
Implementation of Conditional
Epistemic Planning

Daniel Svendsen

Kongens Lyngby 2013
IMM-M.Sc-2013-21



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-M.Sc-2013-21



Abstract
Automated planning is an area of Artificial Intelligence that studies reasoning
about acting, an abstract deliberation process that chooses and organizes action
by anticipating outcomes [1]. Classical planning deals with restricted state tran-
sition systems. They are deterministic, static, finite and fully observable and
with restricted goals and implicit time [1]. In this project we go beyond classical
planning by extending on the restrictions of classical planning by considering
partial observability (not the entire world is known) and non-determinism (ap-
plying the same action to the same state, might not always yield the same
result). Recently research [2] has shown that planning under partial observabil-
ity and non-determinism fits naturally within the theory of dynamic epistemic
logic (DEL). In [2], an algorithm for planning under partial observability and
non-determinism is provided based on the DEL framework. The primary goal
of this project is to implement the algorithm of the paper. Implementation of
the planning algorithm of [2] involves parsing of models, computing product up-
dates for states, generating and-or-trees via the tree expansion rule and model
checking to check for completed goal formulas. In addition to implementing the
algorithm, the project will seek to come up with interesting planning domains
that fit into the framework and can showcase DEL-based planning and the im-
plementation of it. Furthermore, depending on early successes, implementing
the basic steps of the algorithm, several futher avenues can be pursued; these
include: Implementation of a model based planner (MBP), plan validation, im-
plementing tools for creating bigger examples in NuPDDL or similar language.

1. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and
Practice. Morgan Kaufmann (2004)

2. Bolander, T., Birkegaard, A., Holm Jensen, M.: Conditional Espistemic
Planning (2012)
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Chapter 1

Introduction
Planning is the act of deliberating about the future with the purpose of achieving
a goal. Automated Planning is a major classical branch in Artificial Intelligence
aiming to mimic the human ability of making a plan to solve a task, before
commencing any action. In classical automated planning problems are restricted
to be finite, deterministic, fully observable and static [MG04]. Articles [TB12c,
TB12b] has been written adressing these restrictions and lifting them, so that
uncertainty in the planning domains (partial observability and non-determinism)
is possible, meaning that an agent in the domain may not necessarily know the
exact outcomes and state of affairs in the domain, to more closely ressemble real
life scenarios.

The aforementioned articles describes how the notion of knowledge from Dy-
namic Epistemic Logic (DEL) is used in order to create plans which are condi-
tional in nature, using if-then-else structures to ensure a working plan for
the agent, even in domains with partial observability or non-determinism. The
purpose of this project is to implement in practise the theory behind the creation
of conditional plans in the DEL framework and to show working examples of the
planning process with this implementation. In order to do this, first we must
define what the DEL framework is, as according to the articles [TB12c, TB12b].
The definition of the DEL framework and its components will be addressed in
detail in the first part of this report (Section Dynamic Epistemic Logic), where
working examples will be used to visualize the theory. After this the actual im-
plementation of conditional plans in DEL will be discussed, again accompanied
by examples where applicable. In the Planning section of the implementation,
pseudo-code will be given to illustrate the algorithms used in the program −
the product of the project. The chapter ”Examples and Results” (Chapter 5),
will display the examples inputted into the program and the entire process from
input to output will be detailed to show the end result, namely a visualization of
the planning tree in order to make a final plan. Lastly section Future Work will
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describe possible additions to the program that was not implemented because
of the time frame.

To reiterate, the focus of this project is the implementation of the conditional
epistemic planning framework as described above.

As mentioned, throughout the report, examples will be given to support the
theory and to visualize the concepts given. In the beginning, the example in
Figure 1.1 will be used, however later, in both the theory and implementation
sections, more complex examples will be given when needed in order to showcase
the concepts specifically.

Figure 1.1: A simple finding-goal domain Simple.

Example 1: The agent starts at the left-most tile (t0), and wants
to move to the goal located at t2. The agent will have to use his
available actions in order to move to the goal location.

We want to model the states of the domain in this example using DEL in order
to later formulate a plan for the domain. The initial model of the domain can
be seen below.

The domain in Figure 1.1, which will be elaborated upon in the next section,
is shown as an epistemic model in Figure 1.2. The world w is represented
as a conjunction of propositional symbols, where an underlined proposition p
indicates that p does not hold in w. For visual simplicity, reflexive and transitive
edges are omitted in the model.
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M0 :
w1 : t0 t1t2t3

Figure 1.2: The initial situation. The agent is at location t0.
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Chapter 2

Dynamic Epistemic Logic
The first step in order to model the domain is to define the language used to
this end. Dynamic epistemic logic lays the foundation on which this project is
built, and in order to progress we first need to define the entire framework with
proper definitions, starting with the epistemic language, to be able to use this
later in the planning process.

2.1 Epistemic Language

Let P be a finite set of atomic propositions (propositional symbols) then the
language of dynamic epistemic logic LDEL(P ) is given by the following BNF.

φ ::= > | ⊥ | p | ¬φ | φ ∧ φ | Kφ

where the proposition p ∈ P . The construct Kφ is to be read as ”φ is known”.
The semantics of LDEL(P ) is defined through Kripke structures, from this point
on referred as epistemic models.

The definition of the language is essential for the understanding of worlds and
formulas in the project, as they are both built on this language LDEL(P ).

2.2 Epistemic Models

As with the epistemic language, it is necessary to define what an epistemic model
is, in order to lay the foundation for the implementation. An epistemic model
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of the language LDEL(P ) is defined as the tripleM = (W,R, V ) where W is a
finite set of worlds representing the domain of the model D(M), R → 2W is a
equivalence relation and V : P → 2W assigns a valuation for each propositional
symbol, i.e. the set of worlds where p ∈ P holds.

The equivalence relation determines if two worlds are distinguishable to the
agent, more specifically, if the agent has knowledge of a proposition or not
(more on this in Section 2.4.1). A world is always indistinguishable to itself,
that is, for visual simplicity reflexive edges are not drawn. The same holds for
transitive edges, if world w1 ∈ W is indistinguishable to world w2 ∈ W and w2

is indistinguishable to world w3 ∈ W , then w1 is indistinguishable to w3. Two
worlds w1 and w2 connected by an equivalence relation is said to be in the same
equivalence class. An equivalence class in a modelM is denoted [w]R, and is to
be read as the set of worlds related to w by R.

The valuation V defines which propositional symbols hold in any world. For
example, in the model in Figure 1.2, the valuation assigns w1 to t0. In order
to see if a valuation in any given world holds, we need to define the truth in
epistemic models.

2.2.1 Truth in Epistemic Models

M, w |= > always
M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ¬φ iff M, w 6|= φ
M, w |= φ ∧ ψ iff M, w |= φ andM, w |= ψ
M, w |= Kφ iff for all v ∈W, if w R v thenM, w |= φ
M |= φ iff M, w |= φ for all w ∈ D(M)

The pair M, w represents a specific world w in the epistemic model M. This
pair is called either an epistemic state or a pointed epistemic model.

The structureM, w |= Kφ depicts the notion of knowledge which will be elab-
orated in the section on Partial Observability (Section 2.4.1), and is to be read
as Kφ is satisfied inM, w if and only if φ is satisfied in all worlds v ∈ [w]R.
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2.3 Event Models

In order to model dynamism or the notion of updating or advancing a state in
the domain, we need to introduce the event models. With the event models, the
agent will be able to change an epistemic state or model in a given situation.
An event model is a tuple E = (E,Q, pre, post), where: ([TB12c])

- E, the domain, is a finite non-empty set of events.

- Q ⊆ E ×E assigns an accessibility relation. All accessibility relations are
equivalence relations.

- pre : E → LDEL(P ) assigns to each event a precondition.

- post : E → (P → LDEL(P )) assigns to each event a postmapping. A
postmapping is a conjunction of propositional symbols (atomic proposi-
tions, including > and ⊥) and their negations, mapping or modifying
existing propositional symbols in the model.

The domain of an event model is a finite set of possible events or actions within
the event model. If we think of a specific action in the domain of the example in
Figure 1.1, the action GoUp would represent moving from t3 to t2. This event
model is shown in Figure 2.1.

E0 : gu1 : 〈t3, {t3 7→ ⊥, t2 7→ >}〉

Figure 2.1: The GoUp action in the domain of the example in Figure 1.1.
(reflexive and transitive edges are omitted).

The propositional symbols specified are the tile names t0, t1, t2 and t3, and the
precondition of event gu1 (first event of the GoUp event model) in E0 specifies
that the agent has to be at tile t3 in order for the event to be applicable (more on
applicability in Section 2.4), whereas the postconditions of the event, is a set of
propositional mappings that assigns a new valuation to a specific propositional
symbol, in this case assigning t3 to ⊥ and t2 to > (and thus in this domain
updating the location of the agent from t3 to t2).

Now, if an action has more than one application, we will need to define all of
the applications within the event model. In the case of GoUp there was only
one application since the only place from which the agent could GoUp was from
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the tile t3 to t2. Consider the action GoRight instead. Here we are dealing with
two different applications, namely that of t0 to t1 and t1 to t3. The GoRight
event model can be seen in Figure 2.2.

E1 :

gr1 : 〈t0, {t0 7→ ⊥, t1 7→ >}〉 gr2 : 〈t1, {t1 7→ ⊥, t3 7→ >}〉

Figure 2.2: The GoRight action of example M0 (reflexive and transitive edges
are omitted).

In this event model, the preconditions determine which event is used, since there
are two different possibilities for the agent to GoRight. Depending on whether
the agent is standing at tile t0 or t1 the event used will be gr1 or gr2 respectively.

The accessibility relation (equivalence relation for events), Q, is a set of edges
between events in the domain (E), defining wether or not the agent can dis-
tinguish between the events in the domain. As can be seen in Figure 2.2, no
edges exists between the nodes, as all of the actions are distinguishable to the
agent. For a fully observable domain, this specification is complete, however if
the domain is partially observable, extra information will need to be added to
reflect notion of discovery. More on that in Section 2.4.1.

2.4 Product Update

In order for the agent to change states in the domain, the models need to
be updated with the event models defined earlier. A product update is the
application of an event model on an epistemic model. An epistemic model can
be updated with an event, yielding as product a new epistemic model. This new
model will reflect the action executed on the old model[TB12b].

LetM = (W, R, V ) be an epistemic model and E = (E, Q, pre, post) be an
event model on LDEL(P ). The product update of M with E is the updated
epistemic model denotedM⊗E = (W ′, R′, V ′), where

- W ′ = {(w, e) ∈W × E | M, w |= pre(e)},

- R′ = {((w, e), (v, f)) ∈W ′ × W ′ | w R v and e Q f},
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- V ′(p) = {(w, e) ∈W ′ | M, w |= post(e)(p)} for each p ∈ P .

The new epistemic model will contain:

- W ′ : Each of the worlds inM where the precondition is satisfied

- R′ : A new equivalence relation, defining edges between two worlds (w, e)
and (v, f); if w were connected to v before the update (by R) and if the
events e and f updating the worlds were connected also (by Q).

- V ′ : A new valuation as a product of the postmapping of E and the
propositional symbols of the original world.

First let us consider a short example to show the process of product update.
Take the domain shown in Figure 1.1 and consider the model, where the agent
is located at tile t3 about to reach the goal.

M1 :
w1 : t0t1t2 t3

Figure 2.3: Simple model of the agent located on t3. (reflexive edges are omitted)

The action that the agent want to execute is GoUp. Figure 2.4 shows the GoUp
action executed on modelM1.

’

w1 : t0t1t2t3
⊗

gu1 : 〈t3, {t3 7→ ⊥, t2 7→ >}〉
=

(w1, gu1) : t0t1t2t3

Figure 2.4: Product update of E0 onM1. (reflexive edges are omitted)

If a world w satisfies the precondition of an event e the product update of w
with e is written (w, e). The satisfaction of the precondition is specified below.

Applicability: Given a worldM, w and an event E , e the event e is applicable
in the world w iffM, w |= pre(e). This is to ensure that the precondition of the
event e taking place in w is fulfilled. If not, the resultant world would be empty.

An example of a product update, where the precondition is not met, is when the
agent executes the event model GoRight (see Figure 2.5). Since GoRight has
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two different events in the event model, the preconditions determine which of
the two events are applied. In this case one of the updated worlds will be empty,
since the precondition of the event is not met in that world. Another interesting
point here, is that at all times only one of the events in the event model will be
applicable. This is because the event model is globally deterministic as according
to the definition[TB12c] given later in Section 2.4.2, along with examples that
are not globally deterministic but non-deterministic.

w1 : t0t1t2t3
⊗

gr1 : 〈t0, {t0 7→ ⊥, t1 7→ >}〉

gr2 : 〈t1, {t1 7→ ⊥, t3 7→ >}〉
=

(w1, gr1) : t0t1t2t3

Figure 2.5: The application of GoRight (E1) on M0. (reflexive and transitive
edges are omitted)

Since event gr2 has precondition t1, this event will not be taken into consider-
ation during the product update. The event gr1 is the only applicable event in
the event model E1 onM0.

Now, we have shown that if the agent knows where the goal is and has available
the necessary actions, he can apply these actions to his belief state (epistemic
model) and get a new belief state where he is closer to the goal. But what
happens if the agent is not all-knowing, and does not know where the goal is?
Or if there are more than one possible goal location?

In the comings sections the domain Simple will be expanded in order to show
how DEL deals with partial observability and non-determinism.

2.4.1 Product Update in a Partial Observable Domain

The examples used until now has been without the notion of partial observability
[pom] to indroduce the different components of dynamic epistemic logic in a
simple and straight forward fashion. But what if, the agent did not know the
actual location of the goal. Imagine a domain, where an agent is put into a maze
(see Figure 2.6), the agent can see in a straight line, but not around corners.
The agent need to be in a straight line of sight of the goal locations in order to
ascertain if the goal is located on that tile or not.

In a partial observable domain like the one mentioned, we need to add the notion
of discovery to the event models, in order for the agent to learn how the domain
looks. Specifically in the domain shown in Figure 2.6, if the agent had available
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only the event models we have seen so far (E0 and E1) he could never discover
on which of the goal locations the goal is actually located. This is due to the
(so far missing) update in the equivalence relation taking as precondition the
difference between the worlds.

Figure 2.6: A partial observable domain Partial.

The model shown in Figure 2.7 has been visually simplified by not showing the
negated propositional symbols, and as before all reflexive and transitive edges
has been left out.

M2 :
w1 : t1 g1

w2 : t1 g2

w3 : t1 g3

Figure 2.7: A model of the domain where the agent has already executed
GoRight once. (reflexive and transitive edges are omitted)

An interesting observation with this model, however, is that with this model
in contrast to the ones we have seen previously, the equivalence relation is in
employ. The edges between the worlds w1 and w2 and between w2 and w3

signify that the agent cannot distinguish between these worlds. The agent does
not know where the goal is located1.

Now in order to make the agent able to discover the goal as mentioned before,
we need to update the event model. Because the worlds in Figure 2.7 are
indistinguishable on the variables g1, g2 and g3, we need to make the agent able
to seperate these. This is done by letting the events have specific preconditions,
pairing up the unknowns with a negated and a non-negated precondition for
each of the unknown propositional symbols.

We want the agent, when located at t3 to be able to tell if the goal is located
at tile t2 or not. Taking a closer look at event gr11 and gr12 in Figure 2.8, the

1The goal location is specified by the presense of one of the propositional symbols g1, g2
or g3, and is chosen at random by the environment at the beginning of the simulation.
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E2 :

gr0 : 〈t0, {t0 7→ ⊥, t1 7→ >}〉 gr11 : 〈t1 ∧ g1, {t1 7→ ⊥, t3 7→ >}〉

gr12 : 〈t1 ∧ ¬g1, {t1 7→ ⊥, t3 7→ >}〉

gr21 : 〈t3 ∧ g2, {t3 7→ ⊥, t4 7→ >}〉

gr22 : 〈t3 ∧ ¬g2, {t3 7→ ⊥, t4 7→ >}〉

gr31 : 〈t4 ∧ g3, {t4 7→ ⊥, t7 7→ >}〉

gr32 : 〈t4 ∧ ¬g3, {t4 7→ ⊥, t7 7→ >}〉

Figure 2.8: The updated event model GoRight. (reflexive and transitive edges
are omitted)

two events display contradictory preconditions in regards to the goal proposi-
tional symbols g1 and ¬g1 in order to give knowledge to the agent regarding the
propositional symbol g1. The same is true for the other two goal tiles g2 and g3,
when the agent arrives at tile t4 and t7 respectively, he will gain the knowledge
of g2 and g3 respectively.

Application of the action GoRight on epistemic model M2 is shown in Figure
2.9.

w3 : t1 g3

w2 : t1 g2

w1 : t1 g1

⊗ E2 =

(w3, gr12) : t3 g3

(w2, gr12) : t3 g2

(w1, gr11) : t3 g1

Figure 2.9: The application of GoRight (E2) on M2. (reflexive and transitive
edges are omitted)

The outcome of this product update, as can be seen in the far right of Figure 2.9
is that the agent are now able to seperate the worlds (w2, gr12) and (w3, gr12)
from the first world (w1, gr11) in the sense that the agent either knows that g1
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holds or knows that it does not. Kg1 ∨K¬g1.

When the environment returns to the agent the simulation of whether or not g1
holds, the agent is able to make a choice from this, to either go up towards the
tile t2 (if g1 holds) or to continue right (if g1 does not hold). More on this in
the planning section (see Section 3).

2.4.2 Product Update in a Non-Deterministic Domain

Before going through the second aspect of uncertainty mentioned, namely non-
determinism, we first need to specify what non-determinism is. How does it
differ from the partial observability? When an agent encounters a new world,
for example different instances of the domain given in Figure 2.6 each instance
might have the goal on different locations which is non-deterministically decided;
So what exactly is meant by non-determinism?[non]

An event model E = (E,Q, pre, post) is called globally deterministic if all pre-
conditions are mutually inconsistent, meaning that |= pre(e) ∧ pre(f) → ⊥ for
all distinct pairs e, f ∈ E, that is, at all times only one event is applicable for
any one world.

So far, by definition, all of the event models given, have been globally determin-
istic as given above and in [TB12c]. That means that within each of the event
models, at any point only one event at a time, can fulfill the precondition. In the
event model shown in Figure 2.8, seven events were given in order to GoRight.
All of these seven events each had different preconditions and thus at no point
would more than one event correspond to a certain world-state. In other words,
in order for an event model to be globally deterministic, the conjunction of the
event elements must always be a falsum.

