
Modelling Objects for Simulation
of Breakables

Jens-Kristian Nielsen

Kongens Lyngby 2013

IMM-M.Sc.Eng.-2013-28

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.Eng.-2013-28

Abstract

In English

This thesis describes a destruction system, which has been developed to create
and simulate breakable objects in a real-time gaming context. The goal of this
thesis is to describe how this destruction system, which can be used in a low-
budget game development, was created. The design of the destruction system
is based on a study of related works that appear in graphics literature. Details
concerning implementation of how fragments are procedurally modelled and how
destruction is simulated are explained. Finally the system is tested to determine
its limitation and the results are re�ected upon.

In Danish

Dette speciale beskriver et system, der er udviklet til at skabe og simulere ob-
jekter, der kan gå i stykker i realtid i spil. Målet med denne afhandling er at
beskrive, hvordan et ødelæggelses-system, der kan bruges i lav-budgets spilud-
viklingsprojekter, er blevet udviklet. Ødelæggelses-systemets design er baseret
på en undersøgelse af relaterede værker, der �ndes i gra�klitteraturen. Det
forklares hvordan fragmenter proceduremæssigt bliver modelleret, og hvordan
ødelæggelse er simuleret. Til sidst testes systemet for at �nde dets begræn-
sninger, og der re�ekteres over resultaterne.

ii

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc.Eng in Digital Media Engineering. It contains work
done from October 2012 to March 2013. The thesis has been written under the
supervision of Jakob Andreas Bærentzen of the Department of Informatics and
Mathematical Modelling at DTU. The thesis documents the development of a
destruction system for the Unity game engine.

To fully understand the contents of this thesis the reader must have a basic
understanding of software development, computer science, three-dimensional
computer graphics, C# programming and have some familiarity with game en-
gines, rendering engines and rigid body physics engines.

Thesis Structure

Chapter 1: Introduction
This chapter describes project and de�nes the goal of the thesis.

Chapter 2: Related Works
This chapter describes and compares various methods that others have used to
simulate destruction in real-time. I make simple implementations of some of
these methods to discover which works best within the constraints of Unity.

Chapter 3: Overall Design

iv

This chapter describes the general concept of how the destruction system works
and why it was designed this way.

Chapter 4: Modeling Fragments
This chapter describes how the fragments are procedurally modelled.

Chapter 5: Simulation
This chapter describes how the breakage is simulated.

Chapter 6: Tests and Results
This chapter describes various tests used to determine how well the destruction
system works, and what its limitations are.

Chapter 7: Conclusions
This chapter re�ects on the process and the results, discusses hindsights and
how the destruction system could be further improved.

Appendix A: User Manual
This appendix describes how to use the destruction system to produce destruc-
tible objects in a game.

Copenhagen, Denmark, 29-March-2013

Jens-Kristian Nielsen

Acknowledgements

I would like to thank my supervisor, Jakob Andreas Bærentzen. His ideas,
inspiration, comments and his endless patience at our weekly meetings, some
of which extended far beyond the schedule were essential to the success of the
project.

Thanks to Kenny Erleben of DIKU, University of Copenhagen for spending
time emailing and meeting with me to discuss the project.

Finally thanks to Kassandra Flindt for her patience and understanding, and
to my proof readers: Stine Rosenbeck, Asbjørn Clemmensen, Kristian Harving,
Frederik Buus Sauer, Anne Elvira Enkelund, Rasmus Kann Jensen, Valdis Vil-
can, and Lelia Peuchamiel for helping me make this thesis a little more readable.
And anyone else who has supported me throughout the process.

vi

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Project Description . 2
1.2 Goal . 2

2 Related Work 3
2.1 Comparison of Methods . 3

2.1.1 Geometry Preparation . 4
2.1.2 Runtime Destruction . 9
2.1.3 Dust and Debris . 11

2.2 Existing Solutions . 11
2.2.1 PhysX Apex Destruction and Unreal Engine 12
2.2.2 Geo-Mod . 12
2.2.3 Digital Molecular Matter 13

2.3 Discussions of Methods . 13
2.3.1 Experiments in Unity . 14

3 Overall Design 17
3.1 Recursive Slicing and the Mesh Tree 17
3.2 Simulation . 18

4 Modelling Fragments 21
4.1 Unity Development in a Nutshell 23
4.2 Sorting and Splitting Triangles 24

viii CONTENTS

4.3 Triangulating Caps . 25
4.3.1 Linking Border Edges . 27
4.3.2 Creating the PSLG . 28
4.3.3 Triangulation . 30

4.4 Separating Hulls . 32
4.5 Editor . 33

5 Simulation 35
5.1 Initial Setup . 35
5.2 Collision . 36

5.2.1 Damage Calculation . 36
5.2.2 Using the Mesh Tree to Compute Minimal Meshes 38
5.2.3 Inertia and Mass . 39
5.2.4 Convex Hull Generation for Convex Colliders 39

6 Tests and Results 41
6.1 Test Setup . 41
6.2 Testing Fragment Generation . 42

6.2.1 Speed . 42
6.2.2 Meshes . 43
6.2.3 Possible Number of Fragments 43

6.3 Testing Runtime Simulation . 44
6.3.1 Possible Number of Fragments 44

7 Conclusions 47
7.1 Discussion . 48
7.2 Further Development . 48

A User Manual 51
A.1 Editor . 51
A.2 Prepper . 52

Bibliography 53

Chapter 1

Introduction

Destructible objects and environments have been a widely used feature through-
out the history of video games. For instance Space Invaders (1978) featured
destructible bunkers which the player would be able to use as cover and which
would gradually be destroyed by both the enemies and the player. Similarly, in
the game Asteroids (1979), the main objective was to destroy asteroids bit by bit.

Modern 3D games like the ones in the Battle�eld franchise and the Red Faction
franchise have also featured destructible environments in the form of deformable
terrain and destructible buildings. Even games that are not centered around
destruction may feature some form of destructible objects. For instance de-
structible cover in the shooter genre is becoming increasingly popular. Another
example of how important destruction is to games is the international 2D hit
Angry Birds in which the player must destroy a construction by catapulting
birds at it.

In summation, there is continuous need for simulating breakables in games as
they often constitute a de�ning element of the game experience. In this the-
sis i propose a tool that makes this feature more accessible to game developer
making low-budget games.

2 Introduction

1.1 Project Description

In many cases destruction is not very dynamic. Canned animations (animation
premade by artists that are played on certain events) only have limited use as
gameplay elements and are only useful as visual e�ects. In many cases, however
games do not feature destruction at all, even when it might be appropriate in
the games context.

The technology for physically based animation has made major progress through
the last few decades, and combined with the continued progress of processing
power due to Moore's law we have reached a point where dynamic realtime de-
struction can be implemented in a wide range of games. The last few years have
produced many such systems, but it remains almost exclusively in big-budget
titles like the previously mentioned Battle�eld and Red Faction franchises. It
has yet to be widely available to indie, mobile device and student developers,
because destruction systems are often elaborate and expensive to produce.

1.2 Goal

The purpose of this project is to make it easy and fast for developers to create de-
structible objects in their games. This contribution will assist the lower-budget
productions in reaching a higher production value and subsequently help bridge
the chasm between the triple A titles and the smaller indie productions. In this
way the thesis attempts to widen the scope of possibilities for low-budget game
producers, hoping that more innovative games will see the light of day. This is
achieved by creating a destruction system for the game engine Unity, which is
widely used by various game developers namely indie, mobile device and student
developers. To be able to implement this system within the thesis deadline, the
product is limited to only being able to fracture rigid, non-deformable materi-
als. Materials that could be simulated in this system are for instance porcelain,
stone, concrete and glass.

Chapter 2

Related Work

In this chapter I study various related work to determine whether any current
solutions or research can help me create a system that can produce realistic-
looking and dynamic breakable objects, thus prevent me from having to reinvent
the wheel.

