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Abstract

Modern audio systems are typically equipped with several user-adjustable
parameters unfamiliar to most listeners. In order to obtain an optimal sys-
tem setting, the listener is nevertheless forced to perform high-dimensional
optimization with respect to the user’s own objective. In the present pa-
per, a general inter-active framework for performing robust personaliza-
tion of such audio systems is proposed, which addresses the problems as-
sociated with traditional trial and error methods. The framework builds
on Bayesian Gaussian process regression in which the belief about the
user’s objective function is updated sequentially. The setting to be evalu-
ated in a given trial is then carefully selected by sequential experimental
design. A modified Gaussian process model is suggested that assumes ad-
jacent parameters to be correlated, which shows better modeling abilities
compared to a standard model. We further demonstrate the framework
in an interactive loop, where twelve test subjects obtain a personalized
setting in a five-band constant-Q equalizer. The proposed approach is
able to find a significantly better solution than obtained with random
experimentation.

1 Introduction

The ever increasing number of features and processing possibilities in many
modern multimedia systems, such as personal computers, mobile phones, hear-
ing aids and home entertainment systems, has made it possible for users to
customize these devices significantly. A downside in this trend is the large
number of user adjustable parameters which makes it a daunting and complex
task to actually adjust/optimize the devices optimally. For audio systems, the
optimization is further complicated by perceptual and cognitive aspects of the
human auditory and cognitive system, which result in a significant spread in
subjects’s opinions concerning the adjustment of a particular device. As a con-
sequence, users often have to navigate in a high-dimensional parameter space,



Figure 1: A conceptual overview of the interactive system. At step (1) we draw
a new EQ from the current estimate of the subjects objective function. Next, at
step (2) this particular EQ is associated with a ball, in this case number eight, in
the visualized user interface. Finally, after the user has rated the new EQ, the
objective function is updated to reflect current positions of all previous balls,
this update occurs at step (3). We emphasize that the user at any time may
select between previously sampled EQ by clicking the balls, making the current
song play through the newly selected EQ.

which makes it extremely difficult for users to find even a local optimum. It
is therefore of great interest to find and evaluate fast and flexible tools for
optimizing user adjustable parameters with the aim to rapidly obtain a truly
personalized audio system setting.

A prime example of such complex audio systems is hearing aids, where hun-
dreds of parameters make up a unique and personal experience. It is there-
fore natural that this field has considered ways to efficiently learn an optimal
setting based on preference (Kuk et. al. [7] and Baskent et. al. [1]) based on
non-probabilistic methods. Recently—and the closest related to our approach—
Birlutiu et. al. [3] have proposed a Gaussian process approach.

In audio reproduction systems—Ilike home entertainment and professional
mixing equipment—such preference learning approaches are relatively unknown
for efficient personalization, despite the clear evidence that personalization may
be beneficial in for example equalization (Paterson [10] and Zhang et. al. [17]).
Existing approaches are based on non-probabilistic approaches such as Reed [12],
Pardo et. al. [9], and Sabin et. al. [13].

In the present paper, we consider the audio reproduction scenario and focus
on the task of optimizing the parameters of a five-band constant-Q equalizer
(EQ). We propose and consider a combination of robust Bayesian modeling, an
engaging user interface for user feedback and global optimization techniques in
an interactive loop visualized in Fig. 1.



The loop constitutes a general framework where the inherent uncertainty in
user feedback is addressed from a Bayesian viewpoint in which the belief in the
user’s (unknown) objective function is modeled with (warped) Gaussian process
(GP) regression [14]. Since equalizers typically process signals in (overlapping)
frequency bands—each with an associated set of parameters—the total set of
parameters ends up constituting a high-dimensional space. However, param-
eters associated with adjacent frequency bands will typically impose correla-
tion between them which should be exploited in the regression model to obtain
better modeling abilities and thus more effective optimization. We therefore
suggest a specific model which assumes correlation between specific input pa-
rameters/dimensions.

The framework uses an intuitive and simple graphical user interface for ob-
taining user ratings, which let the user listen to previously rated settings thus
serving as anchors/references for future ratings. In contrast to standard prac-
tice, we do however not only let the user listen to previous settings, but we also
let the user change the ratings of the previous settings, if for some reason a new
setting would change e.g. the span of the scale. This is possible, since we are
constantly updating our regression model to reflect the belief about the user’s
objective function given the ratings obtained so far.

