
Conditional Epistemic Planning

Mads Krogsgaard Pico Jensen

Kongens Lyngby 2013
IMM-M.Sc.-2013-27

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2013-27

Summary (English)

Dynamic epistemic logic reasons about higher-order knowledge in multi-agent
systems, and has shown promise as a framework for use in automated planning.
Using dynamic epistemic logic in automated planning allows for capturing of
partial-observability and non-determinism, making it an highly expressive com-
bination. This thesis is based on the later work within this field by Andersen,
Bolander, and Jensen [1], wherein a planning algorithm is proposed for find-
ing strong and weak plans in a single-agent setting. Their planning algorithm
takes the internal view of the agent, necessary for developing planners for use
in autonomous agents.

The main contribution made by this thesis is a planning algorithm for finding
strong cyclic and weak plans in a multi-agent setting with one acting agent using
dynamic epistemic logic. The algorithm takes the internal perspective of the
acting agent, thereby making it the planning agent. The planning algorithm
is shown to be both sound and complete, and the work is completed by an
implementation of the proposed planning algorithm.

ii

Summary (Danish)

Dynamiske epistemiske logik giver mulighed for at ræsonnere om højere ordens
viden i multi-agent systemer, og har vist potentiale til bruge i automatiseret
planlægning. Automatiseret planlægning der gør brug af dynamisk epistemisk
logik kan indfange delvis-observerbarhed og ikke-determinisme, hvilket gør det
til en yderst udtryksfuld kombination. Denne afhandling er baseret på det senere
arbejde af Andersen, Bolander, og Jensen [1] inden for dette område, hvori de
viser en planlægningsalgoritme der kan finde stærke og svage planer i et system
med én agent. Planlægningens algoritmen planlægger med perspektivet fra agen-
ten, hvilket er nødvendigt hvis målet er at udvikle planlæggere til anvendelse i
autonome agenter.

Hovedbidraget i denne afhandling er en planlægningsalgoritme til at finde stærk-
cykliske og svage planer i et multi-agent system, med én handlende agent ved
bruge af dynamisk epistemisk logik. Algoritmen tager det interne perspektiv
af den handlende agent, og gør derved agenten til den planlæggende agent.
Planlægningens algoritmen er vist både sund og fuldstændige, og arbejdet er
afsluttet med en implementation af algoritmen.

iv

Preface

This thesis was prepared at the department of Informatics and Mathemati-
cal Modeling at the Technical University of Denmark from October 2012 to
April 2013 under supervision of associate professor Thomas Bolander and PhD-
student Mikkel Birkegaard Andersen. It has an assigned workload of 35 ECTS
credits.

Acknowledgements. I would like to thank both of my supervisors for their
help and advice during the completion of the thesis.

Mads Krogsgaard Pico Jensen

Kgs. Lyngby, April 2013

vi

Contents

Summary (English) i

Summary (Danish) iii

Preface v

1 Introduction 1

2 Dynamic Epistemic Logic 5
2.1 The Prisoner and the Guard . 5
2.2 Modeling the State of Affairs . 6
2.3 Changing the State of Affairs . 9
2.4 Planning with Dynamic Epistemic Logic 12
2.5 Discussion . 19

3 Plans and Planning Problems 21
3.1 Planning problem and domain . 22
3.2 Solution types . 23
3.3 Conditional Plans . 24
3.4 Discussion . 27

4 Planning 29
4.1 Plan Synthesis . 29
4.2 Discussion . 35

5 Soundness and Completeness 37
5.1 Proofs . 37
5.2 Discussion . 42

viii CONTENTS

6 Implementation 43
6.1 Related work . 43
6.2 Choice of technology . 44
6.3 System Description . 44
6.4 Discussion . 52

7 Conclusion 53

8 Appendix 55

Bibliography 55

Chapter 1

Introduction

The field artificial intelligence within computer science is the study of intelligent
(or rational) agents. An agent is one who perceives its environment and acts
upon it, and a rational agent acts so as to achieve the best outcome or, when
there is uncertainty, the best expected outcome [11].

Automated planning is a subfield within artificial intelligence concerned with
reasoning about actions. One purpose of automated planning is to enable agents
to behave rationally by reasoning about their actions prior to acting. The com-
plexity of this reasoning depends on the environment that the agent is situated
in and the goal it must accomplish. Non-classical planning deals with environ-
ments that resemble realistic (real life) environment. Such environments may
contain multiple acting agents, acts whose precise outcome cannot be known
(non-determinism), and agents with only partial-knowledge about the state of
the environment (partial-observability).

When presented with uncertainty a course of action for achieving a goal is not
necessarily a sequence of actions, but a conditional plan that specifics what to
do depending on what percepts are received from the environment. If an act
can have two possible outcomes, a conditional plan can specific different course
of action for each. When the actual outcome of the act is known, the agent can
continue with the appropriate course of action.

2 Introduction

Research within non-classical planning includes autonomous agents that do not
require complete knowledge of their environment, but can reason about how
to gain any missing knowledge necessary to achieve their goal. The concept is
illustrated in the following example.

Example 1.1. Bob is on his way to a surprise birthday party for Alice at her
place, when he suddenly realize that he has left Alice’s address at home. Bob
does not have time to go back and get it, but he is not concerned because he
knows he can call Jack to get the address.

Bob is in a situation where he must know the address of Alice to achieve his goal,
and so he plans a course of action for obtaining this missing piece of information.
The scenario and line of reasoning is normal in everyday life and something that
can be expected of a rational agent.

For Bob to reason as he did, he must not only have knowledge about the state
of the environment, he must also have knowledge about what Jack knows. This
type of knowledge is called higher-order knowledge and plays an important role
in human interaction, which is the motivation behind in-cooperating it into
a rational agent. One of the promising logical frameworks for modeling and
capturing higher-order knowledge is dynamic epistemic logic (DEL).

Motivation

The motivation behind this thesis is to build upon some of the recent work
done with combining automated planning with dynamic epistemic logic [1][3][2].
The work shows dynamic epistemic logic as a solid foundation for automated
planning within an partial-observability and non-determinism environment.

Outline of this thesis

Chapter 2 introduces the elements of dynamic epistemic logic used in this thesis
and cast them in a planning setting.

Chapter 3 defines the epistemic planning problem for planning using dynamic
epistemic logic, the solutions types for it, and how plans are represented.

Chapter 4 introduces and defines the proposed planning algorithm, and describes
how it differs from the one proposed by Andersen, Bolander, and Jensen [1].

Chapter 5 contains the proofs for soundness and completeness of the planning
algorithm.

Chapter 6 describes the implementation of the planning algorithm.

3

Chapter 7 concludes upon the work done in this thesis.

Resources

The main resources for each chapter will be noted in the introduction for the
chapter. If a statement (definitions, theorems, lemmas, and examples) is not
the work of this thesis, then an [X] showing the bibliographic reference to the
source will be contained withing the name of the statement.

Notation

The thesis makes use the following notations

AND/OR–
graph

An AND/OR-graph G is defined by G = (V,E), where V is the
nodes in G composed of the OR-nodes VOR and AND-nodes VAND.
E is the edges connecting nodes.

Path A path n→G m in a graph G (or just n→ m if G is clear from the
context) leads from the node n to the node m using a single edge.
The path n1 →∗ nk leads from node n to nk, such that n1 → n2 →
... → nk, and the nodes in the path are the set {n1, n2, ..., nk}. A
path is non-cyclic e.g. no nodes is visited twice.

Subgraph A subgraph Gn at node n in G is a graph where the node n and
all nodes m for which there exists a path n→∗G m are in.

Partial
subgraph

A partial subgraph H of G is a graph whose nodes are a subset
of that of G, and whose edges are connected such that if a path
n→∗H m exist, then the same path exists in G.

Depth The depth of a node m with respect to a node n is defined as the
longest path from n to m.

Height The height of a node n is the longest path from n to a leaf node.

4 Introduction

Chapter 2

Dynamic Epistemic Logic

This chapter introduces the part of dynamic epistemic logic used throughout
the thesis. The main resources for the chapter are [1], [3], and [6], and most
of the definitions in this chapter are from these. The only contribution made
in this chapter is that of internal states in a multi-agent setting. The concept
is defined by Andersen, Bolander, and Jensen [1] for the single-agent setting,
but it has been necessary to extend it for the multi-agent setting in the later
planning.

The chapter first introduces a toy example The Prisoner and the Guard, which
will be used through out the thesis to illustrate the different concepts as they
are introduced.

2.1 The Prisoner and the Guard

Example 2.1 (The Prisoner and the Guard). The prisoner has just
arrived to the county prison, and is going to spend some time there for his
crimes. However, the prisoner has, using his lock picking skills, been able to
unlock the cell door, and is now planning his escape. The prisoner knows from
previous visits that from his cell he only needs to get to the door at the end of
the hallway, which is known never to be locked, and behind it lies freedom.

6 Dynamic Epistemic Logic

There is only one problem, the guard is watching the exit.

Right now, the guard is facing the exit, and the proposition f will be used to
denote this fact. The prisoner can still make a run for the outer door, and is
sure to escape, denoted e, if he does so. However, the prisoner knows that if
the guard knows he has escaped, then he will not be free for long before being
recaptured. The prisoner therefor considers two options before running for the
exit.

The first is to try and harass the guard until he gets annoyed and goes for a
donut.

The second option is to bribe the guard. It is well known that some guards are
corrupt and can be bribed to look the other way, but whether this particular guard
is corrupt or not is unknown to the prisoner. In the following, c will be used to
denote that the guard is corrupt, and b to the denote that the guard has accepted
a bribe.

The symbol g is used for the guard and p for the prisoner. For the prisoner to
successfully escape (with a chance to stay free), he must either escape without
the guard knowing, or escape after having bribed the guard.

2.2 Modeling the State of Affairs

2.2.1 Epistemic Language

The following will introduce the language of multi-agent epistemic logic.

Definition 2.1 (Epistemic Language [3]). Let P be a finite set of propo-
sitional symbols, and A a finite set of agents. The language of multi-agent
epistemic logic LK(P,A) on (P,A) is the formulas generated by the following
BNF:

φ ::= > | p | ¬φ | φ ∧ φ | Kiφ

where > is the truth symbol, p ∈ P, i ∈ A, φ is an epistemic formula, and the
Kiφ is the knowledge operator that should be read as: agent i knows the formula
φ holds.

