)
4. The path or something on the path begins to lighten up
5. music plays faster
6. Voice says to go faster

Comments: These are hard to describe without a concrete game, it can be
so general or abstract, that it is non descript.

Figure C.10: UC:Child Player breathing rhythm to slow

C.2. USE CASE TECH MEMOS 149

DING Use case Id: UC:SG3

Use Case Title: Patient amplitude to large(exercise to
much force in breathing)

Primary actor: Patient
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: game is active.
Minimal Guarantee:
Success Guarantee: game on
Trigger:
Standard Scenario:

1. Patient Breathes into the probe.
2. The patient breathes with excessive force into the probe.

getting above optimal path().
3. The game detects that the patient breathes above ca-

pacity/flow limits (How?)
4. The Patient is signalled to breathe in a relaxed fashion

(only, closed box ex.?)
5. Waiting for patient to react to signal and be stable for

period of time
6. Patient has reacted to the signal and have been breath-

ing with the correct speed for some time.
7. Signals?

Extensions: The patient does not react to the biofeedback cue, and doesn’t
speed up the respiration.
The Game sends a new signal/Event to try get the user to
react.
1. Player figure gets different colour (blue)
2. Visual hints (Eyes are tilting in the direction it want to go)
3. player figure tries to signal that it want to speed
up(fidgeting)
4. The path or something on the path begins to lighten up
5. music plays faster
6. Voice says to blow

Comments:
Figure C.11: UC:Child Player breathing rhythm to slow

150
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

DING Use case Id: UC:SG4

Use Case Title: Patient breathes irregularly

Primary actor: Patient
Level: wip
Stakeholders: Patient, Supervisor.
Precondition: game is active.
Minimal Guarantee:
Success Guarantee:
Trigger:
Standard Scenario:

1. Patient Breathes into the probe.
2. The patient is observed over time
3. The game detects irregular breathing pattern
4. Cue’s triggered.
5. Initialize patient, slow down/pause , and instruct, start-

ing over, or re establish in "quiet" game environ-
ment(suggestions@)

6. Waiting for patient to react to signal and be stable for
period of time

7. Patient has reacted to the signal and have been breath-
ing with the good rhythm for some time.

8.

Extensions: The patient does not react to the biofeedback cues, change to
regular breathing pattern.

Comments:
Figure C.12: UC:Child Player breathing rhythm irregular

C.2. USE CASE TECH MEMOS 151

DING Use case Id: UC:SG5

Use Case Title: Patient breathes correctly

Primary actor: Patient
Level: wip
Stakeholders: Patient, Supervisor, Advisor, Follower.
Precondition: game is active.
Minimal Guarantee:
Success Guarantee: game on
Trigger:
Standard Scenario:

1. Patient Breathes into the probe.
2. Game encourages the path
3. Points are gained,
4. Game visible Objects display cue for correct behavior
5. Adjust difficulty ?
6. System observe capacity limits
7. System observe flow limits
8. Patient has maybe reacted to the signal and have been

breathing properly
9. How do we find if encouragement works, and keeps the

patient in range
10. Cue Signals?

Extensions: The misbehaviour Use cases are all extensions of this one
Comments: This us case is important because it touches on what the user

gets from the system when doing good, continuously encourag-
ing correct behavior, but it is hard to know when it is needed.
A flow diagram might be a good way to show this)

Figure C.13: UC:Child Player breathing rhythm perfect

152
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

C.3 Requirements note, physical

Note about requirement 6: Testing on own phone / tablet
device:
Thomas(Doctor): stated it would be nice if the game
could be downloaded on the users own device.
Then they could get a little plastic pibe to ensure
uniform distance to sensor.

The microphone sensor on the device would then be the
probe flow sensor.
Their phone + pibe would be calibrated on the hospital.

Then it would be nice if the users could also see their test
data
However, there might me an issue of how we can secure
that data? (must only be read by patient and followers).
Questions: Is the microphone stable enough, is the air
flow steady enough.

Is it feasible(would it work).

C.3. REQUIREMENTS NOTE, PHYSICAL 153

Number Requirement Description Comment Priority
1) Opsamle live data feed

fra probe og visualisere i
realtid

1

1) Visual feedback for
children, guiding
interaction from patient

On reaction from patient we must
react appropriately to help guid-
ing.

1

1) Adjust speed and
rhythm to fit the users
level (size, physique and
age)

3

1.3) Set limits on volume
according to each
patient

2

1.4) Adjust limit, in game, to
decrease / increase
games difficulty to help
the patient

Helping the patient not getting
frustrated, the difficulty level can
be made easier, to ensure we
don’t bore the patient so they
lose concentration, we can in-
crease difficulty

1

1.5) Hint patient to slow or
fasten speed rhythm
(frequency)

1

1.6) Hint patient to expire
inspire harder or softer
-> the Amplitude.

2

2) Store Patients
examination session
(what happens under
the game.)

2

3,1) Save patient
examination session in
PatientHistory .

2

2.2) After a test
confirm(todo: use case
extension scenario) that
the test is valid, attach
comment to it, or reject
and delete it.

2

3) Define test protocols.
?(TODO: is this a
requirements?)

