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Summary (English)

Radiation therapy (RT) is one of the most common treatment method for cancer
patients. The purpose of RT is to cure the patient through ionizing radiation.
This requires a treatment planning process with high accuracy. The current
treatment planning is based on a computed tomography (CT) scan which con-
tains information about the electron densities, which are required for dose cal-
culation. The CT scan is also important for 2D patient setup veri�cation. RT
based on magnetic resonance imaging (MRI) has proved advantages compared
to the CT due to e.g. better delineation of tumour volume and organ at risks.
The aim of this study is to investigate the possibility of using MRI for 2D patient
setup veri�cation.

Data from four palliative patients receiving cranial RT was used in this study.
The patients were scanned with 1 Tesla open MRI-system and MRI ultra-
short echo-time (UTE) sequence scans were required. The Markov random
�eld (MRF) segmentation method was used to classify each MRI UTE sequence
data into air, soft tissue and bone and created a substituted CT (sCT) scans.
sCT bone digital reconstructed radiographs (DRRs) were generated from the
sCT scans and CT bone DRRs were generated from the planning CT scans.
Manual match of OBIs on both CT DRRs and sCT DRRs were performed in
O�ine Review Eclipse V.10 (Varian Medical System). A 2D lateral and frontal
match was performed by �ve radiation therapists (RTTs). A statistical evalu-
ation was made of whether there is a signi�cant di�erence in 2D patient setup
veri�cation when performing matching on sCT generated DRRs as compared to
CT generated DRRs.

The MRF segmentation facilitated creating sCT scan and generated bone DRRs.
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A signi�cant di�erence between the sCT and CT generated DRRs was seen
in longitudinal (lateral) direction, vertical direction and pitch (rotation) when
performing 2D lateral match. For the frontal match a signi�cant di�erence was
observed in rnt (rotation) whereas longitudinal (front) and lateral directions
were non-signi�cant.

This study showed that treatment planning solely based on MRI is a feasible
alternative to current CT based on treatment planning due to 2D setup veri�-
cation.



Summary (Danish)

Strålebehandling er en af de mest almindelige behandlingsmetoder til kræftpa-
tienter. Formålet med strålebehandling er at helbrede patienten ved hjælp af
ioniserende stråling. Dette kræver en nøjagtig planlægningsproces af behandlin-
gen. Den nuværende planlægning er baseret på en Computed tomography (CT)
skanning, som indeholder oplysninger om elektron densiteter, som er nødvendig
for doseberegning. CT skanningen bruges også til 2D patient setup veri�ka-
tion. Strålebehandling baseret på magnetisk resonans skanninger (MR) har vist
fordele i forhold til CT bl.a. i forhold til optegning af tumor volume og risiko
organer. Formålet med dette studie er at undersøge muligheden for at anvende
MR til 2D patient setup veri�kation.

Data fra �re palliative patienter som har fået kraniel strålebehandling blev an-
vendt. Patienterne blev skannet med 1 Tesla open MRI - system og MR ultra-
short echo-time (UTE) sekvens skanninger var optaget. Markov random �eld
(MRF) segmenterings metode blev anvendt til at klassi�cere hvert MRI UTE
sekvens data til hhv. luft, blødt væv og knogle og skabte sCT skanninger.
sCT knogle digital reconstructed radiographs (DRRs) blev genereret fra sCT
skanninger og CT knogle DRR blev genereret fra planlægnings CT-skanninger.
Manuel match af 2D OBI på både CT DRR og sCT DRR blev udført i O�ine
Review Eclipse V.10 (Varian Medical System). En 2D lateral og frontal match
blev udført af fem radioterapeuter. En statistisk evaluering af, om der er en
signi�kant forskel i 2D patient setup veri�kation ved udførelse af sCT genereret
DRR match med CT genereret DRR blev foretaget.

MRF segmenteringen muliggjorde genereringen af sCT skanninger og knogle
DRR. En signi�kant forskel mellem sCT og CT genereret DRR blev set i den
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laterale retning, vertikale retning og pitch (rotation) ved udførelse af 2D lateral
match. For det frontale match en signi�kant forskel blev observeret i RNT
(rotation), hvorimod de longitudinale (frontale) og laterale retninger var ikke-
signi�kante.

Studiet viste, at planlægningen af behandling udelukkende baseret på MRI er
et realistisk alternativ til den nuværende CT baseret behandlings planlægning
for 2D setup patient veri�kation.
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Chapter 1

Introduction

Radiation therapy (RT) is a treatment method for many cancer types and it is
one of the most common cancer treatments. The cancer cells can permanently
be destroyed, if the dose is high enough, but adjacent healthy cells can also be
damaged. This can lead to several side e�ects. The aim of RT is to cure the
patient through ionizing radiation. This requires a treatment planning process
and treatment delivery with high accuracy.

Modern RT requires 3D based images that contain information about the pa-
tient's anatomy to delineate tumour volume and organ at risks (OARs) delin-
eation and verify patient setup prior to treatment delivery. The images can be
obtained with modern imaging techniques, such as computed comography (CT)
and magnetic resonance imaging (MRI) [20].

The current practice of treatment planning is based on a CT scan of the patient
which contains information about the electron densities. Images are required
when calculating the dose plans. The tumour volume and OARs are delineated
on CT images. Often RT requires multimodality imaging with MRI and CT for
a more accurate tumour volume and OARs delineation. This kind of treatment
process requires a long work�ow, as shown in �gure 1.1. The CT scan is also
used to generate digital reconstructed radiographs (DRRs) of bone structures
which are used for patient setup veri�cation.
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Figure 1.1: Work�ow of the current process of radiation treatment planning
using multi-modality imaging techniques.

Several studies show how to facilitate the use of an MR imaging technique for
the process of radiation therapy planning [5, 9]. The MR imaging technique
has various advantages e.g. better delineation of the tumour volume and OARs,
since these structures can be adequately identi�ed in MR images [2]. In addi-
tion, treatment planning solely based on MRI requires less work�ow compared
to RT using multi-modality techniques.

The main focus of this study is to replace the current CT-based RT due to
patient setup veri�cation with MRI by creating a substituted CT, so-called
sCT. Previous studies have shown that a sCT can be created from an MR scan
by the use of dual ultrashort echo time (dUTE) sequence. The output from MR
dUTE sequence can be segmented into air, soft tissue, and compact bone by
performing di�erent segmentation strategies [10, 9].

In this study, four palliative patients receiving cranial RT were scanned with
the MR dUTE sequence scanner. A Markov random �eld classi�cation strategy
was performed to generate the sCTs. The possibility of using a sCT scan in the
process of radiation therapy planning was investigated by performing a clinical
evaluation in 2D patient setup veri�cation.
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1.0.1 Objective

The main aim of this study is to carry out a clinical evaluation using 2D Digital
Reconstructed Radiograph (DRR) patient images from two image modalities
for patient setup veri�cation. The modalities are a CT scan and a sCT scan,
respectively. It is investigated whether sCT DRRs can substitute the current
CT DRRs used for 2D patient setup veri�cation.

To accomplish the main aim of this study, the objectives below were pursued.

• Perform a Markov random �led classi�cation to generate a sCT scan.

• Produce a method i.e. a software program to 2D make manual matching
of OBIs on both DRRs generated from a CT and a sCT scan.

• Recruit experienced radio therapists (RTTs) to match kV images with
DRRs generated from both CT scan and sCT scan. This will be performed
for each patient fraction in a random order and the sCT and CT generated
DRRs will be blinded.

• Make a statistical evaluation of whether there is a signi�cant di�erence in
2D setup veri�cation of patients when performing the matching on sCT
generated DRRs as compared to normal CT based DRRs.
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1.0.2 Previous Work

Two related works are preferred in this study, Kjer Master Thesis [10] and Buhl
et al. [2], respectively.

Kjer [10] investigated the possibility of visualising compact bone in MRI images
when using ultra short echo times (UTE) sequence. The data in this study was
based on a calf knee and single patient head anatomy.

Di�erent tissue classi�cation strategies were performed to create a substituted
CT scan, so-called sCT scan. This was done by segmenting the tissues appearing
in both calf knee MRI UTE image and patient head anatomy MRI UTE image.

The results from the di�erent classi�cation strategies showed that Markov ran-
dom �eld method has obtained an overall best result both on knee UTE MRI
data and patient UTE MRI data. Therefore the use of MRF classi�cation
method is preferred in this study.

Buhl et al. [2] investigated 3D/3D MRI-CBCT automatching on brain tumours
for online setup veri�cation. Two experiments were made in this study, a multi-
modality phantom and clinical experiment. The aim of the phantom experiment
was investigated whether it is feasible to perform online 3D/3D MRI-CBCT au-
tomatch and compared to the 3D/3D CT-CBCT automatching. The clinical
experiment were included three patients receiving RT for malignant brain tu-
mours. 18 CBCT were matched both with CT and MRI as a reference.

The result based on t-test from the phantom experiment showed no signi�cant
di�erence between MRI-CBCT and CT-CBCT for the vertical and the lateral
directions, but a signi�cant di�erence was seen for the longitudinal direction,
and MRI-CBCT obtained the best automatch. Therefore it was concluded that
it is feasible to perform 3D/3D MRI-CBCT automatching for online patient
veri�cation. The results from clinical experiment showed no di�erence > 3 mm
for longitudinal and lateral direction. For the vertical direction up to 2 mm
were observed. The mean and standard deviations showed that MR-CBCT per-
formed not signi�cantly worse than CT-CBCT. Buhl et al. study showed that
it is possible to conduct 3D/3D MRI-CBCT automatching for patient online
setup veri�cation for brain RT.

The work of Buhl et. al [2] is used as an inspiration for 2D patient setup
veri�cation in this study.