2.1 Comparison of Methods

At the Siggraph conference in 2011 Erwin Coumans [Cou11] compared some
of the di�erent methods currently used in destruction systems, which he later
elaborated on in a post on #AltDevBlogADay [Cou12]. This chapter primarily
is based on those sources.

Most destruction systems are divided into two parts, which do the following:

• Process the 3D geometry to produce fragments. This is done in a before
runtime.

• Simulate the breakage at run time.

4 Related Work

This general approach is referred to as preshattering. When one wants to in-
corporate destruction in game and �lm productions it is normally considered
more important that it looks realistic and that it is computationally cheap than
that it truly acts physically realistically. This is why preshattering is such a
popular model for destruction systems. It is much cheaper to mimic destruction
by having a limited number of pieces falling apart than to actually determine
how an object divides into pieces based on its physical properties at run time.
In a game environment, maintaining a framerate is essential, and allowing the
number of fragments to grow without limit is undesirable.

In table 2.1 commonly used approaches to each of the two parts of destruction
systems are listed.

Geometry Preparation Runtime Destruction
Manual modeling Canned Animation
Boolean Operations Real-time Booleans

Cut-Out Connected Particles
Tetrahedralization Finite Element Method

Convex Decomposition Breakable Constraints
Voronoi Shattering Breakable Composite Rigid Body
Cutting/Slicing -

Table 2.1: Geometry preparation and simulation methods for destruction sys-
tems.

It is worth noting that some methods, both for geometry preparation and sim-
ulation, are good at imitating certain material properties and bad at imitating
others. Some geometry preparation methods produce fragments that have clean
surfaces, which are appropriate for materials like minerals, porcelain or crystals
and some simulation methods are good for rigid, non-�exible destruction, which
goes well with the aforementioned materials. But those same methods might be
inappropriate for materials like wood which break into splintery pieces and is
�exible, which means that it bends before it breaks.

2.1.1 Geometry Preparation

In a preshatter destruction system, the object that is to be made destructible
needs to be divided into pieces, so those pieces can fall apart during the sim-
ulation. These pieces will be referred to as fragments. This section describes
some of the popular methods that are used to divide a 3D model into fragments.
When studying the di�erent geometry preparation methods, we are interested
in the following qualities:

2.1 Comparison of Methods 5

• Artistic control, meaning the artist or designer using the destruction sys-
tem to produce the fragments has a high degree of control in how the
pieces are shaped.

• The method is fast and easy to use.

We are however not particularly interested in the system being computationally
fast since the geometry preparation step is not performed at runtime.

When producing fragments, one of the challenges is that we only have informa-
tion about the shell of the object, since we are dealing with polygon meshes,
so we must reconstruct the interior of the objects as we take them apart. The
following methods have di�erent ways of handling this issue.

2.1.1.1 Manual Modelling

The simplest way of producing fragments is to model them in a content creation
tool like Autodesk Maya, 3ds Max or Blender. This is the method that allows
the highest degree of artistic control, but since it not procedural it may be very
costly in terms of man hours.

2.1.1.2 Boolean Operations

Boolean operations can be used to perform volumetric operations between two
meshes. Computing di�erences or intersections can be used for mesh decom-
position. They allow us to break a mesh into pieces, similar to using a cookie
cutter. Instances of spatial booleans operations can be seen in �gure 2.1. This

Figure 2.1: Boolean operations. Source: [Cou12]

6 Related Work

is still a type of manual modeling, not procedural, so it relatively slow, but it
gives a high degree of artistic control.

2.1.1.3 Cut-out

In this method an artist provides a fracture map with fracture lines as a bitmap
�le, which can be produced in content creation tools like Photoshop, by drawing
white lines onto a black background. Figure 2.2a illustrates a fracture map for
producing a brick-like fracture pattern. The fracture map is projected onto the
object, as seen in �gure 2.2b, and the mesh is decomposed based on those lines.
This method provides a high degree of artistic control, but also requires a lot of
manual work by an artist.

(a) Fracture map for a creating

brick-like fragments.
(b) Projected onto object.

Figure 2.2: Cut-out. Source: [u0910]

2.1.1.4 Tetrahedralization

Tetrahedralization is the process of dividing the source mesh into a set of tetra-
hedra as seen in �gure 2.3a. This is accomplished using delaunay triangulation,
which is closely related to voronoi regions. Creating tetrahedron shaped frag-
ments is not necessarily very interesting because they do not in themselves look
like natural fragments, but they are useful for simulation purposes because of
their geometric simplicity as seen in �gure 2.3b.

In such cases the tetrahedralized version is not used for visualization; this would
have to be done using one of the other methods.

2.1 Comparison of Methods 7

(a) Tetrahedralized

Bunny.
(b) Tetrahedron for simulation.

Figure 2.3: Tetrahedralization. Source: [Cou12]

2.1.1.5 Convex Decomposition

In the convex decomposition method a concave mesh is divided into smaller
convex parts, which can be seen in �gure 2.4. This can be done manually by
using convex primitives or it can be done procedurally. Convex decomposition
is a NP-hard problem, but it is possible to create approximations relatively
cheaply. One approach to doing so is described in [MG09]. This methods breaks

Figure 2.4: Convex Decomposition. Source: [Cou12]

the source mesh into fragments in a very natural way, for instance the bunny's
ears break o�, rather than break at some arbitrary point, but the number and
shape of those fragments depend entirely on the source mesh and involves no
artistic control. This method could in theory be useful if combined with another
method, so the mesh would �rst be divided using convex decomposition and then
those pieces would be divided using another method.

8 Related Work

2.1.1.6 Slicing/Cutting/Splitting

The slicing method, which is also sometimes called cutting or splitting, is not
really one speci�c method, but rather a group of methods which all involve
dividing the source geometry using planes and then �lling the resulting gaps.
One popular approach, used in PhysX Apex Destruction, is to divide the source
mesh a given number of times in the X, Y and Z axis, seen in �gure 2.5a, then
apply o�set, angular variation and noise to those planes. This produces very
realistic fragments and allows a high degree of artistic control. Figure 2.5b shows
a single slice with o�set, angular variation and noise applied.

(a) A pillar sliced in multiple

times in the X, Y and Z axis.

(b) A wall segment sliced with

plane distorted with noise.

Figure 2.5: Slicing. Source: [u0910]

2.1.1.7 Voronoi Shattering

Voronoi shattering is a procedural method based on voronoi diagrams, depicted
in �gure 2.6a. This approach is a way to divide space into regions, called voronoi
cells. It is typically used to imitate materials like rocks or minerals as seen in
�gure 2.6b. The result of voronoi shattering can be seen in �gure 2.6c.

[Est11] and [Led07] describes how voronoi shattering works. First the polygonal
mesh is sampled to �nd a set of point within it called seeds. For each seed we
create a set of planes that makes out its corresponding voronoi cell. For each of
these planes the mesh is sliced and the resulting gap is covered with new faces.
The result is a set of convex meshes corresponding to the fragments.

2.1 Comparison of Methods 9

(a) Voronoi diagram. (b) Typical material. (c) Result.

Figure 2.6: Voronoi shattering. Source: [Est11]

2.1.2 Runtime Destruction

Once the source object has been divided into fragments we need to execute the
destruction in the game. The quality we are mainly interested in in the runtime
part of the destruction system is that it acts realistically, since we are mainly
concerned with games, and that it is computationally cheap.

2.1.2.1 Canned Animation

Instead of doing a physically-based animation at runtime, the simulation can
be done in the preparation step or it can be done as a manual animation in a
content creation tool. At run time, the animation is simply played back when
triggered. This is computationally very cheap and allows a great deal of artistic
control. The disadvantage with this approach is that the object will always
break as it was animated and it will not correspond exactly to the interaction
performed in the game.

2.1.2.2 Real-time Booleans

Boolean operations can also be used at runtime, which means that this method
does not require a geometry processing preparation step, thus is not a preshat-
tering method. In a destruction system based on real-time booleans destruction
works in the following way: When the environment is hit with great enough
force, a shape that corresponds to the damage made is generated procedurally.
Subsequently the intersection of the generated shape and the environment is
removed from the environment geometry.

