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Summary

Cardiac arrhythmia and other heart related conditions are potentially life-threate-
ning, making fast and accurate diagnosis vital. This thesis describes an approach
to characterize and discriminate ECGs by applying machine learning methods.
The investigation concerns the discrimination of subjects suffering from the in-
herited genetic disorder Long QT type 2 (LQT2) from a normal population.
Applying 10-second raw ECGs as input, various hidden Markov models are
trained for each group. The generative properties of the models are assessed
and the log-likelihoods of the test ECGs are applied in an initial classification
scheme. Further, the Support Vector Machine is included to improve the clas-
sification using the log-likelihoods of multiple hidden Markov models.
ECG simulations from the trained hidden Markov models produced recogniz-
able waveforms and some of the expected morphological changes, seen in LQT2
subjects, were observable in the simulated ECGs. The best classification result
observed was a classification accuracy of 78.1% with a corresponding specificity
of 78.2% and a sensitivity of 78.2%. Experience showed, however, that biological
noise and power line interference in the ECG affected the classification, but it
appears that the application of hidden Markov models using raw ECG data is
well suited for the purpose of ECG characterization and discrimination.
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Resume

Hjertearytmier og andre hjerterelaterede lidelser er potentielt livstruende, hvor-
for en hurtig og præcis diagnose er altafgørende. Denne afhandling beskriv-
er en tilgang til at karakterisere og diskriminere EKG’er ved anvendelse af
maskinlæringsmetoder. Undersøgelsen handler om diskriminationen af genetisk
nedarvet lang QT type 2 testpersoner fra en normal population. Ved at an-
vende 10-sekunders rå EKG’er som input, trænes forskellige skjulte Markov
modeller for hver gruppe. Modellernes generative egenskaber undersøges, og
log-sandsynligheden for test EKG’erne anvendes i en tidlig klassifikationsfase.
Herudover inkluderes Support Vector Machine for at forbedre klassifikationen
ved at anvende log-sandsynlighederne fra flere skjulte Markov modeller. EKG
simulationer fra de trænede skjulte Markov modeller viste genkendelige bølge-
former, og nogle af de forventede morfologiske forandringer, der ses hos LQT2
patienter, kunne observeres i de simulerede EKG’er. Den bedst fundne klassi-
fikationsnøjagtighed var 78,1 % med en tilsvarende specificitet på 78,2 % og en
sensitivitet på 78,2 %. Det viste sig dog at biologisk og 50 Hz støj i EKG’erne
påvirkede klassifikationen, men det fremgår alligevel, at modellering af rå EKG
data ved anvendelse af skjulte Markov modeller, er velegnet til karakterisering
og diskriminering af EKG’er.
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Abbreviation Description
I,II,V1,V2,V3,V4,V5,V6 ECG leads
AUC Area Under (ROC) Curve
AV node AtrioVentricular node
BMI Department of Biomedical Sciences
CVDHMM Continuous Variable Duration HMM
ECG Electrocardiogram
EM Electrode Motion
EMG Electromyogram
FULL Full transition
GMM Gaussian Mixture Model
HMM Hidden Markov Model
Inf Infinite
KKT Karush-Kuhn-Tucker
LSE Log-Sum-Exp trick
NaN Not a Number
LR Left-Right
LR1 Left-Right, one forward degree of freedom
LR2 Left-Right, two forward degrees of freedom
LQT2 Long QT type 2 syndrome
MA Muscle Artifacts
P-wave ECG waveform
PCA Principle Component Analysis
PLI Power Line Interference
PV Premature Ventricular
QRS-complex ECG waveform
RMS Root Mean Square
ROC Receiver Operator Characteristic
RR-interval heartbeat duration
SAN Sinoatrial Node
SD Standard Deviation
SNR Signal to Noise Ratio
SVM Support Vector Machine
T-wave ECG waveform
U-wave ECG waveform
WCT Wilsons Terminal Central
WGN White Gaussian Noise

Table 1: Abbreviations



Chapter 1

Introduction

Cardiac arrhythmia, myocardial infarction and other heart related conditions
are potentially life threating, making fast and accurate diagnosis vital. The
heart conditions are either inherited, induced by drugs or related to lifestyle.
The electrocardiogram (ECG) is one of the most widely used non-invasive diag-
nostic tools for monitoring cardiac disease. It enables the clinician to register
the electrical activity of the heart in an inexpensive way. In Denmark the lead-
ing experts in the field of inherited and drug induced arrhythmias reside at
the Department of Biomedical Sciences (BMI), Heart and Circulatory Research
Section, University of Copenhagen. A general approach used at BMI, when
examining ECGs, is to explore different stationary features, such as amplitude
and duration measures, derived from median heart beats formed from 10-second
ECGs. Participating in research at BMI, the potential of creating a method able
to capture the temporal variation of a 10-second ECG was identified by the au-
thors.

In this thesis we aim to develop a general modeling and classification method
able to characterize and discriminate normal and pathological ECGs. The aim
is the construction of a model that could aid in the diagnosis of cardiac disease
or as a tool used in ECG-based heart research. The model should be able to cap-
ture temporal variations in the ECG, variations between ECG leads and should
be independent of the currently applied software algorithms used at BMI. In
short, the method should be able to provide both characterization and discrim-
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ination of ECGs.

To investigate the performance of the model, a population of normal ECGs
and a population of Long QT Type 2 syndrome (LQT2) subjects were applied.
With the LQT2 syndrome being a highly researched, inherited genetic disorder
at BMI, it could be validated whether the model is able to capture some of the
expected morphological changes in the ECGs.
Furthermore, cardiac arrhythmias are one of the most feared adverse reactions
to drugs, in which most cases occur due to a block of cardiac ion channels in-
hibiting certain potassium currents. The same currents are also inhibited in
LQT2 patients. Being able to discriminate normal and LQT2 ECGs, the model
could possibly also be applied in the evaluation of drug safety.

The thesis commences with an introduction (Chapter 2) to the heart, its elec-
trical conduction system and relates this to the pathophysiology of LQT2 in
order to clarify the clinical motivation and give an understanding of the signals
obtained with the ECG technique. In Chapter 3, the ECG method is explained,
giving an understanding of how the physiological processes are expressed in the
ECG signal, how the ECG signals are obtained and how biological and machine
generated noise can degrade the information content in the ECGs. Chapter
4 presents selected works within the field of ECG characterization and clas-
sification providing insight into the state-of-the-art machine learning methods
applied. The acquired knowledge is applied in determining the choice of meth-
ods to be implemented in this work. The concepts behind machine learning and
the theory of the chosen machine learning models are elucidated in Chapter 5,
while the applied ECG data, the model training and the classification setup are
presented in Chapter 6. The generative properties of models are also illustrated
here. The verification of the implementation is performed and a test setup for
the classification tolerance with regards to noise is outlined. The generative
capability of the model is explored in Chapter 7 together with the results of
classifying the normal and LQT2 ECGs. The effect of noise on the classification
accuracy is also treated therein. Chapter 8 discusses the different aspects of the
models and the general setup of the method and rounds off discussing interest-
ing work to be undertaken in future endeavors. The conclusion of the project is
given in Chapter 9.

Sometimes the heart sees what is invisible to the eye.
H. Jackson Brown, Jr.



Chapter 2

Physiological Background

The electrophysiological processes that are captured by the ECG and the patho-
physiology of the LQT2 syndrome are addressed in the following. A brief de-
scription of the anatomy of the heart is given in section 2.1 and the electrophys-
iology of the cardiac action potential at the cellular level is presented in section
2.2. Section 2.3 describes the electrical conduction system of the heart, which
in part explains the appearance of the measured ECG. Finally, the pathophysi-
ology of Long QT syndrome is explained in section 2.4.

2.1 General Anatomy of the Heart

The human heart is roughly situated in the middle of the thorax. It consists of
four chambers with the right and left atria situated superiorly and the right and
left ventricles situated inferiorly. The left ventricle and atrium are separated
from the right ventricle and atrium by the septum and as such the heart can
be viewed as two separate pumps. The left ventricle and atrium are larger and
have thicker walls than their right counterparts, thus the heart appears as un-
symmetrical. A frontal plane section of the heart is presented in Figure 2.2. The
differences in chamber size and wall thickness are due to the physiological func-
tion of the heart, where the left part supplies systemic circulation through the
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aorta and the right part supplies pulmonary circulation through the pulmonary
artery. The positive pressure difference between the systemic and pulmonary
circulation requires a stronger, and therefore, larger left side of the heart.
Besides asymmetry, relative to the thorax and due to the structure of the heart
itself, the heart is also rotated around three anatomical axes. That is, rotation
with respect to the frontal plane, rotation with respect to the transverse plane
and longitudinal rotation (base-apex axis) [29] [48].

2.2 Cardiac Action Potential

The cell membrane is polarized due differences in charge between the immediate
inside and immediate outside of the cell membrane. An action potential is a
transient change in the membrane potential. The semi-permeable cell membrane
facilitates the existence and maintenance of the resting membrane potential,
which occurs due to an electrochemical equilibrium. The main ions involved in
the membrane potential are Na+, K+, Ca2+, Cl− and negative proteins. Two
forces act on these; a chemical force and an electrical force collectively called
electrochemical forces. The cell membrane permeability of K+ and Cl− are far
larger than for the other ions [9] hence playing the main role in the formation
of the resting potential. The cell membrane is impermeable to the negative pro-
teins within the cell. The concentration of K+ is largest within the cell and the
concentration of Na+ and Ca2+ is largest outside the cell. These concentration
gradients are sustained by energy driven transport over the cell membrane. K+

tend to diffuse out of the cell, down its concentration gradient, leaving the inside
of the cell more negative. The electric force of the negative proteins inside the
cell attracts the K+ back to the cell membrane and into the cell, resulting in
an accumulation of positive charges outside the cell. When the chemical forces
acting on K+ to move out of the cell are in equilibrium with the electrical forces
acting on K+ to move into the cell, a negative resting membrane potential of
around -90 mV is established. The reason Cl− does not influence the resting
membrane potential, despite its high membrane permeability, is due do the fact
that its equilibrium potential is close to the resting membrane potential [46].
When the cell membrane is sufficiently stimulated an action potential may oc-
cur that involves Na+, K+ and Ca2+. The four phases of the cardiac action
potential are presented in Figure 2.1. In phase 0 (depolarization phase) Na+

channels are activated resulting in Na+ influx and depolarization but they are
inactivated shortly thereafter. In phase 1 (early repolarization) the cell is briefly
repolarized due to an efflux of K+ through K+ channels and a closing of Na+

channels. In phase 2 (plateau phase) Ca2+ channels open and counteract the
effect of the K+ efflux, creating the plateau phase that distinguishes the cardiac
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action potential from the skeletal muscle action potential. Phase 3 (repolariza-
tion) begins when the increasing efflux of K+ exceeds the decreasing influx of
Ca2+ through the closing of Ca2+ channels. Furthermore, the Na+ channels be-
gin to open, resulting in repolarization of the cell. In phase 4 (resting potential)
the cell returns to resting conditions. The steady influx of Na+ is counteracted
by the energy driven Na+-K+ pump. Ca2+ concentrations are restored by the
3Ca2+-Na− energy driven pumps [9]. The involvement of the Ca2+ channels
and the resulting plateau phase (phase 2) makes the cardiac action potential
duration larger by a factor of 100 than actions potentials in skeletal muscle [30].
The action potential will cease to exist at one location with time but it can acti-
vate neighboring regions or cells since the cardiac tissue is electrically connected
(see section 2.3). Hence, the activation can propagate in any direction in a large
number of cells creating complex wavefronts on larger scale [30].

Figure 2.1: The four phases of the cardiac action potential. In phase 0 the cell
membrane depolarizes. Phase 1 is the early repolarization which
is counteracted in phase 2, called the plateau phase. Phase 3 is
the repolarization phase that ends with reestablishment of resting
conditions in phase 4, see text for details. Modified from [9].
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2.3 The Electrical Conduction System of the Heart

In the normal heart the action potentials initiating the contraction of the heart
occur in the sinoatrial node (SAN), located in the right atrium as shown in
Figure 2.2. The atria are electrically insulated from the ventricles with only
the atrioventricular node (AV node) as an electrical passage way. The AV
node delays the propagation of activation such that the atria contract before
the ventricles. When the action potentials have passed the AV node they first
propagate through the bundle of His. Subsequently the propagation continues
along the right and left bundle branches that extends through the septum before
the action potentials reach the Purkinje fibers which extend through the inner
ventricular walls. The propagation speed in the conduction system after the
passage of the AV node is several times that of the surrounding cardiac tissue
[30]. Besides the conduction system of the heart the myocardial cells are further
coupled by GAP junctions, which provide direct connection of the cytoplasm
of the cell. These cellular junctions provide a low resistance passage way for
ionic currents, and therefore the cellular activation will spread (intracellularly)
through the myocardium. Thus, the heart effectively behaves as an syncytium
[30].

Figure 2.2: Illustration showing the general anatomy of the heart and its elec-
trical conduction system. Adopted from [13].
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2.4 Pathophysiology of Long QT Syndrome

Long QT syndrome can be either congenital or acquired (drug induced). Con-
genital long QT syndrome is characterized by an abnormal cardiac repolarization
observed in the ECG as a prolonged QT interval and changes in the T-wave
morphology. The prevalence is estimated to be 1: 5,000-10,000 [34] and the
majority remain asymptomatic [20]. The phenotype1 is extremely varied how-
ever, including syncope, ventricular arrhythmias and sudden cardiac death. The
most typical ventricular arrhythmia is Torsades de Pointes which is described
by an observation in the ECG where the QRS complex is twisted around the
baseline. Prognosis in symptomatic cases is poor and if not treated 20% die
within one year and 50% die within 10 years [20]. Symptoms are related to the
cardiac system when the inheritance pattern is autosomal2 dominant (Romano-
Ward Syndrome). In the autosomal recessive case, however (Jervell and Lange
Nielsen), a further clinical manifestation is deafness [20]. Diagnosis is usually
based on QT prolongation (corrected for heart rate) in the ECG although other
T-wave morphology parameters have been investigated recently and some found
clinically relevant [11, 45, 10, 35]. Further, genetic tests, epinephrine tests and
exercise tests are applied in the diagnosis.
Considering the autosomal dominant case, 12 gene mutations all related to car-
diac ion channels are known. Both potassium (K+), sodium (Na+) and calcium
(Ca2+) are involved; long QT1, QT2, QT5, QT6 and QT7 are potassium current
or potassium current related. Long QT3, QT10, QT9, QT12 includes sodium
current or sodium related current. Finally long QT8 and QT4 includes calcium
current or calcium related current [20]. The most common types of long QT
syndrome are LQT1 and LQT2 covering 90% of LQTS [34]. This work is based
on two gender and age matched populations of normal subjects compared with
LQT2 subjects, and therefore emphasis will be put on the LQT2 type in the
following.