Given the definition above, the goal φp of the prisoner, with P = {b, c, e, f} and
A = {g, p}, can be expressed by the epistemic formula

φp = e ∧ (b ∨ ¬Kge). (2.1)

2.2 Modeling the State of Affairs 7

(w1) : ebfd (w2) : ebfd

(w3) : ebfd (w4) : ebfd

M0 :

p

g g

p

Figure 2.1: The epistemic model for the initial situation in example 2.1 on page 5.
The reflexive relation for each agent at each world is left out.

The formula states that the prisoner should have escaped (e) after he bribed (b)
the guard, or the prisoner should have escaped (e) with the guard not knowing
he has escaped (¬Kge).

2.2.2 Possible Worlds

Dynamic epistemic logic models knowledge using a concept of possible worlds.
A possible world is one that contains one state of affairs that the agents consider
possible. To model the uncertainty that agents have about the state of affairs,
a model of their knowledge can contain multiple possible worlds with different
state of affairs. Such a model is called a kripke structure, or an epistemic model.

Definition 2.2 (Epistemic Models [3]). An epistemic model on the lan-
guage LK(P,A) is a tripleM = (W,R, V) where

• W is a non-empty finite set of (possible) worlds1,

• R : A→ 2W×W assigns an equivalence relation2 (called an indistinguisha-
bility relation) Ri, to each agent i ∈ A,

• V : P → 2W assigns to each proposition p ∈ P the set of world in which
p holds.

The initial situation in example 2.1 on page 5 can be modeled using the epistemic
modelM0 shown in figure 2.1.3 The model consists of the four worlds {w1, w2,

1In the remaining of the thesis a possible world will just be name a world.
2An equivalence relation is reflexive, symmetric and transitive
3The indicsinguishability relation will be shown without the reflexive loops in the reminder

of this thesis.

8 Dynamic Epistemic Logic

w3, w4}, where in each world, the proposition symbols that are not true are
underlined. An edge between two worlds means that the labeled agent(s) cannot
distinguish the two worlds apart, and are therefore uncertain about which one
models the actual state of affairs.

In the model, the prisoner does not know whether the guard is corrupt or not,
and considers both options possible. The guard on the other hand does not
know if the prisoner has escaped or not, but he will only raise the alarm when
he is certain. Both the guard and the prisoner know with certainty that the
guard is facing the exit, and that the guard has not accepted a bribe from the
prisoner.

Definition 2.3 (Truth in Epistemic Models [3]). LetM = (W,R, V)
on LK(P,A) be an epistemic model, and let i ∈ A, w ∈ W , p ∈ P, and
φ, φ1, φ2 ∈ LK(P,A), then the truth of a formula in w is defined by

M, w |= > always
M, w |= ⊥ never
M, w |= p iff p ∈ V (w)

M, w |= ¬φ iffM, w 6|= φ

M, w |= φ1 ∧ φ2 iffM, w |= φ1 andM, w |= φ2

M, w |= Kiφ iffM, v |= φ for all v ∈W where wRiv

2.2.3 Actual Worlds

Even though an epistemic modelM can contain multiple possible worlds, only
one of these can model the actual state of affairs. Let M = (W,R, V) and
w ∈W be this actual world, then the pair (M, w) is named a pointed epistemic
model. Identifying a single actual world is often an ability that only an external
observer has, e.g. one who is looking at the world from the outside. When
the view of the state of affairs is not that of an external observer, but that of
an non-omniscient agent in the world, then the model should reflect that as
explained below.

From the point of view of an agent standing in the world, it is often not possible
to tell exactly which world is the actual world, but it can instead be narrowed
down to a set of actual worlds. Let Wd ⊆ W be a non-empty set of actual
worlds4, then the pair (M,Wd) is a multi-pointed epistemic model. Multi-
pointed epistemic models will through the remaining of the thesis be named

4This set is called designated world by Bolander and Andersen [3].

2.3 Changing the State of Affairs 9

epistemic states, or just states, and denoted s. The actual worlds in a state will
be marked by double circles.

Definition 2.4 (Truth in Epistemic States [3]). Let M = (W,R, V)
on LK(P,A) be an epistemic model, let (M,Wd) be an epistemic state with
Wd ⊆W , and let φ ∈ LK(P,A) then

(M,Wd) |= φ iff (M, w) |= φ for all w ∈Wd

Returning to the prisoner and guard example, the prisoner knows he has not
yet escaped and is therefore able to narrow the actual worlds down to the two
worlds w1 and w2. Thus, the epistemic state modeling the initial situation from
the view of the prisoner is s0 = (M0, {w1, w2}). This way of modeling the
view of a situation from the perspective of a specific agent will be elaborated in
section 2.4 on page 12.

2.3 Changing the State of Affairs

2.3.1 Possible Events

An act can result in physical changes in the environment (ontic change), or
changes in the knowledge of agents in the environment, or both. Dynamic
epistemic logic uses the concept of a possible event to describe the outcome of
an act that an agent considers possible. To capture the uncertainty an agent
has about the outcome of an act, a model of its knowledge about an act can
contain multiple possible events. Such an model is called an event model.

Definition 2.5 (Event Models [3]). An event model on LK(P,A) is de-
fined by E = (E,Q, pre, post), where

• E is a non-empty finite set of (possible) events5
• Q : 2E×E assigns an equivalence relation (called the indistinguishability
relation) to each agent i ∈ A.

• pre : E → LK(P,A) assigns to each event a precondition.
• post : E → LK(P,A) assigns to each event a postcondition.

An event model describes which changes, both ontic and epistemic, an act
causes. The set of events E are the events that an agent considers possible

5In the remaining of the thesis a possible event will just be name an event.

10 Dynamic Epistemic Logic

when performing the act. An edge between two events symbolizes that the la-
beled agent(s) cannot distinguish the two events apart, and are not able to tell
which of them happened.

An example is that of a coin toss, which can result in the coin landing on either
head or tails. The act of flipping a coin would be modeled by two events, one
where the post-condition was tails, and the other that of head. The precondition
would in both events be that a coin is available to toss.

If the coin lands on a table and is thereby visible after the toss, then the agent
would know the outcome of the act, e.g. the agent would be able to tell the two
events apart. The event would therefore not be connected by an agent relation.
If the coin instead was covered by a hand, then the agent would know that the
coin was tossed, and that it has either landed on heads or tails, but not which.
In this case, the act would be modeled by the two events being connected.

2.3.2 Actual Events

As with the epistemic model, there will always be only one actual event happen-
ing. Let e be this actual event, the tuple (E , e) is then a pointed event model.
However, when modeling an event from the perspective of a specific agent, it
is not always possible to narrow it down to one actual event, but instead to a
set of actual events Ed. Such an event model (E , Ed) is a multi-pointed event
model, and will throughout the thesis be named an epistemic action, or action,
and denoted e. The actual events in an epistemic action will be marked by
double circles.

The actions available to the prisoner are shown in figure 2.2 on the next page.
The prisoner can always harass the guard, making the precondition of the action
harass >. The action has two possible outcomes, where either the guard faces
away from the cell ¬f , or he remains facing the same direction. Since the
two events are not connected by any edge, both agents will know which event
actually occurred after the act. The outcome of bribe depends on whether or
not the guard is corrupt. Since the events b1 and b2 can be distinguished by the
prisoner, he will afterwards know whether the guard is corrupt or not. Last run
has two actual events r1 and r2 depending on whether the guard is facing the
exit or not. The prisoner knows the last event r3 will never occur, but even so
the guard is not able to distinguish between this and r2. r2 and r3 models that
the prisoner knows that when the guard is not facing the exit, then the guard
will be uncertain about whether the prisoner has escaped or not.

2.3 Changing the State of Affairs 11

h1 :< >,{f → f} > h2 :< >,{f → ⊥} >
harass:

b1 :< d,{b→ c} > b2 :< ¬d,{b→ c} >
bribe:

r1 :< f,{e→ >} > r2 :< ¬f,{e→ >} > r3 :< ¬f,{e→ ⊥} >run:
g

Figure 2.2: The actions available to the prisoner in example 2.1 on page 5

2.3.3 Acting

When an agent acts, it is modeled by applying an action to a state resulting in
a new updated state. Dynamic epistemic logic incorporates this update using
the product update.

Definition 2.6 (Product Update [3]). The product update of a state
(M,Wd) with an action (E , Ed) is defined as the state (M,Wd) ⊗ (E , Ed) =
((W ′, R′, V ′),W ′d), where

W ′ ={(w, e) ∈W × E | M, w |= pre(e)},
R′i ={((w, e), (v, f)) ∈W ′ ×W ′ | wRiv and eQif},
V ′(p) ={(w, e) ∈W ′ | M, w |= post(e)(p)} for each p ∈ P,
W ′d ={(w, e) ∈W ′ | w ∈Wd and e ∈ Ed}.

The worlds remaining after a product update are those that satisfied the pre-
condition of one or more events. To ensure that an action is not applied in a
state where one of the actual worlds does not satisfies the precondition of any
actual events, the following definition of applicability is used.

Definition 2.7 (Applicability of an action in a state [3]). Let
(M,Wd) be an epistemic state and (E , Ed) an action. Then (E , Ed) is said to
be applicable in (M,Wd) if it holds that for each world w ∈Wd there is at least
one event e ∈ Ed such thatM, w |= pre(e).

The definition ensures that the knowledge about the actual worlds are consistent
with the actual state of affairs, and a state is not reached wherein the set of

12 Dynamic Epistemic Logic

(w1,b1) : ebfc (w2,b2) : ebfc

(w3,b1) : ebfc (w4,b2) : ebfvc

s1=s0⊗ bribe: g g

Figure 2.3: The resulting state from taking the product update between the initial
state s0 and the action bribe

actual worlds are empty. The figure 2.3 shows the result when the prisoner
from the initial situation considers what would happen if he tried to bribe the
guard. The new worlds are named as the previous world with the applied event
appended to it.

2.4 Planning with Dynamic Epistemic Logic

This section will first explain how dynamic epistemic logic relates to planning,
and how partial-observability and non-determinism can be described by it. It
will then introduce the internal perspective used to model the view of the world
as seen from a specific agent (the acting agent). It is ended with a description
of how to minimize and compare states.