3

4) Add new Patients to the
Patient database

2

154
APPENDIX C. USE CASE COLLECTION : PATIENT EXAMINATION SYSTEM S1 :

GAME SYSTEM S2

5) View patient history(ie
earlier test versions)

1

6) Make sure stored data is
secure, since there are
data access laws, that
must be followed for
actual patient data(todo
half is comment)

3

7) Share /n transfer data,
via XML, securely

2

9) Measure Flow and
Volume for patients

2

9.1) Record adjust limits for
the patient according to
the ExaminationSession
(A Use Case..), confirm
by **supervisor**.

1

Priorities
1 Very high The core of the system, this is the area we work to im-

plement
2 High Important supporting requirements
3 Medium Bread and butter functionality, QA work(on scope sys-

tem), polishing, more/extended functionality
4 Low Nice things to have but not necessary fro core scope

project
5 Very low Items not belonging to the core project, but has an as-

sociation, that might be important for other requestors,
maybe done as another project

Table C.2: Priorities

Appendix D

Generator S3: simulated input data
diagrams

Content:

1. Generator
2. Use case for generators
3. Class diagrams

D.1 Generator modelling

155

Appendix E

Generator and generator design

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · (E.1)

=
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, (E.2)

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · (E.3)

=
∞∑
n=0

(−1)nx2n

(2n)!
. (E.4)

E.1 Generator design

The generator is designed to take over from the USB spirometer we do not succeed in getting
access to the spirometer

First of it will generate different outputs of mathematical formulas. exponential, random,
cosine, sine. Random function.

E.1.1 randomized value point interval

A feature that is usable is a random feature on top of the functions, so that each function
value will be inside a randomized value, interval a each point.

157

158 APPENDIX E. GENERATOR AND GENERATOR DESIGN

E.2 Generator Use cases

S3 Generator
S3 Generator

«extend»

«include»

Generate function data

Generate test data

Generate random data

Generate fuzzy random data

Transfer live data

Record live data

generate visual data

Tester

Patient

Doctor/Nurse

DataFeeder

E.3. GENERATOR CLASS DIAGRAM 159

E.3 Generator class diagram

S3 Generator

View

Presenter/Controller

Model

fuctionName1

dataArray*

instance
1

1

Function
*

Data
1

data 1

GraphDisplayView

Views, Layout
ScreenDiv : ScreenDivision

GraphDataInputView

minX : int, maxX : int
ticks : int
functionName : String

GraphDisplayActivity

graphDisplay : GraphDisplayView

GraphInputActivity

InputGraph : GraphInputView

Generator

Data x,y : float

Function

functionOfX(x : float) : float

Cosine

Amplitude : float
periodT : float

Exponential

a, b : float

Polynomium

x1, x2, x3, xn : float

Controller: activity as
the controller, maybe
it shouldnt be the con-
troller

Controller: activity as
the controller, maybe
it shouldnt be the con-
troller

The generators
principles
The generators
principles

Think about this,
is it the model
Think about this,
is it the model

Appendix F

Class responsibility descriptions

F.1 S1: PatientExamination System

F.1.1 Examination part

ExaminationData

ExaminationData a class for the recorded test. The class tracks the data from the probe.
It recounts flow volume and and capacity. And records all the input data.

The recorded data from the examination can be saved on a patient card, that will be stored
as part of the patient history.

ExaminationSession

ExaminationSession is responsible for, initialization, protocol, execution, and finalization
of the examination.

The examination session runs behind the game Saves the Data calculated and recorded during
the examination session.

ExaminationProtocol

ExaminationProtocol Is the business logic for the execution of tests. Part of it is out of
the control of the system, measuring weight and height of the patient before the test f.ex.
However the application could have some check points, before allowing next part of protocol
to be executed.

In the future, some of the “external” systems might be integrated with the application.

161

162 APPENDIX F. CLASS RESPONSIBILITY DESCRIPTIONS

F.1.2 Patient Part

Patient

Patient is describes the patient personal data.

PatientAdministration

PatientAdministration responsibilities.

Adding patient + transfer data to external systems.

The patient administration is a kind of concept class for all the things that the doctors and
nurses could think to do with the patient patient history and patient data.

• Adding new patients.
• Conclusions about treatments, adjusting limits for each patient
• observe the test data
• Journal access, and update.
• move the examination data to PC for analysis
• backup of external data

Many of these things are not going into the build system, so it in the diagram more to
remember these parts of the system should be there. if it is a non research /development
system

PatientHistory

PatientHistory The concept of a Patient history like a container class. It should be both
patient data and analysis data with notes and analysis comments. For now it really doesn’t
contain more than the patient Information and the patient examination cards.

F.2 S2: Spiro Game System

F.2.1 InputEvent

InputEvent receives the data from the Probe or the data generator via the DataFeeder, it
translates the data to an appropriate event or action.

F.2.2 GameController

The GameController has the job of distributing the different aspects of the game, events
to action, input, calculations of speed, screen sizing etc. Passing events to other objects.
Distribute Cue events.

F.3. S3: DATAINPUT SYSTEM : PROBE MEASUREMENT PART 163

The GameController class act as controller in the controller pattern according to GRASP1

terminology. This works fine in smaller systems.

F.2.3 GameFieldMap

The GameFieldMap is the map of the game, it sets the positions of the player objects.
Controls collision and removal and addition of game objects.

In First iterations of development it also have the Event control.

F.2.4 Game Objects

Game objects is a class for all the common behaviour and attributes of the game sprites.
Positions, bitmap used, Actions it can do, movement and more.

