
An Eclipse based Development
Environment for RAISE

Marieta Vasilica Fasie

Kongens Lyngby 2013

IMM-M.Sc.-2013-16



Technical University of Denmark

DTU COMPUTE

Department of Applied Mathematics and Computer Science

Matematiktorvet, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2013-16



Summary (English)

In order to support the RAISE (Rigorous Approach To Industrial Software En-
gineering) formal method and the RAISE speci�cation language, a series of tools
have been developed in the past. Although the tools have been successfully used
both in industrial and academic environments, they lack many of the features a
development environment o�ers nowadays.

The goal of this master thesis is twofold. Firstly, to create an integrated de-
velopment environment for RAISE that is easy to extend and integrate with
new tools, and secondly, to test EBON's (Extended Business Object Notation)
applicability on plug-ins development, using the tool under development as a
case study.

The thesis describes a methodology for designing and analyzing plug-ins, that
is based on BON methodology and that is used to analyze and design eRAISE.
Then eRAISE is implemented based on the Eclipse framework providing an
integrated development environment for RAISE's tool suite. By using the plug-
in mechanism available in Eclipse, eRAISE can easily be extended with new
features and tools. Furthermore, the report proposes some ideas on how can the
new plug-in be extended and improved.



ii



Summary (Danish)

For at understøtte RAISE (Rigorous Approach To Industrial Software Engine-
ering) formal method og RAISE speci�kationssproget, er en række værktøjer
blevet udviklet. Selvom værktøjerne er blevet succesfuldt anvendt både i indu-
strielle og akademiske miljøer, mangler mange af de funktioner et udviklingsmiljø
tilbyder i dag.

Der er to mål med denne kandidatafhandling. For det første at skabe et inte-
greret udviklingsmiljø for RAISE, der er let at udvide og integrere med nye
værktøjer. For det andet er at teste EBONs (Extended Business Object Nota-
tion) anvendelighed på udviklingen af plug-ins, ved at bruge værktøjet under
udvikling som et case study.

Afhandlingen beskriver en metode til at designe og analysere plug-ins som er
baseret på BON metoden, og som bruges til at analysere og designe eRAISE.
Baseret på Eclipse framework giver eRAISE et integreret udviklingsmiljø til
RAISE's tool suite. Ved hjælp af plug-in mekanismen i Eclipse, kan eRAISE
let udvides med nye funktioner og værktøjer. Derudover foreslås der ideer i
rapporten om hvordan den nye plug-in udvides og forbedres.



iv



Preface

This thesis was prepared at DTU Compute at the Technical University of Den-
mark in ful�llment of the requirements for acquiring a M.Sc. degree in Computer
Science and Engineering.

The project has been supervised by Associate Professor Anne Elisabeth Hax-
thausen and Professor Joseph Kiniry.

Lyngby, 15-May-2013

Marieta Vasilica Fasie



vi



Acknowledgments

Special thanks goes to both my supervisors for their great support and con-
structive feedback throughout the entire thesis.

I would like to thank Associate Professor Anne Elisabeth Haxthausen, for her
constant feedback, for paying special attention to details, for always inspecting
the quality of my work and for always making time for me.

I would like to thank Professor Joseph Kiniry for always bringing great and new
ideas, for seizing opportunities, for making things fun, interesting and exciting
and for having great answers to all my questions.



viii



Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Paper structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 How to read the paper . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 RAISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 RAISE concepts . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Eden tool set . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Rsltc tool set . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Eclipse concepts . . . . . . . . . . . . . . . . . . . . . . . 11

3 Development tools 13
3.1 BON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Static models . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Dynamic models . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 BONc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Beetlz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Eclipse PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



x CONTENTS

3.4.1 New Plug-in Project wizard . . . . . . . . . . . . . . . . . 18
3.4.2 Plug-in Manifest Editor . . . . . . . . . . . . . . . . . . . 18
3.4.3 Plug-in debug . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.4 Plug-in tests . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Analysis and design 21
4.1 Analysis and design method . . . . . . . . . . . . . . . . . . . . . 21
4.2 Domain modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Components Communication . . . . . . . . . . . . . . . . . . . . 32
4.7 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Implementation 37
5.1 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 rsl.core plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Type check . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 SML translate . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Test cases execution . . . . . . . . . . . . . . . . . . . . . 42
5.2.4 LATEX generation . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 rsl.editor plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 rsl.testcases plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 rsl.wizard plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.1 RSL perspective . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.2 New RSL Project wizard . . . . . . . . . . . . . . . . . . 57

5.6 Extension points . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Testing 63
6.1 Manual testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Input validation . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Automated testing . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 JUnit testing . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 User guide 69
7.1 Writing RSL speci�cation . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 Create a new RSL project . . . . . . . . . . . . . . . . . . 70
7.1.2 Create a new RSL �le . . . . . . . . . . . . . . . . . . . . 71
7.1.3 Edit the RSL �le . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Type check a RSL speci�cation . . . . . . . . . . . . . . . . . . . 72
7.3 Translate RSL speci�cation to SML . . . . . . . . . . . . . . . . 74
7.4 Run test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS xi

7.5 Generate Latex document . . . . . . . . . . . . . . . . . . . . . . 76
7.6 Actions on more than one �le . . . . . . . . . . . . . . . . . . . . 76

7.6.1 RSL menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.6.2 Context menus on multiple �les . . . . . . . . . . . . . . . 77

8 Future work 79
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Conclusions 85
9.1 What was achieved . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A Article 87

B eRAISE domain model 91

C UI mock-ups 101

D Scenarios 113

E Events 117

F Static diagram 119

G Components' interfaces 121

H Generated Java code 125

I Prioritized scenarios 129

J RSL key words 133

K Colours used inside RSL editor 135

L SML run-time errors 137

Bibliography 139



xii CONTENTS



Chapter 1

Introduction

This chapter is meant to introduce the reader in the project topic. First, a
discussion is made on the reasons that are behind the current project. Secondly,
the project goals are stated and explained. The last two sections explain the
reader how the paper is structured and o�ers guidelines for reading it.

1.1 Motivation

RAISE consists of a formal method [Gro95], a speci�cation language [The92]
and a set of tools built around the language. So far, there have been two
generations of tools. The �rst generation of tools provided all the support
required for applying RAISE to industrial software development, but the tools
could only be used on SUN workstations. The second generation of tools, rsltc
[rsl08], solved the portability problem and brought a big number of supporting
tools. However, this new set lacks the editing support part. Any editor can be
used for writing RAISE speci�cations, but only emacs provides some editing
support and only in the form of syntax highlighting.

Furthermore, no work has been done in the last years for improving the set of
rsltc tools and therefore this set is missing the features that many development
environments have. Very little of the help support that we use nowadays when



2 Introduction

developing Java or C projects is provided within rsltc. For example, there is no
support for working with big projects, no automatic editing support, no team
support and so on.

Tools' extensibility is another important aspect that must be considered when
talking about the tools lack of development. rsltc is written in C using the
GENTLE Compiler Construction System [Sch05] and the emacs interface is
written in Lisp. Although these technologies are widely used, and the rsltc
source code is easy to get, a method that does not involve modifying and building
the source code, would probably attract more contributors.

A very used way for extending a software capabilities is through the plug-in
mechanism. Plug-ins are very convenient to use since they provide an easy way
to add features, they hide the implementation details from the extensions, they
allow parallel development of features and much more. Thus plug-ins encourage
contributions without having to worry about the contributor level of expertise.
Of course plug-ins have also many disadvantages, since they increase rapidly
the complexity of a product and since testing them automatically is quite a
challenge.

A good example of plug-ins integration and strong plug-in architecture is Eclipse.
In Eclipse everything is a plug-in build on top of a plug-in framework. But be-
sides this, Eclipse is also an excellent integrated development environment (IDE)
o�ering developers great features and support for developing their software prod-
ucts. The fact that Eclipse is free (released under the terms of Eclipse Public
License), provides all the features an IDE should have and is easily extendable,
makes it popular inside academic environments. Many academics choose to
package their tools inside Eclipse in order to make it more user friendly and to
gain many of the features provided by Eclipse IDE.

While �nding plug-in examples and guidelines on how to implement and use their
interfaces is quite easy, not the same thing can be said about �nding quality
plug-ins. There are many bad designed plug-ins with poor documentation, that
maybe were not even passed through a design phase, but directly implemented
in order to get fast results and functionality. This situation is mostly attributed
to the lack of methodologies in what concerns the plug-in development. There
is not much published work in this area and the ones that are, do not provide a
methodology e.g., [NLS+12] provides some principles, but not a method.

There are many question raised in the previous paragraphs, questions like:

• What is the future of the RAISE tools?

• How should the RAISE tool set be extended?



1.2 Goals 3

• Is the Eclipse wrapping a solution?

• If yes, then how should the plug-in be designed so that it will be easily
extendable?

The current project is trying to answer these questions by creating an Eclipse
based development environment for RAISE named eRAISE. Furthermore, the
current paper is intended to pay special attention to eRAISE's analysis and
design phase by using a methodology based on BON [WN94]. This methodology
has made the subject of an article [FK13] published by the author of this theses
and her supervisors.

1.2 Goals

As it was mentioned in the previous section, there are two main goals that this
project intends to reach:

1. To create an Eclipse based development environment for RAISE that can
be easily extended with new features and tools.

2. To test EBON's applicability on plug-ins development, using eRAISE as
a case study.

The �rst goal is quite wide and ambiguous and therefore it requires more ex-
planation. The current project is not intended to integrate all existing RAISE
tools inside Eclipse and to recreate the exact state of the tools inside Eclipse,
but to create a core, a starting point from where di�erent projects can start and
bring further contributions. No exact limit has been prior established for how
many RAISE tools are to be integrated and/or created, since the focus is on
providing a quality, well designed system. The set of requirements for eRAISE
are identi�ed in chapter 4 and can be found prioritized in Appendix I.

The importance for creating a reliable plug-in with good documentation brings
the focus on the second goal. eRAISE's analysis and design phase will be based
on a methodology grounded in BON.



4 Introduction

1.3 Paper structure

Chapter 2 provides the background of RAISE and Eclipse in a dedicated sec-
tion for each. A bit of history, purpose and generalities are presented in order
to introduce the concepts. Chapter 3 describes the tools that have been used
throughout the entire product development, from analysis and design to imple-
mentation and testing. In chapter 4 the analysis and design phase of eRAISE is
described in a detailed manner. Chapter 5 presents the implementation details
and the decisions that have been made when implementing eRAISE. The testing
phase of the product is captured in chapter 6, where the testing methods, the
applied tests and the results are shown. Chapter 7 presents a short user guide
meant to help the user familiarize with eRAISE. Chapter 8 provides ideas and
examples on how eRAISE can be extended. The last chapter, chapter 9, draws
the conclusions of this paper.

Additional information, meant to support decisions, to o�er examples or show
work fragments is presented in appendixes. Appendix A contains the article
published by the author of this thesis and her supervisors. Appendix B presents
the system domain model expressed in EBON notation. Appendix C contains
the UI sketches for the system features. The complete list of EBON scenarios
and events are captured in appendix D and appendix E. The system compo-
nents and the interfaces are captured in appendix F and appendix G. The Java
skeleton code generated by Beetlz can be found in appendix H. Appendix I
contains the set of scenarios in the order they were used in the implementa-
tion phase. Appendix J presets the keywords existing in the RAISE language,
while appendix K presents the colours that have been used for syntax highlight-
ing inside the editor. Appendix L captures the set of possible run-time errors
generated by smlnj when executing RSL test cases.

1.4 How to read the paper

The current paper can be read by any person that has some background in
programming. But di�erent readers may be interested in di�erent parts of the
paper and this subsection tries to identify the groups of readers and the chapters
interesting for them.

For the reader who has read A Rigorous Methodology for Analyzing and De-
signing Plug-Ins [FK13] article and is interested in �nding out more about the
described methodology and its applicability, chapter 4 covers this part. How-
ever it may be interesting to read also chapter 2 and chapter 3 in order to get



1.4 How to read the paper 5

familiarized with the method and tools that support the methodology.

The eRAISE user can �nd in chapter 7 an user guide for eRAISE functionality.

For the reader who wants to extend eRAISE with new functionality, reading
chapter 7 and chapter 8 is probably enough to get an overview of how eRAISE
is working and what interfaces it exposes.

The reader who is interested in updating di�erent parts of eRAISE, must read
chapter 4, chapter 5 and chapter 6, since they contain the details and decisions
behind analysis and design, implementation and testing.

For the rest of the readers it is recommended to go throughout the entire thesis.
In the beginning of each chapter, the reader can �nd a summary describing
the chapter content that can be used to decide whether the current chapter is
bringing new information for the reader.



6 Introduction



Chapter 2

Background

This chapter presents generalities about RAISE and Eclipse. It is intended to be
read by people who know few or nothing about these subjects. The chapter has
two sections, one for RAISE and one for Eclipse. The RAISE section presents its
history, concepts and its tool set. The Eclipse section presents generalities and
the main concepts used when working and using this framework. If the reader
is comfortable with EBON and Eclipse, she can skip this chapter completely.

2.1 RAISE

RAISE stands for Rigorous Approach to Industrial Software Engineering and
consists of a formal method, a speci�cation language (RSL) and a set of tools
built around the language.

RAISE began to take shape during the RAISE ESPRIT program in 1985-1990.
The aim of this project, whose starting point was VDM, was to bring an im-
provement over other formal methods like Z, ML, CSP, CCS, Clear, Larch and
OBJ [for97], [Hax99]. The outcome of this program was the RAISE formal
method, the RSL language and some supporting tools [Geo03].



8 Background

In the next years, 1990-1995, during the LaCoS project, RAISE has been suc-
cessfully applied on a series of industrial projects leading to the development of
new tools. This �rst generation of tools was called eden and developed by CRI
A/S using the Cornell synthesizer generator [Rep]. The list of tools comprised
by the �rst generation is presented in subsection 2.1.2. From that point, RAISE
has become the main formal method used in UNU/IIST [UNU]. However, these
tools had the disadvantage that they were available only on SUN workstations.
The UNU/IIST mission was to help developing countries and since few institu-
tions in these countries were using SUN workstations [Geo03], a new generation
of RAISE tools was created.

The second generation of RAISE tools, called rsltc, was developed starting with
1998 at UNU/IIST. rsltc was developed using the GENTLE Compiler Construc-
tion System [Sch05], a C based compiler, while its emacs interface is written in
Lisp. The set of tools comprises the elements presented in subsection 2.1.3.

2.1.1 RAISE concepts

An RSL speci�cation consists of a module de�nition. A module can contain
declarations of types, values, variables, channels, modules and axioms [Gro95].
There are two kinds of modules: objects and schemes.

2.1.2 Eden tool set

The �rst generation of RAISE tools comprised the following elements:

1. Syntax directed editors
For RSL modules, theories, development relations and justi�cations.

2. Repository with version management

3. Pretty printer

4. Ada translator

5. C++ translator



2.1 RAISE 9

2.1.3 Rsltc tool set

The second generation of RAISE tools can be used on any platform that supports
C. It provides a command line interface, but also o�ers the possibility to be used
from inside emacs. The input of the rsltc tools is an rsl text �le, which can be
modi�ed using any editor. However emacs is recommended since it provides
syntax highlighting and a menu to access the various tools. Based on [rsl08] and
[Geo03], the rsltc tool set comprises the following tool components:

1. Syntax and type checking
Veri�es the syntax and the types in the rsl �le given as input. The output
of the tool is the module name along with the list of errors if there are
any. Every error message is preceded by the line and column number of
the code that generated the error.

2. Module dependencies tree
Shows the module dependencies in a tree format using ASCII. A module's
dependencies are presented on its right side on the next lines. The direct
dependencies have one more indentation than the number of indentations
the referring module has. Therefore the left most module is the one with
the most dependencies.

3. Module dependencies graph using VCG
Outputs a module dependency graph in a .vcg �le using the Visualization
of Computer Graphs tool. The schemes are represented as red rectan-
gles, objects as blue ones, theories as yellow diamonds and development
relations as cyan triangles.

4. Pretty printing
Pretty prints the current module into the standard output.

5. Con�dence condition generation
Used to check the consistency of the RSL source. The output of this is
a list of con�dence conditions for the speci�cation in the rsl �le given as
input.

6. C++ translator
Translates the RSL speci�cation into C++ executable code. Only a subset
of RSL can be translated into C++ and the results of this translation are
an .h �le and an .cpp �le

7. SML translator
Translates the RSL speci�cation into executable SML code. For a module
named test, the tool creates two new �les named test.sml and test_.sml.



10 Background

8. PVS translator
Translates the RSL speci�cation into PVS. The output of the translation
is a .pvs �le. The PVS translator is used for theorem proving.

9. SAL translator
Translates RSL speci�cation into SAL speci�cation. The output of this
translation contains multiple .sal �les. Three of them correspond to the
three versions used for translating a �le, while the others can contain the
types. Used for model checking the RSL-SAL speci�cations.

10. Support for LATEXdocuments
Generates a .tex �le that can be integrated in a LATEXdocument.

11. UML to RSL translator
The purpose of this tool is to formalize the UML class diagrams using
RSL. It works by translating an xml �le, which represents a UML class
diagram, into RSL �les. The translated xml �le must be the output of the
modeling tool in which the class diagram was created.

12. Test case execution
It is based on the RSL test case feature. The tool uses the SML translator
and SML run time system to execute the tests.

13. Mutation testing
O�ers test coverage support.

2.2 Eclipse

Eclipse is a software development environment whose purpose is to provide a
"universal toolset for development" [Ecl13]. It started as a project in late 90's
at IBM and it was build around the Java technologies [Cer05].

Eclipse provides development support for many di�erent languages making it a
great tool for those who code in more than one language. However, Eclipse is
mostly known for its Java development tools (JDT).

There are many reasons for Eclipse popularity. One is the fact that it provides
all the features that eases and help the work of software developers. Among
this, the most important features are:

• Code writing support
For example the Java editor provides syntax highlighting, type aware com-
pletion that helps programmers with suggestions while typing in the text



2.2 Eclipse 11

editor, folding which o�ers the possibility of hiding and showing fragments
of the currently displayed text, automatic generation of getters and setters
for di�erent �elds and many others.

• Code debugging support
Allows a developer to follow the code execution while using facilities like
setting breakpoint, stepping through the code, suspending threads and
analyzing variables at run time.

• Team support
Eclipse simpli�es the work with source code repositories helping teams
synchronize their work e.g., Subversive [Sub] plug-in which provides sup-
port for working with SVN repositories, EGit plug-in [EGt] for the GIT
version control system, Mylyn [Myl] which facilitates working with very
large projects by applying a task-focused technique.

• Documentation support
For example Eclipse provides automatic generation of Javadoc comment
templates inside the Java code. From these comments, Java documenta-
tion is generated in an HTML format.

Another important aspect that makes Eclipse popular is its extensibility. The
Eclipse architecture and its plug-in development mechanism that allows third
parties to contribute to Eclipse are presented in detail in section 3.4.

2.2.1 Eclipse concepts

When using Eclipse it is important to understand the concepts that underpin
the framework. The most important concepts are each described in a separate
paragraph in the following. For a better understanding of the notions, Figure 2.1
presents the Eclipse Workbench along with its constituent components.

Workbench is the environment Eclipse provides in order to develop a prod-
uct. The workbench window can contain one or more perspectives. Figure 2.1
illustrates an Eclipse workbench window.

Workspace is used to describe the directory on the hard drive that stores the
projects.

The Perspective speci�es the initial layout of the workbench window compo-
nents. It contains a number of windows, menus and toolbar items that are useful



12 Background

Figure 2.1: Eclipse Workbench

when accomplishing a certain work. In Figure 2.1, the active perspective is Java
perspective.

Resources is the name used to refer to �les, folders and projects inside the
Workbench. Files and folders correspond to the �les and folders existing in the
�le system. A project maps to a folder in the �le system, but it contains beside
�les and folders other elements used to build, share, version control etc. the
project.

Since Eclipse is an IDE, the Editor is in most cases the main component of
a perspective. Eclipse provides editors for di�erent types of �les, and they are
called embedded editors. If there is no editor de�ned for a speci�c type of �le,
Eclipse opens it using an external editor outside of workbench.

Actions represent the commands and user actions available in the workbench.
There are three types of actions: top level menus, context menus and tool-
bars. The workbench in Figure 2.1 has 10 top level menus: File, Edit, Source
and so on, and a toolbar associated to the Java perspective. A context menu
is the set of actions that are allowed when rightclicking in a certain context.
When a user rightclicks on a resource, inside a window or inside the editor, a
popup menu appears displaying all the possible actions that can be performed
for the selected entity.



Chapter 3

Development tools

This chapter introduces the technologies and tools used throughout the en-
tire development of eRAISE. There are four sections: BON, BONc, Beetlz and
Eclipse PDE, meant to be read by people that hear for the �rst time about
them or that have few knowledge on the subject. This chapter describes gen-
eralities and concepts, while the next chapter, chapter 4 describes where in the
development process these technologies are used and how.

3.1 BON

Business Object Notation (BON) is a method used for describing and analyz-
ing object-oriented software systems. It was promoted by Walden and Ner-
son in the mid-90s within the Ei�el community [WN95]. Ostro�, Paige, and
Kiniry formalized parts of the BON language and reasoned about BON speci-
�cations [LOP02, Kin01, PKOL02, PO01]. Fairmichael, Kiniry, and Darulova
developed the BONc and Beetz tools for reasoning about BON speci�cations and
their re�nement to JML-annotated Java (See http://tinyurl.com/brgcrzc for
more information). Finally, Kiniry and Fairmichael have extended BON in a
variety of ways to produce Extended BON (EBON), which permits one to add
new domain-speci�c syntax and semantics to the core BON language [Kin02].

http://tinyurl.com/brgcrzc


14 Development tools

There are three main principles that underlay the BON method [Wal]:

• seamlessness
BON provides support for the entire product life cycle by easing the tran-
sition between analysis, design and implementation. This way the collab-
oration between technical and non-technical people involved in di�erent
phases of the system development process, is improved.