(a) The domain NonDet

w1 : t0

(b) The epistemic model of
NonDet (reflexive edges are
omitted)

Figure 2.10: The domain NonDet which has a component of non-determinism
represented by teleports.

In non-determinism, this is no longer the case. An event model can have more
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than one event with the same preconditions, making the outcome depend not
on a compiletime generation of environment, but rather a runtime stokastic
process. This process will at each non-deterministic action at random choose
the outcome. In order to model a world with non-determinism we will have
to create an environment which has a non-determinic component. An updated
domain with the teleport component has been created in Figure 2.10(a).

GoLeft: GoRight:

GoUp: GoDown:

gl1 : 〈t1, {t1 7→ ⊥, t0 7→ >}〉

gl2 : 〈t2, {t2 7→ ⊥, t1 7→ >}〉

gu1 : 〈t3, {t3 7→ ⊥, t1 7→ >}〉

gu21 : 〈t5, {t5 7→ ⊥, t2 7→ >}〉

gu22 : 〈t5, {t5 7→ ⊥, t3 7→ >}〉

gr1 : 〈t0, {t0 7→ ⊥, t1 7→ >}〉

gr21 : 〈t1, {t1 7→ ⊥, t3 7→ >}〉

gr22 : 〈t1, {t1 7→ ⊥, t4 7→ >}〉

gd11 : 〈t1, {t1 7→ ⊥, t2 7→ >}〉

gd12 : 〈t1, {t1 7→ ⊥, t4 7→ >}〉

gd2 : 〈t4, {t4 7→ ⊥, t5 7→ >}〉

Figure 2.11: The event models GoRight and GoLeft for the domain Non-Det.

In this world, the agent starts in the upper-left corner and has to maneuver to
the goal located in the bottom-right corner. The agent knows where the goal
is (there is only one) and the domain is fully observable, however the path to
the goal is not straight forward as it were in the domain Simple or Partial.
In order to reach the goal, the agent has to make use of the teleports2 in the
environment, however, since there are multiple of these teleports (green tiles),
the agent does not know in advance where the teleport will take him (t3 or t4,
in the scenario, where the agent enters the teleport at t2) 3.

2A teleport tile instantly moves the agent to another teleport tile. If more than two
teleports exist, the destination tile is chosen at random by a stochastic process.

3In a world such as this, a strong plan is not possible, since the agent cannot be certain to
reach the goal in a finite number of actions. In order to make a plan that will always succeed
(under the assumption of fairness), one will have to make a strong cyclic plan. More on that
in Section 3.7



2.4 Product Update 15

The event models used to model the behaviour of the teleports can be seen in
Figure 2.11.

In the four event models displayed in Figure 2.11, the non-determinism is im-
plemented by having multiple events within the event model with the same
preconditions. For example, in the GoUp event model above, the events gu21
and gu22 are paired because both accept states in which the precondition t5
is satisfied. Thus whenever an event model with multiple feasible events are
applied to an epistemic model, only one of the feasible events will be applied
by the stochastic process. Thus in the case of the domain NonDet in Figure
2.10(a), when the agent enters a teleport tile (green tiles at t2, t3 or t4) he will
appear on one of the other two tiles.



16 Dynamic Epistemic Logic



Chapter 3

Planning
In order to make conditional plans in DEL to be implemented, we must first
define what planning is. As stated in the introduction, planning is the act of
deliberating about the future with the purpose of achieving a goal before acting.

3.1 Classical Planning

A planning domain in classical planning according to [MG04] is a restricted
state-transition system Σ = (S,A, γ), where S is a set of states, A a set of
actions or events and γ is a state-transition function such that γ(s, a) ∈ S for
s ∈ S and a ∈ A.

A classical planning problem can then be defined as a triple (Σ, s0, Sg), where
Σ is a restricted state-transition system, s0 is the initial state, and Sg is the set
of goal states. Thus a plan in classical planning, solving a problem (Σ, s0, Sg),
is a series of actions or events e1, e2, . . . , en such that ([TB12c])

γ(γ(. . . γ(s0, e1), e2), . . . , en−1), en) ∈ Sg

3.2 Epistemic Planning

Then in epistemic planning, which is a special case of classical planning with
the notion of knowledge as seen earlier, when given a finite set of propositions
P , we can define the epistemic planning domain as a restricted state-transition
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system Σ = (S,A, γ), where S is a finite set of epistemic states of LDEL(P ) and
A a finite set of actions on LDEL(P ), and

γ(s, e) =

{
s⊗ e if e is applicable in s
undefined otherwise

An epistemic planning problem is then defined as a triple (Σ, s0, φg), where

- Σ = (S,A, γ) is an epistemic planning domain on P .

- s0, the initial state, is a member of S.

- φg is a formula in LDEL(P ) called a goal formula. The set of goal states
is Sg = {s ∈ S | s |= φg}.

Since we at all times are only concerned with the single-agent aspect of the plan-
ning domain, this problem is called a single-agent epistemic planning problem.

As with the epistemic planning domains, a plan in epistemic planning is a special
case of a solution to a classical planning problem. More specifically a finite se-
quence of events e1, e2, . . . , en such that γ(γ(. . . γ(γ(s0, e1), e2), . . . , en−1), en) ∈
Sg that is, s0 ⊗ e1 ⊗ e2 ⊗ · · · ⊗ en |= φg.

With the epistemic planning domains, problems and plans defined, we are ready
to commence making the structure for conditionals plans in Dynamic Epistemic
Logic.

3.3 Conditional Planning

The reason to extend epistemic planning with conditionals (if-then-else con-
structs) is to be able to plan under uncertaincy. We want to be able to model
the worlds which are not straight forward in essence. At this point we are not
able to make a plan for the domains given in figures 2.6 and 2.10(a) due to their
uncertainty aspects (partial observability and non-determinism respectively).

We want to formulate a planning language, such that the agent, when sufficient
knowledge has been acquired, makes a choice and are able to find the goal-state
even if the domain contains aspects of uncertainty.
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3.3.1 The internal and external perspective

When talking about specific worlds in an epistemic model, we have only been
talking about pointed epistemic models. This is because from the external per-
spective we are able to point out a specific world in an equivalence class in the
model. However from the perspective of the planner (i.e. the agent), when
modelling his own knowledge or ignorance, he will not able to point out the
actual world, hence a non-pointed epistemic model. We call this the internal
perspective [TB12c, Auc10]. Consider the model given in Figure 2.7, containing
the three indistinguishable worlds w1, w2 and w3. The model shown here is
from the perspective of the agent and he is of course not able to point out the
real world. Ergo, it is only natural that this model is a non-pointed epistemic
model. Worlds within a non-pointed epistemic model related via the equivalence
relation R is said to be in the same equivalence class (also called information cell
[TB12b]). All worlds in the same equivalence class share the same K-formulas
(of the form Kφ) and therefore representing the same situation seen from the
view of the agent modelling the situation. Each equivalence class represents a
possible state of knowledge of the agent [TB12b].

3.3.2 Plan Language

In order to formulate a plan, we need to define the language in which the plans
will be given. Given a finite set A of event models on LDEL(P ), the plan
language LP (P,A) is given by: ([TB12b])

π ::= E | skip | if Kφ then π1 else π2 | π1 ; π2

where E ∈ A is an event model, φ a formula in LDEL(P ) and the if-then-else
construct is to be read as ”if φ is known do π1 else do π2”. Note that φ is required
to be known to the agent, as he can only make choices based on propositions he
knows. Also note that ”Kφ then π” is short for ”Kφ then π else skip”.

Returning to the example of Figure 2.6 the agent will need a plan to go from
the start tile (t0) to the goal tile located on either t2, t5 eller t6. In order to
formulate questions such as does plan π achieve φ?, the notion of translation is
introduced in the next section.
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3.3.3 Translation

A strong translation J·Ks· respectively weak translation J·Kw· is defined as func-
tions from LP (P,A)× LDEL(P ) into LDEL(P ) by ([TB12b]):

JEKs φ := 〈E〉> ∧ [E ]Kφ
JEKw φ := 〈E〉> ∧ ¬K〈E〉Kφ
JskipK· φ := φ
J if φ′ then π else π′K· φ := (φ′ → JπK· φ) ∧ (¬φ′ → Jπ′K· φ)
Jπ;π′K· φ := JπK· (Jπ′K· φ)

By using translation we can interpret a plan π relative to a formula φ and
answer the question does plan π achieve φ. If we want to see if the plan is
a weak solution to a planning problem P we use the weak translation JEKwφ,
whereas we want to see if the plan is a strong solution to P the strong translation
JEKsφ is used.

Note that the notion of Applicability is built into the translation by the conjunct
〈E〉> in both the strong translation JEKsφ and weak translation JEKwφ, and
that the difference between the two translations is in the robustness of the
plans: JEKsφ respectively JEKwφ means that each step of π is applicable and
that executing plan π always leads, respectively may lead to the goal state φ as
seen in [TB12a].

3.3.4 Planning Problems and Solutions

Now that the plan language for conditional epistemic planning has been given,
we can look at formulating planning problems on LP (P,A).

Let P be a finite set of propositional symbols, a planning problem on P is a triple
P = (MI , A, φg), where MI is an non-pointed epistemic model on LDEL(P )
called the initial state, A is a finite set of event models on LDEL(P ) called the
action library and φg ∈ LDEL(P ) is the goal formula[TB12b].

We say that a plan π ∈ LP (P,A) is a strong solution to P if MI |= JπKsφg, a
weak solution ifMI |= JπKwφg, and not a solution otherwise.

Looking at the Partial domain in Figure 2.6 we might formulate a goal as
φg = Kg1 ∨ Kg2 ∨ Kg3, namely that the goal is to achieve knowledge as to
where the goal is located (g1, g2 or g3). Since the GoRight event models the
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agent moving from t1 to t3, from t3 to t4 and from t4 to t7, it adds knowledge to
the the agent’s understanding of the world (his world represented by an epistemic
model). In order to achieve the goal φg the agent needs to make all the above
mentioned moves, that is, GoRight until reaching t7. Intuitively looking down
on the problem from above, this will solve the problem, as the agent, having
moved all the way to the right, will know where the goal is, by having acquired
knowledge regarding all the possible goal tiles.

Illustrated in the planning language, the above mentioned plan will look like plan
π1 below. Furthermore three additional plans are shown in order to illustrate the
differences between weak and strong planning and how the different formulations
translate from the view of the agent.

π1 = GoRight ; GoRight ; GoRight ; GoRight

π2 = GoDown ; GoRight ; GoUp

π3 = GoRight ; GoRight

π4 = GoRight ; GoRight ; if Kg1

then GoUp

else GoRight ; if Kg2

then GoDown

else GoRight ; GoUp

Consider again the domain Partial and the modelM3 as shown below, where
the agent is located at tile t0 with no knowledge of where the goal is located.

M3 :
w1 : t0 g1

w2 : t0 g2

w3 : t0 g3

Figure 3.1: A model of the domain Partial where the agent is located at the
initial position t0. (reflexive and transitive edges are omitted)

We consider two problems, P1 = (M3, A, (t2 ∧ g1) ∨ (t5 ∧ g2) ∨ (t6 ∧ g3)) and
P2 = (M3, A, Kg1 ∨Kg2 ∨Kg3). In the first problem, the objective for the
agent is to go to the goal tile, whichever one it may be. In the second problem
the goal is to merely obtain knowledge of where the goal is located. Consider
the plan π2. Let π′2 = GoRight ; GoUp and note that π2 = GoDown ; π′2. Using
strong translation of π2 we get that M3 |= Jπ2Ksφg iffM3 |= 〈GoDown〉> ∧
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[GoDown] Jπ′2Ksφg. SinceM3 |= 〈GoDown〉> does not hold, π2 is not a solution
to either P1 or P2. This is correct since the agent cannot move down from the
initial position. Checking if π3 is a strong solution to P2 is equal to checking if
M3 |= Jπ3Ks (Kg1 ∨Kg2 ∨Kg3) which translates to

M3 |= 〈GoRight〉> ∧ [GoRight] (〈GoRight〉> ∧ [GoRight] (Kg1 ∨Kg2 ∨Kg3))

In the same way we can see that π3 is not a solution to P1 and that π4 is a
strong solution to both P1 and P2.

Now that planning problems has been formulated in an epistemic planning do-
main we can start looking into how a plan is made. To this end, we first need to
specify how to structure the epistemic models (belief states of the agent) pro-
duced by product updating the initial state with event models from the action
library A.

3.4 Planning Trees

When creating plans the new belief states (epistemic models) constructed are
stored in a labelled and-or tree, a well known model for planning under un-
certaincy [TB12b, MG04]. These and-or trees related to planning are called
planning trees.

3.4.1 Planning Tree - Definition

A planning tree is a finite labelled and-or tree, in which each node n is la-
belled by an epistemic model M(n), and each edge (n,m) leaving an or-node
is labelled by an event model E(n,m).

The planning tree T for planning problem P = (MI , A, φg) is then constructed
by letting the initial state (MI) be the root of the tree T , where the root root(T )
is an or-node. Until expanded, the tree only consists of the root. In order to
expand the tree, the following Tree Expansion Rule [TB12b] must be adhered
to.
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3.4.2 Tree Expansion Rule

Let T be a planning tree for a planning problem P = (MI , A, φg). The tree
expansion rules are then defined as follows. Pick an or-node n in T and an
event model E ∈ A applicable in M(n) with the proviso that E does not label
any existing outgoing edges from n. Then:

1. Add a new node m to T withM(m) =M(n)⊗E , and add an edge (n,m)
with E(n,m) = E .

2. For each equivalence class [w]R inM(m), add an or-nodem′ withM(m′) =
[w]R and add the edge (m,m′).

w1 : t0 g1

w2 : t0 g2

w3 : t0 g3

w1 : t1 g1

w2 : t1 g2

w3 : t1 g3

w1 : t1 g1

w2 : t1 g2

w3 : t1 g3

w1 : t3 g1

w2 : t3 g2

w3 : t3 g3

w2 : t3 g2

w3 : t3 g3

w1 : t3 g1

w1 : t2 g1

w2 : t4 g2

w3 : t4 g3

w2 : t4 g2

w3 : t4 g3

w2 : t5 g2

w3 : t7 g3w3 : t7 g3

w3 : t6 g3

GoRight GoRight GoUp

GoRight
GoDown

GoRight
GoUp

n0 n3 ng1

ng2g3

ng2

ng3

Figure 3.2: Planning tree for the initial domain in Figure 1.1 with the agent
starting in t1.

As can be seen in Figure 3.2, each time the agent has moved next to a goal
tile, his belief about the world changes and he is able to distinguish between the
goal states. The second GoRight action of the agent puts him in tile t3, where
he can see if the goal is located on tile t2. In the planning tree the posibility
of the goal being located on t2, is noted by the splitting from the and-node
into two new or-nodes, namely the model where t2 is a goal state marked in
bold, and the model where the goal state is located on either t5 or t6. This
is done by the use of the second part of the expansion rule in the definition,
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because world w1 and worlds w2, w3 are in different equivalence classes . More
specifically, in the initial state M(n0) |= ¬Kg1 ∧ ¬K¬g1 ∧ ¬Kg2 ∧ ¬K¬g2 ∧
¬Kg3 ∧ ¬K¬g3, whereas after the second GoRight action the agents belief is
M(n3) |= (K(g1) ∨K(¬g1)) ∧ ¬Kg2 ∧ ¬K¬g2 ∧ ¬Kg3 ∧ ¬K¬g3.

The next step, in order to ensure that the tree expansion terminates, the fol-
lowing saturation rule will be defined as in [TB12b].

β1 The tree expansion rule may not be applied to a node n for which there
exists an ancestor node m withM(m) -M(n)1.

When expanding the tree and adhering to the above specified saturation rule β1,
the resulting planning tree will be finite, as according to the proof in [TB12b].
Furthermore, since we in the planning tree are only looking for solved nodes, we
can extend the β1 saturation rule with the following argument [TB12b].

β2 The tree expansion rule may not be applied to a node n if one of the
following holds: 1) n is solved; 2) n has a solved ancestor; 3) n has an
ancestor node m withM(m) -M(n).

A solved node n is defined by:

− M(n) |= φg (the goal formula is satisfied in n).

− n is an or-node, having at least 1 solved child.

− n is an and-node, having all of its children solved.

In the implementation in order to give a view of the fully expanded planning
tree, the second rule of β2 will be relaxed.

To give a more practical view of and-or trees, think of a game of chess against
a computer opponent. The or-nodes in the tree is the human player making a
move (the agent doing an action). The and-nodes are the computer making a
counter move, an action you have no control over (the environment picking one
of the equivalence classes of the and-node).

1Here M(m) - M(n) denotes that M(m) and M(n) are bisimilar according to definitions
of bisimulation [DH08].
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3.4.3 Making the Plan

Given a solved node in the planning tree we can create a plan for the agent by
the following algorithm [TB12b].

− ifM(n) |= φg, then π(n) = skip.

− if n is an or-node and m its solved child, then π(n) = E(n,m);π(m).

− if n is an and-node with children m1, . . . ,mk, then
π(n) = if δM(m1) then π(m1) else if δM(m2) else . . . δM(mk) then π(mk),
where δM(mi) is the characterising formula defined below [TB12b].

Definition (Characterising formula): Let M = (W,R, V ) denote an a
model with a single equivalence class on LDEL(P ). For all w ∈ W we de-
fine a formula φw by: φw =

∧
p∈V (w) p ∧

∧
p∈P−V (w) ¬p. The characterising

formula forM, δM, is defined as: δM = K(
∧

w∈W ¬Kφw ∧K
∨

w∈W φw).

The characterising formula is used in the respect, that when the environment
simulates which situation turns out to be true (cf. Figure 2.6, if g1, g2 or g3
holds in the given model) the characterising formula will describe that world
exactly by listing the propositional symbols that needs to be true and listing
the propositional symbols that needs to be false. This makes it excellent for
the conditional of the if-statement of the plan algorithm, to choose the right
sub-plan to execute.

When wanting to extract the plan for a solved node with the goal of the agent to
go to the actual goal tile, the above definition can be used. We see that π(n0) =
GoRight ; GoRight ; if δM(ng1 ) then GoUp else GoRight ; if δM(ng2 ) then GoDown
else GoRight ; GoUp. It is easy to see that this is a strong solution for getting to the
goal state (t2 ∧ g1 ∨ t5 ∧ g2 ∨ t6 ∧ g3) from the initial state as seen earlier.