Chapter 2

Theory

2.1 Radiation Therapy Planning Process

Cancer treatment with radiation therapy requires a planning process with high
accuracy. The following processes need to be carried out before delivery of
the treatment: establish the patient's treatment position, construct the patient
repositioning and immobilization, image acquisition, delineate tumour volume
and organ at risks, beam design, calculate dose for the treatment, evaluate dose
plan, verify patient position and plan [20].

2.1.1 Immobilization

Treatment with radiation therapy (RT) requires accurate, stable, reproducible
patient positioning throughout the treatment at each fraction before the treat-
ment is delivered to the patient. The patient must be informed about the im-
portance of remaining still during the treatment in order to obtain the planned
beam direction to irradiate the planning target volume (PTV) [16, 6].

Immobilization devices are used to minimize patient movements and to repro-
duce patient positioning shown in �gure 2.1. The immobilization devices are
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applied to obtain a �xed position throughout the treatment, e.g. bolus bags
for general support vac�x, thermochemical polystyrene headrests and knee sup-
ports, vacuum bags for breast and pelvic treatment etc. [23].

Figure 2.1: Immobilization device for head and neck. This image is modi�ed
from [20].

Most immobilization devices are made of carbon which enables the beam to
pass through the material without disturbing the dose distribution. In addition,
markers are placed on the patient's skin and on the immobilization device to
serve as �ducial marks for the treatment setup veri�cation [23].

2.1.2 Image Acquisition

Di�erent imaging modalities are applied in radiation therapy, such as computed
tomography (CT), positron emission tomography (PET) and magnetic reso-
nance imaging (MRI). Often multi-modality is required to identify the location
and size of the gross tumour volume and OARs. CT imaging technique is the
golden standard for the radiation therapy planning process.

2.1.3 Treatment Planning

The RT work�ow description in this section is mainly based on Prince et al. [20].
The planning CT data set is used to delineate the tumour volume and OARs
and in some cancer treatments PET and MRI are also used for delineation.
This procedure is performed by a radiation oncologist and a radiologist. The
delineations of target volume and OARs are drawn manually slice by slice and
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in some cases OARs with distinct boundaries are contoured automatically, e.g.
lungs, body surface and bone.

Figure 2.2: CT axial slice of thorax where the tumor, target volume and organ
at risks are delineated. The image is modi�ed from [20].

Figure 2.2 illustrates a CT scan of lungs where contours are drawn around the
target volume and adjacent tissues on a slice by slice basis. Treatment Planning-
System (TPS) is an e�ective tool for the treatment planners and oncologists to
delineate these structures. Designing beam arrangement and �eld apertures
is the next step in the treatment planning process. The treatment delivery is
established on the basis of patient clinical protocol, diagnostic group and the
location of the tumour. A 3D TPS beam's-eye-view (BEV) is an important
display tool to identify the best collimator, gentry and couch angle to radiate
the target volume and prevent radiation of OARs. A 3D TPS room's-eye-
view (REV) display is also a powerful tool enabling planner to simulate any
arbitrary viewing location within the treatment room. REV display helps the
treatment planner to increase accuracy of overall beam arrangement geometry
and positioning of the isocenter.

The positional accuracy of the patient is a very important treatment factor, and
it must be obtained before treatment delivery to the tumour. Digital Recon-
structed Radiographs (DRRs) are generated from CT scans. DRR of bones is
used for veri�cation of the patient positioning at the linear accelerator (LINAC).

The dose calculation is based on an algorithm that accurately calculates the
dose for a patient. The optimization for dose distribution is achieved in TPS,
which is based on maximization of dose to target volume and minimization of
dose to OARs.

Documentation for plan implementation is complete when the treatment plan
is designed, evaluated and approved. A parameter and plan check is performed
by the physicist.
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2.1.4 Position Veri�cation and Treatment Delivery

The delivery of the treatment to the patient is acquired at LINAC. Prior to
the treatment delivery at each fraction, it is important to reproduce the patient
positioning.

The on-board imager (OBI) in the LINAC is used to acquire orthogonal kV
images which are applied as a veri�cation tool for patient positioning. The
acquired kV images are produced by using high resolution x-rays. The kV images
or OBIs improve the dose delivery to the target volume by minimizing patient
movement during treatment [1].

The two orthogonal, frontal and lateral OBIs are matched with the correspond-
ing planning CT generated DRRs at the same angle. High dense material can
be seen in the images and the manual registration/matching of DRRs and OBIs
are therefore based on the bone structures. The match of OBIs with DRRs
allows small couch adjustments to verify the planned positioning of the patient.
When planned patient positioning is veri�ed, the treatment of the patient can
commence.
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2.2 Imaging Modalities

2.2.1 Computed Tomography

Computed tomography (CT) is based on x-ray, which generates 2D projection
images of the body. The x-ray projections are obtained as the x-ray tube rotates
around the patient and di�erent beam angles pass through the patient. The
beams penetrate into the body and the attenuation of the beam depends on
tissue type. The detectors are placed at the opposite side of the x-ray tube and
measure the intensity of the attenuated beams. The detectors will convert the
intensities into signals as CT raw data. The CT scanner reconstructs the value
of attenuation µ at each pixel of raw CT data within a cross section [19, 8].

The �ltered back-projection is the most used algorithm to create a reconstructed
CT image which is a grey tone image. The CT numbers are computed from
linear attenuation coe�cients at each pixel. CT values, also known as Houns�eld
values can be de�ned as follows [19, 8]:

hu =
µm − µw

µw
× 1000 (2.1)

where µm refers to linear attenuation coe�cient within voxels and µw represents
the linear attenuation coe�cient for water at the same photon energy average
of spectra.

Figure 2.3: Houns�eld values of di�erent tissues. This image is modi�ed from
[8].

Figure 2.3 illustrates Houns�eld values of di�erent tissues, where water has 0
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HU by de�nition and air has -1000 HU. The largest Houns�eld values found in
the body are bones, where hu = 1000 HU for average bone.

2.2.2 Digital Reconstructed Radiograph

In RT, the planning CT data is used for the veri�cation of patient positioning
prior to treatment delivery. 2D x-ray images of a patient from a given angle
are calculated using the planning CT data. These 2D x-ray images are called
digital reconstructed radiographs (DRRs) [15].

Figure 2.4: Generation of DRR.

DRRs are generated from the planning CT data using TPS as shown in �gure
2.4. The generated CT DRRs are acquired for the patient setup veri�cation at
the LINAC.
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2.2.3 Magnetic Resonance Imaging

MRI is a powerful non-invasive imaging modality. MR is frequently used for
diagnostic investigations of for example the central nervous system and muscu-
loskeletal system.

MRI is a useful imaging technique in radiation therapy since it provides an
important added feature to CT imaging during delineation of target volume
and organs at risk.

Tissues with short T2 relaxation, such as cortical bone, produce a very low or no
signal since the signal decays rapidly after excitation when using conventional
MRI sequences which typically use an echo time (TEs) of several milliseconds
or longer. Therefore, the tissues with short T2 cannot be visualized since the
tissues appear dark and this makes it di�cult to separate bone from air [22].
The use of ultra short echo-time (UTE) pulse sequence allows detection of signals

Tissues Mean T2
Ligaments 4-10 ms
Periosteum 5-11 ms
Cortical bone 0.42-0.5 ms

Table 2.1: The table shows the mean T2 of some tissues at 1.5 Tesla [22].

from tissues with short T2, such as cortical bone (shown in table 2.1). The echo
time is de�ned as the time from �rst excitation to signal readout. To reduce
T2 signal loss, the duration of the RF excitation pulse and the echo time must
be minimized. The use of a small �ip angle, allows the radio frequency (RF)
pulse to be kept below 100 µs. There is no time to recall and sample an echo,
therefore the UTE sequence samples the free induction decay (FID) rather than
a gradient echo. The contrast in the sampled FID signal images is controlled
by T2*, therefore susceptibility artefacts can appear between air and soft tissue
interfaces [22, 9, 10, 21].

2.2.3.1 UTE sequence imaging

As mentioned in the previous section, it is di�cult to separate bone and air with
the conventional MRI sequence. By applying UTE sequence the signals from
tissues with short decay can be detected. There are several imaging strategies
with UTE. One of the UTE imaging strategies uses two di�erent or dual echo
times (dUTEs) to measure signals from cortical bone and other soft tissues. A
second echo is obtained shortly after the �rst [10, 9].
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Figure 2.5: The �gure shows axial images of the patient brain included in this
study acquired with UTE sequence. The image to the left refers to
the �rst echo (Echo 1), the image in the middle shows the second
echo (Echo 2) and the image to the right is a subtraction image.

Figure 2.5 illustrates the �rst echo, second echo and subtraction images in axial
plane. Tissues with short T2 lose a lot of signal in the time between the echoes,
and therefore they appear bright. Cortical bone is present in the Echo 1 image
with a high signal, although still very weak compared to the signal from soft
tissue, but there is no signal from cortical bone in Echo 2. In the subtraction
image, cortical bone appears with a high intensity as a thin bright contour of
the bone. Soft tissues are present in both Echo 1 and Echo 2 with very similar
intensity and are therefore almost absent in the subtraction image. Air has a
very low intensity and cannot be seen in either Echo 1 or Echo 2.

2.2.4 Markov Random Field Segmentation

The MR data which is obtained from an MRI scanner with dUTE sequence
consists of two image volumes, �rst echo and second echo, respectively. A
segmented scan can be created where all voxels are assigned to a group that
represents speci�c HU. The three main groups are considered as air (-1000 HU),
bone (500-2000 HU) and soft tissue (0 HU), respectively [10].

Markov Random Field (MRF) is used to model a prior probability of context
dependent patterns such as image voxel. This is obtained from mutual in�uences
among entities using conditional MRF distributions. MRF prefers its own class
of patterns by associating them with larger probabilities than other pattern
classes [12].

