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Abstract

This thesis describes the development and improvement of a physiological sys-
tem consisting of stochastic differential equations on state-space form that mod-
els glucose-insulin dynamics in a Type 1 Diabetes patient. The study is a part
of the DiaCon collaboration. The system aims at predicting one patient’s glu-
cose dynamics while resting, without any exogenous inputs positively exciting
the response. Traditionally, ordinary differential equations are used in PK/PD
modelling. The incorporation of stochastic differential equations allows a sepa-
ration of noise into measurement noise, arising from data collection, and system
noise such as random biological variation and model deficiencies.

The model parameters are found by maximum likelihood estimation using the
tool CTSM-R. The Extended Kalman Filter is used to calculate the likelihood
function in order to estimate the optimum parameter set, θ̂. Having estimated a
parameter set, physiological and statistical validations are considered for further
improvement.

The CTSM-R tool allows stochastic modelling of continuous time series giving a
unique tool to improve existing models. When approaching the system, focus has
been on grey-box modelling. Progression is tracked using statistical methods.
This thesis revealed an error in the CTSM-R tool, in the calculation of the
initial covariance matrix. This error is now corrected. Specific focus is devoted
to maximum a posteriori probability to ensure physiological reliable estimates.
Moreover, a combination with autoregressive processes has shown to improve
predictions, also when adding multiple output sensors.

The final system of non-linear stochastic differential equations has successfully
been used to model glucose-insulin dynamics accurately.
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Resumé

Dette kandidatspeciale beskriver udviklingen og forbedringen af et fysisk system
af stokastiske differentialligninger på state-space form, der vil blive brugt til at
modellere glukose-insulin dynamik i en Type 1 Diabetes patient. Specialet er
en del af DiaCon collaboration. Systemet sigter efter at forudsige en patients
glukosedynamik under hvile, uden exogene input der positivt exciterer respon-
set. Traditionelt bruges ordinære differentialligninger til PK/PD modellering.
Brugen af stokastiske differentialligninger tillader en opdelingen af støjen i må-
lestøj, der kommer fra data opsamlingen og systemstøj såsom biologisk støj og
ufuldkommenhed i modellen.

Ved at bruge værktøjet CTSM-R opnås maximum likelihood estimater af pa-
rameterne. Det Extended Kalman Filter udregner likelihood funktionen for at
estimere det optimale parameter set, θ̂. Når dette parameter set er fundet, bru-
ges fysiologisk og statistisk validering i overvejelserne for yderligere forbedring.

Værktøjet CTSM-R tillader stokastisk modellering af kontinuerte tidsserier, og
giver dermed et unikt værktøj til forbedring af eksisterende modeller. Ved imple-
mentering af systemet har fokus været grey-box modellering der tillader fysisk
fortolkelige systemer. Fremskridt er overvåget ved brug af statistiske metoder.
Dette speciale afslørede en fejl i værktøjet CTSM-R i udregningen initial cova-
riance matrix. Denne fejl er nu rettet. Specifik fokus er lagt på maximum a
posteriori probability der sikrer fysiologiske meningsfyldte estimater. Desuden
vises det at i en kombination med autoregressive processer opnåes forbedrede
forudsigelser, også når der tilføjes flere output sensorer.

Det endelige system af ikke-linære stokastiske differntialligninger, er succesfuldt
blevet brugt til en præcis modellering af glucose-insulin dynamik.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the re-
quirements for acquiring a M.Sc. in Medicine and Technology. The work started
October 1, 2012.

The thesis deals with PK/PD modelling of glucose-insulin dynamics in Type
1 Diabetes patients at rest, using data kindly provided by the DiaCon collab-
oration. A system of stochastic differential equations on state-space form was
investigated and improved based on statistical and physiological considerations.

The reader is assumed to have an insight into modelling of dynamic systems
and a general understanding of basic physiology.
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Chapter 1

Introduction

Patients suffering from diabetes require exogenous insulin delivered by, for exam-
ple a pump to regulate glucose. A continuous glucose monitor, CGM, measures
subcutaneous glucose values.

This thesis deals with the creation of a model capable of predicting glucose-
insulin dynamics using stochastic differential equations, SDEs, in diabetes pa-
tients at rest. In experiments of glucose-insulin dynamics patients receive inputs
to excitate glucose values such as meals giving a positive excitation and insulin
giving a negative excitation. This thesis accommodates the need for an under-
standing of the dynamics with no positive excitation, to aid in the development
of a glucose monitoring/insulin delivering, also called a Closed-Loop, C-L sys-
tem. This development is only possible with an substantial understanding of
the pharmacokinetics, PK, and the pharmacodynamics, PD, of insulin.

In PK/PD modelling the properties of a drug from administration to utilisation
is described. It will be elaborated later, but in short:

• PK describes what the body does to the drug.
• PD describes what the drug does to the body.

Various modelling methods can be used [3, 21, 11], but this thesis focuses on
stochastic differential equations on state-space form. Stochastic state-space
models allow incorporation of observations of the system and makes it possi-
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Figure 1.1: Prediction of plasma glucose level using SDEs with negligible dif-
fusion terms thereby resembeling ODEs.

ble to describe model parameters physiologically. Combining information from
physiology and information from data is known as grey-box modelling [29].

Traditionally PK/PD modelling has been performed using ordinary differential
equations, ODEs. ODEs have shown to give feasible models, however they are
not able to separate measurement noise and system noise, leading to systematic
error structure as Figure 1.1 illustrates1. Stochastic differential equations are
able to make this distinction, enabling an interpretation of model deficiencies.
This makes SDEs an attractive extension, since it is not reasonable to assume
that models generate perfect predictions for all future time points.

Goal
The main goal of this thesis is to identify a non-linear stochastic state-space
model, that based on different types of observations predicts glucose values.

The model development will be an iterative process where validation steps ex-
amine statistical properties during the progression. The model is developed and
tested on an 9 hour study with patients at rest.

The foundation of the modelling system is the Medtronic Virtual Patient, MVP
1There is a structure in observations above and below the prediction.
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model presented by S. Kanderian in [24]. The MVP model is a system of ODEs.
It is extended to a stochastic state-space model and this stochastic model is
then the initial point of the investigations. The aim is to achieve significantly
better model estimates than the original ODE system.

1.1 Glucose homeostasis

"Homeostasis is the property of the body that regulates an
internal environment and maintains a relatively constant
condition of a property such as glucose."

Claude Bernard, 1878 in [5]

All cells need fuel, and for most cells this fuel is glucose. Tight regulation
of plasma glucose levels is vital since elevated glucose levels, hyperglycemia, is
toxic and increases the risk of hyperglycemic associated diseases, with the most
severe being renal destruction and vascular problems. More dangerous is low
glucose levels, hypoglycemia, leading to loss of consciousness followed by death
if untreated [53]. As stated by Claude Bernard, homeostasis autonomously
regulates plasma glucose levels to maintain an ideal range between 4.0 and 8.0
mmol L−1 [53]2 for a healthy person. Most tissues in the body, except nervous,
can only take up glucose if insulin is present. Therefore insulin secretion is as
important as intake of food.

The complete mechanics behind glucose homeostasis is of course very complex
and is out of the scope of this thesis. But the primary principles, explained in
this section, give an understanding of the challenges.

Plasma glucose regulation is primarily maintained by three pancreatic hormones:
1) insulin, 2) glucagon and 3) somatostatin. In a normally functioning pancreas
the regulation is autonomous. The islets of Langerhans is the endocrine tissue
regulating secretion of insulin from Beta-cells (β-cells), glucagon from Alpha-
cells (α-cells) and somatostatin from Delta-cells (δ-cells) - with insulin being the
primary regulator3. Only the effect of insulin is examined in this thesis.

There are many factors governing the secretion of insulin4. Known factors in-
clude: stress level, exercise, neural stimulation, hormonal control and plasma

2[43] defines an ideal range between 4.0 and 7.0mmol L−1

3Glucagon increases the breakdown of glycogen in the liver. Somatostatin inhibits the
secretion of glucagon and insulin

4Not all factors are known [45].
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glucose levels. Likewise there is a large family of Glucose Transporters, GLUTs,
that catalyse the transportation of glucose. GLUTs for the nervous tissue,
GLUT-1 and GLUT-3, do not need insulin. Others, GLUT-4 and GLUT-8,
are insulin dependent [45]. This thesis focuses on the insulin-dependent glu-
cose uptake. The main concept of insulin-dependent glucose uptake is easily
described:

1. An incline in plasma glucose, often caused by intake of a meal, causes
β-cells to secrete insulin.

2. This facilitates an uptake of glucose in insulin-dependent tissue making
plasma glucose levels decline. The half-life of insulin is short, around
10min [43].

3. If plasma glucose falls below the ideal range, secretion of insulin from the
β-cells is inhibited, and the liver starts synthesising glucose from different
processes (hepatic processes)5 [53].

1.1.1 Diabetes mellitus

The total number of diabetes patients in the year 2000 was 171 million and this
number is expected to increase to 366 million in 2030 [60]. Type 1 Diabetes,
T1D, consists of around 5% of the total number of diabetes patients. The cost
of diabetes is high, and since T1D is incurable patients rely on a lifetime of
treatment. Patients suffering from diabetes need a tight regulation of glucose
values in the range 5.0 and 7.2mmol L−1 according to the recommendations of
the American Diabetes Association, ADA,.

In T1D patients, production of insulin from β-cells diminishes or ceases. The
destruction of the islets of Langerhans is autoimmune, and manifests when about
10% of the islets are left [53]. As made clear before, insulin secretion has an
essential role in plasma glucose regulation, so a malfunction is severe. Untreated,
a patients plasma glucose increases as the tissue is unable to take up glucose.
The patient quickly looses weight and will eventually pass away.

The current treatment for T1D is exogenous delivery of insulin. The amount of
insulin to be delivered depends on the glucose level. For this thesis it is coarse-
grained assumed that glucose levels can be divided in two groups: 1) Blood
glucose, more precisely plasma glucose and 2) subcutaneous glucose.

In a clinical setting, plasma glucose can be measured in veins, by YSI2300

5The complete glucose-insulin dynamics is out of the scope of this thesis, therefore only
this very simplified fundamental concept is given.
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Figure 1.2: Illustration of the concept of an artificial pancreas from [12].

STAT Plus6, also considered as “gold standard”. In every-day-life, patients can
use fingerstick measurement and obtain plasma glucose values or use a CGM
device, and obtain a subcutaneous glucose value. Based on this information the
desired amount of insulin can be delivered.

Traditionally there are two ways to deliver insulin:

1. Manual pen-injections of fast or slow acting insulin four to six times a day.
2. Automatical injections using a pump, to continuously deliver small amounts

of fast acting insulin and insulin boluses when appropriate.

1.2 Motivation

The holy grail of diabetes treatment is an artificial pancreas, that without influ-
ence from the user, delivers the correct amount of insulin based on subcutaneous
glucose measurements.

An artificial pancreas is essentially a C-L system that, based on a model and a
controller, delivers rapid acting insulin to regulate glucose levels, as illustrated
by Figure 1.2.

A proper modelling of glucose-insulin dynamics is essential for a high-quality
artificial pancreas because it relies on observations of the subcutaneous glucose
and not plasma glucose levels. An identification of the dynamics, will aid in the
improvement of life quality of diabetes patients.

6Yellow Springs Instruments, Yellow Springs, OH.
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Before an artificial pancreas can be developed the relationship between plasma
glucose and subcutaneous glucose must first be identified. Traditionally, sub-
cutaneous glucose levels has been regarded as a delay of plasma glucose levels,
but the relationship may be more complicated [63].

The DiaCon collaboration has, to test a C-L system, conducted a study measur-
ing plasma glucose, subcutaneous glucose and plasma insulin in T1D-patients
at rest. Data from this study is used in this thesis. This data is presented in
the following section.

1.3 Data

The patients examined in this thesis are a part of a larger study conducted by
the DiaCon collaboration. A detailed description can be found in [52], but a
brief summary and characteristics of relevant patients is given here.

The study consists of two randomised crossover7 studies. Study I compared a C-
L system with Open-Loop insulin pump treatment. Study II tested performance
of a C-L system with euglycemic and hyperglycemic ranges at the start of the
study.

For this thesis, patients from Study II were selected for further investigation.
Characteristics of the six patients (three men) where: age 35 ± 11 years, BMI
25.2± 4.6 kg/m2 and total daily insulin dose 0.6± 0.1 IU/kg/day treated with
insulin Aspart8. Patients did not use medicine affecting plasma glucose, other
than insulin.

Blood samples for plasma glucose and insulin Aspart analysis was drawn every
30min, during all studies. Plasma glucose was analysed using YSI2300. Obser-
vations of plasma glucose levels obtained with the YSI2300 will be referred to as
YSI observations. Patients did not self-administer carbohydrates or correction
boluses, but alarming values or prominent symptoms of hypoglycemia resulted
in administration of glucose intravenously by medical professionals.

Every 5min a subcutaneous glucose value was obtained using two DexCom
SevenPLUS9 CGM devices10 placed at different locations on the body. Obser-

7A study in which subjects are randomly assigned to different treatments and then switched
halfway in the treatment.

8Novorapid, Novo Nordisk, Bagsværd, Denmark.
9DexCom, San Diego, CA.

10Using an electrochemical difference to calculate the subcutaneous glucose value.
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Figure 1.3: Schematic overview of measurement setup. YSI measures plasma
glucose levels, Gp . The CGM device measures subcutaneous glu-
cose levels, Gsc . Insulin dependent tissue symbolises tissue requir-
ing insulin to take up glucose.

vations of subcutaneous glucose levels are referred to as CGM observations. A
schematic overview of the setup is seen in Figure 1.3.

Insulin was administered using Paradigm Veo11 insulin pump. A small con-
tinuous basal insulin infusion of 0.025 IU/h is given, because this pump could
not be turned completely off. Every 15min a dose suggestion is given by the
Closed-loop system that is approved and administered by a medical professional.

Patients were in bed during the study from 22:00 to 07:00, with the C-L system
being initiated at study start. In Study II, two different types of time series were
at hand. One with euglycemic values and another with hyperglycemic values at
study start. A patient with euglycemic values at study start was chosen in order
to get optimal conditions in the modelling and to best describe glucose-insulin
dynamics.

Study start Study End
24 hour scale 22:00 07:00
Minute scale 315min 860min

Table 1.1: Link between 24 hour scale and study time index. As there has been
pre-recording in the study, the study time index does not start in
zero. The duration of the study is approximatlty 9 hours.

Table 1.1 shows the link between 24 hour scale and the study time index used in
this thesis. The recording has commenced before study start, thus 22:00 is not

11Medtronic, Northridge, CA
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0min. This pre-recording is cut from the data before modelling, and is therefore
not shown in the figures presented throughout this thesis.

The patients glucose dynamic is seen in Figure 1.4, showing the observations of
the two CGM devices. It is obvious that the CGM observations differ. For most
of this thesis the CGM device shown in the top plot, referred to as the original
CGM device, is used. It was assumed that this CGM device had the most
correct representation of subcutaneous glucose dynamics. In the final stages the
alternate device is also examined. It is evident that glucose dynamics are almost
inside the ideal range (shown by the green ribbon). Even though there is no
positive excitation in the study period, some dynamics inside the ideal range
exists, making modelling of the dynamics possible. No correction bolus or extra
carbohydrates were given during the study.

Throughout this thesis YSI observations are represented by a red dot. CGM
observations are represented by a blue dot. Predictions are a black line. The
ideal range of glucose levels is represented by a green ribbon.
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Figure 1.4: The YSI observations (red) and CGM observations (blue) used
to estimate parameters in this study. The ideal range of glucose
levels is indicated with the green ribbon.
TOP PLOT ) The original CGM device.
BOTTOM PLOT ) The alternate CGM device.



1.4 Background 9

It is noted that the second YSI observation is missing. The initial investigation
concluded that this observation was erroneous as it was measured to 7.2mmol/l
(previous value 8.0mmol/l and following value 8.9mmol/l). There are no in-
dications that this sudden “decrease-increase” should have occurred naturally.
Because YSI is considered gold standard that observation is deemed an error,
and it has been removed to increase the validity and reliability of the model.
This removal is caused by the initial investigation in Chapter 5. This removal
is of course an assumption and there may exist an explanation for the decrease-
increase behaviour.