3.5 Strong Planning Algorithm

At this point we are ready to give the algorithm for synthesising strong plan solutions
for planning problems. The algorithm is given below [TB12b].

StrongPlan(P)

1. Let T be the planning tree only consisting of root(T) labelled by the initial state
of P.



26 Planning

2. Repeatedly apply the tree expansion rule of P to T until the tree is β2-saturated.

3. If root(T) is solved, return π(root(T)), otherwise return fail.

Lets say, in the environment the goal is located on g2. Using StrongPlan(P) we
want a plan for the agent. The first step in the algorithm has T being the planning
tree consisting only of a single state, namely the initial state seen on Figure 3.1. This
model is the root of T . The recursive application of the tree expansion rule results in
the β2-saturated tree seen in Figure 3.2 (The action GoLeft has been omitted in the
tree, as the resultant nodes would be bisimilar and thus go against β2.

The third step is to extract the plan from the tree, and traversing the tree gives us the
plan that was shown earlier, namely π(n0) = GoRight ; GoRight ; if δM(ng1 ) then
GoUp else GoRight ; if δM(ng2 ) then GoDown else GoRight ; GoUp.

When the agent tries to use the plan to find the goal, the first two GoRight actions will
be executed. Then the agent will have perceived that the goal does not exist on tile t2
and therefore the first if -statement is false, leading to another GoRight action. The
second conditional (if δM(ng2 )) is true however, due to the fact that δM(ng2 ) describes
the goal model containing g2 exactly, leading to the agent ending with a GoDown and
successfully reaching the goal.

3.6 Weak Planning Algorithm

The weak plan serves to give us an alternative if no strong plans are possible. In order
to make use of the weak planning algorithm, we need to make just a few changes to the
algorithm already in place. Firstly, a weakly solved node in opposition to a strongly
solved node, is any node that either satisfiesM |= φg or has as child another weakly
solved node.

To extract a weak plan for a planning tree P = (MI , A, φg), do this recursively by:

− ifM(n) |= φg, then πw(n) = skip.

− if n is an or-node and m its weakly solved child, then πw(n) = E(n,m) ; πw(m)

− if n is an and-node and m its weakly solved child, then πw(n) = πw(m)

The WeakPlan(P) algorithm then looks like:

1. Let T be the planning tree only consisting of root(T) labelled by the initial state
of P.

2. Repeatedly apply the tree expansion rule of P to T until the tree is β2-saturated.

3. If root(T) is weakly solved, return πw(root(T)), otherwise return fail.
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Following the same example as given with the StrongPlan(P) algorithm, we reach
the planning tree on Figure 3.2. Extracting the plan for the agent in the weak plan
mode, yields π(n0) = GoRight ; GoRight ; GoUp.

The reason for this, is that since all the nodes in the tree are weakly-solved as per
above definition of weakly-solved nodes, the agent just needs to reach a node where
a possible goal is located. Since the closest goal is at t2, the shortest weak plan is
π(n0) = GoRight ; GoRight ; GoUp.

3.7 Strong Planning for Non-Determinism

Epistemic planning domains with a component of non-determinism cannot be strongly
solved in the normal regard, because of the aspect of randomness in the stochastic
process. In NonDet domain given in Figure 2.10(a) with the three teleporters, one
cannot be sure to end up at the correct teleporter (tile t4) for reaching the goal (tile
t5).

In these cases a strong plan cannot be made, as the plan might not work every time due
to the non-determinism and thus defies the definition of a strong plan. In this case we
will need to relax the strong planning algorithm in order to accomodate an aspect of
looping an action or a sequence of actions, until a condition (the characterising formula
for the target model) has been fulfilled. However, this has not been implemented into
the program and is on the list of possible extensions in the section ”Future Work”.



28 Planning



Chapter 4

Implementation
In order to implement dynamic epistemic logic and conditional planning within DEL,
we must first consider the important aspects of an implementation. How are we going
to load in example domains to the program. How is the data going to be stored in the
program (data structure) and how is the data going to be represented (outputted). In
this and the following sections the implementation will be described in detail. The first
section will describe in depth how the epistemic models, event models and formulas
are written in order for the program to be able to read them. The second section
will describe how the data structure in the program should be created (not language
specific) in order to optimally process the data. The third section on the planning
process will describe how the program uses the input and processes this information
in order to create a planning tree and a plan. Lastly the fourth section will illustrate
the output of the program, namely the display of the planning tree upon succesful
completion of the planning process as well as the plan.

4.1 Input

For the program to be able to receive input from a text file, we first need a way to
define the textual input. This has been done with the assistance of a parser generator,
specifically [ant], which is a left-to-right, leftmost derivation parser generator. This is
used because we wanted to define the syntax of the text input in specifics and antlr
allows for this. The grammar created in antlr is available in its entirety in the appendix
(A). An excerpt of the grammar is shown in Figure 4.1(a) and 4.1(b)).

In Figure 4.1(a) the grammar shows that a correct input consists of a title, an optional
list of propositional symbols used in the domain, an initial model, a number of event
models and lastly a goal formula. The way that the models, event models and formulas
has been defined so far has been with mathematical notation, however this notation
is not suitable for textual input. In order to input models, event models and formulas
into the program, we first need to introduce a textual notation for these. This notation
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(a) The grammar of the text input cep (conditional epis-
temic planner).

(b) The grammar of the formula,
showing that formulas are poly-
morphic.

Figure 4.1: Two examples of the grammar used to parse input from a text file.

will also be used at a later stage in order to print out the models, event models and
formulas from the program.

The reason for this notation is that non-ascii symbols like ¬, ∧, >, ⊥ are not possible
to type in ascii as text input. The following table shows what ascii-chars are being
used in place for the mathematical symbols.

MAT H ∨ ∧ > ⊥ ¬
Ascii | & T F ∼

Table 4.1: The textual ascii representation of the used mathematical symbols.

In the next section the string representation of epistemic models will be described in
detail.

4.2 String Representation of Models

In the program a representation of the epistemic models were needed, not only to
quickly be able to uniquely identify the worlds, but also in order to have a good visual
overview when printing out the resultant planning tree. In order to compare models,
equivalence classes, worlds and propositional symbols a representation was needed,
adheering to the definition of bisimilarity. In the following will be defined the string
representation of the entire epistemic model, split up in the components constituting
the model.

Below is a grammar outlining the string representation of the models. For each non-
terminal γ in the BNF we define L(γ) as the language of the subexpression in the
BNF.

The $data symbol in the last line of the grammar, refers to any propositional symbols
given in the textual input, that is, $data ∈ P (see Section 2.2), although from now on
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model ::= ’(’ + equivalence classes + ’)’
equivalence classes ::= ec | ec + ’,’ + equivalence classes

ec ::= ’<’ + worlds + ’>’
worlds ::= world | world + ’,’ + worlds
world ::= ’[’ + propositional symbols + ’]’

propositional symbols ::= ps | ps + ’,’ + propositional symbols
ps ::= $data

Figure 4.2: The BNF for the string representation of the epistemic model, equiv-
alence classes and propositional symbols.

we assume that P is a set of propositional symbols that can be displayed as strings,
allowing the check for bisimilarity, and following the standard notation for naming
variables, i.e. consisting of only digits and lower- and uppercase letters, with the first
character being a non-digit.

Below is then given the definition for the string representation of a model. Definition:

• The canonical string representation of a world w ∈W is the string str(w) given
by [p1, p2, . . . , pn] ∈ L(world), where p1, p2, . . . , pn is the set {p ∈ P | w ∈
V (p)} ordered lexicographically.

• The canonical string representation of an equivalence class [w]R (see [ecs]) inM
is the string str([w]R) given by <str(w1), str(w2), . . . , str(wm)> ∈ L(ec), where
[w]R are the elements of the set {str(v) | v ∈ [w]R} ordered lexicographically.

• The canonical string representation of an epistemic model M = (W,R, V ) is
the string str(M) given by (str([w1]R), str([w2]R), . . . , str([wk]R)), where [w1]R,
[w2]R,. . . , [wk]R is the set of equivalence classes inM and str([w1]R), str([w2]R),
. . . , str([wk]R) are ordered lexicographically. Recall here that [w]R is interpreted
as the set of worlds related to w by R.

Lemma 1: Bisimulation on string representation
Given two epistemic modelsM1 andM2, str(M1) = str(M2) if M1 -M2.

Proof-Sketch:
In the simple case, if two modelsM andM′ are bisimilar and consist of only one equiv-
alence class with one world each, these model will be represented with the same string
due to the lexicographical ordering of the worlds within the model and propositional
symbols within the world.

Now, consider the case that two models M = (W,R, V ) and M′ = (W ′, R′, V ′) has
a single equivalence class each, [w]R, [w′]R′ respectively, but with multiple worlds
present in the equivalence classes. If M - M′ this means that [w]R - [w′]R′ . If
the two equivalence classes are bisimilar, then for each world w ∈ [w]R there exists a
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world w′ ∈ [w′]R′ so that str(w) =str(w′) and for each world w′ ∈ [w′]R′ there exists a
world w ∈ [w]R so that str(w′) =str(w). By the lexicographical ordering of the worlds
within [w]R and [w′]R′ , this means that str([w]R) =str([w′]R′).

In the extended case, where two modelsM andM′ are bisimilar and consist of more
than one equivalence class, for each equivalence class inM there will be an equivalence
class inM′ represented with the same string and for each equivalence class inM′ there
will be an equivalence class inM represented with the same string. Since comparing
the models are now reduced to comparing two sets of strings, these can be ordered
lexicographically and string comparison gives us that if the two models are bisimilar,
their string representation will be equal.

4.2.1 Epistemic Models

Using the above definition of string representation of the epistemic models, equivalence
classes and worlds, the example below has been given. In the example, made from
model M2 in Section 2.4.1, the propositional symbols will be assembled first, then
the worlds, classes and lastly the model. This is done in order to be able to take the
example one step at a time.

1. Propositional Symbols

The atomic form of an epistemic model comes down to the propositional symbols
present in the worlds of the model. Using the example epistemic model M2, the
world w1 consists of only two symbols, namely t1 and g1. In the string representa-
tion, each of the propositional symbols will be written, seperated by commas, ordered
lexicographically. g1,t1.

2. Worlds

Worlds, containing the propositional symbols (or being empty) will add to the string
representation a set of square brackets ”[” ”]”, enclosing the propositional symbols
belonging to the specific world. Multiple worlds in an epistemic model are comma
seperated just like with the propositional symbols and again ordered lexicographically.
Thus the three worlds in modelM2 can be written: [g1,t1],[g2,t1],[g3,t1].

3. Equivalence Classes

Recall that worlds connected with an equivalence relation are indistinguishable to the
agent. Take as example the updated model M2 ⊗ E2 in Figure 2.9, the agent has
executed the action GoRight twice and has discovered whether or not the goal exists
at location t2. Now the world (w1, gr11) is not related to the worlds (w2, gr12) and
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(w3, gr12) by the equivalence relation anymore and is as result not in the same equiva-
lence class. Each equivalence class in the epistemic model will be adding a pair of an-
gled brackets to the string representation ”<” ”>” enclosing worlds related via the equiv-
alence relation. Multiple equivalence classes in a model are comma seperated and or-
dered lexicographically. ThusM2⊗E2 is written as: <[g1,t3]>,<[g2,t3],[g3,t3]>,
and of course the original modelM2 will be written with only one equivalence class:
<[g1,t1],[g2,t1],[g3,t1]>

4. Epistemic Models

Lastly, even though each epistemic model is well isolated from one another in different
nodes, a pair of parentheses ’(’ ’)’ will be added to the string represention to complete
the string.

M2 : (<[g1,t1],[g2,t1],[g3,t1]>)
M2 ⊗ E2 : (<[g1,t3]>,<[g2,t3],[g3,t3]>)

And we have the full textual representation of the modelsM2 andM2 ⊗ E2.

4.2.2 Storing

After the input has been given to the program, the next logical step is to determine how
this information should be stored. How should the models be stored? The planning
tree? The following sections will define for each of the important aspects of conditional
espistemic planning exactly how the different parts are stored in the program and why
these choices has been made. For most of this discussion the methods of storing are
language independant, however in the case of formulas it is restricted to the set of
languages including the aspect of polymorphism[pol].

4.3 Data Structure

To ensure that the program has the optimal conditions for a fast plan calculation, the
information necessary to the plan need to be stored in data structures optimal to the
process. In the following sections the different components to an epistemic planning
domain will be described in detail with regards to the data structures. The runtime
operation cost of the different procedures using the data structures will be detailed
later in the section ”Algorithms” and just briefly mentioned here.
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4.3.1 Epistemic Models

When planning the data structure for the epistemic models, we need to consider how
these models will be used, which operations are important and need priority on di-
minishing runtime cost. The models will first and foremost be a part of the product
update functionality, model checking[] and model comparison (checking for bisimilar
models when updating). As explained in the previous section, the latter is achieved
by having a string representation of the model which can be compared to other mod-
els by string comparison. The runtime of the string representation of the node can
be further enhanced by caching[cac] of the model’s string represention. More on this
in the section ”Future Works”. In terms of product update functionality we need to
consider which parts of the model will be used when updating.

An initial thought regarding the data structure of the models, is that it would be
nice to be able to access any model in instant or close to instant time. Immediately
hashing[THC01] of the string representation of the models and storing in hash-maps
comes to mind, which would allow for just that. However, as algorithms later will
show, the nature of the product update is such that we will not have use for accessing
any particular model at any one point. When updating, all nodes in the planning tree,
which are not yet expanded, are updated at the same time, and thus we have no use
for the intricate setup of hash-maps and storing of the models, as we have no need to
access them directly.

Instead, the epistemic models in the program are stored within the planning tree (plan-
ning trees will be discussed in later in this chapter). The models will need to contain
the worlds in the models as well as the relationship between the worlds (equivalence
relation). This is done by treating the model as a set of equivalence classes, and in
turn have the equivalence classes be sets of worlds. Each model can then be consid-
ered a set of sets, much like the string representation shown earlier. Just like with
the models, we have no need to access a specific world in an equivalence class, nor
a specific equivalence class in a model. Therefore we just need to argue that each
product update does indeed warrant an iteration over all the worlds and that no world
is accessed twice when applying a specific event.

epistemic model = list ( equivalence classes )
equivalence class = list ( worlds )

event model = list ( event equivalence classes )
event equivalence class = list ( events )

Figure 4.3: The pseudo code for the data structure of the epistemic models and
event models.

The argument that a model as a set of sets in terms of the global product update
function does not increase the calculation time from an intricate hash-mapping system,
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is given on the basis that in a product update between an epistemic model M =
(W, R, V ) and an event model E = (E, Q, pre, post), all worlds w ∈ W and all
events e ∈ E will have to be iterated through and paired to check if an update between
w and e is applicable. This is the case in whichever approach is chosen. Since w can
only belong in one equivalence class and the iteration happens over the worlds in each
equivalence class, w will at any time only be accessed once per world-event-update.

Lastly we need to consider the model checking of a model, as this functionality will be
used extensively when the agent plans.

4.3.2 Formulas

The data structure of the formulas has been chosen very specifically, as this is one of
the functions that will be executed a lot. Every time model checking happens, either
because a world is tested to see if a goal formula is satisfied or because a world is
having an event applied, the checking of a model with a formula will occur. Another
thing to keep in mind is that the search depth of the formulas can be any size and
thus it is important to keep in mind, how model checking is done within the data
structure. This being said, model checking is a vast area and will only be detailed to
the extend used in the implementation. In the program, the formulas, as well as the

Figure 4.4: Example 1: The formula tree is primed towards a BFS solution,
finding that M4 holds in 2 steps, while the DFS takes 16 steps to find same
outcome.

nodes in the planning tree (see Figure 3.2) are built on a polymorphic data structure.
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Each formula derives1 from a parent class and each formula must override2 the parent
method to check if the formula holds in a certain world. An example of this is given
in Figures 4.4 and 4.5. On top of this data structure a queue system is built, which
will be loaded on specific search conditions (DFS or BFS, can be extended with other
search algorithms). This means that the search method of the model checking of a
model is not predetermined to be either BFS or DFS, but is given by the user. Below
is shown an example of a model checking on two different models with the same goal
formula g1 = ((((p ∨ s) ∨K(s ∧ u)) ∨ s) ∨K(s ∧ t)) ∨ u.

As can be seen in the binary formula tree in Figure 4.4, the modelM4 is being checked
for the formula g1 given earlier.

Figure 4.5: Example 2: The formula tree is less optimal for a BFS solution,
finding that M5 holds in 12 step, while the DFS finds same solution in the
optimal 5 steps.

To summarize, the data structure chosen for the formulas within the program has
been chosen because it offers the greatest range of customization for the user as well
as being the optimal in terms of number of computations. This gives the user the
possibility of trying out several search algorithms for finding the fastest solution for
extensive problems.

1In Object Oriented Programming (OOP), a derived class inherits functionality from a
base class. In this case functionality common to all formulas, namely a Check() procedure is
inherited along with any sub-formulas in the data structure.

2In OOP, overriding a derived procedure replaces the functionality of said procedure with
functionality specific to the derived class.
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4.3.3 Planning Tree

As with the argument for having models stored as sets of sets (sets of equivalence
classes) that no specific world in a model is interesting outside of the product update
queue of the update algorithms, a similar argument can be made for the models in
the planning tree. Each of the models stored in the nodes of the planning tree is
only considered when its node is expanded in accordance to the planning algorithm.
However these models are not referenced by any function or method outside of the
planning algorithm, and thus no reference to any specific model is necessary except
for accessing the goal-nodes when found. This means that all nodes in the planning
tree will only be reference via the root of the tree (again, except the goal-nodes, which
will be the intial nodes in the ExtractPlan(· · · ) algorithm).

The nodes in the planning tree, can be either and-nodes or or-nodes. Each of these
will contain a list of child nodes which will be added and accesses during expansion,
evaluation and extracting of the plan. Furthermore each node will also have a string
representation similar to that of the string representation of the epistemic model. The
string representation of a node will merely add an A or and O to the grammar for the
string representation of the model, as seen, in the extention of the grammar, below:

node ::= and-node | or-node
and-node ::= ’A’ +model
or-node ::= ’O’ +model
model ::= ’(’ + · · ·+ ’)’

Figure 4.6: The extended BNF for including the string representation of the
nodes in the planning tree to the BNF seen earlier.

The main reason for this is when expanding a node n with the available event mod-
els from D(E) in the Evaluate(· · · ) algorithm, if new childode nc already exists (is
bisimilar with an existing node m in the planning tree) then nc need not be expanded
as m will already be in the queue for expansion. The foundation for this check for
already existing nodes is done by storing the string representations of the nodes in a
hash-map[THC01], in order to supply a reference to m given its string representation
(in this case equal to the string representation of nc).