F.2.5 GameEvents

The events that happens in the game.

F.2.6 Cue

Cues defines different types of feedback to the player. The conditions, and trigger for when
the cue should initiate.

F.2.7 GameState

GameState controls the state in the game. There are 2 different states. 1 state control if the
game is running, paused, stopped or in initialize state.

F.3 S3: DataInput System : Probe Measurement Part

F.3.1 SpirometerMeasurementDevice

Responsible for the hardware and hardware near systems. Measurement hardware, Enable
UsbConnection, Raw data.

F.3.2 ProbeDataCalculation

Getting the data from the probe in a more representable form. Takes raw data and turn it
values of acceleration, speed, flow.

1

164 APPENDIX F. CLASS RESPONSIBILITY DESCRIPTIONS

F.4 S1-S2-S3: DataFeeder
DataFeeder has the responsibility of Supplying the game with input data from the probe
or generator at timed intervals.

While the systems are developed the DataFeeder exists in all System parts. This must be
integrated later.

Appendix G

Selected sequence diagrams

G.0.1 Patient examination sequence diagrams

ref

Examination
Session

Examinatio
nType<<B
oxTest>>

Game

Supervisor

PatientCardExamination Patient

4.1: storePatientCard(pid)
4: confirmTest

2.1.1.2: testResult

2.1.1: startGameSession

2.1: PatientExCard

2.1.1.1: GameLoop

2:

1.1.1: BoxTestProtocol

1.1: startExamination(boxTest)

1: initExaminationConfirm(examinationType=BoxTest, Patient p)

3: endTest

Figure G.1: Make box examination sequence diagram

G.0.2 Game sequence diagrams

165

166 APPENDIX G. SELECTED SEQUENCE DIAGRAMS

Supervisor PatientAnalysis

ExaminationDataExaminationSession

UiAnalysis

3: getExaminationData()

1: AnalyzeExaminationSession(patientId)

8: display

5: analyzeExaminationData()

7: displayData()@?

6: sessionData

{}

4: sdata = sessionData()

2: ex = patientSession()

Figure G.2: Analyse examination sequence diagram

ref

Patient

GameController GameFieldMap GameObjects

7: readyToPlay()
6: gfm :=GameFieldMap()

3: createGameObject()

5: setupGameObjects(go)

2: setupGameField()

1: startGameSession()

4: addObject

Figure G.3: Init game sequence diagrams

167

DataFeeder

InputEvent

Patient SpiroGame

2:

6: eventMessage

3: sendData(data)1: patientInput

7: processInputEvent()

5: readInputEventAmplitude()

4: processInputEvent()

8: cue

Figure G.4: Input game loop sequence diagrams

GameView

GameObjects GameEventsCueGameFieldMap

GameController

InputEvent

Patient

13: displayInteraction(cue)

12: updateGameView

11: cueForward

9: cue = getCue()8: sendEvents(input,game)

6: displayInteraction(cue)

5: updateGameView

7: sendGameEvent

10: cueSignal

4: cue =inputtypeValue

3: updateGame(gameEvent,inputEventtype)

2: input(type,val)

1: interAction(Data)

Figure G.5: In game sequence diagrams

Appendix H

Colour styling of diagram architecture
and figures

H.1 Colouring legends

Colour legend: Peter Coad

1. Roles class
2. Description class()
3. Party, thing
4. Moment-interval

Figure H.1: Colouring legend

Colour legend: author:mkj

1. Controlling object(Ex: PatientAdministration)
2. is-a-thing object (Patient)
3. Manipulating object, (Ex: InputEvent)

Figure H.2: Colouring legend

H.1.1 Spiro classification system

Analyzing systems and class systems

We use colour styling in our report, chapters figures and especially class diagrams etc.

169

170APPENDIX H. COLOUR STYLING OF DIAGRAM ARCHITECTURE AND FIGURES

The colour items have significance, because the partition the classes in to different meta types
or behaviours etc.

We have 2 colouring methods, one created by the author of this report(no peer review). 1
created by Peter Coad et al. Described in the book Java Modelling In Colour With UML:
Enterprise Components and Process. Coad

The colouring was researched and one of them created because of the authors wish to have a
tool, for thinking about classes and draw what was thinking, furthermore create something
that the eyes can snap onto, basically, remove the orientation coordinates, without adding
more artifacts in the class diagrams, instead of using energy on finding stuff on the map,we
create something that helps follow the

Peter Coad’s classification method

Figure H.3: Coad colour system

Classification method from author:mkj

the first classification system was a concept invented by the author to help analysing the
classes and get a grip on what the system is, The classes are coloured According to groups
the belong to and inside the group how they relate to each other. how the relate to each
other. Classes are grouped into groups, that together naturally form a system task or a
responsibility area, f.ex. the classes that are directly responsible for the Examination test,
is considered one unit, while the unit that have patient responsibilities are coloured another
colour

When looking down on the diagram it is immediately visible, what responsibility area you
are looking at, because the areas are clearly divided by their colour

We have classes the represent and object, then we have controlling object that imposes
something on the object

H.1. COLOURING LEGENDS 171

Figure H.4: Coad colour system

there is also other classes that looks like control classes but that don’t actually do exercise
control.