10 Related Work

Level design can prove challenging when using real-time booleans since the
player can perform a much greater number of modi�cations compared to pre-
shattering methods. [BNT90] describes how to accomplish this by merging BSP
trees. This approach requires additional analysis to determine if objects need
to collapse.

2.1.2.3 Connected Particles and Finite Element Method

Destruction and fracture can also be simulated using particles. This approach
is similar to rope physics where particles are connected into chains, two by two.
Connecting particles four by four into tetrahedra allows deformation simulation
of 3D objects and can also be used to simulate destruction by breaking these
connections.

By using continuum mechanics, we can create more physically correct destruc-
tion simulation. This approach is in relation to destruction systems referred
to as Finite Element Method (FEM is actually a technique for approximating
boundary value problems, but in the context of destruction systems FEM refers
a continuum mechanics-based solution, because FEM is a part of the process
that makes it possible). In Finite Element Method we create a tetrahedralized
version of the source mesh, as described in section 2.1.1.4. A strain, stress and
sti�ness matrix is used to determine the deformation and destruction e�ects
from impact forces. [PO09] describes how this can be accomplished in a real-
time game environment.

These methods, especially FEM, allow us to simulate a wide range of mate-
rials realistically; not only brittle non-deformable materials, but also materials
like metal and wood. Even glass, which is a di�cult special case, because of its
partially liquid, partially solid nature, breaks more naturally with FEM. This
makes this solution superior to the others in terms of realism.

2.1.2.4 Breakable Constraints

In the Breakable Constraints method the breakable object is simulated by us-
ing a rigid body for each fragment. The rigid bodies are connected to their
neighbours with �xed constraints. The �xed constraint transfers any force or
torque applied to the one rigid body it connects to the other, making the two
rigid bodies act as one. These connections are then broken if an impact has a
impulse over a given threshold.

2.2 Existing Solutions 11

Fixed constraints in rigid body physics systems are not perfectly sti�, which
means that an object made out of small fragments connected by �xed con-
straints will bend and wobble on impact resulting in a soft body-like e�ect,
which can be desirable in some cases.

2.1.2.5 Breakable Composite Rigid Body

The Breakable Composite Rigid Body (BCRB) method is somewhat similar to
breakable constraints. In this method neighbouring fragments are also connected
and those connections are then broken on collisions. At runtime we calculate
impulse and propagate it through the object. If the impulse of the impact is
over a certain threshold, we weaken or break the a�ected connections. But the
BCRB approach di�ers because a cluster of connected fragment have only one
rigid body and only when a cluster of fragments or a single fragment breaks
free, then that cluster or fragment is given a rigid body.

Disconnected clusters are determined using a connected-component algorithm.
It should be noted that the inertia matrix should be appropriately updated when
new rigid bodies are created.

2.1.3 Dust and Debris

The methods described to this point are used to model and simulate the larger
coarse fragments, but when it comes to the smaller fragments it is more prac-
tical to use other solutions, because of the high number of fragments. [TIN09]
describes how to simulate and visualize small fragments and dust using particle
systems. The small fragments would be represented by individual particles and
dust could be represented by semi transparent particles, similar to those used
when visualizing smoke. Figure 2.7 shows destruction with dust and debris from
[TIN09].

2.2 Existing Solutions

The following are some commercially used destruction solutions for games:

12 Related Work

Figure 2.7: Destruction with dust and debris. Source: [TIN09]

2.2.1 PhysX Apex Destruction and Unreal Engine

Apex Destruction (Apex D) is an Apex Module for the PhysX physics engine,
which can be used to create dynamic destructible object in games engine sup-
porting the module [u0910]. Apex D is used in the Unreal Engine. Figure 2.8a
shows the in-game result of using Apex D. In Apex D artists use a tool called
PhysXLab to produce fragments from a source mesh using the slicing, cut-out
and voronoi methods shown in �gure 2.8b.

(a) Destructible stone slabs in Alice:

Madness Returns.
(b) Fragments of a wall segment in

PhysXLab.

Figure 2.8: Apex Destruction. Source: [u0910]

2.2.2 Geo-Mod

Geometry Modi�cation Technology or Geo-Mod is a destruction system devel-
oped for the Red Faction games by Volition[geo]. This was accomplished using
Real-time Booleans.

In the �rst two Red Faction games from 2001 and 2002 Geo-Mod allowed the

2.3 Discussions of Methods 13

player to alter level geometry using certain weapons. It is interesting to note
that in the �rst game virtually anything was destructible, which introduced is-
sues because players could blow up parts of the levels that they needed in order
to progress in the game, like staircases.

2.2.3 Digital Molecular Matter

Digital Molecular Matter or DMM is a physics engine developed by Pixelux
for producing realistic deformation and destruction for both movies and games
using FEM as described in [PO09]. DMM is used in the game Star Wars: The
Force Unleashed II as seen in �gure 2.9 and the movies Avatar and Prometheus.
When using DMM the developer assigns material properties to an object and
the object will react realistically to impacts based on those properties.

Figure 2.9: DDM Destruction in Star Wars: The Force Unleashed II. Source:
[PO09]

2.3 Discussions of Methods

Manually modelling fragments (including non-real-time boolean operations) pro-
vides highest degree of creative control, but is also very costly in terms of de-
veloper time, which makes it unattractive because developers who might use
this destruction system are unlikely to have an abundance of development time.
It is also not an academically interesting approach. Voronoi Shattering, Slic-
ing and convex decomposition each have various trade-o�s in terms of style.
Voronoi Shattering produces fragments that have a very distinct look that may

14 Related Work

be appropriate in some situations and not so in other. It also always produces
convex fragments, which is positive considering that in many physics engine,
including the one in Unity, only allow convex object to collide with each other.
Slicing does not necessarily produce convex fragments, but convex hulls can be
generated for the fragments and used for collision geometry. Slicing provides
a very high degree of creative control however, especially when combined with
the options of o�set, angular deviation, and slicing planes distorted with noise.
Convex decomposition breaks object into fragments in a very natural way, but
is hardly su�cient if not combined with another method.

Regarding simulation, FEM-based destruction produces the most physically cor-
rect results, but it requires an FEM-based physics engine, which Unity does not
have and building a physics engine equivalent to DMM from scratch is beyond
the scope of this project. BCRB or Breakable Constraints are better solutions
since they work well with rigid body physics engines. Real-time booleans is also
an interesting option, because it allow us to relatively easily build an entirely
destructible world, but frankly, it is not as visually impressive as a fragment-
based approach. The preshatter methods all attempt to simulate how the object
falls apart in some way, but Real-time booleans only allows you to punch holes
in the geometry, which makes it much less realistic.

2.3.1 Experiments in Unity

To properly determine which method is best suited for implementing in Unity
I produce experimental implementation and test them. Breakable Constraints
and BCRB are tested, because they both work within the constraints of a rigid
body physics engine, while making dynamic partial destruction system.

Unity supports �xed constraints in the form of a component called Fixed Joint.
To determine if this is appropriate for use in a destruction system, I created
a wall made out of cubes acting as fragments. Each cube is connected to its
neighbouring cubes with �xed joints.

The earlier mentioned bending side-e�ect of this e�ect, as seen in �gure 2.10,
proved to be too intense and too noticeable for this method to be used in the
destruction system.

Since the breakable constraints experiments proved the method to be unsat-
isfactory I conducted a second experiment where I created a simpli�ed imple-
mentation of the BCRB method. In this experiment I produced a wall made

2.3 Discussions of Methods 15

Figure 2.10: Cube Wall wobbling.

of cubes again, but this time they formed a compound collider with a single
rigid body. When the wall was hit, cubes would be released from the compound
collider and given their own rigid body.