In section 2.2 the action potential was described at the cellular level. The
importance of potassium (K+) flux and channels were presented without de-
scribing the channels in detail. Several types of K+ channels are known to
exist, all of which are involved in repolarization as they facilitate outward flux
of potassium. One of such channels is the rapid delayed rectifying IKr channel,
also known as an HERG channel. In LQT2 subjects mutations in the KCNH2
gene that codes for channel-proteins results in abnormal function of IKr channel
(HERG) expressed as abnormal repolarization due to loss of potassium current
[20]. Clinical findings in the ECG are related to the abnormal repolarization
with prolonged QT interval, notched T-waves and T-wave alternans and ar-

1Expressed heredity.
2Other than sex chromosomes.
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rhythmias [11, 34, 54].
Treatment involves β-adrenergic blocking agents, pacemakers, implantable car-
dioverter defibrillators and others. β-adrenergic blockers are effective with LQT2
[31]; besides the pace making abilities of the SAN and the cardiac muscle, the
heart is innervated by parasympathetic and sympathetic nerve fibers. Parasym-
pathetic innervation generally lowers heart rate whereas sympathetic innerva-
tion increases heart rate. As clinical manifestations of LQT2 often occur in
stressful situations [20] the β-blockers are effective in that they block the recep-
tors of the sympathetic neurotransmitters norepinephrine and epinephrine.
In acquired LQT2 certain drugs can affect the IKr channel mimicking the abnor-
malities caused by gene mutation. Graff et al. [11] showed that distinct patterns
in the T-wave morphology seen in congenital LQT2 could quantify drug induced
ECG changes in normal subjects.



Chapter 3

The Electrocardiogram

The ECG is a non-invasive diagnostic tool that measures the electrical activity
of the heart via electrodes placed on the skin. The 12-lead ECG technique is
over 70 years old and the most widely used cardiac diagnostic tool in clinical
practice [27]. With the physiological processes underlying the ECG having been
presented in the previous chapter, the formation of the ECG and related issues
are presented in the following; section 3.1 describes the formation of the ECG,
the placement of the leads and relates the observed signal to the underlying
physiological process, section 3.2 addresses lead redundancy and explains the
significance of the individual leads, section 3.3 compares a normal and a LQT2
ECG and finally sections 3.4 and 3.5 introduce ECG noise and noise filtering,
respectively.

3.1 The ECG signal

The limb leads; lead I, II and III are obtained by placing the skin electrodes
on the right arm (R), left arm (L) and left foot (F). Differences in the measured
potentials yields these leads; I = ΦL −ΦR, II = ΦF −ΦR and III = ΦF −ΦL,
where Φ denotes the potential. Further, three augmented leads can be ob-
tained; aV R, aV L and aV F , by subtracting the augmented average of the limb
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potentials from each of the limb potentials, respectively. The average of the
limb potentials is found with a setup called Wilson’s Central Terminal (WCT),
where the sum of the three potentials is measured after a 5kΩ resistor connected
to each. The augmentation is performed by omitting one of the resistances of
the WCT; namely the resistance that is connected to the measurement electrode
[30]. Finally there are the six precordial leads, V 1-V 6, and a reference electrode
placed on the right leg. Hence the 12-lead system is comprised of 10 physical
"leads". The precordial leads are placed in accordance with specific anatom-
ical indicators and their potentials are measured with respect to the average
of the limb potentials (WCT) without augmentation. Figure 3.1 presents the
placement of the precordial leads. In the following the propagation of action

Figure 3.1: Placement of precordial leads (V 1-V 6) on the basis of anatomical
indicators. Adopted from [49].

potentials through the conduction system of the heart is described with respect
to the appearance of the typical ECG presented in Figure 3.2. To aid this de-
scription the term resultant vector is introduced. At any instant of time during
the cardiac depolarization the propagation will occur in a number of directions.
Assigning a potential vector to wavefronts traveling in these directions, a resul-
tant vector can be calculated at any instant of time (dipole source assumption)
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[59]. In the following it is assumed that the resultant vector from depolarization
will produce a positive signal when the wavefront is propagating towards a pos-
itive electrode. Similarly it will produce a negative signal when the wavefront is
propagating away from the (positive) electrode as the resultant vector is point-
ing away. In repolarization, the situation is opposite in that the resultant vector
representing a depolarizing wavefront traveling towards a positive electrode will
result in a negative signal and vice versa. When the atria are activated from the
SAN the (depolarizing) action potentials spread from the right atrium to the
left resulting in a vector that is fairly aligned with the septum. Considering the
transverse plane, lead V 5 is placed close to this direction and is considered in the
following. This atrial depolarization appears as a positive P-wave in the ECG,
shown in Figure 3.2. The action potentials propagate through the AV node to
the septum where the left part of the septum depolarizes first, giving rise to a
resultant vector pointing to the right. This is observed as the negative Q-wave.
Subsequent apical depolarization results in a resultant vector aligned with the
septum, initiating an increase in the ECG amplitude which eventually gives rise
to a peak called the R-wave. As the left ventricular wall is thicker than the right
the depolarization continues longer on the left side, resulting in a resultant vec-
tor oriented to the left. This orientation contributes to the continued rise in
the ECG forming the peak of the R-wave. The resultant vector shifts upwards,
but maintains its leftward orientation throughout the rest of the depolarization
phase. It then decreases in magnitude until a minimum is reached, termed the
S-wave, which finalizes the QRS complex. The onset of atrial repolarization
is not visible in the ECG due to the contraction of the ventricles. Finally the
ventricular repolarization begins in a transmural fashion from the epicardium
to the endocardium resulting in a vector still oriented to the left, since direction
and sign of the repolarizing wavefronts are opposite the depolarizing wavefronts.
The repolarization of the ventricles is observed as the T-wave in the ECG and
is strongly dependent on the heart rate, in that it becomes narrower and oc-
curs closer to the QRS complex at high heart rates. Following the T-wave, a
U-wave can appear under some conditions (not presented in Figure 3.2). The
origin is not well explained, but it is probably due to delayed repolarization [59].

3.2 Polarity and Redundancy of ECG Leads

Traditionally ECG leads are divided into unipolar and bipolar leads reflecting
measuring variation in voltage of a single electrode or between electrodes, re-
spectively [59]. A true unipolar signal is measured with respect to an infinitely
remote reference. Traditionally the limb leads, I, II and III are viewed as bipolar
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Figure 3.2: Idealized example of an ECG showing how the atrial depolariza-
tion is observed as the P-wave, the ventricular depolarization is
observed as the QRS complex and finally the ventricular repolar-
isation is observed as the T-wave. Adopted from [62].

leads as they measure the electrical activity of the heart from a distance using
one positive and one negative electrode. Considering the unipolar electrode the
concept of an infinitely remote reference point, or an indifferent electrode, is not
feasible in the human body as it constitutes a volume conductor. The WTC is
an attempt to produce an indifferent electrode that approximates the potential
at infinity [30]. The WTC, however, does not approximate zero potential [32]
but rather an average of the limb potentials as mentioned earlier. Even so, the
WTC still serves as a satisfactory reference [30]. Despite this limitation the
augmented leads and precordial leads are termed unipolar and leads I, II and II
are termed bipolar.
As a consequence of Kirschoffs law it must hold that lead I + II = III. In fact
any two of leads I, II, III, aVR, aVL and aVF contain the same information as
the rest as they are all derived from the same three measuring points [30]. Due
to the placement of the precordial leads close to the heart, with respect to the
WCT, they detect unipolar components of diagnostic value due to the proximity
to the frontal part of the heart [30]. In other words, when measuring a complex
source from a distance (e.g. the limb leads) the dipole assumption makes sense,
but it deteriorates when the measuring electrodes are placed close to the heart
[17]. The redundancy explains that the 12 lead ECG is represented by only 8
leads; I, II and V1-V6.
Several other systems for recording the electromyographic signals of the heart
have been suggested. These methods include systems with a smaller or larger
number of leads or different lead placement. Also, the technique of body surface
potential mapping where 200 electrodes may be applied has been introduced.
Donnely et. el. [47] provides a retrospective review of different systems in terms
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of signal content and diagnostic value suggesting both limitations and improve-
ments over the 12 lead system. Despite promising results with some systems
the 12 lead ECG system remains the most widely accepted cardiac diagnostic
tool in clinical practice.
An example of the 8-lead ECG from a normal subject is presented in Figure 3.3.
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Figure 3.3: Normal ECG: 8 leads of a 12-lead ECG from a typical normal
subject. Leads I and II represent the electrical activity of the
entire heart whereas the precordial leads represent more localized
variations in the electrical activity of the heart in the transversal
plane. See text for details.
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Comparing with Figure 3.2 it is evident that the signal represents five consecu-
tive heartbeats. Further it is noticed that the leads vary in amplitude and shape
despite sharing the same general excursions. Factors like the skin-electrode
impedance and other noise sources can influence the measured ECG greatly as
described in section 3.4.
The limb leads I and II reflect the electrical activity of the entire heart in the
frontal plane. The precordial leads reflect the electrical activity of the heart in
the transversal plane and are considered to capture more localized variations as
indicated in Figure 3.4. Leads V1-V2 primarily reflect the right ventricle and
septal wall, while leads V3-V4 reflect the anterior wall of the left ventricle and
leads V5-V6 reflect the lateral wall of the left ventricle [6].

Figure 3.4: Transversal cross section of the heart showing which localized re-
gions of the heart each of the precordial leads reflect. Leads V1-V2
primarily reflect the right ventricle and septal wall, leads V3-V4
reflect the anterior wall of the left ventricle and leads V5-V6 reflect
the lateral wall of the left ventricle. Adopted from [21].

3.3 A Normal and a LQT2 ECG

Figure 3.3 shows 8 leads of a normal ECG. It graphically demonstrates that the
leads show the same excursions, to a large extent, but still exhibit inter lead
variation. Presenting results, it is sometimes desirable to show a single lead
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rather showing all 8 leads as in Figure 3.3 as this becomes excessive. When
considering LQT2 ECGs the T-wave is of interest as explained in section 2.4.
Struijk et. al. [33] argues that when considering the T-wave, a good choice of
a single lead would be lead V5 due to its physical position with respect to the
principle direction of the T-wave loop.

The classification of ECGs performed in this work is based on all (8) leads and
as such the rationale above has no impact in that context. However, when
evaluating the generative properties of the models it is desirable to attempt to
rediscover known morphological differences between normal and LQT2 ECGs
(T-wave morphology). However these would not necessarily be the main founda-
tion of the discriminative properties of the model. In summary, it is sometimes
convenient to show only one lead when presenting data, and a reasonable can-
didate in the context of this work is lead V5.
To further evaluate lead V5 a principle component analysis (PCA) was per-

Figure 3.5: ECG from a normal subject corresponding to that of Figure 3.3.
The blue graph presents lead V5 and the red graph presents the
8-lead ECG data projected on to the first principle direction found
using principle component analysis.
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formed where the 8-lead ECG data was projected on to the first principle direc-
tion, denoted as the first PCA lead. In the entire study population of normal
and LQT2 ECGs the first PCA lead on average explains 70.1±9.7% of the vari-
ation. Lead V5 and the first PCA lead are presented in Figure 3.5 for the same
normal subject as in Figure 3.3. The figure indicates that lead V5 captures the
general excursions of the first PCA lead but that the P-wave, QRS-complex
and the T-wave are of lower amplitude. The P-wave is less well-defined and the
U-wave in particular is difficult to distinguish in lead V5, but the comparison
still supports applying lead V5 when presenting data. In Figure 3.6 lead V5 of
the ECG from the same normal subject is compared with a typical LQT2 ECG.
The description in section 2.4 suggests morphological changes in the T-wave as

Figure 3.6: Comparison of a normal and an LQT2 ECG. The blue graph rep-
resents Lead V5 from a normal subject corresponding to that of
Figure 3.3 and the red graph represents a typical LQT2 subject.

well an obviously longer QT interval. Before evaluating the appearance of the
T-wave, it is noted that the ECGs presented correspond to different heart rates.
As mentioned earlier, the T-wave is strongly dependent on the heart rate, in that
it becomes narrower and occurs more closely to the QRS complex at high heart
rates. Hence part of the difference in the appearance of the T-wave and transi-
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tion to next beat may be contributed to heart rate. However, the difference in
shape and duration of the T-wave is still distinct beyond heart rate differences.
Besides the longer duration of the T-wave in the LQT2 ECG a notch appears
before the maximum of the T-wave, which is not uncommon. The amplitude
and baseline difference is probably due to measurement conditions and subject
variations not related to LQT2.

3.4 Noise Sources in the ECG Signal

Even within normal ECGs the biological variation is large. Further, the ECG
quality is very dependent on the clinician performing the measurement as well as
the subject itself. In this work it is desirable that the discriminative properties
of the models are able to capture a general trend in the ECGs within each
group. The variation in each group can be thought to consist of inter-subject
variations as well as various noise types. In regard to the latter there is an
undesirable situation in which one of the groups to be classified contains a higher
amount of noise, e.g. a bias or very low frequency noise, that may contribute
substantially to the classification. Capturing which group of ECGs are most
noisy in the classification would diminish the classification abilities as this is
specific to the study population. In section 3.4.1 the generally accepted types
of noise in ECGs are presented. Section 3.4.2 visualizes the effect of noise by
adding various noise sources to a normal ECG and finally a brief overview of
ECG filtration is provided in section 3.5.