Example could be a house as the object, then we have a maintenance class let’s call it
HouseMaintenance, that controls maintenance, we also have a House Painter class. Eve
though the HousePainter class "imposes" on the House by painting it some colour, it is
not considered to impose control over the house. More likely the HouseMaintenance class
initiated a new house painting. and told the housePainter class to paint the house.

Then there a two types of action or behaviour classes, and they will be coloured differently,
because of that difference.

Appendix I

Xml for patient data transfer between
RH system interfaces

To integrate and communicate with other Hospital systems the information benefits from
being in an XML format.

Rough draft of patient information in hierarchical format:

TestPersondata:
Name
Birthday
limits
testdate
Age
Height
Weight
Limits[]
TestCollection[]

I.1 JSON or XML
JSON:

1 {"TestData": {
2 "name": "Santa",
3 "Id": "_cprnr",
4 "heigth": "117",

173

174
APPENDIX I. XML FOR PATIENT DATA TRANSFER BETWEEN RH SYSTEM

INTERFACES

5 "weight": "28",
6 .. more here
7 }}

XML: With DTD definition

1 <?xml ve r s i on=" 1 .0 "?>
2 <!DOCTYPE TestPersonData [
3 <!ELEMENT TestPersonData (name | Id | he ight | weight | l i m i t s L i s t |

Te s tCo l l e c t i on) ∗>
4 <!ELEMENT name (#PCDATA)>
5 <!ELEMENT Id (#PCDATA)>
6 <!ELEMENT he ight (#PCDATA)>
7 <!ELEMENT weight (#PCDATA)>
8 <!ELEMENT l im i t s L i s t (l im i t) ∗>
9 <!ELEMENT l im i t (_limitname1 | _limitname2 | _limitname3) ∗>

10 <!ELEMENT _limitname1 (lmvalue) ∗>
11 <!ELEMENT lmvalue (#PCDATA)>
12 <!ELEMENT _limitname2 (lmvalue) ∗>
13 <!ELEMENT _limitname3 (lmvalue) ∗>
14 <!ELEMENT Tes tCo l l e c t i on (t e s tda ta Id | dataSrc) ∗>
15 <!ELEMENT te s tda ta Id (#PCDATA)>
16 <!ELEMENT dataSrc (#PCDATA)>
17]>
18
19 <TestpersonData>
20 <name>Santa</name>
21 <Id>_Cprnr</ Id>
22 <he ight>115</ he ight>
23 <weight>27</weight>
24 <l im i t s L i s t><l im i t>
25 <_limitname1><lmvalue>_value<lmvalue></_limitname1>
26 <_limitname2><lmvalue>_value<lmvalue></_limitname2>
27 <_limitname3><lmvalue>_value<lmvalue></_limitname3>
28 </ l im i t></ l im i t s L i s t> // might not need to be l i s t
29 <Tes tCo l l e c t i on>
30 <te s tda ta Id>_date_n_x
31 </ te s tda ta Id>
32 <dataSrc>
33 Whole l o t o f data here or i s that not c o r r e c t xml , a tag f o r each data

po int seems
34 a huge waste .
35 </dataSrc>
36 <Tes tCo l l e c t i on>
37 </TestpersonData>

XML has more tools available than JSON. JSON more compact for mobile devices, but not
really need compact since we don not send messages between mobile objects. Much more

I.1. JSON OR XML 175

likely to send to Workstation computer if need to be analyzed. XML cam be packaged to be
of roughly the same size as JSON for network transfer etc.

JSON JQERY: Xml alternative

http://iviewsource.com/coding/getting-started-with-javascript-object-notation-json-for-absolute-beginners/

XML Tutorial: http://www.w3schools.com/xml/

XML: xmlserializer http://www.anddev.org/write_a_simple_xml_file_in_the_sd_card_
using_xmlserializer-t8350.html

http://iviewsource.com/coding/getting-started-with-javascript-object-notation-json-for-absolute-beginners/
http://www.w3schools.com/xml/
http://www.anddev.org/write_a_simple_xml_file_in_the_sd_card_using_xmlserializer-t8350.html
http://www.anddev.org/write_a_simple_xml_file_in_the_sd_card_using_xmlserializer-t8350.html

Appendix J

Test data

J.1 Test1: Collision
Subtract 64 from the Dy: this give the collision range. Because of a constant that was
erroneously introduced adding 63.

1 Player Above :
2 05−17 0 6 : 4 2 : 5 7 . 8 7 7 : VERBOSE/GameField : doCo l lS i z e (2876) : 125 102
3 05−17 0 6 : 4 2 : 5 7 . 8 7 7 : VERBOSE/GameField : doCo l lS i z e (2876) : 112 125
4 05−17 0 6 : 4 3 : 0 4 . 6 5 7 : VERBOSE/GameField : doCo l lS i z e (2876) : 125 102
5 05−17 0 6 : 4 3 : 3 2 . 4 4 7 : VERBOSE/GameField : doCo l lS i z e (2876) : 125 102
6 05−17 0 6 : 4 4 : 0 0 . 3 3 7 : VERBOSE/GameField : doCo l lS i z e (2876) : 125 102
7
8 05−17 0 4 : 3 3 : 5 5 . 8 5 0 : VERBOSE/GameField : doCollPos : playerObj__ (16929) : 0 . 0 128 .0