4.3.4 Plans

Once the tree has been expanded (the algorithm for this is shown in Section 4.4.2)
we are either left with a set of goal nodes in which the goal formula holds, or fail is
returned. If the former, we are then left with a set of goal nodes in which the goal
formula holds. From these goal nodes, in order to extract the plan, each expanded
node has a reference to its parent node (included both model and event model). As
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examples later will show, this enables us to label the tree with the event models from
the goal nodes to the root of the tree and extracting the sequence of events that
completes the plan.

4.4 Planning

Having defined the data structure and way of storing models, formulas and plans, we
can now progress to the actual planning. The planning process in the program is a
major part of the functionality in the program. In the following sections it will be
described in detail how an agent starting with an initial model, expands the planning
tree using the algorithms given in the theory (and [TB12b]), model checks on each
iteration to check if the goal formula is satisfied, and lastly when the tree has been
fully expanded3, extracts the plan using the plan-extraction algorithm.

Each of the algorithms given in this chapter are language independent however they are
designed towards an object oriented[oop] language. Function calls like default(<class>)
has been included for instantiating the <class>, which most object oriented languages
requires, but beyond that has no effect other than making the type of the variable
known.

The algorithms in this chapter will be displayed in the order in which they are em-
ployed.

4.4.1 Global Planning

After the list of propositional symbols, initial model, set of event models and goal
formula has been input into the program, the agent can start the planning process of
how to complete the problem. This process is divided into multiple smaller tasks which
will be detailed next. Specifically these tasks are the expansion of a node, whether
and-node (splitting) or or-node (product updating), evaluation of a given node or
subnodes and lastly the extraction of the plan, if one exists, when the planning tree
has been fully expanded.

As seen in algorithm Plan(· · · ) shown in Algorithm 1, in order for the agent to start
planning he first needs to initialize the planning tree, that is, creating the root of the
and-or-tree and setting the model of the root to the given initial model MI . Once
this has been completed, the evaluation of the tree starts. After the tree has been fully
expanded and the goal nodes are found (if any), the agent proceeds to the extraction
of the plan. This method is the main method of the program, meaning that once the

3As mentioned earlier, in oder to show the entire planning tree of the problems given, the
second part of the saturation rule β2 has been relaxed. In an runtime-optimized version of
the program where the full plannning tree is not important, this restriction can be restored.
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Algorithm 1: Plan(m, ems, g, pt) - Given a planType pt (weak or
strong), an initial model m and a set of event models ems, execute the
planning process on the given domain searching for the goal formula g.
input : m, ems, pt, g, the model m on which to start the pt-typed

(weak/strong) planning process to achieve the goal g, using ems.
output: plan, the plan for the agent.

1 queue ← default(Queue);
2 tree ← CreateTree(m);
3 Evaluate(tree, ems, g, pt);
// At this point all the goalnodes has been found. A plan is

achieved by walking up the tree, starting from the goal
nodes.

4 plan ← ExtractPlan(goalNodes, tree, ems, pt);
5 return plan;

program has received the input, the program starts and ends with this method. It is
also responsible for calling the functionality of all the subsequent algorithms shown in
this section. The order of the call stack is shown in Figure 4.7.

Figure 4.7: Call order for the methods mentioned: Plan, Evaluate, GlobalUp-
date, LocalUpdate, PointedUpdate.

The reason for this call order, is that the agent when starting his planning, calls
Plan(· · · ). In the Plan(· · · ) method, the call to Evaluate(· · · ) happens when com-
mencing the planning process on the planning tree. The three update functions are
different in the regard that GlobalUpdate(· · · ) applies all possible event models in
the domain to the current model when expanding a node. LocalUpdate(· · · ) applies
a specific event model to the current model, and PointedUpdate(· · · ) pairs a specific
world in the model, with a specific event in the event model in order to update the
world.

The function calls of line 1 and 2 in Algorithm 1 are responsible for initializing the
planning process. Line 1 initializes the static queue from which all the Next(· · · )
calls of the Evaluate(· · · ) function dequeues from. Line 2 intializes the planning tree,
that is, creates the root node with the model m on which Evaluate(· · · ) function
subsequently will be called.
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4.4.1.1 Runtime

The runtime of Plan(· · · ) depends on the runtime of the call to Evaluate(· · · ) as
well as the runtime of the ExtractPlan(· · · ) algorithm. The runtimes of these two
algorithms will be discussed in the corresponding sections. A summary of the run-
times will be given towards the end of the section when all the sub-runtimes has been
computed.

4.4.2 Evaluation

The evaluation of a node in the planning tree is a recursive function as shown in the
pseudo code in Algorighm 2 and 3 (due to its size it has been split into two parts in
order to fit on the page). This method contains the logic for walking the planning tree
as according to the set plantype (weak or strong planning).

Algorithm 2: Evaluate(n, ems, g, pt) - Recursively evaluate the model
of the current node n in regards to the goal g and the planType pt, using
the event models ems to update. Continues in Algorithm 3.
input : n, ems, g, pt, the node n, with its containing model, which is to

be evaluated for g. Recusive check using event models ems to
expand the pt-typed tree.

output: bool, true if the node n is solved, false otherwise.

1 if n is null then return true;
2 if n.IsSaturated then
3 Evaluate(Next(), ems, g, pt);
4 return n.Value;
5 end
6 if n.Model.Check(g) then

// The model is satisfying the goal condition
7 n.IsSaturated ← true;
8 n.Value ← true;
9 GoalNodes.Add(n);

10 Evaluate(Next(), ems, g, pt);
11 return true;
12 end
13 subNodes ← default( list of nodes );
14 if n is AndNode then subNodes.AddAll(Split(n.Model, ems));
15 else if n is OrNode then subNodes.AddAll(GlobalUpdate(n.Model,

ems));
16 Add(subNodes);
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Besides the mandatory null check, the Evaluate(· · · ) method iterates each node in a
recursive fashion, checking if a node is saturated. If the node is saturated the (already)
computed Value is returned. This check is to ensure that a node and containing model
is not model checked more than once. Next step (line 6) is the actual model checking on
the model of the node. The process of model checking behaves as the model checking
explained in Section 4.3.2 ”Formulas”, namely that each formula behave as a parse tree
which can be assigned a specific search method (BFS or DFS) for the model check.

If the model checking of line 6 returns true, the node is marked as saturated, because
no further exploration of the sub-tree of the node is necessary. Furthermore the Value
of the node is set to true for future reference. Lastly the the function returns true, as
the goal formula is satisfied in the node.

4.4.2.1 Queue

So far lines 3 and 10 has been skipped, and the reason for this is that both of these
contains the method call Next(), which is a part of the queue system for the nodes.
The system is built up by having an external queue, in which nodes can be added and
the next node can be dequeued, whenever needed. The order of the nodes in the queue
depends on the search type set statically within the queue system, whether DFS, BFS
or A*. This order is determined when the nodes are added to the queue (line 16).

Algorithm 3: Evaluate(n, ems, g, pt) - Continued from Algorithm 2.

// At this point, nodes that are not yet saturated, expanded
or satisfying g will be evaluated

17 Evaluate(Next(), ems, g, pt);
// At this point all the subnodes of n has returned and the

n.Value can be set accordingly
18 n.Value ← (n is OrNode || pt is Weak) && HasSolvedSubNode(subNodes)
19 || n is AndNode && not HasNoSolvedSubNode(subNodes) ;
20 return n.Value;

The recursive call of Evaluate(· · · ) also happens in line 17 at which point the current
node is neither saturated nor satisfying the goal formula g, and the last option for the
node to be considered Solved, is by having a solved child node. In the last lines 18 and
19 the node is assigned a solved value based on the values of its children. This means,
that if the node is an or-node and at least 1 of the children is marked as Solved or
if the plan type is set to weak meaning that even if an and-node has only one solved
child, the node will still be marked as Solved. Similarly, if the node is an and-node,
and all of its children are marked as Solved, the node itself will also be marked as
Solved.

Another significant line in the Evaluate(· · · ) algorithm that so far has been overlooked
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is line 9, which adds the newly discovered goal node to the list of already existing
goal nodes. This list of goal nodes is maintained outside of the method, and will be
used upon completion of the tree-traversal in order toe generate the plan. More on
this in Section 4.4.7. The two unreferenced functions HasSolvedSubNode(· · · ) and
HasNoSolvedSubNodes(· · · ) are function to test if a node has any solved children
and will not be further elaborated. If an or-node has no solved children, or if an
and-node has a subnode that is not solved, the value of the current node will be set
to false.

4.4.2.2 Runtime

The runtime of the Evaluate(· · · ) algorithm is dependent upon the size of the plan-
ning tree. The evaluate method is called once on each node in the tree, model checking
and possibly expanding the node. If k is the total number of or-nodes in the tree (and
thus also the number of and-nodes), |GU| the runtime of theGlobalUpdate(· · · ) algo-
rithm, |MC| the runtime of a single model check and |SP| the runtime of the Split(· · · )
algorithm, then the runtime of Evaluate(· · · ) can be given by:

Algorithm Alias Runtime
Evaluate(· · · ) |Eval| O(k · |GU| · |MC|+ k · |SP|)

Table 4.2: Runtime of the Evaluate(· · · ) algorithm.

In the runtime analysis of Evaluate(· · · ) shown in Table 4.2 the runtime has been
calculated on the basis of the sum of the runtime cost of an expansion of a or-node
and an and-node, because the number of or-nodes and and-nodes are the same but
the two operations have very different costs.

The runtimes of |SP| |GU| and |MC| will be given in the coming sections.

4.4.3 Global Update

The GlobalUpdate(· · · ) function is called on each iteration of the Evaluate(· · · )
method, whenever an or-node is expanded. This method is responsible for apply-
ing all the given event models to the model of the node being expanded. This is
done by a simple iteration of the event models and for each event model calling the
LocalUpdate(· · · ) function to apply that particular event model to the model of the
node.

Each resultant model from the LocalUpdate(· · · ) function call is stored in a list which
is returned at the termination of the GlobalUpdate(· · · ) function. If a resultant
model is null, meaning no applicable event models were available on the model, this
model will not be returned.
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Algorithm 4: GlobalUpdate(m, ems) - Updates a model m with all
possible event models ems.
input : m, ems, the event models in ems to be applied to the epistemic

model m.
output: newModels, the list of new epistemic models after ems has been

applied.

1 newModels ← default(Model[ ]);
2 index ← 0;
3 foreach EventModel em in ems do
4 newModel ← LocalUpdate(m,em);
5 if newModel is not null then
6 newModels [index ] ← newModel;
7 index ← index + 1;
8 end
9 end

10 return newModels;

4.4.3.1 Runtime

The runtime of the GlobalUpdate(· · · ) algorithm is dependant on the size of the
action set available (|A|), as well as on the runtime of the LocalUpdate(· · · ) (|LU|)
algorithm given in the next section. In overall terms, the runtime of the algorithm can
be given by:

Algorithm Alias Runtime
Evaluate(· · · ) |Eval| O(k · |GU| · |MC|+ k · |SP|)
GlobalUpdate(· · · ) |GU| O(|A| · |LU|)

Table 4.3: Runtime of the GlobalUpdate(· · · ) algorithm.

4.4.4 Local Update

The function LocalUpdate(· · · ) is named thusly, because the function applies one
event model to an epistemic model, hence a local update of the model. The function
contains four nested foreach-loops, which are responsible for iterating the equivalence
classes of both event model and epistemic model.

This may seem expensive in terms of number of runtime operations, however, in any
product update event between an epistemic model and an event model, all pointed
models (i.e. worlds) in the epistemic model needs to be paired with all the events in
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the event model, in order to test the precondition of the event and if successful the
application of the event on the pointed model.

Algorithm 5: LocalUpdate(m, em) - Local update of an epistemic
model with an event model.
input : m, em, the event model em to be applied to the epistemic model

m.
output: newModel, the new epistemic model after em has been applied.

// Setting parent relationship
1 newModel ← default(Model);
2 newModel.ParentModel ← m;
3 newModel.ParentEventModel ← em;
4 newModel.Title ← m.Title + em.Title;
5 foreach EquivalenceClass ec in m.EquivalenceClasses do
6 foreach EventEquivalenceClass eec in em.EquivalenceClasses do

// Creating new Equivalence Class
7 newEC ← default (EquivalenceClass);
8 foreach World w in ec do
9 foreach Event e in eec do

// Creating new World and adding if not null
10 newWorld ← PointedUpdate(w, e, eec, m);
11 if newWorld is not null then
12 newWorld.Title ← w.Title + e.Title;
13 newEC.Worlds.Add(newWorld);
14 end
15 end
16 end

// Adding Equivalence Class if not empty
17 if newEC is not ∅ then
18 newModel.EquivalenceClasses.Add(newEC);
19 end
20 end
21 end
22 return newModel;

The order in which the foreach-loops are executed takes care of preserving the equiv-
alence relation between the worlds, that is, if a world w1 is being applied an event
e1 in the same equivalence class as a world w2 having applied an event e2, and the
events e1 and e2 are related via the event equivalence relation R from the definition of
event models, the new worlds (w1, e1) and (w2, e2) will also be in the same equivalence
class. Due to the fact that a world w is always indistinguishable to itself, if w is being
applied two related events e1 and e2, the updated worlds (w, e1) and (w, e2) will also
be related, that is, be in the same equivalence class.
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In line 7 of Algorithm 5, the new equivalence classes for the updated models are made.
This happens once for each pair of epistemic equivalence classes and event equivalence
classes, which also determines the number of new equivalence classes in the upated
world (less any empty equivalence classes, due to preconditions not being fulfilled).

4.4.4.1 Runtime

The runtime of algorithm LocalUpdate(· · · ) is again dependant on a sub-call to the
algorithm PointedUpdate(· · · ) which will be described in the next section. Fur-
thermore the runtime of LocalUpdate(· · · ) is dependant on the number of worlds
and event in the epistemic model M = (W,R, V ) respectively the event model E =
(E,Q, pre, post). This yields the runtime seen in Table 4.4.

Algorithm Alias Runtime
Evaluate(· · · ) |Eval| O(k · |GU| · |MC|+ k · |SP|)
GlobalUpdate(· · · ) |GU| O(|A| · |LU|)
LocalUpdate(· · · ) |LU| O(|W | · |E| · |PU|)

Table 4.4: Runtime of the LocalUpdate(· · · ) algorithm.
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4.4.5 Pointed Update

The last of the three update methods, PointedUpdate(· · · ) as seen in Algorithm 6,
is the core of the product update process. First of all this is where the precondition
check happens. The precondition formula of the event e is checked against the world
w being updated. If the precondition formula holds in w, the method will move on to
create a new world (w, e) by way of copying all of the propositional symbols of V (w)
into V ((w, e)). Then, from the postmapping of e each of the propositional symbols will
be copied to (w, e) if not present in (w, e) already. Any negated propositional symbols
of the postmapping of e will be remove from (w, e) the symbol, if present.

Algorithm 6: PointedUpdate(world, event) - Pointed update of a
world w with an event e.
input : w, e, the event e to be applied to the world w.
output: newWorld, the new world after e has been applied.

1 if not e.Precondition.Check(w) then
2 return null;
3 end
4 newWorld ← default(World);
5 newWorld.Title ← w.Title + e.Title;
// Add all the symbols from w

6 foreach PropositionalSymbol ps in w.Symbols do
7 newWorld.AddSymbol(ps);
8 end
// then add the symbols from the postmapping of e if not

present, or remove if negated
9 foreach PropositionalSymbol ps in e.PostEventSymbols do

10 newWorld.ModifySymbol(ps);
11 end
12 return newWorld;

4.4.5.1 Runtime

The runtime of the PointedUpdate(· · · ) is determined by two factors, namely the
runtime of the model check that happens in relation to the precondition check of e
on w and the number of propositional symbols p ∈ V (w) and the postmapping of e.
Because the propositional symbols in V (w) and the postmapping of e is moved to the
new world (w, e) the runtime of this is determined by both.
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Algorithm Alias Runtime
Evaluate(· · · ) |Eval| O(k · |GU| · |MC|+ k · |SP|)
GlobalUpdate(· · · ) |GU| O(|A| · |LU|)
LocalUpdate(· · · ) |LU| O(|W | · |E| · |PU|)
PointedUpdate(· · · ) |PU| O(2 · |P |+ |MC|)

Table 4.5: Runtime of the PointedUpdate(· · · ) algorithm.

4.4.6 Splitting the and-node

When it comes to expanding a node, there are two different ways this can happen.
The first, expanding an or-node, has been explained above. Expanding an and-node
is quite different and much simpler as seen in Algorithm 7. Since and-nodes occur as
every second node in the planning tree, after a or-node has been updated, the splitting
of the and-nodes will also happen at every second node. However the splitting of the
equivalence classes within the and-node, which is really the result of the splitting,
can naturally only happen if the previous product update resulted in more than one
equivalence class. As seen in Split(· · · ) the algorithm is quite simple, iterating over

Algorithm 7: Split(m, em) - Splitting the epistemic model m of an
and-node into or-nodes, one for each equivalence class present in m.
input : m, the model to be split.
output: newModels, the list of new models, each containing an

equivalence class from m.

1 index ← 0;
2 newModel ← default(Model);
3 foreach EquivalenceClass ec in m.EquivalenceClasses do
4 newModel.EquivalenceClasses.Add(ec);
5 newModel.Title ← m.Title + index;
6 newModels[index]← newModel;
7 index← index + 1;
8 end
9 return newModels;

the equivalence classes of the model in the and-node and creating a new model and
or-node for each equivalence class. In this algorithm the naming convention is that
each new model from the splitting of an and-node, will get the name of the previous
epistemic model suffixed with an integer index counter starting from 0.

The result of expanding both and-nodes and or-nodes, can be seen in Figure 3.2,
which shows the planning tree of an agent in the domain Partial. Notice especially
that the splitting of the and-nodes occur twice, namely after the second GoRight
creating nodes ng1 and ng2g3 and then after the third GoRight action, creaing nodes
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ng2 and ng3 . An example of expanding an or-node can be seen in the same figure from
the first node (initial node) in the tree, expanding the node by applying all possible
event models to the epistemic model in that node. The GoRight event was the only
applicable event and thus only one new and-node was created.

4.4.6.1 Runtime

The runtime of the Split(· · · ) algorithm is upper bound by the number of equivalence
classes in the model of the node, which again is upper bound by the number of worlds
|W | in the model.