With this method, there was no wobbling side e�ect, but the wall responded in
a strange way to collisions. It would for instance fall over far too slowly, com-
pared to a wall with the same shape and dimension using a single box collider.
The reason for this behaviour is that the compound colliders in Unity are not
intended to be made out of dozens, or even hundreds of primitive colliders. An
example of a compound collider can be seen in �gure 2.11, where a series of box
colliders are combined to imitate the shape of a helicopter.

Figure 2.11: A helicopter with a compound collider set up in Unity. Source:
[com]

The following chapter presents a destruction system for Unity based on the
experience and lessons gained from analysing and evaluating existing solutions.

16 Related Work

Chapter 3

Overall Design

In this chapter, I describe the overall design of the destruction system. Based
on the study of the related works and the experimental implementations, I have
created the following overall design for the destruction system.

The cause of the slow behaviour discovered in the BCRB experiment was that
the compound collider consisted of many concurrent collider and like many sim-
ilar physics engines Unity's PhysX-based physics engine handles collisions with
compound colliders by linearly iterating through the colliders that make out the
compound collider. This is a design choice of the creators of the physics engine,
which makes sense in terms of conventional use of compound colliders, because
compound colliders are usually made out of a few primitive colliders, but in this
case it causes performance to drop. To minimize the slow behaviour the amount
of concurrent primitive colliders that makes out the compound collider needs to
be reduced as much as possible in any given state.

3.1 Recursive Slicing and the Mesh Tree

The related works study showed that slicing is an e�ective way to produce
fragment geometry. It potentially allows a lot of creative control and options

18 Overall Design

for creating a wide range of styles of fragments. But we do not necessarily need
to implement it in the same fashion as in Apex D. Instead I propose slicing the
source mesh recursively, meaning that we �rst slice through the source mesh,
then we slice through each of the resulting meshes, then we slice through each
of those meshes and so forth as illustrated in �gure 3.1. This is repeated until
we have the desired number of fragments.

(a) Source object. (b) 1st iteration. (c) 2nd iteration. (d) 3rd iteration.

Figure 3.1: Recursive slicing.

This recursive slicing method is inspired by binary space partitioning, which is
a way of recursively subdividing space using hyperplanes. Theses subdivisions
can be organized into a BSP tree, which is a binary tree used to sort and search
spatially. Each node in a BSP tree represents a hyperplane, which divides
the space in two convex subspaces and each of its children represent one of
the subspaces. Similarly, we create a Mesh Tree in which we store the source
mesh in the root and each subdivision in a node as illustrated in �gure 3.2.
The leaves of the mesh tree are the fragments. Note that unlike a BSP tree,
which is always binary because it subdivides convex space, the mesh tree is not
necessarily binary since the shape it subdivides can be concave.

3.2 Simulation

In normal BCRB we cluster all the fragments together and under a single rigid
body, which means that if you have generated 100 fragments, then you will be
using 100 meshes for rendering and collision detection. However, by storing
the subdivided meshes of every iteration in the recursive slicing process, we can
build breakable objects with fewer concurrent meshes, by replacing certain com-
binations of meshes with single meshes, thus reducing the amount of concurrent
colliders in the compound collider.

In a collision, where a breakable object consist of an arbitrary combination
of fragments, we traverse the mesh tree and attempt to �nd meshes that can

3.2 Simulation 19

A1

A1

A1

A2 B2 C2

A2

C2

B2

A1

A2 B2 C2

A3 B3 C3 D3 E3 F3

A3
B3

c3

D3

E3

F3

Figure 3.2: Building the mesh tree.

20 Overall Design

replace those fragment combinations and still make out the exact same shapes.

This is accomplished in the following way. Each fragment has a reference to
a leaf node in the mesh tree. In a collision clusters of fragments are divided
from each other and once those clusters are determined, we take the leaf nodes
which the fragments clusters references to, traverse the mesh tree, and attempt
to �nd see if the combinations of leaf meshes can be replaced by fewer meshes.

For instance, lets say that our breakable object is completely unbroken. In this
case all the fragments are still included in the breakable object, therefore all the
leaves are still present in the tree, hence we can use the mesh of the root node
to represent the breakable object, which incidentally is the source mesh. So for
an unbroken breakable object we only use the source mesh.

Let us consider a di�erent example. In this case, the fragment E3 is broken
o� the object from �gure 3.2 as illustrated in �gure 3.3a and 3.3b where E3 is
now disconnected from the fragment cluster. Since a fragment is broken o�, we
traverse the mesh tree to see which mesh nodes we can use to make out our
remaining object. We need to use as few pieces as possible. We cannot use the
the root mesh, since its subtrees no longer have all their leaves, so we will have
to consider the children of the root node. The subtrees of A2 and B2 still have
all their leaves so we can use the meshes of A2 and B2 and we will not continue
to their children. C2 is missing a leaf in its subtree, so we have to continue to its
children which only has F3 remaining. F3 is a leaf so we use it. In this example
we only use 3 meshes for collision and rendering geometry instead of 5 which
would have been the case with normal BCRB as seen in �gure 3.3c.

A3
B3

c3

D3

E3

F3

E3

(a) .

A1

A2 B2 C2

A3 B3 C3 D3 F3

(b) .

A2B2

E3

F3

(c) .

Figure 3.3: Broken object with minimal meshes from mesh tree.

The following two chapters describe how fragments are modelled and how the
breakage simulation described in this chapter works in detail.

Chapter 4

Modelling Fragments

In this chapter, I describe how the geometry of the source mesh is processed to
produce fragments by recursive slicing and closing the resulting gaps.

The Mesh Tree is built by �rst assigning the source mesh in the root of the tree,
then starting a recursive process that slices the geometry of the nodes until
the desired number of fragments has been reached. Mesh slicing is achieved by
creating an empty meshes for each side of the plane, then sorting the triangles
from source mesh based on which side of the plane they are on. The triangles
intersecting the plane are split and those resulting triangle are sorted. After
that the polygons faces are generated to close the two meshes on either side of
the plane. Finally I check if the two meshes contain multiple hulls each, if so
I create meshes for containing each hull. Listing 4.1 shows pseudo code which
describes the process.

...

void BuildMeshTree(Mesh sourceMesh , int

numberOfFragments)

{

Instantiate the mesh tree and assign the source

mesh in the root;

SplitNode(meshTreeRoot);

22 Modelling Fragments

}

void SplitNode(meshTreeNode)

{

Instantiate random plane that goes through the

center of mass of the mesh in the input mesh

tree node;

Mesh[] slicedResultMeshes = SliceMesh(plane ,

meshTreeNode.mesh);

Create child node to the input node for each

slice result mesh;

foreach (Mesh in sliceResultMeshes)

{

if (number of fragments has not been reached)

{

SplitNode(chlidNode);

}

}

}

void SliceMesh(Plane , Mesh)

{

Triangles that do not intersect the plane are

sorted based on which side of the plane they

are on;

Triangles that do intersect the plane are split

into three triangles and sorted based on which

side of the plane they are on;

Faces are generated to cover gaps;

In case the slice results in more than two hulls ,

those hulls are separated so that they are

each contained in their own mesh;

return sliceResultMeshes;

}

...

Listing 4.1: Pseudo code for building the Mesh Tree

4.1 Unity Development in a Nutshell 23

4.1 Unity Development in a Nutshell

One of the advantages of working with a commercial game engine like Unity
is that it has useful tools and work�ows that can simplify the development
process. Unity has a component-based architecture, meaning that everything
the developer works with in Unity are game objects, which by default only has a
transform and the developer can add components to them to add functionality.
For instance, consider a developer wanting to create a box that can be a�ected
by physics. The developer would create an empty gameobject, add a mesh
�lter component, select a Cube mesh for that mesh�lter, add a mesh renderer
component, add a box collider component, and add a rigidbody component
as seen in �gure 4.1. Unity allows you to create your own components called
behaviour script, which can be written in C#, Boo or JavaScript. This is
how programming is done in Unity and this is how the destruction system is
implemented. Unity's scripting interface contain useful classes such as a Vector
class, a Transform class, a Plane class, a Mesh class and so forth.