3.4.1 Five types of ECG Noise

Electromyographic signals (EMGs) arising from extremities, can produce noise
of a bandwidth that overlaps or exceeds the ECG bandwidth [25]. The inter-
face between skin and electrode is described by the skin-electrode impedance.
The preparation and condition of skin leads to differences in skin-electrode
impedance, which contributes to the ECG noise [63]. Changes in skin-electrode
impedance, due to electrode movement caused by e.g. skin stretch or perspi-
ration, can produce low frequency noise that is observed as baseline wander.
Further, depending on the nature of the electrode movements, the noise can
mimic the elements of the ECG and have a wider bandwidth than baseline wan-
der. This behavior are referred to as electrode motion. This type of noise is
usually caused by intermittent mechanical forces acting on the electrodes [25].
PLI (Power Line Interference) is also a well-known contributor. The mentioned
noise sources are common in that that they are controllable in some sense.
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However differing clinical environments, operators and subjects leave questions
about the degree to which this control is achieved.
To visualize the effect of noise on the ECG, five types of noise are added to a
normal ECG; 1: baseline wander (BW), 2: muscle artifacts (MA), 3: electrode
motion (EM), 4: white Gaussian noise (WGN) and 5: power line interference
(PLI). Noise types 1-3 were obtained from the The Massachusetts Institute of
Technology-Beth Israel Hospital Noise Stress Test Database (MIT-BIH NST
Database) [1, 25]. The database consists of 3 half-hour noise recordings with
two channels each and are described at physionet.org: The noise recordings
were made using physically active volunteers and standard ECG recorders, leads,
and electrodes; the electrodes were placed on the limbs in positions in which the
subjects’ ECGs were not visible. The three noise records were assembled from
the recordings by selecting intervals that contained predominantly baseline wan-
der, muscle (EMG) artifact, and electrode motion artifact.
As described in [25] the selection procedure was based on visual inspection and
the half hour signals were formed by concatenating segments of similar noise and
amplitude. Due to the selection procedure, the noise signals do not exclusively
contain one of the three types of noise. Thus, some overlap between the noise
signals is present [44]. Muscle artifacts and electrode motion were especially
hard to isolate from baseline wander [25]. Both channels of the three half-hour
signals were applied in this work.
Noise types 4 and 5 were implemented in MATLAB R© as described in the following.
WGN are essentially physically unrealizable since the bandwidth will be limited
by a finite sampling frequency. Further, the random numbers generated on a
computer are in actuality pseudo random. In order to simulate a totally uncor-
related and normally distributed signal, the function randn.m in MATLAB R© was
used. This function generates pseudo independent, pseudo random numbers
whereby WGN is simulated. The PLI was defined as a sinusoidal oscillation
consisting of a natural frequency and three overtones, with a random phase and
an amplitude inversely proportional to the overtone number.

3.4.2 Applying Noise Sources Individually to Visualize the
Effect

The recorded ECGs were sampled at 500 Hz for the LQT2 patients and at 250
Hz for the normal subjects. Noise types 1-3 from the MIT-BIH NST Database
were sampled at 360 Hz. The LQT2 ECGs and the noise recordings were down-
sampled to 250 Hz using the MATLAB R© function resample.m. The PLI sinusoidal
was also defined at this frequency.
An ECG from a normal subject, appearing free of noise, was chosen. Lead I,
II and V1-V6 were corrupted with different randomly sampled noise signals in
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each subject, thus creating a set of noise samplings corresponding to the number
of leads. When adjusting the noise level, this set of noise signals was fixed such
that only the magnitude was adjusted at the different noise levels. For noise
types 1-3, the 10 s noise signal required for each baseline lead, was sampled
by randomly selecting a starting point from the half-hour noise signal and then
sampling 10 s of consecutive data. Both channels of each of the two half-hour
signals were sampled. The WGN and PLI were simulated after the same prin-
ciple, i.e. individual realizations for each lead were fixed when increasing the
noise by adjusting the magnitude.
For each subject the magnitude of a given noise signal was identified by merging
the leads and the noise signals, respectively, to two long signals which facilitates
the calculation of an overall SNR. Thus, the merged signals provided means of
calculating which magnitude of the merged noise signal corresponded to a given
overall SNR. Subsequently each of the individual noise signals were adjusted
with this calculated magnitude. As a consequence, the SNR’s stated in the fol-
lowing correspond to the overall SNR. Figure 3.7 shows lead V5 of the normal
ECG with noise applied, following the procedure described above. All types of
noise are shown for three levels of noise; SNR: 10 dB, SNR: 0 dB and SNR: -4
dB (the corresponding root mean square amplitude ratios are 3.2, 1 and 0.6).
As these SNR’s corresponds to the overall SNR described above, the SNR of
lead V5 depicted in Figure 3.7 may deviate from the stated levels.
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3.5 Filtering ECGs to Remove Noise

Section 3.4.1 presented five examples of ECG noise. White Gaussian noise is,
by the nature of its theoretically infinite sampling frequency, not treatable with
regards to lowering the SNR. It can be thought of as unexplained variation,
measurement errors and the like. It was included in the presentation of ECG
noise to visualize the effect of a noise source with an equally distributed spectrum
on the ECG. It is highly desirable that the differences between the two study
populations is founded in a physiological process related to the heart and not in
artifacts of the measurement process, biological or otherwise. In order to plot
the amplitude spectrum of the noise signals, the noise application procedure
described in section 3.4.2 was followed; a random starting point in the noise
recordings is chosen and a noise signal of the same length as the ECG is sampled.
If the full length (non sampled) root mean square (rms) values of the 3 biological
noise sources are added, EM, MA and BW correspond to 49%, 18% and 33% of
the total rms, respectively. As BWwas hard to isolate from the remaining during
noise recording ([25]) it is expected that EM and MA overlaps BW in the low
frequency range (below 1 Hz). Figure 3.8 presents the amplitude spectra of lead
V5 of an ECG and the three biological noise sources. To ease the comparison

Figure 3.8: Amplitude spectrum lead of V5 of ECG (blue), electrode motion
noise (green), muscle artifact noise (cyan) and baseline wander
noise (red). The original noise amplitude is adjusted such that
SNR is 14 dB for the three types.

the amplitude of the original noise signals was adjusted such that the SNR was
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14 dB (rms amplitude ratio close to 5) for all three. The fundamental frequency
of the QRS complex is around 10 Hz while it is 1-2 Hz for the T-wave. Also,
most diagnostic information is contained below 100 Hz in adults [50]. Higher
frequency components could be notches within the QRS complex or the T-wave
which, for the latter, is observable in LQT2 subjects. The frequencies depend
on the heart rate, which sets a lower bound for the frequency content [50].
Bradycardic subjects (<40 beats per minute) corresponds to a lower bound of
0.667 Hz and are uncommon in the clinic. Further, the study population does
not include any subjects with a heart beat in that region. Since the study
population ECGs are sampled at 250 Hz the highest frequency content in the
sampled ECGs are 125 Hz.

Figure 3.9: Frequency response of filter and example of signal filtering. Top
panel shows the gain in the frequency range 0-1 Hz, middle panel
shows the phase in the frequency range 0-1 Hz and the bottom
panel shows an ECG from study population before and after fil-
tering.
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Figure 3.8 shows that at an SNR of 14 dB both EM and MA have high fre-
quency components (100-125 Hz), with an amplitude in the range of the ECG.
However, in order to preserve information and prevent introducing differences
in the study population by inappropriate filtering, focus is maintained on the
low frequency range. The main components of BW is typically said to be found
below 0.5 Hz and BW can be greatly reduced by high pass filtering. The cutoff
frequency has been the subject of some concern as a cutoff of 0.667 Hz can
result in distortion of repolarization and ST-segment changes. However, bidi-
rectional digital filters eliminate phase shift and so high pass filtering of this
kind, with a cutoff frequency of up two 0.667 Hz, is in compliance with AHA
recommendations, Recommendations for the Standardization and Interpretation
of the Electrocardiogram. Part I: ... [50]. Hence it was chosen to apply a high
pass filter to the data to remove baseline wander and other noise sources hav-
ing spectral components in this region. A bidirectional digital high pass Kaiser
Window FIR filter with a cutoff frequency of 0.5 Hz was implemented. Fig-
ure 3.9 presents the frequency response in terms of gain (top panel) and phase
(middle panel), within the frequency range 0-1 Hz. Furthermore, an ECG from
the study population is shown before and after filtering. The example ECG was
chosen by visual inspection and shows the beneficial effect of removing baseline
wander.



Chapter 4

Previous Work

This chapter presents selected works within the field of ECG characterization
and discrimination. A reflection on the methods, relevant to the current thesis,
are provided at the end of this Chapter.
The literature indicates that a large amount of work has been performed in the
field of ECG segmentation, i.e. wave labeling and the like. A relevant example
could be that of identifying abnormal beats in a 24 hour Holter ECG recording,
which is a very time consuming task. Computerizing the process, ECG beats, as
defined by their segmentation, can be identified and characterized automatically.
The features extracted from the ECG and the methods applied are numerous.
Experience shows that hidden Markov models in various forms have been applied
extensively in ECG segmentation and discrimination in different contexts. The
selection of works presented below is chosen as representative of the methods
that are typically encountered in the field, but a strong emphasis is put on the
application of hidden Markov models (HMMs).

4.1 Signal Recognition and ECG Modeling

Title: The Application of Pattern Recognition Technology in the Diagnosis and
Analysis on the Heart Disease: Current Status and Future (2012)
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In this review article Jin et. al [22] motivates the increasing importance of au-
tomatic detection and analysis methods applied in ECG pattern recognition in
the diagnosis of cardiovascular disease. Pattern recognition methods are usually
either statistical or structural. The process is broken down in to 1) feature ex-
traction and 2) classification and prominent methods within both are described.
It is stated that detection and location of ECG waveforms form the basis of an
automatic ECG diagnosis system. Current basic methods of feature extraction
include the adaptive threshold method, the syntax method, the wavelet anal-
ysis method, morphology operation, hidden Markov models, linear prediction
and correlation method among others. Methods are briefly presented and their
advantages and disadvantages are described. With regards to classification it is
stated that classification of QRS waves are mainly dependent on the effective-
ness of the feature extraction besides, of course, the classification method. Pat-
tern recognition oriented classification mainly applies linear classification, Bayes
classification, K-adjacent rules, support vector machine classification, clustering
methodology and neural network methods, among others. Methods of combin-
ing classifiers are also presented.
Perspective: It is stated that ECG denoising and specific ECG pattern recog-
nition (P wave, QRS wave etc.) have currently been performed with good results
whereas automatic ECG classification has not shown satisfactory results. The
need of a global ECG classifier is motivated and it is pointed out that existing
automated analysis systems are based on short term observational data.

Title: Machine Learning in Electrocardiogram Diagnosis (2009)

Salem et. al [41] provides a review of machine learning applications in ECG
classification. The classification process is split in feature extraction and classi-
fication and comparative tables of classification accuracies within each machine
learning scheme are presented. Support Vector Machine Methods: feature
extraction covers symptoms, PCA, direct cosine and wavelet transform and the
raw 8 lead ECG, amongst others. Classification accuracy ranges from 88% us-
ing the raw ECG as feature to a 100% using symptoms obtained from patients.
Fuzzy Methods: direct wavelet transform and other ECG parameters as fea-
ture. Classification accuracy ranges from 98.1% to 100%. Artificial Neural
Network Methods: Feature extraction methods are the discrete wavelet trans-
form, eigenvector methods, rate of heartbeat and waveform characteristics such
as amplitudes and duration, amongst others. Various types of ANN methods
are presented and the classification accuracy ranges from 79% to 100%. Rough
Set Theory: various non-time series features are extracted and applied in
ECG classification resulting in an accuracy of 87% to 93%. Hidden Markov
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Models: as feature extraction method the wavelet analysis method is applied
resulting in a classification with 70% sensitivity. In terms of classification Salem
et. al describe hybrid methods where multiple classifiers are fused. Results show
80% to 99.9% accuracy.
Perspective: Generally classification accuracies fell within the range of 70% to
100% but it must be noted that the referenced works were performed with dif-
ferent data and with different objectives for classification. Salem et. al further
mentiones the importance of considering sensitivity and specificity issues given
the possible diagnostic context.

Title: Kernel based Hidden Markov Model with applications to EEG signal clas-
sification (2005)

In this study [66] Xu et. al introduces a kernel based HMM, where they combine
the hidden Markov and support vector machine (SVM) framework (KHMM) to
be applied in signal classification. They state that the hidden Markov model is
an elegant statistical model particularly suitable for modeling temporal signals
such as speech and biosignals, giving a good generalized representation. The
support vector machine is also a discriminative model capable of maximizing
the margin between classes, and thus considering the error rate during classifi-
cation. By combining them they explore the temporal dynamics of the signals
while maximizing the margins between classes, thus taking the misclassification
margin into account while training the HMM.
Perspective: The model performance was evaluated using features from 100
training examples of 28-channel EEG signals using 20 fold cross validation and
comparison to SVM and HMM. The accuracy obtained was 78% for SVM, 84%
for HMM and 88% for KHMM.

Title: Support Vector Machine for Assistant Clinical Diagnosis of Cardiac Dis-
ease (2009)

Wei et. al [24] evaluated SVM methods in classification of normal and abnormal
(not specified) ECGs in cardiovascular disease. Then it is stated that automatic
ECG classification relies on an initial effective ECG segmentation followed by
analysis and classification of the extracted waves. The input data in this work
are already-segmented full beats. Wei argues that these differ in length and so
they are transformed in some non specified manner (presumably some form of
time-warping). Channels of ECG data are applied in the classification either
in series or in parallel and in both cases no form feature extraction (besides
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segmentation) is performed prior to the classification; the raw ECG is used as
input. Various types of radial basis functions are applied in the SVM classifica-
tion and classification precision varies from 58%-89.25% when ECG data input
is applied in series to 87%-91.25% in the parallel input case.
Perspective: Raw ECG beats are applied with good result, particularly in the
parallel case. Classification is not based on derived ECG features, however, as
the beats are extracted and transformed in to the same length some feature
extraction has effectively been performed. Results also show that the choice of
kernel parameters greatly influences the classification accuracy.

Title: Cardiac arrhythmia classification using wavelets and hidden Markov
models–a comparative approach (2009)

The study [26] applies a HMM to model features derived from linear segmen-
tation or wavelets of ECG beats in order to classify beats involved in cardiac
arrhythmia. The study uses a left-to-right HMM with six states and five Gaus-
sian components per state to model the features.
Perspective: It concludes that features from the wavelet transform outperform
linear segmentation in beat classification.

4.1.1 HMM Methods Applied in ECG Recognition

Title: Myocardial infarction classification with multi-lead ECG using hidden
Markov models and Gaussian mixture models (2012)

The general scope of this study by Chang et al. [51] is the separation of normal
ECGs from ECGs containing changes related to myocardial infarction. In sum-
mary, the methods cover segmentation of the ECG using hidden Markov models,
evaluating the likelihood of extracted segments with the HMM and finally clas-
sifying on the basis of the HMM features using both GMM and SVM. Chang et
al. stress the need for an automatic classification system and state that previous
work is mostly comprised of pattern recognition (segmentation), noise removal
and ischemia detection. In this context HMM has mostly been applied in de-
lineation, segmentation or component detection (seemingly covering the same
concept, namely that of defining segments of the ECG as corresponding ECG
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waves). Further, it is stated that the study is the first to identify each (presum-
ably full) beat by its waveform and apply it in classifying myocardial infarction.
The study applies HMM in both segmentation and log-likelihood calculation.
Whole beats are extracted and sample sizes are fixed because time-warping is
not applied. Four relevant leads of each ECG are evaluated with regards to
log-likelihood applying the HMM models. A left-to-right transition matrix as-
sumes time-series input, which is beneficial. Full transition is also evaluated to
test the time-series assumption (full type seems to capture most of the left-right
properties). Applying 6 and 16 state transition matrices, a different number
of components in the GMM and an RBF kernel in the SVM, the classification
accuracies were; 71%-83% for GMM and 71%-75% for SVM.
Perspective: HMM were used in both segmentation and log-likelihood evalu-
ation of whole beats as feature for classification. However, the extracted beat
sample lengths were truncated because otherwise the probability value would
be "unfair" with regards to classification. Illustrations of the matter are vague
and presumably new tachycardic subjects would pose a problem. Best results
were seen with the 16 state HMM and GMM outperformed SVM. With SVM
the key issue was found to be the selection of kernel function.