2.4.1 Planning Environment

Imagine that the prisoner was not able to see the guard and would therefore
not be able to know if the guard was facing the exit or not. Then the prisoner
would not know which of the two possible outcomes of harassing the guard that
actually occurred, and the two event h1 and h2 would have to be connected
by an relation in Rp to properly model the act. This illustrates how partial-
observable actions can be modeled. Moreover, the initial state can itself be
partial-observable (prisoner does not know whether guard is corrupt or not).
This shows how dynamic epistemic logic can be used for planning in a partial-
observable environment.

Now consider the action of bribing the guard. There are two possible outcomes
of this action, but which one that actually occurs depends entirely on whether
the guard is corrupt or not, e.g. the outcome depends on the state that the

2.4 Planning with Dynamic Epistemic Logic 13

action is applied in. This makes this action deterministic6. However, the action
of harassing the guard also has two outcomes, but with the same precondition.
The actual outcome of this act is thus not dependent on the state of the world,
but decided by the environment, which the agent has no control over. Dynamic
epistemic logic it this way capable of modeling non-deterministic actions.

When the prisoner is planning his escape, he will do so by reasoning about the
state of the world, the different actions at his disposal, and how they can be
used to change the state of the world. Since it is the prisoner himself that is
planning the escape, the models used should represent the view of the prisoner,
and this is accomplished using local states, a concept introduced by Andersen
and Bolander [3].

2.4.2 Local states

In definition 2.4 on page 9 a formula is said to be true in a state if and only
if it is true in each of the actual worlds. When modeling the perspective of an
agent, a formula should be true only when the agent knows it to be true. A
local state for an agent is therefor a state wherein the agent can distinguish the
set of actual worlds from the rest.7

The state s0 is an local state of agent p, but not of agent g, since the set of
actual worlds are not closed under Rg.

Imaging that the prisoner considers bribing the guard, the resulting state would
be s1 shown in figure 2.3 on the preceding page, and it is again a local state of
the prisoner. The following lemma states that this will be the case in general.

Lemma 2.1 ([3]). If a local action (E , Ed) of an agent i is applicable in a local
state (M,Wd) of the same agent, then the product update (M,Wd)⊗ (E , Ed) is
again a local state of i.

In the example in figure 2.3 on the facing page, the prisoner is now able to
distinguish the two actual worlds. This means that even though the prisoner
cannot tell which one will occur while reasoning about them, when the action
is actually executed, the prisoner will know which one occurred and they are
therefore run-time distinguishable.

6The result from bribing the guard in the initial state is shown in figure 2.3 on the preceding
page.

7A local action of an agent is one wherein the agent can distinguish the actual events from
the rest.

14 Dynamic Epistemic Logic

When two sets of actual worlds that are run-time distinguishable are encoun-
tered, it then allows the agent to reason about a separate plan of action for
each set. This corresponds to a conditional plan. Each of these distinguishable
sets can therefore be reasoned about separately. This then limits the necessary
reasoning about a course of action to states where all the actual worlds are in-
terconnected, and thereby both plan-time and run-time indistinguishable. Such
states are called internal states of the planning agent8 by Andersen, Bolander,
and Jensen [1].

In the single-agent setting the constituting internal states of a local state9 are
found in a straightforward manner, by dividing the state into the minimum
number of states where all world in a state are interconnected [1]. An approach
for dividing a local state into internal states for the multi-agent setting are
proposed in the following section.

2.4.3 Internal states

Dividing an local state into its constituting internal states are accomplished in
two steps.

The first step is to divide the local state into states where all worlds are con-
nected by some relation. These states are then named global distinguishable
states, because all agents will able to distinguish them at runtime.

The state shown on the left in figure 2.4 on the next page is a local state of agent
i and contains three actual worlds {w1, w2, w3}. The states in the middle are
the result of the division into global distinguishable states. In the example both
of the two resulting states contain one or more actual world. However, assume
w2 was not an actual world, then the state are known by the planning agent to
never be the case, and can be removed. To remove such a state is reasonable,
because it no longer represent a possible state of affairs in this course of action.

8When the planning agent is clear from the context, the states will just be named internal
states.

9Andersen, Bolander, and Jensen [1] uses only an epistemic model for modeling the state of
affairs in the single-agent setting. This corresponds to all possible worlds being actual worlds.

2.4 Planning with Dynamic Epistemic Logic 15

(w1) (w2)

(w3) (w4)

j j ⇒

(w1)

(w3)

j

(w2)

(w4)

j ⇒

(w1)

(w3)

j

(w1)

(w3)

j

(w2)

(w4)

j

Figure 2.4: Division of a state with actual worlds {w1, w2, w3} into, first it constitut-
ing globally distinguishable states, and thereafter each of those it their
constituting distinguishable state from the view of agent i.

(w1) (w2)

(w3) (w4)

j j ⇒

(w1) (w2)

(w3) (w4)

j j

(w1) (w2)

(w3) (w4)

j j

(w1) (w2)

(w3) (w4)

j j

Figure 2.5: Division of a state with actual worlds {w1, w2, w3} into its constituting
distinguishable state with actual worlds {w1}, {w2}, {w3} from the view
of agent i.

The next steps is to divide each of the global distinguishable states into internal
states. Let (M,Wd) be a local state of agent i, then the set of actual worlds are
divided into minimum sets such that

1. there does not exists a relation in Ri between two worlds in different sets,

2. all worlds in each set are interconnected.

This will result in the sets Wd1 ∪ Wd2 ∪ ... ∪ Wdk = Wd for some k where
1 ≤ k ≤ |Wd|.10 The agent will then be able to distinguish between each of
these sets at run-time.

When considering each set of actual worlds, the epistemic model M should re-
main the same, so that the knowledge in the system stays the same. The result-
ing set of epistemic states will therefore be {(M,Wd1), (M,Wd2), ..., (M,Wdk)}.

In figure 2.4, the result is the three states on the right, and the planning agent
can now reason about each possible situation separately. If the first step is

10|Wd| denotes the size of the set Wd

16 Dynamic Epistemic Logic

intp(s1):

(w1,b1) : ebfc

(w3,b1) : ebfc

s2:

(w2,b2) : ebfc

(w4,b2) : ebfvc

s3:

Figure 2.6: The two internal states s2 and s3 of agent p in the state s1.

left out, and the second step was done directly, then the result would be as
illustrated in figure 2.5 on the previous page. Here each state now contains all
nodes from the original, only differing on actual worlds. The set of nodes that
are marked in red, are then redundant knowledge, representing a situation that
the planning agent has considered in one of the other states.

These two steps for an agent i, and a local state s of i, will be denoted by
inti(s). The result of dividing s1 into its constituting internal states is shown
in figure 2.6, where the two possible outcomes of bribing the guard now are
represented by their own state.

2.4 Planning with Dynamic Epistemic Logic 17

2.4.4 Comparing States

Two epistemic states can model the same knowledge without being isomorphism.
Such two states will satisfy the same sets of epistemic formulas, and are consid-
ered equivalent because an agent will not able to distinguish between them.

Two states s and s’ are said to represent the same knowledge if and only if
there exists a bisimulation between them, denote by s - s’, and are then
named bisimilar.

The following is a standard definition of bisimulation between two epistemic
models by Ditmarsch, Hoek, and Kooi [6]

Definition 2.8 (Bisimulation between epistemic models [6]). Let
two models M = (W,R, V) and M′ = (W ′, R′, V ′) be given. A non-empty
relation B ⊆ W ×W ′ is a bisimulation iff for all w ∈ W and w′ ∈ W ′ with
(w,w′) ∈ B :

atoms w ∈ V (p) iff w′ ∈ V ′(p) for all p ∈ P

forth for all i ∈ A and all w ∈W , if (w,w) ∈ Ri, then there is a w′ ∈W ′
such that (w′, w′) ∈ R′i and (w,w′) ∈ B

back for all i ∈ A and all w′ ∈ W ′, if (w′, w′) ∈ R′i, then there is a
w ∈W such that (w,w) ∈ Ri and (w,w′) ∈ B

The concept is extended to multi-pointed epistemic models (states) by Bolander
and Andersen [3].

Definition 2.9 (Bisimulation between epistemic states [3]). Let
(M,Wd) and (M′,W ′d) be two epistemic states, an relation B ⊆W×W ′ is then
a bisimulation iff it satisfies the standard definition and further more satisfies
that the domain of B extends Wd and the image of Wd under B is W ′d.

18 Dynamic Epistemic Logic

p
s:

< p,> > < p,{p→ p} >
e:

i

Figure 2.7: The epistemic state s and the action a

p

p

s⊗a= ⊗a=i

p

p

p

p

i
i

i

i

i

i ⊗a=. . .

Figure 2.8: Repeated application of action a in the epistemic state s showing how
product update can increase the size of an epistemic state.

2.4.5 State Reduction

If a world in an epistemic state fulfills the preconditions of more than one event
in an action, then the product update can result in larger epistemic state in
terms of the number of worlds in it.

Consider the epistemic state s and action a shown in figure 2.7. The state
consists of a single world and the action of two event both having their pre-
condition satisfied in the world. The resulting state from the product update
between these are shown in figure 2.8 along with the result of reapplying the
action in the resulting state.

Each resulting state captures the same knowledge as the initial state, e.g are
bisimilar, but has grown two and four times in the number of worlds. A solution
to the possible explosion in the number of worlds are proposed by Ditmarsch,
Hoek, and Kooi [6] using the bisimulation contraction11. In this thesis states
of often a result of a product update, and so the ⊗m is used to indicate the
bisimulation contraction of the resulting state from the product update.

By taking the bisimulation contraction of the result of the product update be-
tween s and a, the result is again s.

11Reducing states to their minimal state modulo bisimulation

2.5 Discussion 19

2.5 Discussion

When concerned with giving an autonomous agent the ability to reason about a
course of action for achieving a goal, it is in many domains unrealistic to expect
the agent to have a view corresponding to that of an external observer.

A planner for an autonomous agent should instead be able to model the state
of affairs from the perspective of the agent. A way to achieve this with dynamic
epistemic logic is by using local states as was described in section 2.4.2 on
page 13.