Finally, we propose to use a sequential optimization technique to rapidly
find a (possibly local) optimum of the user’s objective function. The sequential
design takes advantage of the Bayesian formulation by including the belief about
the user’s objective function. This significantly reduces the required number of
settings that the user should rate in order to find an optimum .

Through model comparison, we first show that the model with assumed cor-
relation between input parameters improves the modeling abilities compared
to a traditional GP model without assumed correlation. The analysis is per-
formed on real-world data, where 21 subjects have rated different randomly
chosen settings of the EQ. Even for this EQ with relative few bands—which is
thus perceptually well separated—we would expect the gains in adjacent bands
to be somewhat correlated with regards to the user’s objective. Secondly, we
evaluate the usefulness of the entire framework in a real-world experiment where
personalization of the EQ have been conducted for twelve test subjects. As the
EQ has over fifty-nine thousands unique settings, the hypothesis is that the pre-
ferred setting will be hard to find without an efficient sequential design approach
and correspondingly good modeling abilities. The results from the real-world
listening experiments focusing on the statistical difference between random ex-
perimentation and sequential experimental design, show a clear advantage of
the sequential design approach.

Our contribution is thus three fold: First in Sec. 2, we propose a general
personalization framework with an intuitive user interface (Sec. 2.3), a princi-
pled modeling approach using warped Gaussian processes extended to expect
correlation between adjacent input parameters (Sec. 2.1) and a sequential design
method (Sec. 2.2). Secondly in Sec. 3.2, we show that the GP model extension
provides better modeling abilities for our specific purpose. Thirdly, we evaluate
the entire framework by a listening experiment in a real world interactive sce-



nario and outline the results in Sec. 3.3. A discussion is provided in Sec. 4 and
the paper is concluded in Sec. 5.

2 Personalization Framework

The proposed personalization approach uses an interactive loop to discover the
user’s preferred setting of a particular audio device, where we as an example use
the EQ. The interactive loop is visualized in Fig. 1. The loop can conceptually
be divided into three parts: a preference modeling part, a sequential design
part and an interface part. The preference modeling part entails how to learn a
user’s objective function over EQ settings based on user ratings. The sequential
design part covers how to choose new EQ settings to be rated based on what
the model currently predicts. Finally, the interface part covers the design of the
graphical user interface, such that it is both intuitive and easy to use for the
users. The three parts are described in the following three sections.

2.1 Preference Modeling

We represent each system setting as a d = 5 dimensional vector of parameters,
X = [21, ..., xd]T. Next, we assumed that the user’s objective is an unobserved
real-valued stochastic function (or process), such that each unique setting x; has
a corresponding real-valued function value, f(x;), expressing the user’s prefer-
ence for the particular setting. This function is to be learned—and subsequently
maximized—trough a number of experiments where we observe the user’s ex-
pressed preference by a rating on a bounded scale, y € ]0; 1[, where 0 is Bad and
1is Good (see interface (2) on Fig. 1). At some point the user has evaluated n
such distinct system settings x; € X collected in X = {x;|i = 1,...,n}, with a
related set of n responses denoted Y = {y;|i = 1,...,n}.

We model the function mapping from settings, x;, to ratings, y;, by a so-
called warped Gaussian process [14]. A standard Gaussian process (GP) is a
stochastic process defined as a collection of random variables, any finite subset of
which must have a joint Gaussian distribution [11]. In effect, the GP is placed
as a prior over any finite set of functional values f = [fi, fo,..., fn]?, Where
fi = f(x;), resulting in a finite multivariate Gaussian distribution over the set
as f|X ~ N(0,K), where each element of the covariance matrix K is given by
a covariance function k(-,-) such that [K]; ; = k(x;,x;). The GP prior can
be used in non-parametric Bayesian regression frameworks where the likelihood
function can be parameterized by a smooth and continuous function f(-).

However, our regression setup is special due to the bounded nature of the
ratings. We therefore use a warped Gaussian process in which the original rat-
ings in Y are transformed into a form where the data is modeled by a traditional
Gaussian noise model [11]. Several warping functions would apply, but a natural
choice is the inverse cumulative Gaussian (probit) ®~!(-)—with zero mean and
unity variance—such that observations are warped as z; = ®~1(y;).