Title: Modelling ECG Signals With Hidden Markov Models (1996)

In this study Koski [37] uses a continuous probability hidden Markov model to
model segmented ECG signals. The ECG signals are approximated with broken
lines, providing two features; the duration of the line segment and the amplitude
of the line’s starting point. Subsequently features are modeled using a hidden
Markov model. To validate the trained model ECG simulations are performed.
Koski found that a small model using 15 states was not able to capture the
dynamics of the ECG, since it wrongly mixes the QRS complexes with the T-
waves. A 25 state model was found to be sufficient in modeling an entire heart
beat cycle. However, he argues that an increased number of states might be
required to model different ECG variations while simultaneously constraining
the number of states due to the potential of overfitting the training data and
the loss of generalization capability. To investigate the classification property of
the HMM, Koski used a 30 state HMM to model four normal ECG signals and
four ECG signals containing premature ventricular (PV) beats. Subsequently,
the models were tested using two normal ECG signals and two containing PV
beats. Using the maximum probability of the signals given the models, all test
signals were correctly classified.
Perspective: The study concludes that HMM is a very suitable method for
modeling ECG signals and further it can be used to classify new unseen ECG
signals. Koski states that the strength of the HMM is that it can be used with-
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out expert knowledge, can model the signal directly, and it produces probability
values instead of simply yes/no decisions. The disadvantages are that the HMM
must be analyzed in order to be trusted. However, a simulated ECG generated
from the model is an excellent way to visually inspect the result of the learning.

Title: Heart Signal Recognition by Hidden Markov Models: The ECG Case
(1994)

This work [39] covers to ECG segmentation applying a specialized form of the
continuous variable duration hidden Markov model (CVDHMM). In a segmen-
tation context (i.e. labeling P, QRS and T-waves) Thoraval explains the appli-
cation of HMMs in ECG segmentation and points out some weaknesses of the
HMM approach; in a segmentation context the wave is associated with a state
who’s emission density is considered to be stationary with time and forms the
basis of the segmentation. It is further stated that the non-stationary properties
of ECG waves degrade the robustness of a segmentation model based solely on
the stationary statistical properties of the ECG waves, though marginal sta-
tionarity is observed in the ECGs. Furthermore, the stationary assumption
might eliminate important shape descriptors characterizing the ECG waves. To
overcome this issue a modification of the CVDHMM is proposed; one state is
partitioned in to two subsets where one subset models the wave and the other
an "interwave" corresponding to intermediate observations. Intermediate obser-
vations need not be present, and so the one-to-one registration of ECG sam-
ples and observations is not necessary, effectively decoupling the simultaneous
segmentation-identification process as in the normal CVDHMM. Preprocessing
amounts to a non-linear transform and wavelet analysis producing the required
features.
Perspective: Without quantifying the applicability further than presenting
two examples of segmentation of noisy ECGs it is implied that the lacks of the
normal CVDHMM were confirmed during simultaneous segmentation applying
the new and regular method, respectively.

Title: ECG Signal Analysis Through Hidden Markov Models (2006)

In this work Andreão et. al [5] applies hidden Markov models in both ECG
segmentation and classification of premature ventricular beats and ventricular
beats. The relevance of automated ECG analysis is stressed and it is pointed
out that the ECG segmentation prior to the actual classification is crucial for
accurate results. Also, most works apply heuristic rules in the segmentation
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process. A large number of classification methods exist but the advantages of
HMMs are pointed out; these include that a waveform sequence can be modeled,
intra-individual variability can be incorporated in to the model state transitions,
and that the HMMs can be applied in both beat detection, segmentation and
classification. The approach is a two-step process where the ECG data is first
segmented using the HMM and then premature ventricular beats and ventricu-
lar beats are classified using a heuristic and a statistical approach, respectively.
The heuristic approach applies segmentation results whereas the statistical ap-
proach applies the likelihood of the QRS complex as given by the HMM model
(which is essentially the first step). The method covers both single and double
channel ECG data and a continuous wavelet transform that is performed prior to
the segmentation. The HMM model is comprised of several sub models for each
waveform such that it is effectively waveform modeling and not beat modeling.
This elementary waveform model consists of 4 HMMs for the QRS complex,
2 HMMs for the P-wave, PQ-segment, ST-segment and T-wave, respectively,
and one HMM for the baseline. A single Gaussian is applied and summing the
HMM states for one set of waveform sub models, 19 states are applied (i.e. plus
remaining sub models). In the segmentation a generic model is adapted to each
individual. Considering the non-heuristic approach the QRS complexes are la-
beled as abnormal (ventricular beats) by considering the dominant QRS sub
HMM in each individual. The labeling is performed by comparing with the re-
maining part of the individuals’ QRS complexes while holding the log-likelihood
against an adaptive threshold, meaning that it is therefore unsupervised.
Perspective: Hidden Markov models are suitable for ECG modeling, beat
detection, segmentation and classification. Classification of ventricular beats,
based on the QRS log-likelihood is performed with 99.79% sensitivity. Prema-
ture ventricular beat detection is performed with 87% sensitivity.

Reflections on Methods: As mentioned in the introduction the motivation of
this work was the possibility of characterizing ECGs without the use of station-
ary features extracted from MUSE R©. It seems, however, that most works adopt
this approach in that ECGs are most often segmented before any form of dis-
crimination of the waveform or ECG types is performed. HMMs in automated
ECG analysis are often applied in the segmentation process by using the hidden
state sequence. However, the HMM approach also provides log-likelihood which
can be used to discriminate the ECGs. Chang et al. [51] claims to be the first to
both identify and classify full beats using the HMMs. Koski [37] states that the
strength of the HMM is that it can be used without expert knowledge, it can
model the signal directly, and it produces probability values instead of simply
yes/no decisions. The disadvantages is that the HMM must be analyzed in order
to trust them, but a simulated ECG generated from the model is an excellent
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way to visually inspect the result of the learning. Thoraval [39] observes that
a weakness of the HMM approach is, in a segmentation context, that a given
wave is associated with a state who’s emission density is considered to be sta-
tionary with time which forms the basis of the segmentation. It is further stated
that stationarity of ECGs (e.g. wave mean) is not an appropriate assumption,
although marginal stationarity is observed in ECGs. In a classification context
however, using a method that forces stationarity in some ways, could be ben-
eficial because the aim is to capture general trends in each group. Thus, the
HMMs should provide a good generalized representation of the ECGs.
Besides the actual classification, emphasis in this work is also put on character-
ization of the ECGs. Preferably the applied machine learning methods should
also maintain some generative capabilities that could potentially lead to the
identification of the general ECG trends captured by the models. Perhaps these
observations could even be related to the underlying physiological process. Fi-
nally, to improve the classification results while applying HMMs, the literature
suggests that SVM poses a good candidate. Also, SVM appears to have been
used extensively in the field of ECG characterization and discrimination.



Chapter 5

Machine Learning Methods

In following chapter the different machine learning methods applied in this work
are explained. First a brief introduction to machine learning is given. The basic
concepts of training models are described in section 5.1 and their validation is
described in section 5.2. In section 5.3 the reasoning behind the choice of ma-
chine learning models is presented with emphasis on the knowledge acquired in
the literature review in section 4.
The Hidden Markov Model and its framework are explained in the next four
sections. In section 5.4 the discrete Markov Model is introduced followed by a
description of the Gaussian Mixture model in section 5.5. Section 5.6 describes
the fusion of the Markov model and the Gaussian Mixture model to form the
Hidden Markov Model. Issues regarding the implementation of Hidden Markov
models are discussed in section 5.7, addressing problems such as underflow, sin-
gularity issues and speed. Finally an explanation of the discriminative model
Support Vector Machine is provided.

5.1 Basic Concepts of Machine Learning

Machine learning is a cross field between statistics, data mining and pattern
recognition. The basic idea of machine learning is to construct a system that
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can adapt or learn from data in order to build a model capable of performing
descriptive and/or predictive tasks. A descriptive task is concerned with finding
interpretable patterns in data, while predictive tasks strive to predict unknown
or future values of variables given some input features. The latter could be the
classification of some unknown object based on its features or a regression where
values could be predicted based on the learned functional relationship between
input and output.
Machine learning models are separated into supervised (where the class labels
of input data are known) and unsupervised (where they are not).
In a supervised classification scheme a model is built using a training set contain-
ing information/features of the data objects including the class labels. Based
on the training data, a learning algorithm is used to construct a model with a
good generalization capability, i.e. it can accurately classify new unknown data.

5.2 Evaluating Model Performance

To measure the performance of a given model the training data is often split in a
training set and a test set. The training set is used to build the model while the
test set is utilized as unknown data, to be classified by the model. A measure
for how well the model fits the training data is termed the training error, whilst
the performance on the test set is termed the test error or generalization error.
Models that fit the training data well, but have a high test error, are termed
overfitted. Various measures are taken to avoid overfitting, based on the model
setup, but often the generalization error provides a means of determining the
complexity of the best models [61].
A way to obtain a good estimate of the generalization error, is to use k-fold cross-
validation. Using this approach data is segmented into k equal size partitions.
In each k run one of the partitions is chosen as test set and the remaining are
used for training. Each data object is used k−1 times for training and one time
for testing resulting in k so-called cross-folds. For each cross-fold the accuracy
is determined, as

Accuracy = Number of correct predictions
Total number of predictions (5.1)

By comparing the accuracy between the different models, one can determine the
better model. Having multiple estimates of the accuracy for each model, it can
be determined whether the differences are statistically significant.
Two other important model evaluation metrics are the sensitivity and specificity.
The sensitivity or true positive rate is the fraction of positive examples predicted
correctly by the model and is in a healthy care setting given as:
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Sensitivity = Number of subjects correctly diagnosed as sick
Total number subjects diagnosed as sick (5.2)

The specificity or true negative rate is the fraction of negative examples pre-
dicted correctly by the model and is, in a health care setting, given as:

Specificity = Number of subjects correctly diagnosed as healthy
Total number subjects diagnosed as healthy (5.3)

Other ways to examine the performance of a model is to calculate the confusion
matrix. The confusion matrix is set up as presented below.

Predicted Class 1 Predicted Class 2
Class 1 True Positive False Negative
Class 2 False Positive True Negative

Table 5.1: Illustration of a confusion matrix for a binary classification problem.

The confusion matrix simply summarizes the number of objects predicted cor-
rectly or incorrectly. This matrix may reveal if, for example, the test objects
are more often incorrectly classified as class 2, but never incorrectly classified
as class 1.
A graphical approach, showing the trade-off between the true positive rate and
the false positive rate, is the receiver operating characteristics curve (ROC). In
the ROC the true positive rate (sensitivity) is plotted on the y axis while the
x axis shows the false positive rate (specificity). A good classification model
should have an ROC curve that is located in the upper left corner. A random
classification model would reside along the diagonal.
A way to quantify the ROC curve is to calculate the area under the curve
(AUC). This evaluates which model is better on average. An random classifica-
tion model would have an AUC close to 0.5 while a perfect classification model
would have an AUC of 1. The AUC of a classifier is equivalent to the proba-
bility that the classifier will rank a randomly chosen sick subject higher than a
randomly chosen healthy subject, where a high ranking indicates sickness [23].
It should be noted that it is possible for a classifier with a high AUC to perform
worse in specific regions than one with a low AUC.
Different types of ROC curves and their corresponding AUC are presented in
Figure 5.1.
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Figure 5.1: Illustration of two ROC curves for two different classification mod-
els. The model represented by red curve is a random classifier,
while the model represented by the blue curve is superior to that
of the red.
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5.3 Choice of Machine Learning Models

Given the previous work in the field of ECG modeling and classification the
hidden Markov model appears to be a good candidate for the intended purpose,
since

• It is particularly suitable for modeling temporal signals such as bio-signals
[66] and is used in a range of applications in bioinformatics [18].

• It has been used to model ECG signals and has proven able to capture
features of the ECG’s [37], [24] as well as ECG derived features [26], [41].

• It has been used for ECG classification providing good results [37], [22],
[14], [26], [15].

• It has the capability of providing output to more discriminative machine
learning models [51].

• It is a generative model, which means it can be used to simulate what
has been learned, thus providing insight into the captured features from
training data [37].

• Numerous well described methods of modification exist to improve the
classification or modeling capabilities [55], [66], [4], [38], [58], [67] .

• Extensive use of HMMs have seen many ECG applications such as feature
extraction and delineation [40].

Many studies have tried to model single ECG beats [37], [24], with a few model-
ing multiple leads, but often only with individual HMM’s [51]. In this thesis an
8-dimensional continuous emission HMM is chosen to model 10 second ECG’s,
to able to model covariance between leads, to simulate 8-lead ECGs and to
capture some relation between beats. To have complete control of the model
and since such a model is not available in the MATLAB R© statistical toolbox [42]
the model is implemented from scratch in MATLAB R© version R2012a (7.14.0.739)
using both 32-bit and 64-bit versions. As in the work of Chang et al. [51]
a Support Vector Machine using the output probabilities from the HMMs as
features, is applied in order to investigate possible improvement of the classifi-
cation. The SVM is chosen since, as will be described in section 5.8, it is able
to produce a higher feature space and has good discriminative capabilities. The
SVM implementation from the Bioinformatics Toolbox Version 4.1 is used only
applying default kernel options, hence black-boxing the choice of kernel.
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5.4 Markov Models

Markov models are stochastic processes often used to model sequential data [3].
They are used to create mathematical models for the temporal evolution of given
phenomena with probability as an important factor. They have been applied in
a very broad range of disciplines spanning financial modeling [28], operational
research [2], environmental predictions [60], biomedical signal analysis [19] and
especially in speech recognition [36], [68], [56]. A simple Markov model is also
called an observable Markov model, since the output of the process is observable
events equal to the states of the model [55].
In a first-order Markov chain model the state at time t+ 1 only depends on the
previous state at time t. This memoryless property of the process is also referred
to as the Markov property. A simple first-order Markov chain is illustrated in
Figure 5.2.

Figure 5.2: Illustration of a first-order Markov chain in which the current state
only depends on the previous states. The observable values xn are
equal to states of a simple Markov model.

A Markov model can be formalized with the following elements:

1. N: Number of states in the model
S = {S1, S2, ..., SN}

2. State transition probabilities:
A = [aij ] where aij ≡ P (qt+1 = Sj |qt = Sj)

3. Initial state probabilities:
Π = [πi] where πi ≡ P (qt = Si)

where

• t is the discrete time at a given state:
t = {1, 2, ..., T}

• Q is the state sequence:
Q = {q1, q2, ..., qT }
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With aij being probabilities, it must satisfy

aij ≥ 0 and
N∑

j=1
aij = 1 (5.4)

which also applies for πi

πi ≥ 0 and
N∑

i=1
πi = 1 (5.5)

An example of a Markov model with two states is shown in Figure 5.3.