1.4 Background

Many different models have been suggested to describe glucose-insulin dynam-
ics. During the 1970s Albisser [1] and Pfeiffer [44] worked on designs using
intravenous glucose sampling and intravenous insulin infusion, developing the
first glucose controlled insulin infusion system [21]. Control algorithms based on
intravenous insulin delivery has been developed through the 1980s and 1990s.
Parker provides an extensive overview of these algorithms in [41].

Due to complications of the invasive treatments, less invasive and self-treatable
methods have been investigated. Subcutaneous delivery of insulin fulfils these
requirements. The fundamental concepts used in glucose-insulin dynamic mod-
elling was introduced by Bergman in 1981 [4]. Bergman developed three equa-
tions describing the system as simple as possible, using ordinary differential
equations.

Bergman’s model described glucose-insulin dynamics of the healthy human body.
Extending on this concept, Fisher replaced the insulin secretion term with an
insulin infusion term in order to accommodate the development of an artificial
pancreas [14] for T1D. There are, however, problems regarding glucose control,
as an extra delay of insulin absorption is introduced when administering insulin
subcutaneously, Cobelli [11]. Insulin kinetics can to some extent be mimicked,
but the process is complicated. Wilinska examined 11 different linear and non-
linear compartment models for insulin PK, concluding that model selection is
highly dependable on available data [62].

The development of real-time devices monitoring subcutaneous glucose values,
has since 2005 undergone a tremendous evolution [58], with many different com-
panies producing CGM devices. A comprehensive overview of the mathematical
algorithms currently used has been made by Bequette in [3]. The use of CGM
devices introduced a lag between plasma glucose levels and subcutaneous glu-
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cose levels. Keenan investigated this delay for different CGM devices in 2009,
and found a lag of 3 − 14min, depending both on physiological lag, sensor lag
and lag from filtering algorithms [25]. Other studies [55, 31] have found lags of
3− 5min.

Many different types of compartment models have been suggested to model
glucose-insulin dynamics [28, 61]. The Medtronic Virtual Patient model [24]
builds on the concept developed by Bergman. This model is based on five linear
and non-linear ordinary differential equations. As shown in Figure 1.1 ordinary
differential equations are not always sufficient. This thesis investigates the use
of non-linear stochastic differential equations on state-space form. An area only
touched lightly upon in the current literature [12, 56, 37].

Stochastic differential equations, though they have not yet gained popularity
in PK/PD modelling, have proven very useful in many other different kinds of
applications. SDEs have been used to model bacterial growth [22, 38], heat
dynamics in buildings [2, 32], evaluation of flow in sewers [7], estimation of
electricity markets [17] and financial modelling [18] for example. Hopefully this
thesis will contribute to the further exploitation of the use of SDEs in PK/PD
modelling.

1.5 Outline of the thesis

Chapter 2 covers concepts of pharmacokinetic and pharmacodynamic mod-
elling and the PK/PD principles used in this thesis are introduced. The chapter
also introduces the mathematical theories of: stochastic differential equations
on state-space form, Maximum Likelihood principles and Extended Kalman Fil-
tering.

Chapter 3 explains the model systems used to describe glucose-insulin dy-
namics. Two different systems: the Medtronic Virtual Patient model and the
Steil model, are presented and formulated as a state-space system of stochastic
differential equations.

Chapter 4 gives an introduction to Chapters 5 to 8 that present and analyse
the models.

Chapter 5 describes the discovery of a potential computational flaw in the
CTSM-R tool. A visualisation of the problem and a solution to the deficiency
is presented.
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Chapter 6 is the initial investigation of the Medtronic Virtual Patient model
using stochastic differential equations on state-space form. A simplification of
the model is established to improve insulin kinetics.

Chapter 7 tests if Steil’s, more complex, model describes the variation in the
data better than the Medtronic Virtual Patient model, based on a statistical
analysis.

Chapter 8makes a thorough investigation of possible improvements using Max-
imum A Posteriori probability, autoregressive modelling and a combination of
the two approaches.

Chapter 9 is a discussion of the results obtained from the models presented in
Chapters 5 to 8.

Chapter 10 summarises the experiences of the thesis into a set of recommen-
dations for future work.

Chapter 11 contains a conclusion of this work.
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Chapter 2

Modelling methodology

Many different approaches can be taken when modelling complex data. Before
the actual modelling is commenced, it is useful to reflect on the methodology,
since the approach depends on available data and the final goal. It is, mostly,
desired to build a model as simple as possible, that at the same time describes
all variation in the data. In general, there are two different approaches [36]:

Backward selection: Start with the full parameter set Ωfull and simplify the
model.

Forward selection: Start with the null parameter set Ωnull and extend the
model.

Backward selection is often preferred when there is an abundance of data and
only a small risk of overparameterisation. Forward selection is a popular ap-
proach when little or no knowledge about the parameters is available or when
a limited amount of data is accessible. Extending the model makes it possible
to track changes throughout the development and thereby minimising the risk
of errors and overparameterisation. A model is clearly overparameterised if the
number of parameters to be estimated is greater than or equal to the number
of observations, but smaller models can also be overparameterised [46]. A large
parameter set may introduce difficulties with the identifiability of the model.
This issue is addressed in a later chapter.
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A limited amount of data with small excitations is available. Therefore, it is
reasonable to use forward selection as the key approach in this thesis - keeping
in mind that the limited number of data enforces a restriction on the complexity
of the models. Furthermore the limited amount of data makes the modelling
sensitive to biological factors. If the experiment is repeated on a different day,
the result is not necessarily the same. This comes from the unavoidable biolog-
ical factors that influence experiments12. This influence also justifies the use of
SDEs.

This chapter gives an overview of six important concepts used in this thesis. The
first part is based on [50] and explains the general concepts in PK/PD modelling.
The second part elaborates the choice of SDEs over ODEs and is based on [35]
by Henrik Madsen. The third part gives an insight to the maximum likelihood
method and likelihood testing, used to asses improvements of the models, and is
based on [36]. The fourth part, based on [34, 35, 30], introduces the Extended
Kalman Filter, used to find the optimal parameter estimates: θ̂. Finally, the
fifth part describes validation and the sixth part describes the CTSM-R tool.

2.1 PK/PD modelling

Pharmacokinetics describes how adjustable elements as dose and route of admin-
istration are related to drug level-time relationships of the body. In a popular
term "what the body does to the drug". Pharmacodynamics describes the rela-
tion between the concentration of the drug and the magnitude of the effect. In a
popular term "what the drug does to the body" [50]. In this thesis, PK describes
the bodies influence on insulin: How it is absorbed, distributed and eliminated.
The PD part describes the effect of insulin on glucose dynamics.

A popular method in PK/PD modelling is the use of compartment models de-
scribed by first- or second-order kinetics [50]. There are four fundamental con-
cepts in PK/PD modelling:

Absorption: The process of drug entering the bloodstream.

Distribution: The reversible13 transfer of drug from one location to another
within the body.

Metabolism: The process of a drug being broken down to smaller compounds.

Excretion: Irreversible loss of the drug from the body.
12This influence also imposes challenges when developing a global model for an entire pop-

ulation, since there exist a fundamental biological difference between people.
13Reversible since the drug can be redistributed.



2.1 PK/PD modelling 15

Pharmacodynamics 
Pharmacokinetics 

Tissue 
Unbound 
Drug 

Tissue bound 
Drug 

Binding 

Plasma 
Unbound 
Drug 

Bound 
Drug 

Binding 

Distribution 

Elimination 

Metabolism Excretion 

Dose 
Absorbation 

Intravenous 

Other 

Efficacy Toxicity 

Utility 

Figure 2.1: Schematic presentation of PK/PD dynamics from [16]

Elimination is the result of metabolism and excretion. A schematic representa-
tion is seen in Figure 2.1 [16].

An important assumption in compartment models is mass-balance considera-
tions. The total dose needs to be accounted for in all steps of the process, so
that drug does not disappear. This also implies that the sum of rate of change
must be zero in the compartments.

Example 2.1 (Compartment model using ODEs) Drug dynamics
can be modelled using compartment models. A simple illustration is seen in
Figure 2.2, showing a two-compartment model.

This simple system can be described by two ordinary differential equations, using
first-order kinetics, as:

dxt = d

[
C1

C2

]
=

[
k21 · C2 − (k12 + ke) · C1

k12 · C1 − k21 · C2

]
dt (2.1)

where C1 and C2 are the concentrations in compartment 1 and 2, respectively,
and kij is a rateparameter where: k12 is the rate of change from C1 to C2 , k21

is the rate of change from C2 to C1 and ke is the rate of elimination of the drug.
�
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k21 
C1 C2 

k12 

ke 
Figure 2.2: Scematic representation of a two-compartment model, illustrating

the fundamental compartment model concept.

The models used in the thesis are more complicated. But the compartment
approach from Example 2.1 is the fundamental concept.

2.1.1 Grey-box modelling

In grey-box modelling, model structure comes from physical and statistical con-
siderations. Based on these considerations the parameters of the model are
estimated. The parameter estimates are validated statistically and physically
and compared to available results in the literature for a physiological interpre-
tation of the model.

The concept of grey-box modelling is easily linked to Example 2.1. There are
restrictions on the concentration (it can not exceed 100 %) and the estimated
rate constants can be compared to known rate constants for that particular
drug.

Example 2.1 uses ODEs to model the data. A physical system using ODEs can
be written on state-space form. State-space allows an easily interpreted and
physiologically meaningful representation of a physiological system. A state-
space representation is shown in Equation (2.2):

dxt = f (xt,ut, t,θ) dt (2.2a)
yj = h (xj ,uj , tj ,θ) + ej (2.2b)

where xt is the state vector, yj observation vector, ut is a vector of input
variables, θ is the parameter vector of the system, t is time, f(·) and h(·) are
functions and ej is white noise. Equation (2.2a) is the model for the states,
the state equation, and Equation (2.2b), defines how the states are observed,
the observation equation. State-space models are very useful for describing time



2.2 Stochastic differential equations 17

varying systems, due to the first-order Markov property of the state vector, since
all the information about the future is contained in just xt [35].

Example 2.2 (Example 2.1 on state-space form) The state equa-
tion for the two-compartment model Example 2.1 can now easily be written on
state-space from as shown in Equation (2.3).

dxt = d

[
C1

C2

]
=

[
k21 · C2 − (k12 + ke) · C1

k12 · C1 − k21 · C2

]
dt

yj = h(xj) + ej

(2.3)

where yj is the observation equation at discrete time instances j. �

There is, however, some critical points where the use of ODEs are problem-
atic. As shown in the Chapter 1, ODEs are sometimes not sufficient enough
to describe the variation in the data and they assume perfect predictions. It
is desired that incorrect model specifications, random variation or uncertainties
from measurements can be described as a source of error. If the ODE models
do not give a sufficient description of the error structure, then SDEs should be
considered.

2.2 Stochastic differential equations

By using SDEs, noise is allowed into the state equations. The states are there-
fore predicted with uncertainty. This is particularly useful when fluctuations or
disturbances are expected to influence the states. SDEs also allow a split be-
tween correlated system noise and uncorrelated observation noise [56]. A SDE
can be written as:

dxt = f (xt,ut, t,θ) dt+ σ (ut, t,θ) dωt (2.4)

where t ∈ R is time, ut is a vector of input variables and θ is the parameter
vector of the model. f (·) and σ (·) are non-linear functions. f (·) is the drift
term and σ (ut, t,θ) dωt is the diffusion term, where {ωt} is a Wiener process
and σ (·) is the magnitude of the Wiener process.

Two fundamental concepts in SDE theory is the Wiener process and the Itô
integral. The following account is based on [40, 6]. A process is an indexed
family of random variables where T = [0,∞) is often used to represent a systems
evolution over time. One stochastic process is [49]:
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Definition 2.1 (Gaussian process) A Gaussian process is a stochastic
process Xt, t ∈ T , such that any finite-dimensional marginal distribution is
jointly Gaussian. �

One well-known Gaussian process is the Wiener process. The Wiener process is
not stationary, but has stationary and independent increments.

Definition 2.2 (Wiener process) The Wiener process is a Gaussian
stochastic process {ωt ≥ 0}, with the following mathematical properties

i ω0 = 0

ii The function t→ ωt is almost surely everywhere continuous

iii The increment ωt − ωs is independent with N(0, t− s) for any 0 ≤ s < t

The Wiener process is also known as a standard Brownian motion. �

An important property of the Wiener process is that it is almost everywhere
non-differentiable, furthermore the Wiener process has unbounded variation.
This leads to the the following notation of stochastic integral:

Definition 2.3 (Itô SDE) An Itô stochastic differential equation is an in-
tegral equation of the form:

xt = x0 +

∫ t

0

f (xs, s) ds+

∫ t

0

σ (xs, s) dωs (2.5)

where f(·) is the drift term and σ (·) dωs is the diffusion term.

The first integral can be interpreted in a Riemannian sense, the second as an
Itô integal.

A shorthanded Itô notation of Equation (2.5) is:

dxt = f (xt, t) dt+ σ (xt, t) dωt

x0 = a
(2.6)

The solution to Equation 2.5 is a stochastic process, xt, t ≥ 0.

Equation (2.4) is now formally justified. �
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With the knowledge about SDEs it is possible to extend the state-space model
from Section 2.1, Equation (2.2), to a (non)-linear stochastic differential equa-
tion on state-space form:

dxt = f (xt,ut, t,θ) dt+ σ (ut, t,θ) dωt (2.7a)
yj = h (xj ,uj , tj ,θ) + ej (2.7b)

where t ∈ R is time, xt is the state vector, yj is the observation vector, ut is a
vector of input variables and θ is the parameter vector. f (·), σ (·) and h (·) are
non-linear functions, {ωt} is a Wiener process and {ej} is a white noise process.

Example 2.3 (Example 2.2 on stochastic form) It is easily seen
that the two-compartment state space representation in Equation (2.3), can be
written on stochastic form by adding a diffusion term, σdωt:

dxt = d

[
C1

C2

]
=

[
k21 · C2 − (k12 + ke) · C1

k12 · C1 − k21 · C2

]
dt+ σ

[
dω1

dω2

]
yj = h(xj) + ej

(2.8)

where yj is the observation equation at discrete time instances j. �

When a non-linear model is at hand then the Extended Kalman Filter, EKF
and the Maximum Likelihood principle can be used to estimate the parameters
θ. The concept behind these are explained in the following two sections.

2.3 The Maximum Likelihood principle

Before the EKF is presented, knowledge about the Maximum Likelihood princi-
ple is necessary. Given a set of data and a model with a number of parameters,
it is often of interest to find the parameter estimates so that the model describes
the data best. The likelihood function has been identified as the key inferential
quantity conveying all information in statistical modelling including uncertainty
[36, 15]. The entire likelihood function captures all the information in the data
about the parameters. Specifically the maximum likelihood estimate is of inter-
est, as it gives the parameters that are most likely to explain the variation in
the data [36].

The data for one patient from a study has the following structure:

yj , j = 1, . . . , N (2.9)

where N is the number of measurements the patient.
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Introducing the notation YN = [y1,y2, . . . ,yN − 1,yN ] to describe the data it is
possible to express the likelihood function as a product of conditional probability
densities:

L (θ;YN ) =

 N∏
j=1

p
(
yj |Yj−1,θ

) p (y0|θ) (2.10)

where p is the probability density function.

An exact evaluation to the likelihood function is only possible if the initial
probability density is known as all subsequent conditional densities then are
available. For the non-linear models used in this thesis, an approximate method
based on Extended Kalman Filtering, explained in the next section, can be used.