Figure 4.1: A box in Unity.

In Unity all meshes are contained in instances of the Mesh class. The Mesh class
has an integer array called triangles which contains indices into other arrays
of various types in the Mesh class namely vertices, uv, normals, tangents
and colors. The triangles array is organized 3 by 3, so that the indices of the
�rst triangle are the �rst three indices in the the triangles array, the indices
of the second triangle are the next the three indices in triangles, and so forth.
Listing 4.2 shows a unity behaviour script that replace the mesh of a gameobject
with a single triangle.

24 Modelling Fragments

...

using UnityEngine;

using System.Collections;

public class example : MonoBehaviour

{

void Start()

{

Mesh mesh = new Mesh();

mesh.vertices = new Vector3 [] { new

Vector3 (0f, 0f, 0f), new Vector3 (1f, 0f,

0f), new Vector3 (0f, 1f, 0f) };

mesh.uv = new Vector2 [] { new Vector2 (0f,

0f), new Vector2 (1f, 0f), new Vector2 (0f,

1f) };

mesh.triangles = new int[] { 0, 1, 2 };

GetComponent <MeshFilter >().mesh = mesh;

}

}

...

Listing 4.2: A Unity script that replaces the mesh of a gameobject to a single
triangle.

Since there is no easy way of knowing how many triangles and vertices the subdi-
visions are going to have after the slice, I have created a class called MeshBuilder
that makes it possible to accumulate mesh data triangle by triangle using dy-
namic lists. When all the mesh data is accumulated MeshBuilder can output a
Mesh object.

4.2 Sorting and Splitting Triangles

[Ebe02] describes the process of slicing a mesh a plane in mathematical detail.

The �rst part of the process of splitting the mesh is to sort the triangles not
intersecting the plane based on which side of the plane that they are on and split
the ones that do intersect the plane. First we create two MeshBuilder objects;
one for each side of the plane. Then we iterate over all the the triangles. The
triangles, where all the vertices are on one side of the plane, are accumulated in
the mesh builders; if they are all on the negative side they go in the negative-

4.3 Triangulating Caps 25

side-mesh builder and if they are all on the positive side of the plane they go in
positive-side-mesh builder.

Whenever we encounter a triangle where one vertice is on the one side of the
plane and the other two are on the other side as illustrated in �gure 4.2a, then
that triangle is intersecting the plane and it needs to be spilt. This is achieved
by �rst determining which of the three vertices are alone and which are together.
The lonely vertex is denoted as S for single in �gure 4.2b and the two vertices
that are together are denoted as P0 and P1 for pair. The red line denotes the
plane. To �nd the two border vertices we perform a raytrace from S to P0 to
�nd B0 and from S to P1 to �nd B1. Normals and UVs are found through inter-
polation. Finally we produce new triangles as indicated in 4.2b with the same
orientation as the source triangle had and pass them to their respective mesh
builders. The B0-B1-edge is saved in a list, because we need it for triangulating
the cap polygon later on.

N

(a) Triangle intersecting the plane.

S

B0

B1

P0

P1

(b) A sliced triangle.

Figure 4.2: Slicing a triangle.

4.3 Triangulating Caps

At this point the mesh has been sliced into two new meshes which both have
gaps where they were sliced as seen in �gure 4.3a. To cover up these gaps
we need to generate polygons, which will be referred to as caps, which cap be
seen in �gure 4.3b. This is achieved by �rst linking the border edges that was
saved in the previous step together into planar straight-line graphs (PSLGs),
then passing them to a triangulator, which produces triangle polygons and then

26 Modelling Fragments

�nally passing those triangles to their respective mesh builders.

(a) A sliced cube without a cap. (b) A sliced cube with a cap.

Figure 4.3: Cap.

...

void TriangulateCap(BorderEdges)

{

Initiate list of VertexLoops;

while(List of border edges is not empty)

{

VertexLoops.Add(ExtractVertexLoop(BorderEdges));

}

Determine which vertex loops outline polygons and

which outline holes based their orientation

and accumulate them into a single PSLG;

Pass the PSLG to Triangle;

Add cap triangles on mesh;

}

...

Listing 4.3: Pseudo code for triangulating caps.

4.3 Triangulating Caps 27

4.3.1 Linking Border Edges

The �rst part of creating triangles for the gap is to organize the border edges
into a PSLG. If we are dealing with an arbitrary concave mesh then we may
have to produce multiple polygons. Those polygon may have holes in them and
there might even be smaller polygons within those holes. We have to anticipate
any con�guration of multiple polygons and holes if the fragment modeller is to
work with any arbitrary mesh. However, we have to disallow meshes that are
not watertight for the border edge linker to work. In conclusion border edges
might contain multiple loops of vertices, which needs to be extracted one at a
time.

Extracting a loop from the list of border edges is done as follows: Every edge
in the border edge list connects two vertices, which will be referred to as vertex
A and vertex B. An arbitrary edge (for instance the �rst edge) is chosen from
the border edge list. The one vertex, vertex A, which the edges connects, is
denoted as an endpoint and the other, vertex B, is added to a vertex loop list,
then we iterate through the list of border edges until we �nd an edge where its
vertex A matches the last vertex added to the vertex loop list. For the edge we
�nd, we add vertex B to the vertex loop list and remove it from the border edge
list. If the new vertex B matches the end point, the loop has been closed and it
is returned otherwise the border edges are iterated through again. The process
can be seen as pseudo code in listing 4.4.

Figure 4.4: A PSLG containing a small triagular polygon and a larger more
complex polygon with a hole.

...

VertexLoop ExtractVertexLoop(BorderEdges)

28 Modelling Fragments

{

Instantiate VertexLoop; // A list of vertices

// Each edge has a A and a B vertex.

EndPointVertex = BorderEdges [0].A;

VertexLoop.Add(BorderEdges [0].B);

BorderEdges.Remove(BorderEdges [0]);

do

{

foreach (Edge in BorderEdges)

{

if (VertexLoop.LastVertex == Edge.A)

{

VertexLoop.Add(Edge.B);

BorderEdges.Remove(Edge);

if (Edge.B == EndPointVertex)

{

return VertexLoop;

}

}

}

}

while (true);

}

...

Listing 4.4: Pseudo code for converting border edges to vertex loops.

If there is still border edges left in the list of border edges after linking edges,
then it means that there are still unlinked loops in the list of border edges and
linking process is repeated, so that those border edges are also converted to
vertex loops.

4.3.2 Creating the PSLG

Now that all the border edges have been linked together to form loops of vertices,
we have to determine which loops outline polygons, and which outline holes in
polygons and accumulate this data into a PSLG. Determining whether a loop

4.3 Triangulating Caps 29

of vertices is a polygon or hole outline is done by checking the orientation of the
loop around the slicing normal of the plane. The orientation of the polygon is
found by calculating the area of the polygon. For every edge in the given loop of
vertices, we create a triangle consisting of that edge, and an edge from each of
the two vertices to the origin in such a way that we preserve the orientation of the
edge between to loop vertices. These triangles are divided into two lists based
on their orientation relative to the plane normal. In �gure 4.5 the orientations
of the vertex loops in a PSLG can be seen. The hole has opposite orientation
of the polygons.

Figure 4.5: The orientation of vertex loops in the PSLG.

The area is calculated with the following formula:

A =

n−1∑
i=1

(
|Vi × Vi+1|

2
)−

n−1∑
j=1

(
|Vj × Vj+1|

2
) (4.1)

The polygon area A is found by taking the sum of the areas of the triangles that
are oriented counter clockwise around the slicing plane normal and subtracting
the sum of the areas of the triangles that are oriented clockwise around the
slicing plane normal. The point in calculating the polygon area in this way is
that if we are on the positive side of the slicing plane, the area will be positive
if the loop vertices outline a polygon and negative if they outline a hole. On
the negative side of the plane, it is reversed so that the area will be negative
if the loop vertices outline a polygon and negative if they outline a hole. So
essentially this way we determine whether a vertex loop outlines a polygon or a
hole.