When the agent during its reasoning process encounters two situation that it
is unable to distinguish at the time of reasoning, but knows it will be able to
distinguish at the time of execution, then it can reason about a different course
of action for each situation. Such distinguishable states are named internal
states, and one method for identifying these was proposed in section 2.4.2 on
page 13.

This chapter has introduced some of the formalism of dynamic epistemic logic,
and how it can be used as a basic for automated planning. Some of the formalism
not included in this thesis are common knowledge, and having action modality
as part of the epistemic language. The latter makes it possible to reason about
actions in epistemic formulas. This allow goals formulas to, for example, require
that a certain action should (not) be applicable. Including the action modality
in the epistemic language is considered by both Andersen, Bolander, and Jensen
[1], and Löwe, Pacuit and Witzel [2].

Common knowledge in a group of agents is knowledge that they share such
that it is know by everyone, and everyone knows that everyone knows it, and
everyone knows that everyone knows that everyone knows it ... and so on ad
infinitum [6]. A lot of examples has been proposed, such as the muddy children
puzzle, showing that when something is common knowledge among a group of
agents, then it affects their line of reasoning. Common knowledge in multi-agent
planning are treated by Andersen and Bolander [3].

20 Dynamic Epistemic Logic

Chapter 3

Plans and Planning
Problems

The previous chapter described the complexity of the planning environment
(partial-observable and non-deterministic). This chapter introduces the plan-
ning problem, the different solutions types for it, and the plans that represent
such solutions. The main resources for this chapter are [1], [5], and [7].

The planning problem will not be treated as multi-agent in the classical sense
where multiple agents are acting in the same environment. Instead it is considers
an environment with multiple agents present, but only one acting agent (the
planning agent).

22 Plans and Planning Problems

3.1 Planning problem and domain

The following definition of a planning problem is the one defined by Andersen,
Bolander, and Jensen [1], extended with the planning agent as a parameter.
Explicitly stating the planning agent is necessary when dividing a state into its
internal states of the planning agent.

Definition 3.1 (Multi-Agent Epistemic Planning Problem [1]).
Let P be a finite set of propositions, and let A a finite set of agents, then a
planning problem on (P,A) is a triple P = (s0, i, E, φg), where

• s0 is an internal state on LK(P,A) representing the initial state from
where the planning agent is trying to achieve the goal,

• i ∈ A is the planning agent,
• E is the set of actions available to the planning agent,
• φg is an epistemic formula on LK(P,A) that should hold after a plan has
been executed (the goal).

The scenario from the prisoner and guard example can be describe by the plan-
ning problem Ppg with

Ppg = ((M0, {w1, w2}), p, {run, harass, bribe}, e ∧ (b ∨ ¬Kge)) (3.1)

The epistemic planning domain is implicitly given through the planning prob-
lem. To reason about the reachable states in the state space of the domain these
are explicitly defined through the function Γ below.

Definition 3.2 (Multi-Agent Epistemic State Space). Let P =
(s0, i, E, φg) be a planning problem. The reachable states in the planning do-
main is defined recursively by Γ({s0}, E, γ) where

Γ(S,E) = S ∪ Γ({s′ | e ∈ E ∧ s ∈ S ∧ s′ ∈ γ(s, a)}, E)

γ(s, a) =

{
inti(s⊗ a) if a is applicable in s
{} otherwise

The state space contains only internal states of the planning agent, so that
the internal perspective of the planning agent is kept throughout the reasoning
process.

3.2 Solution types 23

3.2 Solution types

A solution to a multi-agent epistemic planning problem is a plan that can be
executed and possibly result in a state wherein the goal formula holds (from
here on called a goal state). Ghallab, Nau, and Paolo [5] define three solution
types to a planning problem in a partially-observable and non-deterministic
environment.

• a weak solution has a chance to achieve a goal state,
• a strong solution guarantees to achieve a goal state,
• a strong cyclic solution guarantees to eventually achieve a goal state.

Execution of a plan that is a strong cyclic solution can repeatedly result in the
same state (like flipping a coin and repeatedly having it land on head), but will
under a fairness assumption eventually exit any loop (getting tails), resulting
in a goal state.

The strength of the solutions are strong > strong cyclic > weak, and it follows
that a strong solution is preferable over a strong cyclic solutions which in turn
is preferable over a weak solution. As a consequence, there might exist a weak
solution if none of the other exists and there might exists a strong cyclic solution
when no strong solution exists. Indeed for the prisoner and the guard there does
not exists a strong solution, but it will be shown later that both a strong cyclic
solution and a weak solution exists. By relaxing the required strength of a
solution, the number of possible solutions increases, and this is done in this
thesis by considering strong cyclic and weak solutions.

24 Plans and Planning Problems

State Action
s0 bribe
s3 run

Table 3.1: A policy π1 for the prisoner and guard shown as a table.

3.3 Conditional Plans

The following definition of a policy is by Ghallab, Nau, and Paolo [5], but is
made partial and further restricted on the states it can contain, to fit the purpose
of this thesis.

Definition 3.3 (Policies [5]). Let P = {s0, E, φg} be a planning problem,
then a policy π for P is defined as a partial mapping of the states in the planning
domain for P into actions

π : S → E, where S ⊆ Γ({s0}, E, γ)

such that for any state-action pair (s, e) it holds that e is applicable in s, and
there does not exist another state-action pairs (s′, e′) in π where s - s′.

The lookup function π(s) returns the action mapped to s if s is defined in π,
and otherwise returns undefined.

Because bisimiliar states cannot be distinguished by the planning agent, they
should never be mapped to different actions. It is incorporated into the policy
definition by never having two bisimilar states in it. Instead when looking up
a state s, the lookup function will return the action mapped to any state s′
bismiliar to s.

Definition 3.4 (Policy Domain). Given a policy π, the domain D(π) is
defined as the set of states in the state space for which the policy defines an
action.

D(π) = {s | (s, e) ∈ π for some e ∈ E}.

In this thesis only finite plans will be considered, e.g all policy domains are
finite.

Imagine the prisoner considers first to try and bribe the guard, and if the guard
decides to accept the bribe, to run. The corresponding policy π1 is shown in
table 3.1, where s0 is the initial state and s3 is defined in figure 2.6 on page 16.
The policy π1 can be executed by an agent by sensing the current state (s0),

3.3 Conditional Plans 25

lookup and execute the corresponding action (bribe), sense the new state (either
s2 or s3) and lookup and execute the corresponding action if it exists in π1. The
goal will only be achieved if the resulting state is s3, making π1 a weak solution.
In the following it is shown how it can be determined what kind of solution, if
any, a policy represents.

3.3.1 Strong Cyclic and Weak Policies

Definition 3.5 (Reachability in policies). Let π be a policy for a plan-
ning problem P = (s0, i, E, φg), and s an internal state, then the set of states
that can be reached from s using π is defined as R∗π(s), where

Rjπ(s) =

{
R0
π(s) = {s}

Rj+1
π (s) = {s′′ | s′ ∈ Riπ(s) ∧ s′ ∈ D(π) ∧ s′′ ∈ inti(s′ ⊗m π(s′))}

R∗π(s) =
⋃
j∈N

Rjπ(s)

The reachability of a set S′ of internal states is defined as R∗(S′) =
⋃
s∈S′ Rjπ(s).

The possible reachable states from any state s using a policy π is therefore at
most the states in the domain of π, along with any internal states from a product
update between a state in D(π) and its corresponding action. Because the latter
produces a finite number of states and the domain of any policy is finite, so is
the set of reachable state finite.

Definition 3.6 (Proper Property). Let π be a policy for the planning
problem P = (s0, i, E, φg), and let s be a state in the state space Γ({s0}, E),
then π is proper with respect to s iff ∃s′ ∈ R∗π(s) : s′ |= φg.

The proper property says that a policy is proper with respect to a state, if and
only if a goal state is reachable from the state using that policy. The definition
is extended to sets as a policy is proper with respect to a set of states if and
only if it is proper with respect to each state in the set.

The notion of proper is from Bryce and Buffet [4], and used by Fu, Ng, Bastani,
and Yen [7] to define strong cyclic policies, but their definition has been altered
for the purpose of this thesis. In their work, they define a policy as proper with
respect to a state s, if and only if ∀s′ ∈ R∗π(s)∃s′′ ∈ R∗π(s′) : s′′ |= φg. They use
this as the definition of a strong cyclic solution to a planning problem. That
their definition indeed describes a strong cyclic solution will be shown later in
the chapter. The definition of a proper policy has been altered so as to fit both
the strong cyclic and weak policy type, as they are introduced below.

26 Plans and Planning Problems

Definition 3.7 (Policy Types). Let P = (s0, i, E, φg) be a planning prob-
lem, and let π be a policy on the planning domain of P . Then the policy for π
is a

Weak Policy iff π is proper with respect to s0.
Strong Cyclic Policy iff π is proper with respect to the set R∗π(s0).

Notice that the definition of strong cyclic is now the definition of a proper policy
as it was introduced by Bryce and Buffet [4].

The definition of a weak policy is seen to capture the definition of a weak
solution, and that a strong cyclic policy is a strong cyclic solution is shown in
the following.

Lemma 3.1. Let P = (s0, i, E, φg) be a planning problem, and π a strong cyclic
policy for it. Then π is a strong cyclic solution to P .

Proof. Done by contradiction. Assume the existence of a strong cyclic policy π
that is not a strong cyclic solution. Then, it must be possible to repeatedly use
the policy from the initial state, and end in either

1. a non-goal state that is not defined by π, or

2. a loop that cannot be exited.

The former is a contradiction of definition 3.7 because it requires that all states
reachable from the initial state can reach a goal state, and so must all reachable
state that is not defined by the policy be goal states.

The later is a contradiction of definition 3.7 because the states in the never
ending loop are reachable from the initial state, but it is not possible from any
of them to reach a goal state.

Strong cyclic (resp. weak) policy and strong cyclic (resp. weak) solution will
be used interchangeably throughout the remaining of this thesis. The symbol
α = sc|w will be used to denote a strong cyclic (resp. weak) solutions.

3.4 Discussion 27

3.4 Discussion

3.4.1 Alternative Plan Representation

To represent conditional plans Andersen, Bolander, and Jensen [1] uses a plan
language, containing the conditional construct if Kφ then π else π, where π is
a sentence in the plan language. The construct K (the agent is implicitly given
because they consider the single-agent setting only) ensures that the planning
agent can only make its choice of action based on states that are distinguishable
to it. This approach requires the construction of a distinguishable formula that
uniquely identifies a state for the conditional construct.