In this study, MRF is used as a voxel classi�er where each voxel is assigned
into one of k di�erent classes. This is referred to as label volume where class or
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label is corresponded to a type of tissue that appears in the UTE sequence MR
image [10]. MRF changes the posterior probability of each pixel by looking at
the surrounding neighbourhood.

The task is to assign each voxel i in a volume into one of k di�erent tissue classes.
Using Bayes's rule the posterior probability can be estimated for a given voxel
with intensity x = [x1, x2].

P (k|x) = P (x|k)P (k)
P (x)

(2.2)

where P (x|k) is the conditional probability and it states the probability that
intensity value x is in the k'th class and P (k) is the prior probability and P (x)
is a normalizing function.

The prior probability used where voxels with the same label are clustered spa-
tially throughout the image.

P (k) =
1

z
exp(−E(k)) (2.3)

where z is a normalizing constant and E(k) is an energy function. If the en-
ergy function E(k) −→ 0 a high number of neighbouring voxels are spatially
clustered in the same area and if energy function E(k) −→ ∞ a low number of
neighbouring voxels are spatially clustered [10, 12].

Equation 2.4 facilitates the de�nition of the prior which takes the local neigh-
bouring of voxels into account [11, 10];

Pi(k) =
πkexp(−β

∑
j∈<1(1− qi(k)))∑

k′ πk′exp(−β
∑

j∈<1(1− qi(k′)))
(2.4)

where πk is class prior constant from the Bayes classi�er, β is a constant that
predicts the in�uence of local neighbouring of voxels, qj(k)is the current pos-
terior probability of voxel j belonging to class k and the summation is the
summing of probabilities of voxels that are not belonging to class (1− qj(k)) in
a local neighbouring <1, [10, 11].

The MRF classi�er is performed to classify each MRI UTE sequence data set
into air, soft tissue and compact bone. Six to seven classes are considered to
classify the tissues that appear in MR image and an sCT scan is created.
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2.3 Image Registration

Image registration is a process which aligns di�erent data points into a common
coordinate system. The image registration process has become an important
tool for medical imaging and radiation therapy. This process enables align-
ment of acquired images of a patient with two di�erent imaging modalities such
as MRI and CT. In radiation, treatment planning and delineation, image reg-
istration is used to combine the information from e.g. CT and MRI imaging
modalities [11]. When image registration is performed, a reference R image and
a treatment T image will be de�ned. By applying image registration process
the reference image is kept una�ected and the treatment image is transformed
to acquire the spatial and geometry coordinates of reference image.

Image registration can be de�ned as composing the following components:

• Geometrical transformation, where the treatment image is transformed to
reference image.

• Similarity, where it measures how good the registration is performed.

• Regularization, whether the obtained transformation is reasonable.

Each of the above mentioned components are based on which image modality
type and registration type is used [11].

2.3.1 Manual Rigid Registration

In the radiation treatment planning process, image registration of OBI and
DRR is performed prior to treatment delivery to secure the patient setup and
enable correct positioning of the patient. This study involved di�erent imaging
modalities such as CT scanner, MRI scanner and On-Board imager. The spatial
resolutions of acquired images from the imaging modalities are di�erent, since
the images are obtained from di�erent sources and use di�erent imaging devices.

However, a manual rigid registration is performed for patient setup veri�cation
at each fraction which transforms an image using translation and rotation. The
translation occurs along vertical, longitudinal, lateral and rotation (pitch and
rnt).

Figure 2.6 illustrates image manual registration methods, frontal and lateral
match, respectively. Frontal matching allows shifts along longitudinal, lateral
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Figure 2.6: The �gure at the top illustrates frontal match and the �gure at
the bottom shows lateral match. The frontal match is carried out
by longitudinal, lateral direction and rotation (rnt). The lateral
match uses longitudinal, vertical direction and rotation (pitch).

direction and rotation (rnt) and lateral match allows shifts along longitudinal,
vertical direction and rotation (pitch).

DRRs are assigned as treatment images and the OBIs are assigned as refer-
ence images. The bony structures that appear on a DRR image will be matched
with the structures on OBI. The most common structures that are used for
matching of palliative patients receiving cranial RT, are shown in �gures 2.7
and 2.8. Figures 2.7 shows lateral CT DRR image of a patient receiving whole
brain RT. The anatomical structures that are typically used for a lateral match
are stated.

Figure 2.8 states the anatomical structures that are typically used for a frontal
match of a patient receiving whole brain RT.
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Figure 2.7: The �gure illustrates lateral CT generated DRR of a patient re-
ceiving whole brain RT. The following anatomical structures are
typically used for a lateral match; 1: Sinus frontalis, 2: Os frontale,
3: Os parietale, 4: Os Occipitale, 5: Protuberantia occipitalis in-
tern, 6: Pars Orbitalis ossis sphenoidalis, 7: External occipital
protuberance and 8: Lamina externa.

Figure 2.8: The �gure illustrates frontal CT DRR image of a patient receiving
whole brain RT. The following anatomical structures are used for
a frontal match; 1: eyes, 2: Sinus frontalis, 3: Nasal septum.
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2.3.2 A�ne Transformation

A�ne transformation is used for geometrical transformation of an image using
translation, rotation, scaling and sharing. In this study the a�ne transformation
is used to �nd the scaling factor between OBIs and DRRs. Prior to performing
image deformation, a linear interpolation is used to evaluate the image intensities
at spatial position. The linear interpolation is determined as a weighted sum of
the intensities from neighbouring voxels. A 2D linear interpolation is given as
follows;

I(y) = I(p1, p2)(1− ξ1)(1− ξ2) + I(p1 + 1, p2)ξ1 ∗ (1− ξ2)
+ I(p1, p2 + 1)(1− ξ2) ∗ ξ2 + I(p1 + 1, p2 + 1)ξ1 ∗ ξ2 (2.5)

where I(y) is the intensity value which is determined as a weighted sum of the
intensities from neighbouring voxels at p1 p2 positions. The weights are com-
puted by the zero to one normalized distance ξ1, ξ2 to the nearest neighbouring
voxels.

To transform xi coordinate, a a�ne transformation in 2D is de�ned as follows
[11];

y(xi;A, t) = Axi + t (2.6)

where t is a translation vector, x is a vector of pixel coordinates and A is a
2x2 matrix describing rotation, translation, scaling and shearing. This can be
rewritten as follows;

yi = R∗Z∗S∗xi+t, R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
Z =

[
1 zx
zy 1

]
S =

[
sx 0
0 sy

]
(2.7)

where R is rotation, Z is sharing and S denotes scaling. The model can also be
de�ned as follows;

yi = Q(xi) ∗ w (2.8)

where i de�nes voxel coordinates and w contains all parameters of an a�ne
model. An optimization algorithm is used to estimate appropriate parameters
for the above a�ne model. The concept of this algorithm is to search the
parameters space by adjusting each parameter in turn until no further change
appears in the model.
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Chapter 3

Methods & Materials

3.1 Data Acquisition

This study includes data from four palliative patients receiving cranial RT. Each
patient data consists of planning CT scans, MR scans and anterior and lateral
setup (2D) kV radiographs from each fraction. The planning CT scans are
acquired with a Philips Brilliance Big Bore CT and the OBIs are acquired at
the LINAC with the on-board imager (OBI) at each fraction. The MR scans
are obtained with 1 Tesla open MRI-system, Philips Panorama. The MR scans
consist of a T1 weighted, DIXON, and UTE sequence data. In this study only
UTE sequence MR data is used and the rest are excluded.

Patient MRI scan CT scan Fractionx2 OBI
1 UTE Planning CT data 9x2
2 UTE Planning CT data 1x2
3 UTE Planning CT data 8x2
4 UTE, Planning CT data 8x2

Table 3.1: The table represents the data from four patients which are divided
in CT scan, MR scan and two orthogonal OBIs for each fraction at
frontal and lateral position, respectively.
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Table 3.1 illustrates data from all four patient receiving whole brain RT with
2D setup veri�cation. The �rst patient received nine fractions. The second
patient received one single fraction RT, while the third and fourth patients each
received eight whole brain RT with 2D setup veri�cation.

3.2 Data Processing

The data was anonymized using ConQuest DICOM server 1.4.16. The �gure
below illustrates data processing in this study.

Figure 3.1: The �gure illustrates data processing.
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3.2.1 Tissue Segmentation

The output from MR UTE sequence was segmented into di�erent tissue classes.
MRF was used as a segmentation strategy to classify each data set into air,
soft tissue and cortical bone. This was done in MATLAB where an automatic
training with 7 classes was shared for MRF with β = 0.7 and 10 iterations and
created so-called substituted CT (sCT) scans [10]. This was performed for all
four patients.

3.2.2 DRRs Generating

The patient data sets were imported into Eclipse v.10.0 (Varian Medical Sys-
tems) TPS in a training box (T-box). All data were in DICOM format. The
planning CT scans and plan for each patient were exported from the clinical
system to TPS at the T-box. The plan was transferred to patient planning CT
scans. The sCT scans were also imported to TPS at T-box. The plan from
planning CT scans were then transferred to sCT scans. The planning CT scans
were registered with sCT using TPS manual rigid registration where the plan-
ning CT scans were considered as true data as shown in �gure 3.2. sCT and CT
DRR were generated in TPS and this was done with both anterior and lateral
direction, respectively.

Figure 3.2: Manual rigid registration of CT and sCT scan.
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3.2.3 2D Manual Image Registration

In this study it was necessary to �nd a user-friendly software for RTTs to perform
a 2D manual images registration. Initially, the software Portal Image Processing
System V.4.2 (PIPSpro) was examined for this purpose. Only one patient data
set was applied for this examination. The rest of the 2D image registration was
done with O�ine Review Eclipse V.10.0 (Varian Medical System).