• reversability
BON provides a smooth transition not only from analysis and design to im-
plementation, but also backwards from implementation to design. There-
fore the model of the system and the documentation are always up to date
with its implementation.

• software contracts
The class speci�cations are expressed using assertions in terms of precon-
ditions, postconditions and invariants, thus facilitating the exposure of
contracts between classes.

BON also provides a textual and graphical notation to support the method.
Therefore the notation is also build on the three principles mentioned before
plus it is general, it supports scalability by providing means of grouping multiple
units into higher level units and it supports typed interfaces.

Since BON is independent of any programming language, it relies only on object-
oriented concepts to describe a system [WN94]. Therefore system units are
classes that can be logically grouped into clusters. The existing relations
between classes are described in terms of inheritance and client relations.
Starting from these notions, which are further elaborated in subsection 3.1.1 and
subsection 3.1.2, an object-oriented software system can be described statically
and dynamically using BON static and dynamic models, respectively. The
static models capture the system structure, its components and the relations
existing between them at a speci�c moment in time. The dynamic models
describe the system behavior over time, looking at how objects interact, which
operations are called and what messages are being passed.

3.1.1 Static models

The BON approach uses the static models to capture the classes of a system,
their interfaces, how they relate to each other, and how they are grouped in
higher level units named clusters.



3.2 BONc 15

The static model can be described both informally so that non technical people
can understand the system and formally in a more detailed manner used by
designers, programmers and so on.

The informal description is captured using three modeling charts: system
chart, cluster chart and class chart which are created using natural language.
The system chart, which is exactly one per system, contains a description of the
classes and clusters composing the system. The cluster charts comprises the
description of the classes and other clusters that compose it. The class chart,
besides the class description, contains also the information that other classes
may ask from the represented class, the services that the class can provide and
the rules the class and its clients must obey.

The formal description of the system is made inside static diagrams. They
present the classes' typed interfaces, the software contracts, but also the static
relations between di�erent classes and clusters. The static relations are inheri-
tance and client, supplier relations. The inheritance is the same concept as
used in object-oriented method, while the supplier is the component providing
an interface and all components using it are clients.

3.1.2 Dynamic models

The dynamic models are used to present the system behaviour and are described
using three types of charts: event chart, scenario chart and object creation
chart.

The event charts present the external stimuli that make the system react and the
system responses to these stimuli; in BON terminology called internal events
and external events. The scenario charts present a partial system execution
as a series of events, usually starting with an internal or external event. Object
creation charts present the classes that create instances of other classes and the
classes that are being instantiated. And for all these, BON provides dynamic
diagrams comprising the scenarios with their sequence of events and the objects.

3.2 BONc

BONc, the BON compiler, is a typechecker and a parser for BON. It takes as
input one or more .bon �les and then parses and typechecks them. The output
of the tool is the list of found errors, if there are any.



16 Development tools

Besides typechecking and parsing, BONc provides many other options. A com-
plete list can be found at [Kin] with the most important being:

• Pretty print.

Pretty prints the input �les to the standard output or to the �le given as
argument.

• Generate documentation.

Produces documentation from the input �les either as html pages or as
plain text �les.

• Generate class dictionary.

Generates the class dictionary for the input �les either as html pages or
as plain text �les.

• Generate relational graph.

Constructs a graph representing the clustering and inheritance relations
existing in the input �les.

BONc can be used both from command line and integrated in Eclipse. The
installation details are well documented on the BONc home page http://www.
kindsoftware.com/products/opensource/BONc.

3.3 Beetlz

Beetlz is a tool that automatically generates JML-annotated Java code from
EBON speci�cation [Dar09]. Besides code generation, Beetlz also performs
consistency checking between the system modeled in BON and the system imple-
mented in JML-annotated Java. This way any change made in the architecture,
can be easily identi�ed both in the model and in the implementation.

Beetlz can be used both from command line and integrated with Eclipse. In-
stallation details can be found on the Beetlz home page http://kindsoftware.
com/products/opensource/Beetlz.

http://www.kindsoftware.com/products/opensource/BONc
http://www.kindsoftware.com/products/opensource/BONc
http://kindsoftware.com/products/opensource/Beetlz
http://kindsoftware.com/products/opensource/Beetlz


3.4 Eclipse PDE 17

3.4 Eclipse PDE

When Eclipse was created, it was intended to be easily extended with con-
tributions from third parties. Therefore Eclipse was build around the plug-in
concept, that allows new plug-ins to be build on top of existing plug-ins in order
to enhance their functionality. Thus Eclipse is just a set of plug-ins build on
top of a run-time engine.

In order for a plug-in to be extended it needs to de�ne extension points.
These are contracts that specify how to add functionality. When a new plug-
in extends an existing one, it must provide an extension (contribution) that
conforms with the contract speci�ed by the existing plug-in's extension point.

Multiple plug-ins that can be combined to perform a certain task, can be
grouped together in a feature.

Although Eclipse is build of many plug-ins and it needs to load them all up
during start-up, Eclipse manages to start quite fast (a couple of seconds). This
is possible since plug-ins have a declaration part and an implementation
part, which are separated [Gam04]. Therefore, when Eclipse starts up it only
uses the declaration parts of the plug-ins in order to show the user what are
its capabilities. And only when a user decides to use a certain plug-in e.g., by
clicking on a button, the Eclipse loads the plug-in implementation.

To be more speci�c, the declaration of a plug-in is realized through anmanifest
�le. This �le contains the declaration and description of the plug-in services
and dependencies e.g., if the plug-in creates a button, the manifest �le stores
the name of the button, the icon that visually represents the action, the button
type e.g., push, radio, pull-down. The entire functionality of the contribution
is made in Java, and the manifest �le only stores the link to the Java part that
implements the associated functionality.

Eclipse Plug-In Development Environment (PDE) provides support for
creating Eclipse plug-ins, taking into account all the aspects that were previously
mentioned in this subsection. Eclipse PDE is build on top of Java Development
Tools, providing all the JDT support for writing the plug-in functionality in
Java.

Eclipse PDE provides tool support to create, develop, debug, test and build an
Eclipse based product.



18 Development tools

Figure 3.1: A plug-in structure example

3.4.1 New Plug-in Project wizard

Eclipse New Plug-in Project wizard provides help for creating the plug-in
structure and initial information. The initial information contains aspects like
the plug-in name, its version, identi�er, which version of Eclipse is the plug-in
targeted to work with and so on. The New Plug-in Project wizard also o�ers
the possibility to start the project from a template, in which case the wizard
automatically generates the pieces required to provide the service.

After completing the information required by the wizard, the new plug-in project
is created having the structure presented in Figure 3.1.

The manifest �le is called MANIFEST.MF and is stored in an META-INF
directory. The manifest �le stores the project information and the dependencies
of the project.

The wizard can also generate a manifest class, called Activator.java, located
in Figure 3.1 under the src folder. This class is the �rst class instantiated and
it is used by Eclipse throughout the entire plugin life. This class also provides
methods for accessing the workbench resources and setting plug-in preferences.

3.4.2 Plug-in Manifest Editor

Eclipse PDE o�ers a complex editor for the plug-in manifest �le, but not only. It
is called Plug-in Manifest Editor and contains 9 pages: Overview, Dependen-
cies, Runtime, Extension, Extension Points, Build, Manifest.MF, build.properties
and plugin.xml. When a new extension, or extension point is added, PDE auto-



3.4 Eclipse PDE 19

matically creates a new �le called plugin.xml. This stores information about
the provided extensions or de�ned extension points and its source can be viewed
in the plugin.xml page of the manifest editor.

3.4.3 Plug-in debug

Since PDE is build on top of JDT, the plug-in can be debugged using the
JDT Debug component. Therefore the plug-in debug process is quite similar
to a Java project debug, using setting breakpoint, stepping through the code,
suspending threads and analyzing variables at run time facilities. The di�erence
is that the plug-in is launched in the Runtime Workbench environment.

3.4.4 Plug-in tests

The easiest way to test a plug-in is by doing manual testing. However, using
the JUnit framework a more systematic testing can be realized. Thus, a new
plug-in must be created that has two dependencies: the tested plug-in and the
org.junit4. Then test �xture are created to test di�erent aspects of the plug-in
and run in the JUnit window.



20 Development tools



Chapter 4

Analysis and design

This chapter describes the analysis and design phase of the eRAISE system
development. The method that has been used is based on EBON and has made
the subject of a paper [FK13], written by the author of this thesis and her
supervisors, that can be found in Appendix A and that will be presented during
International Conference in Software Engineering Workshop 2013 [top].

4.1 Analysis and design method

For the analysis and design part of the eRAISE system it was decided to go for
a new approach based on EBON method. The reason behind this decision is
that currently there are no published methodologies for plug-in development,
although some work was done in this direction e.g., Lamprecht et al. discusses
some principles in plug-in development [NLS+12]. The explanation for the lack
of methodologies in this area could be that plug-in development has only recently
become the focus of scientists.

There are many reasons why EBON was preferred over the more famous UML,
as a modeling language. One is that EBON semantics is more clear and un-
ambiguous than UML. Furthermore, EBON is easier to use and to learn and



22 Analysis and design

it is more concise. But more important, EBON was designed to support seam-
lessness, reversibility and design by contract. Seamlessness and reversibility are
the basis for a maintainable product, while the design by contract technique
assures its reliability. All these statements are sustained in [Pai99] where the
two methods are discussed and compared. This technical paper brings many
more other arguments in favour of BON and emphasizes UML de�ciencies e.g.,
EBON has only one classi�er, the class, compared with UML that has eight:
class, datatype, use case, interface, component, node, signal and subsystem. The
big number of classi�ers in UML leads to redundancy and ambiguity and com-
promises the seamlessness principle e.g., the datatype and interface classi�ers
can both be covered by the class construct.

The methodology used to analyze and design eRAISE is based upon BON
methodology. The methodology, as applied to eRAISE development, has six
stages:

• domain modeling

• user interface

• events

• components

• components communication

• code generation

Each of these steps is further described in a separate section and presented in the
order they are applied. The sections describe the guidelines for completing the
steps, the idea behind them and the output of each phase. Besides describing
the methodology, the following sections present also the eRAISE system analysis
and design, making eRAISE act as a case study for the methodology. The EBON
syntax is also described as the examples are being shown.

In the eRAISE case, the six steps are applied sequentially, one after the other,
where the deliverables of previous steps are used as starting points for next
steps. But this does not mean that we can not return to previous steps and
make re�nements when necessary. Once the six steps are completed they can be
retaken in a new iteration bringing a new series of re�nements. Thus the process
that we have used is both incremental and iterative. However, the method can
be used in many ways e.g., sequence using the Waterfall model or in an iterative
manner e.g., using Spiral model and it is up to the user of the method to decide
what works well for the project under development and for the team developing
it.



4.2 Domain modeling 23

4.2 Domain modeling

The �rst step when analyzing and designing a system is to establish its domain
model. This is done in order to create a common vocabulary between those
involved in the project and to identify the concepts used in the product devel-
opment process. This means that the most important entities and high level
classi�ers related to the system domain must be identi�ed, explained and doc-
umented from the very beginning, so they can be unanimously understood and
used throughout the entire product life cycle.

Starting from the project name and description, the domain model is constructed
by analyzing areas like Eclipse, RAISE and graphical user interface. All notions
and terms introduced in the chapter 2 are used as the starting point of this
phase. The result is a list of terms along with their explanation, essentially
describing entities and elements from a high level point of view. Some examples
from the list are notions like RSL perspective, editor, typechecker, console, SML
translator, tests runner, LATEX generator, GUI handlers and so on.

When performing domain analysis we try to identify concepts that are redun-
dant, which concepts relate to others, etc.. Some of these items can be grouped
in a more general notion, while others are big enough to cover multiple notions.
For example, RSL Perspective can be seen as a notion that comprises all other
items since inside Eclipse all RAISE elements can be grouped under a single
perspective. Likewise, core can be a notion that comprises components like
typechecker, SML translator, tests runner and LATEX generator.

Such notions are captured using the EBON system_chart, cluster_chart and
class_chart elements. These charts describe the system informally, using natu-
ral language and therefore they are perfect for this phase of analysis and design,
where a common vocabulary needs to be established, understood and docu-
mented. Inside the three charts, the notions that have been identi�ed are docu-
mented as classes, which can be grouped under clusters and all these make up
an unique system.

The eRAISE domain model is captured using EBON textual notation and pre-
sented in Appendix B. Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5
and Figure 4.6 present also the eRAISE domain model, but in the form of html
charts. The html charts are html documentation generated by applying BONc
on the EBON textual representation of the domain model. The reason for using
the documentation charts here instead of the textual notation is because they
are friendlier to the nontechnical people that may be involved in this early phase
of the analysis and design.



24 Analysis and design

Figure 4.1: eRAISE system chart

Figure 4.2: RSLPerspective cluster chart

Inside the domain model, there is only one, unique system, named eRAISESys-
tem captured in a system_chart and presented in Figure 4.1. The eRAISESys-
tem contains only one cluster that groups all the other concepts. RSLPerspec-
tive, presented in Figure 4.2, covers four clusters named core, editor, testcases
and wizard whose descriptions are captured in the system_chart, using natural
language.

The four clusters are further detailed in a cluster_chart each. The core cluster,
presented in Figure 4.3, comprises all concepts referring to the core functionality:
TypeChecker, SMLTranslator, LatexGenerator, TestRunner. We also decided to
add here a Console and a ResourceHandler concept and the concepts represent-
ing GUI elements. The latter are grouped under one cluster named guihandler
as it is captured in Figure 4.3.

The editor cluster presented in Figure 4.4, groups all concepts related to the
editing of an RSL speci�cation. Inside the editor cluster, the con�g cluster
groups all the elements used for con�guring the RSL editor.

Figure 4.5 presents the testcases cluster_chart comprising two other clusters:
model and ui. The wizard cluster captured in Figure 4.6 groups the concepts
that compose a wizard: NewRSLProjectWizard, RSLProjectPage.



4.2 Domain modeling 25

Figure 4.3: core cluster chart

Figure 4.4: editor cluster chart

Besides introducing notions and describing them, the domain model also de-
scribes how concepts behave and how their behavior is constrained. In EBON,
behavior is speci�ed by using two concepts called queries and commands, col-
lectively known as features. Behavioral constraints are speci�ed using an EBON
concept called contraints. A command is a service that a class provides, that
changes the state of the object that implements the class, while a stateless query
is a request for information from a speci�c object.

Therefore, for each concept previously identi�ed, one must think of its behavior
and the constraints that surround it. This additional information also describes
the system informally, from a high level and its role is to help with the later
design decisions. e.g., in the eRAISE domain model, there is the Console con-
cept that represents a UI element displaying the output to the user. Thus, it



26 Analysis and design

Figure 4.5: testcases cluster chart

Figure 4.6: wizard cluster chart

o�ers the service of displaying informative and error messages and the possi-
bility to clear the output. These two services are captured inside the Console
class_chart, using the EBON commands, and presented in Figure 4.7. Within
the class_chart there is also a constraint stating that the console output must
be cleared before displaying a new message.

The complete domain model concepts, their behaviour and constraints can be
found in Appendix B in EBON textual notation.

4.3 User Interface

The purpose of this step is to determine the plug-in functionality from the user's
point of view. This means identifying all the things a user can do from the plug-
in's UI. The UI feature set consequently derives the requirements of the plug-in
and designs the UI in the same time. Therefore, for each user action that is
relevant and important for the plug-in, a mock-up user interface is created. If
many user actions are similar, they can be grouped under a single user interface.

The mock-up user interface can be a vague handmade sketch or a precise drawing



4.3 User Interface 27

Figure 4.7: Console class chart

made with an advanced graphical editing program. The intention here is not
presentation and precision, but instead feature completeness and UI consistency.
In this paper the mock-ups were created by taking a screenshot of Eclipse and
then hand-editing the resulting image.

Figure 4.8: The RSL Eclipse perspective

For the eRAISE plug-in, it was decided that all UI elements will be displayed
under the same Eclipse perspective, named RSL perspective, in order to group
the information and favour the usability. The RSL perspective is presented in
Figure 4.8 and contains 6 views: PackageExplorer, RTest, Console, Problems,
REPL and Outline grouped around the RSL editor, an RSL menu and RSL
toolbar items.

Inside the RSL perspective, the user should have the possibility to typecheck all
RSL �les existing in the workbench. Also, the user should have the possibility



28 Analysis and design

Figure 4.9: The RSL menu item

to translate all RSL �les in workbench to SML, to run all test cases existing
in all �les, and to generate LATEX documents for them. Therefore, it was de-
cided that these four actions should be grouped under the RSL menu item and
presented in the same UI, for consistency and simplicity. Figure 4.9 illustrates
the RSL menu item as part of the Eclipse IDE menubar. Each submenu has an
associated keyboard shortcut e.g., the Type check all submenu has associated
the CTRL+Alt+C keyboard shortcut.

Figure 4.10: Scenario chart for the RSL Menu

While the user interface is being drawn, product requirements are documented
using EBON scenario_chart elements. The beautiful part about using EBON
is that it allows the requirements speci�cation to be captured using natural
language. Therefore no intermediate step is required between identifying the
requirements and documenting them. The requirements associated with the
RSL menu in Figure 4.9 are captured in the html chart in Figure 4.10. For each
submenu item there is a scenario element de�ned by a name and a description.
The four scenarios are grouped under a scenario_chart associated to the Eclipse
RSL menu. For the scenario_chart expressed in EBON textual notation please



4.4 Events 29

refer to Appendix D.

Figure 4.11: The RSL buttons

Figure 4.12: The RSL buttons scenario chart

The eRAISE GUI provides also buttons for taking actions on the active RSL �le
that is opened inside the editor. Thus the user can typecheck, run the tests and
generate LATEX for the �le opened in the editor. Figure 4.11 illustrates the three
buttons as part of the Eclipse GUI toolbar. The requirements associated with
these three toolbar items are presented in the scenario_chart in Figure 4.12.

And the same technique is applied for all the other GUI elements. First the GUI
interface is created and then the user requirements identi�ed and documented
using EBON. The complete list of UI mock-ups is presented in Appendix C ,
while their associated requirements are captured using EBON textual notation
in Appendix D.

4.4 Events

In this stage of the method the entire system is seen as a black box. The focus is
on the external actions that make the system react and on the system's outgoing
responses. More formally, within EBON, scenarios are composed of events, thus
there is a re�nement relationship between scenarios and events.

An incoming external event is any action that determines the system to change
its state. For example it can be a user clicking a button or another system



30 Analysis and design

event_chart UserActions
incoming
explanation "External events triggering representative system behaviour"
event "TYPECHECKALL: User clicks RSL menu and then clicks on Type Check

all option or presses Ctrl+Alt+C" involves ResourceHandler,
TypeChecker, Console, ConsoleToProblems, ProblemsView

Listing 4.1: Incoming event chart for typechecking features.

event_chart UserMessages
outgoing
explanation "Internal events triggering responses meant to inform the user."
event "CONSOLEUPDATE: Successs or failure messages displayed in console"
involves Console, TypeChecker
event "PROBLEMSUPDATE: Problems view update"
involves TypeChecker, Console, ConsoleToProblems, ProblemsView

Listing 4.2: Outgoing event chart for typechecking features.

sending a request. An outgoing internal event is the response the system sends
to an incoming external event. The system outgoing event for the action of
pressing the button could, e.g., be the display of a new window or writing a
message to the standard output.

Looking back at the RSL menu scenario presented in Figure 4.10, the user has
the possibility to type check all RSL �les. This is illustrated in Figure 4.9 by
the presence of a submenu item named Type check all. Therefore, the incoming
external action in this case is: the user selects the Type check all submenu item.
And this external event has been determined just by looking at the scenarios
previously identi�ed. However, there is another user event that triggers the
same system reaction and that is using the keyboard shortcut: The user presses
Ctrl+Alt+C.

Once established, the user actions are captured in EBON using event_chart
elements. The event_chart is either ingoing or outgoing depending on the type
of the events they capture. Since the two user incoming events that have just
been identi�ed aim for the same functionality, they are considered the same
event (TYPECHECKALL) and captured in Listing 4.1. The involves part in
Listing 4.1 is explained later, in section 4.6, in detail, as it denotes component
communication patterns.

If an incoming action triggers changes in the system state, the next task is to
decide how the system should respond to the action, and what are the changes
that have taken place. For the eRAISE case study, it was decided that, after
the user selects the Type check all submenu item, all RSL �les in the workbench
are typechecked and a message for each typechecked �le should be displayed in



4.4 Events 31

scenario_chart RSLMENU
scenario "TCAllMenu"
description "The user can TYPECHECKALL RSL files in the workspace. This implies

PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"
scenario "SMLaLLMenu"
description "The user can SMLTRANSLATEALL RSL files in the workspace. This implies

PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"
scenario "RunAllMenu"
description "The user can RUNALLTESTS cases in the workspace. This implies

RTESTUPDATE, PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"
scenario "LatexAllMenu"
description "The user can GENERATELATEXALL for all files in the workspace. This

implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

Listing 4.3: Scenario chart comprising the events for the typechecking feature.

the standard output. The messages inform the user about how the typechecking
evolved and since the case study GUI is Eclipse based, the standard output is
considered by default the Eclipse Console view. However, in some cases, the
typechecking may not be successful due to errors in the input �les. In this case
it would be nice to know what caused the problem and where it can be found.
Thus, the system should provide the necessary information in the Eclipse Prob-
lem view. To sum up, after the user selects the Type check all submenu item, the
system updates the Console and Problem views with appropriate information.
Listing 4.2 presents the two events captured in an outgoing event_chart under
the names of CONSOLEUPDATE and PROBLEMSUPDATE respectively.