The stochastic differential equations, introduced in the previous section, are
driven by Wiener processes with Gaussian increments. Under some regularity
conditions14, it is reasonable to assume that the conditional densities can be
approximated by Gaussian densities, completely characterized by its mean, its
covariance, and an error term:

ŷj|j−1 = E{yj |Yj−1,θ} (2.11)

Rj|j−1 = V {yj |Yj−1,θ} (2.12)

εj = yj − ŷj|j−1 (2.13)

where ŷj|j−1 is the mean, Rj|j−1 is the covariance and εj is the error term.

By conditioning on y0 and taking the negative logarithm the Maximum Log-
Likelihood is obtained:

− ln (L (θ;YN |y0)) =
1

2

N∑
k=1

(
ln
(
det
(
Rk|k−1

))
+ εTkR

−1
k|k−1εk

)
+

1

2

(
N∑
k=1

l

)
ln (2π)

(2.14)

This means that the Maximum Likelihood estimate, θ̂, satisfies the non-linear
optimisation problem:

θ̂ = arg min
θ∈Θ
{− ln (L (θ;YN |y0))} (2.15)

14Regularity conditions can be found in [30].
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2.3.1 Statistical comparison

As mentioned, the limited amount of data means that forward selection is used
in model building. When a model has been extended it can be compared to
previous models in two ways [36]. If the models are nested Wilk’s Likelihood
ratio test can be used, otherwise Akaike information criterion, AIC, can be
used.

Let Ωnull and Ωfull be two hypothesis, where Ωnull ⊆ Ωfull . Then the likelihood
ratio becomes [36]:

Definition 2.4 (Likelihood ratio) Consider the hypothesis H0 : θ ∈
Ωnull , against the alternative H1 : θ ∈ Ωfull \ Ωnull , where dim(Ωnull) = m and
dim(Ωfull) = k. For given observations y = [y1, y2, ..., yn] the likelihood ratio is
defined as:

λ(y) =
supθ∈Ωnull

L(θ;y)

supθ∈Ωfull
L(θ;y)

(2.16)

�

With the above in mind Wilk’s Likelihood ratio test is written as [36]:

Theorem 2.5 (Wilk’s Likelihood Ratio Test) For λ(y), as in
Definition 2.4, then under the null-hypothesis H0, the random variable −2logλ(Y )
converges in law to a χ2 random variable with (k −m) degrees of freedom:

−2logλ(Y )→ χ2(k −m) (2.17)

under H0. �

The evidence against H0 is measured by the p-value. For hypothesis testing
this means that if the calculated p-value is smaller than the significance level of
α = 0.05 in the null model, H0, is rejected.

When models are not nested the Akaike information criterion can be used [34]:

Definition 2.6 (Akaike information criterion) Given a set of
candidate models for the data the preferred model is the one with the minimum
Akaike information criterion value, calculated as:

AIC = 2 · n− 2 · ln (L (θ;YN |y0))) (2.18)

where n is the number of parameters, and the remaining parts follow the defi-
nitions in Section 2.3. �
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The forward selection procedure using Wilk’s Likelihood ratio test is visualised
in Figure 2.3. It shows how for each calculated p-value, a decision of what
diffusion term to include is made. This procedure continues until p > 0.05.
When presenting results in the following chapters, this selection procedure is
presented like Figure 2.3, to easily visualise the included diffusion terms, where
l(LΩij ) is the loglikelihood, from now referred to as the likelihood, and pij is the
corresponding p-value.
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Figure 2.3: Forward selection procedure represented by a tree plot explaining
the selection procedure. For each parameter the loglikelihood is
calculated. Using Wilks likelihood ratio a statistical decision is
made based on the p-value.

2.3.2 Maximum A Posteriori probability

Prior knowledge about parameters can be expressed by some prior probability
density function, p(θ). In a Bayesian approach the prior information can be
mixed with the information in the data. This gives a Maximum A Posteriori,
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MAP, probability.

Using Bayes Theorem [36] the posterior probability density function can be
formed:

p(θ|YN ) =
p(YN |θ)p(θ)

p(Y)
∝ p(YN |θ)p(θ) (2.19)

where all parameters have been defined previously.

Equation (2.19) is reduced to the likelihood function when prior information is
available, making maximum likelihood a special case of MAP.

If only a subset of parameters have a prior probability density function15 MAP
estimates can still be performed. Assuming the prior probability density of the
parameters are Gaussian:

µθ = E{θ} (2.20)
Σθ = V {θ} (2.21)
εθ = θ − µθ (2.22)

the posterior probability density function, when conditioning on y0 and taking
the negative logarithm, can be written:

− ln (L (θ;YN |y0)) =
1

2

N∑
k=1

(
ln
(
det
(
Rk|k−1

))
+ εTkR

−1
k|k−1εk

)
+

1

2

((
N∑
k=1

l + p

))
ln (2π)

+
1

2
ln (det (Σθ)) +

1

2
εTθΣ−1

θ εθ

(2.23)

The estimates can now be found by solving a non-linear optimisation problem
similar to Equation (2.15).

2.4 Extended Kalman Filter

The Kalman Filter gives the optimal16 reconstruction and prediction of the
state vector xt given some observations of the input {ut} and observations of
the output {yj} in the linear state space model given in Equation (2.2) [34].

15p(θ) partly uniform.
16Minimum variance
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A common approach for non-linear models is based on linearisation of the func-
tions around the nominal trajectory. This means that the linear Kalman filter
is usable17. Using the current estimate of the state is a good choice for the
linearisation trajectory.

A linearisation about the current state estimate at every sampling time, followed
by applying the Kalman filter to the resulting model, gives the Extended Kalman
Filter, EKF [35].

The EKF can be used to solve non-linear SDEs as Equation (2.4) numerically,
since the likelihood principle gives the non-linear optimisation problem given by
Equation (2.15). The EKF is an approximative method. It gives a near-optimal
estimator as it is a linearisation of a non-linear model [35].

For a non-linear model, a given set of parameters θ and initial states x0, the
one-step predictions18 of the covariance Rk|k−1, Equation (2.12), and the error
term εk, Equation (2.13) can be computed by the EKF. The EKF consists of
steps divided in a prediction part and an updating part19. A schematic drawing
of this is shown in Figure 2.4.

When the EKF has minimised Equation (2.15), the near-optimal parameter
estimate θ̂ has been identified.

2.5 Validation

When one model is achieved, a systematic examination of the model is made,
inspired by the framework of Kristensen [29]. A schematic representation of the
approach is seen in Figure 2.5.

In brief: model (re)formulation is the initial model structure and applied mod-
ifications. Parameter estimation is estimation of unknown parameters based
on data and Residual analysis is the evaluation of the quality of the resulting
model. In model falsification or unfalsification it is decided whether the model
sufficiently serves the intended purpose. If the model is unfalsified the develop-
ment terminates. If falsified the cycle must be repeated by reformulating the
model. The statistical tests may give indications of deficient model parts and
the non-parametric modelling provides indications of unmodelled structure.

17For a detailed description of the linear Kalman filter, see [34].
18A k-step prediction can be obtained by skipping the updating step.
19For each step see the corresponding Equation in [30].
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Figure 2.4: Schematic overview of the Extended Kalman Filter based on [59].
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Figure 2.5: Framework for systematic improvement of stochastic grey-box
models based on [29].
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The overall goal in model building is to construct a model where the residuals
resemble a discrete white noise process, so that the following holds:

Definition 2.7 (White noise) A process {ε} is said to be white noise,
if {ε} is a sequence of mutually uncorrelated identically distributed random
variables with mean value 0 and constant variance σ2

ε . This implies that:

µt = E [εt] = 0 (2.24)

σ2
t = Var [εt] = σ2

ε (2.25)
γε = Cov [εt, εt+k] = 0 , for k 6= 0 (2.26)

�

If the residuals can be regarded as white noise then the model is adequate. There
are several ways to examine the residuals: autocorrelation function, ACF , (sam-
ple) autocorrelation function, SACF, partial autocorrelation function, PACF
[9, 36] and the lag-dependence function, LDF and partial lag-dependence func-
tion, PLDF introduced by Nielsen and Madsen in [39] for non-linear systems.

2.5.1 Statistical tests

By using the central limit theorem [47], the estimator in Equation (2.15) is
asymptotically Gaussian with mean θ and covariance [29]:

Σθ̂ = H−1

where H is the Hessian evaluated at the minimum of the objective function in
Equation (2.15).

A measure of uncertainty of the individual parameter estimate is obtained by
decomposing the covariance matrix as follows [39]

Σθ̂ = σθ̂Rσθ̂

where σθ̂ is the diagonal matrix of the standard deviations of the parameter
estimates andR is the corresponding correlation matrix. The correlation matrix
R can be used to indicate whether a parameter is redundant.

The asymptotic Gaussianity of the estimator in Equation (2.15) also allows
marginal t-tests to be performed to test the hypothesis [29]:
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Definition 2.8 (Parameter selection)

H0 : θj = 0

against:

H1 : θj 6= 0

to test whether a given parameter θj is marginally insignificant or not.

The test quantity is the parameter estimate θj divided by σθ̂j , and underH0 this
quantity is asymptotically t-distributed with N −p degrees of freedom where N
is the number of data points and p is the number of parameters. This gives:

z(θ̂j) =
θ̂j
σθ̂j
∈ t (N − p) (2.27)

�

2.6 The CTSM-R tool

The tool used to estimate models, is the Continuous Time Stochastic Modelling,
CTSM -R tool. This is an R-package20 developed by Rune Juhl21 based the
original CTSM tool developed by Niels Rode Kristensen and Henrik Madsen at
the Technical University of Denmark [30, 48, 23].

A detailed description of the CTSM-R tool will not be given, but a brief summery
is necessary to conceptually understand the modelling approach.

Parameter estimation is carried out by maximising the likelihood function with
an optimisation scheme, that requires initial values for states and parameters
together with lower and upper bounds.

Values of a parameter can be estimated between lower and upper bounds or
fixed to a constant value. Initial state values can likewise be estimated between
boundaries or fixed to a value. While estimating the models, the parameters are
transformed to an optimisation space, and when the optimum has been found,
they are transformed back to the parameter space.

20http://www.ctsm.info/
21Technical University of Denmark - Department of Applied Mathematics and Computer

Science
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The tool supports statistical analyses: Estimated values, standard error and
probability of the t-distribution are given as standard. Furthermore the deriva-
tive of the objective function with respect to each initial state or parameter and
the derivative of the penalty function is given. Finally the correlation matrix of
the parameters is available. If the off-diagonal of R has values ≥ |0.99|, there
is indication of over-parametrisation.

Observations are expressed as functions of states and inputs and the variance
of the observation noise is also added to the system. The variance of the obser-
vation is provided and used for interpretation of the estimated model.

2.7 Summary

The main principles used in models of PK/PD systems and the statistical meth-
ods and tools used to validate the models have been introduced.

Most physical systems are appropriately described in continuous-time with discrete-
time measurements. This is also the main assumption in this thesis, and the
aim is to identify the relationship between the subcutaneous glucose levels and
the plasma glucose levels. This is done by:

1. Using PK/PD modelling to identify a suitable model structure to the
describe the relationship.

2. Formulating the model structure on state-space form using SDEs.

3. Identifying the parameters, θ, of the model, using the likelihood principle
and Extended Kalman Filter.

4. Using methods and tools for statistical comparison (Section 2.3.1) it is
possible to examine possible improvements.

The obtained parameters of the final model should, as grey-box modelling is
used, then have a physical interpretation that easily is related to the true phys-
iological parameters. The next chapter will explain the model used in the thesis
and describe the parameters that are to be estimated.



Chapter 3

Modelling glucose-insulin
dynamics

Glucose-insulin dynamics can be modelled as a physiological system. The foun-
dation of these systems is often based on the Bergman Minimal Model [33]. Two
systems extending the Bergman Minimal model are: the Medtronic Virtual Pa-
tient model [24] and the Steil model [54]. Both models are used in this thesis,
and this chapter will give a summary of them.

The MVP model has been chosen because it is one of the state-of-the-art models
for modelling glucose-insulin dynamics. The MVP model is based on ordinary
differential equations. For the purpose of this thesis the MVP model will be
formulated as SDEs on state-space form.

An alternative to the MVP model, the Steil model, will also be presented. The
Steil model differs from the MVP model in the description of the subcutaneous
glucose dynamics having a more physiologically correct interpretation. A de-
tailed description of the Steil model with emphasis on the difference to the MVP
model will be given. Finally the advantages and disadvantages of each model
will be discussed.
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3.1 Medtronic Virtual Patient model

The metabolic equations of the MVP model can be regarded as seven compart-
ments - one compartment corresponding to each equation. The essence of the
model is based on the Bergman Minimal Model [4, 33] with modifications by
Fisher [14] replacing the insulin secretion term with an insulin infusion term.
The seven equations describing the physiological system are:

dIsc(t)

dt
= − 1

τ1
· Isc (t) +

1

τ1
· ID(t)

CI
(3.1a)

dIP (t)

dt
= − 1

τ2
Ip (t) +

1

τ2
Isc (t) (3.1b)

dIEff (t)

dt
= −p2 · IEff (t) + p2 · SI · IP (t) (3.1c)

dGp(t)

dt
= −(GEZI + IEff ) ·Gp(t) + EGP +

D2

τmax
+
Giv

Vg
(3.1d)

dGsc(t)

dt
= − 1

τ3
·Gsc (t) +

1

τ3
·GP (t) (3.1e)

dD1(t)

dt
= Ag · CHO(t)− D1

τmax
(3.1f)

dD2(t)

dt
=

D1

τmax
− D2

τmax
(3.1g)

The system is constructed so it captures the most essential dynamics. Each
state has an elimination part and an absorption part. In the elimination part,
the concentration is lowered in the compartment, and in the absorption part
the concentration is increased in the compartment. An analysis of the influence
of each compartment is given to explain the physical interpretation of each
parameter. A short explanation of these equations will be given in the following
sections.

3.1.1 Insulin dynamics

Equations (3.1a) to (3.1c) relate to insulin. Combined, these equations describe
the dynamic of insulin from entering the body in the subcutaneous tissue until
an effect is produced in the plasma.
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The states in these three equations are:
State Unit Description
Isc IU/L Amount of insulin in the subcutaneous tis-

sue
IP IU/L Amount of insulin in the plasma
IEff 1/min Effect of insulin on glucose transportation

The input is described by:
Input Unit Description
ID IU/min Insulin delivery to the subcutaneous tissue

The parameters are:
Parameter Unit Description
CI L/min Clearance of insulin in the subcutaneous

tissue
τ1 min Time constant associated with insulin

movement in the subcutaneous tissue
τ2 min Time constant associated with insulin

movement in plasma
p2 1/min p2 is the delay in insulin action following

an increase in plasma insulin
SI L/IU/min Insulin sensitivity

3.1.2 Glucose dynamics

Equations (3.1d) and (3.1e) describe the dynamics of glucose entering the plasma
and the subcutaneous tissue.

The states in these two equations are:
State Unit Description
GP mmol/L Amount of glucose in the plasma
Gsc mmol/L Amount of glucose in the subcutaneous tis-

sue

The input is described by:
Input Unit Description
Giv mg/min Glucose injected directly into the plasma

in case of too low plasma glucose
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The parameters are:
Parameter Unit Description
GEZI 1/min Effect of glucose per se to increase glucose

uptake into cells and lower endogenous glu-
cose production at zero insulin

EGP mmol/L Endogenous glucose production rate, esti-
mated at zero insulin

Vg Lkg Distribution volume of glucose
τ3 min Time constant associated with glucose

movement in the subcutaneous tissue

3.1.3 Meal

Equations (3.1f) and (3.1g) model the dynamics in relation to the meal. When
a meal is consumed, the absorption of glucose from the meal is modelled by two
compartments.

The states in these two equations are:
State Unit Description
D1 mg Carbohydrate absorption
D2 mg A delay compartment of carbohydrate ab-

sorption

The input is described by:
Input Unit Description
CHO mg/min Digested carbohydrate

The parameters are:
Parameter Unit Description
Ag unitless Carbohydrate bioavailability
τmax min Time constant associated with carbohy-

drate movement

Kanderian investigated glucose-insulin dynamics in MATLAB22 using ODEs,
estimating parameters in four steps [24] . First insulin related parameters were
identified. Using these estimates, parameters in Equations (3.1c) and (3.1d)
were identified. Then model fits were evaluated, and parameter re-estimation
was conducted if necessary. With all parameters identified the model was re-

22Mathwork Inc., Natick, MA.
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constructed introducing Equation (3.1e) to describe the relationship between
plasma glucose and subcutaneous glucose levels. To asses model parameters,
fits were calculated and interpreted by visual inspection.