3.2.3.1 2D Manual Image Registration with PIPSpro

PIPSpro software was used to perform 2D images registration. The application
of PIPSpro is described in more detail in section A.1.

sCT DRRs and CT DRRs were used to make a 2D registration in PIPSpro.
PIPSpro requires same size images. DRRs and OBIs di�er in size, since the
images are acquired with three di�erent imaging modalities MRI, CT and OBI,
respectively. MATLAB was used to resize DRR to OBI and obtained the same
size and resolution, as shown in �gure 3.3. Registration in PIPSpro was made

Figure 3.3: Figure a and b illustrates the original CT DRR and OBI, respec-
tively. Figure c shows the resized CT DRR.
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by delineating contours around the region of interest (ROI) and drawing land-
marks in reference (DRRs) and treatment image (OBIs). The landmarks at
reference image were transformed into the treatment image. Figure 3.4 shows
the procedure of manual image registration in PIPSpro. Figure 3.4 shows that

Figure 3.4: Figure illustrates the procedure of manual registration in PIPSpro.
a: manual contour delineation, b: manual landmark positioning
and c: landmark transformation.

the transformed landmarks from the reference image cannot be aligned with
the treatment image, since the treatment images are larger compared to the
reference image even though the images were resized to the same size using the
information provided by the DICOM-Header.
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3.2.3.2 A�ne Transformation

As mentioned in the previous section, OBIs and DRRs were not the same size,
even though resizing was performed using DICOM information in MATLAB.

Further study was carried out to �nd the scaling factors between OBI and DRRs.
A�ne transformation was performed where OBI image was assigned as reference
image and DRR as treatment image. The treatment images were transformed
and scaled as the reference image and following factors were provided from the
a�ne transformation output: translation, rotation, scaling and shearing. This
was done in Matlab. Only one patient data set was used for this study.

3.2.4 2D Manual Image Registration with Eclipse

OBIs from each fraction were imported from the clinical system into TPS at
T-box. The relevant OBI images were attached to the relevant DRR images
both for CT and sCT DRRs, respectively. This was done for all four patients.

Image registration was performed according to clinical protocols at Herlev Hos-
pital. O�ine Review Eclipse v.10 (Varian Medical System) allows both auto-
matic registration and manual registration. The available tools in O�ine Review
allow numerical shifts along lateral, longitudinal, vertical and two rotations rnt
(frontal) and pitch (lateral), together with matching of OBIs and DRRs.

Five experienced RTTs from the clinic were recruited to match OBIs with CT
and sCT generated DRRs for each patient in a random order using Manual
Match. The sCT and CT generated DRRs were blinded and the RTTs were
allowed using of all help functions. The OBIs were assigned as reference im-
ages and the DRRs were assigned as treatment images. The RTTs performed
matching by aligning the anatomical structures that appear in OBI images with
DRRs or vice versa.

As mentioned before, the match of images for each patient were performed in
random order, with an RTT match of OBI images �rst with CT DRRs and than
with sCT DRRs. Both lateral and frontal matches were performed in O�ine
Review by blending these images as shown in �gure 3.5.
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Figure 3.5: The �gure illustrates a lateral match where 1 de�nes OBI image
and 2 refers to CT DRR.
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3.3 Statistical Approaches

In this study, a statistical analysis was carried out to evaluate whether there
is a signi�cant di�erence in 2D setup veri�cation of patients when performing
matching on sCT generated DRRs as compared to CT based DRRs. The match
of OBIs with CT and sCT DRRs of each patient were performed in random or-
der. The matched variables are divided into continuous and categorical variables
as shown in tables 3.2 and 3.3, respectively.

Continuous variable
1 Longitudinal (Front)
2 Longitudinal (Lateral)
3 Vertical
4 Lateral
5 rnt
6 Pitch

Table 3.2: The table represents continuous variables.

Categorical variable
1 Image modality
2 Patient
3 Fraction
4 RTT/Nurse

Table 3.3: The table represents categorical variables.

The statistical software SAS 9.3 was used for all statistical analysis in this study.
The signi�cance level is chosen to be α = 0.05

Figure 3.6: The �gure illustrates the applied statistical tests on the matched
data.

The �gure 3.6 illustrates the applied statistical tests on the matched data.
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3.3.1 Least signi�cant di�erence

Fisher's Least signi�cant di�erence (LSD) test compares all pairs of means with
the null hypotheses H0 : µi = µk against all alternatives (for all i 6=k) using
t-test [4].

t0 =
yi − yk√

2MSE
n

(3.1)

where yi and yk are treatment means and MSE denotes means square error. If
the pair of means yi and yk is signi�cant di�erent, H0 is rejected:

|yi − yk| ≥ LSD (3.2)

where the least signi�cant di�erence (LSD) is; LSD = t1−α2

√
MSE(

2
n .

Initially, LSD test based on all continuous variables was carried out. The con-
tinuous variables are divided into lateral and frontal match. The lateral match
contains the continuous variables, longitudinal (lateral) direction, vertical direc-
tion and pitch, respectively. The frontal match contains the continuous variables
such as longitudinal (front) direction, lateral direction and rnt.

3.3.2 Analysis of Variance

Analysis of variance (ANOVA) is used to test di�erent factors which change the
outcome signi�cantly.

yij = µ+ τi + εij (3.3)

for i = 1, 2, ..., a and j = 1, 2, ..., n In equation 3.3, µ is overall mean, τi is a
parameter unique to ith treatment called the ith treatment e�ect and εij is a
random error that appears in the experiment [14]. The equation 3.3 is used to
test the null-hypotheses of whether the populations di�er signi�cantly or not.
The null hypotheses, H0, states that the means are equal and treatment e�ects
within the di�erent levels, τi, replaces by zeros. H0 is paired with a second,
alternative hypotheses, H1, which means that at least one of i is non-zero. The
analyses of variance uses F-test for the hypotheses of no di�erence in treatment
means.

F =

∑a
i=1(Y i − Y )/(a− 1)∑a

i=1

∑n
j=1 i(Y ij − Y i)2/(N − a)

=
SSTr/(a− 1)

SSE/N − a
(3.4)

Y is mean of all measurements, Yi is measurement of each i and N = a∗n. The
F is distributed with a-1 and N-a degrees of freedom (DF). Table 3.4 illustrates
a simple ANOVA table.
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Source of Variation Degrees of freedom Sum of Squares Mean Square F0

Treatments a-1 SSTr MSTr = SSTr
a−1

MSTr
MSE

Error N-a SSE MSE = SSE
N−a

Total N-1 SST

Table 3.4: The table shows ANOVA table.

An ANOVA test was performed based on only one continuous variable, longitu-
dinal (front) direction. A Reduced model method based on ANOVA was used
where all continuous variables were considered. A model was considered with
three main factors: modality, RTT and patient, respectively.

3.3.3 Repeated Measures Design

A repeated measures design is appropriate when multiple measures of depen-
dent variables are taken on the same object under di�erent conditions or over
two or more time periods. Repeated measures experiments are considered as
a factorial design experiment. Responses measured on the same object can be
correlated since the responses contain a common contribution from the object.
Responses that are measured around the same time can often be correlated
better than responses measured far apart in time. The variances of repeated
measures change with time. These factors produce a complicated covariance
structure of the repeated measures, therefore appropriate statistical analysis
is required because of the covariance structure. Univariate and multivariate
ANOVA are often performed for the statistical analysis of repeated measures
data. In some cases the mixed model methodology is also used for analysis of
repeated measures data [14, 13, 24]. A repeated measures design is used in
this study. Multiple response is taken in sequence on the same patient. The
aim of repeated measures analysis is to examine and compare response trends
over time/fraction. This involves comparisons of treatments over fraction and
comparison of fraction within a treatment [13]. Univariate and multivariate
ANOVA are used for the signi�cant tests.

The univariate ANOVA is valid, if all measurements have equal variance at all
fractions and pairs of measurements on the same patient are equally correlated,
regardless of the time lag between the measurements. Huynh-Feldt (H-F) and
Greenhouse-Geisser (G-G) conditions are necessary for the validity of univariate
ANOVA tests. The H-F ε and G-G ε predict how well the circularity assumption
has been met. It ranges from 1/dffraction ≤ ε ≤ 1. [13, 24].

The multivariate ANOVA, so-called MANOVA is also used in testing within



3.3 Statistical Approaches 29

subject e�ects. MANOVA involves four di�erent multivariate tests with dif-
ferent focus. The P-values are obtained from approximate F-test. The four
multivariate test statistics are listed below.

• Wilk's Lambda

• Pillai trace

• Hotelling-Lawley trace

• Roy's maximum

The most known test statistic is Wilk's Lambda and is therefore used in study.

Analysis of each continuous variable with 10 repeated measures where fraction
was taken as repeated factor SAS generalized linear model (GLM) procedure
was used for the implementation of repeated measures method.

Figure 3.7: The �gure illustrates repeated measure method implementation
using SAS (PROC GLM).

Figure 3.7 shows implementation of repeated measures strategy in SAS. Ini-
tially some of the missing data was deselected. Between subject e�ects and
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within subject e�ects were determined and transformation was selected. PROC
GLM performs a standard signi�cance test between subject e�ects. The PROC
GLM tests whether this structure is signi�cant or not, using the circularity as-
sumption. The mauchly chi-square is used to determine whether the circularity
assumption is valid or not, by using H-F condition. If the circularity assumption
is valid or signi�cant, then univariate tests within subject e�ects is used. If the
circularity assumption is invalid, then PROC GLM o�ers two ways to test the
signi�cance of within subject e�ects. 1) to adjust the univariate tests, H-F and
G-G adjustments and 2) multivariate tests involving four di�erent tests.
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Results

4.1 MRF Segmentation

Each UTE MRI patient data set was segmented into air, soft tissue and cortical
bone using a Markov Random Field classi�er, to generate a so-called sCT scan.