30 Modelling Fragments

4.3.3 Triangulation

Now that we know which loops outline holes and which outline polygons, they
are accumulated into a single PSLG, which can be used for triangulation. Since
the PSLGs that are produced in the previous step can potentially be very com-
plex, considering that they can contain multiple polygons, holes in polygons,
polygons within holes in polygons, and worse, we need a fairly advanced trian-
gulation algorithm. Constrained Delaunay Triangulation [Che89] (CDT) trian-
gulates with constraints given in the form of a PSLG containing vertices and
line segments as seen in �gure 4.6. CDT ful�lls the requirements, but during the
development of the fragment modeler it was assessed that implementing CDT
from scratch for Unity would take too long and there did not already exist such
an implementation. Instead it was decided that Triangle [She96], a 2D mesh
generator and CDT-based triangulator, would be used for triangulation.

(a) An input PSLG. (b) CDT output.

Figure 4.6: Constrained Delaunay Triangulation.

To use Triangle I have written a Triangle interface for Unity. The Triangle
interface works in the following way: First it produces a .poly �le, which is the
format that Triangle uses to represent PSLGs. A .poly �le also needs to contain
a point within each hole which Triangle uses to eat away triangles, spreading out
from each hole, point until its progress is blocked by PSLG segments. Finding
this point is achieved by choosing a random point within the bounds of the hole.
If that point is within the hole but not within any polygons in the hole then that

4.3 Triangulating Caps 31

point is chosen, otherwise we choose a new random point and repeat the check.
After the .poly has been produced, Triangle is executed with the .poly �les as
input. Triangle uses CDT on the PSLG and outputs a .poly containing vertices
and a .ele �les which contains references to the vertices in the .poly �le 3-by-3
representing triangles. This data is then read from those �les and returned.
Pseudo code for the process can be seen in listing 4.6. The triangulated result
of the PSLG illustrated in �gure 4.4 can be seen in �gure 4.7.

Figure 4.7: The triangulation result of the polygon.

...

void Triangulate(PSLG)

{

Write a .poly containing the PSLG information;

Execute Triangle on the .poly file;

Read the output , an .ele and an .poly file , from

Triangle;

return newTriangles;

}

...

Listing 4.5: Pseudo code

Since the output of the triangulation is two-dimensional it is ideal for texture
coordinates for the new vertices. Normals are simply perpendicular to the slice
plane.

32 Modelling Fragments

After Triangle has generated the cap triangles, they are added to the fragment
mesh.

4.4 Separating Hulls

In some cases a slice may result in more than one hull in the generated meshes.
In that case the mesh has to divided into more meshes so that each hull is
contained within its own mesh. This is achieved by creating a list with all the
unvisited triangles; initially this contains all the triangles. Then we create a list
of hulls which initially just contains one random triangle from unhulled. That
triangle is removed from unhulled. Then we visit all the unhulled triangles and
add them to the hull if they have a vertex in common with that hull. We keep
repeating that step until the number of triangle in that hull does not grow any
more. Then if there are still unhulled triangles we repeat the process.

...

Mesh[] SeperateHulls(mesh)

{

unhulledTriangles = All triangles from the input

mesh;

hulls;

while (unhulled still contains triangles)

{

hull.Add(random triangle from

unhulledTriangles);

That triangle is removed from

unhulledTriangles;

do {

foreach (triangle in unhulledTriangles)

{

if (triangle has a vertex in common

with a triangle in hull)

{

hull.Add(random triangle from

unhulledTriangles);

That triangle is removed from

unhulledTriangles;

}

}

}

while(the number of triangles in hull has

been increased)

4.5 Editor 33

hulls.Add(hull);

}

return hulls;

}

...

Listing 4.6: Pseudo code

That concludes how the the meshes are split and how the mesh tree is generated.
To preview the result of modelling fragments for a mesh the editor is used.

4.5 Editor

The editor is a tool that is intended for designers to experiment with di�erent
con�gurations for a mesh and preview the resulting fragments. The setting
that can be con�gured are, number of fragments, seed for random function and
internal texture scaling as seen in �gure 4.8. To use the editor, the developer
goes into the a special unity scene. Here there is a game object where the
developer can choose a mesh and fracturing parameters, press play and preview
the results.

Figure 4.8: Previewing a stone slab split into 256 fragments in the editor.

The following chapter describes how the Mesh Tree and fragments are used to
simulate breakage.

34 Modelling Fragments

Chapter 5

Simulation

In this chapter, I describe how the breakable objects are simulated. The pur-
pose of the destruction simulation is to ensure that breakable objects responds
to collisions in a natural way, that partial destruction is possible, that clusters
of fragments can act independently if disconnected from each other, and that
inertia and mass are correctly maintained for fragments, or clusters of fragments.

Simulation is achieved by using the Breakable Composite Rigid Bodies (BCRB)
method, with the added complexity of using the mesh tree to reduce the con-
current number of meshes in a breakable object as described in chapter 3. This
chapter elaborates on how this works.

5.1 Initial Setup

As explained in section 2.1.2.5 neighbouring fragments in BCRB are connected
and those connections are broken or weakened when the breakable object collides
with other objects. When those connections are broken, we use connected com-
ponent analysis to determine disconnected parts for which we set up new rigid
bodies. The connected parts will be referred to as BCRB Graphs, in which frag-
ments will be represented as BCRB Nodes and the connections between them
as BCRB Edges.

36 Simulation

Ideally, only nodes with overlapping faces should be connected in the initial
graph, i.e. fragments should only be connected to other fragments that they
touch, but Unity does not allow manual collision detection in a preparation
step. Instead, we can compare bounding boxes for each fragment mesh; if the
bounding boxes of two fragment meshes overlap, we create a connection between
them.

When a breakable object is initially set up the developer has a series of options
that makes it possible to tweak the destruction to imitate material properties.
These include, density, frailty, discrete or non-discrete connections and convex
or concave colliders.

5.2 Collision

Unity allows developers to execute code at collision events in behaviour compo-
nents. This is used to run the destruction simulation.

5.2.1 Damage Calculation

When a breakable object collides with another object, we calculate the impulse
of that collision. If the impulse is above a certain threshold, we iterate through
the edges of the graph and calculate damage based on distance between the
collision contact point and the middle of the edge.

p = m1v1 +m2v2 (5.1)

p is the impulse, m1 is the mass of the destructible object, v1 is the velocity of
the destructible object, m2 is the mass of the colliding object, v2 is the velocity
of the colliding object.

damage = f ∗ 1

s3
∗ p (5.2)

f is the frailty factor, s distance between the collision contact point and the edge.

5.2 Collision 37

A result is calculated from each edge and withdrawn from its hit points. The
purpose of this formula is to produce high values for edges in close proximity to
the collision contact point, and smaller values as distance increases, so damage
becomes very local to the collision contact point. Figure 5.1 shows how the
BRCB graph is used to determine broken o� pieces.

(a) Initial Setup.
(b) Edges broken at coll-

sion.

(c) Resulting fragment

clusters.

Figure 5.1: BCRB.

There are two di�erent options for the destruction simulation; Discrete and
non-discrete. If the non-discrete option is chosen, the edges can be partially
damaged. The calculated damage is subtracted from the hit points of the edge
and if those hit points surpass zero the edge is broken. If the discrete option
is chosen, the edges are either entirely broken or not at all; the edge can not
be partially damaged. The purpose of these two options is to provide more
creative control to the developer, since the two di�erent options produce vastly
di�erent behaviour. Non-discrete connection makes it possible to accumulate
damage over multiple hits. Consider for instance a coconut. Hitting it once
with a hammer might not necessarily crack it, but its shell will be weakened
and more likely to break when hit again. And discrete connection are used for
breakable objects that do not accumulate damage, like stone. It either breaks
when hit, or it does not, and is not more likely to do so when hit again.

If an edge is broken we recompute connectivity of the graph by using a Union-
Find algorithm [THCS11].