Once the events have been identi�ed and given a proper name, they can be used
to rewrite the scenarios identi�ed in section 4.3. The reason for doing this is to
emphasize the actions a user takes during a scenario and the responses the sys-
tem must provide. Only the event name is used inside the scenario description,
making it shorter, less open to interpretation and conciser. Listing 4.3 illustrates
how the MENU scenario description presented in Figure 4.10 changes once the
events names are being added e.g., "user can type check all" description was re-
placed with "user can TYPECHECKALL", where Listing 4.1 describes exactly
what the TYPECHECKALL event implies. The "Success or failure messages
will be displayed along with the list of errors in case of a failure" has been re-
placed by "This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDI-
TORUPDATE", where PROBLEMSUPDATE and CONSOLEUPDATE events
are presented in Listing 4.2. EDITORUPDATE action is an outgoing event that
displays a marker in the editor at the line where an error has been discovered.

The rest of the events are identi�ed in the same way, by starting from the user
interfaces and scenarios determined in section 4.3. The events are given names,
or are grouped under the same name if multiple events trigger the same system
reaction, and captured inside event charts. Then the events' names are used to



32 Analysis and design

replace the event description inside the scenario charts. The complete list of the
internal and external events is presented in Appendix D using EBON textual
notation.

4.5 Components

At this stage in the methodology, in contrast with the previous one, one looks in-
side the system at the components that constitute its architecture. Components
refer either to concrete elements, e.g., a Zoom in button, or abstract concepts,
like User authentication which covers everything in the system responsible for
authenticating a user.

The place to start identifying the system architecture components is the domain
model presented in section 4.2. The high level classi�ers captured there must be
transformed into concrete data types in order to bring the system development
closer to the implementation phase. The advantage of using EBON is that it
simpli�es the transit between the domain model and architecture and manages
to capture the concrete data types in a language independent fashion. This is
done by taking the entities captured in the system chart, cluster charts and
class charts and transfer them into static diagrams. An EBON static_diagram
contains multiple components which can be clusters or classes and which have
the same meaning as the ones composing the system_chart in section 4.2.

Applying this step on eRAISE, the system chart presented in Figure 4.1, in
section 4.2 becomes the static_diagram SystemArchitecture from Listing 4.4.
Listing 4.4 presents only a caption and not the entire components which can be
found in Appendix F.

4.6 Components Communication

This section's concern is how components interact with each other and what
interfaces they present to the other components that want to communicate with
them. The starting point is the list of incoming and their corresponding outgoing
actions identi�ed in section 4.4. This helps identifying the components that
react to an external stimuli and the components responsible for the outgoing
actions. Once the starting and ending point of the data �ow is established,
the other interacting components are determined by evaluating the scenarios in
section 4.3.



4.6 Components Communication 33

static_diagram SystemArchitecture
--Shows the architecture of the eRAISE plugin system
component

cluster core
component

class Console
class ResourceHandler
class SMLTranslator
class LatexGenerator
class TestRunner
class TypeChecker

cluster guihandlers
component

class TCHandler
class SMLHandler
class RTHandler

end
end

cluster editor
component

class ConsoleToProblems
class Problems
class ProblemsView
class RSLEditor

...

Listing 4.4: Static diagram comprising the eRAISE components

In EBON notation, the components communication is seen in terms of client,
supplier relationship. The component providing the interface is a supplier and
all components using it are clients.

In eRAISE, one incoming event is TYPECHECKALL presented in Listing 4.1,
in section 4.4 and its corresponding outgoing events are CONSOLEUPDATE
and PROBLEMSUPDATE presented in Listing 4.2, in section 4.4. The TYPE-
CHECKALL action must trigger the TypeChecker in order to typecheck all
RSL �les in the workspace. The component responsible for the CONSOLEUP-
DATE is the Console and the one for PROBLEMSUPDATE is Problems. The
TypeChecker component typechecks the input and directly informs the Console
about the status. Therefore, the TypeChecker is a client of Console and this is
expressed in EBON as: TypeChecker client Console. The client relations must
be added in the static_diagram after the components declaration.

Since TypeChecker is stimulated by the TYPECHECKALL event and it is a
client of Console which generates the outgoing response, it can be said that
TYPECHECKALL event involves the TypeChecker and the Console compo-
nents. And this is how the involves part in Listing 4.1, section 4.4 is constructed.
The same method is applied to PROBLEMSUPDATE event. This event is trig-
gered if there are errors displayed in the console. Therefore TypeChecker sends



34 Analysis and design

class ProblemsView
feature

update
-> problems: SET[PROBLEM]

end
...

Listing 4.5: ProblemsView component interface

a message to Console and if the message is an error, a third component called
ConsoleToProblems, that monitors the Console, noti�es the Problems compo-
nent. Therefore, the PROBLEMSUPDATE event involves the TypeChecker,
Console, ConsoleToProblems and Problems components. This is captured in
Listing 4.2, section 4.4.

Once it was decided what components are interacting, it must be established how
to do so. This means establishing the contracts between components by iden-
tifying the information a client needs and the messages it sends to its supplier.
EBON supports the formal speci�cation of typed interfaces in a programming
language-independent fashion. Classes are parameterized and contain formally
speci�ed features. Each classi�er in the domain model maps to exactly one class
within the formal model, and each feature of each class within the domain model
maps to one formally speci�ed feature in that class' interface.

For example, the ProblemsView component has a feature called update which
allows the client components to send the problems that will further be displayed
to the user in the ProblemsView. The situation is captured in Listing 4.5,
where a caption of the components typed interfaces in presented. EBON also
supports preconditions and postconditions speci�ed using the require and ensure
keywords. The complete list of components and their typed interfaces can be
seen in Appendix G.

Once the components and their interaction is established the system architecture
is complete. Figure 4.13 presents eRAISE system architecture using EBON
graphical notation.

4.7 Code Generation

Once the analysis and design parts are �nished, the next step is to generate
the formally speci�ed code skeleton. This step is accomplished using the Beetlz
tool, which was described in chapter 3 and which automatically generates JML-
annotated Java code from an EBON speci�cation. The input of this tool is the



4.7 Code Generation 35

public /*@ nullable_by_default @*/ class ProblemsView {
public void update(Set<Problem> problems){}

}

Listing 4.6: Java ProblemsView class generated by Beetlz

EBON system_chart and static_diagram that were obtained throughout the
entire analysis and design. With one click, Beetlz converts all EBON speci�ca-
tions into JML-annotated, Javadoc documented Java code. Beetlz also performs
re�nement analysis so that architecture drift is automatically identi�ed as the
system evolves, either at the model-level in EBON, or within the implementation
in Java.

For example, Listing 4.6 shows the ProblemsView class generated by Beetlz
for the component with the same name described in the static_diagram in List-
ing 4.5. The entire skeleton code generated by Beetlz can be seen in Appendix H.



36 Analysis and design

Figure 4.13: Static diagram



Chapter 5

Implementation

This chapter covers the project implementation phase. The �rst subsection de-
scribes the plan after which the implementation was conducted staring from the
artifacts obtained in the analysis and design. The rest of the subsections de-
scribe a plug-in each, o�ering code examples and reasons behind implementation
decisions.

5.1 Plan

The starting point of the implementation is the skeleton code generated in the
end of the analysis and design phase that can be found in Appendix H. Starting
from this code and the scenarios identi�ed in the same section, the plan of the
implementation is established as further described.

All scenarios captured in Appendix D are added in the Mylyn task list as shown
in Figure 5.1. The tasks are grouped based on the functionality they refer to,
under di�erent categories e.g., all tasks that refer to type checking are grouped
under the Type check category, all task that involve an RSL translation to SML
are grouped under the SML translate category and so on. Then each task is taken
individually and the code that solves it is written. When a task is completed



38 Implementation

Figure 5.1: Mylyn task list comprising the EBON scenarios

the next one is started and so on, until all tasks are implemented.

The analysis and design phase has already de�ned the plug-ins that compose
eRAISE in the form of the four clusters de�ned in the eRAISE system_chart
Appendix B. Thus the four implemented plug-ins are:

1. rsl.typechecker plug-in
The core of the eRAISE system. Encapsulates the functionality for type-
checking a RSL speci�cation, for translating it to SML, for executing the
test case and for generating the LATEX documentation.

2. rsl.editor plug-in
Implements the RSL editor and all editor speci�c functionality e.g., key-
words highlighting, displaying the typecheck errors' locations inside the
RSL speci�cation, �le saving actions and so on.

3. rsl.testcases plug-in
Interpreting the output of the SML execution of the RSL test cases and
display the results.

4. rsl.wizard plug-in
This plug-in contains the implementation of the wizard that creates a new
RSL project, plus groups all the RSL views and actions.

Each plug-in implementation is further described in a separate subsection along
with the scenarios that it covers.

The implementation description is supported with small examples from the Java
code. The examples can be an entire method or just a few lines of code meant
to exemplify how the technical solution was implemented. Also from the code



5.2 rsl.core plug-in 39

examples, the try/catch blocks have been removed as any of the log information,
in order to make the examples easier to read. The entire source code behind
eRAISE can be found online on GitHub under https://github.com/kiniry/
eRAISE.

5.2 rsl.core plug-in

5.2.1 Type check

The implementation starts by solving the scenario presented in Listing 5.1.

scenario "PRJF1"
description "The user can TYPECHECK one RSL file. This implies CONSOLEUPDATE, PROBLEMSUPDATE

and EDITORUPDATE"

Listing 5.1: Caption from PROJECT_EXPLORE_FILE scenario

Since the existing rsltc tools set already o�ers the functionality of typechecking a
RSL speci�cation, the rsltc tool is integrated inside eRAISE and executed every
time a �le needs to be typechecked. In order to execute rsltc from inside the
plug-in, it must be run as a Java external application. This is done by creating
a new ProcessBuilder having as parameters the location of the rsltc tool and
the location of the RSL speci�cation that needs to be typechecked. But in order
to execute a DOS command from a Java program, it must be wrapped in the
cmd as it can be seen in Listing 5.2. The /c switch closes the command shell
after the command has �nished executing. After the process has been started
in a new thread, its output is collected line by line. This output is the output
of the rsltc typechecker and informs about how the typechecking of the RSL
speci�cation went. This output is what is displayed in the Console view.

String commands[] = {"cmd", "/C", programPath, filePath};
ProcessBuilder builder = new ProcessBuilder(commands);
//correlate the error messages with the output messages
builder.redirectErrorStream(true);
//start the program
process = builder.start();
//get the input stream
InputStream is = process.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
//read the program output line by line
String line = br.readLine();
while (line != null && ! line.trim().equals("--EOF--")) {

infomessage += line+"\n";
line = br.readLine();

}

Listing 5.2: Executing rsltc as a separate process

https://github.com/kiniry/eRAISE
https://github.com/kiniry/eRAISE


40 Implementation

Since many other tools may depend on the output of the typecheck e.g., if an
RSL speci�cation is not correct, then it can not be translated to other languages,
it was decided to create an extension point through which other plug-ins can
listen to the output of the typecheck. More details about this is presented in
section 5.6.

Once the typecheck functionality is implemented, the next step is to create the
RSL �le context menu inside the Package Explorer view, so that the user can
select it and trigger the typechecking. The context menu item is created as
an additional element to the popup menu in the PackageExplorer view as il-
lustrated in Listing 5.3. The visibleWhen assures that the context menu item
is being displayed only on the RSL �les. The fact that no restriction on the
number of selected �les exists, means that the user can select multiple RSL �les
and still see and select the Type check context menu item.

<menuContribution allPopups="false"
locationURI="popup:org.eclipse.jdt.ui.PackageExplorer?after=additions">
<command

commandId="core.command.typecheckelement"
label="Type check"
style="push">
<visibleWhen checkEnabled="false">

<iterate>
<adapt type="org.eclipse.core.resources.IResource">

<test
property="org.eclipse.core.resources.extension"

value="rsl">
</test>

</adapt>
</iterate>

</visibleWhen>
</command>

..

Listing 5.3: Creating a RSL �le context menu inside the Package Explorer

Once the command was triggered the class implementing the handler of the
command, in this case the TypeCheckHandler class, is called. It reads the
selection, as presented in Listing 5.4 and calles the typecheck method with the
selected �le as a parameter.

//get the selections in the Project explorer
IStructuredSelection selection = (IStructuredSelection) window.getSelectionService().
getSelection("org.eclipse.jdt.ui.PackageExplorer");

Listing 5.4: Identifying the selected elements inside the Project Explorer view

Once the type check of one �le is implemented, the additions of the scenarios
presented in Listing 5.5 becomes quite straight forward. The idea is to create
the GUI elements inside the plugin.xml �le and to limit their visibility to the



5.2 rsl.core plug-in 41

situations where they can be applied. Once the actions are triggered, the type
of the element that was selected for typecheck, must be analyzed. If a project
was selected for typecheck, then all RSL �le inside the project must be type
checked. If the RSL menu from the menu bar was clinked then all RSL �les
from the workspace must be identi�ed and called typecheck for each of them.
If the user has selected the Type check option inside the RSL editor, then the
typecheck will be called for the currently opened �le inside the editor.

scenario "PRJ1"
description "The user can TYPECHECKPRJ RSL files in a project. This implies

PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"
scenario "MENU1"
description "The user can TYPECHECKALL RSL files in the workspace. This implies

PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"
scenario "EDT1"
description "The user can TYPECHECK the active file. This implies

PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

Listing 5.5: Other scenarios concerning the type check functionality

5.2.2 SML translate

The implementation of the SML translation is similar to that of the typechecker.
We are starting by implementing the SML translation of a �le captured in
Listing 5.6 and then generalize it for multiple RSL modules.

scenario "PRJF2"
description "The user can translate to SML one RSL file. This implies CONSOLEUPDATE,
PROJECTEXPLORERUPDATE, PROBLEMSUPDATE and EDITORUPDATE"

Listing 5.6: Caption from PROJECT_EXPLORE_FILE scenario

rsltc tools set already o�ers the functionality of translating to SML a RSL spec-
i�cation, thus we are executing it from inside eRAISE every time RSL modules
need to be translated to SML. As mentioned in the typechecker case, rsltc must
be run as a Java external application and listened for the SML translation out-
put. The output is displayed in the Console view.

After the SML translator has been run, two new SML �les are being created
in the same directory as the RSL speci�cation that has been translated. The
challenge here is that rsltc does not o�er the possibility to choose the location
of the SML �les. They are by default created in the same directory as the RSL
speci�cation and this aspect can only be changed by modifying the rsltc source
code. In our scenarios, the SML �les must be stored in a new SML project
associated with the RSL project containing the RSL speci�cation. Thus, there
are two possibilities for solving the SML �les location problems: either we change



42 Implementation

the source code of rsltc or move the �les after their creation in the appropriate
project. We decided to go with the second approach since moving resources in
Eclipse is fast enough to not be visible to the user, plus it will not interfere with
the user activity. Furthermore, modifying rsltc source code is not our intention
since applying a small patch or quick �x could could lead to other problems.

Once the SML translator functionality has been implemented, the SML Trans-
late user actions must be made visible in the appropriate menus and windows,
just like in the type checker situation presented in Listing 5.3.

scenario "PRJ2"
description "The user can SMLTRANSLATEPRJ RSL files in a project. This implies

PROBLEMSUPDATE, CONSOLEUPDATE, PROJECTEXPLORERUPDATE and EDITORUPDATE"
scenario "MENU2"
description "The user can SMLTRANSLATEALL RSL files in the workspace. This implies

PROBLEMSUPDATE, CONSOLEUPDATE, PROJECTEXPLORERUPDATE and EDITORUPDATE"
scenario "EDT2"
description "The user can SMLTRANSLATE the active file. This implies

PROBLEMSUPDATE, CONSOLEUPDATE, PROJECTEXPLORERUPDATE and EDITORUPDATE"

Listing 5.7: Other scenarios concerning the SML translate functionality

In the end, SML translation functionality is generalized for multiple RSL �les
to cover the scenarios presented in Listing 5.7

5.2.3 Test cases execution

The test cases execution implementation starts with the scenario presented in
Listing 5.8.

scenario "PRJF3"
description "The user can RUNTESTS in one RSL file. This implies RTESTUPDATE,
PROBLEMSUPDATE, PROJECTEXPLORERUPDATE and CONSOLEUPDATE"

Listing 5.8: Scenarios concerning the test cases execution functionality

In order for the RSL test cases to be interpreted, the RSL speci�cation needs to
�rst be translated to SML and then the SML �le must be executed with smlnj
[SML]. In order to execute smlnj from inside the plug-in, it must be run as a
Java external application. This is done by creating a new ProcessBuilder having
as parameters the location of the smlnj (which is the resources folder inside the
plug-in) and the location of the SML speci�cation that needs to be executed.
Also the process environment variables must be set as in Listing 5.9 in order
for the JVM to �nd smlnj binaries. The smlpath variable contains the location
where smlnj is stored inside the plug-in.



5.2 rsl.core plug-in 43

String commands[] = {"cmd","/C", "sml", smlfilePath};
ProcessBuilder builder = new ProcessBuilder(commands);
Map<String, String> env = builder.environment();
env.put("Path", smlpath);
env.put("SMLNJ_HOME", pathVal);
env.put("RSLML_HOME", rslPathVal);

Listing 5.9: Setting process environments fro running smlnj

Executing now a SML �le that was obtained from an RSL speci�cation will not
work. And the reason for this is that when rsltc translates a RSL speci�cation
in SML it creates two �les e.g., test.sml and test_.sml. The �rst one contains
the �les and libraries that need to be loaded and then calls the execution of
the second �le that contains the RSL speci�cation translated in SML. Inside
this �rst SML �le, rsltc tool hardcodes the location of the rslml.cm �le to
/usr/share/rsltc/sml/rslml.cm. rslml.cm �le contains the group of �les that
need to be used in the execution process and the runtime can not �nd it. Thus
we need to edit the SML �le with its correct location during runtime, which is
system_path/resources/raise/sml/rslml.cm.

The output of the smlnj contains a lot of information and among it the test
cases results as presented and described in Listing 5.28 in section 5.4. The
test cases results are not used inside this plug-in, but inside the rsl.testcases
plug-in where they are displayed inside the RTest View. Therefore we create an
extension point that allows for a listener to register to it and listen for the output
of the test cases execution. This way if any change may a�ect rsl.core plug-in
in the future, it will not a�ect rsl.testcses plug-in. More details about how the
rsl.core exposes the test results to its listeners is presented in section 5.6.

After the test cases execution is implemented, the user actions that trigger this
functionality must be made visible and the situation generalized for the cases
when the user wants to run the test cases from multiple �les.

5.2.4 LATEX generation

The scenario presented in Listing 5.10 states that by clicking the Latex button
in the toolbar, or by selecting the Generate Latex context menu or by using
Alt+L shortcuts, LATEX documentation is generated comprising the RSL �le.

scenario "PRJF4"
description "The user can GENERATELATEX for one RSL file. This implies
CONSOLEUPDATEnand PROJECTEXPLORERUPDATE"

Listing 5.10: Scenario concerning the latex generation functionality



44 Implementation

Thus a new documentation project having the name of the RSL project plus
the su�x Doc (as mentioned in Listing 5.11) is created. Inside the project a src
folder is created containing a main.tex �le as presented in Listing 5.12.

scenario "R9"
description "A RAISE project can have associated one documentation project
that has the same name plus the suffix 'DOC'. This project is created when
the first documentation file is created"

Listing 5.11: Scenario

//add doc project
ProjectExplorer.addProject(latexProject);
//create main.tex file
ProjectExplorer.addFile("main.tex", new Path(latexProjectName+"/src"));

Listing 5.12: The creation of the documentation project and LATEXmain �le

When main.tex �le is created the following LATEX lines are being added:

\documentclass{article}

\usepackage{listings}

\begin{document}

\lstset{language=rsl}

\lstinputlisting{file_location/rsl_file_name}

\end{document}

This string is externalized and added in a �le inside resources folder with the
name of latex_template.txt. The newly obtained main.tex �le can be directly
compiled with LATEX.

5.3 rsl.editor plug-in

5.3.1 Editor

The RSL editor implementation is started with scenario presented in List-
ing 5.13.

scenario "ED9"
description "RSL keywords and mathematical words are written with a different
colour in the editor"

Listing 5.13: Caption from editor scenario



5.3 rsl.editor plug-in 45

Since the RSL editor is a source code editor, it is developed using the Eclipse
JFace Text framework. This framework is used for creating and manipulating
text documents [hel13] and is very powerful, �exible and very complex in the
same time. JFace Text framework sees the editor as composed of two parts: one
that holds the document content, called document, and one that takes care of
how the content is displayed inside the editor, named viewer.

Concretely, in order to create an Eclipse editor, one must use the org.eclipse.ui.
editors extension point. The con�guration for the RSL editor speci�es its name,
its unique identi�er, the �les extensions that are understood by the editor and
the class that implements the editor functionality. The part of the manifest �le
that contains this information is captured in Listing 5.14.