They further describe how a plan in the plan language can be converted into an
epistemic formula allowing for plan verification through model checking in the
initial state.

Policies was used in this thesis as an alternative plan representation, and the
decision was based on the following.

1. Distinguishable formulas for multi-agent epistemic models are complex,
and makes the resulting plans cumbersome.

2. The plan language can be extended to capture strong cyclic solutions, but
how the translation to epistemic formulas for model checking should be
defined are not obvious.

3.4.2 Strong Policy

The notion of proper is used to define both the strong cyclic and weak policy,
indicating that these two types are related. And indeed both types are seen to
be indifferent towards how a goal state is reached, but simply require a goal
state to be reachable from every state (or the initial state in the weak case).
On the contrary, the strong policy requires that goal states should be reachable
without loops.

Strong plans are treated by Andersen, Bolander, and Jensen [1] and are there-
fore not considered in this thesis. This furthermore helps to keep the planning
algorithm, proposed in the following chapter, more clear.

28 Plans and Planning Problems

Chapter 4

Planning

This chapter introduces the planning algorithm for finding strong cyclic and
weak solutions. The main resource for this chapter is [1]. The chapter first
describes the planning graph used to search the state space, the expansion rule
used to expand it (proposed by Andersen, Bolander, and Jensen [1] for planning
trees), and then a novel approach for finding strong cyclic and weak solutions
in the planning graph.

4.1 Plan Synthesis

The following two definitions describe the planning graph that represents the
state space search, and the graph expansion rule that is used to search it (ex-
pand the graph). The planning graph is an AND/OR-graph, where OR-nodes
represents branching made by the agent’s choice and AND-nodes represent the
branching made by the environment’s choice of outcome for an action.

This idea is introduced by Ghallab, Nau, and Paolo [5], and used in the planning
algorithm proposed by Andersen, Bolander, and Jensen [1]. In the latter they
use a planning tree, but to find cyclic plans a planning graph is necessary.

30 Planning

Definition 4.1 (Planning Graph [1]). A planning graph G is a labeled
AND/OR-graph with directed edges, where each node n is labeled by an epistemic
model s(n), and each edge (n,m) leaving an OR-node is labeled by an action
model e(n,m).

When creating a planning graph G for a planning problem P = (s0, i, E, φg),
the initial graph will consist of a single OR-node labeled with the initial state
s0, and this node will be denoted init(G). The state space is hereafter explored
by repeated application of the following graph expansion rule on the planning
graph.

Definition 4.2 (Graph Expansion Rule). Let G be a planning graph for
a planning problem P = (s0, i, E, φg). The graph expansion rule is defined as
follows. Pick an node n ∈ VOR(G) and an action e ∈ E applicable in s(n) with
the proviso that e does not label any existing outgoing edges from n. Then:

1. Add a new node m to VAND(G) with s(m) = s(n)⊗m e, and add an edge
(n,m) with e(n,m) = e.

2. ∀s′ ∈ inti(s(m)) if ∃n′ ∈ VOR(G) and s(n′) - s′, then add an edge (m,n′),
else add an node m′ with s(m′) = s′ to VOR(G) and an edge (m,m′).

A node is defined as fully expanded if all the applicable actions for the labeled
state are labeled on outgoing edges from the node. When applying the graph
expansion rule, the selection of nodes are restricted in the following manner.

S. The graph expansion rule may not be applied to a node if there exists an-
other node of lesser depth with respect to init(G), which has not yet been fully
expanded.

With this restriction, repeated application of the expansion rule corresponds to
a breadth-first expansion, since no node will ever be expanded before all nodes
of lesser depth have been fully expanded.

The purpose of the state space search is to find goal nodes, and once a goal
node is found, it should therefore not be expanded. To ensure that the graph
expansion rule is not applied to goal nodes, the following blocking condition is
used.

B. The graph expansion rule may not be applied to a node n if s(n) |= φg [1].

In the remaining of the thesis when the graph expansion rule is mentioned, it will
implicitly be with the restriction S and blocking condition B, unless otherwise
stated.

4.1 Plan Synthesis 31

s0 s4
harass

...

run

...

bribe

s5 s6
run

...

harass

...

bribe

s7

Figure 4.1: A section of the planning graph G for the planning problem Ppg (3.1)
for the prisoner and the guard example. The AND-nodes are shown with
double lines, the states labeled on nodes are shown within with labels
removed for simplicity, and goal nodes are marked with green.

Imagine that the prisoner considers a course of action where he keeps harassing
the guard until the guard is no longer facing the exit, and then make a run for
it. The part of the planning graph exploring this strategy is shown in figure 4.1.
The AND-nodes are shown with double circles, and all nodes are shown with (a
simplified version of) their labeled epistemic states. The result of applying the
graph expansion rule to the initial node with the action harass is an AND-node
with its labeled state consisting of two internal states. One of the internal states
is the initial state, resulting in a back edge to the initial node. The second
internal state is labeled on a new node to which the graph expansion rule is
applied. When the action run is applied, it results in the OR-node labeled with
state s7 which is a goal state making the node a goal node. Due to blocking
condition B, the node with s7 will not be further expanded.

The purpose of the state space search is to eventually map states to actions and
create a plan for the planning problem. This means that for each OR-node only
one of the actions labeled on the outgoing edges can be selected for the policy.
For this, the following notion of a policy graph is introduced.

32 Planning

e1

e2

e2

e3

e3

n4

n2

init(G)

n5

n6

n3

(a) G

e1

e2

e2

n4

n2

init(G)

n5

n6

(b) H1

e2

e2

e3

e3

n4

n2

init(G)

n5

n6

n3

(c) H2

Figure 4.2: (a) shows a planning graph G, and (b) and (c) shows the two policy graphs
H1 and H2 in it. Node n4 is yet to be expanded, and node n6 is a goal
node.

Definition 4.3 (Policy Graph). Let G be a planning graph, then a policy
graph H is any partial subgraph of G where the following holds:

• init(G) ∈ H
• ∀n ∈ VOR(H) : n has at most one outgoing edge
• ∀n ∈ VAND(H) : n has the same number of outgoing edges as in G
• Leaf nodes in H are leaf nodes in G

The figure 4.2 illustrates how a not yet saturated planning graph G is divided
into two policy graphs, and how each of these corresponds to looking at the
different policies that can be created by following the paths in the planning
graph. In figure 4.2c the action e3 was chosen from the starting position, and in
figure 4.2b the action e1 was chosen corresponding to the two possible choices
that the planning graph has encountered so far. A policy graph is said to
represent a policy, and if it represents an α-policy, then the policy graph is

4.1 Plan Synthesis 33

called α-solved 1.

Definition 4.4 (Goal Node Reachability). Let P = (s0, i, E, φg) be a
planning problem, let G be a planning graph build for P , and let H be a policy
graph in G. We then define the set of nodes N(H) in H that can reach an goal
nodes by

n ∈ N(H) iff n ∈ VOR(H) and ∃m ∈ VOR(H) : n→∗H m ∧ s(m) |= φg.

Definition 4.5 (Solved Policy Graph). Let α = sc|w, let G be a plan-
ning graph for a planning problem P , and let H be a policy graph in G. H is
then called α-solved if the following holds

• if α = w, then |N(H)| ≥ 1.
• if α = sc, then VOR(H)=N(H).

The two policy graphs shown in figure 4.2 on the facing page are both α-solved
if α = w, because there exists one goal node n6 in them. The resulting plan
would be optimistic (e.g. weak) because it depends on the environment selecting
n5 over n2 to reach the goal node. However, if α = sc, then neither of the two
policy graphs are α-solved because the node n4 cannot reach a goal node, making
VOR(H) 6= N(H).

Given a policy graph, a policy is constructed directly from it by mapping the
states labeled at OR-nodes in the policy graph with the action labeled on their
outgoing edge.

Definition 4.6 (Policies for Policy Graphs). Let H be a policy graph,
then the policy for H is defined by

ω(H) = {(s(n), e(n,m)) | n ∈ VOR(H) ∧ ∃(n,m) ∈ E(H)}

The following lemma ensures that there are not added bisimilar states mapped
to different actions in the policy. This ensures that the policy created from a
policy graph is as defined in definition 3.3 on page 24.

Lemma 4.1. When creating the policy for an execution graph, there will never
be two bisimilar states added to the policy, mapped to different actions.

Proof. When the planning graph is build, the second step in the graph expansion
rule ensures that there will never exist two OR-nodes in the graph with bisimilar

1Recall α = sc|w, where sc is the strong cyclic solution and w is the weak solution as
introduced in section 3.2 on page 23.

34 Planning

labeled states. A policy is created from a policy graph, where the state of each
non-leaf OR-node is labeled with the action labeled on the outgoing edge from
that node. Because a policy graph per definition only has one outgoing edge from
any OR-node, it is not possible to map the same state to different actions.

With the above, a parameterized planning algorithm can now be defined for
finding an α-solution to a planning problem P depending on which α is given
as input.

Algorithm 1 Plan(α,P)
1: let G be a planning graph consisting only of the OR-node n labeled by the

initial state of P .
2: while G can be expanded do
3: expand G using the graph expansion rule.
4: if there exists an α-solved policy graph H in G then
5: return ω(H).
6: end if
7: end while
8: return FAIL

Plan(α,P) will, if no α-solved policy graph is found, continue to expand the
graph until every state in the planning domain has been labeled on a node in
it. Because the algorithm perform a breadth-first search, it will if a solution
exists eventually find it. The claim will be proven in the following chapter.
However, Andersen and Bolander [3] [Theorem 19] states that with three or more
agents, the plan existing problem for a multi-agent epistemic planning problem
is only semi-decidable. It can therefore not be guaranteed that Plan(α,P)
will terminate when given a planning problem for which no solution exist.

4.2 Discussion 35

4.2 Discussion

4.2.1 Optimal Plan

When termination cannot be guaranteed it introduces problems in terms of
finding an optimal plan. With unordered actions, i.e. actions with no difference
in cost, an optimal linear plan is defined as the shortest plan in number of
distinct states visited before a goal state is reached. When comparing optimality
of two conditional plans it is by largest number of distinct states visited on the
longest path from the initial state to a goal state. This corresponds to a worst
case scenario when executing the plan. An optimal conditional plan is one where
there does not exist another plan with a shorter worst case.