Algorithm Alias Runtime
Evaluate(· · · ) |Eval| O(k · |GU| · |MC|+ k · |SP|)
GlobalUpdate(· · · ) |GU| O(|A| · |LU|)
LocalUpdate(· · · ) |LU| O(|W | · |E| · |PU|)
PointedUpdate(· · · ) |PU| O(2 · |P |+ |MC|)
Split(· · · ) |SP| O(|W |)

Table 4.6: Runtime of the Split(· · · ) algorithm.
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4.4.7 Extracting Plan

When the goal nodes have been found in the planning tree we are ready to extract
the plan from the planning tree. Recall Section 3.4.3 detailing how to extract the
plan, given a solved node in the planning tree. The implemented algorithm works in a
similar way, however the direction of the extraction has been reversed. This is because
while expanding the nodes in the planning tree, each node was given a reference to its
parent epistemic model and its parent event model (the event model applied to the
parent epistemic model in order to create the node). By having this reference, the
plan extraction comes down to walking the tree from bottom (goal nodes) and up to
the root, contrary to having to search each node for which child is the solved node in
order to progress.

Algorithm 8: ExtractPlan(n, plan, planType) - Recursively extract
the plan plan given the plan type (weak/strong) planType and the node n.
The plan step of n is calculated and then ExtractPlan(· · · ) is recursively
called on the parent. Continues in Algorithm 9
input : n, plan, planType, node, planlink, plantype
output: true if the node is solved, false otherwise.

1 if n is null then return plan;
2 if n is OrNode || planType is Weak then
3 plan.Add(n.Model.ParentEventModel);
4 return ExtractPlan(n.ParentNode, plan, planType);
5 end

As with the definition in Section 3.4.3, making each step in the plan is dependant
on what kind of node is currently being processed as well as what plantype has been
selected (Strong or Weak). The algorithm shown in 8 and 9 is a recursive algorithm,
extracting for each node the plan-step and then calling itself on the parent node. The
different plan-steps is detailed below.

The algorithm starts after the plan-step for the goalnode has been initialized to Skip,
moving on to the parent node of the goalnode. For any parent node np there are two4

different cases:

• The parent node np is an or-node, which means an event model Ep of the parent
was applied to the modelMp of node np and the child node is the product update
Mp ⊗ Ep. Thus the plan-step returned is Ep.

• The parent node np is an and-node, which means the plan-step returned will
be an if-then-else construct. This construct will be created in the following
way:

4Actually a third case exists if cyclic solutions are taken into consideration. More on that
in the section Future Work.
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Algorithm 9: ExtractPlan(m, ems, g, pt) - Continued from Algorithm
8
input : n, plan, planType, node, planlink, plantype
output: true if the node is solved, false otherwise.

6 if n is AndNode then
7 currentStep ← default( if-then-else );
8 returnStep ← currentStep;
9 index ← 0;

10 while index < n.SubNodes.Length do
11 tempStep ← default( if-then-else );
12 tempStep.Condition ← n.SubNodes[index];
13 tempStep.IfStep ← n.SubNodes[index].ParentEventModel;
14 currentStep.ElseStep ← tempStep;
15 currentStep ← tempStep;
16 index ← index + 1;
17 end
18 currentStep ← skip;
19 plan.Add(returnStep);
20 return ExtractPlan(n.ParentNode, plan, planType);
21 end

– Given children nc1 , nc2 , . . . , ncn of np and the plan for each child made thus
far πnc1

, πnc2
, . . . , πncn

, recall the if-statement from Section 3.4.3. The
characterising formula δM is implemented by the string representation of
the model, since this representation is also unique and characterising (cf.
proofscetch Section 4.2 and thus sufficient for the conditional in the if-
statement. Thus, an if-then-else construct is made in the fashion if
str(M(nc1)) then πnc1

else ( if str(M(nc2)) then πnc2
else ( if . . .

then . . . else ( if str(M(ncn)) then πncn
else skip))).

The consecutive creation of the if-then-else statements in lines 10 - 17 of Algorithm
8, makes for each child, a nested if-then-else so that when all the children has been
iterated over, the resultant if-then-else statement returned, will be one continuous
statement. The recursive call in line 20 ensures that the algorithm will not return the
plan before the parent is null and terminates in line 1.

This algorithm will run upward in the planning tree from the goal nodes found earlier.
For each or-node it will add an event step to the plan, and for each and-node a
sequence of if-then-else statements with length equal to the number of children k
in the and-node, thus O(

∣∣or
∣∣+ ∣∣and

∣∣ · |nc|), where
∣∣or

∣∣ and ∣∣and
∣∣ are the number of

or-nodes and and-nodes in the final plan respectively.
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4.4.7.1 Runtime

The runtime of the ExtractPlan(· · · ) algorithm is bounded by the number of steps
in the final plan, as each node in the planning tree is walked in the extraction. For
each or-node only a single step is needed to move upwards in the tree, and for each
and-node an iteration over the number of children is necessary. However, since these
children are already being touched by their own goal-node-to-root-path, this will not
add extra calculations to the runtime.

Algorithm Alias Runtime
Evaluate(· · · ) |Eval| O(k · |GU| · |MC|+ k · |SP|)
GlobalUpdate(· · · ) |GU| O(|A| · |LU|)
LocalUpdate(· · · ) |LU| O(|W | · |E| · |PU|)
PointedUpdate(· · · ) |PU| O(2 · |P |+ |MC|)
Split(· · · ) |SP| O(|W |)
ExtractPlan(· · · ) |EP| O(|πf |)

Table 4.7: Runtime of the Split(· · · ) algorithm.

In the runtime analysis above, the expression |πf | is the number of steps in the final
plan.

4.4.8 Model Check - |MC|

The algorithm for model checking was described above in Section 4.3.2 where it was
visualized that the ultimate runtime of each model check depends on the search formula
used as well as complexity of the formula used to check. Recall that the model checking
algorithm consisted of a traversal of the tree, and that in worst case, dependant on
the search method chosen, the entire tree will be traversed.

4.4.8.1 Runtime

As described above the runtime of the model checking depends on the size of the
formula tree. In the example of Figures 4.4 and 4.5 the size of the formula tree for |φ|
is 17 nodes.

This yeilds the final runtime for the runtime table as shown in Table 4.8 below:

In the next section the runtime analysis will be concluded and the different runtimes
seen above will be concatenated to give an overview of the runtime for the entire
program.
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Algorithm Alias Runtime
Evaluate(· · · ) |Eval| O(k · |GU| · |MC|+ k · |SP|)
GlobalUpdate(· · · ) |GU| O(|A| · |LU|)
LocalUpdate(· · · ) |LU| O(|W | · |E| · |PU|)
PointedUpdate(· · · ) |PU| O(2 · |P |+ |MC|)
Split(· · · ) |SP| O(|W |)
ExtractPlan(· · · ) |EP| O(|πf |)
ModelCheck(· · · ) |MC| O(|φ|)

Table 4.8: Runtime of the Split(· · · ) algorithm.

4.5 Runtime Conclusion

In the previous sections the different algorithms in the program has been displayed
along with a runtime analysis of their execution. The table expanded with each runtime
analysis shows the values for the indivial algorithms. In this section the efficiency of
the different algorithms will be discussed along with a concatenated analysis for the
entire planning part of the program.

The individual algorithms will be referenced with their alias (|Eval|, |GU|, |LU|, |PU|,
|MC|, |SP| and |EP|) below.

The algorithms |EP|, |SP|, |PU| and |LU| has all been implemented optimally, in the
regard that all of these algorithms needs to iterate over either the number of proposi-
tional symbols in a world (|PU|), the number of worlds in an equivalence class (|LU|),
the number of steps in the final plan (|EP|) or the number of equivalence classes in the
and-node to be split (|SP|).

The model checking algorithm (|MC|) has been implemented in a straightforward way,
starting from the root of the formula tree and with each iteration relying on a search
method (DFS or BFS) to choose the next node. Another way to implement this, which
overall might be a faster solution would be to start with the atomic propositions in
the formula tree, instead of the root, and with each step upwards in the tree cache the
result in order to prevent repetitions. This method of model checking has been chosen
to be an optional expansion of the program and will be described a little more in the
”Future Work” section.
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Since whether or not |GU| is optimal depends upon |LU| being optimal, and the argu-
mentation above specifies |LU| being optimal, then |GU| is optimal too. The reason for
this is that as explained in the analysis of |GU|, whenever an or-node is extended (a
model is updated), all possible event models in the domain will need to be applied to
the model, in order to fully expand the node.

O(|Problem|) = O(|Eval|+ |EP|) (1)

= O((k · |GU| · |MC|+ k · |SP|) + |EP|) (2)

= O((k · |A| · |LU| · |φ|+ k · |W |) + |EP|) (3)

= O((k · |A| · |W | · |E| · |PU| · |φ|+ k · |W |) + |EP|) (4)

= O((k · |A| · |W | · |E| · (2 · |P |+ |MC|) · |φ|+ k · |W |) + |EP|) (5)

= O((k · |A| · |W | · |E| · (2 · |P |+ |φ|) · |φ|+ k · |W |) + |EP|) (6)

= O((k · |A| · |W | · |E| · (2 · |P |+ |φ|) · |φ|+ k · |W |) + |πf |) (7)

= O(k · |W | · (|A| · |E| · (2 · |P |+ |φ|) · |φ|+ 1) + |πf |) (8)

= O(k · |W | · (|A| · |E| · (|P |+ |φ|) · |φ|) + |πf |) (9)

And recall that k is the number of nodes in the planning tree, |W | the maximum
number of worlds in any model, |A| the size of the set of available event models, |E| the
maximum number of events in any event model, |P | the total amount of propositional
symbols in the given domain, |φ| the number of nodes in the formula tree and |πf | the
number of steps in the resultant plan.

The reason for |W | and |E| to be the maximum number of worlds in a any model
respectively events in any event model, is that the number of worlds in the different
models varies, just as the number of events varies from event model to event model.
Therefore if this runtime calculation are to have any merits, we need to consider the
maximum number of worlds in any model and event in any event model.

As can be seen in the final line of the runtime analysis ((9)), the only redundant
information used is the goal formula tree in the model checking. This is because
both the Evaluate(· · · ) model checks for models satisfying the goal formula φg and
the PointedUpdate(· · · ) checks the precondition of each event to the world being
updated.
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Chapter 5

Examples and Results
In this section four examples will be shown to illustrate the different features of the
theory and implementation. The first three examples are the running examples from
previous sections, namely Simple, Partial and NonDet. The last example is a
more complex domain, Complex, that utilizes both the aspect of partial observability
and non-determinism in the domain. These components are implemented in the same
way as seen before, via discovery of tiles not yet seen (partial observability) and the
teleports as seen in Section 2.4.2 (non-determinism).

For each of the examples will be provided the domain of the example as a figure, like
the ones seen in the previous running examples. Also the input, given to the program
as a text based file, will be shown. The input file is based on the grammar as partly
seen earlier (see 4.1(a) and 4.1(b)) and will be detailed where appropriate. Lastly the
output planning tree for the domain will be shown, as calculated by the program. In
the tree-graphs the legend for the node colors and edges will be detailed. As the graphs
shown are trees, the gray edges that lead upwards in the tree are merely reference edges
to show that the resultant child node nc of a node n has already been encountered in
the program. This is for visual simplicity. It is worth mentioning at this point that
the planning tree for the final domain Complex is so huge that it does not fit into
this section.

The first example will be described a little more detailed than the others, in order to
introduce the input syntax as well as planning tree. Also in the last section (Section
5.5 - Runtime of Examples) for each of the examples will be given the benchmark
numbers of the runtime for that domain.
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5.1 Domain: Simple

The first of the example runs given is the Simple domain as given in the introduction.
The layout of the domain is shown again for reference’s sake in Figure 5.1. As stated
before, in this example the goal of the agent is to go to the goal located on tile t2.

Figure 5.1: The domain Simple as seen in the introduction.

The input for the domain is shown in Figure 5.2 and describes everything about the
domain in the syntax specified by the grammar created for this purpose. Initially in
the input, line 1 gives the name of the domain which will be shown in the resultant
graphviz[gra] tree-graph and line 2 optionally shows a list of the symbols used in the
domain, seperated by commas. After this the initial model is specifed, in this case
consisting of only a single world, with the proposition t0, The agent is at tile t0 and
an optional title for the world has been given, w1. �

1 Title: _sokobansimple
2 Symbols: t0, t1, t2, t3
3
4 Model _init = [ _w1 = t0 ]
5
6 EventModel _GoRight = [
7 _gr1 = t0 ; ~t0 & t1 ,
8 _gr2 = t1 ; ~t1 & t3]
9 EventModel _GoLeft = [

10 _gl1 = t1 ; ~t1 & t0 ,
11 _gl2 = t3 ; ~t3 & t1]
12 EventModel _GoUp = [ _gu = t3 ; ~t3 & t2 ]
13 EventModel _GoDown = [ _gd = t2 ; ~t2 & t3 ]
14
15 _goal = t2� �

Figure 5.2: The input text file for the domain Simple.

Next the event models available to the agent in the domain is specified. There are four
event models, namely GoRight, GoLeft, GoUp and GoDown. Each of these has a num-
ber of events given, based on the number of places that particular event is applicable.
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The syntax of the events in the event models are specified by the precondition followed
by a semicolon, after which the postmapping is stated. The postmapping in the input
specification is given with an list of symbols to be modified, for example written ∼t0
for t0 7→ ⊥. In the case of GoRight and GoLeft there are two possible places (t0 and t1
respectively t1 and t2), whereas in the case of GoUp and GoDown these can only be
executed at tiles t3 and t2 respectively. Lastly the goal formula sought is given, again
with an optional name.

Title: sokobansimple
Symbols: t0, t1, t2, t3

Goal: t2
O(<[t0]>)

A(<[t1]>)

GoRight

O(<[t1]>)

A(<[t3]>)

GoRight

A(<[t0]>)

GoLeft

O(<[t3]>)

GoLeft

A(<[t2]>)

GoUp

Not
Solved Solved Solved

Recursively

Figure 5.3: The resultant planning tree for the Simple domain.

In the resultant tree-graph visible in Figure 5.3 the planning tree for the domain can
be seen. The root node is located in the top, in between the title of the domain and
the node-legends showing what each of the node colors mean. It should be mentioned
here, that the orange colored nodes (Solved Recursively) is merely an indicator that
the node could be solved, if the subtree of that node were to be expanded. Each node
is marked by its unique string representation as discussed in Section 4.3.3 which also
gives a simple overview of which propositional symbols holds in the given model and
world.

As can be seen in the tree, the agent can from the initial node only choose to GoRight.
After this action, the resultant and-node is split into 1 or-node containing a single
equivalence class with a single world, placing the agent at tile t1. From this node
((O(<[t1]>))) the agent now has two options: Either he can continue right, or he can
go back (left). The edges from the or-node reflects this. If the agent chooses to go
left, the protruding edge from this choice ((A(<[t0]>))) leads back up to the initial
state, and is colored orange, marking the node as a recursive solution.
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Lastly the model satifying the goal formula is found in the node A(<[t2]>) after going
up from tile t3. This node is a goal node, because the node is solved, and it has no
outgoing edges.

5.2 Domain: Partial

In the partially observable domain introduced earlier the input as well as the resultant
planning tree is substantially larger and more complex. The domain is, again as a
reference, shown in Figure 5.4.

Figure 5.4: A partial observable domain Partial.

Now in addition to the syntax explained in the Simple domain, there is now the extra
information at line 8 in the input of Figure 5.5, which makes the initial model differ
from the definition in the simple domain. This line details that world w1 is equivalent
to to the world w2 and furthermore that the world w2 is equivalent to the world
w3. This is of course the definition of the equivalence relation and merely defines that
worlds w1, w2 and w3 belongs in the same equivalence class related via the equivalence
relation R. �

1 Title: _sokobanpartial
2 Symbols: g1, g2, g3, t0, t1, t2, t3 , t4 , t5 , t6 , t7
3
4 Model _init = [
5 _w1 = t0 & g1,
6 _w2 = t0 & g2,
7 _w3 = t0 & g3
8 :: w1 = w2, w2 = w3 ]� �

Figure 5.5: First part of the input text file for the domain Partial.

This will also become clear when loooking at the initial model in the planning tree in
Figure 5.7 which has the string representation O(<[g1,t0],[g2,t0],[g3,t0]>) indi-
cating that indeed the three worlds given by [g1,t0], [g2,t0] and [g3,t0] is located
within the same pair of angled brackets ’<’ ’>’ as specified in the grammar in Section
4.2.
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Another aspect of the text input which is worth mentioning, are the paired events in
the event model GoRight at lines 12 to 17 in the second part of the input in Figure
5.6, pairing up _gr11 with _gr12, _gr21 with _gr22 and so forth. The reason for
this, is that when the agent executes these event, he will arrive at two different states,
depending of whether or not the goal is located at the location g1, g2 or g3 respectively.

�
9 EventModel _GoRight = [

10 _gr0 = t0 ; ~t0 & t1 ,
11 _gr11 = t1 & g1 ; ~t1 & t3,
12 _gr12 = t1 & ~g1 ; ~t1 & t3,
13 _gr21 = t3 & g2 ; ~t3 & t4,
14 _gr22 = t3 & ~g2 ; ~t3 & t4,
15 _gr31 = t4 & g3 ; ~t4 & t7,
16 _gr32 = t4 & ~g3 ; ~t4 & t7 ]
17
18 EventModel _GoLeft = [
19 _gl0 = t1 ; ~t1 & t0 ,
20 _gl1 = t3 ; ~t3 & t1 ,
21 _gl2 = t4 ; ~t4 & t3 ,
22 _gl3 = t7 ; ~t7 & t4 ]
23
24 EventModel _GoUp = [
25
26 _gu0 = t3 ; ~t3 & t2 ,
27 _gu1 = t5 ; ~t5 & t4 ,
28 _gu2 = t7 ; ~t7 & t6 ]
29
30 EventModel _GoDown = [
31 _gd0 = t2 ; ~t2 & t3 ,
32 _gd1 = t4 ; ~t4 & t5 ,
33 _gd2 = t6 ; ~t6 & t7 ]
34
35 _goal2 = (t2 & g1) | (t5 & g2) | (t6 & g3)� �

Figure 5.6: The second part of the input text file for the domain Partial.

This can also be seen in the planning tree in Figure 5.7 where the and-node are split,
namely the first time at node 4 from the root (A(<[g1,t3]>,<[g2,t3],[g3,t3]>)),
which is split into O(<[g1,t3]>) and O(<[g2,t3],[g3,t3]>) representing the situa-
tions where the goal is located at g1 and the situation where it is not.