478 .0
9 05−17 0 4 : 3 3 : 5 5 . 8 5 0 : VERBOSE/GameField : doCollPos : gameObject (16929) : 10 .0 240 .0

480.00003
10 Dx: 112 Dy : 2
11 05−17 0 6 : 4 2 : 5 7 . 8 1 7 : VERBOSE/GameField : doCollPos : playerObj__ (2876) : 0 . 0 128 .0

438 .0
12 05−17 0 6 : 4 2 : 5 7 . 8 1 7 : VERBOSE/GameField : doCollPos : gameObject (2876) : 10 .0 240 .0

480.00003
13 Dx: 112 Dy : 42
14 05−17 0 7 : 1 4 : 3 6 . 7 4 7 : VERBOSE/GameField : doCollPos : playerObj__ (4175) : 0 . 0 128 .0

383 .0
15 05−17 0 7 : 1 4 : 3 6 . 8 2 7 : VERBOSE/GameField : doCollPos : gameObject (4175) : 10 .0 220 .0

480.00003
16
17 05−17 0 7 : 1 6 : 5 1 . 9 7 7 : VERBOSE/GameField : doCollPos : playerObj__ (4175) : 0 . 0 128 .0

368 .0
18 05−17 0 7 : 1 6 : 5 1 . 9 7 7 : VERBOSE/GameField : doCollPos : gameObject (4175) : 10 .0 220 .0

480.00003
19 Dx: 92 Dy : 112

177

178 APPENDIX J. TEST DATA

20
21 Player below :
22 05−17 0 7 : 2 1 : 4 1 . 6 2 7 : VERBOSE/GameField : doCollPos : playerObj__ (5047) : 0 . 0 128 .0

578 .0
23 05−17 0 7 : 2 1 : 4 1 . 6 2 7 : VERBOSE/GameField : doCollPos : gameObject (5047) : 10 .0 250 .0

480.00003
24 Dx: 122 Dy : 98
25 05−17 0 7 : 3 9 : 5 5 . 9 6 7 : VERBOSE/GameField : doCollPos : playerObj__ (6050) : 0 . 0 128 .0

583 .0
26 05−17 0 7 : 3 9 : 5 5 . 9 6 7 : VERBOSE/GameField : doCollPos : gameObject (6050) : 10 .0 230 .0

480.00003
27 Dx: 102 Dy : 103
28 05−17 0 7 : 2 5 : 1 2 . 0 8 7 : VERBOSE/GameField : doCollPos : playerObj__ (5047) : 0 . 0 128 .0

588 .0
29 05−17 0 7 : 2 5 : 1 2 . 0 8 7 : VERBOSE/GameField : doCollPos : gameObject (5047) : 10 .0 220 .0

480.00003
30 Dx: 92 Dy : 108

Listing J.1: Test1 Collsion

J.2 Test2: Active inactive
The test data shows that new objects are created instead of changing between the active and
inactive list. So that must be FIX’ed.

1 05−17 1 0 : 5 8 : 4 7 . 8 2 8 : VERBOSE/SpyroView : updateStars : a c t i v eS t a r s (11123) : 7 :
1110 . 0 : 480 . 00003

2 05−17 1 0 : 5 8 : 4 7 . 8 2 8 : VERBOSE/SpyroView : updateStars : a c t i v eS t a r s (11123) : 7 :
1100 . 0 : 480 . 00003

3 05−17 1 0 : 5 8 : 4 7 . 8 5 8 : VERBOSE/onDraw :PLAY: Active (11123) : a c t i v e ob j e c t s : 5
4 05−17 1 0 : 5 8 : 4 7 . 8 5 8 : VERBOSE/onDraw :PLAY: InAct ive (11123) : i n a c t i v e ob j e c t s : 7
5
6 05−17 1 0 : 5 9 : 2 4 . 2 6 8 : VERBOSE/SpyroView : updateStars : a c t i v eS t a r s (11123) : 7 :

310 . 0 : 480 . 00003
7 05−17 1 0 : 5 9 : 2 4 . 2 6 8 : VERBOSE/SpyroView : updateStars : a c t i v eS t a r s (11123) : 7 :

300 . 0 : 480 . 00003
8 05−17 1 0 : 5 9 : 2 4 . 2 8 8 : VERBOSE/onDraw :PLAY: Active (11123) : a c t i v e ob j e c t s : 5
9 05−17 1 0 : 5 9 : 2 4 . 2 8 8 : VERBOSE/onDraw :PLAY: InAct ive (11123) : i n a c t i v e ob j e c t s : 17

10
11 05−17 1 1 : 0 1 : 3 2 . 5 2 8 : VERBOSE/SpyroView : updateStars : a c t i v eS t a r s (11123) : 7 :

−150.0 :480.00003
12 05−17 1 1 : 0 1 : 3 2 . 5 3 8 : VERBOSE/SpyroView : updateStars : a c t i v eS t a r s (11123) : 7 :