<extension point="org.eclipse.ui.editors">
<editor

name="RSL Editor"
id="rsleditor.editors.RSLEditor"
extensions="rsl"
class="rsleditor.editors.RSLEditor">

</editor>
</extension>

Listing 5.14: Caption from the rsl editor manifest �le

The RSLEditor class extends the TextEditor class from org.eclipse.ui.editors.text
package. This way the RSL editor gains the basic functionality of the standard
text editor for �le resources [hel13] and provides the possibility of adding many
other features on top. The basic functionality inherited by the RSL editor are:

• Text display

• User possibility to modify text

• Standard text editing operations: cut, copy, paste

• Find and replace operations

• Undo and redo typing operation

This RSLEditor class is in charge of creating and instantiating the model and
view part of the editor. This is done by the code presented in Listing 5.15.

SourceViewerConfiguration viewerCongif = new RSLConfiguration(colorManager);
setSourceViewerConfiguration(viewerCongif);

FileDocumentProvider documentProvider = new RSLDocumentProvider();
setDocumentProvider(documentProvider);

Listing 5.15: Class RSLEditor caption



46 Implementation

The RSLDocumentProvider class's role is to create the memory representation
of the �le that is stored on the disk. This is done by extending the FileDoc-
umentProvider class which implements the IDocumentProvider interface and
which provides functionality for loading �les from disks and keep track of their
changes. This is done in the createDocument method where a document par-
titioner is created and attached to the document. This method is presented in
Listing 5.16.

protected IDocument createDocument(Object element) throws CoreException {

//create the document
IDocument document = super.createDocument(element);

//create a new document partitioner and attach it to the document
if (document != null) {

IDocumentPartitioner partitioner =
new FastPartitioner(

new RSLPartitionScanner(),
new String[] {

RSLPartitionScanner.RSL_COMMENT
});
partitioner.connect(document);
document.setDocumentPartitioner(partitioner);

}

Listing 5.16: createDocument method in class RSLDocumentProvider

The way the document partitioner works is by using a scanner to scan through
the document content and return partitions of di�erent content types. Partitions
are small parts of the text document having associated a content type, a length
and an o�set [hel13]. Partitions are disjoint and their reunion form the document
content. The idea behind partitions is that the editor must treat di�erent parts
of the text di�erently: e.g., a line of comment is coloured di�erently than a line
of code.

The way the document content is split in content type partitions is based on
rules. Eclipse provides some basic rules for creating the partitions through the
IPredicateRule interface and its standard implementation PatternRule class.
This mechanism is capable of detecting parts of text that start and end with a
pattern. Starting from this rules, there are two kind of content types partitions
determined for the RSL code:

• RSL comment

• RSL code

Since Eclipse provides a default partition type, IDocument.DEFAULT_ CON-
TENT_ TYPE, it is enough to establish the rules for the RSL comment and the



5.3 rsl.editor plug-in 47

rest of the text (code) is automatically considered a di�erent type, the default
type. The partitions types and the rules for detecting the partitions are de�ned
in RSLPartitionsScanner class and presented in Listing 5.17. There are two
rules de�ned for identifying a RSL comment partition: one states that every
sequence that starts with a /* and ends with a */ and that can lie on multiple
lines is a comment and another one that states that every line starting with the
� sequence is also a comment.

public final static String RSL_COMMENT = "__rsl_comment";

public RSLPartitionScanner(){

IToken rslComment = new Token(RSL_COMMENT);
IPredicateRule[] rules = new IPredicateRule[2];

rules[0] = new MultiLineRule("/*", "*/", rslComment);
rules[1] = new SingleLineRule("--", "", rslComment);

setPredicateRules(rules);
}

Listing 5.17: Caption from the RSLPartitionScanner class

Once the model part is implemented and con�gured, the next step is to take
care of the UI part of the editor. Eclipse provides a class that handles dis-
playing source code inside an editor. This class is called SourceViewer and
is a specialization of the TextViewer class inside org.eclipse.jface.text package.
The RSLCon�guration extends this class taking care of the syntax highlight-
ing. Therefore it creates an RSLCodeScanner that scans through the RSL code
searching for the sequences that need to be coloured. The aspects that are
coloured in the RSL code are the RSL keywords, the strings and the characters.
The complete list of the RSL keywords is presented in Appendix J. Listing 5.18
illustrates how every keyword, string and character are considered tokens that
have display information associated.

IToken keyword = new Token( new TextAttribute(
colorManager.getColor(IRSLSyntaxColors.PINK), null, SWT.BOLD));

IToken string = new Token(new TextAttribute(
colorManager.getColor(IRSLSyntaxColors.GREEN)));

WordRule wordRule= new WordRule(new RSLWordDetector(),other);
for (int i= 0; i < keyWords.length; i++)

wordRule.addWord(keyWords[i], keyword);

rules.add(wordRule);

//rule for detecting Texts
rules.add(new MultiLineRule("\"", "\"", string));

//rule for detecting Characters
rules.add(new SingleLineRule("\'", "\'", string));

Listing 5.18: Caption from the RSLCodeScanner class



48 Implementation

A keyword is coloured in pink and is bold, while a string and a character is
green. Please refer to K for a complete list of the colours used for displaying
the RSL content, and their RGB value. Then for every keyword in the keyWord
set variable, a new word rule is created, associating each word to the keyword
token. The Texts and Characters are both associated to the string token, since
both are being displayed in the same way. Please notice in Listing 5.18, that the
WordRule needs a RSLWordDetector to determine if a character can be part of
the word in the current context.

Another important aspect of an editor is to maintain all the features described
so far, while the user is making changes to the document. This part is done
using the IPresentationReconciler interface which keeps tracks of the document
changes by attaching it an instance of the IPresentationDamager and IPresen-
tationRepairer.

The next scenario that must be implemented is presented in Listing 5.19 and
stated that when a user saves a �le (either by pressing the Ctrl+S keyboard
shortcut, or by selecting File → Save, or File → SaveAs) it is automatically
type checked.

scenario "EDT5"
description "The user SAVE the current RSL specification and the TYPECHECK is
automatically run."

Listing 5.19: Caption from EDITOR scenario

By extending the TextEditor, the RSLEditor can override the doSave and doSaveAs
methods, that are triggered when a �le is saved. But the question here is how
to call the typecheck functionality, that is not implemented inside this plug-in,
but in rsl.core. One solution would be to run it as a separate process and use
sockets in order to listen for the output. Another solution would be to create a
temporary �le where the doSave and doSaveAS methods can write when they
are called, and which the rsl.core monitors. However, we consider these two so-
lutions unnecessarily complicated since the two plug-ins rsl.core and rsl.editor
are delivered together. Therefore, we are choosing a simpler approach where we
make the typecheck functionality visible inside the rsl.editor plug-in, so it can
be called from the appropriate methods. We make this decision knowing that
rsl.editor is not going to be delivered without the rsl.core plug-in.

By overriding the doSave and doSaveAs methods, we need to make sure that
the content of the �le is �rst saved and only then it can be typechecked. The
situation is presented in Listing 5.20.

@Override
public void doSave(IProgressMonitor monitor){

super.doSave(monitor);



5.3 rsl.editor plug-in 49

//get active file in editor ifile
...
TypeChecker tc = new TypeChecker();
tc.typeCheck(ifile);

Listing 5.20: Caption from the RSLCodeScanner class

5.3.2 Markers

The next implemented aspect is dealing with the type check errors. The scenario
that captures this aspect is the PROBLEMS scenario_chart:

scenario "PRB1"
description "The user can see the problems existing in the workspace with PROBLEMSUPDATE

and EDITORUPDATE."
scenario "PRB2"
description "For each problem the description, resource, path, location

and type are specified."

PROBLEMSUPDATE event states that the Eclipse Problem view must be up-
dated and the EDITORUPDATE states that when an type check error occurs
it must also be signaled in the editor.

The connection between the output of the RSL typechecker displayed in the
Console view and the Problems view is the ConsoleToProblems component.
This component must be continuously listening to what is being displayed in
the Console and if an error is displayed, the Problems view must be updated.

After some research, it was found that Eclipse provides an extension point that
looks for regular expressions in the text console, named org.eclipse.ui.console.
consolepatternmatchlisteners [hel13]. According to [rsl08], the error output of
the RSL typechecker is regular having the form of:

file.rsl:line:column: error message

Thus for every error discovered in a RSL speci�cation, the name of the �le is
speci�ed, followed by :, followed by the number of the line in the RSL speci�ca-
tion where the error was encountered, followed by :, the column number where
the error starts, then again :, a space and the error message. Having regular
expressions in the console, a consolePatternMatchListeners extension point is
added to the rsl.editor plug-in as presented in Listing 5.21.



50 Implementation

<extension point="org.eclipse.ui.console.consolePatternMatchListeners">
<consolePatternMatchListener

class="rsl.editor.problems.ConsoleToProblems"
id="rsl.editor.consolePatternMatchListener"
regex="(.*):(\d+):(\d+):(\s*)(.*)">

</consolePatternMatchListener>
</extension>

Listing 5.21: The consolePatternMatchListener extension point

The class implementing the IPatternMatchListenerDelegate interface and thus,
the class noti�ed when a regular expression was found is the ConsoleToProblems.
The regular expression is composed of �ve groups:

1. the �rst group of(.*)
Matches any number of characters representing the name of the �le

2. the �rst group of (\d+)
Matches one of more digits representing the line number

3. the second group of (\d+)
Matches one or more digits representing the column number

4. (\s*)
States that any number of space characters can be found in this position

5. the second group of (.*) Matches any sequence of characters representing
the error message.

When the match is found in the Console, an PatternMatchEvent is triggered and
the matchFound method in the ConsoleToProblems class called. Based on the
information gathered from the Console output, problems are created as showed
in Listing 5.22.

//extract error messages from Console
Matcher matcher = ERROR_PATTERN.matcher(lineStr);

if (matcher.matches()) {
fileName = matcher.group(1);
line = Integer.parseInt(matcher.group(2));
column = Integer.parseInt(matcher.group(3));
err_message = matcher.group(5);

}
else {

return;}

//create a Problem
Problem prb = new Problem(2, err_message, line, column);

Listing 5.22: Caption from matchFound method in class ConsoleToProblems



5.4 rsl.testcases plug-in 51

Problems must be displayed in the Problems view, in the editor and in the
Project Explorer view. To make sure that all three views are consistent and
updated at the same time, the concept of marker is used. Markers are pieces
of information tagged to a resource in order to assure GUI consistency. There
are three di�erent types of markers: tasks, bookmarks and problems, and the
ones used to represent errors in a �le are the problems markers. Thus for every
error discovered by the typechecker in an RSL speci�cation, a problem marker
is added to that speci�c RSL �le. The problem markers are created inside the
ProblemsView class , by extracting the information from the problems created
in Listing 5.22.

int lineNumber = problem.getLinenumber();
String message = problem.getMessage();
//map that stores all marker properties
HashMap<String, Integer> map = new HashMap<String, Integer>();

MarkerUtilities.setLineNumber(map, lineNumber);
MarkerUtilities.setMessage(map, message);

map.put(IMarker.SEVERITY, new Integer(IMarker.SEVERITY_ERROR));

//first set values and then create marker
MarkerUtilities.createMarker(file, map, IMarker.PROBLEM);

Listing 5.23: Creating the problem markers inside the printProblems method

When creating markers, �rst their values are being set: line number, message
and severity as it is illustrated in Listing 5.23 and only after that the marker
is created and attached to a �le. We learned from our own experience that the
order is very important, since if a marker is �rst created and then its values are
set, the editor does not display the marker at the right location. More about
this problem can be read at [Ecl]. After a marker is created and attached to a
�le, the Problems View, the Editor and the Package explorer will automatically
be updated.

5.4 rsl.testcases plug-in

The next task, captured in Listing 5.24, is to display the results of the test cases
evaluation in the RTest view.

scenario "TEST2"
description "Tests results are shown in a separate view involves RTESTUPDATE"

Listing 5.24: Caption from TEST scenario



52 Implementation

Thus a new RTest view is created as a contribution to the org.eclipse.ui.views
extension point, as presented in Listing 5.25.

<extension point="org.eclipse.ui.views">
<view

class="rsl.testcases.ui.TestCaseViewPart"
icon="icons/13RT.png"
id="rsl.testcases.testview"
name="RTest"
restorable="true">

</view>
</extension>

Listing 5.25: RTest view declaration

Figure 5.2: Test cases results displayed in the RTest view

The RTest view must display not only the test results, but also the name of the
test, if any, and the name of the RSL speci�cation containing the test cases.
This information must be displayed in a tree format, where the �rst level is
represented by the RSL �les names, the second level comprises the test cases
names and the last level is the associated tests results as shown in Figure 5.2.
But while working on this part, we realized that it is not mandatory to give
names to tests inside the RSL speci�cation, and therefore we decided to discard
the third level and show the test results on the second level after their names.
If a test does not have a name then only its execution result will be displayed.

To display the test cases in a tree format, an org.eclipse.jface.viewers.TreeViewer
is created inside the RTest view, as presented in Listing 5.26.

viewer = new TreeViewer(parent, SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);
TestCaseContentProvider contentProv = new TestCaseContentProvider();
viewer.setContentProvider(contentProv);
contentProv.setViewer(viewer);
viewer.setLabelProvider(new TestCaseLabelProvider());
// Expand level
viewer.setAutoExpandLevel(2);
// Provide the input to the viewer
viewer.setInput(new RSLTestCaseModel());

Listing 5.26: Creating a Tree Viewer inside TestCaseViewPart class

The TreeViewer needs a content provider to provide the information to be dis-
played on every level and a label provider to provide the small icons that will be



5.4 rsl.testcases plug-in 53

displayed next to each level. Looking at Listing 5.26, the content provider is the
TestCaseContentProvider class that implements the ITreeContentProvider in-
terface and that provides methods for accessing the elements on the �rst level of
the tree (the �les' names) and their children (the test cases' names and results).

The TestCaseLabelProvider o�ers methods for accessing the appropriate icons
to display next to the test names depending on the test result.

In the design phase it was considered that a test can be either a success (if
the test result is true or any other value that is not false) or false (if the test
result value is false). But while implementing the execution of the test cases in
section 5.2, we discovered that the tests can also generate run time exceptions
when executed with smlnj. For example run time exceptions are generated when
zero is raised to a non-positive power, or when a division by zero is encountered.
The SML runtime system catches the runtime errors within each test case, and
thus they do not disturb the execution of the next test cases. The test result of
a test that generated errors, is the associated error message. The complete list
of all runtime error message that can be generated by the SML runtime system
is presented in ??. Based on these facts, it was decided that a test result value
can be in one of the three states:

• success
The test value is true or any other value that is not false.

• false
The test value is false.

• error
The test has generated a runtime error.

If a test is a success then a green icon is displayed next to it, if it is false then
a blue icon is displayed and in an error case, a red icon will mark the failure.
An icon is also displayed next to the RSL �le name, based on the results of the
test cases de�ned inside the RSL �le. If one or more tests generated a runtime
error, then a red icon is displayed next to the �le name. If there are no error
tests, but there is at least one false test, then the icon next to the �le name is
blue. If there are no error or false tests then all tests have a green icon next to
them and so is the �le name.

The last line in Listing 5.26 sets the input of the tree viewer as a new RSLTest-
CaseModel. The RSLTestCaseModel class represents the tree structure on two
levels as a list of lists. The �rst list contains the name of the RSL �les and their
associated lists of test cases and test results.



54 Implementation

The next aspect is to populate the model and implicitly the view with the tests
results. And this must be done every time the user chooses to run the test cases.
It can be that the user chooses to run the tests cases of the currently opened
�le in the editor, or to run all tests cases in the workspace.

In order to listen for the test cases results, we just need to add an extension to
the testcaseslisteners extension point de�ned in the rsl.typechecker plug-in in
section 5.2. The new extension declaration is presented in Listing 5.44.

<extension point="rsl.typechecker.testcaseslisteners">
<listener

class="rsl.testcases.model.TestCasesListener">
</listener>

</extension>

Listing 5.27: testcases extension to rsl.typechecker.testcaseslisteners extension
point

The listener class is TestCasesListener, which must implement the IRSLTest-
CasesListener interface as speci�ed in the rsl.typechecker.testcaseslisteners ex-
tension point contract. Thus after each execution of a RSL speci�cation, the
�nish method inside the TestCasesListener is called with the output of the SML
run. Thus not only the tests results are sent to the listener, but the entire SML
run output. An example of an SML run output is further presented in List-
ing 5.28

1 Standard ML of New Jersey v110.59 [built: Mon Jun 05 13:26:49 2006]
2 [opening D:/RAISE/src/TestSML/X.sml]
3 [autoloading]
4 [library $smlnj/cm/cm.cm is stable]
5 [library $smlnj/internal/cm-sig-lib.cm is stable]
6 [library $/pgraph.cm is stable]
7 [library $smlnj/internal/srcpath-lib.cm is stable]
8 [library $SMLNJ-BASIS/basis.cm is stable]
9 [autoloading done]
10 val it = () : unit
11 val it = true : bool
12 [autoloading]
13 [autoloading done]
14 val it = () : unit
15 val it = () : unit
16 [autoloading]
17 [autoloading done]
18 val it = () : unit
19 val it = true : bool
20 [autoloading]
21 [autoloading done]
22 [opening D:/RAISE/src/TestSML/X_.sml]
23 structure RT_Int : <sig>
24 structure RT_Bool : <sig>
25 structure X : <sig>
26 open X
27 val it = () : unit
28 val it = () : unit
29 val it = () : unit



5.4 rsl.testcases plug-in 55

30 val it = () : unit
31 [t1] 3
32 val it = () : unit
33 [t2] true
34 val it = () : unit
35 val it = () : unit
36 val it = () : unit
37 val it = () : unit
38 -

Listing 5.28: An example of SML run output

The output message is �lled with additional information that is not of interest if
we only want to display the test cases and their results. This is why we need to
�lter this message and search for the lines that present the test names and their
execution result. The �rst part of the output message (in the previous example
from line 1 to 21) contains messages about libraries being loaded. Then the SML
�le is being opened in line 22 [opening D:/RAISE/src/TestSML/X_.sml]
and the structures loaded (lines 23, 24 and 25). The part that interests us is
after the open X line (line 26), since X is the RSL speci�cation containing the
test cases. Based on the documentation at [rsl08] and on the rsltc tools source
code, the tests results are the lines framed by two val it = () : unit lines and
that do not contain any of the following strings:

• Unexecuted expressions in

• Complete expression coverage of

• error(s)

Based on the rules described so far, the lines 31 and 33 in Listing 5.28 contain
test cases results. If the test case has a name then it must be between the
straight brackets [ and ]. What comes after the brackets until the end of the
line is the test case result.

As mentioned before, the entire output of the SML run is sent to the testsFin-
ished in the TestCasesListener class. Therefore, this method is the one �ltering
the received message based on the rules previously described, as captured in
Listing 5.29.

line1 = r.readLine(); //read the line with "use X"
line2 = r.readLine();
while ( line1 != null && line2 != null && (line3=r.readLine()) != null ) {

//rules defined based on rsltc.el source code and the documentation at
//ftp://ftp.iist.unu.edu/pub/RAISE/dist/user_guide/ug.pdf
if( line1.contains("val it = () : unit") && !line2.contains("val it = () : unit")

&& !line2.contains("Unexecuted expressions in")
&& !line2.contains("Complete expression coverage of")
&& !line2.contains("error(s)")



56 Implementation

&& line3.contains("val it = () : unit") )
{

...
}
line1 = line2;
line2 = line3;

}

Listing 5.29: Java code �ltering the SML output

Once a test name and result are identi�ed a new test case is created and added
in the test cases list of the RSL �le, in order to be displayed in the RTest view.
Listing 5.30 presents captures the Java code that accomplishes this.

TestCase tc = new TestCase(testName, value);
testfile.getTestCases().add(tc);
...
content.refreshView();

Listing 5.30: Java code �ltering the SML output

5.5 rsl.wizard plug-in

Since a plug-in storing only the perspective is a very small plug-in, we decided
to add here also the implementation of the New RSL Project Wizard.

5.5.1 RSL perspective

The requirement presented in Listing 5.31, states that all RSL related actions
and views must be grouped under a single perspective named RSL.

scenario "R6"
description "All RSL actions and views are stores inside the RSL perspective"

Listing 5.31: Perspective requirement

Thus, we use the org.eclipse.ui.perspectives extension point to declare the RSL
perspective as presented in Listing 5.32.

<extension point="org.eclipse.ui.perspectives">
<perspective

class="rsl.perspective.RSLPerspectiveFactory"
id="rsl.perspective.rslperspective"

name="RSL">
</perspective>

</extension>



5.5 rsl.wizard plug-in 57

Listing 5.32: RSL perspective extension

The name of the perspective is set to RSL and the class describing the initial lay-
out is the RSLPerspectiveFactory class. Inside the createInitialLayout method,
the views positions and dimensions are established. Inside an Eclipse workbench
page, the central component is considered the editor and all the other views are
arranged around it.

public void createInitialLayout(IPageLayout layout) {
//get editor area
String editorArea = layout.getEditorArea();
//add the Explorer view on the left
layout.addView(IPageLayout.ID_PROJECT_EXPLORER, IPageLayout.LEFT, 0.20f,
editorArea);
//add Consoles and Problems views under the editor
IFolderLayout bottom = layout.createFolder("bottom", IPageLayout.BOTTOM, 0.66f,
editorArea);
bottom.addView(IConsoleConstants.ID_CONSOLE_VIEW);
bottom.addView(IPageLayout.ID_PROBLEM_VIEW);
//add RTest view under the Project Explorer
layout.addView(ID_RTEST_VIEW,IPageLayout.BOTTOM,0.5f,
IPageLayout.ID_PROJECT_EXPLORER);

}

Listing 5.33: RSL perspective layout initialization

Listing 5.33 describes the arrangement of the views around the RSL editor and
their initial sizes. The user can modify their arrangement and sizes, but every
time the user chooses to restore the RSL perspective the createInitialLayout
method is called and the elements' positions and sizes are restored.