Figure 5.3: Graphical representation of a simple Markov model with two
states. Πi is the probability that the system starts in state Si

while aij is the probability of a transition from state Si to Sj .

Weather predictions are an often used as an intuitive example of a sequence,
where a simple Markov could be used as a model. For simplification assume
that the weather can be either sunny (☼) or rainy (9) on a specific day. The
states of the Markov model are directly observable and the states will there-
fore directly describe the weather. An example of some parameter values for a
Markov model describing this scenario could be:

A =
[
0.6 0.4
0.3 0.7

]
Π =

[
0.2 0.8

]T
The top diagonal element represents self-transitions to the sunny state whereas
the lower diagonal element corresponds to the rainy state. Hence, the probabil-
ity that the next day should be sunny given that the current day is sunny, is
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0.6. On the other hand, the probability of rain next day is 0.4. The probability
of a five day weather prediction, e.g. {Sunny,Sunny,Rain,Rain,Sunny} would be:

π☼a☼,☼a☼,9a9,9a9,☼ ⇒

0.2 · 0.6 · 0.4 · 0.7 · 0.3 = 1.01%

In order create an applicable model, the parameters must be estimated from
already observed sequences. Given K sequences of length T, the parameter Π
and A is trained using the following estimation formulas [3]:

π̂i = # of sequences starting with Si

# of sequences =
∑

k 1(qk
1 = Si)
K

with 1(x) being 1 if x is true or 0 if x is false.

âij = # of transitions from Si to Sj

#of transitions fromSi
=
∑

k

∑T−1
t=1 1(qk

t = Si, q
k
t+1 = Sj)∑

k

∑T−1
t=1 1(qk

t = Si)

5.5 Gaussian Mixture Models

The Gaussian mixture model (GMM) is not as much a model as it is a probability
distribution consisting of multiple Gaussian distributions. Each Gaussian can
be viewed as being a hidden or latent process from which visible data values can
be drawn. The purpose of the GMM is to estimate an optimal (local or global)
set of parameters of a predefined number of Gaussians in order to maximize
the conditional probability as if the specific data were being generated from the
GMM. A number of techniques for maximizing the likelihood exists [8], and one
of them is the elegant expectation-maximization (EM) algorithm.
The probability of a data point x given a GMM, is defined as

p(x) =
K∑

k=1
WkN(x|µk,Σk) (5.6)

with K being the predefined number of Gaussians, µk and Σk being the mean
values and covariance structure of the k’th Gaussian component and Wk the
weighting or mixing coefficient. These parameters must satisfy

0 ≤Wk ≤ 1 (5.7)

and
K∑

k=1
Wk = 1 (5.8)
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An important quantity to be estimated is the conditional probability of a specific
Gaussian component given a data point. This can evaluated by introducing γkx

as the responsibility that the k’th component takes in explaining the observation
x [8] and it can be calculated by

γkx = WkN (xn|µk,Σk)∑K
j=1WjN(xn|µj ,Σj)

(5.9)

In order to model data in the best possible way from a probabilistic standpoint,
the following log-likelihood function should be maximized

ln(p(x|W,µ,Σ)) =
N∑

n=1
ln (

K∑
k=1

WkN(xn|µk,Σk)) (5.10)

with N being the number of data points. The maximization can be performed
by applying the EM algorithm.

5.5.1 EM algorithm in GMM

The expectation-maximization or EM algorithm is a general framework for iden-
tifying maximum likelihood solutions for models having hidden or latent vari-
ables. The EM algorithm is an iterative process that optimizes the log likelihood
until either a convergence or maximum iteration criterion is satisfied [8]. The
steps of an EM algorithm in a GMM framework are presented below and a visual
illustration in 2D is presented in Figure. 5.4:

1. Initialize µk, Σk and weights Wk and calculate the log-likelihood. In Fig-
ure 5.4 (a) the green data points will be modeled using two Gaussians. The
two Gaussians (a red and a blue) are randomly initialized with different
means, equal variance and with zero covariance.

2. Expectation step: Evaluate γkx using equation 5.9. This step is illustrated
in Figure 5.4 (b). Given the means and covariance structure of the two
Gaussians each data point is given a color in the spectrum between red
and blue, illustrating the probability of being generated from a particular
Gaussian. Hence, a data point having a high probability of being generated
from the blue Gaussian is colored blue, while a data point is red if it has
a high probability of being generated from the red Gaussian. Data points
having almost the same probability of being generated from either of the
Gaussians are colored purple.

3. Maximization step: The parameters µk, Σk andWk are re-estimated using
the responsibilities from the expectation step, by setting the derivative of



44 Machine Learning Methods

equation 5.10 to zero with respect to each of the parameters. The re-
estimation formulas are:

µnew
k =

∑N
n=1 γkxxn∑N

n=1 γkx

(5.11)

Σnew
k =

∑N
n=1 γkx(xn − µnew

k )(xn − µnew
k )T∑N

n=1 γkx

(5.12)

Wnew
k =

∑N
n=1 γkx

N
(5.13)

In Figure 5.4 (c) the means and covariance structure of the blue and red
Gaussians are updated based on the given color/responsibility of the data
points.

4. Evaluate the log-likelihood.

5. Terminate if convergence criteria are met, otherwise repeat steps 2-5. In
Figure 5.4 (d)-(f) the Gaussians repeat the EM algorithm until they satis-
factorily model the two data clusters. At this point the log-likelihood will
have converged indicating a maximum in the log-likelihood function.

If performed correctly the log-likelihood of the EM algorithm will always in-
crease or stay the same if convergence is achieved. However, the log-likelihood
function will in general have multiple local maxima and so the identification of
a global optimal solution cannot be expected. The problem regarding presence
of singularities is discussed in section 5.7.

A frequently used method of determining a suitable initialization of the means
and covariances is the K-means algorithm [8]. Using the K-means algorithm
could help finding consistently good solutions [16]. The K-means algorithm is
an unsupervised cluster method that resembles the GMM. It aims to construct
k-clusters for each observation belonging to the nearest mean and requires a
smaller number of computations than the GMM.

5.6 Hidden Markov Models

Having introduced the Markov chain and the Gaussian mixture model, the ex-
tension to the Hidden Markov model is made easier.
In the Hidden Markov Model (HMM) the states are not directly observable [3].
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Figure 5.4: A illustration of the EM algorithm in a Gaussian mixture model
framework. In (a) two Gaussians are randomly initialized with
zero covariance. In (b) the responsibilities for each data point
are calculated (expectation step). In (c) the parameters are up-
dated (maximization step). In (d) through (f) the EM algorithm
is repeated until convergence is achieved. Modified from [8].
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In a given signal the observable values are thought of as being emissions from
these latent states.
The discrete HMM can be formalized with the following elements [55]:

1. N: Number of states in the model
S = {S1, S2, ..., SN}

2. M: Number of distinct emissions in the signal
V = {v1, v2, ..., vM}

3. State transition probabilities:
A = [aij ] where aij ≡ P(qt+1 = Sj |qt = Si)

4. Emission probabilities:
B = [bjm] where bjm ≡ P(Ot = vm|qt = Sj)

5. Initial state probabilities:
Π = [πi] where πi ≡ P(qt = Si)

where

• t is the discrete time at a given emission:
t = {1, 2, ..., T}

• O is a given d-dimensional emission sequence:
O = {O1, O2, ..., OT }

• Q is the state sequence:
Q = {q1, q2, ..., qT }

The HMM model can be defined by the parameters λ = (A,B,Π), since N and
M are implicitly defined by A and B.
The discrete HMM can easily be extended to a continuous observation HMM by
modeling the emission probabilities as probability densities. A popular choice
is to model the emissions as Gaussian probability densities specified only by
a mean and a covariance parameter [55]. Applying a mixture of Gaussians to
model the emission probability for each state Sj , the probability of a multi-
dimensional observation O at time t given a state Sj , is calculated using the
multivariate Gaussian distribution and weight Wk:

bjOt
=

K∑
k=1

WkN (Ot|µk,Σk) (5.14)
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with K being the number of Gaussian components for the emission probability of
each state Sj , 1 ≤ j ≤ N . The multivariate Gaussian distributionN (Ot|µk,Σk)
is defined as:

N (Ot|µk,Σk) = 1
2πn/2|Σ|1/2 exp (−1

2(Ot − µjk)T Σ−1(Ot − µjk)) (5.15)

with n being the dimension of the input sample x.
An illustration of a Hidden Markov model using a Markov chain representing
hidden variables and an emission model with single a Gaussian is presented in
Figure 5.5.

Figure 5.5: Structure of a Hidden Markov model using a Markov chain rep-
resenting hidden variables and an emissions model with a single
Gaussian. Modified from [65].

The three basic problems of HMMs are:

1. To calculate the probability of an observation sequence given the model
λ.

2. To find the state sequence, that has the highest probability, given an
observation sequence O and an HMM λ.

3. Given a number of observation sequences, train an HMM such that it
maximizes the probability of generating the sequences.

The solution to these three questions will be answered in the following sections.
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5.6.1 Probability of an Observation Sequence

In order to calculate the probability of an observation sequence given an HMM
model λ the joint probability of the observation sequence O and state sequence
Q must be calculated followed by marginalization over the joint probability, by
summing all possible Q [3].

P (O|λ) =
∑

All possible Q
P (O,Q|λ) (5.16)

with the joint probability given by:

P (O,Q|λ) = P (q1)
T∏

t=2
P (qt|qt−1)

T∏
t=1

P (Ot|qt) (5.17)

= πq1bq1(O1)aq1q2bq2(O2)...aqT −1qT
bqT

(OT ) (5.18)

where B = [bqx(Ot)] is the observation probabilities in state x at time t.
Eq. 5.18 states that the joint probability of an observation sequence and the
corresponding hidden states are calculated as the probability of a transition
from one hidden state at time t− 1 (q1) to another hidden state at time t (q2),
multiplied by the probability of emitting the observation O at time t, for all T
where the initial hidden state is assumed to be known.
However, this calculation would require 2TNT operations, which for a model
with 4 states and a length of an observation sequence of 500 would amount to
2 · 500 · 4500 = 1.0715 · 10304 operations. This would take today’s computers
much longer than the estimated age of the earth to calculate [53]. To solve this
problem the forward-backward procedure is applied.

5.6.1.1 Forward-Backward Algorithm

The general idea behind the forward-backward algorithm is to divide the obser-
vation sequence in two parts, having a forward variable explaining the sequence
from observation 1 to t and a backward variable explaining from t+ 1 to end of
the sequence. It is a technique based on dynamic programming, which is a way
to break a complex problems into sub problems, solving these and storing the
results, such that it does not need to be recomputed. The forward-backward
algorithm is used to calculate the responsibility variable γt(i), which is the prob-
ability of being in state Si at time t given an observation sequence O and a model
λ. This variable is equal the responsibility variable introduced in section 5.5,
which is used in the expectation step of the EM algorithm.
The forward variable αt(i) is defined as the probability of observing the par-
tial sequence {O1...Ot} and being in state Si at time t given model λ, with
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1 ≤ t ≤ T :
αt(i) = P (O1, O2, ..., Ot, qt = Si|λ) (5.19)

It can be solved recursively.
Initialization:

α1(i) = P (O1, q1 = Si|λ) = πibi(O1) (5.20)
with 1 ≤ i ≤ N . It is the probability of starting in state Si multiplied with the
probability that the given state has emitted the first observation.
Recursion:

αt+1(j) = P (O1..Ot+1, qt+1 = Sj |λ) (5.21)

=
[ N∑

i=1
αt(i)aij

]
bj(Ot+1) (5.22)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ N .
The forward variable αt(i) represents the probability of ending in state Si at
time t. This is multiplied with the probability of a transition from all possible
previous states to state Sj (a1j , a2j , ..., aNj) at time t+ 1 and summed. Finally,
we multiply with the probability of the given observation Ot+1 in state Sj at
time t+ 1, which yields αt+1(j).
By summing over the terminal forward variable the probability of an observation
sequence given a model λ is found:

P (O|λ) =
N∑

i=1
αT (i) (5.23)

Solving the probability of an observation sequence using the forward variable
only uses N2T computations, which is only 42 · 500 = 8000 computations for 4
states and an observation sequence of 500 [3].

To be able to calculate γt(i), which is applied in the last two problems, the
backward variable βt(i) is introduced. It is defined as:

βt(i) = P (Ot+1, ..., OT |qt = Si, λ) (5.24)

where βt(i) is the probability of being in state Si at time t and observing the
partial sequence {Ot+1, ..., OT }.
βt(i) is recursively calculated with the time going in a backward direction:
Initialization:

βT (i) = 1 (5.25)
Recursion:

βt(i) =
N∑

j=1
aijbj(Ot+1)βt+1(j) (5.26)
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for t = T − 1, T − 2, ..., 1 and 1 ≤ j ≤ N .
Being in state Si there are N possible state transitions to state Sj with the prob-
ability of aij . When in state Si the t + 1 observation is generated and βt+1(j)
explains all observations after t+ 1 [3].
The probability of being in state Si at time t can be calculated using the for-
ward and backward variables. This is defined as γt(i), which is derived in the
following:

γt(i) = P (qt = Si|O, λ) (5.27)

Using Bayes second Theorem, which states

P (Bi|A) = P (A|Bi)P (Bi)∑N
n=1 P (A|Bn)P (Bn)

we have
γt(i) = P (O|qt = Si, λ)P (qt = Si|λ)∑N

j=1 P (O|qt = Sj , λ)P (qt = Sj |λ)
(5.28)

By applying the following conditional independence property [8]

P (B,An) = P (b1, ..., bn|An)P (bn+1, ..., bN |AN )

we have

γt(i) = P (O1, .., Ot|qt = Si, λ)P (Ot+1,...,OT
|qt = Si, λ)P (qt = Si|λ)∑N

j=1 P (O1, .., Ot|qt = Sj , λ)P (Ot+1,...,OT
|qt = Sj , λ)P (qt = Sj |λ)

(5.29)
Using the product rule

P (AB) = P (A|B)P (B)

we have

γt(i) = P (O1, .., Ot, qt = Si|λ)P (Ot+1,...,OT
|qt = Si, λ)∑N

j=1 P (O1, .., Ot, qt = Sj |λ)P (Ot+1,...,OT
|qt = Sj , λ)

(5.30)

which can be rewritten using the definitions of α and β

γt(i) = αt(i)βt(i)∑N
j=1 αt(j)βt(j)

(5.31)

The product of αt(i) and βt(i) explains the whole observation sequence given
that the system is in state Si at time t. This is normalized by all possible
intermediate states and guarantees that∑

i

γt(i) = 1 (5.32)
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Modeling each state with k-multiple Gaussians the responsibility variable is
calculated by [55]

γt(j, k) = αt(j)βt(j)∑N
j=1 αt(j)βt(j)

Wjkbjk(Ot)∑K
k=1Wjkbjk(Ot)

(5.33)

where Wjk is the mixing weights for the k’th Gaussian component of Sj , with∑K
k=1Wjk = 1 and Wjk ≥ 0 for 1 ≤ j ≤ N and 1 ≤ k ≤ K.