An axial slice of the sCT generated scan for all four patients is shown in �gure
4.1, where the black color seen in images refers to air, the gray color denotes
soft tissue and the white color refers to cortical bone. The �gure at the top left
shows an axial slice of a sCT scan of patient 1, where the segmented cortical
bone appears with a thick contour. This indicates that the cortical bone is over-
segmented compared to the soft tissues. The �gure at the top right illustrates
a sCT slice for patient 2, the cortical bone is segmented when it reaches the
occipital part of the cranium, but there is a signal loss at the frontal part. The
�gure at the bottom left illustrates a sCT slice for patient 3, the cortical bone
appears as a bright contour in the image. There are clear artefacts at frontal
and occipital parts of the cranium. The bottom right shows an axial sCT slice
of patient 4, where the cortical bone is segmented. All patients su�er from arte-
facts, especially at frontal and occipital parts of the cranium, which are very
clear in the images.
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Figure 4.1: The �gure illustrates axial slice of sCT scan for all four patients,
patient 1, patient 2, patient 3 and patient 4, respectively. The
black color seen in the images refers to air, the gray color denotes
soft tissue and the white color refers to cortical bone.



4.1 MRF Segmentation 33

Figure 4.2: The �gure illustrates intensity plots of patient 1, patient 2, patient
3 and patient 4, respectively. Each coloured region refers to a tis-
sue group, where dark red and dark green refer to air, red denotes
bone, yellow, green, purple and light blue refer to di�erent soft
tissue groups. The x-axis refers to intensity echo 1 and the y-axis
is intensity echo 2.
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Figure 4.2 illustrates intensity plots for all four MRF segmented patient data.
The tissue groups or classes are shown in di�erent colors. The dark green and
dark red color refer to air, red denotes bone, yellow, green, purple and light
blue refer to di�erent soft tissue groups. Interesting observations are made
when looking at the intensity plot for patient 1 and patient 3, where the purple
tissue group covers two Gaussian distributions. This indicates a poor classi�-
cation of the soft tissue for patient 1 and 2. A better classi�cation could have
been obtained if the MRF classi�cation algorithm was performed until a satis-
fying result was obtained. To avoid bias the MRF classi�cation algorithm was
performed only once.

4.2 Comparison of sCT and CT generated DRRs

The geometrical evaluation of all four patients was done by using the dice coe�-
cient, which measures the similarity of sCT bone volume and CT bone volume.
The dice coe�cient (D) is calculated by the given intersection volume A ∩ B
and the individual volumes A and B [3];

D =
2(A ∩B)

A+B
(4.1)

The perfect overlap of A and B volumes acquires D = 1 whereas two disjoint
volumes lead to D = 0. A refers to CT bone volume and B refers to sCT

Figure 4.3: The �gure illustrates the determined dice coe�cients for all four
patients.

bone volume. The dice coe�cients for all four patients were calculated from the
equation 4.1 and are plotted in �gure 4.3. The mean and standard deviation of
dice coe�cient was determined to be 0.50± 0.05.
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The bone sCT DRRs were generated from sCT scan and the bone CT DRRs
were generated from planning CT scan. This was done both for lateral and
frontal direction.

Figure 4.4: The �gure illustrates CT and sCT generated DRRs images for the
frontal directions for patient 1, patient 2, patient 3 and patient 4,
respectively.

Figure 4.4 shows frontal CT and sCT generated DRRs for patient 1, patient 2,
patient 3 and patient 4, respectively. The sCT DRRs for patient 1, 2 and 4 are
close to the CT DRRs when looking at the eye part of the patients. Patient 3 has
obtained a poor bone segmentation when looking at the eye part and performs
with the less dice coe�cient shown in �gure 4.3. The bone segmentation around
the cranium for all 4 patients is close to the CT DRRs shown in �gure 4.4.

Lateral CT and sCT DRRs are shown in �gure 4.5 for patient 1, patient 2,
patient 3 and patient 4. The sCT DRRs for patient 1 and 4 are close to the CT
DRRs when comparing the bone structures, especially the bone structure along
pars orbitalis ossis sphenoidalis (shown in �gure 2.7 for lateral match in chapter
2). Patient 1 and 4 perform with better dice coe�cient compared to patient 2
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Figure 4.5: The �gure shows CT and sCT generated DRRs images for the
lateral directions for patient 1, patient 2, patient 3 and patient 4,
respectively.



4.2 Comparison of sCT and CT generated DRRs 37

and 3 shown in �gure 4.3. In addition, the bone segmentation along external
and internal occipital part is close to the CT DRRs for all patients shown in
�gure 4.5.
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4.3 A�ne Transformation

A�ne transformation was performed to �nd the scaling factors between OBI
and DRRs, where OBI image was assigned as a reference image and DRR as
treatment image. The following parameters were provided from the a�ne trans-
formation output: translation, rotation, scaling and shearing.

Fraction T1 T2 R sx sy zx zy
1 -6.433 -3.878 0.072 0.676 0.630 -0.050 0.049
2 -7.776 3.297 -0.098 0.683 0.606 0.136 -0.177
3 -4.948 -1.524 -0.032 0.641 0.643 0.043 -0.070
4 -5.573 -1.372 0.011 0.647 0.646 0.008 -0.035
5 -6.713 -1.731 0.264 0.669 0.612 -0.207 0.249
6 -8.330 -0.292 0.156 0.687 0.624 -0.079 0.096
7 -8.181 -0.568 0.149 0.687 0.623 -0.080 0.097
8 -6.569 -2.120 0.093 0.645 0.636 -0.072 0.037
9 -6.773 -1.368 0.045 0.647 0.642 -0.019 -0.012
10 -6.976 -2.517 0.088 0.646 0.638 -0.069 0.038

Table 4.1: The table represents the output parameters of a�ne model after
�nal estimate. T1 and T2 are the translation parameters, R is the
rotation parameter given radian, sx and sy are the scaling param-
eters and zx and zy are the shearing parameters.

Table 4.1 illustrates the output parameters of the a�ne model. T1 and T2 are
the translation parameters, R is the rotation parameter given radian, sx and
sy are the scaling parameters and zx and zy are the shearing parameters. For
fraction 1, 2, ..,7 appropriate a�ne model parameters were obtained with sx = 0
and sy = 0 initial estimated value, while for fraction 8, 9 and 10 three estimated
values were necessary until appropriate a�ne model parameters were obtained.

Figure 4.6 illustrates a�ne transformation process for fraction 10. The �gure at
the top left shows CT DRR, the �gure top right illustrates OBI and the image at
the bottom shows the output of transformation with a �nal estimate sx = 0.679
and sy = 0.630.

The scaling factors sx and sy were varied for each fraction and in some cases as
for fraction 8 and 10 more than one estimated value was needed.

This study indicates an error in resolution value (mm/pixel), which is provided
in DICOM header for OBI and DRRs. The provided resolution values for all
OBIs are �xed and are given [0.388 0.388]mm/pixel. The resolution values for
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Figure 4.6: The �gures illustrates the a�ne transformation process for fraction
10. The �gure at the top left illustrates CT DRR, the �gure top
right shows OBI and the image at the bottom shows the output of
transformation with a �nal estimate sx = 0.679 and sy = 0.630.

CT DRRs are also �xed and [0.976 0.976]mm/pixel. These DICOM header
provided resolution values concern OBIs and CT DRRs for all four patients.
Therefore use of PIPSpro software for manual image registration was not ap-
propriate for this study.

4.4 CT and sCT generated DRR Match

Five RTTs from the clinic enabled performance of manual matching of OBIs
with CT and sCT DRRs, respectively. RTTs performed both lateral and frontal
match. This results in 260× 6 matched data points which can be used for sta-
tistical evaluation if there is a signi�cant di�erence between matches performed
on CT DRRs and sCT DRRs in 2D patient setup veri�cation.
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4.5 Statistical Analysis

4.5.1 LSD

The LSD test for all continuous variables (shifting directions) was calculated to
distinguish between lateral match and frontal match when matching with sCT
and CT generated DRRs. The signi�cance level is chosen at α = 0.05

Shifting Directions yMR yCT MSE ysCT − yCT ≥ LSD
Longitudinal (Front) -0.0346 -0.0307 0.0519 -0.0038<0.0556
Longitudinal (Lateral) 0.0477 0.0085 0.0304 0.0392<0.0426

Vertical 0.0577 0.0131 0.0187 0.0446>0.0334
Lateral -0.0577 -0.0684 0.0276 0.0107<0.0406
Pitch 0.4177 0.7477 1.1380 -0.3300<0.2606
rnt -0.1667 -0.4569 1.7820 0.2886<0.3261

Table 4.2: The table illustrates comparisons among the observed modality av-
erages, where mean MR yMR and mean CT yCT are in mm, MSE

denotes mean square error and yMR−yCT is the di�erence between
mean sCT and CT and LSD is the determined least signi�cant dif-
ference.

The LSD analysis shown in table 4.3, shows a non-signi�cant di�erence between
mean CT and sCT except vertical direction (0.0446 > 0.0334). There is a
signi�cant di�erence in sCT and CT DRRs in vertical direction when performing
lateral match. This may cause the poor segmentation sCT along pars orbitalis
ossis sphenoidalis for patient 2. Therefore the matched data for patient 2 was
excluded and a new LSD test based on matched data for patient 1, 3 and 4 was
performed.