The final model is defined by,

05|05 ~ half student-t
0|6 ~ half student-t
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where oy is the length scale of the covariance function and oy is the variance of
the latent function. We have placed hyper priors over the covariance parameters
in order to provide a robust inference and prediction scheme, especially in the
sequential setup with relatively few observations. These hyper priors are half
student-t distributions [4, 15] with parameters, § = {£, v}, where ¢ is the degree
of freedom, and v is the scale. These priors are weakly informative and have
the effect of avoiding the GP model to (wrongly) fit hyperplanes with only few
observations. With more observations available the effect of the hyper priors
effectively vanishes. We note that the observation noise, o, can be included in
the covariance function.

Given this model, the main question remains regarding the covariance (or
kernel) function, which effectively defines the smoothness of the function. We
consider two covariance functions based on the general form of the squared
exponential kernel [11]

k) = asexp (= x - x) A (- x) ) 3)
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In the first case, A is the identity matrix leading to the well-known (isotropic)
squared exponential covariance function kis, (x,%’) = osexp (—U%Hx -x ||2)
In the second case, A is a general positive semi-definite matrix defining a corre-
lation between parameters (input space) as explicit prior information. We will
denote this variant as the Mahanalobis covariance function, kyapn (x,%x’). The
effect of the two options on the EQ example will be evaluated with reference to
the standard case as iso and the Mahanalobis case as mah.

We turn to a standard GP inference scheme [11] in which the covariance
parameters, oy, 0y, are approximated by point estimates by maximizing the
marginal likelihood (or evidence) using a BFGS method and where the poste-
rior p(f|Y, X) is analytical tractable [14]. Extra terms are added to the standard
evidence scheme [11] due to the student-t hyper priors. The predictive mean
and (co)variance of the latent function, E(f*) and V(f*), are given in standard
form [11] as

E{f'} = Kix. [Kxx + 021 '@~ (Y) (4)
. -1



where K ap is the kernel matrix containing either evaluations between training
inputs, A = B = X, test inputs, A = B = X*, or between training and test
inputs, A = X, B = X*.

The predictive distribution and in particular the predictive uncertainty is a
clear advantage of the probabilistic GP framework, since the predictive mean
and predictive (co)variance can be used to determine the information gain in
including a new candidate point into the model as considered in the next section.

2.2 Sequential Experimental Design

Classical experimental designs such as Latin Square or random experimentation
[8] become increasingly infeasible in high dimensions. As an alternative, we
propose to use sequential design methods which, by greedy selection of the
most informative next sample, potentially achieves much faster convergence
than fixed designs [6].

The main purpose is to define a selection criterion which finds the optimal
of the (unknown) objective function. The applied criterion is a slightly modified
version of the so-called Ezpected Improvement (EI) [6], a known criterion in the
design of computer experiment (DACE) community. The expected improvement
is for each candidate point, x;, defined as,

EI(Xj)ZUE[-N(M) —‘r/J,E[-(P('uEI>, (6)
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where N(+) is the standard Normal distribution and ®(-) is the standard cu-
mulative Gaussian as before. Given the predictive distribution the EI is given
by,
HMEI = Hj — Hmax
2

2 2
Og1 = 0j + Omax — ZUj,max

where p1; and o is the predictive mean and variance of the test point and fimax
and 0,4 is the predictive mean and variance of the current maximum of the
objective function (using the predictive mean as the predictor), i.e., the current
best setting, all of which originate from Eq. 4-5. The correlation between the
two function values, 0 max, requires correlated predictions which we refrain
from due to computation burden, thus o max = 0,Vx;. Hence, the selection of
a new point to evaluate is given by

Xpew = arg max EI (x;)
x;

which is then included in the current set of training points and evaluated by the
user through the user interface. We refer to this as the active configuration,
where the very first setting for the user to evaluate is chosen randomly. A
random configuration rnd is included in which samples are selected randomly
to provide a baseline method.

The interactive framework leaves four strategies to be investigated experi-
mentally: rnd-iso, rnd-mah, active-iso and active-mah.