5.6.2 Finding the Optimal State Sequence

To find the single best state sequence Q for an observation sequence O, given
a model λ, the Viterbi algorithm is applied. The Viterbi algorithm is, just as
forward-backward algorithm, based on dynamic programming. The structure of
the algorithm is outlined below.
Initialization:

δ1(i) = πibi(O1) (5.34)
ψ1(j) = 0 (5.35)

Recursion:

δt(j) = maxi

[
δt−1aij

]
bj(Ot) (5.36)

ψt(j) = argmaxiδt−1aij (5.37)

Termination:

p∗ = maxiδT (i) (5.38)
q∗T = argmaxiδT (i) (5.39)

Backtracking:

q∗T = ψt+1(q∗t+1), t = T-1,T-2,...,1 (5.40)

where δt(i) is the highest probability along a single path at time t which ends in
state Si. The variable ψt(j) contains the information of the state that maximizes
δt(j) at time t − 1. By backtracking through ψt(j) the optimal state sequence
can be found.
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5.6.3 Training Model Parameters

When training the model parameters, λ∗ = {A,µ,Σ, π}, the goal is to maximize
the likelihood of the training data, P (O|λ∗). Applying the Baum-Welch algo-
rithm, which is an iterative procedure based on the EM algorithm introduced
in section 5.5.1, the model parameters can be trained.

5.6.3.1 Baum-Welch Algorithm

Before the different steps of the Baum-Welch algorithm are outlined, the variable
ξt(i, j) is defined as the probability of being in state Si at time t and in state
Sj at time t+ 1, given the observation sequence O and model λ [3]:

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ)

= P (O|qt = Si, qt+1 = Sj , λ)P (qt = Si, qt+1 = Sj |λ)
P (O|λ)

= P (O|qt = Si, qt+1 = Sj , λ)P (qt+1 = Sj |qt = Si, λ)P (qt = Si|λ)
P (O|λ)

= 1
P (O|λ)P (O1, ..., Ot, qt = Si|λ)P (Ot+1|qt+1 = Sj , λ)...

P (Ot+2, ..., OT , qt+1 = Sj , λ)aij

= 1
P (O|λ)P (O1, ..., Ot, qt = Si|λ)P (Ot+1|qt+1 = Sj , λ)...

P (Ot+2, ..., OT , qt+1 = Sj , λ)aijP (qt = Si|λ)

Using that

αt(i) = P (O1, ..., Ot, qt = Si|λ)
βt+1(i) = P (Ot+2, ..., OT , qt+1 = Sj , λ)

bj(Ot+1) = P (Ot+1|qt+1 = Sj , λ)
aij = P (qt+1 = Sj |qt = Si, λ)

the expression for ξt(i, j) is:

ξt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)∑
all i
∑

all j P (qt = Si, qt+1 = Sj |O, λ) (5.41)

= αt(i)aijbj(Ot+1)βt+1(j)∑
all i
∑

all j αt(i)aijbj(Ot+1)βt+1(j) (5.42)
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Calculating
∑

t ξt(i, j) yields the expected number of transitions from state Si

to Sj , while calculating
∑

t γt(i) gives the total number of transitions from Si.
Calculating the ratio of these two gives the probability of transition from Si to
Sj , which provide us with an estimate of A as suggested by equation 5.43. To
estimate µ and Σ for each k-Gaussian the observation sequence is weighted with
the responsibility γ.
The Baum-Welch algorithm for a continuous Gaussian emission HMM is out-
lined below:

1. Initialize the HMM parameters A, µ, Σ, W and π. Often A, W and π are
randomly initialized considering the relevant restrictions, while µ and Σ
can be initialized using the k-means algorithm [8]. Following initialization
the log-likelihood is calculated.

2. Expectation step:
Estimate αt(i) and βt(i) using the forward-backward algorithm from sec-
tion 5.6.1.1.
Evaluate ξt(i, j) and γt(i, k) using equations 5.42 and 5.33, respectively.

3. Maximization step:
Calculate the model parameters for λ:

âij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1

∑K
k=1 γt(i, k)

(5.43)

µ̂jk =
∑T

t=1 γt(i, k)Ot∑K
k=1 γ1(i, k)

(5.44)

Σ̂jk =
∑T

t=1 γt(i, k)(Ot − µjk)(Ot − µjk)T∑K
k=1 γ1(i, k)

(5.45)

π̂i =
∑K

k=1 γ1(i, k)∑N
i=1
∑K

k=1 γ1(i, k)
(5.46)

Ŵjk =
∑T

t=1 γt(i, k)∑T
t=1
∑K

k=1 γt(i, k)
(5.47)

4. Evaluate the log likelihood.

5. Stop if convergence criteria are met or repeat step 2-5.

Using multiple sequences all parameters are averaged over all observations for
all sequences.
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5.6.4 Types of Transition Structures

A way to force the HMM to have a specific transition structure is to initialize
A with zeros for state transition coefficients where a transition should not be
able to occur. Since the numerator of equation 5.43 is always going to be zero
for aij initialized as zero, the transition element will never be updated. An
ergodic or fully connected model is initialized with values different from zero for
all elements of the transition matrix, while a strict left-right model is restricted
to making only transitions to higher states. Illustrations of different transition
structures in HMM models are presented in Figure 5.6.

Figure 5.6: Simple illustrations of three types of transition HMM’s. a) A fully
connected 4 state ergodic model. b) A 4 states left-right model
with a recirculation loop. c) A 4 state left-right model with a
recirculation loop able to make transition two states ahead. The
blue dotted arrows indicate a transition where a state is skipped.
The models in this thesis are given the notation, FULL, LR1 and
LR2, respectively.
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5.7 Implementation Issues

Implementing the entire Hidden Markov Model from scratch leads to different
issues some of which are described in the following.

5.7.1 Underflow Problems

Working with HMM’s frequently requires computations using small probability
values. While in theory this poses no problem, working with finite memory
machines like computers, it may cause implementations to crash, due to under-
flow [8]. Underflow occurs when the result of a computation is smaller than the
computer is able to represent in its memory and it then sets the parameter to
zero. At best this can cause a degraded solution and in the worst case, the pro-
gram crashes, when NaN’s are introduced. Two initiatives were taken in order
to overcome these problems. The first is the scaling of the forward-backward
algorithm, which is a well-documented underflow solution in HMM literature
[8], [3] and [55]. However, working with 8-lead covariance structures caused fur-
ther problems while trying to evaluate probabilities in an 8-dimensional space.
Hence, all related calculations were reworked to be represented in the log do-
main.

5.7.1.1 Scaling of the forward-backward algorithm

When calculating the forward-backward algorithm both α and β are multiplied
with small probability values, which will cause underflow for longer sequences.
In order to avoid this, αt(i) is normalized by multiplying it with the scaling
factor ct

ct = 1∑
j αt(j)

(5.48)

Since the magnitude of αt(i) and βt(i) is comparable [55] the same scaling factor
ct can be used to scale βt(i)

βt(i) = ctβt(i) (5.49)

Having scaled αt(i) the probability of a sequence O given a model λ can no
longer be calculated using equation 5.23. Instead the following expression is
applied

ln(P (O|λ)) = −
∑

t

log ct (5.50)
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5.7.1.2 Log space calculations

To avoid the emission probabilities to numerically underflow, the multivariate
Gaussian distribution given by equation 5.15 is calculated in the log domain:

ln (N (Ot|µk,Σk)) = n

2 ln (2π)− 1
2 ln (|Σ|)

∑
(Ot − µjk)T Σ−1(Ot − µjk)

(5.51)
The emission probability given in equation 5.14 is then rewritten in log domain:

ln(bjOt) =
K∑

k=1
ln(Wk) + ln(N (Ot|µk,Σk))) (5.52)

While products are easily replaced by addition in log domain, the sum cannot
as easily be replace by another operator. Summation has to be performed in the
linear domain, but simply transforming the values to the linear domain using
exp(−) would instantly cause numerical underflow and results would be lost. To
solve this the Log-Sum-Exp trick (LSE) is applied [57]. This is a computational
trick where the maximum of the log values is found and subtracted from all of the
log values. This operation shifts all the large magnitude negative values towards
zero leaving the previously maximal value zero. Having done this, taking the
exp(−) of the values would not cause underflow 1. Then the values are summed
in the linear domain and returned to the log domain, by simply taking the log.
Finally the maximum value that was subtracted at first is added, to return the
values to their proper magnitude. It can be written as

LSE[ln(x)] ≡ ln(
N∑

n=1
xn) = ln(xm) + ln[

N∑
n=1

expln(xn)−ln(xm)] (5.53)

with xm being the largest term. The cost of avoiding numerical underflow is a
high increase in computations which can effectively decrease the speed of the
program.

5.7.2 Singularity of Covariance

A significant problem while applying the EM algorithm in log-likelihood maxi-
mization of the Gaussian components for each state, is the presence of singular-
ities. A Gaussian component could be fitting a single point or points of similar
value. This would cause the variance to go towards zero and the log-likelihood

1With the exception of values both containing relatively high and extremely small numbers.
In this case the LSE trick will not be able to shift values away from potential underflow.
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to go towards infinity. This is often thought of, as severe over-fitting [8] and can
cause the program to crash due to the introduction of Inf values when taking
the inverse of Σ in equation 5.51. Inf values can cause NaN values in MATLAB R©

if an Inf value is divided by another Inf value or if a positive Inf value is added
with a negative Inf value. A common way to avoid this singularity, is to reset
the mean and covariance to some random values [8] when detecting a collapsing
Gaussian component. If one wants to be able to model such singularities, one
could simply "freeze" the variance at some specified small number when the co-
variance fall below this. However, this can cause the log-likelihood to increase
at some point, but would ensure stability of the program. Illustration of an
arising singularity is presented in Figure 5.7.

Figure 5.7: Illustration of an arising singularity for a Gaussian component.
Modified from [8].

Another form of singularity that can arise is when the covariance matrix Σ is
close to singular or badly scaled. This happens if the data modeled by the
Gaussian is highly correlated. Consider multiple two-dimensional data points
having the same value in the first dimension and different values in the second
dimension. This would cause variance in the first dimension to be zero along
with the covariance. Taking the inverse to such covariance matrix would cause
Inf values caused by division by zero. To overcome this problem the covariance
matrix Σ must be conditioned to secure numerical stability. Pekka Paalanen
[52] have proposed following conditioning algorithm.
Covariance matrix conditioning

1. While Σ is not positive definite Do

2. Extract the diagonal d

3. If d is greater than some predefined valueminlimit the diagonal is increased
with 1% Else

4. 1% of max of the diagonal is stored in m.
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5. If m is less than minlimit it is set equal to minlimit

6. The diagonal of Σ is increased by m

5.7.3 Speed

MATLAB R© is a high level programming language where programming and testing
of algorithms are fairly easy compared to low level language such as C++.
However, the speed of lower level language is still superior. When performing
data heavy machine learning in MATLAB R©, one should put a great deal of thought
into the implementation in order to obtain acceptable execution times. The best
ways to optimize MATLAB R© code is to consider [43]

1. Code vectorization.

2. Variable preallocation.

3. Memory access optimization.

Doing the above vastly increase the speed of the MATLAB R© program. How-
ever, being forced to use multiple loops or applying the LSE trick, as in the
forward-backward recursion in log domain, one can greatly improve the speed
by building the functions as MEX files. A MEX file or Matlab EXecutable is
an interface between MATLAB R© and a C/C++ function that can vastly increase
speed of functions that use computational heavy loops.



5.8 Support Vector Machine 59

5.8 Support Vector Machine

Support Vector Machine or SVM is one of the most widely used classification al-
gorithms and have shown very good empirical results [61]. The basic idea of the
SVM is to create an optimal linear decision boundary (hyperplane) in a given
feature space for two or more classes using a subset of training examples. The
selected subset of training examples represents the decision boundary and are
called support vectors. As opposed to the HMM, which is a generative model,
the SVM is a discriminative model.
Since only two class classification is of interest, multiclass SVM classification
will not be discussed in the following.

Consider two classes each having a feature vector x containing two features
for each training example. Given that the classes are separable by a linear
hyperplane, there exists an infinite number of decision boundaries that could
divide the two classes. An illustration of this scenario with N = 8 training ex-
amples for each class, is illustrated in Figure 5.8.
In order to choose an optimal hyperplane the SVM uses the Maximum Margin
method.

Figure 5.8: Illustration of two classes, red and blue, and different possible
decision boundaries that could separate the two classes perfectly.
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5.8.1 Maximum Margin Hyperplane

To determine the margin of a given hyperplane one shifts parallel hyperplanes in
all dimensions until one of them coincides with a training example. The distance
between the parallel hyperplanes, shifted until they to coincide with the training
data, is called the margin. The decision boundary with the largest margin is
called the maximummargin hyperplane. An illustration of the maximummargin
hyperplane and its margin is presented in Figure 5.9. The maximum margin

Figure 5.9: Maximum margin hyperplane (solid black line) and the illustration
of the margin (dotted green line).

hyperplane is chosen as the decision boundary since it theoretically has a better
generalization error which can potentially lead to a better classification of unseen
test examples [8].
A linear classifier model can be written as:

w · x + b = 0 (5.54)

where w are the weights, b the bias of model and x are features of the training
examples. Each training example is labeled with yi ∈ {−1, 1} with i = 1,2,..,N
where N is the number of training examples. The two parallel hyperplanes bi1
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and bi2 can be expressed as:

bi1 :w · x + b = 1 (5.55)
bi2 :w · x + b = −1 (5.56)

if the w and b are rescaled [61].
Any test example z would be classified using

y =
{

1, if w · z + b > 0
−1, if w · z + b < 0

(5.57)

To find the model parameters given in equation 5.54 one must maximize the
margin, which is equivalent to minimizing following objective function [61]:

min ||w||
2

2 (5.58)

subject to yi(w · xi + b) ≥ 1 (5.59)

for i = 1,2,..,N.
This is a convex optimization problem, since the objective function is quadratic
and the constraints are linear [61]. A known method for solving constrained
optimization problems is the Lagrange multiplier method (see Appendix A.1).
The Lagrangian for the optimization problem is:

LP = ||w||
2

2 −
N∑

i=1
λi(yi(w · xi + b)− 1) (5.60)

with λi being the Lagrange multipliers. The first term is the original objective
function, while the second term captures the inequality constraints. To minimize
the Lagrangian the first-derivative of equation 5.60 with respect to w and b are
taken and set equal to zero:

∂L

∂w = 0⇒ w =
N∑

i=1
λiyixi (5.61)

∂L

∂b
= 0⇒

N∑
i=1

λiyi = 0 (5.62)

To handle the inequality constraints, they are transformed into equality con-
straints using the Karush-Kuhn-Tucker (KKT) conditions (see Appendix A.1).