−160.0 :480.00003
13 05−17 1 1 : 0 1 : 3 2 . 5 6 8 : VERBOSE/onDraw :PLAY: Active (11123) : a c t i v e ob j e c t s : 6
14 05−17 1 1 : 0 1 : 3 2 . 5 6 8 : VERBOSE/onDraw :PLAY: InAct ive (11123) : i n a c t i v e ob j e c t s : 53
15
16
17 05−17 1 1 : 0 1 : 5 4 . 7 6 8 : VERBOSE/onDraw :PLAY: Active (11123) : a c t i v e ob j e c t s : 5
18 05−17 1 1 : 0 1 : 5 4 . 7 6 8 : VERBOSE/onDraw :PLAY: InAct ive (11123) : i n a c t i v e ob j e c t s : 61
19 05−17 1 1 : 0 1 : 5 4 . 8 2 8 : VERBOSE/SpyroView : updateStars : a c t i v eS t a r s (11123) : 6 :

1117 .3335 :81 .899994
20 05−17 1 1 : 0 1 : 5 4 . 8 2 8 : VERBOSE/SpyroView : updateStars : a c t i v eS t a r s (11123) : 6 :

1117 .3335 :81 .899994

J.2. TEST2: ACTIVE INACTIVE 179

Listing J.2: Test2: Active inactive game objects

180 APPENDIX J. TEST DATA

J.3 Entity relationship for Spiro
Tables:

PatientHistory:

examinationId + cprid + Name + surname + Examination data

PatientExaminationCard:

cprid + Limit + flow + capacity

Examination info:

blue 4pt

t1: Examination table

Examination id [date;testnr]: cprid(int) : time : examination data(blob)

t2: Patient table

tx: gameinfo table

J.3.1 Keys, candidate, primary, foreign

Keys Examination id

Appendix K

Research documentation

K.1 Tablet growth

181

182 APPENDIX K. RESEARCH DOCUMENTATION

Table K.1: Tablet sales numbers from Gartner & Strategy Analytics 2010-2013

K.2. SOURCE CODE AND PROJECT SITE 183

K.2 Source code and project site
The source code can be found on the cd with the project report.

Newest development can be fetched vi Mercurial HG.

hg clone http://repos.micrun.net:8081/hg/spiro/spiro_rh_childrespiration

The project site is at:

http://trac.micrun.net:8081/trac/spiro

Where the source code will be available along with tickets and project documentation.

 http://repos.micrun.net:8081/hg/spiro/spiro_rh_childrespiration
http://trac.micrun.net:8081/trac/spiro

List of Figures

2.1 Initial time plan . 9
2.2 Revised time plan . 11

3.1 Scrum sprint . 16
3.2 Game Visualization technology . 21
3.3 Graphics and Game libraries . 21
3.4 Chart API & Libraries . 22
3.5 Visual elements of the RH measurement system 23
3.6 Connectors . 25
3.7 Line drawing of the Spirometry measurement system, current system 25
3.8 The project development setup: Tablet - SpiroBank Spirometer with USB con-

nection(Blue device), and OTG cable connection(Yellow device) 26
3.9 Use case diagram: Patient Examination System 29
3.10 UC PE1: Initialise examination . 30
3.11 fig:Lung resistance test, closed box . 31
3.12 Compare data and patient progress . 32
3.13 Choose existing patient for examination . 33
3.14 Game Generic use cases . 34
3.15 Game is initialized,ready to start . 35
3.16 UC:Child Player breathing rhythm to slow . 36
3.17 UC:Child Player breathing rhythm perfect . 37

4.1 title . 46
4.2 S2 architecture component block diagram . 46
4.3 System overview S1 S2 S3 . 48
4.4 S1:Patient Examination System Domain . 49
4.5 S2:SpiroGame Domain . 50

5.1 Android application . 54
5.2 fig:andr:Intent type examples . 55

185

186 List of Figures

5.3 Opening a pdf file, the app shows all apps that can work with pdf files, more
precisely, the window shows all apps that have registered a VIEW action for pdf
types in the manifest file . 55

5.4 The life cycle of an activity . 59
5.5 Android build apk package . 61
5.6 The structure of the project tree, directories and files 63
5.7 Model-View-Presenter/Controller . 67

6.1 Systems packaging . 71
6.2 Mockup Application screens: a1) Analyse Examination(s), a2) Initialize Exami-

nation(Ready Test), a3) Add Patient, 4) Start Examination(Test) 72
6.3 Mockup Application screens: b1) Add patient, b2) Test Examination overview,

b3) Graph and data set display sketch, b4) Game Prototype Sketch 72
6.4 The figures are numbered from top left to bottom right 1

3
2
4

. 72
6.5 Application UI navigation diagram: Basic navigation mockup screens: a) Star-

tActivity, b) A1: addpatient activity, c) A2: Examination analysis, d) Game
screen(S2) e) Graph & data set screen . 74

6.6 ExaminationSession to GameController . 76
6.7 Game Top level class: generic and extended specific game concepts 76
6.8 Data flow input to game system, flow with ExaminationSession 79
6.9 Data flow input to game system, flow in Patient system S2 excluded 79
6.10 Breathing pattern . 80
6.11 Events and input data cue decision . 83
6.12 Architecture overview diagram: MVP . 87
6.13 System architecture . 87
6.14 S1:Patient Examination diagram . 90
6.15 First sketch of tables . 93
6.16 First sketch of tables . 94
6.17 S2:Spiro game prototype design . 96
6.18 Control flow diagram when game is playing . 97
6.19 S2:Spiro game prototype design . 99

7.1 The player figure, simple but expressive drawing 105
7.2 A selection of the Sunstars . 105
7.3 S2:Spiro game prototype design . 106
7.4 S1:graph curve . 108
7.5 S1:graph curve . 108
7.6 The overlap of the game objects for collision . 119