2.3 Interface

When applying absolute ratings, it is important to define anchor and/or refer-
ence points [2]. This allows subjects to compare stimuli with a fixed reference,
such that each rating is calibrated both with respect to previous ratings, but also
with respect to yet unobserved stimuli, which might redefine the end points of
the rating scale. To address these two issues a graphical user interface similar to
[9] is designed. Subjects can listen to previous EQ (references) and are allowed
to change previous ratings based on the new one. Obviously, this means that
ratings are neither directly comparable across subjects nor between iterations.
However, it is not of particular interest to use ratings across subject to formu-
late one single optimal setting, but instead we are interested in personalized
settings—one for each subject.

3 Experiment

To evaluate the different model configurations and experimental designs in a
real-world scenario, an experiment was conducted, in which the five gains of the
EQ are to be optimized by the 4 different versions of the proposed framework.
The procedure and results are described in the following section.

3.1 Procedure

The experiment consisted of three parts: (1), (2) and (3) as visualized in Fig 3.1.
During part (1), the user rates ten randomly chosen balls to learn how to use

Training (1) Sessions (2) Tournament (3)
Discarded rnd-iso/rnd-mah Best at 10
Best at 15
active-iso
AL
active-mah

@ Best at 30
A
Figure 2: Visualization of the experiment with its 3 sessions: (1) Training, (2)
Sessions and (3) Tournament.

the interface and to get an impression of the stimuli (EQ processed music).
Part (2) consisted of three sessions for which the order of sessions was balanced
across subjects. In each of the three sessions a particular model (iso or mah)
and sequential design (rnd or active) are used to find a personalized setting of



the EQ for the user. Finally in part (3), the preferred settings, found by each of
the four combinations of models and sequential designs after 10, 15, 20, 25 and
30 presented settings, are determined by which model predicted the setting that
is rated highest (in the tournament - see Fig. 3.1). Each tournament (as de-
fined in Fig. 3.1) was repeated twice resulting in ten tournaments for which the
sequence was randomized. In all parts, the sound was played back to the user
through Sennheiser HD650 headphones and a FirestoneAudio FUBAR DACIII
headphone amplifier at constant level. The output level was furthermore loud-
ness normalized to the same level using a A-weighting filter, with the purpose
to make the rating process easier for the test subjects, such that the listeners
primarily focus on the tonal qualities—not the loudness.

3.2 Model Analysis

The interactive loop outlined in Sec. 2 has two critical blocks which will influence
the convergence of the optimization procedure; the GP model describing the
user’s objective function—at all possible inputs—given the observations—only
the currently rated inputs—and the sequential design approach. In this section
we only seek to determine which GP model that best suits our purpose without
the influence of the sequential design approach. We do this by evaluating the two
GP models—iso and mah—in terms of their predictive performance on random
data sets for 21 subjects. In machine learning and statistics, cross-validation is
typically used to get an unbiased measure of the predictive performance. Since
the random data sets for each subject contain only 30 ratings, we use leave-one-
out cross validation (LOO-CV) [11] to get an effectively unbiased measure of
the true predictive performance.

Performance is typically defined as an error measure through a cost func-
tion, such as the sum-of-squared error function. However, such error functions
only include the absolute deterministic errors made by the model on noisy data
without additionally considering if the model actually fits the noise correctly.
For the sequential design approach to work efficiently, the model should both fit
the data and account for the noise in the data as well as possible. To capture
this in the performance measure, typically, the predictive likelihood p(y*|D, M)
of the unseen data points y* given the model M and the observed data D is
used.

To be able to compare the performance of two different models, a proper
Bayesian and statistical way of doing this [16, 5] is to compare the predic-
tive likelihood ratio p(y*|D, Mman)/p(y*|D; Miso) between the two different
models—mah and iso. This is also referred to as the Bayes factor [5]. A
(log) Bayes factor larger than zero favors the model denoted in the nominator,
whereas a (log) Bayes factor less than zero favors the model in the denominator.

For each of the 21 random data sets—one for each test subject— LOO-CV is
used and the (log) Bayes factor is calculated for each LOO-CV split. This gives
a total of 21 x 30 Bayes factors estimates shown in a histogram in Fig. 3.2. We
see that on average, the mah model performs the best probabilistic predictions of
users’s individual ratings and thus appears to be the most suitable model due to



Zoom

sign test: py < 0.001

density

1 1 I T T T 1 11 1 1 1
-10 -5 ) 0 5 10
("D Moan
log (' D Mis,)

I
-15

Figure 3: Predictive log-likelihood ratio (Bayes factor) over all leave-one-out
cross-validation splits for all twenty-one test subjects. The pyp-value gives the
probability of the null-hypothesis that the median is equal to zero (the to mod-
els are equally well) with the alternative hypothesis that the median is larger
than zero (the Mahalanobis model is better than the isotropic) using an non-
parametric sign test.

the assumed correlation between adjacent parameters. A non-parametric sign
test shows that this is significant (sample size of 630).