λi ≥ 0 (5.63)
λi[yi(w · xi + b)− 1] = 0 (5.64)
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From equation 5.64 it is seen that only training examples where yi(w·xi +b) = 1
can have Lagrange multipliers different from zero. These training examples are
the support vectors.
A way to simplify the Lagrangian is to transform it into it’s dual problem by
substituting equation 5.61 and 5.62 into equation 5.60 giving:

LD =
N∑

i=1
λi −

1
2
∑
i,j

λiλjyixi · xj (5.65)

It is seen that the dual problem Lagrangian only depends on the Lagrange mul-
tipliers and the training examples. Because of the negative quadratic term the
problem is now a maximization problem. The equation can be solved using
numerical techniques such as the Sequential Minimal Optimization method or
Quadratic programming [61]. When the Lagrange multipliers have been deter-
mined equation 5.61 and 5.64 is used to obtain w and b. Then the decision
boundary can be expressed as:(

N∑
i=1

λiyixi · x
)

+ b = 0 (5.66)

5.8.2 Linear Nonseparable Classification

Until now it has been assumed that the two classes could be perfectly separated
by a linear hyperplane. However, this is not always possible. This could occur if
noise is present or if the features does not represent a strong difference between
the two classes. To overcome the issue the soft margin method is applied where
some amount of training misclassification is allowed. Thus, the learning of the
SVM decision boundary is a trade-off between training misclassification and the
width of the margin. To model this the constraints are relaxed by introducing
a positive valued slack variable ξ and by modifying the objective function [61]
such that increasing slack is penalized. The slack is an estimate of the error
introduced by the decision boundary in the training examples. The modified
objective function is written as [8]:

f(w) = ||w||
2

2 + C

N∑
i=1

ξi (5.67)

where C is a user-specified parameter regulating the penalty of misclassification.
The Lagrangian for this is:

LP = ||w||
2

2 + C

N∑
i=1

ξi −
N∑

i=1
λi(yi(w · xi + b)− 1 + ξi)−

N∑
i=1

µiξi (5.68)
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where both µi and λi are Lagrangian multipliers. The first two terms are from
the objective function, the third represents the inequality constraints and the
last term is a non-negativity requirement of the slack variable.
The new KKT conditions are [61]:

λi ≥ 0,ξi ≥ 0,µi ≥ 0 (5.69)
λi[yi(w · xi + b)− 1 + ξi] = 0 (5.70)

µiξi = 0 (5.71)

The new first-order derivative of L with respect to the parameters w, b and ξ
are:

∂L

∂wj
= 0⇒ wj =

N∑
i=1

λiyixij (5.72)

∂L

∂b
= 0⇒

N∑
i=1

λiyi = 0 (5.73)

∂L

∂ξi
= 0⇒ λi + µi = C (5.74)

To find the dual formulation the three above equations are substituted into 5.68
and it is found that it is identical with equation 5.65, but with the 0 ≤ λ ≤ C.
The solution can be found in the same manner as in the separable case.

5.8.3 Nonlinear SVM

Sometimes is a linear decision boundary is not the best choice when searching
for the optimal classification hyperplane. Two illustrations of such situations
are presented in Figure 5.10.
The trick to solve this is to transform the data from the original feature space
into a new feature space φ(x) (often of higher dimensions), such that a linear
hyperplane can separate the training examples satisfactorily. As an example the
following transformation could be applied to the nonlinear problem in Figure.
5.10(a):

φ(x1, x2) −→ (x2
1 − x1, x

2
2 − x2) (5.75)

and the problem in Figure 5.10(b) could be applied the transformation:

φ(x1, x2) −→ (
√

2x1x2,
√

2x2x1). (5.76)

The results are shown in Figure 5.11. The example clearly shows how a linear
hyperplane could perfectly separate the two classes in the new feature space.
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(a) (b)

Figure 5.10: The two examples in Figure 5.10(a) and 5.10(b) illustrate sce-
narios where a nonlinear decision boundary would be preferable.

(a) Problem from Figure 5.10(a) trans-
formed into a new feature space.

(b) Problem from Figure 5.10(b) trans-
formed into a new feature space

Figure 5.11: Figures 5.11(a) and 5.11(b) show how the features of the clas-
sifications problems depicted in Figures 5.10(a) and 5.10(b)
are transformed using φ(x1, x2) −→ (x2

1 − x1, x
2
2 − x2) and

φ(x1, x2) −→ (
√

2x1x2,
√

2x2x1), respectively. In the new fea-
ture spaces the problems can easily be separated by a linear hy-
perplane.

A nonlinear SVM can be learned by simply replacing x with the transformed
φ(x) in the equations stated in section 5.8.2. The curse of dimensionality and
the multiple dot products that must be calculated in equation 5.65 present a
potential problem. This is avoided using the kernel trick, which is a method for
computing the dot products in the transformed space using only the original
features. The function that computes the dot product using the original feature
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space is called the kernel function [61]. Kernels used in a nonlinear SVM must
satisfy Mercers’ theorem, which ensures that the kernel can always be expressed
as the dot product of two vectors in some high-dimensional space. An example
of a kernel is the quadratic polynomial:

K(u, v) = (u · v + 1)2 (5.77)
= u2

1v
2
1 + u2

1v
2
1 + 2u1v1 + 2u2v2 + 1 (5.78)

= (u2
1, u

2
2,
√

2u1,
√

2u2, 1) · (v2
1 , v

2
2 ,
√

2v1,
√

2v2, 1) (5.79)
(5.80)

which leads to the following transformation

φ(x1, x2) −→ (x2
1, x

2
2,
√

2x1,
√

2x2, 1) (5.81)

Thus the two dimensional feature space is lifted to a five dimensional feature
space, but the dot products can still be calculated in the original feature space
due to the kernel trick.
The nonlinear decision boundaries in the original features space of the problems
presented in Figure 5.10 are presented in Figure 5.12. These were created using
a SVM with second order polynomial kernel.

(a) (b)

Figure 5.12: Illustration of the nonlinear decision boundaries for the two ex-
amples in Figure 5.10(a) and 5.10(b) in the original feature space
using an SVM with a second order polynomial kernel. The cyan
area illustrates where a test example would be classified as red,
while the yellow area would label the test example as blue.
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Chapter 6

Model Identification

6.1 ECG Acquisition and Study Population

The data were collected from the Marquette Electronics (Milwaukee, WI) ECG
database and the ECG acquisition for the normal ECGs were performed as
stated in [12]. Ten-second ECGs were recorded with a standard 12-lead system
on a MAC15 digital ECG recorder (GE Medical Systems, Milwaukee, WI). The
subjects were in a supine position and the ECGs were obtained after the sub-
jects had 5 minutes of rest. The sampling rate was 250 Hz and the amplitude
resolution was 1.22 µV. The ten-second ECGs from the LQT2 patients were ac-
quired on a MAC5000 digital ECG recorder (GE Medical Systems, Milwaukee,
WI) with the subjects being in a supine position. The duration of the ECGs
was 10 s, and the sampling rate was 500 Hz (Graff et al., 2009). The LQT2
ECGs were down sampled to 250 Hz using the MATLAB R© function resample.m.
The data consisted of ECGs from 64 LQT2 patients and 64 normal subjects
that were gender and age matched by extraction from a database of 1109 nor-
mal ECGs, giving a total sample size of 128. The normal subjects consisted of
29 men of mean age 36±18 and 35 women of mean age 39±17. There were 29
men of mean age 36±18 and 35 women of mean age 38±18 in the LQT2 patient
group.

Unfortunately PLI filtering was assumed to be performed during the ECG
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recording but experience showed that the data applied in this work is com-
pletely raw. By visual inspection of the ECGs and their spectra none of the
normal ECGs contain visible PLI whereas a few of the LQT2 ECGs do. How-
ever, those LQT2 ECGs containing PLI also seems to contain more biological
noise which masks the PLI in the time domain. Due to the time limit of the
project it was chosen to filter only BW and instead focus the effect of noise on
classification to assess whether the potentially inadequate filtration impairs the
classification method.

6.2 Model Training Setup and Implementation
of HMM

A significant amount of the project duration was spent on the satisfactory im-
plementation of the multi-lead continuous emission Hidden Markov model. It
turned out that the limited time of the project and the speed of the program
limited the extent to which different methods could be applied in the charac-
terization and discrimination of ECGs in this work. However, within the limits
of those methods, a thorough approach was adopted, which is described in the
following.

Transition matrices: Three transition types were chosen. Due to the pe-
riodic nature of ECGs the left-right (LR) type transition was adopted in two
forms. First, each non self-transition could occur only to the immediately fol-
lowing state, termed one forward degree of freedom (LR1). Correspondingly a
two forward degree of freedom LR type transition was also applied to investi-
gate the impact of the extra flexibility (LR2). Transition from the "last" state
to the "first" were allowed to maintain periodicity. Also the full type transition
(FULL) was applied, in that results could either confirm the choice of the LR
types or could potentially capture other trends in the data. The full and LR
type transition models were applied, since these were found to be the most com-
monly used in studies covering HMM and ECG modeling.

Number of states: Consulting the relevant literature shows that the cho-
sen number of states varies between studies, but it seems to be in the range of 5
to 35 depending on the application. To be able to reproduce a single beat such
that medical staff would recognize it as an ECG, the number of states should
be more than 20. Based on this it was decided to train models defined with
5 to 50 states at increments of 5 [5,10,15,..,50]. Covering this large range of
states could potentially aid in determining the trade off between generative and
discriminative properties, if any.
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Stopping criteria: The choice of stopping criteria will often be a compromise
between finding the optimal parameters and time consumption during train-
ing. Through empirical experiments, tweaking the tolerance for the minimum
acceptable change in log-likelihood, it was decided to use 10−2 as the stopping
criterion. To secure an upper bound for model training a maximum of a 1,000
iterations was set as limit. However, not a single time during the training of the
models did the number of iterations reach the maximum allowable.

Emission distribution: It was chosen to model the emission distributions
using Gaussian mixtures. The method is well understood and employs easily
interpretable distributions and was found to be the most commonly used emis-
sion distribution in studies concerning HMM. Models using one or two Gaussians
per state were applied in this project.

Parameter initialization: The parameters were initialized differently based
on the state transition type. Using the full transition model the parameters
A and Π were initialized randomly using the built-in random MATLAB R© func-
tion. The means µ were initialized with 100 iterations of k-means. The k-means
function from the Statistics Toolbox Version 8.0 in MATLAB R© was applied, using
a squared Euclidean distance measure, a uniform initial start of centroids and
three replicates. One centroid was used for each state. Using mixed Gaussians
for each state, the calculated k-means centroids were shifted a small random
amount for each Gaussian component. The variances were initialized using the
data samples assigned to the cluster with the covariances initially set to zero.
Considering the LR models, the state transitions were restricted to a LR cyclic
sequence. Through empirical experiments it was found to be undesirable to use
the k-means as initialization. It was observed that the model could lock on
undesirable local maxima. To establish a more flexible initialization the means
were set as the mean of the total data shifted a small amount using a random
function. The variance was set to be that of the entire data set. All transition
probabilities were initialized equally and the initial state probability was set
with the first state to be more likely than the others.

Handling singularity issues: To avoid the issues of covariance matrices be-
coming singular due to very correlated data, the covariance fixer routine de-
scribed in section 5.7.2, was applied. To avoid collapsing Gaussians, e.g. when
fitting a single cluster of points having the same value, a minimum variance
limit was defined. Should the variance fall beneath this limit it would be locked
at that specific value. This was done to be able to model a straight line seg-
ment, which could be the iso-line in an ECG. Should the covariance fixer or the
limitation of the variance due to potential collapse be used during training, the
program displays a warning. Using LR state transition models, these precau-
tions were never applied at any combination of states or number of Gaussian
components in the data. The precautions were, however, necessary to be able
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to model data with a high number of states in the full transition model.

Underflow: Underflow was a considerable issue while implementing the HMM.
Calculating probabilities in a 8-dimensional space using the ECG data yielded
extremely small values, some of which could not be represented in the regular do-
main why the probabilities were calculated in the log domain. The down stream
effect was that the forward-backward algorithm, the estimation step of the EM-
algorithm and the update of the transition matrix had to be implemented in log
domain as well. The consequence of this was that the well-structured MATLAB R©

code that was vectorized for speed needed rewriting. The necessary application
of the log-sum-exp trick multiple times caused a large increase in computation
time.

Speed: To be able to investigate multiple model setups within a reasonable
time frame some effort was put into code optimization. The built-in MATLAB R©

profiler was used to locate the bottlenecks in the code. Experience showed, that
in a significant portion of the iterations, the backward-algorithm and the updat-
ing of the transition matrix could be performed without the log-sum-exp trick
without underflowing, making vectorization in linear domain possible. Should
underflow occur, recalculation was carried out with all steps of the parameter
estimation in the log domain. No difference in the resulting models was observed
using this speed improvement trick.
Furthermore, the forward-algorithm, the backward-algorithm and the transition
matrix update were reprogrammed as MEX files. The effect of the code opti-
mization is presented in Figure 6.1 for a specific training example, and indicates
a reduction in computation time by a factor of 10. As a result of the optimiza-
tion the model training setup could be performed in a week using four average
laptop computers instead of a month.
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Figure 6.1: Illustration of the effect of optimizing the program code in 10
iterations modeling 20 ECG’s using a full transition matrix with
20 states each having two Gaussian components. The test was
performed on a 64-bit laptop using 2.53GHz Intel core i5 processor
with 8 GB of RAM

6.3 Classification Setup

Different schemes were attempted in order to find the model with the best classi-
fication accuracy. For each different model setup the HMMs were trained using
either normal or LQT2 training ECG’s. Subsequently the probability of the test
ECG’s given the normal and LQT2 model, respectively, were calculated. The
test ECG’s were classified according to the model having the highest probability
of generating the test ECG in question.
To utilize the multiple HMM’s, two different classification schemes were devel-
oped.

1. Biggest difference: For each test ECG the difference in log-likelihood
evaluated is evaluated for each of the included HMM models. The model
with the biggest difference classifies the test ECG.