3.1.4 Stochastic formulation

To accurately model the system and get a complete description of the data, the
stochastic influence is essential to the model. The MVP model is therefore, on
the basis of the theory from Chapter 2, written on stochastic state-space form
as Equation (2.4):

Final model

State equations



dIsc

dIP
dIEff

dGP
dGsc

dD1

dD2


=



− 1
τ1
· Isc (t) + 1

τ1
· ID(t)

CI

− 1
τ2
· IP (t) + 1

τ2
· Isc

−p2 · IEff (t) + p2 · SI · IP (t)
−(GEZI + IEff ) ·GP (t) + EGP + D2

τmax
+ Giv

Vg

− 1
τ3
·Gsc (t) + 1

τ3
·GP (t)

Ag · CHO(t)− D1

τmax
D1

τmax
− D2

τmax


dt+σ



dω1

dω2

dω3

dω4

dω5

dω6

dω7


(3.2)

Inputs

ID(t)

CHO(t)

Giv

Output

YSI = G(t) + sYSI

CGM = Gsc(t) + sCGM

where sYSI and sCGM are the measurements noises of the YSI device and
CGM device, respectively.

The final model formulation, Equation 3.2, can model pharmacokinetics and
pharmacodynamics in relation to glucose-insulin dynamics. It can be adjusted
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to data not containing any meals by letting D1 = D2 = 0.

During the thesis different parameter estimates will be presented23. Two param-
eters are considered repeatedly throughout the thesis. This is the measurement
noise of the observations: sYSI for the measurement noise of the YSI device and
sCGM for the measurement noise of the CGM device. These two parameters
give an indication of the physiological validity of the estimates.

3.2 Steil’s model

The Steil model [54] is, like the MVP model, based on the Bergman Minimal
Model. The difference lies in the compartments describing glucose dynamics.
Steil’s model has a more accurate physiological description of insulin’s influence
on plasma and subcutaneous glucose. It describes the movement of glucose
between plasma and the subcutaneous tissue by diffusion based on gradients.
Insulin has its effect in the subcutaneous tissue where it facilitates the trans-
portation of subcutaneous glucose into the insulin dependent tissue. According
to Pickup and Williams [45], this simplified description is widely accepted as a
useful approximation to the actual dynamics.

Compared to the MVP model only two equations need to be altered to accom-
modate Steil’s model. These two alterations are:

Alteration of Equation (3.2) to Steil’s model:

dGp

dGsc

=

−
(
GEZI + k21 · V1

V2

)
·Gp(t) + EGP + k12 ·Gsc(

k21 · V1

V2

)
·Gp − (k12 + k02 · IEff ) ·Gsc

dt+σ
dω4

dω5


(3.3)

where k21 is the rate constant from the plasma to the subcutaneous tissue,
k12 is the rate constant from the subcutaneous tissue to the plasma, k02

is the rate constant from the subcutaneous tissue into the cell, V1 and
V2 are the volumes of plasma and subcutaneous tissue, respectively. The
remaining parameters are as before. Effects of meal and glucose given
intravenous can also be added.

A more correct physiological description of the system seems intuitively as a
good idea. The closer the model is to the correct physiological description the

23The entire parameter estimate table will be found in Appendix A, and only relevant
estimates are shown within the main text.
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better. There are however some potential problems with the more accurate
description of the physiology. These problems relate to the parameters, the
volumes and oversimplification:

Parameters
An increase in complexity of the model will result in an increase in the
number of parameters to be estimated. With a limited amount of data
this may present a problem.

Volumes
V1 and V2 describe the volumes of plasma and subcutaneous tissue, re-
spectively. These values are highly inter-dependable and very difficult to
estimate based on physical attributes. In the model only the ratio V1

V2
is

represented. A solution is to fix the values according to knowledge of the
physical attributes.

Oversimplification
The physiological more correct model of the glucose dynamics is still a very
simplified approximation of the true physiological relationships [53, 45, 43].
The actual dynamic is far more complicated and, probably, not completely
known. It is, therefore a risk, that a slightly more complicated model does
not give any improvement.

3.3 Summary

The fundamental concept in glucose-insulin dynamics is described by the Bergman
Minimal Model. There are not many alternatives to this fundamental approach.
This thesis aims to investigate the glucose-insulin dynamics. This is done in
both the MVP model and the Steil model. Based on an initial analysis of both
models, one will be selected for an in-depth investigation.

In the MVP model, insulin facilitates the transportation of glucose from the
plasma to the subcutaneous tissue. This is a coarse-grained approximation
to the real physiological process. In the subcutaneous tissue glucose is then
transported the insulin dependent cells based on a rate constant. The advantage
of the MVP model is that it is simple and at the same time physiologically
meaningful.

In the Steil model, insulin facilitates the transportation of glucose from the
subcutaneous tissue to the insulin dependent cell. The glucose transportation
between plasma and subcutaneous tissue is governed by rate constants based
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on gradients. This is physiologically more correct, but it is not obvious whether
this more complex model offer any advantages. This will be examined in a later
chapter.



Chapter 4

Introduction to analyses

This short chapter is an introduction to the following five chapters presenting
the different models discovered and the analysis hereof. The results illustrate
the iterative progression. Not all steps are presented or accounted for in detail,
but it should be possible to track the progression.

Each iterative progression has, when modelled, undergone a residual analysis.
This residual analysis is tedious and, in the early steps, not very informative.
Therefore residual analysis is only presented in the main text to substantiate ar-
guments. Parameter estimate tables are, were relevant, presented in Appendix
A, and relevant estimates are emphasised in the main text. Correlation tables
have been examined for every model - throughout these examinations the cor-
relations in the off-diagonal for the presented models did not exceed 0.96, and
the correlation tables are therefore not presented.

Throughout the chapters, figures of mainly the predictions of the YSI obser-
vations and CGM observations are presented. YSI observations are red, CGM
observations are blue, prediction lines are black, and the 95%-confidence interval
is grey. The green ribbon indicates the ideal range of glucose level determined
as in [53]. The residuals, ACF, PACF and cummulative periodogram are also
presented. When other figures are presented an elaboration is given.

Extensions and modifications of the model structure were implemented. Exten-
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sions are presented in a framed box and are alterations of the system represented
in Equation (3.2). At the end of each examined model, the likelihood, degrees of
freedom, DF and AIC are presented to maintain a sound statistical examination
as explained in Chapter 2.

4.1 Patient selection

The aim of this thesis was to develop a model suitable for low-exciting glucose-
insulin dynamics. As explained in Chapter 1, one patient with a characteristic
resting glucose dynamics, Figure 1.4, was selected for the entire investigation.

This patient was selected because he was deemed to have a typical glucose
dynamic for a diabetes patient at rest. This patient was not given corrective
carbohydrates. This made the patient attractive for an initial investigation
since the infusion of corrective carbohydrates gives a non-physiological rise in
glucose values. This would complicate the dynamics further. Having identified
the insulin-glucose dynamics in a simple setting expansions can be made later.

4.2 Outline

The results are divided into four different chapters containing the following:

In Chapter 5 an investigation of the identifiability of the data is conducted.
This investigation leads to an examination of CTSM-R tool and the calculations
performed within this tool.

Chapter 6 investigates two different models:

• Model 1: The initial MVP model formulated as Equation (3.2).
• Model 2: A simplification of Model 1 correcting insulin kinetics.

Chapter 7 examines an alternative model:

• Model 3: The Steil model as formulated in Equation (3.3).

The Steil model is compared to the MVP model to see if a more complex model
gives improved estimations. Thereby this chapter lays the foundation for how
the system is extended.
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Chapter 8 focuses on glucose dynamics and the CGM device. Four different
models are presented:

• Model 4: An extension of Model 2 with a Bayesian approach.
• Model 5: An extension of Model 2 using AutoRegressive, AR(p)-processes.

– Model 5a: MVP + Random Walk

– Model 5b: MVP + AR(1)

• Model 6: An extension of Model 2 to include MAP and an autoregressive
process.

– Model 6a: MVP + MAP + Random Walk

– Model 6b: Model 6a on the alternate CGM device

• Model 7: An extension of Model 6 to include two CGM devices.

– Model 7a: MVP + MAP and both CGM devices

– Model 7b: MVP + MAP + AR(1) and both CGM devices

Chapter 9 gives a summary and a discussion of all results obtained in this
thesis. Analyses and explanations of significant discoveries and abnormalities
will be given here.
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Chapter 5

Identifiability

The first part of this chapter examines the identifiability of the data. Identifia-
bility describes the prerequisites for constructing a model based on the available
data and the parameters of the model. The investigation of identifiability lead
to a discovery of a computational issue in the CTSM-R tool. The issue is related
to the initial covariance matrix used in the calculation of the state prediction.
The chapter describes this issue and a solution is presented.

The general theory in this chapter is based on Madsen [35] and Rudin [51].
The mathematical examination of the CTSM-R tool is based on Kristensen and
Madsen [30].

Modelling short time series with little excitation has many challenges. One
is the identifiability of the time series. Identifiability can be divided into two
categories 1) Structural identifiability and 2) Persistence of excitations.

In general, any transfer-function model corresponds to a continuum of state-
space models, so some structure on the state-space representation, to provide a
unique relation between the parameters24, must be imposed.

24For more details, refer to [35].
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5.1 Structural identifiability

Structural identifiability can be defined as [35]:

Definition 5.1 (Structural identifiability) The parameter θi is
said to be structurally globally identifiable, if for almost any θ∗

M(θ) = M(θ∗)⇒ θi = θ∗i (5.1)

It is structurally locally identifiable, if for almost any θ∗ there exists a neigh-
bourhood v(θ∗) such that if θ ∈ v(θ∗), then the above equation is true.

If all model parameters are globally identifiable, the model is said to be struc-
turally identifiable. �

Remark 5.1 In this thesis, θ ∈ Rn. The concept of almost surely is measure
theoretic in nature and formally expresses so [51, p. 27]:

λ({θ∗ ∈ Θ|M(θ) = M(θ∗) ∧ θi 6= θ∗i }) = 0

where Θ ⊆ Rn is chosen appropriately and λ represents Lebesgue measure. In
Definition 5.1, it is assumed that M : Rn → Rm is Borel-measurable for some
m ∈ N.

Remark 5.2 Think of M as a diffusion process, Xt. The definition above
formalises the idea that if two models, in this case SDE models, attain the same
values (same behaviour) then the parameter tuple is unique. Intuitively, this is
the goal.

If, for instance, the model at hand is

yt = (p1 + p2)ut + εt

then it is only possible to estimate (p1 +p2) unless physical knowledge, e.g. that
p1 and p2 satisfy a relationship of the form c1p1 + c2p2 = 0, is at hand. With
this physical knowledge, the model would be structurally identifiable.

This concept is relevant for both linear and non-linear models. For non-linear
models two kinds of non-linearities are relevant; non-linear in the inputs and
non-linear in the parameters25. Models that are non-linear in the parameters
can have structurally locally identifiable parameters which are not the same as
the structurally globally identifiable parameters [35].

25Refer to [35] for a detailed description.
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5.2 Persistence of excitation

Persistence of excitations is a property of the time series [35]:

Definition 5.2 (Persistence of excitation) An input signal u sat-
isfies the condition of persistent excitations of order n if the Yule-Walker matrix
of the autocorrelations from lag 0 until lag n− 1 is positive definite. �

An intuitive approach is an example were the following model is considered:

yt = p1ut + p2ut−1 + εt

This model is structurally identifiable. If a constant (and trivial) time series
given by ut = ut−1 is modelled, then the above equation is on the form

yt = (p1 + p2)ut + εt

so even though the model is structurally identifiable, this input signal is not
persistent exciting. Given trivial data, it is not possible to distinguish between
models.

5.3 Transfer-functions and identifiability

For a transfer-functions model, a unique relation between the parameters of
the model and its state-space representation must exist, to guarantee that it is
structurally identifiable. From an engineering point-of-view, a continuous-time
state-space model can be written on the form [35]:

Ẋ(t) = AX(t) +BU(t) + e1(t)

Y (t) = CX(t) +DU(t) + e2(t)

This may be written in innovation form26 with p introduced as a difference
operator. The transfer function model takes the form:

Y (t) = G(p)U(t) +H(p)e(t)

where the transfer function is identified as:

G(p) = C(pI −A)−1B +D (5.2)

26See [35] for details.
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It is now possible to observe the transfer matrix G(p) with elements of the form:

Gij(p) =
bup

u + bu−1p
u−1 + . . .+ b0

avpv + av−1pv−1 + . . .+ a0
(5.3)

where av = 1. When the system of equations is identified, the model is struc-
turally identifiable if the system has a unique solution.

During initial investigations identifiability problems were found. The initial
investigation was performed with a negligible diffusion term - following tradition
this negligible value was set to exp(−12). Adjusting this negligible diffusion term
between exp(−10) and exp(−18), gave different parameter estimates. This was
unexpected since the diffusion term was believed to be negligible. A further
investigation, where all but two parameters were fixed, revealed the problem.
Figure 5.1 shows a dramatic change in the optimisation space when the diffusion
term is altered27.
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Figure 5.1: Contour plot visualising optimisation space of parameters, τ1 and
τ2, with 2 different diffusion terms exp(−12) and exp(−16), re-
spectively. Red circles represent each step in the optimisation
procedure.

In the two-dimensional case it is straightforward to examine the theoretical
structural identifiability by using transfer functions, here τ1 and τ2:

27While not being a proof, this result visualises the problem well. If the two-dimensional
optimisation space is altered, it is expected that an n-dimensional space will likewise be altered.
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The two-dimensional system can be written on matrix form as:

A =

[
− 1
τ1

0
1
τ2

− 1
τ2

]
, B =

[
1
τ1
0

]
, C =

[
0 1

]
, pI =

[
p 0
0 p

]
(5.4)

Using Equation (5.2) the following transfer-function is obtained with:

G(p) =
1

p2 + p( 1
τ1

+ 1
τ2

) + 1
τ1τ2

(5.5)

This has to be compared with what is actually observable - Equation (5.3):

Gij =
1

p2 + a1p+ a0
(5.6)

So the system is structurally identifiable if the following has one unique solution

a1 =
1

τ1
+

1

τ2

a0 =
1

τ1τ2

(5.7)

This clearly holds.

5.4 Investigation of the CTSM-R tool

This section examines the initial covariance matrix, P 0, used in the calcula-
tion of the state prediction in the EKF. Though structural identifiability has
been shown, the results are not consistent. A possible explanation may be the
calculation of the initial covariance matrix:

P 0 = Ps

∫ t1

t0

eAsσσT
(
eAs
)T
ds (5.8)

where Ps ≥ 1 is a pre-specified scaling factor, A is a non-linear function given
by: A = ∂f

∂xt
|x=x̂k|k−1,u=uk,t=tk,θ, σ is a non-linear function given by σ =

σ (uk, tk,θ). σ is also the scaling of the diffusion terms in the stochastic state-
space representation of the model.
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The ODE-solution to the state prediction in the non-linear28 [30, p. 17] case is
given by:

dx̂t|k

dt
= f

(
x̂t|k,ut, t,θ

)
, t ∈ [tk, tk+1[ (5.9)

P t|k

dt
= AP t|k + P t|kA

T + σσT t ∈ [tk, tk+1[ (5.10)

with A,σ and P defined previously.

In an ideal ODE-solution the covariance matrix P = 0. Solving Equation (5.10),
with a small initial covariance matrix from Equation (5.8), may yield the first
two terms to zero. This would mean that the state prediction for the covariance
matrix is highly depending on the last term, the scaling of the diffusion term σ.
A large relative change, from σ = exp(−12) to σ = exp(−16), may be sufficient
to influence state prediction, and would explain Figure 5.1.