5.5.2 New RSL Project wizard

In order to ful�ll the requirements presented in Listing 5.34, a new project
wizard must be created for the RSL project. The completion of the wizard will
result in a new RSL project that contains a folder named src.

scenario "R1"
description "The user must be able to create a new RSL project"
scenario "R3"
description "When a new RAISE project is created, it contains a single
folder named 'src'"

Listing 5.34: Caption from requirements scenario

To create the new project wizard, we contribute to the org.eclipse.ui.newWizard
extension point as illustrated in Listing 5.35.



58 Implementation

<extension point="org.eclipse.ui.newWizards">
<category

id="rsl.perspective.category.RSLcategory"
name="RSL">

</category>
<wizard

category="rsl.perspective.category.RSLcategory"
class="rsl.perspective.newwizard.RSLProject"
finalPerspective="rsl.perspective.rslperspective"
id="rsl.perspective.wizard.NewRSL"
name="RSL Project"
project="true">

</wizard>
</extension>

Listing 5.35: RSL project new wizard extension

First, a category named RSL is de�ned to group all RSL creation wizards.
Currently, there is only one creation wizard, de�ned for the RSL project, but
maybe in the future we will want to support user in the creation of other elements
like RSL scheme, test cases and so on, and it is easier for the user to identify
them if they are grouped. The class creating the new RSL project wizard is
RSLProject and the RSL project is associated with the RSL perspective created
in subsection 5.5.1.

Since all the information needed to create an RSL project is its name and
location, a wizard with one page is enough to collect all the information. The
page is added in the addPages method of the RSLProject class presented in
Listing 5.36, while the layout of the page is created in createControl method of
the RSLProjectCreationPage class.

public void addPages(){
//Sets the wizard title
setWindowTitle("New RSL project");
//create a new wizard page
String title = "Create a RSL project";
String description = "Enter a project name";
page1 = new RSLProjectCreationPage(title, description);
//add it to the wizard
addPage(page1);
//populate wizard page if the user has already selected smth in the workbench
page1.init(intialSelection);

}

Listing 5.36: Adding the page to the New RSL Project Wizard

The important aspect when expecting user input is to validate it and to not
allow the user perform the Finish action if the RSL project can not be created.
A project name and location is not considered acceptable if any of the following
situations is encountered:

• the project name is empty



5.5 rsl.wizard plug-in 59

• the project location is empty

• a project with the same name and location already exists

• the project name contains any of the illegal characters:

{/, \n, \r, \t, \0, \f, `, ?, *, \, <, >, |, ", : }

• the project location contains any of the illegal characters:

{ \r, \t, \0, \f, `, ?, *, <, >, |, " }

The checking of the user input is done in the updatePageComplete method
inside the RSLProjectCreationPage class, and if any of the illegal situations
is encountered, the setPageComplete(false) is called disabling the activation of
the wizard's Finish button. When the user input is not considered correct, a
message is displayed in the wizard page to inform the user about the problem.
For example Listing 5.37 captures the Java code verifying if a project with the
same name and location already exists.

String fullProjectPath = destinationFolder+"/"+projectName;
File newPrj = new File(fullProjectPath);
if(newPrj.exists()){

setMessage(null);
setErrorMessage("The project already exists");
return;

}

Listing 5.37: Verifying the user input in updatePageComplete method

If the user input does not violate the rules described earlier, the wizards' Finish
button is activated and the user can click on it. As a result a new RSL project
with name and location supplied by the user must be created.

The creation of a project is a long running operation and thus it must run in
another thread in order not to block the GUI and implicitly the user activity.
To accomplish this a new progress monitor is created to monitor the createR-
SLProject execution Listing 5.38.

new IRunnableWithProgress(){
@Override
public void run(IProgressMonitor monitor) throws InvocationTargetException,

InterruptedException {
//create the RSL project with the user information
createRSLProject(userInput, monitor);

}

Listing 5.38: Running the project creation in a new thread

The createRSLProject method creates the new RSL project with its associated
structure, based on the user input and informing the monitor about the progress.



60 Implementation

5.6 Extension points

In order to allow other contributors to easily extend eRAISE, we have devel-
oped extension points. By using extension points our system does not need to
know anything about the other plug-ins, just the fact that somebody has ex-
tended it. These extension points have also been used between the four plug-in
that compose eRAISE, in order to achieve loose coupling between components
and to make the code easier to read and understand. By using the extension
points internally we also provide examples for other on how to use the provided
extension points.

The rsl.core plug-in de�nes an extension point for broadcasting the results of the
RSL test cases to other plug-ins that need this information. The extension point
name is testcaseslisteners and is de�ned inside the plugin.xml �le as presented
in Listing 5.39.

<extension-point id="testcaseslisteners" name="testcaseslisteners"
schema="schema/testcaseslisteners.exsd"/>

Listing 5.39: Declaring the testcaseslisteners extension point

The schema de�ning the contract of the extension point contains an element
named listener that has a single attribute of type class Listing 5.40. This at-
tribute speci�es that all extensions contributing to the testcaseslisteners exten-
sion point, must implement the IRSLTestCaseListener interface.

<element name="listener">
<complexType>

<attribute name="class" type="string">
<annotation>

<appinfo>
<meta.attribute kind="java" basedOn=":rsl.typechecker.core.
IRSLTestCasesListener"/>

</appinfo>
</annotation>

</attribute>
</complexType>

</element>

Listing 5.40: Declaring the testcaseslisteners extension point

The IRSLTestCaseListener interface is illustrated in Listing 5.41. It has two
methods testsStarted that is called whenever the execution of test cases is started
and testFinished(String message, IFile rsl�le) that informs a listener that the
tests have �nished executing by sending the name of the RSL �le that contains
the test cases and the output of the smlnj execution.

public interface IRSLTestCasesListener {
public void testFinished(String message, IFile rslfile);



5.6 Extension points 61

public void testStarted();
}

Listing 5.41: IRSLTestCase interface

In order for the extensions to be noti�ed about the test cases execution, the
rsl.core plug-in needs to �nd them �rst and then call the appropriate methods
on them. The listeners of the test cases executions are loaded as captured in
Listing 5.42, the �rst time the test cases are executed. The reason why they
are not loaded when the plug-in starts is because we need to conform to the
Lazy Loading Rule that states that "contributions are loaded only when needed"
[Gam04]. The listeners are identi�ed by getting the platform extension registries
and collecting all extensions to the rsl.core.testcaseslisteners extension point.

IExtensionRegistry registry = Platform.getExtensionRegistry();
IExtensionPoint extensionPoint = registry.getExtensionPoint(LISTENER_ID);
IExtension[] extensions = extensionPoint.getExtensions();
ArrayList<IRSLTestCasesListener> list = new ArrayList<IRSLTestCasesListener>();
//for each extension to our extension point
for(int index = 0; index < extensions.length; index++){

IConfigurationElement[] elements = extensions[index].getConfigurationElements();
//for each configuration element of a extension
for(int j = 0; j < elements.length; j++){

try {
Object listener = elements[j].createExecutableExtension("class");
if(listener instanceof IRSLTestCasesListener)

list.add((IRSLTestCasesListener)listener);
}catch (CoreException e){

e.printStackTrace();
}

}

Listing 5.42: Loading extensions

When the test cases are executed, the rsl.core plug-in noti�es the listeners by
calling their testsStarted method. Since extensions may generate errors inside
their testsStarted method, we need to protect out plug-in from undesired be-
haviour. Thus we will wrap the method calls inside the ISafeRunnable interface
making the platform taking care of the any exception as presented in List-
ing 5.43. By protecting the plug-in from malicious extensions we conformed
with the Good Fence Rule that states: "when passing control outside of your
code, protect yourself" [Gam04].

//for each listener
while(it.hasNext()){

final IRSLTestCasesListener listener = (IRSLTestCasesListener) it.next();
ISafeRunnable runnable = new ISafeRunnable() {

@Override
public void run() throws Exception {

listener.testsStarted();
}
@Override
public void handleException(Throwable exception) {



62 Implementation

//TODO what happens if an listener throws exception?
} };

SafeRunner.run(runnable);
}

Listing 5.43: Notifying extensions

In exactly the same way, rsl.core de�nes another extension point for listening to
the typechecker output. The name of the extension point is typechecklisteners
and a plug-in that wants to be informed about the output of the typechecking
can provide an extension to it. The interface that must be implemented is
ITypeCheckListener.

The rsl.testcases plug-in extends the rsl.core plug-in by creating an extension
to the rsl.core.testcaseslisteners extension point. The test cases listener de�ned
in rsl.testcases plug-in is presented in Listing 5.44.

<extension point="rsl.typechecker.testcaseslisteners">
<listener

class="rsl.testcases.model.TestCasesListener">
</listener>

</extension>

Listing 5.44: testcases extension to rsl.typechecker.testcaseslisteners extension
point

The listener class is TestCasesListener, which must implement the IRSLTest-
CasesListener interface as speci�ed in the rsl.typechecker.testcaseslisteners ex-
tension point contract. Thus after each execution of an RSL speci�cation, the
�nish method inside the TestCasesListener is called with the output of the SML
run.



Chapter 6

Testing

This chapter describes the methods that have been used to test eRAISE during
the implementation phase. The testing phase relies on a combination of manual
and automated testing, each of them further described in a separate section.

6.1 Manual testing

The easiest method for testing a GUI plug-in is to act as the plug-in user and
manually click or select GUI items and verify that the expected events are taking
place. This way the system is seen as a black box and the focus is on the user
actions inside the GUI and the plug-in responses to the user. Manual testing is
not a very rigorous method for testing since it is not very fast, it relies on the
tester observation skills and most of the time it does not involve complicated
scenarios. But manual testing is good for testing the main functionality or pieces
of functionality without having to write new code.

In order to test the plug-in without deploying it, the plug-in must be launched
as a separate Eclipse application. This way a new runtime workbench is opened
containing the plug-ins that are currently being under development. Opening
another workbench can take a few seconds and thus the manual testing of an
Eclipse plug-in can be quite time consuming.



64 Testing

Figure 6.1: RSL speci�cation opened in the RSL editor

eRAISE was continuously tested during its implementation phase using manual
testing. After a new piece of functionality was written, a separate Eclipse appli-
cation was launched and the new functionality tested. One example is testing
that by pressing the TC button in the toolbar, the currently opened �le in the
RSL editor is being type checked. Thus, one �le is opened in the RSL editor as
presented in Figure 6.1 and the TC button is pressed.

Figure 6.2: Type checker output displayed in the Console View

As a result to this, the Console View gets updated with the message presented
in Figure 6.2. The message states that a �le with the same name as the one
opened in the editor has been type checked. After testing the same thing on
di�erent RSL �les opened in the editor, it can be concluded that by pressing
the TC toolbar button, the current active �le is being typechecked.

The same way of testing has been applied for all possible user actions, verifying
that the plug-in is doing what it was supposed to do.

6.1.1 Input validation

An important aspect when testing is to verify what happens if the input of an
action is not the expected one. For example what happens if the typechecking
is called on a �le that does not contain RSL speci�cations e.g., an XML �le?
Or how does the system react when a user tries to create a new project using a
name that already exists in the workspace and so on.



6.1 Manual testing 65

Some of the input problems can be avoided by respecting the Relevance Rule
concerning Eclipse plug-ins development. This rule states: "Contribute only
when you can successfully operate" [Gam04]. This means that the availability
of a contribution must be limited to the cases where it can be used. Thus, if a
�le does not contain RSL speci�cations then the user should not have the option
to typecheck it, to SML translate it and so on. This limitation of availability has
been accomplished by using the visibleWhen construction on GUI elements
declaration. For example the RSL buttons in the toolbar are applied on the cur-
rently active �le in the RSL editor. Therefore the buttons are only visible when
the RSL editor is active. And the visibleWhen construction used to represent
that, is captured in Listing 6.1. It basically states that the buttons should be
visible only when the editor with the id RSLEditor.editor.rsleditor is active.

<visibleWhen checkEnabled="false">
<with variable="activeEditorId">

<equals
value="RSLEditor.editor.rsleditor">

</equals>
</with>

</visibleWhen>

Listing 6.1: visibleWhen construction used for the toolbar buttons

In what concerns the validation of the user input introduced when creating a
new RSL project, this is programatically done inside the NewProjectWizard
plug-in. When a user enters a name and a location for the project, the input is
automatically tested to see if one of the following situations is encountered:

• The project name contains illegal characters
The list of illegal characters for a project name is considered to be:

{/, \n, \r, \t, \0, \f, `, ?, *, \, <, >, |, ", : }

• The project path contains illegal characters The list of illegal characters
for a project location is considered to be:

{ \r, \t, \0, \f, `, ?, *, <, >, |, " }

• A project with the same name and path already exists

If any of the three situations is encountered, the wizard signals an error and its
Finish button is deactivated. Thus the user can not create the project. The
user must either try a di�erent input or can choose to cancel the entire operation.
Figure 6.3 captures the situation when a user tries to create a project with a
name that already exists in the workspace. Please notice that the Finish button
is not active.



66 Testing

Figure 6.3: New project creation wizard signaling an error

6.2 Automated testing

Besides manual testing, eRAISE has also been tested using automated tests in
the form of unit tests. Since eRAISE is written in Java, the framework used to
create and run the tests is the JUnit framework [JUn]. The following subsection
describes and gives examples of how the tests were created.

6.2.1 JUnit testing

Ideally, for each method inside the source code a series of JUnit tests should
be written to verify that the method does what it was intended to do. In what
concerns eRAISE, JUnit tests have been written only for the most important
pieces of functionality, with the scope of providing a more structured way of
testing than the manual one.

For example one important functionality is considered the creation of a new RSL
project. Thus the tests questions what happens after the user has entered the
data in the New RSL Project wizard and clicks the Finish button. Concretely,
the JUnit test veri�es that:

• A new project has been created

• The new project contains a .project �le

• The new project contains a src folder.



6.2 Automated testing 67

The implementation of the JUnit test is shown in Listing 6.2, where the createR-
SLProject method is called to create a new project with the name of testProject
in the D:/RAISE directory.

@Test
public void testProjectCreation(){

String projectName = "testProject";
String projectPath = "D:/RAISE";
String[] projectArgs = {projectName, projectPath};

//call the project creation method
IProject newProject = RSLProject.createRSLProject(projectArgs);

//test that the project was created
Assert.assertNotNull(newProject);

//test that the project contains .project file
File projectFile = new File("D:/RAISE/testProject/.project");
if( !projectFile.exists() )

Assert.fail();

//test that the project contains the src folder
File srcFolder = new File("D:/RAISE/testProject/src");
if( !srcFolder.exists() )

Assert.fail();

newProject.delete(true, null);

}

Listing 6.2: JUnit test for the project creation

After the createRSLProject method is called, it is veri�ed that the project was
created (Assert.assertNotNull(newProject)), that it contains the .project �le
(projectFile.exists()) and that the project contains the src folder (srcFolder.exists()).
In order for the test to be passed, all the three conditions must be satis�ed.

Figure 6.4: JUnit window showing the test result

By executing the test as a JUnit Plug-in Test, a new runtime workbench is
opened, the test is executed and the runtime workbench is closed. The testPro-
jectCreation test is passed and the JUnit window illustrating this is captured in



68 Testing

Figure 6.4.

Tests similar to the one presented in Listing 6.2 were written to verify the
creation of a new project after the SML translation of a RSL �le or after the
LATEXgeneration. For example after the SML translation of a RSL speci�cation,
a SML project must exist satisfying the following conditions:

• Its name is composed of the RSL project name plus the su�x SML.

• It contains the .project �le.

• It contains a folder with the name src.

• It contains a SML �le with the same name as the RSL speci�cation and
that has the same location inside the SML project, as the RSL �le has
inside the RSL project.

• It contains a SML �le with the same name as the RSL �le plus the su�x
_, and that has the same location inside the SML project, as the RSL �le
has inside the RSL project.



Chapter 7

User guide

This chapter is a user guide for the eRAISE plug-in. It describes the steps that
need to be taken inside eRAISE in order to typecheck an RSL speci�cation,
translate it to SML, execute its test cases and generate LATEX documentation
for it. It also presents the output format and the GUI elements involved in each
action, with screenshots for better understanding. The installation guide will
be later provided in the eRAISE repository on https://github.com/kiniry/

eRAISE.

7.1 Writing RSL speci�cation

In order to write a RSL speci�cation the next steps can be followed:

1. Create a new RSL Project

2. Create a new RSL �le

3. Edit the RSL �le

https://github.com/kiniry/eRAISE
https://github.com/kiniry/eRAISE


70 User guide

Each of these steps is further described in a separate subsection.

7.1.1 Create a new RSL project

Figure 7.1: New wizard

Figure 7.2: New RSL Project

Go to File → New and click on Other (or just press the keyboard shortcut
Ctrl+N). A new window appears asking to select a wizard. Type in rsl, like
in Figure 7.1 and select RSL Project.

A new window appears and the name of the new project and its location must
be �lled. Fill in the project name asDatabase and leave the location as default,
just like in Figure 7.2 and then press Finish.



7.1 Writing RSL speci�cation 71

Figure 7.3: The Package Explorer window displaying the Database project

A new RSL project was created and it can be seen in the Project Explorer
window in the left. Double click on the Database folder to see its internal
structure. In this moment it only has a subfolder named src Figure 7.3.

7.1.2 Create a new RSL �le

Right click on the src folder that was created in the previous step and select
New → File. A new window opens asking for the name of the new �le. Write
SET_DATABASE.rsl and click Finish. As a result a new �le is created
under the src folder and opened inside the RSL editor.

7.1.3 Edit the RSL �le

Having the SET_DATABASE.rsl �le opened inside the RSL editor, add the
following lines:

scheme SET_DATABASE =

class

type

Database = Person-set, Person = Text

value

register : Person >< Database -> Database

register(p,db) is db union {p}

test_case

[t1] register("Henrik", register("Anne", {}))

end

The text should look like the one in Figure 7.4. The * symbol before the �le
name inside the editor means that the �le changes has not been saved. Pressing



72 User guide

Figure 7.4: The SET_DATABASE.rsl �le opened in the RSL editor

Ctrl+S will save the �le and automatically trigger the type checker. More
about the type checking is presented in section 7.2.

7.2 Type check a RSL speci�cation

The syntax and type checking of a RSL speci�cation can be triggered in many
ways:

• Every time a RSL speci�cation is saved it is automatically typechecked.

• Pressing the TC button in the toolbar menu, triggers the typechecking of
the currently active RSL speci�cation in the editor.

• Right clicking inside the RSL editor or on the �le inside the Package
Explorer will display the Type check context menu item. Clicking it will
also trigger a type check on the selected �le.

Figure 7.5: Type check output displayed in Console window

The result of the type checking is displayed in the Console window e.g., by type
checking the SET_DATABASE.rsl �le, the output presented in Figure 7.5
is displayed.



7.2 Type check a RSL speci�cation 73

Figure 7.6: Errors displayed in the Problems view and in the RSL editor

If the RSL speci�cation is not correct, then the type checker output contains
error messages in the File:line:column:error message format. For example
replacing the union in line 7 in SET_DATABASE.rsl with the mathematical
symbol + and saving the �le displays the following output in the Console:

rsltc version 2.5 of Sat Jul 12 11:03:56 2008

Checking SET_DATABASE ...

D:/eRAISE/src/eRAISE/runtime-EclipseApplication/Database/src/

SET_DATABASE.rsl:7:26: Argument types Database (i.e. Text-set)

and Person (i.e. Text)-set incompatible with `+' type

Int >< Int -> Int or

Real >< Real -> Real or

Int -> Int or

Real -> Real

Finished SET_DATABASE

rsltc completed: 1 error(s) 0 warning(s)

The error is also displayed in the Problems view and the editor is updated to
show the RSL line that generated the error. Figure 7.6 illustrates how the
Problems and editor are changed after type checking an erroneous speci�cation.
The error in the problems view shows the error message, the �le name that was
type checked, the path to that �le relative to the workspace, the line number of
the content that generated the error and the type of the problem. By double
clicking the error in the Problems view the cursor is moved inside the editor to
the RSL line that generated the error.



74 User guide

Replacing + back with union in SET_DATABASE.rsl and saving the �le will
remove all the editor markers and errors in the Problems view, since the RSL
speci�cation is now correct.

7.3 Translate RSL speci�cation to SML

An RSL speci�cation can be translated to SML by using the �le's Translate
to SML context menu. This context menu can be seen by right clicking inside
the RSL editor or on the �le inside the Package Explorer view. As a result of
the SML translation, two new SML �les are being created. One has the same
name as the RSL speci�cation and the other has the same name plus the su�x
_. These two �les are stored in an SML project that has the same name as the
project containing the RSL speci�cation plus the su�x SML.

Figure 7.7: Database project and its corresponding SML project

Figure 7.7 captures the new SML project and the two SML �les that were
created as a result of translating the SET_DATABASE.rsl �le to SML.

If the RSL speci�cation �le has another path inside the RSL project e.g., files/
src, then the SML �les will have the exactly same path, files/src, inside the
SML project.

Before trying to translate the �le to SML, the SML translator calls the type
checker, so if the RSL speci�cation contains errors no SML �les are created.

7.4 Run test cases

To run the test cases from an RSL speci�cation, one can press the RT button in
the toolbar menu. Another option is to select theRun test cases context menu
item after right clicking inside the RSL editor or inside the Package explorer
view.

files/src
files/src
files/src


7.4 Run test cases 75

Figure 7.8: The test case result of the SET_DATABASE.rsl speci�cation

By executing the test cases, the tests results are shown in the RTest view as
in Figure 7.8. The �rst line is the name of the �le, while the test results are
displayed as children of the �le. For each test case, the name of the test and
the result are displayed on the same line separated by a space. If the test has
no name, then only its result is displayed.