If the expansion of a node results in multiple solved policy graphs, then it is not
defined how the planning algorithm should chose between these. Without such
reasoning, the returned policy cannot be guaranteed to be optimal. If assuming
that the planning algorithm is somehow able to determine which of these policy
graph will result in the most optimal plan, then the planning algorithm can be
guaranteed to return an optimal weak plan, due to the breadth-first search.

However, as illustrated in figure 4.3 on the following page, for a strong cyclic
plan this is not the case. In the figure, the node n1 has just been expanded
resulting in a back edge. This creates a strong cyclic solved policy graph, with
the choice e2 at the initial node. The length of the policy graph in terms of
OR-nodes are 5 (same as the worst case for the resulting plan). But, illustrated
with the dotted lines, if the node n2 had been expanded in the next iteration
then it would have created another goal node, and made the second policy graph
strong cyclic solved as well. As this has a longest path of 4 nodes, so would this
be a more optimal solution.

The planning algorithm can as a consequence not be guaranteed to return an
optimal solution.

4.2.2 Tractability

The number of states in the state space can explode when increasing the number
of available action. Moreover are the states them self able to grow, as they are
a result of a previous state applied with an action. It is noted by Andersen and
Bolander [3], that there in the general case are no upper bound in the size of
states reachable in the state space, even when considering only the bisimulation

36 Planning

e1 e2

n2 n1

Figure 4.3: A planning graph containing two policy graphs, one for the choice e1, and
one for the choice e2. The node n1 has just been expanded resulting in
the back edge, and an α-solved policy graph. The dotted nodes and edges
are what will be, if the node n2 were expanded next.

contraction of states. How to reduce the state space is still an open question,
but Löwe, Pacuit and Witzel [2] proposes a solution, and shows how it can keep
the state space of a concrete scenario small. They do so by imposing restrictions
on the type of actions to be used. Their idea is that repeated application of an
action must only produce bisimilar states, and that if a sequence of actions are
applied to a state, then the resulting state should be the same indifferently of
the order of the sequence. How to generalize their approach and identify such
actions is still unclear.

This thesis is not concerned with the computational complexity of the pro-
posed algorithm, but notes that the plan existence problem for strong plans in
a partial-observable non-deterministic environment is shown to be in the 2EXP-
time class [8], and is therefor in general a very hard problem.

Chapter 5

Soundness and
Completeness

The planning algorithm proposed by Andersen, Bolander, and Jensen [1] is
shown both sound and complete. In the following, these properties are proven
for the planning algorithm proposed in this thesis.

5.1 Proofs

The following lemma describes the relation between the states in a policy graph
and the states reachable through the policy created from it.

Lemma 5.1. Let H be a policy graph and let n be an node in VOR(H) then
the set of reachable states from s(n) using the policy ω(H) is exactly the set of
states labeled on nodes in VOR(Hn).

Proof. This corresponds to prove that R∗ω(H)(s(n)) = s(VOR(Hn))1. The proof
is done by induction on the height h of OR-node n in H.

1Given a set of nodes the set of states labeled the nodes are defined in the standard way
as s(V) = {s(n) | n ∈ V }.

38 Soundness and Completeness

Base case is h = 0, then s(VOR(Hn)) = {s(n)}. This means that n is a leaf
node, and definition 4.6 on page 33 then says that s(n) is not defined in ω(H).
Then R∗ω(H)(s(n)) = {s(n)}, concluding the base case.

For the inductive step, assume that for any node n with height l ≤ h, it holds
that R∗ω(H)(s(n)) = {s(n′) | n′ ∈ VOR(Hn)}. It will now be proven that for any
OR-node n′′ of height h+ 2 such that n′′ → n′ → n it holds that R∗ω(H)(s(n

′′))

= s(VOR(Hn′′)).

From definition 4.2 on page 30 n′ will be an AND-node with children {m1, ...,mk}
such that each child is labeled with a state in inti(n′′ ⊗m e(n′′, n′)). The set of
OR-nodes in the subgraph Hn′′ can be described as the union of the OR-nodes
in the subgraphs of each of its child nodes, and n′′ itself.

VOR(Hn′′) = {n′′} ∪ VOR(Hm1) ∪ ... ∪ VOR(Hmk
) (5.1)

And the states labeled on the nodes in this set can be described as

{s(n′′)} ∪ s(VOR(Hm1
)) ∪ ... ∪ s(VOR(Hmk

)) (5.2)

Let {s1, ..., sj} = inti(s(n
′′) ⊗m ω(H)(s(n′′))), then from definition 3.5 on

page 25 it is given that

R∗ω(H)(s(n
′′)) = {s(n)} ∪R∗ω(H)(s1), ..., R∗ω(H)(sj) (5.3)

From definition 4.6 on page 33 we know that ω(H)(s(n′′)) = e(n′′, n′), and we
can therefore expand equation (5.3) as follows.

R∗ω(H)(s(n
′′)) = {s(n)} ∪R∗ω(H)(s(m1)) ∪ ... ∪R∗ω(H)(s(mk)) (5.4)

The inductive hypothesis says that for each child m in {m1, ...,mk} it holds that
R∗ω(H)(s(m)) = s(VOR(Hm)). Therefore (5.2) and (5.4) described the same set
of states, which concludes the inductive step.

Theorem 5.2 (Soundness). Let α = sc/w, and let H be an α-solved policy
graph found by the planning algorithm for a planning problem P = {s0, i, E, φg}.
Then the policy ω(H) is an α-solution to P .

Proof. Case α = sc. The definition for policy types, definition 3.7 on page 26,
states that the following must hold for the policy ω(H) to be a strong cyclic
policy.

∀s ∈ R∗ω(H)(s0)∃s′ ∈ R∗ω(H)(s) : s |= φg (5.5)

Because H is α-solved so must the definition of an α-solved policy graph (defini-
tion 4.5 on page 33) hold for H. The definition uses the set N(H) to determine

5.1 Proofs 39

if H is α-solved. Using the definition for goal node reachability (definition 4.4
on page 33), the nodes in this set N(H) can be described as

∀n ∈ N(H)∃m ∈ VOR(H) : (n→∗ m) ∧ s(m) |= φg (5.6)

Since H is α-solved, then N(H) = VOR and (5.6) can be written as

∀n ∈ VOR(H)∃m ∈ VOR(H) : (n→∗ m) ∧ s(m) |= φg (5.7)

If there exists a path from some node n to a node m in H, then m is also part
of the subgraph Hn of H, and (5.7) can be written as

∀n ∈ VOR(H)∃m ∈ VOR(Hn) : s(m) |= φg (5.8)

From lemma 5.1 on page 37 it is given that the reachable states R∗ω(H)(s0) are
exactly the set of states labeled on nodes in VOR(Hinit(G)) e.g. in VOR(H).

Furthermore it is given that for any node n ∈ VOR(H) the set of statesR∗ω(H)(s(n))

is exactly the set of states labeled on nodes in VOR(Hn).

This means that (5.8) can be rewritten as

∀s ∈ R∗ω(H)(s0)∃s′ ∈ R∗ω(H)(s) : s′ |= φg (5.9)

Since (5.9) is precisely the definition of a strong cyclic policy, it concludes the
proof for the policy ω(H) being a strong cyclic solution to P .

Case α = w. For the policy ω(H) to be a weak policy the following must hold.

∃s ∈ R∗ω(H)(s0) : s |= φg (5.10)

lemma 5.1 on page 37 states that s(VOR(H)) = R∗ω(H)(s0). Thus, if it can be
proven that

∃s ∈ s(H) : s |= φg

holds, then so does (5.10). Because H is α-solved then |N(H)| > 0, i.e. there
exists a node n in VOR(H) with s(n) |= φg. This concludes the proof of the
policy ω(H) being a weak solution for P .

Theorem 5.3 (Completeness). Let α = sc/w. If there exists a policy
that is an α-solution to the planning problem P = (s0, i, E, φg), then the plan
algorithm will find a policy graph that is α-solved.

Proof. The definition 4.6 on page 33 describes how a policy graph can be turned
into a policy. Let H be a policy graph that would result in the policy π, and let
π be an α-solution to the planning problem P . The proof will now be divided

40 Soundness and Completeness

into two cases: the case where the planning graph contains another α-solved
policy graph H ′ before it contains H, and the case where it does not.

Case 1. There can exist more than one solution to a planning problem, but
the planning algorithm will always stop when it encounters the first α-solved
policy graph. If the planning algorithm constructs an α-solved policy graph H ′
before H is constructed, then this will be found because the planning algorithm
considers all policy graphs in the planning graph.

Case 2. If there does not exist an α-solved policy graph H ′, that is found by
the planning algorithm before H, then G will always find H. The proof will be
divided into four parts, first part will show how an policy π can be represented
as a digraph Σ, second part will show how such a policy representation can be
converted to a policy graph, third part will prove that such an policy graph will
be α-solved if the policy is an α-solution, and fourth part will prove that if such
policy graph exists, then it will be contained in then planning graph G for the
planning problem P .

Part 1. Let π be an α-solved policy for the planning problem P = (s0, i, E, φg),
then π can be represented as a digraph Σ = (V,E), where V = R∗π(s0) is
the nodes in the graph, and E = {(s, s′) | s ∈ R∗π(s0) ∧ s ∈ D(π) ∧ s′ ∈
inti(s⊗m π(s))} is the edges.

The reachable nodes from any node s in Σ can now be described by

{s′ | s→0 s′} ={s} =R0
π(s)

{s′ | s→1 s′} ={s′′ | s′ ∈ {s′ | s→0 s′} ∧ s′ ∈ D(π) ∧ s′′ ∈ inti(s′ ⊗m π(s′))} =R1
π(s)

{s′ | s→i+1 s′} ={s′′ | s′ ∈ {s′ | s→i−1 s′} ∧ s′ ∈ D(π) ∧ s′′ ∈ inti(s′ ⊗m π(s′))} =Ri+1
π (s)

This leads to ∀s ∈ V (Σ) : {s′ | s→∗ s′} = R∗π(s)

Part 2. From the graph representation Σ of the policy π, a policy graph H is
created by doing the following for all s ∈ Σ:

1. create an OR-node n with s(n) = s.
2. if s is a non-leaf node then

(a) create an AND-node m labeled with s(n)⊗m π(s(n))
(b) for all edges (s, s′) in Σ make an edge (m,m′) in H where s(m) = s′.
(c) create the edge (n,m) with e(n,m) = π(s).