The main problem using Equation (5.8) as initial covariance may be the domain
of integration. It is not clear what a sufficiently large step between t0 and t1
should be. For long time series such as electrical market data, the step will be
large and it will only have used a small subset of available data. In PK/PD
modelling, time series are short. If a large subset of data is used to estimate
the initial covariance matrix, P0, then the time until the EKF converges may
be long. For shorter time series this gives unreliable results.

One way to accommodate this problem would be to set:

P 0 = k · I (5.11)

where k is the variance and I is the identity matrix.

Using Equation (5.11) the initialisation of the covariance matrix is always iden-
tical over the entire parameter space, as the scaling of the diffusion term, σ, does
not influence P 0. An initial covariance matrix like Equation (5.11) is known to
be erroneous due to the property of the identity matrix, so it presupposes that
the EKF, using only few iterations, will have found a suitable structure of the
covariance matrix P .

Implementing Equation (5.11) and resolving the problem yields consistency.
This is shown by the parameter estimates in Table 5.1.29

28In CTSM this implementation is based on the the algorithms of Hindmarsh [20]
29It is unfortunately not possible to make contour plots with the new initial covariance

matrix in the tool CTSM-R.
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Parameter exp(−12) exp(−16)

τ1 6.73 6.73
τ2 152.59 152.59

Table 5.1: Parameter estimates visualising an identical optimisation space for
the parameters τ1 and τ2, with 2 different diffusion terms exp(−12)
and exp(−16), respectively.

5.5 Summary of identifiability

Identifiability is always important when modelling time series. During the inves-
tigation of the identifiability, a theoretical computational issue in the CTSM-R
tool was discovered. The short duration and lack of excitation of the recorded
time series, revealed a problem with the calculation of the initial covariance ma-
trix, P 0. This problem does not appear when longer and more excited data is
used. Before discovering that the initial covariance matrix caused the problem,
many alternative theories where investigated. These theories will not be elab-
orated, but include ideas such as transforming rate constants to a logarithmic
domain, to avoid the possibility for time constant equal to zero.

The next chapters will use the initial covariance matrix shown in Equation
(5.11).
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Chapter 6

Modelling using Medtronic
Virtual Patient

Estimation using SDEs with negligible diffusion terms should yield results sim-
ilar to [24], since SDEs with small fixed diffusion terms should resemble ODEs.
Two different models are examined and extended in this chapter: Model 1 -
the stochastic extension of the MVP model and Model 2 - a simplification of
Model 1.

6.1 Model 1 - Original model structure

The predictions obtained with the SDEs having negligible diffusion terms, Figure
6.1, behaves as expected, showing ODE-like behaviour when predicting the YSI
observations and CGM observations. It is clearly seen that the prediction of
the YSI observation is partly higher and partly lower than the observed values.
The insulin prediction, Figure C.1, is in concordance with the results presented
in [24].

Figure B.1 shows the residual analysis pointing towards an AR(1)-process. How-
ever, it is necessary to consider the stochastic influence; the five different equa-
tion each have the possibility to estimate a stochastic diffusion term.
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Figure 6.1: Model 1: Predictions using SDEs with negligible diffusion terms.
ODE like structure is observed.
TOP PLOT ) Prediction of YSI observations.
BOTTOM PLOT ) Prediction of CGM observations.
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The forward selection method presented in Figure 2.3 is applied. The selection
process extending the system is shown in Figure 6.2.
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Figure 6.2: Forward selection of diffusion terms. Diffusion terms: σ1, σ2 and
σ5 were included in the order shown in the tree plot. Calculated
loglikelihoods and p-value shown if p < α < 0.05.

The model has an estimable diffusion term included in the state equations for:
dIsc

dt ,
dGp

dt and dGsc

dt . Considering the glucose-insulin system presented in Equa-
tion (3.2) this seems physiologically reasonable since:

1. The state equations for dIsc

dt and dIP

dt relate to insulin dynamic. Insulin
dynamic may be influenced by a coherence between the two compartments
sufficiently described by one stochastic diffusion term.

2. The state equation for dIEFF

dt , describes a, somewhat arbitrary, effect of
insulin. All biological variation lies in either insulin dynamics or glucose
dynamics, deeming this stochastic diffusion term redundant.

3. The state equations for dGP

dt and dGsc

dt both have a diffusion term. From a
physiological view, there are several factors with considerable uncertainty
linked to glucose dynamic and the CGM device. It is evident that the
proposed dynamic is a simplification, and the behaviour of the CGM device
is, to an extent, unknown.



52 Modelling using Medtronic Virtual Patient

6.1.1 Model 1 with estimation of σ1, σ4 and σ5

Examining the predictions of the YSI observations and CGM observations in
Figure 6.3, insulin prediction in Figure C.2, and the residual analysis in Figure
B.2, it seems, that all requirements for model validation have been met.
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Figure 6.3: Model 1: Predictions using Equation (3.2) with estimation of dif-
fusion terms σ1, σ4 and σ5. Updates in the EKF are observed in
both plots.
TOP PLOT ) Prediction of YSI observations. Predictions seem to
be off by a constant and having wide 95% confidence intervals.
BOTTOM PLOT ) Prediction CGM observations. Predictions are
perfect with a narrow 95% confidence interval.

This is nonetheless a flawed conclusion. The grey-box modelling approach allows
a physical interpretation and it is important to consider the parameters and the
information given in the estimates. Table A.1 presents the estimates.

The two main considerations in the physical interpretation of the parameter
estimates is of the measurement noise sYSI and sCGM.

The estimates indicate that the CGM device measurement noise, sCGM =
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Figure 6.4: Visualisation of the calculated likelihood obtained with two rate
constants describing insulin movement. An inverse relationship
between τ1 and τ2 where τ = ln 1

φ to avoid division with zero.
TOP PLOT ) Loglikelihood of τ1.
BOTTOM PLOT ) Loglikelihood of τ2.

exp(−16.11), is a precise measurement and the YSI measurement noise, sY SI =
exp(−0.56), is less precise, resulting in a wide confidence interval of the YSI
prediction and a narrow confidence interval for the CGM observation prediction.

The investigation in Chapter 5, revealed another deficiency. An inverse relation-
ship between τ1 and τ2, describing insulin kinetics was found. It was believed
that a division by zero in the estimations of the parameters caused the calulation
of the likelihood to go towards zero and infinity, respectively. A transformation
to τ = ln 1

φ was tried to avoid division by zero. This did however not solve the
problem as the visualisation in Figure 6.4 shows.

For Model 1 the likelihood, degrees of freedom and AIC is calculated to:

− ln(L) = 94.45

DF = 13

AIC = −98.01
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6.2 Model 2 - Simplification of the MVP model

The inverse relationship, indicated previously, can be interpreted as: insulin
flow through one compartment is very fast and through the other compartment
very slow. A solution to this is to model the rate constants (τ1 and τ2) between
the two compartments as one (τ1):

Simplification of Equation (3.2):[
dIsc

dIP

]
=

[
− 1
τ1
· Isc (t) + 1

τ1
· BA·ID(t)

CI

− 1
τ1
· IP (t) + 1

τ1
· Isc

]
dt+ σ

[
dω1

dω2

]
(6.1)

where BA = 0.7 is bioavailability of insulin, and remaining parameters have
been defined previously.

From Equation 6.1 it is evident that the system is simplified by describing
insulins route from the pump to the plasma by one time constant rather than
two. Bioavailability allows for an adjustment of how much of the provided input
actually is available30. The diffusion terms of the new model is again chosen
by the forward selection approach. The inclusion tree is presented in Figure
6.5, and it is seen that the model structure is identical to the model structure
obtained in Model 131.

The model with included diffusion terms gives the predictions shown in Figure
6.6 with the corresponding residuals shown in Figure B.3. If only the residuals
are considered the identified model looks valid. But when the prediction and
the parameter estimates are considered, there is still room for improvement.
The parameter estimates are seen in Table A.2. It is noted that, as before,
sCGM = exp(−16.14) ± exp(98.27)32 is low, reflected in the prediction of the
CGM observations. The wider confidence interval on the YSI observation pre-
diction comes from a larger measurement noise, sYSI = exp(−1.02)±exp(0.40).
Furthermore it seems that the YSI observation prediction is off by a con-
stant. The estimation of the diffusion terms, σ4 = exp(−2.03) ± exp(0.29)
and σ5 = exp(−2.68) ± exp(0.14) indicates that there is an undetected model
structure in the pharmacodynamic part, namely in the state equations for dGp

dt

and dGsc

dt .

30BA = 0.7 making the last 30% are unavailable to the system.
31The predictions of the model using the SDE with negligible diffusion terms is very similar

to the previous, so it is not presented.
32Insignificant in the estimation.
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Figure 6.5: Forward selection of diffusion terms. Diffusion terms: σ1, σ4 and
σ5 were included in the order shown in the tree plot.
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Figure 6.6: Model 2: Predictions using Equation (6.1) with estimation of dif-
fusion terms σ1, σ4 and σ5.
TOP PLOT ) Prediction of YSI observations.
BOTTOM PLOT ) Prediction CGM observations.



56 Modelling using Medtronic Virtual Patient

●

● ●

●

● ●

●
●

●
●

●
● ●

● ●
●

0.01

0.02

0.03

0.04

0.05

300 400 500 600 700 800
Time [min]

In
su

lin
 [U

/L
]

● Observation
Prediction

Figure 6.7: Model 2: Predictions using Equation (6.1) with estimation of dif-
fusion terms σ1, σ4 and σ5. Predictions of plasma insulin. The
prediction behaves as expected, as it is adjusted when an observa-
tion is obtained.

Because this change in model structure relates to the pharmacokinetics it is
important to ensure that the prediction of insulin still is acceptable. Insulin
prediction is seen in Figure 6.7.

To validate insulin prediction, the residuals are examined. The residual exam-
ination has to be taken with some reservations. Only n = 16 observations are
available for the entire time series. Furthermore it has not been possible to
obtain a confidence indication of the measurements. But an indication of the
validity of the insulin prediction is given.

The residual analysis is seen in Figure 6.8. ACF, PACF and the cumulative
periodogram all indicate that the residuals are white noise. There is a slight
tendency towards non-constant variance. However, it is also evident that the
lack of observations has entailed large confidence bands. But all-in-all the pre-
diction of plasma insulin seems to be valid, so the simplification of the model
structure and introduction of bioavailability has made the model more robust
without loss of predictability. Based on this examination insulin predictions will
not be shown in Chapters 7 and 8.
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Figure 6.8: Model 2: Residual analysis of insulin prediction using Equation
(6.1) with estimation of diffusion terms σ1, σ4 and σ5. Resembles
white noise.
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The likelihood, degrees of freedom and AIC of the Model 2 is:

− ln(L) = −92.73 (6.2)
DF = 12 (6.3)
AIC = −141.47 (6.4)

As the two models in this chapter are not nested, AIC is considered for com-
parison. It is clear that AIC is lower, for Model 2, as −141.47 < −98.01, and
therefore a statistical improvement has been shown.

6.3 Summary of initial findings

A suitable model structure has been identified, Equation (6.1). The grey-box
modelling approach shows that further improvement of the model is possible.
There are two possible improvements:

1. A Bayesian approach were MAP probability is applied on selected param-
eters.

2. Applying an Autoregressive process to the CGM device.

The following arguments are given for both approaches:

MAP
Applying MAP probability gives a possibility to include partial prior
knowledge about parameters in the estimation. The prior knowledge is
expressed by a prior probability density and the Bayesian approach is
used for mixing the prior information with the information in the data
[35]. The ability to include the prior standard deviations and the corre-
sponding prior correlation matrix enables a physical interpretation of the
magnitude of the estimations. Manufacture information about precision
of devices enables adjustment of parameter estimates to the correct re-
gion of operation. This approach incorporates physical knowledge in the
modelling. It furthermore gives a more correct estimation of the param-
eters, since any unexplained variation in the data will be reflected in the
diffusion terms.

Autoregressive process
Applying an Ornstein-Uhlenbeck process, such as a RandomWalk, enables
the model to iteratively correct the prediction to the observation. The
prediction of the CGM observation then essentially models the dynamic
of the CGM device. The advantage is that the YSI observation will be
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regarded as the most correct value, adjusting the predictions when a new
observation yj is obtained. There are however severe drawbacks:

1. Unexplained model structure is placed in the Random Walk.
2. The physiological considerations that can be made on the measure-

ment equipment are neglected, minimising the influence of the grey-
box modelling approach.

These two possible extension will be examined in Chapter 8. The next chapter
will examine if Steil’s model can be used as an alternative to the MVP model.
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Chapter 7

Steil’s model

Before an extension of the MVP model is made, an alternative model is inves-
tigated. Most literature focusing on glucose-insulin dynamics have an identical
fundamental concept - Bergman’s Minimal Model [14, 24, 33, 50]. Differen-
tiation in approach is most often in the description of insulins effect. Steil’s
approach and the MVP model approach differ with regard to insulin dynamics.
In this chapter focus is shifted to Steil’s physiological more correct33 approach.

7.1 Model 3 - Steil’s model structure

The aim of this chapter is to give a short introduction to an alternative model.
The details of the model are, therefore, kept at a minimum. A thorough inves-
tigation is out of the scope for this thesis, but it is believed that the achieved
results will aid future work of PK/PD modelling. Only the original CGM device
is used for modelling.

The diffusion term selection is shown in Figure 7.1. It is observed that only two
diffusion terms, σ1 and σ4 are included. They belong to the state equations for

33The precise glucose-insulin dynamics is unknown, so more correct is relative to the extent
of up-to-date knowledge.
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Figure 7.1: Forward selection for Steil model. Diffusion terms σ1 and σ4 are
included in the order shown in the tree.

dIsc

dt and dGP

dt , respectively, placing an estimable stochastic term on both the PK
and the PD part of the model.

Having obtained relevant diffusion terms, the predictions and the residuals are
presented in Figures 7.2 and 7.3, respectively. It is observed that by visual
inspection the predictions are acceptable. Examining the residuals reveals that
from a statistical point-of-view the goal has been reached. But when assessing
the parameter estimates34 from a grey-box modelling point of view, there is a
large room for improvement as they are not physiologically interpretable.

For Model 3 the likelihood, degrees of freedom and AIC is calculated to:

− ln(L) = 90.10 (7.1)
DF = 13 (7.2)
AIC = −128.20 (7.3)

Model 3 and the Model 2 are compared using the AIC. Based on the AIC the
most appropriate model is selected and the results are presented below:

AICModel3 = −128.20

AICModel2 = −141.47

So the Model 2 is chosen for further investigations because −141.47 < −128.20.

34The parameter estimates are not shown, since they do not contribute any relevant infor-
mation.
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Figure 7.2: Model 3: Predictions using Equation (3.3) with estimation of dif-
fusion terms σ1 and σ4.
TOP PLOT ) Prediction of YSI observations.
BOTTOM PLOT ) Prediction CGM observations. Predictions are
perfect with a narrow 95% confidence interval.
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Figure 7.3: Model 3: Residual analysis of YSI and CGM observation predic-
tions using Equation (3.3) with estimation of diffusion terms σ1,
σ4. Resembles white noise.

7.2 Summary of Steil’s model

An investigation of an alternative to the Medtronic Virtual Patient model has
been conducted. The Steil model has a more complex and correct description
of the effect of insulin. This more complex description introduces more pa-
rameters to the estimation. The introduction of these extra parameters do not
give a significant improvement of the estimation of the glucose-insulin dynamics.
Therefore the remainder of this thesis focuses on extending the MVP model.



Chapter 8

Extension of Medtronic
Virtual Patient

This chapter explores the considerations given in Chapter 6. The first part uses
the original CGM device. After identification of a suitable model, the alternate
CGM device, observing the same time series, is included. Four different models,
all an extension of Model 2, are examined in this chapter:

• Model 4: MVP + MAP
• Model 5:

– Model 5a: MVP + Random Walk

– Model 5b: MVP + AR(1)

• Model 6:

– Model 6a: MVP + MAP + Random Walk

– Model 6b: Model 6a on the alternate CGM device

• Model 7:

– Model 7a: MVP + MAP and both CGM devices

– Model 7b: MVP + MAP + AR(1) and both CGM devices
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8.1 Model 4 - Bayesian approach

Multiple different MAPs can be included in the estimation. As the theory behind
MAP is explained in Section 2.3, only the extension of that system is presented.