A test can be in one of the three states:

• success
if a test value is true or any other value that is not false.

• false
if the test value is false.

• error
if the test has generated run time error e.g., division by 0 generates a
runtime error

Based on the test result status, an icon is displayed next to its name and result.
If the test is false then the icon is blue, if an error was encountered while running
the test, then the icon is red , otherwise it is green to show success. The �le
name has also an icon associated inside the RTest view. If the �le contains one
or more erroneous tests then the icon displayed next to the �le name is red. If
there are no run time errors, but there are some false tests, the icon is blue.
And if all tests are successful then a green icon is displayed in the RTest view
next to the �le name. In Figure 7.8 there is only one test, named t1 whose
value is {"Anne","Henrik"}. Since this caused no run time error and it is
not false, the test is considered a success and thus a green icon is displayed
next to it. Since the SET_DATABASE speci�cation has only one test and
it is successful, then it is also considered a success and a green icon is displayed
next to its name.

If the RSL speci�cation has no test cases, but the user has chosen any way to
try to execute the �le, then no output is displayed in the RTest view.



76 User guide

7.5 Generate Latex document

Figure 7.9: The doc project associated to the Database project

The RSL speci�cation can be included in a LATEXdocument by pressing the
Latex button from the toolbar menu or by choosing the Generate Latex item
from the editor context menu or from the Package Explorer. As a result of
this action a new project is created with the same name as the RSL project
plus the su�x Doc. Inside the newly created project, under the src folder,
the user can see a main.tex �le which contains the LATEXtext for including
the RSL speci�cation. Figure 7.9 captures the structure of the project that
was created after the Latex button was pressed with SET_DATABASE.rsl
being the active �le. Themain.tex �le can be directed compiled with LATEXand
if no other text is added, the only thing the document will contain is the RSL
speci�cation.

7.6 Actions on more than one �le

So far in this chapter, all the actions were concerned with only one RSL �le: the
type check of one �le, the SML translation of one �le, running the test cases from
one �le and generating LATEX for one RSL �le. But sometimes, when projects
contain a large number of RSL �les, it is nice to be able to execute action on
multiple �les without having to click on each of them separately. The following
subsections describe how to do so.

7.6.1 RSL menu

The RSL menu in the main menubar o�ers the possibility to take actions on
all RSL �les inside the workspace. The RSL menu has four submenu items
presented in Figure 7.10 and further explained:



7.6 Actions on more than one �le 77

Figure 7.10: RSL menu

• Type check all
By clicking this menu item, all RSL �les in the workspace are type checked.
All type check messages are displayed in the Console, in the order in which
the RSL �les were type checked.

• Translate all to SML
This menu generates the associated SML �les for all RSL speci�cations
in the workspace. Once with the SML �les creation, the associated SML
projects are also created for each RSL project. Informative messages are
displayed in the Console for all translations.

• Run all test cases
This option executes all RSL test cases available in the workspace. All
RSL speci�cations containing test cases, along with the test cases results
are displayed in the Test window.

• Generate Latex for all
By choosing this menu item, all RSL speci�cations in the workbench are
included in LATEXdocuments. For each RSL project, an associated doc
project is created containing one main.tex �le that includes the RSL
speci�cations in the RSL project.

7.6.2 Context menus on multiple �les

The user can apply actions on multiple resources at once, by using the context
menus available in the Project Explorer window.

By right clicking on a project in the Project Explorer window, the user can
select to type check, translate to SML, run test cases or generate LATEX for all
RSL speci�cations available inside that project.

The user can also select multiple projects or multiple RSL �les(by holding the
Ctrl key pressed) and apply the four actions on the selection. If the selection
comprises e.g., RSL �les and one �le that is not RSL, then the four context
menus will not be visible. The context menus are available only for one or more



78 User guide

projects or one or more RSL �les are selected. For any other type of resource
the RSl context menus are not available.



Chapter 8

Future work

This chapter proposes ideas on how eRAISE can be extended and improved. An
example is discussed, analyzed and designed using the same methodology that
was used for designing and analyzing eRAISE.

8.1 Future work

There are many ways in which eRAISE can be extended, and in this section
we will suggest some potentially new tools and features. These new tools can
be added as new plug-ins extending the eRAISE extension points. While some
new tools can refer to new RAISE functionality, others can just enrich user
experience inside Eclipse. If the developers of the new tools need to modify
eRAISE, they can do it by downloading its source code from https://github.

com/kiniry/eRAISE on GitHub.

One possibility is to extend eRAISE with a new series of plug-ins comprising
the rsltc tools that were not included in eRAISE.

• Con�dence condition generation.

https://github.com/kiniry/eRAISE
https://github.com/kiniry/eRAISE


80 Future work

• Display of module dependencies possibly with an interactive display.

• Generation of VCG �le to show module dependencies.

• Translation to C++.

• Translation to PVS.

• Translation to SAL.

Another possibility would be to enrich the RSL editor with new features like:

• Mathematical characters inside the editor
This way the user will not have to write the ASCII characters, but use
directly the RSL symbols e.g., → instead of ->.

• Type aware completion
This will help users with suggestions while typing inside the RSL editor

• Code folding
O�ers the possibility of hiding and showing fragments of code displayed
inside the editor.

There are also many Eclipse features that can be added to eRAISE in order to
enhance user experience. For example when designing and analyzing eRAISE
we also thought that it would be nice to have in the future an Outline view
for the RSL modules and a REPL (Read-Evaluate-Print Loop) view, and thus
we also included these two in the eRAISE design. Their EBON speci�cation
can be found along with the eRAISE speci�cation, but it is marked as future
work. However their complexity is not negligible and contributors may need to
investigate RSL syntax in detail.

8.1.1 Example

eRAISE was developed using a methodology based on BON. Thus a possibility
when developing eRAISE extensions would be to start from the EBON expressed
design and build on top of it using the same methodology.

Let us take an example from the ones mentioned above and exemplify how it
can be speci�ed using EBON. Let us assume a contribution that proves RSL
theories by translating them to SAL and then performing model check on the



8.1 Future work 81

SAL well formed translation. The results of the model check would be displayed
in a new Eclipse view.

The new system design starts from the domain model, where the SALTranslator,
ModelChecker, WFChecker and ProofView notions are added. The WFChecker
checks that the SAL obtained �le is well formed and the ProofView is the Eclipse
view where the results of the theories proving are displayed. All these notions
can be grouped in a bigger notion, called veri�cation. Thus the new domain
model is the one presented in Listing 8.1.

cluster verification
description "Contains all components that contribute to the verification process
of an RSL project"

cluster_chart verification
class ProofView

description "Displays the results of theorems proving"
class SALTranslator

description "Translates RSL specification to SAL"
class ModelChecker

description "Checks that assertions are valid"
class WFChecker

description "Verifies if the SAL file is well formed"
end

Listing 8.1: Domain model for the new contribution

The next step involves identifying concepts' behaviour and behavior constrained.

class_chart ProofView
indexing

in_cluster: "verification"
explanation

"Displays the results of theorems proving"
command

"Display the output of the model checker"
end
class_chart ModelChecker
indexing

in_cluster: "verification"
explanation

"Checks that assertions are valid"
constraint

"The SML specification must be well formed"
end
class_chart SALTranslator
indexing

in_cluster: "verification"
explanation

"Translates RSL specifications to SAL"
constraint

"The RSL specification has no syntax or type check errors"
end
class_chart WFChecker
indexing

in_cluster: "verification"



82 Future work

explanation
"SAL"

constraint
"Verifies if the SAL file is well formed"

end

Listing 8.2: Class charts inside the versi�cation cluster chart

Figure 8.1: Proof view

Next the user interface is designed to de�ne what a user can do. The ProofView
can e.g., be the one presented in Figure 8.1 where an RSL assertion that was
successfully proved has a "check mark" next to it, otherwise it has a "fail mark".
Once with the GUI design, the requirements are documented using EBON sce-
nario_chart.

scenario_chart PROOF
scenario "PRF1"

description "The name of the RSL file, the assertions and their evaluation
is displayed in a Proof view when a RSL specification is modified"

scenario "PRF2"
description "If the assertion is valid a green check is displayed next
to its name in the ProofView"

scenario "PRF3"
description "If the assertion is not valid a red cross is displayed next
to its name and the file containing the counter example is stored in
the same directory as the RSL specification"

scenario "PRF3"
description "By clicking the red cross a file is opened containing
the counterexample file for the assertion"

end

Listing 8.3: PROOF scenario chart

For example the ProofView can be updated every time the user modi�es the
RSL speci�cation. This scenario is captured in Listing 8.3 along with three
others, that was elicited analyzing the user interface.

event_chart UserActions
incoming
event "SAVE: User selects the File->Save menu or presses Ctrl+s"
event "CROSSCLICK : User clicks the cross button in ProofView"



8.1 Future work 83

end
event_chart UserNotification

outgoing
event "PROOFUPDATE: Proof view update with the name of the translated files,
the name of the assertions and the associated icon"
event "FILECR: Store the counterexample file in the same directory "
event "EXDISPLAY: The file containing the counter example is opened in
the editor"

end

Listing 8.4: incoming and outgoing events

Next the incoming and outgoing events are identi�ed as presented in Listing 8.4.
These events are used to rewrite the scenario charts as presented in Listing 8.5.

scenario_chart PROOF
scenario "PRF1"

description "PROOFUPDATE when SAVE"
scenario "PRF2"

description "If the assertion is valid implies PROOFUPDATE"
scenario "PRF3"

description "If the assertion is not valid implies PROOFUPDATE and FILECR"
scenario "PRF3"

description "CROSSCLICK implies EXDISPLAY its associated counterexample"
end

Listing 8.5: Scenario chart containing events

Components are identi�ed and added in a static diagram as presented in List-
ing 8.8.

cluster verification
component

class ProofView
class ModelChecker
class SALTranslator
class WFChecker

end

Listing 8.6: Components inside the static diagram

The components communication is the one presented in Listing 8.7 since the
model checking must be performed on a well formed SAL translation. The
ModelChecker call the services of ProofView in order to display the results.

WFChecker client SALTranslator
ModelChecker client WFChecker
ModelChecker client ProofView

Listing 8.7: Components communication inside the static diagram



84 Future work

The last step before code generation is establishing the contracts between com-
ponents by identifying the information the client needs and the messages it sends
to its supplier. The ProofView supplies a feature through which it is noti�ed
that it must update the view with a new set of assertions.

class WFCheck
feature

check: SET[ERROR]
->CONTEXT
require

context /= Void
end

end
class ProofView

feature
update

-> SET[assertions]
end
class SALTranslator

feature
translate

->context: CONTEXT
require

context /= Void
end

end

Listing 8.8: Components inside the static diagram

Finally the implementation can be started from the code skeleton generated by
Beetlz and from the list of scenarios previously identi�ed.

Of course, this is one approach on how to develop new plug-ins. There are
many other possibilities, and the developer can choose whatever suits her most.
E.g., another possibility would be to develop the new plug-ins using the RAISE
formal speci�cation method. In order to write and test the RSL speci�cations
describing the new tools, the developers can use eRAISE. This way extensions
for eRAISE will be designed and analyzed inside eRAISE.



Chapter 9

Conclusions

This chapter draws the conclusions of the project. The �rst section summarizes
the achievements while the last one presents the overall impressions with the
project.

9.1 What was achieved

The goal of this master thesis was twofold. Firstly, to create an Eclipse based
development environment for RAISE that is easy to extend and secondly to test
EBON's applicability on plug-ins development, using the tool under develop-
ment as a case study.

The paper started by investigating RAISE and Eclipse in order to provide a
general overview of their capabilities, and continued with analyzing EBON and
its available tools.

Based on the BON methodology, eRAISE was designed to be loosely coupled
and easy to extend. The methodology used to design and analyze the system
has made the subject of a paper that was published by the author of this thesis
and her supervisors.



86 Conclusions

Starting from the Java skeleton that was generated from the EBON documen-
tation, eRAISE was implemented as a set of four plug-ins, easily extendable
through the concepts of extensions and extension points. Furthermore, the plug-
ins implementation follows the Eclipse House Rules [Gam04], developed by the
Eclipse community. The RAISE functionality that was integrated in Eclipse is
syntax and type checking of RSL speci�cations, translating RSL speci�cations
to SML, executing RSL test cases and generating LATEX documentation. In ad-
dition some Eclipse functionality was added in order to enhance user experience:
view for displaying test cases, RSL editor, errors view, RSL menu for handling
all �les in the workspace and toolbar buttons.

eRAISE has been tested and provided with a user guide that gives an overview
of its functionality.

The report provides also ideas on how can eRAISE be extended and improved.
From these ideas, an example is taken, designed and analyzed using the same
methodology that was used for designing and analyzing eRAISE.

9.2 Conclusions

The master theses project was a great opportunity to work on a big project that
involved many new technologies. The project o�ered many technical challenges
that were solved by applying theory, analyzing other projects and by learning
from others experience. The biggest challenge was the lack of up to date docu-
mentation for Eclipse 4.2 since this version was released right before the thesis
was started.

Since eRAISE is easily extendable and easy to use, we hope that it will be the
starting point of many contributions and that it will help RAISE become a
widely used method in software development.



Appendix A

Article



A Rigorous Methodology for Analyzing and
Designing Plug-ins

Marieta V. Fasie
DTU Compute

Technical University of Denmark
DK-2800 Lyngby, Denmark

Email: marietafasie@gmail.com

Anne E. Haxthausen
DTU Compute

Technical University of Denmark
DK-2800 Lyngby, Denmark

Email: aeha@dtu.dk

Joseph R. Kiniry
DTU Compute

Technical University of Denmark
DK-2800 Lyngby, Denmark

Email: jkin@dtu.dk

Abstract—Today, GUI plug-ins development is typically done
in a very ad-hoc way, where developers dive directly into
implementation. Without any prior analysis and design, plug-
ins are often flaky, unreliable, difficult to maintain and extend
with new functionality, and have inconsistent user interfaces. This
paper addresses these problems by describing a rigorous method-
ology for analyzing and designing plug-ins. The methodology is
grounded in the Extended Business Object Notation (EBON) and
covers informal analysis and design of features, GUI, actions,
and scenarios, formal architecture design, including behavioral
semantics, and validation. The methodology is illustrated via a
case study whose focus is an Eclipse environment for the RAISE
formal method’s tool suite.

I. INTRODUCTION

Plug-ins, especially in the realm of plug-ins that wrap
existing research command-line tools, are notoriously badly
designed. Academics simply do not have the resources and
expertise to execute on the design and implementation of a
quality plug-in. Partly this is due to the fact that there are few
examples of best practices in the area, and partly it is because
plug-in development is viewed as the dirtiest of the dirty-but-
necessary jobs of “selling” systems technology.

Eclipse plug-in development is a tricky world. Concepts
like features, plug-ins, extension points, windows, views, etc.
abound. Enormous, poorly documented APIs are prolific in
the Eclipse ecosystem. To implement even the most basic of
features sometimes takes hours of digging to find the right
three lines of code, and then those lines must change when a
new major version of Eclipse comes out. This is a frustrating
world for researchers who want to package their demonstrable,
useful tools for the Eclipse IDE.

This work is an attempt to help resolve these issues. We
provide a rigorous step-wise methodology through which one
can do the analysis, architecture design, and user interface
(UI) design of a plug-in for an arbitrary integrated develop-
ment environment (IDE).

The methodology used is based upon the Business Object
Notation (BON), an analysis and design methodology pro-
moted by Walden and Nerson in the mid-90s within the Eiffel
community [1]. Ostroff, Paige, and Kiniry formalized parts of
the BON language and reasoned about BON specifications [2],
[3], [4], [5]. Fairmichael, Kiniry, and Darulova developed the
BONc and Beetz tools for reasoning about BON specifications

and their refinement to JML-annotated Java.1 Finally, Kiniry
and Fairmichael have extended BON in a variety of ways to
produce Extended BON (EBON), which permits one to add
new domain-specific syntax and semantics to the core BON
language [6].

For the reader who has never heard of EBON, think of
it as the subset of UML that might actually have a clear,
unambiguous semantics. EBON’s core features are that it
is seamless, insofar as you use the same specification lan-
guage for everything from domain analysis to formal archi-
tecture specification and its behavior, reversible insofar as
code generation and reverse engineering to and from code to
EBON is straightforward and tool-supported, and contracted
as formal abstract state-based contracts (invariants, pre, and
postconditions) are the fundamental notion used to specify
system behavior. EBON has both a textual and a graphical
syntax, a formal semantics expressed in higher-order logic,
a formal semantics of refinement to and from OO software,
and tool support for reasoning about specifications, expressing
specifications textually or graphically, generating code from
models and models from code, and reasoning about refinement
to code.

The methodology is illustrated on a case study that devel-
ops an Eclipse environment for the RAISE formal method and
specification language (RSL) [7]. The project is called eRAISE
and it is currently under development at DTU. The RAISE
tool suite (rsltc) [8], [9] consists of a type checker and some
extensions to it supporting activities such as pretty printing,
translation to other languages, generation of proof obligations,
and execution of test cases. rsltc has a command-line interface
that exposes different capabilities selected via switches, but is
also used from Emacs using menus and key-binding. However,
although it is easy to use for the user comfortable with
command-line tools or Emacs, we expect that the creation
of a modern Eclipse-based development environment for rsltc
would broaden its appeal to mainstream software engineers
and better enable its use for university-level pedagogy.

II. ANALYSIS AND DESIGN METHOD

The EBON methodology as applied to Eclipse plug-in
development has six steps described shortly in the follow-
ing. These steps can either be performed in sequence or in
some iterative manner. More details on the steps and the full

1See http://tinyurl.com/brgcrzc for more information.

1



system_chart eRAISESystem
cluster RSLPerspective
description "The Eclipse RAISE perspective. It contains all
components and functionality relevant for a RAISE project"

cluster_chart RSLPerspective
class Console
description "Displays the output of components"
...

class_chart Console
command "Displays informative or error messages",
constraint "Delete content before displaying a new message"

Listing 1. Excerpts of a system chart describing the eRAISE system.

scenario "TypeCheckAllMenu"
description "The user can type check all RSL files in the
workspace. Success or failure messages will be displayed along
with the list of errors in case of a failure"

Listing 2. Scenario for a menu in eRAISE.

specification of our case study will be available in a technical
report [11].

Step 1: Domain Modeling. In the first step the most
important entities and high level classifiers related to the
system domain are identified, explained and documented. The
identified notions are documented as classes, which can be
grouped under clusters and all these make up a unique system.
Listing 1 illustrates a caption of the eRAISE System specified
in EBON notation. The domain model also describes how
concepts behave and how their behavior is constrained.

Step 2: User Interface. In this step, for each user action
relevant for the plug-in, a mock-up user interface is drawn,
and the requirements for the actions are documented in EBON
scenario chart elements. As an example, Listing 2 presents the
requirements for one of the menus in the eRAISE case study.

Step 3: Events. This step identifies the external actions that
make the system react and the system’s outgoing responses.
The external actions are captured as incoming events and the
possible responses as outgoing events in EBON event charts.
For the eRAISE case study, one of incoming events is shown in
Listing 3. One of the possible system responses to this action
is captured in Listing 4.

Step 4: Components. This step looks inside the system at
the components that constitute its architecture. The high level
classifiers described in the system domain model captured in
step 1 are transformed into concrete data types.

Step 5: Components Communication. First, by inspect-
ing the events from step 3 and the scenarios from step 2,
it is identified which components interact with each other.
Then component interfaces are described using parameterized
classes that contain formally specified features.

Step 6: Code Generation. In the last step a tool
named Beetlz [12] is applied to automatically generate JML-
annotated, Javadoc documented Java code from the EBON
specifications created in the previous steps.

III. RELATED WORK

There is little published work that focuses on method-
ologies specific to plug-in development. E.g., Lamprecht et

event "TYPECHECKALL: User clicks RSL menu and then clicks on
Type Check all option or presses Ctrl+Alt+T"
involves TypeChecker, Console

Listing 3. An incoming event in eRAISE.

event "CONSOLEUPDATE: Successs or failure messages displayed
in console"
involves Console, TypeChecker

Listing 4. An outgoing event in eRAISE.

al. reflect over some simplicity principles elicited by many
years’ experience in plug-in development [10], but do not
provide a methodology. We speculate that there is not much
published work because plug-in development was not the focus
of scientists until recently. Moreover, it is a fair question
whether or not plug-in development is any different from
normal systems development where a GUI is involved. We
believe that plug-in development is different from normal
GUI development as plug-ins must integrate into the larger
framework of the IDE, deal with non-GUI events, and work
in arbitrary compositions.

REFERENCES

[1] K. Waldén and J.-M. Nerson, Seamless Object-Oriented Software Ar-
chitecture - Analysis and Design of Reliable Systems. Prentice–Hall,
Inc., 1995.

[2] J. Lancaric, J. Ostroff, and R. Paige, “The BON CASE tool,” Details
available via http://www.cs.yorku.ca/∼eiffel/bon case tool/, Mar. 2002.

[3] J. R. Kiniry, “The Extended BON tool suite,” 2001, available via http:
//ebon.sourceforge.net/.

[4] R. Paige, L. Kaminskaya, J. Ostroff, and J. Lancaric, “BON-CASE: An
extensible CASE tool for formal specification and reasoning,” Journal
of Object Technology, vol. 1, no. 3, 2002, special issue: TOOLS USA
2002 Proceedings. Available online at http://www.jot.fm/.