Already now, the resultant planning tree has increased dramatically in size because
of the partial observability. In the tree exists three nodes that are satisfying the goal
formula. These three are A(<[g1,t2]>), A(<[g2,t5]> and A(<[g3,t6]>) representing
the three goal states possible as given with the inputted goal formula _goal2 = ( t2
& g1 ) | ( t5 & g2 ) | ( t6 & g3 ).
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Title: sokobanpartial
Symbols: g1, g2, g3, t0, t1, t2, t3, t4, t5, t6, t7

Goal: ((t2) And (g1)) Or (((t5) And (g2)) Or ((t6) And (g3)))
O(<[g1, t0], [g2, t0], [g3, t0]>)

A(<[g1, t1], [g2, t1], [g3, t1]>)

GoRight

O(<[g1, t1], [g2, t1], [g3, t1]>)

A(<[g1, t3]>, <[g2, t3], [g3, t3]>)

GoRight

A(<[g1, t0], [g2, t0], [g3, t0]>)

GoLeft

O(<[g1, t3]>) O(<[g2, t3], [g3, t3]>)

A(<[g1, t4]>)

GoRight

A(<[g1, t1]>)

GoLeft

A(<[g1, t2]>)

GoUp

O(<[g1, t4]>)

A(<[g1, t7]>)

GoRight

A(<[g1, t3]>)

GoLeft

A(<[g1, t5]>)

GoDown

O(<[g1, t7]>)

GoLeft

A(<[g1, t6]>)

GoUp

O(<[g1, t6]>)

GoDown

O(<[g1, t5]>)

GoUp

O(<[g1, t1]>)

GoRight

A(<[g1, t0]>)

GoLeft

O(<[g1, t0]>)

GoRight

A(<[g2, t4]>, <[g3, t4]>)

GoRight

A(<[g2, t1], [g3, t1]>)

GoLeft

A(<[g2, t2], [g3, t2]>)

GoUp

O(<[g2, t4]>) O(<[g3, t4]>)

A(<[g2, t7]>)

GoRight

A(<[g2, t3]>)

GoLeft

A(<[g2, t5]>)

GoDown

O(<[g2, t7]>)

A(<[g2, t4]>)

GoLeft

A(<[g2, t6]>)

GoUp

O(<[g2, t6]>)

GoDown

O(<[g2, t3]>)

GoRight

A(<[g2, t1]>)

GoLeft

A(<[g2, t2]>)

GoUp

O(<[g2, t1]>)

GoRight

A(<[g2, t0]>)

GoLeft

O(<[g2, t0]>)

GoRight

O(<[g2, t2]>)

GoDown

A(<[g3, t7]>)

GoRight

A(<[g3, t3]>)

GoLeft

A(<[g3, t5]>)

GoDown

O(<[g3, t7]>)

A(<[g3, t4]>)

GoLeft

A(<[g3, t6]>)

GoUp

O(<[g3, t3]>)

GoRight

A(<[g3, t1]>)

GoLeft

A(<[g3, t2]>)

GoUp

O(<[g3, t1]>)

GoRight

A(<[g3, t0]>)

GoLeft

O(<[g3, t0]>)

GoRight

O(<[g3, t2]>)

GoDown

O(<[g3, t5]>)

GoUp

O(<[g2, t1], [g3, t1]>)

A(<[g2, t3], [g3, t3]>)

GoRight

A(<[g2, t0], [g3, t0]>)

GoLeft

O(<[g2, t0], [g3, t0]>)

GoRight

O(<[g2, t2], [g3, t2]>)

GoDown

Not
Solved Solved Solved

Recursively

Figure 5.7: The resultant planning tree for the Partial domain.

5.3 Domain: NonDet

The non-deterministic domain NonDet shown in Figure 5.8 (and also earlier in Section
2.4.2) introduces into the input file the same kind of grouping of events as partial
observability did.

Figure 5.8: The domain NonDet which has a component of non-determinism
represented by teleports.

The interesting fragment of the input file (the event model GoRight is used as example)
is shown in Figure 5.9. In this input fragment, we can again see the groupings of related
events, namely the _gr21 and _gr22 events, which as explained in the theory has the
same precondition t1 and thus allows only one of them to be executed at runtime.
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The rest of the input file follows the convention of the input files from the Simple and
Partial domains. �

1 EventModel _GoRight = [
2 _gr1 = t0 ; ~t0 & t1 ,
3 _gr21 = t1 ; ~t1 & t3,
4 _gr22 = t1 ; ~t1 & t4 ]� �

Figure 5.9: Fragment of the input text file for the domain NonDet.

The resultant graphs from the NonDet domain has this time been given in two
versions. The first (leftmost) tree, is the resultant planning tree when the domain is
solved weakly. Because of the non-determinism, it is not possible to solve the problem
strongly as shown in the rightmost tree. The reason for this is that theoretically the
agent could possibly never arrive at the teleport t4 even though the stochastic process
supposedly distributes an equal chance to each outcome. In the leftmost tree, though,
is shown a possible plan to the problem that may be a solution.

Title: sokobannondet
Symbols: t0, t1, t2, t3, t4

Goal: t5
O(<[t0]>)

A(<[t1]>)

GoRight

O(<[t1]>)

A(<[t3]>, <[t4]>)

GoRight

A(<[t0]>)

GoLeft

A(<[t2]>, <[t4]>)

GoDown

O(<[t3]>) O(<[t4]>)

GoUp

A(<[t5]>)

GoDown

O(<[t2]>)

GoLeft

(a) The planning tree if weakly solved.

Title: sokobannondet
Symbols: t0, t1, t2, t3, t4

Goal: t5
O(<[t0]>)

A(<[t1]>)

GoRight

O(<[t1]>)

A(<[t3]>, <[t4]>)

GoRight

A(<[t0]>)

GoLeft

A(<[t2]>, <[t4]>)

GoDown

O(<[t3]>) O(<[t4]>)

GoUp

A(<[t5]>)

GoDown

O(<[t2]>)

GoLeft

(b) The planning tree if strongly solved.

Figure 5.10: The resultant planning trees for the NonDet domain.

The possible plan shown in Figure 5.10(a) can be read as GoRight ;GoRight ;GoDown,
and we can then infer that the situation this plan is equipped to solve, is where the
teleport at tile t2 transports the agent to tile t4 the first time the agent enters the
teleport.
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5.4 Domain: Complex

The last example is a little more complex in order to force the program to create a
bigger planning tree. Looking at the domain in Figure 5.11, notice the addition of
the Possible Box Location. This domain is an instance of the classical Sokoban game
([sok]) with the teleport added to provide the component of non-determinism. In the
game, the objective is to push the box to the goal location.

Figure 5.11: The domain Complex, which include the aspect of partial observ-
ability and non-determinism.

In order to push a box, the agent has to be located behind the box and no obstacles
can be in front of the box. In this domain, the agent has to use the teleports in order
to get behind the box to push it out onto the goal location. The domain contains
both the aspects of non-determinism, by the teleports, and partial observability, as
the agent does not know on which of the locations the box is located. �

1 EventModel _GoLeft = [
2 ...
3 _gl11 = t1 & ~b0 & ~b6 & b4 ; t6 & ~t1,
4 _gl12 = t1 & ~b0 & ~b6 & b5 ; t6 & ~t1,
5 _gl13 = t1 & ~b0 & ~b6 & ~(b4 | b5) ; t6 & ~t1,
6
7 _gl21 = t1 & ~b0 & ~b7 & b8 ; t7 & ~t1,
8 _gl22 = t1 & ~b0 & ~b7 & b9 ; t7 & ~t1,
9 _gl23 = t1 & ~b0 & ~b7 & ~(b8 | b9) ; t7 & ~t1,

10
11 _gl31 = t1 & ~b0 & ~b11 & b5 ; t11 & ~t1 ,
12 _gl32 = t1 & ~b0 & ~b11 & b9 ; t11 & ~t1 ,
13 _gl34 = t1 & ~b0 & ~b11 & ~(b5 | b9) ; t11 & ~t1,
14 ...
15 ]� �

Figure 5.12: Part of the event model GoLeft from the input text file for the
domain Complex.

The boxes are added to increase the number of actions available to the agent. Due to
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these factors, both the input file and the resultant planning tree is very large and the
final amount of nodes in the planning tree is close to 1260.

Part of the input file to the planning problem is given in Figure 5.12, where the
most interesting aspect of the partial obervability and non-determinism combination
is shown. A lot happens in this part of the GoLeft event model which takes the agent
left from tile t1 his start tile.

The reason there are so many lines to describe just this single move, is because the
agent will enter a teleport tile at t0 and then get teleported to one of the tiles t6, t7
or t11, where he may discover a box on either of the locations t4, t5, t8 or t9 (a box
located on a tile tx is written bx, i.e. a box on tile t4 is indicated by b4).

Since the move displayed is from tile t1 all of the events in the partial event model
listed requires that the agent be located at tile t1. Furthermore all the events require
that no boxes obstructs the agent’s move (from t1 to t0) and that no box is placed on
the destination tile (one of the three teleport tiles). If these first three precondition are
satisfied, we see in lines 3-5 a construction similar to the one of the partial observability
example in Section 5.2. The agent acquires the knowledge of whether or not the box
is located at tile t4 or t4 or not at all. This construction is repeated in lines 7-9 and
11-13 just with the other teleport destinations.

As can be seen, this is just the event model input for the agent move from t1 to t0
(destination being t6, t7 or t11). The entire event model for GoLeft is much bigger,
not to mention the rest of the event models available to the agent.

5.5 Runtime of Examples

In the following, will be shown, the numbers for the four example runs in addition
to the graphs visualizing these. Each of the examples has been run 4 times and the
result furthest from the average discarded. This is because the runtime of each of the
examples is very short and thus even the smallest spike in CPU usage will corrupt the
numbers.

In Table 5.1 the numbers are shown. This table also displays the number of nodes in
each of the final planning trees as well as the time-per-node ratio. This ratio is just a
rough sketch of the runtime on bigger problems as the Complex example is the most
computationally heavy problem given to the program. In Figure 5.13 the three excel
graphs for the values given above are shown. The first graph shows the final number
of nodes in the program.
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As the planning trees had already revealed earlier, we get lot more nodes in the prob-
lems including partial observability.

Simple NonDet Partial Complex
Number of events in GoRight 2 3 7 33

Nodes in Planning Tree 7 10 59 305

Evaluation Time
11.2 13.65 23.4 951.32
15.4 18.71 20.8 804.23
10.5 17.36 17.56 1111.78

Avg. Eval. Time 12.37 16.57 20.59 955.78
Time / Node 1.77 1.65 0.35 3.13

Table 5.1: Runtime values for running the problems Simple, Partial, NonDet
and Complex.

This is because for each proposition which is only partially observable, an extra world
will exist in each equivalence class of the root node reflecting the unknown state
between worlds in which the proposition holds and worlds where it does not. Combined
with the notion of non-determinism, even though the domain Complex is only 1.5
times as big as the Partial domain in terms of propositional symbols available, the
resulting planning tree contains 5 times as many nodes.

(a) Number of nodes in the
final planning tree.

(b) Time to run problem in
the program.

(c) Time per node ratio.

Figure 5.13: Three excel graphs showing the results from the CPU analysis of
runnin the problems.

This is of course also due to the extra amount of events required in the individual event
models. Even if the Complex domain is more extensive and thus has more places an
agent can execute the action GoRight, the 33 events in the GoRight event model of the
Complex domain is mostly a result of the combination between partial observability
and non-determinism.
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Future Work
In this section will be described the possible extensions to the program. These exten-
sions are suggestions for logical continuation of the program either because the theory
behind has already been covered (see [TB12b]) or to serve the goal of getting the pro-
gram closer to the well known standardized planners. The extensions has either been
left out of the intial version of the program because the extra time required would be
too costly, or because the extension itself was too big or required to big a change in
the already existing code.

6.1 Cyclic Plans

In the planning of a domain with a non-deterministic component, as has been seen,
it is not possible to provide a strong plans because as non-determinism suggests, the
agent cannot make a plan to be absolutely sure that he will arrive in a state satisfying
the goal formula. In the NonDet domain given earlier, the non-deterministic aspect
of the domain is given by the teleports, and in this domain, it would help being able
to formulate a plan along the lines of while not K(t4), enter teleport on t3, i.e. the
aspect of a sequence of repeatable plan-steps to execute as long as a given condition
is not satisfied.

This sequence of plan-steps would serve to help in planning situations where not all
the childnodes of an and-node are solved, because some of the nodes are duplicates of
earlier encountered nodes. In the planning tree of the strongly solved version of the
NonDet domain given in Figure 5.10(b) it can be seen in the bottom of the tree, that
node A(<[t3]>,<[t4]>) splits into O(<[t3]>) and O(<[t4]>) where only the latter
is marked as solved. The former, however, could be solved too, by transforming the
planning tree into a planning graph and then follow the reference up in the tree to
arrive at A(<[t1]>) and start over.
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6.2 NPDDL

The focus of this project has been to implement the theory of conditional epistemic
planning and to make examples that shows how the theory works in practice. Therefore
the notion of extending the program with a parser for inputting examples in other
languages and thus make it possible for other users (not knowing the exact syntax used
in this program) to utilize the program and its visual planning tree representations for
their own examples would be a logical extension. A somewhat standardized language
for planning domains, which is well known within the planning community is the
Planning Domain Definition Language (PDDL) [pdd] which is built on the STRIPS
and Action Description Language. In order to fully encompass the aspects of the
program (partial observability and non-determinism) implemented in the program,
the decision became to make a parser for NPDDL (Non-deterministic PDDL, [PB12])
that would translate NPDDL input to the syntax needed for this program in order to
read NPDDL examples into the program and execute these.

The work with implemented grammar was well on the way, and was one of the ex-
tensions being actively worked on, in the duration of the project. The work on this,
however, did not conclude due to lack of time and thus only the grammar part of the
implementation can be seen as result (see Appendix A.2).

6.3 Plausibility Planning

Another logical extension of the dynamic epistemic logic framework is to augment
the framework with planning based on plausibility models. Since strong plans, in a
real world scenario where an agent may encounter many situations with an aspect of
uncertainty, are not computationally viable, and there is no way to tell if one weak
plan is better than another, the introduction of plausibility models would come in
handy. The agent would then be able to pick the action he most believes in at the
time of choice [pla].

6.4 Planning Improvements - Caching

A few of the things in the program, which can be changed in order to make the program
work optimally, is the evaluation of models and formulas in the planning process. As
mentioned in the appropriate sections, when a model is model checked if it satisfies
a given formula, the formula tree is expanded in a top down approach using either
BFS or DFS. A faster albeit implementationally more complex solution, is to have the
formula tree being traversed from the leaf nodes and upwards, and in the process of
doing this, caching sub-formulas in order to return their value later when needed. This
will ensure that whenever a formula or sub-formula appears that has been evaluated
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before (in that world), it will instantly return the value of the evaluated sub-formula,
instead of having to redo the model check.

This method can also be applied in the string representation of the models. Each
time a new model is checked, its string representation can be stored within the model
object itself in order to avoid recalculating the string representation of that model.
This could potentially save a lot of computing power, depending how many times a
model is compared to other models for bisimilarity.

6.5 Input

Another aspect of the program which was left at the foundation initially built, was the
process of the input. The grammar and parser which was generated works wonders,
however writing the input in the specified syntax can quickly become an ardeous task.
Thus a logical expansion for the program would be to create an input editor for specific
domains (for example the sokoban domains) in order to quickly generate the input for
far larger domains and thus be able to put the program to the test.
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Chapter 7

Conclusion
This project has been about the implementation of the planning process of an agent
wanting to solve a task without actually executing any action before the plan has been
fully created. As stated in the introduction, the dynamic epistemic logic framework
has been used in this regard to offer the notions of knowledge and dynamism beyond
classical logic, namely that the agent can have knowledge regarding a proposition and
that the agent can dynamically update his belief state to advance in the domain.
Progressing from this, conditionals was introduced in the planning section of Dynamic
Epistemic Logic to provide the agent with if-then-else constructs to manouver in
situations where aspects of uncertainty was in place. Specifically it was shown in the
example given in Figure 2.6 how an agent might go about making a plan that takes
into account the fact that the goal might not be located at the first goal location,
but maybe at the second or third, and the if-then-else construct was used in this
example. Following this, planning trees was introduced as a way to organize the
different epistemic models encountered in the domain, and their relationship in order
to later extract a plan if a state satisfying the given goal formula was found. The
introduction of weak and strong plans gave the notion of plans that may lead to a
state satisfying the goal formula (weak plans) respectively and always lead to a state
satisfying the goal formula (strong plans).

In the implementation section, the practical part of the project was described in detail.
The method of inputting the information into the program was implemented using an
left-to-right, leftmost derivation parser generator, antlr, to translate the input text
file into objects in the program. The planning part of the program was implemented
using object oriented programming, in which the epistemic models was implemented
as sets of equivalence classes, which in turn contains sets of related worlds. This turned
out to be an easy way to keep track of the equivalence relation when updating models
via the product update, and thus the event model was implemented similarly. By
iterating first the sets of worlds in an equivalence class and subsequently iterating the
sets of events in an event model to be applied in the product update, the resulting
worlds would be put into the same (new) equivalence class, them being equivalent in
terms of the equivalence relation.
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The planning tree was implemented with a node class each having a set of child nodes,
as well as a reference to the parent node for later easy extraction of the plan. The
unique string representation used with both the models and the nodes ensured that
no duplicates of nodes would appear in the tree. If a duplicate model was found when
product updating, a gray reference edge would be created pointing to that already
existing model in the node present in the tree merely to indicate that the new node
(and model) had been encountered before and thus would not be expanded. It was
noticed that planning problems containing the aspect of partial observability lead to
substantially larger planning trees than problems with only non-determinism or no
uncertainty at all. The reason being that each time an agent is uncertain regarding
a proposition in the same equivalence class, the number of worlds in that equivalence
class increases, leading to a larger branching factor when the and-nodes are split.
In the extended example, combining both the notion of partial observability with
non-determinism, the resultant planning tree became huge due to an highly increased
amount of events in each model to account for all the different possibilities (a box
being present or not and arriving at place a or place b).