Extension of Equation (3.2) to include MAP:

Let Σθ be the variance of the parameter set, θ. Adopting Equation (2.19),
is done by specifying Σθ, as:

Σθ = σθRθσθ (8.1)

where σθ is the diagonal matrix of standard deviations and Rθ is the cor-
responding prior correlation matrix. Both specified only for the parameters
that have a prior probability.

Specifying MAP is relevant on the YSI2300 and the CGM devices. The
initial parameter values of the measurement noise, sYSI and sCGM , cor-
respond to the equipments theoretical expected variance. From the man-
ufacturer precision charts, the variance can be found and transformed to
the correct domain, using the Coefficient of Variation, CV :

CV =
σ

µ

The transformation to the estimation domain becomes:

lnσ2 = ln
(

(CV · µ)
2
)

(8.2)

where µYSI = µCGM = 7 . CV YSI = 0.01 [26], and CV CGM = 0.1 set
arbitrary, since no reliable literature is at hand. In the transformed space
this gives estimates of ΣYSI = −5.32852 and ΣCGM = −0.71133.

Including MAP requires two important considerations:

Distribution in logarithmic scale
Applying MAP in CTSM-R tool is performed as described in Equa-
tion (8.1), where, based on previous studies, the prior information
specifies the deviation from an expected value. This deviation is
Gaussian distributed in the logarithmic parameter space. Intuitively
this gives a problem in the interpretable parameter space since the
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transformation to the interpretable parameter space will not be Gaus-
sian distributed. It is assumed that this error is of such a small mag-
nitude that it will not interfere with the result.

Uncertainty of the uncertainty
Σθ is the uncertainty of a parameter θ. σθ is the standard deviation
of that uncertainty. A literature study has shown no useful indication
of this standard deviation, so it is said that σθ,YSI = σθ,CGM = 0.1.
This introduces an error to the model, but it is assessed to be the
best solution.

The deviance, σθ, is calculated in the interpretable parameter space as
the 5% deviation of Σθ. The value is then transformed and the difference
between this transformed value and the transformed deviation of Σθ is used
as the prior σθ. The calculated values are:

σYSI = 0.1158 (8.3)
σCGM = 0.048518 (8.4)

Intuitively σYSI should be smaller than σCGM , but the logarithmic scale
changes the intuitive relationship.

8.1.1 Model 4 - MVP + MAP

Figure 8.1 shows the result of implementing MAP35 on sYSI and sCGM . It is
evident that the prediction of the YSI observations follows the actual YSI obser-
vations more precisely than Model 2. The prediction of the CGM observations
is not as precise as before and the confidence interval is wider36 substantiated
by the parameter estimates in Table A.3.

It is seen that the estimation of the measurement noise is sY SI = exp(−5.33)±
exp(0.05) and sCGM = exp(−0.80) ± exp(0.05). Compared to Model 2 where
sYSI = exp(−1.02)± exp(0.40) and sCGM = exp(−16.14)± exp(98.27)37, the
measurement noise has decreased for the YSI device and increased for the CGM
device as expected. It has stayed within the limits of what is statistically and
physiologically reasonable.

35An examination of the quantiles in each domain could reveal this influence of the skewed
logarithmic scale.

36sCGM has increased.
37Both insignificant in the model.
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Figure 8.1: Model 4: Predictions using Equation (8.1) with estimation of diffu-
sion terms σ1, σ4 and σ5. Physiologically meaningful estimation
is seen as 95% confidence interval is narrow on the YSI observation
prediction and wide on the CGM observation prediction.
TOP PLOT ) Prediction of YSI observations.
BOTTOM PLOT ) Prediction CGM observations.

Examining the residuals, Figure B.4, it is revealed that an implementation
of an AR(1)-process [34] is appropriate for the CGM device, because of the
structure in the residuals [34]. Supporting this solution are the magnitudes of
σ4 = exp(−2.76) and σ5 = exp(−2.26), both diffusion terms associated with
the devices. It has to be noted that there is not constant variance. An AR(1)-
process extension may improve this.

The likelihood, degrees of freedom and AIC are calculated for Model 4:

− ln(L) = −7.466

DF = 12

AIC = 58.93

(8.5)

When comparing with Model 2, Wilk’s Likelihood ratio test cannot be used
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since the models are not nested. Considering AIC, it does not seem as there
is an improvement compared to Model 2, as −141.47 < 58.93. But here it is
important to consider the achieved physiological improvement.

8.2 Model 5 - Autoregressive modelling

This section will focus on autoregressive modelling. An understanding of the
functionality of the CGM device hopefully gives an improvement in the general
understanding of glucose-insulin dynamics.

This section will first present an investigation using the original CGM device.
The alternate CGM device will be introduced to investigate the possibility of a
more accurate modelling.

Extension of Equation (3.2) to a continuous AR(1)-process [57]:
The Ornstein-Uhlenbeck process is a continuous AR(1)-process that can be
written as:

dkt = φ (µ− kt) dt + σdωt (8.6)

where φ > 0 is the rate of decay and µ > 0 is the limit of the decay.

The Ornstein-Uhlenbeck process allows for a stochastic relaxation process.
This relaxation does not necessarily go towards zero when t→∞, so further
structure will be introduced to the system.

A simple Ornstein-Uhlenbeck process with an exponential decay towards
zero is expected to work. Equation (8.6) simplifies to:

dkt = −φ · ktdt + σdωt (8.7)

where φ > 0.

No extra structure is introduced into the system, as the solution to the
integral will be exponentially decaying towards zero as t→∞.

To obtain an indication of φ and µ, a prediction using Random Walk, can
be made. The prediction of the Random Walk, k̂, can be examined by a
non-parametric spline representation plotted against time. A special case
of the Ornstein-Uhlenbeck process is the Random Walk described below:
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Extension of Equation (3.2) to include Random Walk:

dkt = σdωt (8.8)

with output

CGM = Gsc(t) + kt + sCGM

where kt is a Random Walk, and all remaining parameters have been de-
fined previously.

8.2.1 Model 5a: MVP + Random Walk

Implementing Equation (8.8) gives the predictions shown in Figure 8.2. The
prediction of the YSI observations improve, as the predictions between obser-
vations overall reflect the dynamic. With a new observation, yj , the model
prediction is adjusted, sometimes with a steep transition. In the middle half of
the time series from 500min to 700min steep transitions are observed. These
transitions will be discussed in Section 9.3.2. The confidence interval of the YSI
observation prediction also reflects the nature of the Random Walk. Around
an YSI observation the confidence interval is narrow, and as time progresses it
expands until a new observation is obtained.

From the parameter estimates, Table A.4, it is evident that the measurement
noise are estimated very low, sYSI = exp(−17.15) and sCGM = exp(−16.92)38.
Since they are both insignificant, from a statistical point-of-view they can be
removed. From a grey-box modelling point-of-view, the two parameters should
have an influence. The reason for their insignificance is the Random Walk, and
its ability to adjust according to new observations. The residual analysis, Figure
B.5, indicates that a Random Walk makes the model statistically sensible.

The approach to model the dynamics of the CGM device with a Random Walk
works as a concept. But the approach is flawed, as the improvement is not
an improvement of the model or better description of physiology, but rather a
purely statistical improvement.

38Both insignificant.



8.2 Model 5 - Autoregressive modelling 71

●

●
●

●

●

●

●
●

● ● ●
●

●

●

●
● ●

●

2

4

6

8

10

300 400 500 600 700 800

G
lu

co
se

 [m
m

ol
/L

]

● Observation
Prediction

●●●●
●●

●●●● ●●
●●

●●
●

●●●
●●●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●

●
● ● ●●●●●

●●●●●●●●●
●

●●●●● ●
●●

●
●

●●●
●

●
●●●●●●●●●●●●●●●●●●

●●●
●

2

4

6

8

10

300 400 500 600 700 800
Time [min]

G
lu

co
se

 [m
m

ol
/L

]

● Observation
Prediction

Figure 8.2: Model 5a: Predictions using Equation (6.1) and Random Walk
with estimation of diffusion terms σ1, σ4 and σ5. As expected
the nature of the Random Walk corrects the prediction to match
each new observation.
TOP PLOT ) Prediction of YSI observations.
BOTTOM PLOT ) Prediction CGM observations.
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For Model 5a the likelihood, degrees of freedom and AIC are calculated:

− ln(L) = 102.02

DF = 14

AIC = −156.04

(8.9)

Using Wilk’s likelihood ratio test to compare with Model 2 in Chapter 6, gives
p = 0. Including Random Walk significantly improves the model39. However,
using a grey-box approach the model estimates do not make sense.

8.2.2 Model 5b: MVP + AR(1)-process

As all residual analyses up to this point has indicated an AR(1)-process ex-
tension, this is investigated. Initially the simple Ornstein-Uhlenbeck process,
Equation (8.7), is used. It is expected that this will give a significant im-
provement as predictions are adjusted according to the previous value of the
observations. Figure 8.3 show the prediction. The predictions are, as expected,
good - the initial variation of the prediction of the YSI observation is a result of
the removed observation. The residuals shown in Figure B.6 are close to white
noise, but indicate that an AR(2)-process may improve the estimation, as there
is still indication of structure in the ACF and the PACF.

The estimates of the measurement noise: sYSI = exp(−16.44) and sCGM =
exp(−16.39) indicate that there is a physiological problem with the model40.
The measurement noise is unrealistically small, when compared to the theoret-
ical values obtained previously in the Bayesian approach.

Remark 8.1 As the residuals of the AR(1)-process indicated that an exten-
sion to an AR(2)-process is needed. This was investigated, but the extension did
not yield any new results, and thus it is not presented.

A pure implementation of an AR(1)-process gave a significant improvement to
the model estimation. The next section will investigate the combined imple-
mentation of MAP probability and an AR(1)-process.

39It is meaningless to compare the model with an estimation using MAP as the estimates
are not physiologically comparable.

40The remaining estimates are not shown as they are not informative.
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Figure 8.3: Model 5b: Predictions using Equation (6.1) and AR(1)-process
with estimation of diffusion terms σ1, σ4 and σ5. As expected the
AR(1)-process adjusts the prediction to according to the previous
observation.
TOP PLOT ) Prediction of YSI observations.
BOTTOM PLOT ) Prediction CGM observations.

For Model 5b the likelihood, degrees of freedom and AIC are calculated:

− ln(L) = 93.09

DF = 15

AIC = −136.18

(8.10)

Remark 8.2 Comparing with Model 5b, it seems strange that the likelihood
decreases when extending the model from a Random Walk to an AR(1)-process.
Theoretically the estimate should at least be equally good as the nested model.
This is discussed in Section 9.3.2.
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8.3 Model 6 - Combining Bayesian and autore-
gressive modelling

A simple Ornstein-Uhlenbeck process did not give the expected improvement.
Therefore, non-parametric modelling is performed, where a Random Walk is
combined with MAP probability. The aim of the non-parametric modelling is to
detect an overall tendency in the predictions. Based on the observed tendencies
an Ornstein-Uhlenbeck process describing the behaviour may be constructed.

8.3.1 Model 6a: MVP+ MAP + Random Walk

Having one time series observing Gsc makes it difficult to distinguish structure
and noise in the non-parametric plot. For the original CGM device the non-
parametric smoothed model is shown in Figure 8.4, where the Random Walk
k̂ is plotted against time and the output from the CGM device, respectively.
The top plot does not resemble noise, but no general tendency is seen. The
bottom plot shows, with a pragmatic approach, an exponential decay towards
µ = −0.1 making it reasonable to apply Equation (8.7). The residual analysis,
Figure B.7, strongly implies that an implementation of some AR(1)-process is
reasonable, because of the structure in the residuals [34]. The prediction of the
YSI observations and CGM observations can be seen in Figure C.3.

For Model 6a the likelihood, degrees of freedom and AIC are calculated to:

− ln(L) = 2.12

DF = 14

AIC = 43.75

(8.11)

It only makes sense to compare with models using MAP41. Using Wilk’s like-
lihood ratio test to compare with Model 4 gives, p = 0.000069 so a statistical
improvement is obtained expanding from MAP to MAP combined with Random
Walk.

Remark 8.3 An implementation of an AR(1) process as Equation (8.7) was
investigated. This only gave a visual improvement of the prediction. No statisti-
cal improvement was seen. φ was estimated around φ = 2, giving a rate of decay
at 1

φ = 1
2min, on a time series having a resolution of 1min. This investigation

is not shown here.
41Comparing to models not including MAP is meaningless as the models are not physiolog-

ical comparable.
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Figure 8.4: Model 6a: Non-parametic spline plot using Equation (6.1) with
MAP and Random Walk and the original CGM device.
TOP PLOT ) Non-parametric smoothed plots of k̂ plotted against
time.
BOTTOM PLOT ) Non-parametric smoothed plots of k̂ plotted
against output.

Until now the investigation has been based on one patient and one CGM device.
To get a better understanding of the general dynamics of CGM devices, the
tendency of the devices can be examined different ways:

Investigation of a different CGM device
The alternate CGM device observed the same experiment on a different
location of the body. This presents two possibilities:

1. An estimation using the alternate device to investigate concordance
between the two devices.

2. A model estimation using both devices. In this case the devices
observe the same state.

Investigation of several patients
Using the same device on many different patients would be the optimal
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solution. By use of non-parametric modelling, device tendencies are sep-
arated from noise, allowing identification of the proper AR-process. This
is left for future work.

8.3.2 Model 6b: Using the alternate device

In the following the alternate CGM device is investigated, see Figure 1.4. The
same tedious diffusion term examination has been performed, and yielded the
same result42 as in Section 6.2. Following this examination there were, as before,
indications that an AR(1)-process was needed.

The non-parametric representation of the prediction is shown in Figure 8.5,
where k̂ plotted against time and the output from the CGM device43.

From the the top plot it is not possible to identify a distinct dynamic. The
variation does not resemble white noise, but it is difficult to identify an actual
effect. The bottom plot, with a pragmatic approach, resembles an exponential
increase towards µ = 0.1. It however seems strange that the dynamics is so
different from that in Figure 8.4.

For Model 6b the likelihood, degrees of freedom and AIC are calculated to:

− ln(L) = −28.00

DF = 14

AIC = 104.00

(8.12)

Comparing Model 6b with Model 6a with AIC, it is evident that the using the
alternate device does not improve the estimations, as 43.75 < 104.00. This is
not surprising considering the dynamics of the alternate CGM device.

Remark 8.4 The residuals indicated, also in this case, the need to implement
an AR(1)-process. As before only a visual improvement of the prediction is
observed. No statistical improvement was seen. φ was estimated around φ = 2,
giving a rate of decay at 1

φ = 1
2min, on a time series having a resolution of

1min. This investigation is not shown here.

42The investigation is not presented.
43The predictions of the YSI observations and CGM observations is seen in Figure C.4, the

residuals in Figure B.8.
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Figure 8.5: Model 6b: Non-parametic spline plot using Equation (6.1) with
MAP and Random Walk and the alternate CGM device.
TOP PLOT ) Non-parametric smoothed plots of k̂ plotted against
time.
BOTTOM PLOT ) Non-parametric smoothed plots of k̂ plotted
against output.
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8.4 Model 7 - MAP and an AR-process using two
CGM devices

A combined investigation of the two CGM devices monitoring the same state is
tried.

Extension of Equation (8.6) to two CGM devices:

Estimating the model using two different CGM devices presents a challenge
as they are observing the same state. If the new CGM device is added
as just an observation, the prediction for the two CGM devices will be
identical. One way to avoid this is to introduce calibration parameters as
proposed by Breton and Kovatchev in [8]:

y1 = α1x1 + β1 (8.13)
y2 = α2x2 + β2 (8.14)

where α and β are parameters allowing the model to distinguish the pre-
dictions of the two CGM devices.