The LSD test still shows a signi�cant di�erence between sCT and CT for vertical
direction when performing lateral match. By excluding patient 2 the LSD result
is not a�ect for the vertical directions.
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Shifting Directions yMR yCT MSE ysCT − yCT ≥ LSD
Longitudinal (Front) -0.0360 -0.0320 0.0539 -0.0040<0.0574
Longitudinal (Lateral) 0.0536 0.0012 0.0307 0.0416<0.0437

Vertical 0.0512 0.0136 0.0170 0.0376>0.0325
Lateral -0.0568 -0.0664 0.0285 0.0096<0.0421
Pitch 0.4208 0.7776 1.1627 -0.3550<0.2680
rnt -0.1744 -0.4889 1.8353 0.3152<0.3375

Table 4.3: The table illustrates comparisons among the observed modality av-
erages, where mean MR yMR and mean CT yCT are in mm, MSE

denotes mean square error and yMR−yCT is the di�erence between
mean sCT and CT and LSD is the determined least signi�cant dif-
ference. Patient 2 is deselected from matched data.
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4.5.2 ANOVA

An ANOVA test is used to measure the variation of means among modalities,
patients, fractions and RTTs, respectively. A �xed model is considered where
the factors such as modality, patient fraction and RTT (RTT donates nurse) are
deterministic. The null-hypothesis, H0 for sources such as modality, patient,
fraction and RTT and the interaction between, is that all the means, µ for the
source, are the same and the alternative hypothesis, H1 states at least one of
the means di�ers from the others.

Figure 4.7: The �gure shows ANOVA tables for the longitudinal (front) direc-
tion.

Figure 4.7 illustrates ANOVA tables for longitudinal (front) direction. The f-
values and P-values are not determined, since there is no error for degrees of
freedom.
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A new model is considered based on three factors, modality, patient and RTT.
An ANOVA test is performed to test the variation of means among modalities,
patients and RTTs, respectively.

Figure 4.8: The �gure shows ANOVA tables for the longitudinal (front) direc-
tion where the factor fraction is not considered in the model.

Figure 4.8 illustrates ANOVA tables for longitudinal (front) where fraction is
not included in the model. By comparing ANOVA tables from the �rst model
(fraction factor included) with the second model (fraction factor not included),
it can be seen that the error term in the second model corresponds to the
sum of the square of all e�ects containing fraction factor in the �rst model.
If there is a strong correlation between di�erent fraction for the same patient,
this may corrupt the estimate of error variance and may cause bias. A positive
correlation can cause a smaller variance. This will again lead to the F-test values
increasing and therefore seem more signi�cant. If factor has been found not to
be signi�cant, then this is most likely the correct conclusion. A model which
takes the eventual correlation between the fractions into account is a repeated
measures design. The analysis of repeated model design will be introduced later
in this chapter.
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4.5.2.1 Reduced Model Method with ANOVA

A model is considered to have three main e�ects: modality, nurse (nurse refers
to RTT), patient and the interactions between them. This model is so-called a
full model. An ANOVA test was performed on the full model and the reduced
model method was carried out. The full model was reduced by taking out the
most non-signi�cant interaction term, i.e. interaction term with highest P-value.
This procedure was repeated until a possible signi�cant model was obtained
[4]. This was performed for the lateral and the frontal match variables. The
lateral match variables are longitudinal (lateral) direction, vertical direction
and pitch, respectively. The frontal match variables are longitudinal (front)
direction, lateral direction and rnt.

The null-hypothesis, H0 for sources such as modality, patient and RTTs, is that
all the means, µ for the source are the same and the alternative hypothesis, H1

states at least one of the means di�ers from the others. For the ANOVA table
analysis only the main factors will be analysed.

Figure 4.9: The �gure illustrates ANOVA tables for reduced model of the lat-
eral match variables. a: longitudinal (lateral) direction, b: pitch
and c: vertical direction. The signi�cant factors are marked in
red.

Figure 4.9 illustrates ANOVA tables for the reduced model of the lateral match
variables. Table a shows ANOVA table for longitudinal (lateral) direction, ta-
ble b illustrates ANOVA table for pitch and table cshows ANOVA table for
vertical direction. A signi�cant di�erence between CT and sCT was observed
for longitudinal (lateral) direction, pitch and vertical direction. The modality
di�erence for vertical direction is more signi�cant compared to the pitch and
longitudinal (lateral). There is also a signi�cant di�erence between nurses when
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performing lateral match, except for the longitudinal (lateral) direction. The
most signi�cant di�erence seen in pitch compared to the vertical direction. In
the clinic the RTTs do not use pitch and rnt when matching due to patient setup
veri�cation. This can be one of the reasons that the RTTs di�ers signi�cantly in
pitch (rotation) when performing lateral match. The ANOVA tables, a, b and c
show a signi�cant di�erence between patients, since the sCT and CT generated
DRRs from patient to patient shown in �gures 4.4 and 4.5.

Figure 4.10: The �gure illustrates ANOVA tables for reduced model of the
frontal match variables. a:longitudinal (front) direction, b: rnt
and c: lateral direction. The signi�cant factors are marked in
red.

Figure 4.10 shows ANOVA tables for the reduced model of the frontal match
variables. Table a illustrates ANOVA table for longitudinal (front) direction,
table b refers to ANOVA table for rnt and table c shows ANOVA table for lateral
direction. A signi�cant di�erence between modality means, CT and sCT shown
in rnt. The nurse e�ect is also observed to be signi�cant in rnt and longitudinal
direction.

The modality di�erence is higher for the lateral direction compared to the frontal
direction. Vertical direction has the highest P-value compared to the rest of
shifting direction: longitudinal (lateral) direction, longitudinal (front) direction,
lateral direction, pitch and rnt, respectively. This can be compared with the
LSD test outcome, which showed that the vertical direction was signi�cant.

4.5.3 MANOVA

A MANOVA test was performed where all the continuous variables were consid-
ered as responses, such as longitudinal (lateral) direction, longitudinal (front)
direction, vertical direction, lateral direction, pitch and rnt, respectively. All
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four factors (modality, patient, RTT and fraction) were included in the model,
RTT denotes nurse. The purpose of this MANOVA was to test the factor e�ects
when having multivariate responses.

Only Wilk's lambda estimated F-test was considered for the analysis of the
factors. The level of signi�cance is chosen to be α = 0.05.

Figure 4.11: The �gure illustrates the MANOVA test hypothesis. a: Hypoth-
esis for modality e�ect, b: Hypothesis for fraction e�ect, c: Hy-
pothesis for nurse e�ect and d: Hypothesis for patient e�ect.

Figure 4.11 shows the MANOVA test hypothesis for modality, fraction, nurse
and patient e�ects. A signi�cant modality, nurse patient and fraction e�ects
were observed when performing MONOVA test. It is observed that the modal-
ity e�ect is signi�cant at α = 0.05 signi�cance level whereas nurse, patient and
fraction are signi�cant less α = 0.01 signi�cance level. This signi�es that modal-
ity is less signi�cant compared to the other factors, such as RTT, patient and
fraction.

A new MANOVA test was performed where only the data from the �rst fraction
for all continuous variables were considered. Three factors were considered:
modality, patient and nurse.

Figure 4.12 shows the MANOVA test hypothesis for modality e�ect, a, for
RTT/nurse e�ect, b and for patient e�ect, c, respectively. A signi�cant dif-
ference was observed in patients when taking only the �rst fraction for all four
patients. The �rst fraction was considered because patient 2 had received only
one fraction RT. No signi�cant di�erence was shown between CT and sCT in
this analysis. There was also no signi�cant di�erence between RTTs when per-
forming lateral and frontal match.
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Figure 4.12: The �gure illustrates the MANOVA test hypothesis. a: Hypoth-
esis for modality e�ect, b: Hypothesis for nurse e�ect and c:
Hypothesis for patient e�ect.

4.5.4 Repeated Measure Design

Further analysis was made to include the fraction factor. The analysis of each
continuous variable for lateral and frontal match with 10 repeated measures was
performed taking fraction as the repeated factor. The fractions were assumed
to be correlated, since patient artefacts will most likely in�uence all fractions
and this will cause correlation between fraction. A simple ANOVA, univariate
ANOVA and MANOVA were carried out for the analysis of repeated measures
data. The di�erence between a simple ANOVA and a univariate ANOVA is that
the univariate ANOVA corresponds to a pooled value of fraction. The signi�cant
level is chosen to be α = 0.05.

The results from the ANOVA, univariate ANOVA and MANOVA tables are
shown and described in detail in section A.2.1. In this section the important
test values e�ects will be pointed out, such as modality, RTT and fraction,
respectively.

For the lateral match, the structures for longitudinal (lateral) direction, pitch
and vertical direction were valid, since H-F and G-G estimates of ε were lower
than 1. The simple ANOVA tests, so-called tests of hypotheses for between
subjects, showed that the main e�ect modality and nurses were non-signi�cant
for longitudinal (lateral) direction, vertical direction and pitch. This indicates
that there is no di�erence between CT and sCT DRRs and between RTTs when
applying repeated measure design analysis. A signi�cant di�erence in fraction
e�ect was observed for vertical direction and pitch both for univariate ANOVA
and MANOVA.

For the frontal match the structures for longitudinal (front) direction, lateral
direction and rnt were valid, since the H-F and G-G ε satisfy the circularity
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assumptions. No di�erences were observed in means for modality and RTT
for longitudinal (front) direction, lateral direction and rnt when performing the
ANOVA test. The univariate test showed a signi�cant di�erence in fraction for
lateral direction and rnt. For the MANOVA, test a signi�cant di�erence was
observed for longitudinal (front) and lateral directions.

In general the repeated measures design analysis with both univariate ANOVA
and MANOVA tests indicate that there is a signi�cant di�erence in fraction for
both lateral and frontal match variables. No signi�cant di�erence was observed
for the modality, which means no signi�cant di�erence between CT and sCT
DRRs. The di�erence between the RTTs were also non-signi�cant. This indi-
cates that RTTs are representative when performing repeated measures design
analysis.
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Discussion

5.1 MRF Segmentation

The MRF classi�cation strategy facilitates segmentation of the UTE MRI out-
put into air, soft tissue and cortical bone and creates a sCT scan for all four
patients. An axial slice for all four patients is shown in �gure 4.1 in chapter 4
and all four patients su�er from artefacts. These artefacts can be caused by sus-
ceptibility artefact which can appear in air-to-soft tissue boundaries and signal
loss. The signal loss can be due to reduced covering of coil since the immobiliza-
tion devices in some cases can prevent the use of an optimal coil. The artefacts
were also apparent both in frontal and lateral sCT DRRs shown in �gures 4.4
and 4.5 in chapter 4. The appeared artefacts in the sCT generated DRRs do
not disturb the matching procedure since the RTTs aligned the bone structures
of OBIs with sCT generated DRRs.