[5] R. F. Paige and J. Ostroff, “Metamodelling and conformance checking
with PVS,” in Proceedings of Fundamental Aspects of Software Engi-
neering, ser. Lecture Notes in Computer Science, vol. 2029. Springer-
Verlag, Apr. 2001, also available via http://www.cs.yorku.ca/techreports/
2000/CS-2000-03.html.

[6] J. R. Kiniry, “Kind theory,” Ph.D. dissertation, Department of Computer
Science, California Institute of Technology, 2002.

[7] The RAISE Language Group, The RAISE Specification Language, ser.
BCS Practitioner Series. Prentice Hall, 1992.

[8] “RAISE Tool User Guide,” 2008. [Online]. Available: http://www.iist.
unu.edu/newrh/III/3/1/docs/rsltc/user guide/html/ug.html

[9] C. George, “The Development of the RAISE Tools,” in Formal Methods
at the Crossroads. From Panacea to Foundational Support, ser. Lecture
Notes in Computer Science, B. K. Aichernig and T. Maibaum, Eds.
Springer Berlin Heidelberg, 2003, vol. 2757, pp. 49–64. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-40007-3 4

[10] S. Naujokat, A. Lamprecht, B. Steffen, S. Jorges, and T. Margaria,
“Simplicity principles for plug-in development: The jabc approach,” in
Developing Tools as Plug-ins (TOPI), 2012 2nd Workshop on, june
2012, pp. 7 –12.

[11] M. V. Fasie, “An Eclipse based Development Environment for RAISE,”
Master’s thesis, DTU Compute, Technical University of Denmark, to
appear May 2013.

[12] E. Darulová, “Beetlz - BON software model consistency checker for
Eclipse,” Master’s thesis, University College Dublin, 2009.

2



90 Article



Appendix B

eRAISE domain model

system_chart eRAISESystem
indexing

author: "Marieta Vasilica Fasie"
cluster RSLPerspective

description "The Eclipse RAISE perspective. It contains all components and
functionality relevant for a RAISE project"

end

cluster_chart RSLPerspective
cluster core

description "Comprises functionality for typechecking an RSL specification,
translating it to SML, executing the test case and for generating the Latex
documentation"

cluster editor
description "Groups all editor specific functionality"

cluster testcases
description "Contains the elements displaying the RSL test cases"

cluster wizard
description "Contains all components that are dealing with the creation of
a new RSL project"

end

cluster_chart core
class Console

description "Displays the output of different components e.g. TypeChecker,
SMLTranslator"

class ResourceHandler
description "Handles the actions done on workspace resources"

class IRSLTestCaseListener
description "The contract used by the test cases listeners"

class SMLTranslator
description "Translates RSL specifications to SML code"

class LatexGenerator
description "Integrates RSL specification in Latex"



92 eRAISE domain model

class TestRunner
description "Executes the SML files"

class TypeChecker
description "The RSL syntax and type checker"

cluster guihandlers
description "Comprises all UI handlers"

end

cluster_chart guihandlers
class TCHandler

description "Notified when the 'Type check' button is pressed"
class TCAllHandler

description "Notified when 'Type check all' menu is selected"
class SMLHandler

description "Notified when the 'SML translate' menu is selected"
class SMLAllHandler

description "Notified when SML translate all menu is selected"
class RTHandler

description "Notified when the 'Run test cases' button is pressed"
class RTAllCasesHandler

description "Notified when 'Run all test cases' menu is selected"
class LatexHandler

description "Notified when the 'Generate Latex' button is pressed"
class LatexAllHandler

description "Notified when 'Generate Latex for all' menu is selected"
end

cluster_chart editor
class ConsoleToProblems

description "Connects the Console and the Problems View"
class Problem

description "Represents an RSL type check error"
class ProblemsView

description "Displays any problem existing in the current workspace"
class RSLEditor

description "The RSL text editor"
-- Future work ---
class OutlineView

description "Displays the structure of the RSL specification"
class REPLView

description "Read Evaluate Print Loop view. It evaluates expressions during
a debug process, based on the current stack state.When the compiler
reaches
a breakpoint, the programmer can write expressions based on the currently
active variables in the stack. The expressions will be evaluated based
on their current value and the output will be displayed in the display
view"

-- end future work --
cluster config

description "Contains components that configure the editor for the RSL
specification"

end

cluster_chart config
class ColorManager

description "Manages the colors displayed inside the RSL editor"
class IRSLSyntaxColors

description "Stores the colours unsed inside the RSL editor"
class MathWordDetector

description "Identifies mathematical words inside the RSL editor"
class RSLCodeScanner

description "Scans the RSL source in search for key words, strings and
white spaces"

class RSLConfiguration



93

description "Registers the source code scanners"
class RSLDocumentProvider

description "Document provider for the RSL files"
class RSLDoubleClickStrategy

description "Decides what text is selected when the user double clicks
inside the editor"

class RSLPartitionScanner
description "Scans the RSL source code based on the rules specified in
the constructor"

class RSLWordDetector
description "Defines rules for accepting a character as being part of a
keyword"

class WhiteSpaceDetector
description "Defines what characters can be considered whitespaces"

end

cluster_chart testcases
cluster model

description "Comprises the classes creating the test cases model that
is displayed inside RTestView"

cluster ui
description "Contains the classes displaying the test cases results"

end

cluster_chart model
class RSLTestCaseModel

description "Stores the model that will be displayed in RTestView"
class RSLTestFile

description "Represents the first level in the RTestView"
class TestCase

description "Represents the second level in the RTestView"
class TestCasesListener

description "Implements the test cases listener"
end

cluster_chart ui
class RTestView

description "Defines the 'Test' View content as a TreeViewer"
class TestCaseContentProvider

description "Provides the content for the TestView"
class TestCaseLabelProvider

description "Provides the labels for the TestView"
end

cluster_chart wizard
class NewRSLProjectWizard

description "RSL new project wizard"
class RSLPerspective

description "Groups the RSL associated views and actions"
class RSLProjectPage

description "Page collecting the user input"
end

----------------------------------------------------------------
-- classes inside the core
----------------------------------------------------------------
class_chart Console
indexing

in_cluster: "core"
explanation



94 eRAISE domain model

"Displays the output of different components e.g. TypeChecker, SMLTranslator"
command

"Display informative or error messages",
"Clear console content"

end

class_chart ResourceHandler
indexing

in_cluster: "core"
explanation

"Handles the actions done on workspace resources"
query

"Are there any RSL files in this project?"
command

"Add this file to this project",
"Add this project in the workspace",
"Move file from this source project to destination project"

end

class_chart IRSLTestCaseListener
indexing

in_cluster: "core"
explanation

"The contract used by the test cases listeners"
command

"Modify SML file"
end

class_chart SMLTranslator
indexing

in_cluster: "core"
explanation

"Translates RSL specifications to SML code"
command

"Translate this context into SML"
constraint

"All RSL specification must be type checked first"
end

class_chart LatexGenerator
indexing

in_cluster: "core"
explanation

"Integrates RSL specification in Latex"
command

"Integrate this context in Latex"
end

class_chart TestRunner
indexing

in_cluster: "core"
explanation

"Executes the SML files"
command

"Execute the test cases from this context"
end

class_chart TypeChecker
indexing

in_cluster: "core"
explanation

"The RSL syntax and type checker"
query

"Is this context and entity pair type correct?"
end



95

----------------------------------------------------------------
-- classes inside the guihandlers cluster
----------------------------------------------------------------
class_chart TCHandler
indexing

in_cluster: "guihandlers"
explanation

"Notified when the 'Type check' button is pressed"
end

class_chart TCAllHandler
indexing

in_cluster: "guihandlers"
explanation

"Notified when 'Type check all' menu is selected"
end

class_chart SMLHandler
indexing

in_cluster: "guihandlers"
explanation

"Notified when the 'SML translate' menu is selected"
end

class_chart SMLAllHandler
indexing

in_cluster: "guihandlers"
explanation

"Notified when SML translate all menu is selected"
end

class_chart RTHandler
indexing

in_cluster: "guihandlers"
explanation

"Notified when the 'Run test cases' button is pressed"
end

class_chart RTAllHandler
indexing

in_cluster: "guihandlers"
explanation

"Notified when 'Run all test cases' menu is selected"
end

class_chart LatexHandler
indexing

in_cluster: "guihandlers"
explanation

"Notified when the 'Generate Latex' button is pressed"
end

class_chart LatexAllHandler
indexing

in_cluster: "guihandlers"
explanation

"Notified when 'Generate Latex for all' menu is selected"
end

----------------------------------------------------------------
-- classes inside editor
----------------------------------------------------------------
class_chart ConsoleToProblems
indexing



96 eRAISE domain model

in_cluster: "editor"
explanation

"Listens to the Console in order to update the ProblemsView"
end

class_chart Problems
indexing

in_cluster: "editor"
explanation

"Represents an RSL type check error"
end

class_chart ProblemsView
indexing

in_cluster: "editor"
explanation

"Displays all type check errors in the current workspace"
command

"Display the set of problems"
end

class_chart RSLEditor
indexing

in_cluster: "editor"
explanation

"The RSL editor"
end

-- Future work ---
class_chart OutlineView
indexing

in_cluster: "editor"
explanation

"Displays the structure of the RSL specification"
command

"Display the signature"
constraint

""
end

class_chart REPLView
indexing

in_cluster: "editor"
explanation

"Read Evaluate Print Loop view. It evaluates expressions during a
debug process, based on the current stack state.When the compiler
reaches a breakpoint, the programmer can write expressions based on
the currently active variables in the stack. The expressions will be
evaluated based on their current value and the output will be displayed
in the display view"

command
"Delete content"

constraint
""

end
-- end future work --

-------------------------------------------------------------------
-- classes inside the editor.config
-------------------------------------------------------------------

class_chart ColorManager
indexing

in_cluster: "config"



97

explanation
"Manages the colors displayed inside the RSL editor"

end

class_chart IRSLSyntaxColors
indexing

in_cluster: "config"
explanation

"Stores the colours unsed inside the RSL editor"
end

class_chart MathWordDetector
indexing

in_cluster: "config"
explanation

"Identifies mathematical words inside the RSL editor"
end

class_chart RSLCodeScanner
indexing

in_cluster: "config"
explanation

"Scans the RSL source in search for key words, strings and white spaces"
end

class_chart RSLConfiguration
indexing

in_cluster: "config"
explanation

"Registers the source code scanners"
end

class_chart RSLDocumentProvider
indexing

in_cluster: "config"
explanation

"Document provider for the RSL files"
end

class_chart RSLDoubleClickStrategy
indexing

in_cluster: "config"
explanation

"Decides what text is selected when the user double clicks inside the editor"
end

class_chart RSLPartitionScanner
indexing

in_cluster: "config"
explanation

"Scans the RSL source code based on the rules specified in the constructor"
end

class_chart RSLWordDetector
indexing

in_cluster: "config"
explanation

"Defines rules for accepting a character as being part of a keyword"
end

class_chart WhiteSpaceDetector
indexing

in_cluster: "config"
explanation

"Defines what characters can be considered whitespaces"



98 eRAISE domain model

end

----------------------------------------------------------------
-- classes inside the testcases.model cluster
----------------------------------------------------------------
class_chart RSLTestCaseModel
indexing

in_cluster: "model"
explanation

"Stores the model that will be displayed in RTestView"
query

"Are there any test cases in the RSL specification?"
command

"Add an RSL specification to the model",
"Remove an RSL specification from the model"

end

class_chart RSLTestFile
indexing

in_cluster: "model"
explanation

"Represents the first level in the RTestView"
end

class_chart TestCase
indexing

in_cluster: "model"
explanation

"Represents the second level in the RTestView"
end

class_chart TestCasesListener
indexing

in_cluster: "model"
explanation

"Implements the test cases listener"
end

----------------------------------------------------------------
-- classes inside the testcases.ui cluster
----------------------------------------------------------------
class_chart RTestView
indexing

in_cluster: "ui"
explanation

"Defines the 'Test' View content as a TreeViewer"
command

"Display the set of test results"
end

class_chart TestCaseContentProvider
indexing

in_cluster: "ui"
explanation

"Provides the content for the TestView"
end

class_chart TestCaseLabelProvider
indexing

in_cluster: "ui"
explanation

"Provides the labels for the TestView"
end



99

----------------------------------------------------------------
-- classes inside the wizard
----------------------------------------------------------------
class_chart NewRSLProjectWizard
indexing

in_cluster: "wizard"
explanation

"RSL new project wizard"
end

class_chart Perspective
indexing

in_cluster: "wizard"
explanation

"Groups the RSL associated views and actions"
end

class_chart RSLProjectPage
indexing

in_cluster: "wizard"
explanation

"Page collecting the user input"
end



100 eRAISE domain model



Appendix C

UI mock-ups



102 UI mock-ups

Figure C.1: RSL perspective



103

Figure C.2: RSL menu



104 UI mock-ups

Figure C.3: RSL project context menu



105

Figure C.4: RSL �le context menu



106 UI mock-ups

Figure C.5: RSL editor



107

Figure C.6: RSL Console view



108 UI mock-ups

Figure C.7: RSL Problems view



109

Figure C.8: RSL RTest view



110 UI mock-ups

Figure C.9: RSL Outline view



111

Figure C.10: RSL REPL view



112 UI mock-ups



Appendix D

Scenarios

scenario_chart RSLPERSPECTIVE
scenario "R1"

description "The user must be able to create a new RAISE project"
scenario "R2"

description "The user must be able to import an existing RAISE project."
scenario "R3"

description "When a new RAISE project is created, it contains a single
folder named 'src'"

scenario "R4"
description "The user must be able to add an existing RSL file to an
existing RSL project"

scenario "R5"
description "The user must be able to add a new RSL file to an existing
RSL project"

scenario "R6"
description "All RSL actions and views are stored inside the RSL
perspective"

scenario "R7"
description "A RAISE project can have associated one SML project
that has the same name plus the suffix 'SML'. This project is created
when the first SML file is created"

scenario "R8"
description "A generated SML file is stored in the SML project
associated to the RAISE project that contains the translated
RSL file"

scenario "R9"
description "A RAISE project can have associated one documentation
project that has the same name plus the suffix 'DOC'. This project
is created when the first documentation file is created"

scenario "R10"
description "A generated Latex file is stored in the Documentation
project associated to the RSL project that contains the translated RSL
file"

scenario "R11"



114 Scenarios

description "The documentation project contains a 'main.tex'
file that includes all the other tex files in the documentation
project"

end

scenario_chart PROJECT_EXPLORER_FILE
scenario "PRJF1"

description "The user can TYPECHECK one RSL file. This implies
CONSOLEUPDATE, PROBLEMSUPDATE and EDITORUPDATE"

scenario "PRJF2"
description "The user can SMLTRANSLATE one RSL file. This implies
CONSOLEUPDATE, PROJECTEXPLORERUPDATE, PROBLEMSUPDATE and EDITORUPDATE"

scenario "PRJF3"
description "The user can RUNTESTS on one RSL file. This implies
RTESTUPDATE, PROJECTEXPLORERUPDATE, PROBLEMSUPDATE and CONSOLEUPDATE"

scenario "PRJF4"
description "The user can GENERATELATEX for one RSL file. This implies
CONSOLEUPDATE and PROJECTEXPLORERUPDATE"

end

scenario_chart PROJECT_EXPLORER_PRJ
scenario "PRJ1"

description "The user can TYPECHECKPRJ RSL files in a project.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "PRJ2"
description "The user can SMLTRANSLATEPRJ RSL files in a project.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "PRJ3"
description "The user can RUNTESTSPRJ cases in a project. This
implies RTESTUPDATE, PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "PRJ4"
description "The user can GENERATELATEXPRJ for all RSL files in
a project. This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

end

scenario_chart MENU
scenario "TCALLMenu"

description "The user can TYPECHECKALL RSL files in the workspace.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "SMLaLLMenu"
description "The user can SMLTRANSLATEALL RSL files in the workspace.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "RunAllMenu"
description "The user can RUNALLTESTS cases in the workspace.
This implies RTESTUPDATE, PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "LatexAllMenu"
description "The user can GENERATELATEXALL for all files in the
workspace. This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

end

scenario_chart TEST
scenario "TEST1"

description "The evaluation of test cases results in CONSOLEUPDATE,
PROBLEMSUPDATE and EDITORUPDATE"

scenario "TEST2"
description "Tests results are shown in a separate view"

end

scenario_chart PROBLEMS
scenario "PRB1"

description "The user can see the problems existing in the workspace
with PROBLEMSUPDATE and EDITORUPDATE. "

scenario "PRB2"
description "For each problem the description, resource, path,



115

location and type are specified"
end

scenario_chart CONSOLE
scenario "CNS1"

description "The user can see the success or failure messages
with CONSOLEUPDATE"

end

scenario_chart EDITOR
scenario "EDT1"

description "The user can TYPECHECK the active file. This implies
PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "EDT2"
description "The user can SMLTRANSLATE the active RSL file.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "EDT3"
description "The user can RUNTESTS cases in the active RSL file.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "EDT4"
description "The user can GENERATELATEX files for the active
RSL file. This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "EDT5"
description "The user SAVE the current RAISE file and the TYPECHECK
is automatically run."

scenario "EDT6"
description "The user clicks on the typecheck button to TYPECHECK
the currently active file."

scenario "EDT7"
description "The user clicks on the run test cases button to RUNTESTS
in the currently active file."

scenario "EDT8"
description "The user clicks the Latex button to GENERATELATE
X for the currently active file"

scenario "ED9"
description "RSL keywords and mathematical words are written
with a different colour in the editor"

end
-- Future work --
scenario_chart REPL

scenario "REPL1"
description "The user can write ASCII characters in the REPL view"

scenario "REPL2"
description "The user can REPLEXECUTE"

scenario "REPL3"
description "The output of a user evaluation is REPLUPDATE"

scenario "REPL4"
description "The user can CHANGECONTEXT"

scenario "REPL5"
description "The user can clear the entire content of the REPL"

end

scenario_chart OUTLINE
scenario "OTL1"

description "The user can see the signatures for the entire
project in a dedicated window"

end
-- end future work --



116 Scenarios



Appendix E

Events

event_chart UserActions
incoming
explanation

"External events trigering representative system behaviour"
part "1/2"

event "TYPECHECK: User clicks the type check button or user right clicks on a
RSL file(or inside editor) and then clicks on Type Check option or user
presses Alt+T" involves TypeChecker, Console, ConsoleToProblems,
ProblemsView
event "SMLTRANSLATE: User presses translate to SML button or user right
clicks on a RSL file(or inside editor) and then clicks Translate
to SML option or user presses Alt+M" involves SMLTranslator, TypeChecker,
Console, ConsoleToProblems, ProblemsView, ResourceHandler, RTestView
event "RUNTESTS: User clicks the run test cases button or user right clicks
on RSL file(or inside editor) and then clicks on Run Test Cases
option or presses Alt+F11" involves SMLTranslator, TypeChecker,
Console, ConsoleToProblems, ProblemsView, ResourceHandler, RTestView
event "GENERATELATEX: User clicks Latex button or user right clicks
on a RSL file(or inside editor) and then clicks on Generate Latex or
user presses Alt+L" involves LatexGenerator, Console, ResourceHandler
event "TYPECHECKALL: User clicks RSL menu and then clicks on Type Check
all option or presses Ctrl+Alt+C" involves ResourceHandler, TypeChecker,
Console, ConsoleToProblems, ProblemsView
event "SMLTRANSLATEALL: User clicks RSL menu and then clicks on Translate
all to SML option or presses Ctrl+Alt+M" involves ResourceHandler,
SMLTranslator, TypeChecker, Console, ConsoleToProblems, ProblemsView,
ResourceHandler, RTestView
event "RUNALLTESTS: User clicks RSL menu and then clicks on Run all test
cases option or presses Ctrl+Alt+F11" involves ResourceHandler,
SMLTranslator, TypeChecker, Console, ConsoleToProblems, ProblemsView,
ResourceHandler, RTestView
event "GENERATELATEXALL: User clicks RSL menu and then clicks on Generate
Latex for all option or presses Ctrl+Alt+L" involves ResourceHandler,



118 Events

LatexGenerator, Console
event "TYPECHECKPRJ: User right clicks on a RSL project and selects
type check option" involves ResourceHandler, TypeChecker, Console,
ConsoleToProblems, ProblemsView

event "SMLTRANSLATEPRJ: User right clicks on a RSL project and then
clicks on translate to SML option" involves ResourceHandler, SMLTranslator,
TypeChecker, Console, ConsoleToProblems, ProblemsView, ResourceHandler,
RTestView

event "RUNTESTSPRJ: User right clicks on a RSL project and then clicks
on Run test cases option" involves ResourceHandler, SMLTranslator,
TypeChecker, Console, ConsoleToProblems, ProblemsView, ResourceHandler,
RTestView

event "GENERATELATEXPRJ: User right clicks on a RSL project and then
clicks on Generate Latex option" involves ResourceHandler, LatexGenerator,
Console

event "IMPORT: User imports a RAISE project or a RSL file" involves
ResourceHandler, TypeChecker, Console, ConsoleToProblems, ProblemsView

event "SAVE: User presses File and then Save option or Ctrl+s" involves
TypeChecker, Console, ConsoleToProblems, ProblemsView

-- future work --
event "REPLEXECUTE: User presses CTRL+enter in REPL view" involves
REPLView, SMLCompiler, SMLTranslator, TypeChecker

event "CHANGECONTEXT: User writes the name of the context and presses
enter to change context in REPL" involves
REPLView

event "SHOWONLYFAILURES: User presses the Show only failures in RTest
View" involves RTestView