8.4.1 Model 7a - MVP + MAP and both CGM devices

The usual tedious investigation of diffusion terms, parameter settings and bound-
aries has been performed44. Enforcing MAP on all devices gave the following
likelihood, degrees of freedom and AIC for Model 7a45:

− ln(L) = −106.21

DF = 15

AIC = 262.41

(8.15)

A non-parametric spline representation of the predictions k̂org and k̂alt from the
Random Walk is seen in Figure 8.6. Observing the non-parametric rendition no
easily identifiable dynamic can be seen. However, plotting k̂org and k̂alt against
the output of each respectable CGM device, Figure 8.7, a vague pattern emerges.
With a very pragmatic approach an exponential increase towards µ = 0 is seen.

44These results are not presented, as they are essentially identical with what has been
observed earlier.

45It is not sensible to compare values with previous models, so this is to be used to detect
improvements when expanding the current model.
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Figure 8.6: Model 7a: Non-parametic spline plot using Equation (8.13) with
MAP and Random Walk on both CGM devices.
TOP PLOT ) Non-parametric smoothed plots of k̂org plotted
against time for the orginial CGM device.
BOTTOM PLOT ) Non-parametric smoothed plots of k̂alt plotted
against time for alternate CGM device.

This together with the residuals, Figures B.9 and B.10, indicate that an AR(1)-
process will improve the model estimation.

8.4.2 Model 7b - MAP + AR(1) and both CGM devices

Figure 8.8 shows the final result in this chapter, which is an implementation of
Equation (8.7) on both devices46. It is evident that the prediction follows the
observations closer, especially evident in the bottom plot. This is, undoubtedly
a result of the AR(1)-process, allowing the model to adjust according to the last
observation.

Combining the two CGM devices gives the following inferential statistics for

46The prediction of the YSI observations is not shown since it is similar to previous predic-
tions.
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Figure 8.7: Model 7a: Non-parametic spline plot using Equation (8.13) with
MAP and Random Walk on both CGM devices.
TOP PLOT ) Non-parametric smoothed plots of k̂org plotted
against the output of the orginial CGM device.
BOTTOM PLOT ) Non-parametric smoothed plots of k̂alt plotted
against the output of alternate CGM device.

Model 7b:

− ln(L) = −91.82

DF = 19

AIC = 245.65

(8.16)

Comparing Model 7a and Model 7b with Wilk’s likelihood ratio test gives, p =
0.00000866. A significant improvement is found when extending to an AR(1)-
process on each of the CGM devices.

Considering the parameter estimates Table A.5 it is evident that, from a grey-
box modelling perspective, estimates have improved. The estimates of measure-
ment noise are47: sCGM1 = exp(−0.815) = 0.44, sCGM2 = exp(−0.786) =
0.46 and sYSI = exp(−5.329) = 0.0048.

47All significant, with Std. Error shown in Table A.5
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Figure 8.8: Model 7b: Predictions using Equation (8.13) and AR(1)-process
with estimation of diffusion terms σ1, σ4 and σ5.
TOP PLOT ) Prediction of the original CGM observations.
BOTTOM PLOT ) Predictions of the alternate CGM observations.

Table 8.1 shows a comparison of the parameter estimates of Model 7b with the
estimates from the MVP model [24]. For the MVP model the range of the
estimates, from lowest to highest, are shown. For Model 7b the estimate is
shown48. Blue estimates indicate that they fall within the range of the MVP
model estimates.

All estimates fall within the range of the MVP model. Variations in MVP
model estimates are most likely patient specific, but this thesis has shown that
extending to SDEs maintains reasonable49 estimates. Estimates of the time
constant, τ1 and τ3, are physiologically meaningful and in concordance with
available literature. As information about deficiencies is available in the diffusion
term, σ4 = exp(−2.748) = 0.064 must be emphasised being considerably larger
than the remaining four state diffusion terms. σ4 relates to GP , indicating that
further improvement must start here.

48A statistical examination of deviations between the two models is not performed, as the
inferential data from the stochastic model is only based on one patient.

49Compared to current literature.
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θ Estimates

MVP Final

C 0.54− 2.01 1.2∗

τ1 41− 131 65.71
τ3 10∗ 9.58
p2 0.0096 - 0.0102 0.0098
EGP 0.033− 0.19 0.05
GEZI 7.58 · 10−8 - 1.00 · 10−3 3.05 · 10−7

Si 0.0964− 1.73 0.38

Table 8.1: Model 7b: Comparison of estimates from the MVP and the final
model obtained in this thesis. Blue values indicate that estimates
obtained in this thesis is within the range of the estimated values in
the MVP. Asterisk (∗) denotes fixed value. Parameters have been
transformed so they have the same units as presented in Chapter 3.

Remark 8.5 The residual analysis is seen in Figures B.11 and B.12. The
residual analysis strongly indicates that further improvements can be obtained.
Comparing with the residuals having a Random Walk (B.9 and B.10) there is
not a large visual difference. An extension to an AR(2)-process on both CGM
devices was investigated but did not give a significant improvement, nor a change
in the residual analysis.

An overview of the model progression is seen in Table 8.2. Here models are
grouped as they are nested. The full parameter set should give the best sta-
tistical description. It is evident that this is not the case in the nested models
without MAP. This will be discussed in Section 9.3.2. The table illustrates that
with a purely statistical approach Model 5a would be chosen as the best model.
Using physiological considerations it is however evident that Model 7b models
the data physiologically more correct.

8.5 Summary of extensions

This chapter has investigated different extension of the Medtronic Virtual Pa-
tient model. Using a Bayesian approach MAP probabilities were implemented
in the model, restricting parameter estimates to a physiologically interpretable
range. The residual analysis of the predictions revealed that there is room for
improvement.
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Model DF − ln(L) AIC

Nested models without MAP

Ωfull,1 Model 5b 15 93.09 -136.18
Ωfull−1,1 Model 5a 14 102.02 -156.04
Ωfull−2,1 Model 2 12 -92.73 -141.47

Nested models with MAP

Ωfull,2 Model 6a 14 2.12 43.75
Ωfull−1,2 Model 4 12 -7.46 58.93

Nested models with two CGM devices and MAP

Ωfull,3 Model 7b 19 -91.85 245.65
Ωfull−1,3 Model 7a 15 -106.21 262.41

Table 8.2: Overview of likelihoods and AIC values for the original glucose
monitor grouped as nested. Ωfull has the largest parameter set,
thus making the below models subsets, within the respective model
structure. Illustrates the problem between physiological modelling
and statistical modelling.

Shifting focus to autoregressive modelling, improvements were sought using
Ornstein-Uhlenbeck processes on the measurement devices. This yielded, not
surprisingly, an improvement in the residual analysis, as the previous value of the
subcutaneous glucose plasma observation was given an influence in the predic-
tion. The parameter estimations were however not physiologically meaningful.

To obtain physiologically meaningful and statistical sound estimates a combi-
nation of MAP and Ornstein-Uhlenbeck processes was examined. Using non-
parametric modelling it was hoped to identify parameters for the Ornstein-
Uhlenbeck process. Indications were given that an AR(1)-process will aid this
estimation. Furthermore, a combination of two CGM devices was shown to give
a significant improvement in the estimations, also when introducing an AR(1)-
process. An improvement not obtained when using just one CGM device.
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Chapter 9

Discussion

This thesis covers PK/PD modelling using stochastic differential equations on
state-space form to investigate glucose-insulin dynamic in T1D-patients. Results
and perspectives will be discussed in this chapter leading to the conclusion in
Chapter 11.

The initial investigation revealed a problem with the identifiability of the data.
The deficiency manifested when estimating SDEs having negligible diffusion
terms - values varying between exp(−12) to exp(−18) gave different estimates.
Initially, lack of excitation was blamed. A thorough investigation of structural
identifiability and persistence of excitation was conducted, revealing an identifi-
able system. Proving persistence of excitation in large systems is difficult, so the
system was simplified to two estimable parameters. This enabled a visualisation
of the problem - the parameter space changed as the diffusion term changed.

Theoretical identifiability was established using Equation (5.7). This discovery
lead to an examination of the initial covariance matrix, P 0. For longer time
series, Equation (5.8) is not problematic as there is an abundance of data. As
presented in Chapter 5, the diffusion term σ may influence the state prediction
in Equation (5.10), causing problems. The problem was solved by using an
initial covariance matrix of the form:

P 0 = k · I
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producing the first major, and quite unexpected, result of this thesis.

The focus in this thesis was an investigation of the Medtronic Virtual Patient
model, and it was therefore natural to formulate the MVP model on state-space
form with stochastic differential equations. The MVP model can cope with
exogenous meal inputs, but this is not investigated.

9.1 Model 2

With the available data a simplification of the PK-part was necessary to obtain
a sufficient model description. Insulins movement from pump to plasma was
described by one rate constant, τ150. The simplified model structure entailed an
investigation of the predictability of plasma insulin as the change in structure
relates to this part51. As seen in Figure 6.8, white noise is obtained. However,
with only 16 observations, there are reservations. It is difficult to say whether
there is constant variance. The measurement noise of the insulin measurement,
sins = −13.41, is unreasonably low, compared to the measurement noise of both
the YSI device and CGM device. But as no device information was available, it
is difficult to account for the reliability of this estimate. The predictions seem
reasonable, so it was assumed not to influence the general modelling.

9.2 Model 3

The Steil model, having a more complex (and correct) description of insulin
effect, was examined. It was included to examine whether a complex model
structure would describe data variation better. A more detailed structure than
that of the MVP model, was hoped to capture the dynamics better.

It has however been shown that more complicated model structure does not give
a statistical difference. A more thorough investigation of the Steil model has not
been conducted. Indications point towards that the MVP model statistically
described data as well as Steil’s model. Emphasis was, therefore, put on the
MVP model.

50For alternative suggestions for insulin PK consult [62].
51Comparing Figure 6.7 with Figures C.1 and C.2 a visual inspection reveals that the

prediction seems feasible.
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9.3 Extensions of the MVP model

The severe indications of a deficiency in the PD-part of the model system52 re-
sulted in an analysis of the measurement equipment. Two different approaches
have been incorporated and tested: a MAP probability approach and an au-
toregressive approach.

9.3.1 Model 4

Using MAP probability, information about devices are incorporated in the model
estimation. This gives physiologically reliable estimations of the relevant param-
eters and thus reliable estimates of the remaining parameters. This improvement
does not come for free:

1. Equation (8.1) gives a Gaussian distribution in the estimation space, and,
because this is a logarithmic scale, the transformation to the parameter
space is skewed.

2. Furthermore, because the uncertainty of the uncertainty is not a subject
well-described in the literature, a pragmatic approach quantifying these
magnitudes is taken. It is assumed that the advantages outweigh the
disadvantages and uncertainties created - no indications to the opposite
have been seen.

From Figure 8.1 it is evident that the prediction of both the YSI observations
and CGM observations are more reasonable. Since the YSI observations are
considered gold standard they are considered very reliable.

The measurement noise for the CGM device has increased and the prediction
does not follow the observations exactly. Steep transitions in the CGM obser-
vations are not followed by a direct transition in the prediction. This is sub-
stantiated by the parameter estimates that are in a physiologically interpretable
range. As plasma insulin is also measured using a device it may seem strange
that MAP is not enforced on the measurement noise of insulin: sins. MAP was
not enforced, since no information about the measurement device was available.
In this study it was assumed not to influence the modelling. For future studies
MAP should be enforced on all measurement devices.

52Estimates of sYSI , sCGM , σ4 and σ5
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9.3.2 Model 5

An autoregressive approach to accommodate non-physiological parameter esti-
mates was taken. A special case of the Ornstein-Uhlenbeck process, the Random
Walk, was implemented. Unsurprisingly the predictions of the CGM observa-
tions became perfect, as they were adjusted with each new observation yj . These
adjustments gave steep, unphysiological transitions in the predictions. Further-
more a Random Walk makes k-step prediction and simulation very unreliable,
emphasising the need of alternative methods. The residuals indicate that an
AR(1)-process seemed reasonable. An Ornstein-Uhlenbeck process, Equation
(8.7), gave visually nice predictions and a residual analysis indicating white
noise. But parameter estimates and measurement noise, sYSI and sCGM , are
unphysiological.

In Table 8.2, it seems strange that the implementation of an AR(1)-process
does not significantly improve the model compared to the implemented Ran-
dom Walk. Theoretically this should not happen. It is expected that models,
when expanded, are at least as good as the preceding model. This irregularity
may be caused by an overparametrisation of the model or an issue with the
implementation and estimation of the AR(1)-process. Due to time constraints
this issue was not investigated further, but future studies should be aware of
the problem.

9.3.3 Model 6

To ensure both statistically and physiologically correct models, MAP and au-
toregressive processes were combined. Indications of the structure of the Ornstein-
Uhlenbeck processes were obtained with non-parametric analysis of the predic-
tion k̂ when implementing a Random Walk. Analysing one CGM device on one
patient did not give a reliable indication of residual structure. Extending with
the alternate CGM device measuring the same patient at a different location,
did not clarify what was white noise and what was device influence.

9.3.4 Model 7

To utilise all available information, both CGM devices were used in the estima-
tion, observing the same compartment (Gsc). Expanding to an AR(1)-process
gave a statistical improvement53. Using multiple devices parameter estimates,

53Multiple devices have been shown to increase validity [10].
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Model DF − ln(L) AIC

Model 1 13 94.45 -98.01
Model 2 12 -92.73 -141.47
Model 3 13 90.10 -128.20
Model 4 12 -7.46 58.93

Model 5a 14 102.02 -156.04
Model 5b 15 93.09 -136.18

Model 6a 14 2.12 43.75
Model 6b 14 -28.00 104.00

Model 7a 15 -106.21 262.41
Model 7b 19 -91.82 245.65

Table 9.1: Overview of all models presented in this thesis in the order of pre-
sentation.

comparable estimates with those found in [24], were obtained. In this thesis
estimates are based on a single patient54, but as Table 8.1 indicates, results are
promising.

9.4 Physiological modelling

The state-space method applied in this thesis has allowed a physiological inter-
pretation of the models, opposed to a purely statistical interpretation. Table 9.1
shows the statistical results obtained in chronological order. It is evident, that
the statistical best model is not the physiological most correct model, justifying
the state-space approach that has been used in this thesis. From a purely sta-
tistical point Model 5a is the best model. But if the physiological considerations
are included then Model 7b is most reasonable. Here the parameter estimates
are sensible, even though there is still room for statistical improvements.

Throughout the presented residual analyses there have been indications that the
variance is not constant. Statistically this is a problem but it was assessed that
the physiological interpretability was more important. The deficiency has not
been prioritised as this thesis is based on grey-box modelling of just one patient.

54More patients should be studied in order to obtain reliable statistics.
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Chapter 10

Future work

Using stochastic differential equations on state-space form to model patients at
rest has given good results and ideas for future work. Unfortunately a limited
time period confines the extent of the research. This chapter gives theoretical
and practical suggestions for improved modelling of glucose-insulin dynamics.

Using the tool CTSM-R an examination of the initial covariance matrix used to
calculate the state prediction in the EKF was conducted. This examination re-
sulted in a change of the calculation method from P 0 = Ps

∫ t1
t0
eAsσσT

(
eAs
)T
ds

to P 0 = k ·I. A substantial theoretical and practical comparative study, should
be conducted to clarify consequences and implications on different types of data
when using P 0 = k · I.

Simplifying insulin kinetics by modelling the flow through two compartments
with only one time constant was assumed to be the best solution handling the
inverse relationship between two compartments. Expanding on the ideas used
in [62] a segregated four compartment model, with two compartments acting as
a slow channel and one compartment acting as a fast channel delivering insulin
to the plasma compartment could be tried. This compartment structure is more
elaborate, and may improve modelling if longer time series become available.

Using the MAP probability approach, assumptions based on literature about
device reliability, were made. To fully model device variation a study examining
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device properties should be conducted. Several experimental designs should be
considered:

1. Using the same device on different patients.
2. Using the same device series on a large variety of patients.

The latter option is available in the DiaCon study giving an excellent point-of-
departure for further device investigation.