C.1 Use case diagram: Patient Examination System 138
C.2 UC PE1: Initialise examination . 139
C.3 fig:Lung resistance test, closed box . 140
C.4 Compare data and patient progress . 141
C.5 Observe spirometry tests . 142
C.6 Follow test results . 143

C.7 Add patient data . 144
C.8 Choose existing patient for examination . 145
C.9 Game is initialized,ready to start . 147
C.10 UC:Child Player breathing rhythm to slow . 148
C.11 UC:Child Player breathing rhythm to slow . 149
C.12 UC:Child Player breathing rhythm irregular . 150
C.13 UC:Child Player breathing rhythm perfect . 151

G.1 Make box examination sequence diagram . 165
G.2 Analyse examination sequence diagram . 166
G.3 Init game sequence diagrams . 166
G.4 Input game loop sequence diagrams . 167
G.5 In game sequence diagrams . 167

H.1 Colouring legend . 169
H.2 Colouring legend . 169
H.3 Coad colour system . 170
H.4 Coad colour system . 171

List of Tables

1.1 Project terminology . 5

2.1 Initial requirement list . 13

3.1 Tablets features and capabilities comparison table 18
3.2 Data Storage & persistence . 19
3.3 Informal examination protocol . 27

6.1 Cue table . 84
6.2 FURPS+ Architecture requirements . 86

A.1 Terminology for spirometry measurements . 128
A.2 Android terminology . 129
A.3 Project terminology . 130

187

188 List of Tables

C.2 Priorities . 154

K.1 Tablet sales numbers from Gartner & Strategy Analytics 2010-2013 182

Index

Abstract
Danish, i
English, i

Actors
S2:Spiro game, 34

Analysis
Iteration and sprint focus, 16
Methods, 15
Tools, 17

app:Use cases
Collection SpiroGame, 147

Appendix
Entity relationship, 180

Architecture block diagram
Components block diagram, 45

Class diagrams
Domain S1:PatientExamination, 50
Domain S2:SpiroGame, 51

Design, 71
Basic navigation flow, 73
Design architecture
Architectural requirements, 86

Design architecure, 86
Game and examination separation, 76
Game design, 95
Game events and state, 98
Prototype 1 PaperBoat, 99
Prototype 1 SpyroFox, 99
Screen division, 98

Game flow description, 97

Generic and specific game concepts, 76
Input conversion, 78
Input events, Game events and System

Observer, 83
Patient configuration, 80
Screen navigation, 73
System overview, 71
System Partioning, 75
User interface, Mockups, 71

Evaluation and Conclusion, 123
Conclusion, 125
Extensions, 124
Planning, 123
Problems and workarounds, 124

Game
Visualization, 20

Implementation, 103
Active game objects, 110
Collision, 106
First prototype, 103
Game Init, 115
Game set patient constraints, 112
GameFieldMap, 111
GameView, 114
Impl. issues, 110
Performance and architecture, 117
Prototype graphics and animation, 104
Scroling, 110
Status of implementation, 117
Timing and events, 117

189

190 INDEX

Updating game state, 113

Project Introduction, ix
Goals, x
Issues, x
Motivation, ix
Proposed solution, x

Project planning steps
Scrum like, 17

Project scope, 41
Delimiting, 42
Parallel tasks, 42
Scope, 42
System Parts S1-S2-S3, 43

Requirements, 13
Additional requirements, 14

Requirements:Revised requirements, 14

System overview
S1 S2 S3, 48

Terminology, 4
Android, 4
Project Terminology, 5
Spirometry, 4

Testing, 119
Collission test, 119
Graphics artifacts error, 121

Time plan, 7
Discussion, 12
Initial plan, 8
Revised, 12
Revised plan, 10

time plan, 10

Use cases
S1:Patient Examination, 28
S2:Spiro game, 34, 35

Bibliography

Android Developer Official Intent and actions@ONLINE, January 0000. URL http://
developer.android.com/intent_actions/.

AChartEngine. Achartengine website, 2013. URL http://www.achartengine.com.

Box2D. Box2d website, 2013. URL http://www.box2d.org.

Peter Coad. Modellingincolour@ONLINE. URL http://www.step-10.com/
SoftwareDesign/ModellingInColour/.

IBM. Json vs xml sizes, 2010. URL http://www.ibm.com/developerworks/xml/library/
x-dataAndroid/.

Craig Larman. Applying UML and patterns. Prentice Hall PTR Upper Saddle River, NJ,
USA c©1999, 2004. ISBN ISBN:0131489062.

LibGDX. Libgdx website, 2013. URL http://www.libgdx.org.

Android Developer Official. Assetmanager api@ONLINE, 2013. URL http://developer.
android.com/reference/android/content/res/AssetManager.html.

OpenAL. Openal website, 2013. URL http://www.openal.org.

OpenGL. Opengl development website, 2013. URL http://www.opengl.org.

Eric Lefebre Peter Coad, Jeff de Luca. Java Modeling In Color With UML: Enterprise
Components and Process. Prentice Hall PTR Upper Saddle River, NJ, USA c©1999, 1999.
ISBN ISBN:013011510X.