The implementation of the planning process in the program was done using a recur-
sively called function Evaluate(· · · ) which in turn would call the necessary methods
for model checking the model of the current node, and expanding if the formula was
not satisfied. The expanding of a node was done in a derived class of the node, the
or-node or and-node which would call either a function to product update the or-
node or to split the and-node into child nodes. It was noticed that besides a few
implementational quirks the runtime of the update functions ran in close to optimal
time, the argument being that no matter which data structure chosen, all worlds and
all events needed to be iterated over, in order to produce the new epistemic model,
and since no singular world would ever be interesting out of the whole, the solution of
sets of sets was a sound one.

In the Examples and Results section, was then shown four different domains with
different aspects of the dynamic epistemic logic framework included. The Simple
domain was the example from the introduction showing how an agent could move
around in a domain and plan to reach a known goal. The Partial domain showed
what happens in the case that the agent does not in advance know the location of the
goal and how the event models has to be modified to allow the agent to discover this.
The third example was the NonDet domain, which included the teleport component
in order to add the notion of non-determinism to the domain. The idea being that no
matter how many times an agent were to enter a teleport, the destination would remain
the product of a randomized (stochastic) process (given more than one destination in
the domain). The last example glanced upon the idea of the combination of partial
observability as well as non-determinism and showed that the size of the resultant
planning tree grew with the increase in propositional symbols and events in the event
models. The resultant planning tree had 305 nodes in comparison to the 59 of the
Partial domain and the 10 of the NonDet example.

A major focus in the program has been to make it optimally running, not only in terms
of the already implemented functionality, but also to give the option to include other
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search methods with minimal work. As mentioned, both the model checking process
as well as the process of expanding the planning tree utilizes the data structure of
object oriented programming, polymorphism and derived classes to its full extend to
allow for customized additions like additional search algorithms or tree-traversals.

It was shown that the program could handle the examples given without a hitch,
however, that being said, with bigger and more complex domains the input given
to the program will increasingly complicated to write in hand, and thus in order to
fully put the program to the test a domain editor of sorts would be required. This
was suggested as a future expansion of the program alongside the parser for NPDDL
inputs, as there exists larger examples written in NPDDL syntax.

From beginning to end, the project has been very straigtforward. The main objective
was to follow the ”script”, mainly the article [TB12b] and to understand and implement
what was written. The product of the project, the program, implements the theory in
a mostly optimzed fashion and allows for the user to specify own examples to input
and run in the program. There is room for improvement in the program as, due to time
restrictions, some of the aspects of the implementation was left as ’just’ the foundation
instead of improving upon these at a later time. For instance, this is true regarding
the model checking component of the program, using a top-down approach to evaluate
the formulas given, instead of starting with the atomic properties in a formula, which
would have been more efficient.
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Appendix A

Input Grammar

A.1 Input Planning Problems �
1 grammar CEPlistbranch;
2
3 options {
4 language = CSharp3;
5 backtrack = true;
6 memoize = true;
7 }
8
9 tokens {

10 TITLE = ’Title’;
11 PROPOSITIONALSYMBOLS = ’Symbols:’;
12 MODEL = ’Model’;
13 EVENTMODEL = ’EventModel ’;
14 EQUALS = ’=’;
15 LSQUARE = ’[’;
16 RSQUARE = ’]’;
17 OR = ’|’;
18 AND = ’&’;
19 START = ’^’;
20 END = ’$’;
21 NOT = ’~’;
22 TRUE = ’T’;
23 FALSE = ’F’;
24 K = ’K’;
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25 COMMA = ’,’;
26 COLON = ’:’;
27 SEMI = ’;’;
28 DOUBLECOLON = ’::’;
29 LPAREN = ’(’;
30 RPAREN = ’)’;
31 TITLESTART = ’_’;
32 }
33
34 @parser :: header {
35 using CEP.datastructure;
36 using System.Collections.Generic;
37 }
38 @lexer :: header {
39 using CEP.datastructure;
40 using System.Collections.Generic;
41 }
42 @members {
43 private string modelTitle;
44 private string worldTitle;
45 private string formulaTitle;
46 private Formula tempFormula;
47 private List <PropositionalSymbol > symbols;
48 }
49
50 @parser :: namespace { CEP.grammar }
51 @lexer :: namespace { CEP.grammar }
52 // r | (f & Kp)
53
54 public cep :
55 ’Title:’ t = title { Cep.Title = t; }
56 PROPOSITIONALSYMBOLS p1 = propositionalsymbol { Model.

Symbols.Add(p1); } (COMMA p2 = propositionalsymbol {
Model.Symbols.Add(p2); })*

57 thisModel = model { Cep.AddRoot(thisModel); }
58 (em = eventmodel { Cep.EventModels.Add(em); })*
59 (f = formula { Cep.Goal = f; })?
60 ;
61
62 public model returns [Model m] :
63 { m = new Model(); }
64 MODEL (t = title { m.Title = t; } EQUALS)? LSQUARE
65 w = world { m.AddWorld(w); } (( COMMA w2 = world { m

.AddWorld(w2); })*)
66 (DOUBLECOLON wr = worldrelation { m.

AddWorldRelation(wr.a, wr.b); } ((COMMA wr2 =
worldrelation { m.AddWorldRelation(wr2.a, wr2.b
); })*))?

67 RSQUARE
68 ;
69
70 public eventmodel returns [EventModel em] :
71 { em = new EventModel (); }
72 EVENTMODEL t = title { em.Title = t; } EQUALS LSQUARE



Input Planning Problems 77

73 e = event { em.AddEvent(e); } ((COMMA e2 = event {
em.AddEvent(e2); })*)

74 (DOUBLECOLON er = eventrelation { em.
AddEventRelation(er.a, er.b); } ((COMMA er2 =
eventrelation { em.AddEventRelation(er2.a, er2.
b); })*))?

75 RSQUARE
76 ;
77
78 world returns [World w]
79 : { w = new World(); }
80 t = title EQUALS (p1 = propositionalsymbol { w.AddSymbol(p1

); } (AND p2 = propositionalsymbol { w.AddSymbol(p2);
})*)?

81 { w.Name = t; }
82 ;
83
84
85 worldrelation returns[WorldRelation wr]
86 : {wr = new WorldRelation (); }
87 t1 = title EQUALS t2 = title
88 { wr.a = new World(t1); wr.b = new World(t2); }
89 ;
90 event returns [Event e]
91 : { e = new Event(); }
92 (t = title EQUALS { e.Name = t; })? (f = formula {e.

PreEvent = f; })? SEMI (p1 = propositionalsymbol { e.
PostEvent.Add(p1); } (AND p2 = propositionalsymbol { e.
PostEvent.Add(p2); })*)?

93 ;
94
95
96 eventrelation returns[EventRelation er]
97 : {er = new EventRelation (); }
98 t1 = title EQUALS t2 = title
99 { er.a = new Event(t1); er.b = new Event(t2); }

100 ;
101
102 public formula returns [Formula f] :
103 { formulaTitle = ""; }
104 (t = title { formulaTitle = t; } EQUALS )? e = expr { f = e

; f.Title = formulaTitle; }
105 ;
106
107 expr returns [Formula f] :
108 (p = propositionalsymbol { f = p; }
109 | NOT f2 = expr { f = new Not(f2); }
110 | K f3 = expr { f = new Knowledge(f3); }
111 | LPAREN f1 = expr { f = f1; } RPAREN)
112 ((AND f4 = expr { f = new And(f, f4); }) |
113 (OR f5 = expr { f = new Or(f, f5); }))*
114 ;
115
116 propositionalsymbol returns [PropositionalSymbol pros]
117 : TRUE { pros = new True(); }
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118 | id1 = id { pros = new Atomic(id1); }
119 | NOT id2 = id { pros = new NotLiteral(new Atomic(id2)); }
120 ;
121
122 id returns [string s]
123 : { s = string.Empty; }
124 l1 = LOWERCASELETTER { s += l1.Text; } (l2 =

LOWERCASELETTER { s += l2.Text; } | l3 = LETTER { s +=
l3.Text; } | i = INTEGER { s += i.Text; })*

125 ;
126
127 title returns [string title]
128 : TITLESTART (l1 = LETTER { title += l1.Text; } | l2 =

LOWERCASELETTER { title += l2.Text; } | i = INTEGER {
title += i.Text; })+

129 ;
130
131 WS : ( ’ ’
132 | ’\t’
133 | ’\r’
134 | ’\n’
135 ) { Skip(); }
136 ;
137
138 INTEGER : ’0’..’9’
139 ;
140
141 LOWERCASELETTER
142 : ’a’..’z’ ;
143
144 LETTER : ’A’..’Z’
145 ;� �

A.2 Input NPDDL �
1 grammar npddl;
2
3 options {
4 language = CSharp3;
5 backtrack = true;
6 memoize = true;
7 }
8
9 tokens {

10 DEFINE = ’define ’;
11 DOMAINDEF = ’domain ’;
12 DOMAIN = ’:domain ’;
13 PROBLEM = ’problem ’;
14 TYPES = ’:types’;
15 PREDICATES = ’:predicates ’;
16 FUNCTIONS = ’:functions ’;
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17 ACTION = ’:action ’;
18 PRECONDITION = ’:precondition ’;
19 EFFECT = ’:effect ’;
20 OBSERVABLE = ’:observable ’;
21 OBSERVATION = ’:observation ’;
22 TYPEDEF = ’:typedef ’;
23 INIT = ’:init’;
24 OBSERVABILITY = ’:observability ’;
25 STRONGGOAL = ’:stronggoal ’;
26 WEAKGOAL = ’:weakgoal ’;
27 STRONGCYCLICGOAL = ’:strongcyclicgoal ’;
28 PARTIAL = ’:partial ’;
29 FULL = ’:full’;
30 ONEOF = ’oneof’;
31 UNKNOWN = ’unknown ’;
32 RANGE = ’range’;
33 PLUS = ’+’;
34 MINUS = ’-’;
35 EQUALS = ’=’;
36 LT = ’<’;
37 GT = ’>’;
38 LTE = ’<=’;
39 GTE = ’>=’;
40 NOT = ’not’;
41 ASSIGN = ’assign ’;
42 IFF = ’iff’;
43 AND = ’and’;
44 OR = ’or’;
45 IMPLY = ’imply’;
46 }
47
48 @parser :: header {
49 using NPDDL.datastructure;
50 using System;
51 using Action = NPDDL.datastructure.Action;
52 using Type = NPDDL.datastructure.Type;
53
54 }
55 @lexer :: header {
56 using System;
57 using NPDDL.datastructure;
58
59 }
60
61 @parser :: namespace { CEP.grammar }
62 @lexer :: namespace { CEP.grammar }
63
64
65 public npddl returns [Npddl n]
66 : { n = new Npddl(); Console.WriteLine("Construct NPDDL");

}
67 domain { n.Domain = $domain.d; }
68 (observable { n.Observables.Add($observable.o); })
69 observation*
70 problem { n.Problem = $problem.p; }



80 Input Grammar

71 ;
72
73 domain returns [Domain d]
74 : { Console.WriteLine("Construct Domain"); }
75 ’(’ DEFINE ’(’ DOMAINDEF title { d = Domain.Get($title.s);

} ’)’
76 types { d.Types = $types.ts; }
77 predicates { d.Predicates = $predicates.ps; }
78 (functions { d.Functions = $functions.fs; })?
79 (action { d.Actions.Add($action.a); })*
80 ’)’
81 ;
82
83 observable returns [Observable o]
84 : { o = new Observable (); Console.WriteLine("Construct

Observable"); }
85 ’(’ OBSERVABLE ID { o.Y = $type.t; } ’-’ formula { o.

Definition = $formula.f; } ’)’
86 ;
87
88 observation returns [Observation o]
89 : { Console.WriteLine("Construct Observation"); }
90 ’(’ OBSERVATION { o = new Observation (); } ’)’
91 ;
92
93 problem returns [Problem p]
94 : { p = new Problem (); Console.WriteLine("Construct Problem

"); }
95 ’(’ DEFINE ’(’ PROBLEM t1 = title ’)’
96 ’(’ DOMAIN t2 = title ’)’ { p.Domain = Domain.Get(

t2); }
97 (typedefs { p.Typedefs = $typedefs.ts; })?
98 inits { p.Inits = $inits.ins; }
99 (observability { p.Observability = $observability.o

; })?
100 goal { p.Goal = $goal.g; }
101 ’)’ { p.Title = t1; }
102 ;
103
104 types returns [List <Type > ts]
105 : { ts = new List <Type >(); Console.WriteLine("Construct

Types"); }
106 ’(’ TYPES (type { ts.Add($type.t); })+ ’)’ { int h = 0; }
107 ;
108
109 type returns [Type t]
110 : { t = null; Console.WriteLine("Construct Type"); }
111 ’(’ title { t = Type.Get($title.s); } ’)’
112 ;
113
114 typedefs returns [List <Typedef > ts]
115 : { ts = new List <Typedef >(); Console.WriteLine("Construct

Typedefs"); }
116 ’(’ TYPEDEF (typedef { ts.Add($typedef.t); })* ’)’
117 ;
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118
119 typedef returns [Typedef t]
120 : { t = new Typedef (); Console.WriteLine("Construct

Typedef"); }
121 type { t.Type = $type.t; } ’-’ formula { t.Definition =

$formula.f; }
122 ;
123
124 observability returns [Observability o]
125 : { Console.WriteLine("Construct Observability"); }
126 ’(’ OBSERVABILITY (
127 PARTIAL { o = Observability.Partial; }
128 | FULL { o = Observability.Full; }
129 ) ’)’;
130
131 inits returns [List <Init > ins]
132 : { ins = new List <Init >(); Console.WriteLine("Construct

Inits"); }
133 ’(’ INIT (init { ins.Add($init.i); })* ’)’
134 ;
135
136 init returns [Init i]
137 : { Console.WriteLine("Construct Init"); }
138 formula { i = new Init($formula.f); }
139 ;
140
141 goal returns [Goal g]
142 : { g = new Goal(); Console.WriteLine("Construct Goal"); }
143 ’(’
144 ( WEAKGOAL { g.Type = GoalType.Weak; }
145 | STRONGGOAL { g.Type = GoalType.Strong; }
146 | STRONGCYCLICGOAL { g.Type = GoalType.StrongCyclic; })
147 formula { g.Formula = $formula.f; }
148 ’)’;
149
150 predicates returns [List <Predicate > ps]
151 : { ps = new List <Predicate >(); Console.WriteLine("

Construct Predicates"); }
152 ’(’ PREDICATES (predicate { ps.Add($predicate.p); })+ ’)’
153 ;
154
155 predicate returns [Predicate p]
156 : { Console.WriteLine("Construct Predicate"); }
157 ’(’ ID { p = Predicate.Get($ID.Text); } ’)’
158 ;
159
160 functions returns [List <Function > fs]
161 : { fs = new List <Function >(); Console.WriteLine("

Construct Functions"); }
162 ’(’ FUNCTIONS
163 (( function { fs.Add($function.f); })+)
164 ’)’
165 ;
166
167 function returns [Function f]



82 Input Grammar

168 : { Console.WriteLine("Construct Function"); }
169 ’(’ ID ’)’ ’-’ type { f = Function.Get($ID.Text , $type.t);

}
170 ;
171
172 action returns [Action a]
173 : { a = new Action (); Console.WriteLine("Construct Action")

; }
174 ’(’ ACTION title
175 PRECONDITION formula
176 EFFECT formula
177 ’)’
178 ;
179
180 formula returns [Formula f]
181 : { Console.WriteLine("Construct Formua"); }
182 (function { f = $function.f; }
183 | predicate { f = $predicate.p; }
184 | type { f = $type.t; }
185 | assign { f = $assign.a; }
186 | range { f = $range.r; }
187 | equals { f = $equals.e; }
188 | unknown { f = $unknown.u; }
189 | iff { f = $iff.i; }
190 | when { f = $when.w; }
191 | not { f = $not.n; }
192 | plus { f = $plus.p; }
193 | and { f = $and.a; }
194 | or { f = $or.o; }
195 | lt { f = $lt.lt; }
196 | gt { f = $gt.gt; }
197 | lte { f = $lte.lte; }
198 | gte { f = $gte.gte; }
199 | imply { f = $imply.i; })
200 ;
201
202 assign returns [Assign a]
203 : { a = new Assign (); Console.WriteLine("Construct Assign")

; }
204 ’(’ ASSIGN function formula { a.Function = $function.f; a.