The distribution of di�erent tissue groups or classes are shown as intensity
plots in �gure 4.2. The tissue classes for patient 2 and 4 are �nely distributed
compared to the intensity plots for patient 1 and patient 3. The intensity plots
for patient 1 and patient 2 that illustrate a soft tissue group covers two Gaussian
distributions which can indicate that soft tissue classi�cation for patient 1 and
3 is not as good as patient 2 and 4. The classi�cation of the soft tissue could
have been better, but the bone segmentation of all four patients is su�cient to
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perform matching.

5.2 Comparison of sCT and CT generated DRRs

The anatomical bone structures of CT and sCT DRRs for patient 1 in �gure 4.5
and 4.4 in chapter 4 are comparable, but the bone segmentation at the external
occipital part is poor compared to the other patients lateral sCT generated
DRRs shown in �gure 4.5. The similarity between sCT and CT bone volume was
determined to be 0.57 shown in �gure 4.3 in chapter 4, which is slightly better
compared to the rest of the patients. Since the overall bone segmentation for
patient 1 has been performed better compared to the other patients why patient
1 obtained the highest dice coe�cient.

Patient 2 has obtained a poor bone segmentation along pars orbitalis ossis sphe-
noidalis (structure shown in �gure 2.7 in chapter 2) compared to the other
patients when looking at the sCT generated DRRs. The dice coe�cient was
determined to be 0.47. This can be due to poor bone segmentation. A bet-
ter segmentation could have been obtained if the MRF classi�cation algorithm
performed until a satis�ed segmentation was obtained.

Patient 3 performs with a less determined dice coe�cient 0.45 shown in �gure
4.3 in chapter 4 compared to the rest of the patients. The bone segmentation at
the eye part is very poor and not comparable to the frontal CT generated DRR
shown in �gure 4.4, but segmented bone around the cranium is comparable to
CT generated DRR. This is due to the bone around the cranium is more dense.
The lateral sCT and CT are very similar to each other except for the bone
structure along the pars orbitalis ossis sphenoidalis.

The similarity between CT and sCT bone volume for patient 4 was determined
to be 0.48, which is the next best determined dice coe�cient shown in �gure
4.3. The sCT generated DRRs bone structures are very close to the CT DRRs
bone structures shown in �gures 4.5 and 4.4.

5.3 CT and sCT generated DRR Match

In general the RTTs enabled performance of 2D matching of OBIs with CT and
sCT generated DRRs. The RTTs found the lateral match much easier compared
to the frontal match when performing 2D matching of OBIs with sCT DRRs.
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This is due to the bone structures in lateral sCT generated DRRs are more
visible compared to the frontal sCT generated DRRs.

On the daily basis the RTTs are used to match the OBI with CT DRRs, they
are not familiar with sCT DRRs. The RTTs are therefore more con�dent when
matching OBI with CT DRRs. This in�uences the outcome of their matching
procedure. Even though the sCT and CT DRRs were blinded, the RTTs were
still able to di�erentiate between CT and sCT DRRs. There is also a variation
within RTTs when performing matching, i.e. knowledge and experience. This
factor a�ects the matched outcome as well.

Di�erent statistical approaches were carried out to determine the uncertainty in
the outcome of the matching due to a di�erence in modalities, such as CT and
sCT modalities and therefore di�erent conclusions were obtained.

Least signi�cant di�erence (LSD) �sher's test was performed because it is a
simple method taking only modality into account to distinguish between lateral
and frontal match variables. For the lateral match solely vertical direction was
signi�cant whereas longitudinal (lateral) and pitch were non-signi�cant. This
means that the sCT and CT modality di�erence shows in vertical direction. The
frontal match variables, longitudinal (front) direction, lateral direction and rnt
were non-signi�cant. The di�erences between the frontal sCT and CT generated
DRRs seen to be larger compared to lateral sCT and CT generated DRRs due
to bone structures shown in �gures 4.5 and 4.4 in chapter 4. The RTT matched
bone structures as desired. The RTT carried out matching by aligning the bone
structures of sCT and CT generated DRRs that are most visible and comparable
to OBI. The frontal match performed mainly focusing on the bone structures
along the cranium due to a poor bone segmentation around the eye part when
looking at the frontal sCT generated DRRs 4.4. The lateral match performed
by aligning more bone structures compared to the frontal match. This can be
one of the reasons that vertical direction in lateral match is signi�cant.

The reduced model analysis showed a signi�cant di�erence between CT and
sCT modalities for the lateral match variables, longitudinal (lateral) direction,
vertical direction and pitch, respectively. For the frontal only rnt showed a
signi�cant di�erence between sCT and CT modalities p-value 0.0437, which is
very close to the signi�cance level α = 0.05. In general the reduced model
analysis showed that only vertical direction was most signi�cant. This can
be compared to LSD test where the vertical direction also was found to be
signi�cant.

MANOVA test showed a signi�cance di�erence between CT and sCT modality
when taking all fractions into account. No signi�cant di�erence was observed
when taking only one fraction. This indicates that the fractions provide a small
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uncertainty measurement in the experiment.

The repeated measures design analysis with ANOVA test showed no signi�cant
di�erence between CT and sCT modality. The di�erences between RTTs were
also observed non-signi�cant which indicates that RTTs are representative. A
signi�cant di�erence between fractions was obtained when performing univariate
ANOVA and MANOVA.

Based on the results from the di�erent statistical approaches it chosen to focus
on reduced model analysis, since it is more accurate because the model considers
the modality, RTT and patient factors which is known to have in�uence on the
matched outcome.
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Conclusion

The investigation shows that 2D patient setup veri�cation solely based on MRI
is a feasible alternative to current CT based RT.

The Markov random �eld classi�cation strategy was able to segment bone for
all four patients. In general the bone segmentation around the cranium both
for the lateral and frontal DRRs was su�cient, however the bone segmentation
for eye part was poor for the frontal DRRs.

The maximum dice coe�cient obtained was 0.57 which is far from the ideal dice
coe�cient of 1. The result con�rms the poor bone segmentation.

For longitudinal (both lateral and frontal) the RTTs were observed non-signi�cant.
The rnt and pitch shows a signi�cant di�erence between RTTs, this con�rms
lake of experience in rnt and pitch. The lateral and vertical directions show
a signi�cant di�erence between the RTTs, this is due to poor segmentation of
�ne bone structures, which con�rms again disadvantages of MRF classi�cation
strategy.

A signi�cant di�erence was seen in modalities for CT and sCT DRRs in longitu-
dinal (lateral) direction, vertical direction and pitch when performing 2D lateral
match. A signi�cant di�erence was absorbed only in rnt when performing 2D
frontal match.
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Further studies are needed to obtain more detailed bone segmentation as current
CT scans. Treatment planning based solely on MRI is a potential option for 2D
setup veri�cation, worth investigating further.
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6.1 Future Work

This study showed MRF segmentation of MRI UTE data is useful for brain
radiation therapy when performing 2D patient setup veri�cation, but there is
room for improvement of segmentation. In the future it would be interesting to
use another segmentation strategy or use another MRI sequence e.g. DIXON
sequence.

There is a great potential for treatment planning therapy based solely on MRI,
not only for brain RT but also for the rest of the body. A T1-weighted image can
be used to generate bony DRRs for 2D setup veri�cation of e.g. prostate RT [17].
The bones appear dark in the T1-weighted images when inverting the T1 image
the bony structures appear bright which will make it easier for RTTs to match
with OBIs. Figure 6.1 shows T1-weighted and inverted T1-weighted image. It

Figure 6.1: The �gure illustrates cross sectional images of pelvis both for T1
and T1 inverted image, respectively.

would be interesting to make a clinical investigation of whether a signi�cant
di�erence in 2D patient setup veri�cation when matching is performed with
inverted T1-weighted DRRs, as compared to current CT based DRRs.
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Appendix1

A.1 2D Manual Registration with PIPSpro

Portal Image Processing system (PIPSpro) software is an image processing sys-
tem that is specially developed for portal imaging. PIPSpro measures the errors
of �eld placement relative to anatomical landmarks set in the reference image.
The registration tool in PIPSpro is used to detect and evaluate the �eld setup
error that may occur during radiation therapy. There are three registration tools
in PIPSpro that represent patient displacement with respect to the treatment
�eld [7, 18, 6].

• Fiducial Point analysis; this registration method depends on automatic
rigid-body least squares transformation where two sets of �ducial points
are required.

• Template matching; is interactive matching of a reference with the features
of a second image.

• Chamfer matching; is an automatic matching of either templates or �du-
cial points.
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These registration methods will transform the treatment image into the same
coordinate system as the reference image. To perform registration in PIPSpro
the following steps are required [7, 6];

1. Delineation of contour �elds both in reference and treatment image.

2. De�ning the patientâs position using �ducial points that indicates small
bone structures or template that draws over large anatomical features.

These two prerequisites must be well de�ned, since the relationship between
contour �elds and anatomical features indicates patient displacement.

Figure A.1: The �gure illustrates registration with �ducial points. This image
is modi�ed from [7].

.