-- end future work --
end

event_chart UserMessages
outgoing
explanation

"Internal events trigerring responses meant to inform the user.
The list presented here concerns those events that are not explicitly
requested by the user"

part "2/2"

event "PROBLEMSUPDATE: Problems view update" involves
TypeChecker, Console, ConsoleToProblems, ProblemsView

event "CONSOLEUPDATE: Successs or failure messages displayed in console"
involves Console, TypeChecker, SMLTranslator

event "EDITORERRUPDATE: Display error message in editor" involves
Editor, TypeChecker

event "RTESTUPDATE: Displays the test cases interpretation" involves
RTestView

event "PROJECTEXPLORERUPDATE: Files and folders are added in the workspace"
involves ResourceHandler

-- future work --
event "OUTLINEUPDATE: Outline view update" involves
Editor, OutlineView, TypeChecker

event "REPLUPDATE: Displays the evaluation result or an error in REPL vindow"
involves REPL

-- end future work --
end



Appendix F

Static diagram

static_diagram SystemArchitecture
--Shows the architecture of the eRAISE system
component

cluster core
component

class Console
class ResourceHandler
class SMLTranslator
class LatexGenerator
class TestRunner
class TypeChecker
cluster guihandlers
component

class TCHandler
class SMLHandler
class RTHandler

end

LatexGenerator client Console
TypeChecker client Console
LatexGenerator client Console
SMLTranslator client TypeChecker
TCHandler client TypeChecker
TestRunner client SMLTranslator
SMLHandler client SMLTranslator
RTHandler client TestRunner
TestRunner client ResourceHandler

end

cluster editor
component

class ConsoleToProblems
class Problems



120 Static diagram

class ProblemsView
class RSLEditor
--Future work--
class REPLView
end
class OutlineView
end
--end future work--
cluster config
component

class ColorManager
end

ConsoleToProblems client ProblemsView
RSLEditor client config

end

cluster testcases
component

cluster ui
component

class RTestView
end
cluster model
component

class RSLTestCaseModel
class TestCasesListener

TestCasesListener client RSLTestCaseModel
end
ui client model

end

cluster wizard
component

class RSLProjectPage
class NewRSLProjectWizard
class RSLPerspective

NewRSLProjectWizard client RSLProjectPage
end

editor client core
testcases client core

end



Appendix G

Components' interfaces

static_diagram Interfaces
--Shows the interfaces provided by the components
component

cluster core
component

class Console
feature

update
-> LIST[CHAR]

clear
end
class ResourceHandler

feature
getRSLfiles: SET[FILE]

->project: PROJECT
require

project /= Void
end

addFile
->file: FILE
->directory: DIRECTORY
require

file /= Void;
directory /= Void

ensure
file member_of directory

end
addProject

->directory: DIRECTORY
->project: PROJECT
require

directory /= Void;
project /= Void

ensure



122 Components' interfaces

directory member_of project
end

moveFile
->scrProject: PROJECT
->destProject: PROJECT
->file: FILE
ensure

file /= Void;
file member_of destProject;
file not member_of srcProject

end
end
class SMLTranslator

feature
translate

->context: CONTEXT
require

context /= Void
end

end
class LatexGenerator

feature
integrate

->context: CONTEXT
require

context /= Void
end

end
class TestRunner

feature
execute

->context: CONTEXT
require

context /= Void
end

end
class TypeChecker

feature
typeCheck: SET[CHAR]

->context: CONTEXT
require

context /= Void
end

end
cluster guihandlers
component

class TCHandler
class SMLHandler
class RTHandler

end

end

cluster editor
component

class ConsoleToProblems
class Problems
class ProblemsView

feature
update

-> problems: SET[PROBLEM]
end
class RSLEditor
-- Future work --
class REPLView



123

feature
clear

end
class OutlineView

feature
update

-> SIGNATURE
end
-- end future work --

end
cluster testcases
component

cluster ui
component

class RTestView
feature

update
-> restResults: SET[TESTRESULT]

end
end

cluster model
component

class RSLTestCaseModel
class TestCasesListener

end
end
cluster wizard
component

class RSLProjectPage
class NewRSLProjectWizard
class RSLPerspective

end
end



124 Components' interfaces



Appendix H

Generated Java code

//*********** package core ***********

public /*@ nullable_by_default @*/ class SmlTranslator {

public void translate(/*@ non_null @*/ Context context){}
}

public /*@ nullable_by_default @*/ class TypeChecker {

public /*@ pure @*/ Set<Char> typeCheck(/*@ non_null @*/ Context context){}
}

public /*@ nullable_by_default @*/ class LatexGenerator {

public void integrate(/*@ non_null @*/ Context context){}
}

public /*@ nullable_by_default @*/ class ResourceHandler {

public /*@ pure @*/ Set<File> getRSLfiles(/*@ non_null @*/ Project project){}

public void addFile(/*@ non_null @*/ Directory directory, /*@ non_null @*/ File file){}

public void addProject(/*@ non_null @*/ Project project, /*@ non_null @*/
Directory directory){}

public void moveFile(Project destProject, File file, Project scrProject){}
}

public /*@ nullable_by_default @*/ class Console {

public void clear(){}



126 Generated Java code

public void update(List<Char> null){}
}

public /*@ nullable_by_default @*/ class TestRunner {

public void execute(/*@ non_null @*/ Context context){}
}

//*********** package ui ***********

public /*@ nullable_by_default @*/ class RTestView {

public void update(Set<Testresult> restResults){}
}

//*********** package model ***********

public /*@ nullable_by_default @*/ class TestCasesListener {
}

public /*@ nullable_by_default @*/ class RSLTestCaseModel {
}

//*********** package guihandlers ***********

public /*@ nullable_by_default @*/ class RTHandler {
}

public /*@ nullable_by_default @*/ class TCHandler {
}

public /*@ nullable_by_default @*/ class SmlHandler {
}

//*********** package editor ***********

public /*@ nullable_by_default @*/ class ConsoleToProblems {
}

public /*@ nullable_by_default @*/ class Problems {
}

public /*@ nullable_by_default @*/ class RSLEditor {
}

public /*@ nullable_by_default @*/ class ProblemsView {

public void update(Set<Problem> problems){}
}

// future work
public /*@ nullable_by_default @*/ class Replview {

public void clear(){}
}

//future work
public /*@ nullable_by_default @*/ class Outlineview {

public void update(Signature signature){}
}

//*********** package wizard ***********



127

public /*@ nullable_by_default @*/ class RSLPerspective {
}

public /*@ nullable_by_default @*/ class RSLProjectpage {
}

public /*@ nullable_by_default @*/ class NewRSLProjectWizard {
}

//*********** package Kernel ***********

public /*@ nullable_by_default @*/ class Value {
}

public /*@ nullable_by_default @*/ class Any {
}

public /*@ nullable_by_default @*/ class String {
}

public /*@ nullable_by_default @*/ class File {
}

public /*@ nullable_by_default @*/ class None {
}

public /*@ nullable_by_default @*/ class Boolean {
}

//*********** package Numbers ***********

public /*@ nullable_by_default @*/ class Float implements Number {
}

public /*@ nullable_by_default @*/ class Number implements int {
}

public /*@ nullable_by_default @*/ class Integer implements Number {
}

//*********** package Structures ***********

public /*@ nullable_by_default @*/ class Tuple {
}

public /*@ nullable_by_default @*/ class Tree {
}

public /*@ nullable_by_default @*/ class Array {
}

public /*@ nullable_by_default @*/ class Table {
}

public /*@ nullable_by_default @*/ class Set {
}

public /*@ nullable_by_default @*/ class List < T > {
}



128 Generated Java code



Appendix I

Prioritized scenarios

-- type check
scenario "PRJF1"

description "The user can TYPECHECK one RSL file. This implies CONSOLEUPDATE,
PROBLEMSUPDATE and EDITORUPDATE"

scenario "CNS1"
description "The user can see the success or failure messages with CONSOLEUPDATE"

scenario "PRJ1"
description "The user can TYPECHECKPRJ RSL files in a project. This implies
PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario
"TCALLMenu"

description "The user can TYPECHECKALL RSL files in the workspace.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario
"EDT1"

description "The user can TYPECHECK the active file. This implies
PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

-- sml translate
scenario "PRJF2"

description "The user can SMLTRANSLATE one RSL file. This implies
CONSOLEUPDATE, PROJECTEXPLORERUPDATE, PROBLEMSUPDATE and EDITORUPDATE"

scenario "R8"
description "A RAISE project can have associated one SML project
that has the same name plus the suffix 'SML'. This project is created
when the first SML file is created"

scenario "R9"
description "A generated SML file is stored in the SML project associated
to the RAISE project that contains the translated RSL file"

scenario "PRJ2"
description "The user can SMLTRANSLATEPRJ RSL files in a project.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "SMLaLLMenu"



130 Prioritized scenarios

description "The user can SMLTRANSLATEALL RSL files in the workspace.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "EDT2"
description "The user can SMLTRANSLATE the active RSL file. This implies
PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

-- run tests
scenario "PRJ3"

description "The user can RUNTESTSPRJ cases in a project. This implies
RTESTUPDATE, PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "PRJF3"
description "The user can RUNTESTS on one RSL file. This implies
RTESTUPDATE, PROJECTEXPLORERUPDATE, PROBLEMSUPDATE and CONSOLEUPDATE"

scenario "RunAllMenu"
description "The user can RUNALLTESTS cases in the workspace. This implies
RTESTUPDATE, PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "EDT3"
description "The user can RUNTESTS cases in the active RSL file. This
implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

-- generate latex
scenario "PRJ4"

description "The user can GENERATELATEXPRJ for all RSL files in a project.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "PRJF4"
description "The user can GENERATELATEX for one RSL file. This implies
CONSOLEUPDATE and PROJECTEXPLORERUPDATE"

scenario "LatexAllMenu"
description "The user can GENERATELATEXALL for all files in the workspace.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

scenario "EDT4"
description "The user can GENERATELATEX files for the active RSL file.
This implies PROBLEMSUPDATE, CONSOLEUPDATE and EDITORUPDATE"

-- editor

scenario "PRB1"
description "The user can see the problems existing in the workspace
with PROBLEMSUPDATE and EDITORUPDATE. "

scenario "PRB2"
description "For each problem the description, resource, path, location
and type are specified"

scenario "ED6"
description "RSL keywords and mathematical words are written with a
different colour in the editor"

scenario "EDT5"
description "The user SAVE the current RAISE file and the TYPECHECK
is automatically run."

-- test display
scenario "TEST1"

description "The evaluation of test cases results in CONSOLEUPDATE,
PROBLEMSUPDATE and EDITORUPDATE"

scenario "TEST2"
description "Tests results are shown in a separate view involves
RTESTUPDATE"

-- wizard
scenario "R1"

description "The user must be able to create a new RAISE project"
scenario "R2"

description "The user must be able to import an existing RAISE project."
scenario "R3"



131

description "When a new RAISE project is created, it contains a single
folder named 'src'"

scenario "R4"
description "The user must be able to add an existing RSL file to an
existing RSL project"

scenario "R5"
description "The user must be able to add a new RSL file to an existing RSL project"

scenario "R6"
description "All RSL actions and views are stored inside the RSL perspective"

scenario "R14"
description "A RAISE project can have associated one documentation
project that has the same name plus the suffix 'DOC'. This project is
created when the first documentation file is created"

scenario "R16"
description
"The documentation project contains a 'main.tex' file that includes
RSL files in the documentation project"

scenario_chart RSLPERSPECTIVE
scenario "R6"

description "When a RAISE project is imported, it is automatically
TYPECHECKPRJ"

scenario "R10"
description "A RAISE project can have associated one PVS project
that has the same name plus the suffix 'PVS'. This project is created
when the first PVS file is created"

scenario "R11"
description "A generated PVS file is stored in the PVS project
associated to the RAISE project that contains the translated
RSL file"

scenario "R12"
description "A RAISE project can have associated one SAL project
that has the same name plus the suffix 'SAL'. This project is created
when the first SAL file is created"

scenario "R13"
description "A generated SAL file is stored in the SAL project
associated to the RAISE project that contains the translated
RSL file"

end



132 Prioritized scenarios



Appendix J

RSL key words

The list of RSL keywords presented alphabetically from left to right, up to down.

Bool Char Int Nat
Real Text Unit abs
any as axiom card
case channel chaos class
do dom elems else
elseif end extend false
for forall hd hide
if in inds initialise
int len let local
object of out post
pre read real rng
scheme skip stop swap
then ti true type
test_case until use value
variable while with write

Table J.1: RSL key words

Key words that replace mathematical symbols:



134 RSL key words

all exists union inter
isin always is

Table J.2: RSL key words that replace mathematical symbols



Appendix K

Colours used inside RSL
editor

The colours used inside the RSL editor

Token Colour RGB value
Keywords pink (127,0,85)
Texts green (0,128,0)
Characters green (0,128, 0)
Comments red (128, 0, 0)
Others black (0,0,0)

Table K.1: Colours used inside RSL editor



136 Colours used inside RSL editor



Appendix L

SML run-time errors

The SML execution of the RSL test cases, can generate run-time errors. Each
error has a message associated and the complete list of the messages is further
presented. The list is taken from [rsl08], and inside the message x represents
values that are part of the message, constants or variables.

Invalid integer literal x
Division by zero
Modulo zero
Integer exponentiation with negative exponent x
Cannot compute 0 ** 0
Invalid real literal x
Zero raised to non-positive power x
Negative number x raised to non-integer power y
hd applied to empty set
Cannot select from empty set
hd applied to empty list
tl applied to empty list
List applied to index outside index set
Cannot select from empty list hd applied to empty map
Map applied to value outside domain
Nondeterministic enumerated map
Maps do not compose



138 SML run-time errors

Cannot select from empty map
List x applied to non-index y
Text x applied to non-index y
Map x applied to non-domain value y
x union y has non-disjoint domains
Cannot compute function equality
Destructor x applied to wrong variant
Reconstructor x applied to wrong variant
Argument of x(y) not in subtype
Precondition of x(y) not satis�ed
Result z of x(y) not in subtype
Case incomplete for value x
Value x of c not in subtype
Initial value x of v not in subtype
Value x of v not in subtype
chaos encountered
stop encountered
swap encountered



Bibliography

[Cer05] Gary Cernosek. A brief history of Eclipse, 2005.

[Dar09] Eva Darulová. Beetlz - BON software model consistency checker for
Eclipse. Master's thesis, University College Dublin, 2009.

[Ecl] Eclipsepedia - the eclipse.org wiki. http://wiki.eclipse.org/

Main_Page.

[Ecl13] Eclipse - The Eclipse Foundation open source community website,
2013.

[EGt] Egit. http://www.eclipse.org/egit/.

[FK13] Haxthausen Anne E. Fasie, Marieta V. and Joseph R. Kiniry. A Rig-
orous Methodology for Analyzing and Designing Plug-Ins. pages 49 �
50, may 2013. Available via http://www.conference-publishing.

com/list.php?Event=ICSEWS13TOPI.

[for97] Formal Software Speci�cation Using RAISE, 1997.

[Gam04] Erich Gamma. Contributing to Eclipse : principles, patterns, and
plug-ins. Addison-Wesley, Boston, 2004.

[Geo03] Chris George. The Development of the RAISE Tools. In Bern-
hard K. Aichernig and Tom Maibaum, editors, Formal Methods at
the Crossroads. From Panacea to Foundational Support, volume 2757
of Lecture Notes in Computer Science, pages 49�64. Springer Berlin
Heidelberg, 2003.

http://wiki.eclipse.org/Main_Page
http://wiki.eclipse.org/Main_Page
http://www.eclipse.org/egit/
http://www.conference-publishing.com/list.php?Event=ICSEWS13TOPI
http://www.conference-publishing.com/list.php?Event=ICSEWS13TOPI


140 BIBLIOGRAPHY

[Gro95] The RAISE Method Group. The RAISE Development Method. BCS
Practitioner Series. Prentice Hall, 1995. Available by ftp from ftp:

//ftp.iist.unu.edu/pub/RAISE/method_book.

[Hax99] Anne Haxthausen. Lecture Notes on The RAISE Development
Method, 1999.

[hel13] Eclipse Juno 4.2 documentation, 2013.

[JUn] Junit. http://www.junit.org/.

[Kin] KindSoftware. The BONc home page.

[Kin01] Joseph R. Kiniry. The Extended BON tool suite, 2001. Available via
http://ebon.sourceforge.net/.

[Kin02] Joseph R. Kiniry. Kind Theory. PhD thesis, 2002.

[LOP02] Jason Lancaric, Jonathan Ostro�, and Richard
Paige. The BON CASE tool. Details available via
http://www.cs.yorku.ca/∼ei�el/bon_case_tool/, March 2002.

[Myl] Mylyn.

[NLS+12] S. Naujokat, A. Lamprecht, B. Ste�en, S. Jorges, and T. Margaria.
Simplicity principles for plug-in development: The jabc approach. In
Developing Tools as Plug-ins (TOPI), 2012 2nd Workshop on, pages
7 �12, june 2012.

[Pai99] Ostro� Jonathan S. Paige, Richard F. A Comparison of the Business
Object Notation and the Uni�ed Modelling Language. Technical
Report CS-1999-04, York University, 1999.

[PKOL02] Richard Paige, Liliya Kaminskaya, Jonathan Ostro�, and Jason Lan-
caric. BON-CASE: An extensible CASE tool for formal speci�cation
and reasoning. 1(3), 2002. Special issue: TOOLS USA 2002 Pro-
ceedings. Available online at http://www.jot.fm/.

[PO01] Richard F. Paige and Jonathan Ostro�. Metamodelling and confor-
mance checking with PVS. In Proceedings of Fundamental Aspects
of Software Engineering, volume 2029, April 2001. Also available via
http://www.cs.yorku.ca/techreports/2000/CS-2000-03.html.

[Rep] Reps, Thomas and Tcitclbaum, Tim .

[rsl08] RAISE Tool User Guide, 2008.

[Sch05] Friedrich Wilhelm Schroer. The GENTLE compiler construction
system, 2005. Details available via http://gentle.compilertools.
net/.

ftp://ftp.iist.unu.edu/pub/RAISE/method_book
ftp://ftp.iist.unu.edu/pub/RAISE/method_book
http://www.junit.org/
http://ebon.sourceforge.net/
http://www.cs.yorku.ca/~eiffel/bon_case_tool/
http://www.jot.fm/
http://www.cs.yorku.ca/techreports/2000/CS-2000-03.html
http://gentle.compilertools.net/
http://gentle.compilertools.net/


BIBLIOGRAPHY 141

[SML] Standard ML of New Jersey. http://www.smlnj.org/.

[Sub] Eclipse Subversive - Subversion (SVN) Team Provider.

[The92] The RAISE Language Group. The RAISE Speci�cation Language.
BCS Practitioner Series. Prentice Hall, 1992.

[top] Topi 2013: 3rd workshop on developing tools as plug-ins. http:

//se.inf.ethz.ch/events/topi2013/Welcome.html.

[UNU] International Institute for Software Technology. United Nations Uni-
versity.

[Wal] Kim Waldén. The business object notation home page.

[WN94] Kim Walden and Jean-Marc Nerson. Seamless object-oriented soft-
ware architecture - analysis and design of reliable systems, September
1994.

[WN95] Kim Waldén and Jean-Marc Nerson. Seamless Object-Oriented Soft-
ware Architecture - Analysis and Design of Reliable Systems. 1995.

http://www.smlnj.org/
http://se.inf.ethz.ch/events/topi2013/Welcome.html
http://se.inf.ethz.ch/events/topi2013/Welcome.html

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Paper structure
	1.4 How to read the paper

	2 Background
	2.1 RAISE
	2.1.1 RAISE concepts
	2.1.2 Eden tool set
	2.1.3 Rsltc tool set

	2.2 Eclipse
	2.2.1 Eclipse concepts


	3 Development tools
	3.1 BON
	3.1.1 Static models
	3.1.2 Dynamic models

	3.2 BONc
	3.3 Beetlz
	3.4 Eclipse PDE
	3.4.1 New Plug-in Project wizard
	3.4.2 Plug-in Manifest Editor
	3.4.3 Plug-in debug
	3.4.4 Plug-in tests


	4 Analysis and design
	4.1 Analysis and design method
	4.2 Domain modeling
	4.3 User Interface
	4.4 Events
	4.5 Components
	4.6 Components Communication
	4.7 Code Generation

	5 Implementation
	5.1 Plan
	5.2 rsl.core plug-in
	5.2.1 Type check
	5.2.2 SML translate
	5.2.3 Test cases execution
	5.2.4 LaTeX generation

	5.3 rsl.editor plug-in
	5.3.1 Editor
	5.3.2 Markers

	5.4 rsl.testcases plug-in
	5.5 rsl.wizard plug-in
	5.5.1 RSL perspective
	5.5.2 New RSL Project wizard

	5.6 Extension points

	6 Testing
	6.1 Manual testing
	6.1.1 Input validation

	6.2 Automated testing
	6.2.1 JUnit testing


	7 User guide
	7.1 Writing RSL specification
	7.1.1 Create a new RSL project
	7.1.2 Create a new RSL file
	7.1.3 Edit the RSL file

	7.2 Type check a RSL specification
	7.3 Translate RSL specification to SML
	7.4 Run test cases
	7.5 Generate Latex document
	7.6 Actions on more than one file
	7.6.1 RSL menu
	7.6.2 Context menus on multiple files


	8 Future work
	8.1 Future work
	8.1.1 Example


	9 Conclusions
	9.1 What was achieved
	9.2 Conclusions

	A Article
	B eRAISE domain model
	C UI mock-ups
	D Scenarios
	E Events
	F Static diagram
	G Components' interfaces
	H Generated Java code
	I Prioritized scenarios
	J RSL key words
	K Colours used inside RSL editor
	L SML run-time errors
	Bibliography