191

http://developer.android.com/intent_actions/
http://developer.android.com/intent_actions/
http://www.achartengine.com
http://www.box2d.org
http://www.step-10.com/SoftwareDesign/ModellingInColour/
http://www.step-10.com/SoftwareDesign/ModellingInColour/
http://www.ibm.com/developerworks/xml/library/x-dataAndroid/
http://www.ibm.com/developerworks/xml/library/x-dataAndroid/
http://www.libgdx.org
http://developer.android.com/reference/android/content/res/AssetManager.html
http://developer.android.com/reference/android/content/res/AssetManager.html
http://www.openal.org
http://www.opengl.org

	Contents
	Introduction
	project Introduction
	Motivation
	Issues
	Ideas
	Goals
	Proposed solution
	Project call name: Spiro

	Analysis
	Terminology & concepts
	Spirometry & Android terminology
	Project terminology

	Time plan
	Initial planning elements
	Revised plan
	Plan and time plan discussion
	Requirements from requestors RH
	Revised requirements
	Additional requirements

	Analysis design Methodologies and tools
	Analysis Methods
	Analysis, design and planning

	Development Tools chosen
	Technology evaluation
	Choice of game/display device
	Choice of tablet

	Libraries for android: Charting Graphics Game frameworks, Android API
	Data persistence, storage and exchange
	Game visualization technology
	Descriptions
	Evaluation

	Game libraries
	Game libraries evaluation
	Decision
	Charts API's & libraries

	Android Charting decision

	Table of chosen technologies
	The RH environment
	Technical setup of spirometer measurement system
	Development setup

	Patient Examination observed protocol
	Use cases and actors
	Actors
	Use case diagram
	Use case descriptions : S1:Patient Examination system

	Use cases & actors S2:SpiroGame
	Actors S2
	System Observer actor
	Use cases S2: SpiroGame

	Games scenarios
	Game interactions
	Questions for game and interactions

	Project scope: System to be developed
	Project formulation
	Scope of project
	Parallel tasks
	Delimiting
	Scope
	Integration with external systems

	Splitting up project in system parts
	Component block diagram

	Revised requirements
	Domain model
	Domain class diagrams

	Android concepts
	Android: Activity - Intent - Application
	Activity
	Intents
	Implicit Intent
	Explicit intent

	Intent Filters

	Activity life cycle
	Manifest file : manifest.xml
	Android Structure, Assets resources and layouts
	Assets
	Resources
	XML layout to view instance

	The Android Pattern

	Design
	Design
	System overview
	User interface & Mockups
	Mockup drawings

	Screen navigation diagram
	Basic navigation flow concept
	Mockup lists

	Separating and isolating system parts
	Game and examination separation

	Generic and specific game concepts
	Input and conversion
	Limits for patients: patient configuration
	Events state and cues
	Input data game event and the System observer

	Design architecture
	Architectural requirements

	S1:Spiro Patient Examination System
	Data modelling
	Data
	First table layout sketch
	database 1. Normal form
	database 2. Normal form
	Database 3. normal form

	Game design : S2:SpiroGame
	Game flow descriptions
	Game events and state
	Screen division
	Prototype 1 description: SpyroFox
	Prototype 2 description:Spiro PaperBoat

	Implementation & Test
	Implementation intro
	First prototype
	Prototype graphics bitmaps & and animation
	Collision

	DataInput Generator description
	Implementation issues
	Scrolling
	Active game objects
	The GameFieldMap
	Setup game patient constraints
	Updating game state
	Game View
	Game Init
	Refactoring
	Timing and events
	Data feed
	Performance and architecture
	Implementation status

	Test
	Test1: Collision test
	Test2: Active inactive list test
	Graphics artifacts error and stars

	Evaluation
	Planning
	Problems during the project and workarounds
	Project goals
	Extensions
	Conclusion

	Terminology & concepts
	Spirometry terminology System Glossary
	Android Terminology
	Project terminology

	Risk assessment
	Use case collection : Patient Examination system S1 : Game System S2
	Actors & use cases
	Actors
	Use case diagram
	Use case descriptions
	Use case candidate list

	Use case tech memos
	Requirements note, physical

	Generator S3: simulated input data diagrams
	Generator modelling

	Generator and generator design
	Generator design
	randomized value point interval

	Generator Use cases
	Generator class diagram

	 Class responsibility descriptions
	S1: PatientExamination System
	Examination part
	ExaminationData
	ExaminationSession
	ExaminationProtocol

	Patient Part
	Patient
	PatientAdministration
	PatientHistory

	S2: Spiro Game System
	InputEvent
	GameController
	GameFieldMap
	Game Objects
	GameEvents
	Cue
	GameState

	S3: DataInput System : Probe Measurement Part
	SpirometerMeasurementDevice
	ProbeDataCalculation

	S1-S2-S3: DataFeeder

	Selected sequence diagrams
	Patient examination sequence diagrams
	Game sequence diagrams

	Colour styling of diagram architecture and figures
	Colouring legends
	Spiro classification system
	Analyzing systems and class systems
	Peter Coad's classification method
	Classification method from author:mkj

	Xml for patient data transfer between RH system interfaces
	JSON or XML

	Test data
	Test1: Collision
	Test2: Active inactive
	Entity relationship for Spiro
	Keys, candidate, primary, foreign

	Research documentation
	Tablet growth
	Source code and project site

	List of Figures
	List of Tables
	Index
	Bibliography