3.3 Sequential Design Analysis

The results are summarized in Fig. 4(a). The illustrated pg-values gives the
significance level for which the hypothesis, that the total number of active wins
is equal to the total number of random wins at each tournament point (#ex-
amples), can be accepted.

Averaged across subjects and repetitions, active sequential design is signifi-
cantly better than random design after any given number of examples, as shown
by the pg—values. This is without differentiating between the two applied covari-
ance functions. It demonstrates the potential of the Bayesian model and active
learning methods in audio applications. It is furthermore noted that a standard
fixed design will approximate the random configuration in this high-dimensional
space.

The second aspect is if the more informative Mahalanobis (mah) prior results
in a more accurate model with few ratings available. This is generally not the
case, although the specific Mahalanobis model possesses better generalization
abilities compared to the isotropic model as shown in Sec. 3.2.
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Figure 4: (a): The percentage of times the predicted preferred setting by each
of the four models wins over the other models across users at each of the five
tournament points. The pp-values is for accepting the null-hypothesis that the
two active sequential design approaches is equal to the two random approaches
using a binomial test. (b): Actual ratings of different EQ settings from the three
Sessions for subject 2. The EQ curves are the imposed gain and the color and
thickness of the EQ curves both indicate the rating, where think/dark black is
a good ratings (y — 1) and thin/light gray is a bad ratings (y — 0).

4 Discussion and Future Work

The results presented in this paper has focused first on verifying that the pro-
posed Mahanolobis model is suitable in this context, and secondly, demonstrat-
ing that the sequential design method actually performs as expected (and better
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than random). There are however many possibilities for further evaluation and
development.

In regards to the specific prior, we believe despite the lack of evidence in the
present paper, that the Mahalanobis covariance function will be found suitable in
several audio applications—including the EQ example used here. We speculate
that at least two additions would improve the performance of the Mahalanobis
model in the suggested framework. Firstly, the modeling abilities could be im-
proved by parameterizing the correlation structure in the Mahalanobis kernel
by one parameter, which could then be inferred from data. The latter is easily
accomplished in the GP framework by evidence maximization. Secondly, the
sequential design criterion (Sec. 2.2) does not in its current form fully exploit the
correlation between predictive function values for different settings. To include
this correlation the covariance matrix between all unique settings must be cal-
culated. Calculating these is currently computational infeasible. To overcome
this and exploit the modeled correlation in the sequential design criterion, a
greedy-gradient approach is currently being developed and tested with regards
to find a (possible local) optimum of the (correlated) EI.

The current evaluation is based on a absolute paradigm with adjustable
anchors in terms of previous ratings. It can however be quite demanding to
keep track of all ratings, when there are several items (balls) present, which
leads to inconsistent ratings. The GP based personalization framework is easily
extendable with other paradigms such as pairwise comparisons or more general
ranking based approaches. It is speculated that a more robust paradigm (with
respect to user feedback) may further aid the optimization process.

Finally, it is the ambition to evaluate the proposed framework on a larger
population, which could be accomplished by embedding the current personal-
ization framework in a web application allowing evaluation of the approach on
a larger scale.

5 Conclusion

We have proposed a method for obtaining true personalized systems—in par-
ticular audio systems—which utilizes the Bayesian probabilistic modeling ap-
proach through sequential design. This improves the high-dimensional pref-
erence optimization procedure in comparison to random (analogue to manual)
experimentation. The solutions found by the sequential approach is significantly
preferred by the test subjects over the solutions found by random experimen-
tation. The results do not support any benefit in using the more informative
Gaussian process prior with the Mahalanobis kernel compared to the less in-
formative Gaussian process prior with the isotropic kernel. Supported by the
demonstrated modeling benefits of the Mahalanobis kernel, it is nevertheless
believed that future additions to the framework would be able to exploit the
more informative Mahalanonis kernel and thus improve the performance of the
framework.
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