Quite a bit of work has been used adjusting parameter estimates to physiological
correct region of operation. To ease this adjustment a large-scale population
study using for example Population Stochastic Modelling, PSM 55 [27] should be
conducted on all available patients. This way, valuable insight of intra-individual
variability could be gained. Using said insight individually tailored treatment
comes one step closer.

When expanding to several patients, non-parametric spline modelling should be
used to analyse tendencies on a wide range of different CGM devices. Thereby
valuable information regarding dynamics of devices can be obtained. Many non-
parametric spline models enables a tendency evaluation of dynamics, indicating
structure that would otherwise be undetected. Using non-parametric splines
combined with multiple CGM devices indicated improvements. This discovery
opens exciting possibilities for extension of the system.

Combining identical devices has already been performed, but the idea can be
extended to studies with a variety of different CGM devices. As explained in
[58] the detection technology can be classified according to the transduction
mechanisms used for glucose sensing. Currently, three major areas exist: 1)
electrochemical56 2) optical 3) piezoelectric. CGM devices can furthermore be
divided into three levels of penetration: 1) invasive57 2) minimally invasive 3)
non-invasive58.

This thesis has established a reliable PK model system. Focus can therefore now
be placed on extensions to the system by including new observation equations
of CGM devices using other transduction mechanisms. Theoretically there is no
limit to the number of CGM devices that could be placed on a patient:

55A package available for R.
56As the devices used in this thesis.
57As the devices used in this thesis.
58For a full schematic overview of degree of penetration and transduction mechanism, please

consult [58, p. 1542].
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Extension of Equation (3.2) to j CGM devices:

This would be an addition to the output vector yj :

y1 = α1x1 + β1

y2 = α2x2 + β2

...
yj−1 = αj−1xj−1 + βj−1

yj = αjxj + βj

(10.1)

The increase of parameters, αj and βj , will be met by the drastic increase in
data points available for modelling. Each new CGM device will add substantial
data compared to the two extra parameters.

Since sensor lag is a well-known problem, a combination of different penetration
levels should be studied. This could be combined with a mixture of CGM
devices with different transduction mechanisms. Using different transducter
mechanisms with different penetration-levels will give a better understanding
of glucose movement between tissues. To achieve the maximum amount of
information, considerations towards optimal design of experiments should be
taken on the basis of [13] and [42].

Optical sensors seem ideal for this type of study because monitors on all three
kinds of penetration level exist. If optical methods are implemented, sensor
selectivity becomes a critical issue [58]. A study examining this issue should be
conducted before a larger study is commenced.

Advantages of a multiple sensor approach is not well-investigated but reports de-
scribing the advantages exists. Harman-Boehm [19], using non-invasive glucose
monitors, increased signal-to-noise ratio in estimations. Castle [10] has found
an improvement in accuracy when combining two sensors. They also claim that
calibration error, sensor drift and lag can be further minimised by adding extra
sensors. Indications of this are also seen in this thesis.

Finally a large effort should be invested in further examination of the current
model. Using the model on the same patient a different day or predicting on
different patients are just among the possibilities. Furthermore, k-step predic-
tion could be explored. When a solid model has been build simulation studies
could be conducted.
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Chapter 11

Conclusion

A model using stochastic differential equations on state-space form to describe
glucose-insulin dynamics, in resting patients, has been developed, analysed and
tested. Parameter estimation was conducted using a Maximum Likelihood ap-
proach and the Extended Kalman Filter.

For data analysis, the tool CTSM-R was used, allowing modelling of stochastic
continuous time series. A computational deficiency was found in the calculation
of the initial covariance matrix. An alternative initial covariance matrix was
implemented and used to obtain consistent estimates.

The MVP model was successfully extended to a system of stochastic differential
equations on state-space form. Based on initial investigations, the PK part
describing insulin kinetics was simplified to accommodate available data, giving
a significant improvement in model estimation.

Examining an alternative, more complex model, revealed that increased com-
plexity does not give statistically better models. More detailed physiological
knowledge about glucose-insulin dynamics is necessary, when increasing the
complexity of the model structure.
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One patient was selected for model testing. As no standard solution exists,
expansions were divided into three separate parts:

1. A Bayesian approach using MAP probability.
2. An autoregressive approach using Ornstein-Uhlenbeck processes.
3. A combination of the Bayesian and autoregressive approach.

The MAP approach gave improvements from a physiological perspective. Pa-
rameters were estimated in areas making physiological sense. Statistical analysis
of the residuals indicated that improvements could be achieved implementing
autoregressive processes.

Expanding using a purely autoregressive approach, gave - as expected - excellent
statistical improvements to parameter estimates. This statistical improvement
comes at the cost of physiological interpretability. It is concluded that a purely
autoregressive approach cannot stand alone as the interpretability of the pa-
rameters is important.

A combined approach was proposed - using MAP probability and Ornstein-
Uhlenbeck processes were relevant. It is concluded that physiologically in-
terpretable estimates can be obtained with this combination. By use of non-
parametric spline modelling indications about residual structure was obtained.
Using different CGM devices to observe the compartment one at a time, gave
contradicting results. Combining multiple CGM devices gave statistical im-
provement, and furthermore similar residual structure. This thesis concludes
that an extension to several CGM devices will support the identification of
glucose-insulin dynamics. An interesting aspect is the use of different measure-
ment techniques and penetration levels.

Overall the goal set in Chapter 1 is met: the use of stochastic differential equa-
tions on state-space form, on patients at rest, is an excellent and flexible method
to model glucose-insulin dynamics.

The perspective improvement in life quality of Type 1 Diabetes patients mo-
tivates further studies and investigations using SDEs to control a Closed-Loop
artificial pancreas.

The results and methods in this thesis are promising and has lead to suggestions
for future work presented in the previous chapter.
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Model estimation

This appendix presents parameter estimates relevant to the thesis, in the sense
that they aid the interpretation of the model estimates.

Table A.1: Model 1: Parameter estimates.

Estimate Std. Error t value Pr(>|t|) dF/dPar dPen/dPar

Isc0 0.100 NA NA NA NA NA
Ip0 0.025 NA NA NA NA NA
Ieff0 0.000 NA NA NA NA NA
Gp0 7.970 NA NA NA NA NA
Gsc0 7.380 NA NA NA NA NA
C 1.200 NA NA NA NA NA
EGP -2.546 0.577 -4.411 0.000 0.000 0.000
GEZI -5.450 1.212 -4.496 0.000 0.000 0.000
p2 -4.792 0.364 -13.18 0.000 0.000 0.000
sCGMl -9.499 1.343 -7.072 0.000 0.000 0.000
Si -0.790 0.466 -1.697 0.092 0.000 0.000
sig1 -6.863 0.300 -22,91 0.000 0.000 0.000
sig2 -20,00 NA NA NA NA NA
sig3 -20,00 NA NA NA NA NA
sig4 -2.077 0.295 -7.051 0.000 0.000 0.000
sig5 -2.669 0.141 -18,87 0.000 0.000 0.000
sins -13.38 0.554 -24,16 0.000 0.000 0.001
sysi -1.015 0.360 -2.818 0.006 0.000 0.000
τ1 50.456 7.168 7.039 0.000 0.000 0.000
τ2 64.211 6.761 9.497 0.000 0.000 0.000
τ3 14.891 6.336 2.350 0.020 0.000 0.000
scaleVariance -17.43 6.611 -2.636 0.009 0.000 0.095
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Table A.2: Model 2: Parameter estimates.

Estimate Std. Error t value Pr(> |t|) dF/dPar dPen/dPar

Isc0 0.10 NA NA NA NA NA
Ip0 0.00 NA NA NA NA NA
Ieff0 0.00 NA NA NA NA NA
Gp0 7.97 NA NA NA NA NA
Gsc0 7.38 NA NA NA NA NA
BA 0.70 NA NA NA NA NA
C 1.20 NA NA NA NA NA
EGP -2.37 0.54 -4.40 0.00 0.00 0.00
GEZI -12.29 85.33 -0.14 0.89 0.00 0.00
Si -0.28 0.57 -0.50 0.62 0.00 0.00
p2 -5.19 0.43 -11.97 0.00 0.00 0.00
sCGMl -16.14 98.27 -0.16 0.87 0.00 0.00
sig1 -6.80 0.29 -23.13 0.00 0.00 0.00
sig2 -20.00 NA NA NA NA NA
sig3 -20.00 NA NA NA NA NA
sig4 -2.03 0.29 -6.97 0.00 0.00 0.00
sig5 -2.68 0.14 -19.27 0.00 0.00 0.00
sins -13.41 0.54 -25.05 0.00 0.00 0.00
sysi -1.02 0.40 -2.57 0.01 0.00 0.00
τ1 73.09 11.03 6.63 0.00 0.00 0.00
τ3 14.75 6.38 2.31 0.02 0.00 0.00
scaleVariance -8.09 0.78 -10.36 0.00 0.00 0.00

Table A.3: Model 4: Parameter estimates including MAP on the YSI device
and CGM device.

Estimate Std. Error t value Pr(>|t|) dF/dPar dPen/dPar

Isc0 0.10 NA NA NA NA NA
Ip0 0.03 NA NA NA NA NA
Ieff0 0.00 NA NA NA NA NA
Gp0 7.97 NA NA NA NA NA
Gsc0 7.38 NA NA NA NA NA
BA 0.70 NA NA NA NA NA
C 1.20 NA NA NA NA NA
EGP -2.99 0.20 -14.77 0.00 0.00 0.00
GEZI -15.79 120.60 -0.13 0.90 0.00 0.00
Si -0.98 0.22 -4.53 0.00 0.00 0.00
p2 -4.63 0.17 -27.26 0.00 0.00 0.00
sCGMl -0.80 0.05 -16.95 0.00 0.00 0.00
sig1 -6.76 0.28 -23.93 0.00 0.00 0.00
sig2 -20.00 NA NA NA NA NA
sig3 -20.00 NA NA NA NA NA
sig4 -2.76 0.18 -15.44 0.00 0.00 0.00
sig5 -2.26 0.18 -12.77 0.00 0.00 0.00
sins -13.32 0.57 -23.54 0.00 0.00 0.00
sysi -5.33 0.11 -49.20 0.00 0.00 0.00
τ1 65.57 6.57 9.98 0.00 0.00 0.00
τ3 42.65 18.76 2.27 0.03 0.00 0.00
scaleVariance -17.62 3.59 -4.90 0.00 0.00 0.22
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Table A.4: Model 5a: Parameter estiamtes with Random Walk.

Estimate Std. Error t value Pr(> |t|) dF/dPar dPen/dPar

Isc0 0.10 NA NA NA NA NA
Ip0 0.01 NA NA NA NA NA
Ieff0 0.00 NA NA NA NA NA
Gp0 7.97 NA NA NA NA NA
Gsc0 7.38 NA NA NA NA NA
k10 0.01 0.01 0.76 0.45 0.00 0.00
BA 0.70 NA NA NA NA NA
C 1.20 NA NA NA NA NA
EGP -3.01 0.33 -9.19 0.00 0.00 0.00
GEZI -15.60 85.67 -0.18 0.86 0.00 0.00
Si -1.00 0.33 -3.01 0.00 0.00 0.00
p2 -4.57 0.32 -14.51 0.00 0.00 0.00
sCGMl -16.82 53.00 -0.32 0.75 0.00 0.00
sig1 -6.78 0.30 -22.68 0.00 0.00 0.00
sig2 -20.00 NA NA NA NA NA
sig3 -20.00 NA NA NA NA NA
sig4 -2.68 0.21 -12.75 0.00 0.00 0.00
sig5 -8.63 34.90 -0.25 0.81 0.00 0.00
sig6 -2.61 0.09 -29.71 0.00 0.00 0.00
sins -13.32 0.62 -21.44 0.00 0.00 0.00
sysi -17.15 45.78 -0.38 0.71 0.00 0.00
τ1 68.71 11.13 6.17 0.00 0.00 0.00
τ3 13.57 6.07 2.24 0.03 0.00 0.00
scaleVariance -9.53 0.89 -10.69 0.00 0.00 0.00
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Table A.5: Model 7b: Parameter estimates with AR(1) process and two CGM
devices.

Estimate Std. Error t value Pr(>|t|) dF/dPar dPen/dPar

Isc0 0.100 NA NA NA NA NA
Ip0 0.025 NA NA NA NA NA
Ieff0 0.000 NA NA NA NA NA
Gp0 7.970 NA NA NA NA NA
Gsc0 7.380 NA NA NA NA NA
x10 0.100 NA NA NA NA NA
x20 0.100 NA NA NA NA NA
BA 0.700 NA NA NA NA NA
C 1.200 NA NA NA NA NA
EGP -2.976 0.196 -15,183 0.000 0.000 0.000
GEZI -15,741 119,026 -0.132 0.895 0.000 0.002
Si -0.964 0.209 -4.611 0.000 0.000 0.000
a -3.256 3.417 -0.953 0.342 0.000 0.000
b -4.195 0.796 -5.269 0.000 0.000 0.000
p2 -4.631 0.162 -28,534 0.000 0.000 0.000
q 0.920 0.011 83.952 0.000 0.000 0.000
r 0.891 0.037 23.882 0.000 0.000 0.000
sCGMl -0.815 0.047 -17,511 0.000 0.000 0.000
sCGMr -0.786 0.048 -16,537 0.000 0.000 0.000
sig1 -6.752 0.282 -23,933 0.000 0.000 0.000
sig2 -20 NA NA NA NA NA
sig3 -20 NA NA NA NA NA
sig4 -2.748 0.175 -15,705 0.000 0.000 0.000
sig5 -8.529 269,041 -0.032 0.975 0.000 0.000
sig6 -8.786 34.290 -0.256 0.798 0.000 0.000
sig7 -2.229 0.261 -8.542 0.000 0.000 0.000
sins -13.227 0.533 -24,815 0.000 0.000 0.001
sysi -5.329 0.115 -46,394 0.000 0.000 0.000
τ1 65.710 6.561 10.015 0.000 0.000 0.000
τ3 9.588 3.524 2.721 0.007 0.0007 0.000
scaleVariance -17.616 3.291 -5.352 0.000 0.000 0.215



Appendix B

Residual plots

This appendix presents the residual analysis relevant for the thesis, in the sense
that they aid the interpretation of the model estimates.

The residuals shown in this appendix are primarily with models having diffusion
terms σ1, σ4 and σ5 included. If another combination is used, this is stated in
the caption of the respective model.
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Figure B.1: Model 1: with negligible diffusion terms
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Figure B.2: Model 1.
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Figure B.3: Model 2.
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Figure B.4: Model 4: including MAP on YSI device and CGM device.
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106 Residual plots

Figure B.5: Model 5a: with Random Walk.
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Figure B.6: Model 5b: with AR(1)-process.
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Figure B.7: Model 6a: MAP and Random Walk using original CGM device.
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Figure B.8: Model 6b: MAP and Random Walk using alternate CGM device.
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Figure B.9: Model 7a: MAP and Random Walk using two CGM devices.
Residual analysis for original CGM device.
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Figure B.10: Model 7a: MAP and Random Walk using two CGM devices.
Residual analysis for alternate CGM device.
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Figure B.11: Model 7b: MAP and AR(1)-process using two CGM devices.
Residual analysis for original CGM device.
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Figure B.12: Model 7b: MAP and AR(1)-process using two CGM device.
Residual analysis for alternate CGM devices.
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Appendix C

Prediction plots

This appendix presents predictions relevant for the thesis, in the sense that they
aid the interpretation of the model estimates.

The predictions shown in this appendix are primarily with models having dif-
fusion terms σ1, σ4 and σ5 included. If another combination is used, this is
stated in the caption of the respective model.

Figure C.1: Model 1 with negligible diffusion terms: Prediction of plasma
insulin
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Figure C.2: Model 1: Prediction of plasma insulin.
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Figure C.3: Model 6a: with MAP and Random Walk on original CGM device.
Prediction of YSI observations and CGM observations.
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Figure C.4: Model 6b: with MAP and Random Walk on alternate CGM de-
vice. Prediction of YSI observations and CGM observations.
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