In this study template matching registration is used, where DRR refers to refer-
ence image and OBI refers to treatment image. Template matching registration
requires images with the same size. The contour �eld in both images must
be delineated with high accuracy and anatomical features need to be drawn
on reference image, which can be saved as template. During registration both
contour �elds are matched automatically and the template will be projected to
the treatment image by using template transform control (TTC). During the
registration Edit Tool will appear to scale or rotate until appropriate structure
is aligned on the treatment image and the registration will be ended. The re-
sults of registration will illustrate how good the �t is accomplished. The scaling
factors Mx, My and Mx/My show signi�cant deviations of the ratio from unity
that de�nes an out-of-plane rotation of the patient or the gantry. The �eld area
illustrates the area of the reference, treatment and transformed treatment �elds.
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The transformed values Dx, Dy and Rot are achieved by aligning reference and
treatment images. The values de�ne the relative displacement and orientation
of the patient features in the two images [7].
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A.2 Appendix 1

A.2.1 Repeated Measures Analysis with ANOVA, Uni-

variate and MANOVA

The section contains ANOVA tables of hypothesis which are carried out with
both three-way ANOVA and MANOVA in longitudinal (lateral) direction, ver-
tical direction, lateral direction, RNT (rotation) and pitch (rotation).

Figure A.2: The �gure shows tests of hypothesis for between and within sub-
ject e�ects for longitudinal (lateral) direction.

The hypothesis tests for between and within subject e�ects at the longitudi-
nal (lateral) are shown in �gure A.2. The hypothesis for between e�ects are



A.2 Appendix 1 61

non-signi�cant. The univariate test shows the H-F circularity assumption is
valid for this structure and the tests within subject e�ects are non-signi�cant,
since the adjusted H-F and G-G are above signi�cance level. The �gure A.3
The �gure shows MANOVA tests of hypotheses for longitudinal (Lateral) direc-
tion. Wailk's Lambda test illustrates that the hypothesis of no fraction e�ect
is non-signi�cant, since the P-value is above α = 0.05. The hypothesis for
no interaction e�ects between fraction and modality and between fraction and
nurses are non-signi�cant. The hypothesis of no interaction e�ects between frac-
tion, modality and nurse/RTT are non-signi�cant Figure A.4 illustrates tests of
hypotheses for between and within subject e�ects for rotation (pitch). The hy-
pothesis test for between subject e�ects shows that the circulatory assumption
for the structure is satis�ed. The within subject e�ects modality, nurse/RTT
and interaction between modality and nurse/RTT are non-signi�cant. The hy-
pothesis for within subject e�ects illustrates that fraction and interaction be-
tween fraction and modality are signi�cant, while the rest are non-signi�cant.
Figure A.5 illustrates MANOVA tests of hypothesis for rotation (pitch). The
hypothesis of no fraction e�ect is signi�cant shown Wailk's Lambda because
the P-value is below the signi�cance level. The hypothesis for interaction no
e�ects between fraction and modality is also signi�cant, while the interaction
no e�ects between fraction and nurse/RTT and between fraction, modality and
nurse/RTT are non-signi�cant.

Figure A.6 illustrates tests of hypotheses for between and within subject e�ects
for vertical direction. The hypothesis test for between subject e�ects shows that
modality, nurse/RTT and interaction between modality and nurse/RTT are non-
signi�cant. The hypothesis for within subject e�ect fraction is signi�cant, since
the P-value for the adjusted H-F is above the signi�cance level, whereas the
interactions are non-signi�cant. The H-F and G-G circulatory assumptions for
this structure are satis�ed. Figure A.7 illustrates MANOVA tests of hypotheses
for vertical direction. The hypothesis of no fraction e�ect is signi�cant as shown
in Wailk's Lambda test, since the P-value is below the signi�cance level. The
hypothesis for no interaction e�ects between fraction and modality and between
fraction and nurses are non-signi�cant. The hypothesis of no interaction e�ects
between fraction, modality and nurse/RTT is also non-signi�cant.

Figure A.8 shows tests of hypothesis for between and within subject e�ects
for longitudinal (front) direction. The hypothesis for between subject e�ects
modality, nurse/RTT and interaction between modality and nurse/RTT are
non-signi�cant since the P-values are above the signi�cance level.

The hypothesis for within subject e�ects shows that the circulatory assumption
met for this structure, since H-F (ε = 0.3115) and G-G ε = 0.2870 estimate
of ε lower then 1. The two adjustments (G-G H-F) are based on a degree of
freedom adjustment factor ε, where ε is satis�ed when 0 < ε ≤ 1. The G-G and
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Figure A.3: The �gure shows MANOVA tests of hypotheses for longitudinal
(lateral) direction.
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Figure A.4: The �gure shows tests of hypotheses for between and within sub-
ject e�ects for rotation (pitch).
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Figure A.5: The �gure shows MANOVA tests of hypothesis for rotation
(pitch).
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Figure A.6: The �gure shows tests of hypotheses for between and within sub-
ject e�ects for vertical direction.
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Figure A.7: The �gure shows MANOVA tests of hypotheses for vertical direc-
tion.
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Figure A.8: The �gure shows tests of hypothesis for between and within sub-
ject e�ects for longitudinal (front) direction.
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H-F adjusted P-values predict whether the e�ects are signi�cant or not. For the
longitudinal (front) it is seen that the within subject e�ects are non-signi�cant,
since these are above the signi�cance level.

Figures A.9 illustrates repeated measures multivariate analysis for longitudinal
(front) direction. Wilks' Lambda multivariate test shows that there is a little
fraction e�ect, therefore the hypothesis of no fraction e�ect is rejected, since
the P-value is below the signi�cant level α = 0.05. The hypothesis for no
e�ects of interactions between fraction and modality and between fraction and
nurse/RTT are accepted. The interactions between fraction, modality are also
non-signi�cant.

Figure A.10 illustrates tests of hypotheses for between and within subject ef-
fects for rotation (RNT). The hypothesis test for between subject e�ects shows
that modality, nurse/RTT and interaction between modality and nurse/RTT
are non-signi�cant. The hypothesis for within subject e�ects illustrates that
fraction is signi�cant, while the rest are non-signi�cant, since the adjusted H-
F P-values are above signi�cance level. The circulatory assumption for the
structure is satis�ed. Figure A.11 illustrates MANOVA tests of hypotheses for
rotation (RNT). The Wilk's Lambda test shows that the hypothesis of no frac-
tion e�ect is non-signi�cant. This concerns interaction e�ects between fraction
and modality and between fraction and nurses. The hypothesis of no interaction
e�ects between fraction, modality and nurse/RTT are also non-signi�cant.

Figure A.12 illustrates tests of hypotheses for between and within subject e�ects
for lateral direction. The hypothesis test for between subject e�ects shows
that modality, nurse/RTT and interaction between modality and nurse/RTT
are non-signi�cant. The hypothesis for within subject e�ects illustrates that
fraction is signi�cant, while interactions between fraction and modality, between
fraction and nurse/RTT and between fraction, modality and nurse/RTT are
non-signi�cant. The hypothesis of no fraction e�ect for the lateral direction
is signi�cant shown in �gure A.13, while the rest of the hypothesis tests are
non-signi�cant.



A.2 Appendix 1 69

Figure A.9: The �gure shows MANOVA tests of hypotheses for longitudinal
(front) direction.
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Figure A.10: The �gure shows tests of hypotheses for between and within
subject e�ects for rotation (RNT).
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Figure A.11: The �gure shows MANOVA tests of hypotheses for rotation
(RNT).
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Figure A.12: The �gure shows tests of hypotheses for between and within
subject e�ects for lateral direction.
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Figure A.13: The �gure shows MANOVA tests of hypotheses for lateral di-
rection.
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A.3 Abstract Accepted Poster Presentation at ES-

TRO Forum 2013

Authors: Manija Ghafory, Hans Martin Kjer, Rasmus Larsen, Jens Edmund

Objective/Purpose Radiation therapy based on MR images has proved advan-
tageous compared to combined MRI-CT RT in terms of registration error re-
duction. However, lack of electron density information and MRI distortions
present challenges for dose planning and generation of digitally reconstructed
radiographs (DRRs) for setup veri�cation. One option is to estimate the CT
segmentation from the MR scan, a so-called substitute CT (sCT), and generate
DRRs from this for bony setup veri�cation.

In this study, we investigate whether a signi�cant di�erence in 2D setup veri�ca-
tion of a patient receiving whole brain RT could be detected when the matching
was done on sCT generated DRRs as compared to normal CT based DRRs.

Material/ Method A patient receiving whole brain RT over ten fractions with
2D setup veri�cation was investigated retrospectively. The patient data consists
of a CT scan, a 1 Tesla MRI scan acquired with ultrashort echo times (UTE)
and 20 anterior and lateral setup (2D) radiographs acquired at the LINAC with
the On-Board Imager (OBI).

The UTE MRI was segmented into air, soft tissue and compact bone using a
Markov Random Field classi�er and generic HUs from ICRU report 46 to gen-
erate the sCT. The sCT was registered with the CT and the RT plan including
setup �elds was transferred to the sCT. The sCT DRRs were then generated in
Eclipse v. 10.

Three experienced radio therapy therapists were asked to match OBIs with CT
and sCT generated DRRs over the ten fractions in a random order. Matches
were made with �ve degrees of freedom (DOF) using O�ine Review with all tools
available: lateral, longitudinal, vertical and two rotations rnt (anterior) and
pitch (lateral). The di�erence in sCT- and CT-DRR based matches were treated
independently for the �ve DOF and data from all fractions and RTTs were
pooled for each DOF. A t-test per DOF was performed to determine signi�cance
(p<0.05) between sCT and CT based matches.

Results The t-test showed that all di�erences were at non-signi�cant di�erence
between the CT- and sCT matches for the DOFs investigated (table 1). The
largest di�erence was seen in longitudinalLateral and lateral direction.
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Conclusion It was demonstrated that MRI segmented DRRs performed equally
well for setup veri�cation compared to normal CT generated DRRs showing a
clinical potential for MRI only RT.
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