ThenH is an AND/OR-graph with alternating AND/OR-nodes, where s(init(H)) =
s0, each none-leaf OR-node has exactly one outgoing edge labeled with an ac-

5.1 Proofs 41

tion, and each AND-node has a child node for each internal state in the state
labeled on it.

From 1. the following then holds

s(VOR(H)) = V (Σ) = R∗π(s0) (5.11)

And 2. ensures that the paths in Σ are preserved in H, whereby it holds that

∀n ∈ VOR(H) : s({n′ | n→∗ n′ ∧ n′ ∈ VOR(H)}) = R∗π(s(n)) (5.12)

Part 3. It will now be shown for each case of α = sc|w that if π is an α-solution,
then H will be α-solved.

For α = sc, it must be shown that VOR(H) = N(H), which by definition 4.4 on
page 33 means

∀n ∈ VOR(H) : n→∗ m ∧ s(m) |= φg (5.13)

The policy π is strong cyclic, and the following requirement for strong cyclic
must therefore hold. ∀s ∈ R∗π(s0)∃s′ ∈ R∗π(s) : s′ |= φg

(5.11)⇔ ∀n ∈ VOR(H)∃s′ ∈
R∗π(s(n)) : s′ |= φg

(5.12)⇔ ∀n ∈ VOR(H)∃n′′ ∈ {n′ | n →∗H n′ ∧ n′ ∈ VOR(H)} :
s(n′′) |= φg ⇔ ∀n ∈ VOR(H)∃n′ ∈ VOR : n→∗H n′ ∧ s(n′) |= φg. This concludes
the proof that H is α-solved.

For α = w it must be shown that |N(H)| > 0, e.g there must exist a goal node
in H. Because π is an α-solution, then it holds that π is proper with respect to
s0. The definition of proper is given as ∃s ∈ R∗π(s0) : s |= φg. From (5.11) it
holds that s(VOR(H)) = R∗π(s0), and so there is a node n in H where s(n) |= φ,
and n is therefor a goal node. This concludes the proof that H is α-solved.

Part 4. What is left to show is that H will be (part of) a policy graph in the
planning graph G constructed for the same planning problem P using the graph
expansion rule.

The initial node for both graphs is labeled with the same state s0, and every
action labeled on the outgoing edge from any OR-node in H is per definition
applicable in the state labeled on the OR-node.

Now let n be any OR-node in H, where there exist an OR-node n′ in G, with
s(n) - s(n)′. When the graph expansion rule is applied to n′ with the action
e(n,m) labeled on the outgoing edge (n,m), then it will create the AND-node
m′, where s(m′) - s(m). As a consequence m and m′ will have child OR-nodes
labeled with bisimilar states.

42 Soundness and Completeness

Because the planning algorithm performs a breadth-first search, so will all states
labeled on node of dept k in H with respect to init(H), be labeled on nodes in
G, when G has been fully expanded at dept k.

Thus when G has been fully expanded at height equal to the height of H, then
H will be contained in a policy graph in G, and this will then be α-solved.

This concludes the proof for completeness.

5.2 Discussion

A planning problem can have multiple solutions, but the planning algorithm
cannot be guaranteed to return a specific solution because it always returns
the first solution found. The consequence is as noted above that the proof for
completeness is dependent on theorem 5.2 on page 38 showing soundness, to
ensure that any solution returned, that is not the one assumed to exist, is also
an valid solution.

Chapter 6

Implementation

This chapter briefly describes the implementation of Plan(α,P). The imple-
mentation is largely build upon the implementation of dynamic epistemic logic
by Eijck [13]. The motivation for the implementation is to demonstrate the pro-
posed planning algorithm. As it is one of the only planners with its expressive-
ness it also provides a base for further work, or possibly for an implementation
in a (small) practical setting.

The implementation of the planning algorithm is used in a web application,
chosen because it allows for easy access and use. Through the application the
user can define an epistemic planning problem, and the resulting solved policy
graph will be displayed, if one exists.

6.1 Related work

In the later years two practical implementations of the DEL framework have
been developed.

DEMO by Eijck [13] standing for Dynamic Epistemic MOdeling tool, is an im-
plementation of DEL written in the functional programming language Haskell.

44 Implementation

DEMO can model epistemic updates, graphical display update results and, eval-
uate formulas in epistemic models.

moDELchecker by Witzel [14] is an implementation of DEL in the programming
language C++, and includes a planning algorithm for synthesis of simple plans,
i.e. a linearly ordered sequence of actions. The planner plans in the multi-agent
setting from the perspective of an external observer. Both implementations show
the usefulness of dynamic epistemic logic, not only as a theoretical framework,
but in a practical setting as well.

DEMO has been chosen as the foundation for the implementation of the frag-
ments of DEL used by this thesis because; it provides a straightforward imple-
mentation of DEL in the sense that it is easy to see how the implementation
corresponds to the theory, it includes most of the elements used in this thesis,
and it is the best documented.

6.2 Choice of technology

The implementation in this thesis uses the functional programming language
F#, the object-oriented programming language C#, and the Graphviz engine
[10] for generating graphs for the visualization. The elements from DEMO is
ported to F#, and the planning algorithm is implemented in C#. The choice
of technologies is made because of the familiarity with them, as well as the ease
with which they integrate.

6.3 System Description

The main components and the flow in the system is shown in figure 6.1 on the
next page, where only the web page rendering and input /output handling it
left out.

6.3.1 DEL Library

The fragments ported from the implementation in DEMO are; epistemic states,
actions, product update, formula evaluation, and bisimulation contraction. The
implementation is except for naming convention, and minor language differences
between F# and Haskell, kept as similar to that of DEMO as possible. The

6.3 System Description 45

Parser
(C#/F#)

Planner
(C#)

Graph Renderer
(C#)

user
input

planning
problem

policy
graph

display
graph

DEL Library (F#) Graphviz
Engine

Figure 6.1: Program flow. Web page handling are left out.

representation of epistemic states and actions are shown in figure 8.1 on page 55
in appendix.

The ported implementations will not be described further as they are well docu-
mented [13]. The bisimulation contraction in DEMO was done by Sietsma [12],
and is an implementation based on the three partition refinement algorithm
proposed by Paige and Tarjan [9]. The added features to the DEL component
is the division of a states into internal states, and the check for the existence of
an bisimulation relation between states.

6.3.2 Planner

Planning Graph. The planning graph is represented by a list Nodes containing
all nodes in the graph, and a queue NodeQueue containing the OR-nodes that
has not yet been expanded e.g. are leaf nodes. Each node contain the epistemic
state labeled on it, as well as a list of ingoing edges, and a list of outgoing edges.
Edges contain a reference to the nodes connected by it and the action that is
labeled on it, if any.

Planning Algorithm. The planning algorithm initializes the planning graph
with a single node containing the initial state. It then keep expanding the graph
one node at a time until either a solved policy graph is found, or no unexpanded
nodes exists, or the application runs out of memory. The next node to be
expanded is always the first on the queue, and any newly created OR-nodes
are added to the queue, thereby implementing the breadth-first search. When
expanding a node, all of the available actions are tried before expanding another
node. Each expansion of a node is described in algorithm 3 on page 56 in
appendix, and it is a directly implementation of the graph expansion rule from
section 4.1 on page 29.

46 Implementation

6.3.3 Policy Graph Handling

Policy Graph. A policy graph is implemented as an object containing a list
of references for the nodes and edges in it, along with a reference to the initial
node.

Policy Graph Update. When a node is expanded then one or both of the
following happens.

1. Existing policy graphs containing the expanded node are updated to en-
sure they keep with the requirements for a policy graph in definition 4.3
on page 32.

2. If the expansion created a branch on an OR-node then a new policy graph
is created.

Six cases are considered when updating the policy graphs after the expansion of
a node. These are illustrated in figure 6.2 on page 48 and figure 6.3 on page 48,
where the blue node has been expanded using the action e1, and the red edges
and nodes are the ones created in the expansion.

Case 1-4 each requires an update of existing policy graphs whereas the two
cases 5 and 6 require that new policy graphs are created. The main algorithm
for maintaining policy graphs are outline in algorithm 2 on page 49, where the
input are

• n the expanded node,

• nAND the resulting AND-node,

• eAND their connecting edge,

• NOR the list of newly created child OR-nodes of nAND,

• EOR the list of edges connecting nAND with all of its child nodes.

Line 1-7 finds the existing policy graphs, or create new ones, that should be
updated. Line 8-23 updates the policy graphs with the newly created nodes and
edges. Line 24 stores the updated policy graphs.

The two subroutines ComputeUp and ComputeDown creates new policy graphs.
The former handles case 5 where a new branch is created on the expanded OR-
node, and all the different policy graphs leading from the initial node to the
expanded node should be copied for the new branch.

6.3 System Description 47

The result of ComputeUp in case 5 is a policy graph leading from the initial node
to n1. The created nodes and edges are then added to it during the update. This
ensures that the existing policy graph, taking the action e2 at n1, is preserved.

The later handles case 6, where an edge is created between n2 and an existing
non-leaf OR-node n3 in the graph. The subroutine take the existing OR-node,
and a policy graph policy to be updated, as parameters. The subroutine then
finds all the different policy graphs possible when considering n3 as the initial
node. For each of these policy graphs are the policy copied and extended with
it. The subroutine returns a list of extended copies, and the original policy is
replaced with these.

The result of ComputeDown in case 6 is two policy graphs, both consisting of
the nodes {init(G), n1, n2, n3}, but one containing the nodes reachable from n3
using e1, and the other the nodes reachable using e2.

After the expansion of a node, when the affected policy graphs have been up-
dated, each of them are check for being solved.

48 Implementation

...

n1

n2

n3

e1
e2

e1

(a) Case 1.

n3

...

n1

n2

e1
e2

e1

(b) Case 2.

n3 n1

n2

e1
e2

e1

(c) Case 3.

n1

n2

n3

e1
e2

e1

(d) Case 4.