...

BCRBGraph [] RecomputeConnectivity ()

{

For each node in the graph a list is created

containing only that node;

foreach (edge in originalGraph)

{

38 Simulation

Merge graphs that contain the two nodes the

edge connects;

}

return graphs;

}

...

Listing 5.1: Pseudo code for performing connected component analysis.

If the algorithm returns more than one connected component we will know that
the breakable object is broken, and we set up a new breakable object for each
connected component.

5.2.2 Using the Mesh Tree to Compute Minimal Meshes

If breakage occurs we need to setup a new gameobject for each connected com-
ponent and we need to �nd the minimal number of meshes from the mesh tree.
This is done by taking the graph nodes for each connected component which
each have references to a mesh tree leaf and �nding the meshes with the following
algorithm.

...

Mesh[] GetMinimalMeshes(MeshTreeNode []

connectedComponentMeshTreeLeaves)

{

Mesh[] meshesToBeReturned;

Iterate through the mesh tree breadth first

{

if (all the leaves of the subtree of the mesh

tree node we are currently visiting

contains all the

connectedComponentMeshTreeLeaves)

{

Add the mesh of the mesh tree node we are

currently visiting to meshes to be

returned;

Do not visit the children of the node we

are currently visiting;

}

else

5.2 Collision 39

{

Visit the children of the node we are

currently visiting;

}

}

return meshesToBeReturned;

}

...

Listing 5.2: Pseudo code for performing connected component analysis.

From the returned meshes we form a compound collider and attach it to the
game object of the connected component. Note that those meshes are also used
for rendering.

5.2.3 Inertia and Mass

We pass the velocity and angular velocity from the destroyed object to the rigid
bodies of the resulting pieces. Mass is calculated by the physics system based
on a density parameter passed as an option at setup.

5.2.4 Convex Hull Generation for Convex Colliders

Concave colliders cannot collide with each other in unity, but Unity can generate
a convex hull for a concave mesh and use that for collision instead. Unfortunately
this feature is buggy and will produce an error if the convex hull it generates
has more than 255 triangles, whereas it should always generate a hull of 255
triangles or less. To circumvent this bug, we choose 32 random triangles from
the mesh for which we want to create a convex hull, create a new mesh with
those triangles and use that to generate a convex hull. Unity's convex hull
generator will always produce a hull with 255 triangles or less, if the input mesh
has 32 triangles. The generated hull will be a highly simpli�ed version of the
original, but it is mostly appropriate for collisions. If the convex colliders option
is checked, the method is used to generate convex collider meshes for each mesh
in the mesh tree.

That concludes how the destruction system works. The following chapter ex-
plores how well it actually works and what its limitations are, by exposing it to
a series of test.

40 Simulation

Chapter 6

Tests and Results

In this chapter I investigate how well the destruction system performs and what
its limitations are by setting up tests and analysing the yielded results.

6.1 Test Setup

The machine I am running the tests on has the technical speci�cations in table
6.1.

Processor: Dual Core AMD Opterontm Processor 180 2.40 GHz
Ram: 4.00 GB

Graphics Card: NVIDIA GeForce GTX 260
OS: Windows 8 Pro 64-bit

Unity Version: 4.0.0f7

Table 6.1: Technical speci�cations of the testing machine.

42 Tests and Results

6.2 Testing Fragment Generation

These tests determine various performance aspects of the fragment modeller.

6.2.1 Speed

The purpose of the test is to determine how long it takes for the fragment
modeller to produce a given number of fragments. Speed is not essential for the
destruction system to work, but it may in�uence the work�ow of the developer
when using the editor to experiment with the settings of the fragment modeller,
because the process has to start over every time a parameter is changed. The
test is executed on a cube and the results can be seen in �gure 6.1.

20

40

60

80

100

120

140

160

180

100 200 300 400 500 600 700 800 900 1000

Seconds

Number of fragments

Figure 6.1: Time measurement of generating fragments compared to number
of fragments.

6.2 Testing Fragment Generation 43

6.2.2 Meshes

In this test the fragments modeller is used on di�erent meshes of various geo-
metric complexity namely a cube (24 verts, 12 tris), a torus (441 verts, 800 tris),
a hollow egg shell (878 verts, 1520 tris), and a Stanford Bunny (2545 verts, 5002
tris). In all cases the mesh is split into 256 fragments.

(a) Box. (b) Torus.

(c) Egg Shell. (d) Stanford Bunny.

Figure 6.2: Various concave meshes slice into 256 fragments.

In all cases the fragment modeller successfully produces fragments. Though
there is a noticeable issue, for meshes that have protrusions such as the bunny,
the fragment modeller has a tendency to produce clusters of very small frag-
ments, instead creating more even sized fragments.

6.2.3 Possible Number of Fragments

The purpose of this test is to determine how far the fragment modeller can be
pushed in terms of maximum number fragments. By incrementing the number

44 Tests and Results

of fragments by the power of two, the maximum number of fragments can be
approximated.

The fragment modeller was executed on a cube and started producing errors
at 2048 fragments. It the edge linker in the cap triangulator that stops working
at this point, because Unity has a tendency to produce �oating point errors and
when the fragments get too small Unity cannot properly compare vectors, due
to these errors. This makes linking the border edges impossible.

6.3 Testing Runtime Simulation

These tests determine the performance of the breakage simulation.

6.3.1 Possible Number of Fragments

In this test, the number of fragments is increased by the power of two until the
lags at collisions become noticeable. The test was executed on a cube.

The lags started becoming slightly noticeable at 64 fragments and the result can
be seen in �gure 6.3 in Unity's Pro�ler where the a collision event is marked.

Figure 6.3: Pro�ler at collision.

The pro�ler shows that the main lag is mainly caused by two things: Setting
up the new colliders and rebuilding edges when determining connected parts.

6.3 Testing Runtime Simulation 45

The �nal result of the destruction system in use can be seen in �gure 6.4 which
shows a wall segment and an eggshell after being partially destroyed. In both
cases the objects consist of 32 fragments. In these cases the destruction is fully
functional.

(a) A partially destroyed stone wall. (b) A partially destroyed eggshell.

Figure 6.4: The destruction system in action.

The following �nal chapter re�ect on the accomplishments of this project and
on the results derived from this chapter. It also describes how the destruction
system can be further improved.

46 Tests and Results

Chapter 7

Conclusions

In this chapter, I re�ect on the process and the results and speculate on what
could been done di�erently, and how it can be improved if given more develop-
ment time.

This thesis started with a proposal for making dynamic destruction a more
accessible feature to game developers making low-budget games in a fast and
easy way. In doing so the potential production value of these low-budget games
could be raised. By implementing a destruction system in the Unity game
engine, which is highly used among low-budget game developers, the target au-
dience could be reached. Before I started developing the destruction system,
I conducted a study of related works to determine what kinds of solutions al-
ready existed. I discovered how they worked I attempted to determine if I could
build my solution on the work of these other solutions. In the study of the
related works it was found that a great deal of solutions already existed and
that it was both possible and appropriate to reuse some of that technology to
accomplish the goal of this thesis. Based on the research and experimental im-
plementation of some of the existing methods, it was concluded that Breakable
Composite Rigid Bodies (BCRB) was the best suited simulation method when
combined with generating fragment geometry by recursively slicing the source
mesh. BCRB worked well within the constraint of Unity's rigid body physics en-
gine and made dynamic and partial destruction possible. The purpose of slicing
the source mesh recursively was to build a Mesh Tree, which made it possi-

48 Conclusions

ble to reduce the number of concurrent meshes that represented the breakable
object, thus reducing physics engine performance issues. A fragment modeller
was implemented to recursively slice an object to produce fragments by dividing
meshes along planes, and generating polygon faces to close the sliced meshes.
BCRB was implemented to simulate how the fragments would fall apart and
the mesh tree was used to reduce the concurrent number of meshes that made
out the breakable object. Once the destruction system was completed, vari-
ous formal tests were executed to determine how well the solution worked and
what its limits were. Most signi�cantly it was found that on the test platform,
the destruction worked seamlessly until with 32 or less fragments per breakable
object. At 64 fragments the system produced noticable performance spikes at
collisions, which were mainly caused by having to set up the colliders and by
having to rebuild the edges in a graph used in the BCRB simulation.