Formula = $formula.f; } ’)’
205 ;
206
207 equals returns [Equals e]
208 : { e = new Equals (); Console.WriteLine("Construct Equals")

; }
209 ’(’ EQUALS f1 = formula f2 = formula { e.A = f1; e.B = f2;

} ’)’
210 ;
211
212 unknown returns [Unknown u]
213 : { u = new Unknown (); Console.WriteLine("Construct

Unknown"); }
214 ’(’ UNKNOWN formula { u.Formula = $formula.f; } ’)’
215 ;
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216
217 range returns [Range r]
218 : { r = new Range(); Console.WriteLine("Construct Range");

}
219 ’(’ RANGE ’(’ i1 = INT { r.From = int.Parse(i1.Text); } ’)’

’(’ i2 = INT { r.To = int.Parse(i2.Text); } ’)’ ’)’
220 ;
221
222 not returns [Not n]
223 : { n = new Not(); Console.WriteLine("Construct Not"); }
224 ’(’ NOT formula { n.Formula = $formula.f; } ’)’
225 ;
226
227 iff returns [IFF i]
228 : { i = new IFF(); Console.WriteLine("Construct IFF"); }
229 ’(’ IFF f1 = formula f2 = formula { i.A = f1; i.B = f2; }

’)’
230 ;
231
232 when returns [When w] : ’(’ PLUS formula ; // not done
233
234 plus returns [Plus p]
235 : { p = new Plus(); Console.WriteLine("Construct Plus"); }
236 ’(’ PLUS f1 = formula f2 = formula { p.A = f1; p.B = f2; }

’)’
237 ;
238
239 minus returns [Minus m]
240 : { m = new Minus(); Console.WriteLine("Construct Minus");

}
241 ’(’ MINUS f1 = formula f2 = formula { m.A = f1; m.B = f2; }

’)’
242 ;
243
244 and returns [And a]
245 : { a = new And(); Console.WriteLine("Construct And"); }
246 ’(’ AND (f = formula { a.Add(f); })+ ’)’
247 ;
248
249 or returns [Or o]
250 : { o = new Or(); Console.WriteLine("Construct Or"); }
251 ’(’ OR (f = formula { o.Add(f); })+ ’)’
252 ;
253
254 lt returns [LT lt]
255 : { lt = new LT(); Console.WriteLine("Construct LT"); }
256 ’(’ LT f1 = formula f2 = formula { lt.A = f1; lt.B = f2; }

’)’
257 ;
258
259 gt returns [GT gt]
260 : { gt = new GT(); Console.WriteLine("Construct GT"); }
261 ’(’ GT f1 = formula f2 = formula { gt.A = f1; gt.B = f2; }

’)’
262 ;
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263
264 lte returns [LTE lte]
265 : { lte = new LTE(); Console.WriteLine("Construct LTE"); }
266 ’(’ LTE f1 = formula f2 = formula { lte.A = f1; lte.B = f2;

} ’)’
267 ;
268
269 gte returns [GTE gte]
270 : { gte = new GTE(); Console.WriteLine("Construct GTE"); }
271 ’(’ GTE f1 = formula f2 = formula { gte.A = f1; gte.B = f2;

} ’)’
272 ;
273
274 imply returns [Imply i]
275 : { i = new Imply(); Console.WriteLine("Construct Imply");

}
276 ’(’ IMPLY f1 = formula f2 = formula { i.A = f1; i.B = f2; }

’)’
277 ;
278
279 title returns [string s]
280 : {Console.WriteLine("Construct Title");}
281 ID { s = $ID.Text; }
282 ;
283
284 ID : (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’0’..’9’|’_’|’

-’)* { Console.WriteLine("Construct ID [" + Text + "]"); }
285 ;
286
287 INT : { Console.WriteLine("Construct INT"); }
288 ’0’..’9’+
289 ;
290
291 COMMENT
292 : ’//’ ~(’\n’|’\r’)* ’\r’? ’\n’ { Skip();}
293 | ’/*’ ( options {greedy=false;} : . )* ’*/’ { Skip(); }
294 ;
295
296 WS : ( ’ ’
297 | ’\t’
298 | ’\r’
299 | ’\n’
300 ) { Skip();}
301 ;
302
303 STRING
304 : ’"’ ( ESC_SEQ | ~(’\\’|’"’) )* ’"’
305 ;
306
307 fragment
308 HEX_DIGIT : (’0’..’9’|’a’..’f’|’A’..’F’) ;
309
310 fragment
311 ESC_SEQ
312 : ’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’)
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313 | UNICODE_ESC
314 | OCTAL_ESC
315 ;
316
317 fragment
318 OCTAL_ESC
319 : ’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)
320 | ’\\’ (’0’..’7’) (’0’..’7’)
321 | ’\\’ (’0’..’7’)
322 ;
323
324 fragment
325 UNICODE_ESC
326 : ’\\’ ’u’ HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT
327 ;� �
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Appendix B

Project Code

The project code has not been included in the report as appendix, as this would bring
the total number of pages up to a staggering amount. Rather here, is a short guide to
the code, as included in the zip-file with the project. The program has been written
in .NET C# and thus in order to achieve the best overview of the written code, the
solution should be opened in Visual Studio 2010. If this is not available, any texteditor
can open the *.cs files, however the dependancy links between the classes would be
unavailable.

B.1 Structure

The program has four sub-projects in the solution: CEP, NPDDL, Agent and
Environment. CEP stands for Conditional Epistemic Planner and is responsible for
the planning process. The Agent project is responsible for specifying which input to
load in, as well as instantiate and call the CEP. The Environment will be called
whenever a simulation is needed. The last sub-project in the solution is the NPDDL
project, which was never finished, but nevertheless has some of the code written.

Furthermore, the CEP project contains a number of sub-folders. These, as they are
named, contains the data structure of the program ModelTree, Model, EquivalenceClass,
World, EventModel, Event, Formula, PropositionalSymbol and so on. The planning
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folder contains the classes and logic for the planning process and lastly the grammar
folder contains the created code from the parser program antlr.

It should be noted, that even with the full solution file, the program cannot run without
the specified example input files in the correct location. Cf. Agent in order to load
in the correct input.
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Examples

This chapter will list the four inputs shown in the report, namely Simple, Partial,
NonDet and Complex.

C.1 Simple
�

1 Title: _sokobansimple
2 Symbols: t0, t1, t2, t3
3
4 Model _init = [ _w1 = t0 ]
5
6 EventModel _GoRight = [
7 _gr1 = t0 ; ~t0 & t1 ,
8 _gr2 = t1 ; ~t1 & t3]
9 EventModel _GoLeft = [

10 _gl1 = t1 ; ~t1 & t0 ,
11 _gl2 = t3 ; ~t3 & t1]
12 EventModel _GoUp = [ _gu = t3 ; ~t3 & t2 ]
13 EventModel _GoDown = [ _gd = t2 ; ~t2 & t3 ]
14
15 _goal = t2� �
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C.2 Partial �
1 Title: _sokobanpartial
2 Symbols: g1, g2, g3, t0, t1, t2, t3 , t4 , t5 , t6 , t7
3
4 Model _init = [
5 _w1 = t0 & g1,
6 _w2 = t0 & g2,
7 _w3 = t0 & g3
8 :: w1 = w2, w2 = w3 ]
9 EventModel _GoRight = [

10 _gr0 = t0 ; ~t0 & t1 ,
11 _gr11 = t1 & g1 ; ~t1 & t3,
12 _gr12 = t1 & ~g1 ; ~t1 & t3,
13 _gr21 = t3 & g2 ; ~t3 & t4,
14 _gr22 = t3 & ~g2 ; ~t3 & t4,
15 _gr31 = t4 & g3 ; ~t4 & t7,
16 _gr32 = t4 & ~g3 ; ~t4 & t7 ]
17
18 EventModel _GoLeft = [
19 _gl0 = t1 ; ~t1 & t0 ,
20 _gl1 = t3 ; ~t3 & t1 ,
21 _gl2 = t4 ; ~t4 & t3 ,
22 _gl3 = t7 ; ~t7 & t4 ]
23
24 EventModel _GoUp = [
25
26 _gu0 = t3 ; ~t3 & t2 ,
27 _gu1 = t5 ; ~t5 & t4 ,
28 _gu2 = t7 ; ~t7 & t6 ]
29
30 EventModel _GoDown = [
31 _gd0 = t2 ; ~t2 & t3 ,
32 _gd1 = t4 ; ~t4 & t5 ,
33 _gd2 = t6 ; ~t6 & t7 ]
34
35 _goal2 = (t2 & g1) | (t5 & g2) | (t6 & g3)� �

C.3 NonDet �
1 Title: _sokobannondet
2 Symbols: t0, t1, t2, t3, t4
3
4 Model _init = [
5 _w1 = t0
6 ]
7
8 EventModel _GoRight = [
9 _gr1 = t0 ; ~t0 & t1 ,

10 _gr21 = t1 ; ~t1 & t3,
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11 _gr22 = t1 ; ~t1 & t4 ]
12
13 EventModel _GoLeft = [
14 _gl1 = t1 ; ~t1 & t0 ,
15 _gl2 = t2 ; ~t2 & t1 ]
16
17
18 EventModel _GoDown = [
19 _gd11 = t1 ; ~t1 & t2,
20 _gd12 = t1 ; ~t1 & t4,
21 _gd2 = t4 ; ~t4 & t5 ]
22
23 EventModel _GoUp = [
24 _gu1 = t3 ; ~t3 & t1 ,
25 _gu21 = t5 ; ~t5 & t2,
26 _gu22 = t5 ; ~t5 & t3 ]
27
28 _goal = t5� �

C.4 Complex �
1 Title: _sokobancomplex
2 Symbols: s11 , s21 , s31 , s41 , s32 , s42 , s52 , s23 , s33 , s43 , s34 , s44

, b11 , b21 , b23 , b31 , b41 , b32 , b42 , b52 , b33 , b43 , b34 , b44
3
4 Model _init = [
5 _w1 = s21 & b32 ,
6 _w2 = s21 & b42 ,
7 _w3 = s21 & b52 ,
8 _w4 = s21 & b33 ,
9 _w5 = s21 & b43

10 :: w1 = w2, w2 = w3 , w3 = w4, w4 = w5
11 ]
12
13 EventModel _goleft = [
14 _e11 = s21 & ~b11 & ~b52 & b32 ; s52 & ~s21 ,
15 _e12 = s21 & ~b11 & ~b52 & b42 ; s52 & ~s21 ,
16 _e13 = s21 & ~b11 & ~b52 & ~(b32 | b42) ; s52 & ~s21 ,
17 _e21 = s21 & ~b11 & ~b23 & b33 ; s23 & ~s21 ,
18 _e22 = s21 & ~b11 & ~b23 & b43 ; s23 & ~s21 ,
19 _e23 = s21 & ~b11 & ~b23 & ~(b33 | b43) ; s23 & ~s21 ,
20 _e31 = s21 & ~b11 & ~b44 & b42 ; s44 & ~s21 ,
21 _e32 = s21 & ~b11 & ~b44 & b43 ; s44 & ~s21 ,
22 _e33 = s21 & ~b11 & ~b44 & b34 ; s44 & ~s21 ,
23 _e34 = s21 & ~b11 & ~b44 & ~(b42 | b43 | b34) ; s44 & ~s21 ,
24 s31 & ~b21 ; s21 & ~s31 ,
25 _e71 = s41 & ~b31 & b32 ; s31 & ~s41 ,
26 _e72 = s41 & ~b31 & b33 ; s31 & ~s41 ,
27 _e73 = s41 & ~b31 & b34 ; s31 & ~s41 ,
28 _e74 = s41 & ~b31 & ~(b32 | b33 | b34) ; s31 & ~s41 ,
29 _e81 = s42 & ~b32 & b33 ; s32 & ~s42 ,
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30 _e82 = s42 & ~b32 & b34 ; s32 & ~s42 ,
31 _e83 = s42 & ~b32 & ~(b33 | b34) ; s32 & ~s42 ,
32 _e91 = s52 & ~b42 & b43 ; s42 & ~s52 ,
33 _e92 = s52 & ~b42 & b44 ; s42 & ~s52 ,
34 _e93 = s52 & ~b42 & ~(b43 | b44) ; s42 & ~s52 ,
35 _e41 = s33 & ~b23 & ~b11 ; s11 & ~s33 ,
36 _e51 = s33 & ~b23 & ~b52 & b32 ; s52 & ~s33 ,
37 _e52 = s33 & ~b23 & ~b52 & b42 ; s52 & ~s33 ,
38 _e53 = s33 & ~b23 & ~b52 & ~(b32 | b42) ; s52 & ~s33 ,
39 _e61 = s33 & ~b23 & ~b44 & b42 ; s44 & ~s33 ,
40 _e62 = s33 & ~b23 & ~b44 & b43 ; s44 & ~s33 ,
41 _e63 = s33 & ~b23 & ~b44 & b34 ; s44 & ~s33 ,
42 _e64 = s33 & ~b23 & ~b44 & ~(b42 | b43 | b34) ; s44 & ~s33 ,
43 _e101 = s43 & ~b33 & b32 ; s33 & ~s43 ,
44 _e102 = s43 & ~b33 & b34 ; s33 & ~s43 ,
45 _e103 = s43 & ~b33 & ~(b32 | b34) ; s33 & ~s43 ,
46 _e111 = s44 & ~b34 & b32 ; s34 & ~s44 ,
47 _e112 = s44 & ~b34 & b33 ; s34 & ~s44 ,
48 _e113 = s44 & ~b34 & ~(b32 | b33) ; s34 & ~s44
49
50 ]
51
52 EventModel _goright = [
53 s11 & ~b21 ; s21 & ~s11 ,
54 _e71 = s21 & ~b31 & b32 ; s31 & ~s21 ,
55 _e72 = s21 & ~b31 & b33 ; s31 & ~s21 ,
56 _e73 = s21 & ~b31 & b34 ; s31 & ~s21 ,
57 _e74 = s21 & ~b31 & ~(b32 | b33 | b43) ; s31 & ~s21 ,
58 _e81 = s31 & ~b41 & b42 ; s41 & ~s31 ,
59 _e82 = s31 & ~b41 & b43 ; s41 & ~s31 ,
60 _e83 = s31 & ~b41 & b44 ; s41 & ~s31 ,
61 _e84 = s31 & ~b41 & ~(b42 | b43 | b44) ; s41 & ~s31 ,
62 _e91 = s32 & ~b42 & b43 ; s42 & ~s32 ,
63 _e92 = s32 & ~b42 & b44 ; s42 & ~s32 ,
64 _e93 = s32 & ~b42 & ~(b43 | b44) ; s42 & ~s32 ,
65 _e11 = s42 & ~b52 & ~b11 ; s11 & ~s42 ,
66 _e21 = s42 & ~b52 & ~b23 & b33 ; s23 & ~s42 ,
67 _e22 = s42 & ~b52 & ~b23 & b34 ; s23 & ~s42 ,
68 _e23 = s42 & ~b52 & ~b23 & ~(b33 | b34) ; s23 & ~s42 ,
69 _e31 = s42 & ~b52 & ~b44 & b42 ; s44 & ~s42 ,
70 _e32 = s42 & ~b52 & ~b44 & b43 ; s44 & ~s42 ,
71 _e33 = s42 & ~b52 & ~b44 & b34 ; s44 & ~s42 ,
72 _e34 = s42 & ~b52 & ~b44 & ~(b42 | b43 | b34) ; s44 & ~s42 ,
73 _e101 = s23 & ~b33 & b32 ; s33 & ~s23 ,
74 _e102 = s23 & ~b33 & b34 ; s33 & ~s23 ,
75 _e103 = s23 & ~b33 & ~(b32 | b34) ; s33 & ~s23 ,
76 _e111 = s33 & ~b43 & b42 ; s43 & ~s33 ,
77 _e112 = s33 & ~b43 & b44 ; s43 & ~s33 ,
78 _e113 = s33 & ~b43 & ~(b42 | b44) ; s43 & ~s33 ,
79 _e41 = s34 & ~b44 & ~b11 ; s11 & ~s34 ,
80 _e51 = s34 & ~b44 & ~b52 & b32 ; s52 & ~s34 ,
81 _e52 = s34 & ~b44 & ~b52 & b42 ; s52 & ~s34 ,
82 _e53 = s34 & ~b44 & ~b52 & ~(b32 | b42) ; s52 & ~s34 ,
83 _e61 = s34 & ~b44 & ~b23 & b33 ; s23 & ~s34 ,
84 _e62 = s34 & ~b44 & ~b23 & b43 ; s23 & ~s34 ,
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85 _e63 = s34 & ~b44 & ~b23 & ~(b33 | b43) ; s23 & ~s34
86
87
88 ]
89
90
91 EventModel _goup = [
92 s32 & ~b31 ; s31 & ~s32 ,
93 s42 & ~b41 ; s41 & ~s42 ,
94 _e11 = s33 & ~b32 & b42 ; s32 & ~s33 ,
95 _e12 = s33 & ~b32 & ~b42 ; s32 & ~s33 ,
96 _e21 = s43 & ~b42 & b32 ; s42 & ~s43 ,
97 _e22 = s43 & ~b42 & ~b32 ; s42 & ~s43 ,
98 _e31 = s34 & ~b33 & b43 ; s33 & ~s34 ,
99 _e32 = s34 & ~b33 & ~b43 ; s33 & ~s34 ,

100 _e41 = s44 & ~b43 & b33 ; s43 & ~s44 ,
101 _e42 = s44 & ~b43 & ~b33 ; s43 & ~s44
102 :: e11 = e12 , e21 = e22 , e31 = e32 , e41 = e42
103 ]
104
105 EventModel _godown = [
106 _e11 = s31 & ~b32 & b42 ; s32 & ~s31 ,
107 _e12 = s31 & ~b32 & ~b42 ; s32 & ~s31 ,
108 _e21 = s41 & ~b42 & b32 ; s42 & ~s41 ,
109 _e22 = s41 & ~b42 & ~b32 ; s42 & ~s41 ,
110 _e31 = s32 & ~b33 & b43 ; s33 & ~s32 ,
111 _e32 = s32 & ~b33 & ~b43 ; s33 & ~s32 ,
112 _e41 = s42 & ~b43 & b33 ; s43 & ~s42 ,
113 _e42 = s42 & ~b43 & ~b33 ; s43 & ~s42 ,
114 _e51 = s33 & ~b34 & b44 ; s34 & ~s33 ,
115 _e52 = s33 & ~b34 & ~b44 ; s34 & ~s33 ,
116 _e611 = s43 & ~b44 & ~b11 ; s11 & ~s43 ,
117 _e621 = s43 & ~b44 & ~b52 & b32 ; s52 & ~s43 ,
118 _e622 = s43 & ~b44 & ~b52 & b42 ; s52 & ~s43 ,
119 _e623 = s43 & ~b44 & ~b52 & ~(b32 | b42) ; s52 & ~s43 ,
120 _e631 = s43 & ~b44 & ~b23 & b33 ; s23 & ~s43 ,
121 _e632 = s43 & ~b44 & ~b23 & b43 ; s23 & ~s43 ,
122 _e633 = s43 & ~b44 & ~b23 & ~(b33 | b43) ; s23 & ~s43
123
124 ]
125
126 EventModel _pushleft = [
127 s31 & b21 ; s21 & ~s31 & b11 & ~b21 ,
128 s41 & b31 ; s31 & ~s41 & b21 & ~b31 ,
129 s52 & b42 ; s42 & ~s52 & b32 & ~b42 ,
130 s43 & b33 ; s33 & ~s43 & b23 & ~b33
131 ]
132
133 EventModel _pushright = [
134 s11 & b21 ; s21 & ~s11 & b31 & ~b21 ,
135 s21 & b31 ; s31 & ~s21 & b41 & ~b31 ,
136 s32 & b42 ; s42 & ~s32 & b52 & ~b42 ,
137 s23 & b33 ; s33 & ~s23 & b43 & ~b33
138 ]
139
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140 EventModel _pushup = [
141 s33 & b32 ; s32 & ~s33 & b31 & ~b32 ,
142 s43 & b42 ; s42 & ~s43 & b41 & ~b42 ,
143 s34 & b33 ; s33 & ~s34 & b32 & ~b33 ,
144 s44 & b43 ; s43 & ~s44 & b42 & ~b43
145 ]
146
147 EventModel _pushdown = [
148 s31 & b32 ; s32 & ~s31 & b33 & ~b32 ,
149 s41 & b42 ; s42 & ~s41 & b43 & ~b42 ,
150 s32 & b33 ; s33 & ~s32 & b34 & ~b33 ,
151 s42 & b43 ; s43 & ~s42 & b44 & ~b43
152 ]
153
154 _goal2 = b21
155 _goal = (Kb32) | (Kb42) | (Kb52) | (Kb33) | (Kb43)� �
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