Figure 6.2: The different results from expanding a node in the planning graph that
only requires existing policy graphs to be updated. The blue node is
expanded, and the red nodes and edges are created in the expansion.

...

n1

n2

n3

e1
e2

e1
e2

(a) Case 5.

n3 n1

n2...

e1
e2

e1e1e2

(b) Case 6.

Figure 6.3: The different results from expanding a node in the planning graph that
requires that new policy graphs are created. The blue node is expanded,
and the red nodes and edges are created in the expansion.

6.3 System Description 49

Algorithm 2 The algorithm for update the list of policy graphs after an node
has been expanded in the planning graph : Update(n,NOR, EOR, nAND, eAND)
1: let Pall be the list of all policy graphs before expansion
2: if number of outgoing edges from n is greater than 1 then
3: let Pex ← ComputeUp(n) . Case 5.
4: else
5: let Pex be the list of policies that n is part of. . Case 4.
6: remove Pex from Pall
7: end if
8: let Pupdate be an empty list
9: for each policy in Pex do

10: add policy to Pupdate
11: add nAND, eAND, EOR, and NOR to policy . Case 1.
12: for each (nand,m) in EOR do
13: if m is not in policy then . Case 2.
14: if m has no outgoing edges then . Case 3.
15: add m to policy
16: else
17: let Pcopy ← ComputeDown(m, policy) . Case 6.
18: remove policy from Pupdate
19: add Pcopy to Pupdate
20: end if
21: end if
22: end for<
23: end for
24: add Pupdate to Pall

50 Implementation

6.3.4 Screenshots

Graphical User Interface. The screenshot in figure 6.4 shows the graphical
user interface, consisting of input fields for the solution type and planning prob-
lem. The input for the planning problem consists of inputs for the initial state,
the planning agent, the goal formula, and the available actions.

Due to the possible large size of the output, the user can chose between having
the output graph shown without labeled states, with labeled states on OR-nodes,
or with labeled states on all nodes.

When the application returns it will display one of the messages; solution found,
no solution exists, or ran out of memory. In the first case the output graph will
show the solved policy graph, and in the two latter it will display the entire
planning graph.

Figure 6.4: User interface. Input of the planning problem for the prisoner and guard
example, in the browser.

Output Graph The screenshot in figure 8.3 on page 57 shows the graph pre-
sented to the user for the prisoner and guard example, when searching for a
strong cyclic solution. The outgoing edges from AND-nodes are dotted, the
goal nodes are marked with green, and the epistemic states labeled on nodes are
shown as subgraphs. The reflexive loop are left out in the epistemic states, only
the propositions that are true are shown at each world, and the actual worlds
are colored blue.

6.3 System Description 51

Figure 6.5: Output from the prisoner and guard example with α = sc.

52 Implementation

6.4 Discussion

6.4.1 Benchmarks

Time has not permitted in depth testing nor benchmarking of the implemen-
tation. A natural next step would be to try and compare it against existing
planners for partial-observability. It is expected that it will not fair well, since
the focus in this thesis has been on expressiveness, and not on the complex-
ity of the computations in terms of speed or space. Another approach is to
try and formulate a set of benchmarks for this type of planning with higher-
order knowledge since this does not appear to have been done previously in the
literature.

6.4.2 Policy Graph Handling

How policy graphs are found is left open in the definition of the planning al-
gorithm in chapter 4 on page 29. The correctness of the approach used in the
implementation has only been described informally, and it has only been tested
using the prisoner and the guard example. Running the example with a goal
formula that cannot be fulfilled (⊥) results in a saturated graph with a total
of 59 OR-nodes and 293 policy graphs, which is as expected. The resulting
planning graph without the epistemic states shown, can be found in figure 8.3
on page 57 in appendix.

Chapter 7

Conclusion

A planning algorithm Plan(α,P) has been proposed based on dynamic epis-
temic logic that allows for modeling of higher-order knowledge. The algorithm
finds strong cyclic and weak plans in a multi-agent scenario with applicability,
incomplete knowledge in the the initial state, and non-deterministic action. The
algorithm uses the perspective of the acting agent in the environment instead
of that of an external observer, and it is shown to be both sound and complete.

The multi-agent scenario is not multi-agent in the classical sense where multiple
agents are acting in the same environment, but instead considers the planning
agent as the only acting agent. In this scenario it is possible to reason about
a course of action that depends on both the knowledge about the environment
and the knowledge about the knowledge of other agents in it. It is as a result
possible to express planning problems where other agent’s knowledge must be
kept the same, increased (less uncertainty), or lessened (more uncertainty). This
is illustrated by the prisoner and guard example, where the guard must be kept
uncertain about whether the prisoner has escaped or not.

The planning algorithm is based on the algorithm proposed by Andersen, Bolan-
der, and Jensen [1], which considered strong solutions in a single-agent scenario.
Their work uses the internal perspective, and this perspective has in this thesis
been extended to the multi-agent scenario. Their work further allows for plan
verification by translation of plans into epistemic formulas. Plan verification

54 Conclusion

has not been treated in this thesis, and the plan representation has instead been
changed to policies that naturally captures conditional plans with cycles.

Further work includes using dynamic epistemic logic for re-planning in contrast
to offline planning as considered in this thesis. This can make the true multi-
agent scenario more feasible, by not having to consider all acts other agents
might perform.

The last part of the thesis describes the implementation of the proposed planning
algorithm. The implementation was tried with the prisoner and guard example,
and successfully found and visualized a solved policy graph. Further work is to
find, or defined if such as not been defined before, a proper set of benchmark
criteria for planning problems with this type of expressiveness.

Chapter 8

Appendix

type agent = string
type world = integer
type model =
{

W = world list
A = agent list
R = (agent ,world ,world) list
V = (world , prop list) list

}
type state =
{

M = model
Wd = world list

}

type event = string
type sub = (prop , formula) list
type eventmodel =
{

Name = string
Events = event list
Preconditions = (event ,formula) list
Substitutions = (event , sub) list
Relations = (agent ,event ,event) list

}
type action =
{

E = eventmodel
Ed = event list

}

Figure 8.1: Implementation types of the epistemic state and action. Type prop and
formula can be found in figure 8.2 on the following page in appendix.

56 Bibliography

type prop = string
type formula =

| bracket of formula
| conj of formula list
| disj of formula list
| prop of prop
| knows of (agent ,formula)
| neg of formula
| top of boolean

Figure 8.2: Implementation of the formula type.

Algorithm 3 Expansion of node n: Expand(n)
1: for each action in actions do
2: let s ← productUpdate(n.s, a)
3: let m be a new AND-node with m.s = s
4: let nm be a new edge with nm.e = a
5: add nm to outgoing edge of n
6: add nm to ingoing edges of m
7: add m to AllNodes
8: let S ← internalStates(s)
9: let M ′ be a new list

10: let E′ be a new list
11: for each s′ in S do
12: let mm′ be a new edge
13: add mm′ to outgoing nodes of m
14: add mm′ to E′
15: for each node in allNodes do
16: if node is OR-node and existBisimulation(node.s,s′) then
17: m′ = node
18: end if
19: end for
20: if m′ is undefined then
21: let m′ be a new OR-node with m′.s = s′

22: add m′ to AllNodes
23: add m′ to M ′
24: end if
25: add mm′ to ingoing nodes of m′
26: end for
27: UpdatePolicies(n,M ′, E′,m, nm)
28: if there exists an α solved policy graph then
29: return the policy graph
30: end if
31: end for

Bibliography 57

Figure 8.3: The fully saturated planning graph from the prisoner and guard examples,
when the goal formula is ⊥. Nodes are shown without their internal states,
and no goal nodes exist.

58 Bibliography

Bibliography

[1] M. Birkegaard Andersen, T. Bolander, and M. Holm Jensen. Conditional
epistemic planning. In JELIA, pages 94–106, 2012.

[2] E. Pacuit B. Löwe and A. Witzel. Del planning and some tractable cases. In
Proceedings of the Third international conference on Logic, rationality, and
interaction, LORI’11, pages 179–192, Berlin, Heidelberg, 2011. Springer-
Verlag.

[3] T. Bolander and M. Andersen. Epistemic planning for single- and multi-
agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34, 2011.

[4] O. Buffet D. Bryce. 6th international planning competition: Uncertainty
part. In 6th International Planning Competition: Uncertainty Part, August
2008.

[5] M. Ghallab D. Nau and P. Traverso. Automated Planning: Theory & Prac-
tice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[6] W. Hoek H. Ditmarsch and B. Kooi. Dynamic Epistemic Logic. Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands, 2008.

[7] F. B. Bastani J. Fu, V. Ng and Y. I-Ling. Simple and fast strong cyclic plan-
ning for fully-observable nondeterministic planning problems. In Proceed-
ings of the 22nd International Joint Conference on Artificial Intelligence,
pages 1949–1954, 2011.

[8] R. Jussi. Complexity of planning with partial observability, 2004.

[9] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM
J. Comput., 16(6):973–989, December 1987.

60 BIBLIOGRAPHY

[10] AT&T Labs Research. Graphviz.

[11] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[12] F. Sietsma. Model Checking for Dynamic Epistemic Logic with Factual
Change. Master’s thesis, UvA, CWI, Amsterdam, The Netherlands, 2007.

[13] J. van Eijck. Demo - a demo of epistemic modelling, 2007.

[14] Anders Witzel. modelchecker, 2012.

	Summary (English)
	Summary (Danish)
	Preface
	Contents
	1 Introduction
	2 Dynamic Epistemic Logic
	2.1 The Prisoner and the Guard
	2.2 Modeling the State of Affairs
	2.3 Changing the State of Affairs
	2.4 Planning with Dynamic Epistemic Logic
	2.5 Discussion

	3 Plans and Planning Problems
	3.1 Planning problem and domain
	3.2 Solution types
	3.3 Conditional Plans
	3.4 Discussion

	4 Planning
	4.1 Plan Synthesis
	4.2 Discussion

	5 Soundness and Completeness
	5.1 Proofs
	5.2 Discussion

	6 Implementation
	6.1 Related work
	6.2 Choice of technology
	6.3 System Description
	6.4 Discussion

	7 Conclusion
	8 Appendix
	Bibliography