7.1 Discussion

The goal of this thesis was to create a destruction system that would be easy for
developers to use, and that would work within the constraint of Unity. That goal
has been reached. Game developers can use this system to create destructible
objects within their games by taking object that they want to be destructible
into an editor an experiment with the parameters to get the desired result, then
add a component to the object in the game with those same parameters.

The most signi�cant hindsight in this project has been that slicing a mesh was
more troublesome than anticipated. The biggest problem when developing the
mesh slicer, was closing the mesh after the were sliced, because none of the exist-
ing triangulator made for Unity were able to triangulate the complex polygons
needed. Another major problem in the development process was that Unity
had a tendency to produce �oating point errors when dealing with vectors and
Unity's vector comparison appeared to be relatively impressive. These problems
made it apparent that Unity is not well suited for complex geometry processing.
So in hindsight the editor should have been developed independently of Unity
and results should have been exported in a way that could then imported into
Unity.

7.2 Further Development

If given more development time the following implementations could improve
the destruction system.

7.2 Further Development 49

• Having to rebuild BCRB graph edges causes about half of the perfor-
mance drop on breakage. This could be solved by preserving edges when
determining connected components.

• The convex hull generation that was used in this project can potentially
produce convex hulls that do correspond well to the source mesh, because
the triangles used for it are chosen at random. A better way of creating an
approximated convex hull could be to generate a discrete oriented polytope
(k-DOP).

• Generating the Mesh Tree for a single object can easily take multiple
minutes. It the current state of the destruction systems, this has to be
done every time the game loads, which is unfortunate. This could however
be circumvented by having the editor serialize the mesh tree for a given
set of parameters. The mesh tree could then be loaded when the game
loads, thus greatly reducing game loading time.

• Add particle systems for dust and debris.

• Make it possible to make alternate internal texturing.

• Preserve tangents. The slicer only preserves texture coordinates and nor-
mals in its current state.

• Better initial connections generation, so only truly neighbouring fragments
are connected by fragments.

• Saving references to vertices instead of the vertices themselves makes it
possible to avoid comparing vertices.

Ultimately if this further development was conducted, the quality of the de-
struction system could be raised to a point where it could be submitted to the
Unity's asset distribution system, thus making it accessible to a great mass of
game developers.

50 Conclusions

Appendix A

User Manual

This appendix describes how to use the destruction system in Unity.

A.1 Editor

To preview how the fragments for a given object is going to look given a certain
set of parameters, the developer must do the following: Open the Editor scene,
which contains a lit room, a camera with Maya-like controls and the preview
object. The preview object has a mesh �lter, a mesh renderer and a spilteditor
component attached. The developer chooses the mesh he/she wants to preview
by changing the mesh in the mesh �lter. The spilteditor has several parameters
as seen in �gure A.1, which the developer can experiment with to �nd the desired
fragments composition.

To preview the e�ects the developer must press the play button, and the frag-
ments will be procedurally modelled. Once it is done modelling the fragments,
the developer can rotate the camera around the object by holding the ALT-
key, left mouse button and move the mouse. To zoom the developer holds the
ALT-key, right mouse button and moves the mouse left and right. To take
the fragments apart the developer holds the SHIFT-key, left mouse button and
moves the mouse left and right.

52 User Manual

Figure A.1: The editor component.

A.2 Prepper

Once the developer settles on a certain set of parameters, he/she goes to a
game scene and attaches the prepper component to the object that is to be
made breakable. The parameters of the prepper can be seen in �gure A.2. The
developer copies the parameters from the editor to the prepper and must also
choose frailty and density. The prepper prepares the object when the game is
loaded to make it destructible.

Figure A.2: The prepper component.

Once these steps have been performed the object is ready to be destroyed in the
game.

Bibliography

[BNT90] John Amanatides Bruce Naylor and William Thibaultf. Merging bsp
trees yields polyhedral set operations. In SIGGRAPH '90 Proceedings
of the 17th annual conference on Computer graphics and interactive
techniques, pages 115�124, August 1990.

[Che89] L. Paul Chew. Constrained delaunay triangulations. volume 4, pages
97�108, 1989.

[com] Creating gameobjects with multiple colliders [image heavy].
http://forum.unity3d.com/threads/123811-Creating-gameobjects-
with-multiple-colliders-image-heavy.

[Cou11] Erwin Coumans. Overview of destruction and dynamic methods.
Presented at Siggraph 2011, 2011.

[Cou12] Erwin Coumans. Destruction. http://www.altdevblogaday.com/2011/09/02/destruction/,
September 2012.

[Ebe02] David Eberly. Clipping a mesh against a plane, February 2002.

[Est11] Jose Miguel Esteve. Voronoi shattering.
http://www.joesfer.com/?p=60, March 2011.

[geo] Geo-mod. http://redfaction.wikia.com/wiki/Geo-Mod.

[Led07] Hugo Ledoux. Computing the 3d voronoi diagram robustly: An
easy explanation. In ISVD '07 Proceedings of the 4th International
Symposium on Voronoi Diagrams in Science and Engineering, pages
117�129, April 2007.

54 BIBLIOGRAPHY

[MG09] Khaled Mamou and Faouzi Ghorbel. A simple and e�cient approach
for 3d mesh approximate convex decomposition. In Image Processing
(ICIP), 2009 16th IEEE International Conference, pages 3501�3504,
November 2009.

[PO09] Eric G. Parker and James F. O'Brien. Real-time deformation and
fracture in a game environment. In SCA '09 Proceedings of the 2009
ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 165�175, 2009.

[She96] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality
mesh generator and delaunay triangulator. volume 1148, pages 203�
222, 1996.

[THCS11] Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson and Clif-
ford Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2011.

[TIN09] Henry Johan Takashi Imagire and Tomoyuki Nishita. A fast method
for simulating destruction and the generated dust and debris. In
The Visual Computer: International Journal of Computer Graphics,
volume 25, pages 719�727, April 2009.

[u0910] Apex destruction. http://physxinfo.com/wiki/APEX_Destruction,
August 2010.

	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Project Description
	1.2 Goal

	2 Related Work
	2.1 Comparison of Methods
	2.1.1 Geometry Preparation
	2.1.2 Runtime Destruction
	2.1.3 Dust and Debris

	2.2 Existing Solutions
	2.2.1 PhysX Apex Destruction and Unreal Engine
	2.2.2 Geo-Mod
	2.2.3 Digital Molecular Matter

	2.3 Discussions of Methods
	2.3.1 Experiments in Unity

	3 Overall Design
	3.1 Recursive Slicing and the Mesh Tree
	3.2 Simulation

	4 Modelling Fragments
	4.1 Unity Development in a Nutshell
	4.2 Sorting and Splitting Triangles
	4.3 Triangulating Caps
	4.3.1 Linking Border Edges
	4.3.2 Creating the PSLG
	4.3.3 Triangulation

	4.4 Separating Hulls
	4.5 Editor

	5 Simulation
	5.1 Initial Setup
	5.2 Collision
	5.2.1 Damage Calculation
	5.2.2 Using the Mesh Tree to Compute Minimal Meshes
	5.2.3 Inertia and Mass
	5.2.4 Convex Hull Generation for Convex Colliders

	6 Tests and Results
	6.1 Test Setup
	6.2 Testing Fragment Generation
	6.2.1 Speed
	6.2.2 Meshes
	6.2.3 Possible Number of Fragments

	6.3 Testing Runtime Simulation
	6.3.1 Possible Number of Fragments

	7 Conclusions
	7.1 Discussion
	7.2 Further Development

	A User Manual
	A.1 Editor
	A.2 Prepper

	Bibliography