2. Majority voting: Each of the included models votes whether a given
test ECG is normal or LQT2. The ECG is classified according to the class
receiving the majority of the votes. If the number of votes are equal, the
model with the biggest difference in log-likelihood decides.
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To investigate whether a decision boundary in a higher feature space could
improve classification accuracy an SVM using seven different kernels was applied
using several combinations of HMM differences between normal and LQT2 log
likelihood as the input feature. The seven kernels applied were linear, second
order polynomial, third order polynomial, fourth order polynomial, quadratic
kernel, radial basis function and multi-layer perceptron. All kernels were used
with MATLAB R©’s default parameter settings.
The following two different schemes were used to select HMM models to be
combined:

1. Combining models based on their accuracy for each transition type and
number of Gaussian components.

2. Combining the best six models based on their accuracy disregarding their
transition type and number of Gaussian components.

A simple flow chart of the entire program structure is outlined in Figure 6.2.
The model or combination of models with the classification scheme yielding the
highest accuracy is selected to be the best model.

As explained in section 2.4 the LQT2 syndrome is usually diagnosed based
on the heart rate corrected QT interval (QTc) of the ECG. The QTcB interval
( QT√

RR
) for each of the 128 subjects were calculated using the commercial ECG

software MUSE R© in order to compare the best model accuracy with that of the
QTc and to investigate if the model could contribute to the accuracy, were they
combined. To do this the QTc was used as input to the SVM in a 4-crossfold
train/test classification scheme using the different kernels. Subsequently, both
the log-likelihood difference from the HMMs of the best model and QTc were
applied in the SVM classification scheme using the kernel achieving the highest
mean accuracy found by the best model.
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Figure 6.2: Program structure for the classification setup. The ECG’s are
extracted from the ECG database MUSE R© as XML files. The
ECG’s are converted to mat-files, resampled to 250 Hz and high
pass filtered using a bidirectional digital high pass Kaiser window
FIR filter with a cutoff frequency of 0.5 Hz, before feeding the sig-
nals to the Hidden Markov model. The 8-dimensional continuous
Hidden Markov model train different models, which are evaluated
doing 4-crossfold validation. ECG’s simulated from the HMM are
output. The probabilities from a single or multiple HMM’s are
used as input in a SVM, using different kernels, to classify the
ECG’s. The multiple HMMs are also used in different classifi-
cation schemes, such as majority voting and decision based on
biggest log-likelihood difference. ECG noise can be applied to the
test data used in classification.



74 Model Identification

6.4 Generative Properties

The discriminative properties of the models can not necessarily be related to the
physiological process underlying the ECG. Since the choice of model parameters
is based on the classification accuracy, there is a risk of capturing population
specific properties of the ECG such as e.g. overall amplitude or noise. As both
examples are likely to be specific to the data used in this work and not to normal
and LQT2 ECGs in general, it is of interest to evaluate the generative properties
of the models.

6.4.1 ECG Simulation

To evaluate the generative properties of the models a simulation can be per-
formed where the best models, according to the classification accuracy, are ap-
plied. Considering the HMM as a simulator, the transition matrix creates the
sequence of hidden states, where each hidden state has an emission distribution
with a mean and covariance. As such, there are two sources of randomness
in a simulation. First, the generated sequence of hidden states will not be
strictly periodic and second the covariance matrix associated with the mean
emission values introduces a further source of randomness. Preferably, an ECG
simulation of some fixed time length should be generated iteratively and these
realizations should be used to find an average ECG simulation of the model in
question. However, this would require alignment of the different realizations
such that each full ECG cycle or "heartbeat" would be aligned with that of the
next sequence. This is not feasible in an automated fashion as the simulations
vary considerably. To overcome the problem two measures were taken; the mean
emission values were considered and an expected number of self-transitions were
applied in the simulation. An exponential state duration is a characteristic of the
Markov chain [55] and so the expected number of self-transitions, or duration,
can then be defined as:

E[di] =
∞∑

d=1
dp(di) = d(aii)d−1(1− aii) = 1

1− aii
(6.1)

where, di is the duration of state i and aii is the probability of self-transition.
This expectation can be applied when simulating the hidden state sequence;
when the sequence starts the expectation is calculated and rounded down to
nearest integer and a sequence of this length is simulated. When the duration
is complete, a new state is drawn. In the case of LR transitions with only one
forward degree of freedom the next state drawn will always be the immediately
following state. In the case where there are two forward degrees of freedom
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there will still be a source of variability, because when the duration is complete,
the next state drawn has two outcomes. To accommodate that situation (when
drawing a new state) the probability of self-transition is removed and the re-
maining probabilities are normalized such that they sum to one. Thus, in the
case of two forward degrees of freedom the next state is drawn according to a
Bernoulli distribution. In the case of the full transition matrix this generalizes
to the categorical distribution. In summary, taking expectation of the duration
and considering only the mean emissions eliminates randomness for the LR type
transition with one forward degree of freedom but leaves randomness in the non-
self-transitions for the LR type transition with two forward degrees of freedom
and the full type transition. Figure 6.3 illustrates a 35 state (1 Gaussian) ECG
simulation of lead V5 for the one degree freedom LR type transition matrix.
In the left column the hidden state sequence is generated by random according
to the transition matrix. The right column corresponds to the hidden state
sequence generated by calculating the expected number of self-transitions. In
the top row the emissions are simulated while applying the covariance matrix.
In the second row the variance of the mean emissions is shown by plotting the
standard deviation. Row three shows the mean emissions and row four shows
the corresponding state sequence.

6.4.2 Period of a Transition Matrix

The state sequence in the bottom row of Figure 6.3 suggests that a full pass
through the transition matrix corresponds to a single heartbeat. Summing the
number of self-transitions and inter state transitions yields the total number of
transitions. If the number of transitions is considered to be a number of samples
at a specified sampling frequency the "heart rate" of a transition matrix can be
calculated. For the one forward degree of freedom LR type transition matrix
it is straight forward to collect the total number of transitions as the result
is independent of the initial state as long as the return to the initial state is
monitored. In the two forward degrees of freedom LR transition type however,
there is a source of randomness as mentioned before. Thus, it is necessary
to simulate a number of realizations and find an average "heart rate" in this
manner. The LR with two degrees of freedom can jump two states at a time,
which will increase the modeled "heart rate". Also, experience shows that some
states will be close to absorbing. It was chosen to limit number of self-transitions
to 1e6 corresponding to aii = 0.999999 and run the LR with the two degrees
of freedom calculation 100 times to find an average "heart rate". In the case
of the full transition matrix the bookkeeping with regards to when the process
returns to the initial state is more ambiguous in that it may, in theory, return
at any time. Thus, the average "heart rate" of the transitions matrices are only
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Figure 6.3: ECG simulation. In the left column the hidden state sequence is
generated by random according to the transition matrix. The right
column corresponds to the hidden state sequence generated by
calculating the expected number of self-transitions. In the top row
the emissions are simulated while applying the covariance matrix.
In the second row the variance of the mean emissions are shown
by plotting the standard deviation. Row three shows the mean
emissions and row four shows the corresponding state sequence.
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calculated for the one and two forward degrees of freedom LR types.
Obviously this "heart rate" will be dependent on the number of states in the
model, and so it is of interest to calculate the "heart rate" of all the differently
sized transitions matrices for each crossfold. The optimal number of states with
regards to classification accuracy then yields a corresponding "heart rate" that
can be compared with the true heart rate of the two study populations.

6.5 Most Probable ECG According to Model

The other means of expressing which dynamics the models are capturing are
through inspection of the population ECGs creating the most extreme log-
likelihoods; the most likely subjects evaluated with the normal model and the
LQT2 model and the subjects yielding the largest difference between the normal
and LQT2 models. In the latter case, the difference is evaluated as a ratio in
the linear domain (subtraction of log-likelihoods) implying that it is the rela-
tive size of the likelihoods that are of interest and not the numerically largest
difference. Figure 6.4 shows the likelihood for a test set given a normal model
plotted against the likelihood for the test set given a LQT2 model. The line
through the diagonal represents equality in likelihoods. Blue asterisks denote
normal subjects whereas red asterisks denote LQT2 subjects. The green tri-
angles indicate the most likely subject with each model and the black circles
represent the maximal probability ratios for the case where the normal model is
more likely than the LQT2 model and vice versa. These ECGs will be plotted
and inspected in section 7.1.
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Figure 6.4: Likelihood for a test set given a normal model plotted against
the likelihood for the test set given a LQT2 model. The line
through the diagonal represents equality in likelihoods. Blue as-
terisks denote normal subjects whereas red asterisks denote LQT2
subjects. The green triangles indicate the most likely subject with
each model and the black circles represent the maximal probabil-
ity ratios for the case where the normal model is more likely than
the LQT2 model and vice versa.
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6.6 Verification of Implementations

Different measures are taken to verify that the implementation of the HMMs and
related functions behave as expected. The four following tests are performed:

• Modeling 1D artificial signal:
Constructing a simple signal with a ground truth, the HMM’s ability to
estimate the parameters can be compared.

• Modeling 2D artificial signal with random component:
Modeling a clearly sectioned two dimensional signal allows a visual verifi-
cation of the HMM’s ability to capture means and covariance.

• Capture the dynamics of a ECG using optimal state path:
With regards to ECG modeling, it of interest to evaluate if the HMM can
capture the periodic structure of an ECG bin in the hidden state sequence.

• Approximate the HMM of a process by modeling the simulation of a
teacher model:
With the constructed simulator function a simulation is generated apply-
ing a predefined HMM which is subsequently approximated by training a
new HMM.

All models correspond to the full transition type and a tolerance of 10−2 is
applied as convergence criterion.

6.6.1 Modeling 1D Artificial Signal

A signal is defined as having three underlying processes, each having two sub
processes. Each process and sub process are equal in the number of samples.
The signal is presented in Figure 6.5. The mean of the signal processes are:

µP rocess1 = 5, µSubprocess11 = 2, µSubprocess12 = 8
µP rocess2 = 24, µSubprocess21 = 21, µSubprocess22 = 27
µP rocess3 = 48, µSubprocess31 = 45, µSubprocess32 = 51

The standard deviations are equal within the processes and within the sub
processes.

σP rocess = 3.1623, σSubprocess = 1.0
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Figure 6.5: An artificial signal with "known" parameters. The signal is thought
to be made of three hidden processes each having two sub pro-
cesses. Each color represents a hidden process, from which the
observable values are emitted.

Modeling this clearly sectioned signal with a 3 state 1-Gaussian component
HMM, it is expected that the model captures the µP rocess and σP rocess. The
sub processes should be discovered when performing the modeling with a 3 state
2-Gaussian component HMM. Considering the single Gaussian variant, the tran-
sition probability for a12 and a23 should be 1

40 = 0.025, since the transition be-
tween processes in the signal occurs at every 40’th sample. The self-transition
probability of a33 should be 1, since a transition to another state should not
occur as the constructed signal is not periodic.
A 3 state 1-Gaussian component HMM is used to model the signal. The model
converges after 4 iterations. The estimated model parameters are presented be-
low:

A =

0.975 0.025 0.000
0.000 0.975 0.025
0.000 0.000 1.000


µ =

[
5 24 48

]
σ =

[
3.1623 3.1623 3.1623

]
Π =

[
1 0 0

]
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with the following differences from the expected parameters:

A∆ =

−.0009 · 10−12 0.0009 · 10−12 0.000 · 10−12

0.000 · 10−12 − .1434 · 10−12 0.1434 · 10−12

0.000 · 10−12 0.000 · 10−12 0.000 · 10−12


µ∆ =

[
−0.7961 · 10−5 0.7959 · 10−5 0.0001 · 10−5]

σ∆ =
[
0.2391 · 10−4 0.2392 · 10−4 0.0001 · 10−4]

Π∆ =
[
0 0 0

]
The estimated parameters correspond exactly to the expected values with only
a small difference in numerical precision between the true and estimated param-
eters.
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6.6.2 Modeling 2D Artificial Signal with a Random Com-
ponent

A clearly sectioned two dimensional signal with some randomness in the re-
spective processes is created. Like the one dimensional artificial signal, the two
dimensional artificial signal is constructed with three underlying processes each
having two sub processes. Each dimension of the signal is presented in Figure
6.6.

Figure 6.6: Two dimensional artificial signal with random component. The
three colors indicate three underlying processes.

The two dimensions are plotted against each other and presented in Figure 6.7.
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To visually verify that HMM captures the latent processes of the two dimen-
sional artificial signal, it is modeled both with a 3 state 1-Gaussian component
HMM and a 3 state 2-Gaussian component HMM. The results are shown as
contour plots. The result for the 3 state 1-Gaussian component HMM is visu-
alized in Figure 6.8 and the result of the 3 state 2-Gaussian component HMM
is shown in Figure 6.9. These plots can be compared against the actual data
presented in Figure 6.7.

Figure 6.8 indicates how the 3 state 1-Gaussian component HMM very sat-
isfactorily captures the three processes when comparing with Figure 6.7. The 3
state 2-Gaussian component HMM uses it’s extra flexibility to capture the sub
processes, which is evident when comparing Figure 6.7 and Figure 6.9.

Figure 6.7: Values of the two dimensional artificial signal plotted against each
other. The clearly defined clusters are color coded in order to indi-
cate the underlying processes specified in Figure 6.6. Visual iden-
tification of the subclusters, corresponding to the sub processes, is
straightforward.
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Figure 6.8: Contour plot of the means and covariances of the 3 state 1-
Gaussian component HMM of the two dimensional artificial signal
shown in Figure 6.6 and Figure 6.7.

Figure 6.9: Contour plot of the means and covariances of the 3 state 2-
Gaussian component HMM of the two dimensional artificial signal
shown in Figure 6.6 and Figure 6.7.
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6.6.3 Capturing the Dynamics of an ECG using Optimal
State Path

The previous sections established that the HMM is capable of modeling a clearly
sectioned signal. To verify that the model has the ability to capture the char-
acteristics of an ECG signal, a normal ECG is modeled with different numbers
of states and a 1-Gaussian component. Using the Viterbi algorithm to calculate
the optimal state path given the trained HMM, it should be possible to recreate
the modeled ECG. The results of applying 8, 25 and 50 states are presented
in Figure 6.10 where the means of the states have been plotted. Not surpris-
ingly the model with 50 states recreates the ECG better than the 8 state model.
However, the basic ECG structure is recognizable in all of the recreations.

6.6.4 Approximate a HMM of a Process by Modeling Sim-
ulation from a Teacher Model

In the following a 4 state 1-Gaussian component HMM is created. Then the
simulation procedure is used to generate a signal of varying length. The model
is called the teacher. The parameters of the teacher used are:

A =


0.80 0.20 0.00 0.00
0.00 0.70 0.30 0.00
0.00 0.00 0.75 0.25
0.40 0.00 0.00 0.60


µ =

[
10 20 30 40

]
σ =

[
1 2 1 2

]
Π =

[
1 0 0 0

]
Defining the transition matrix in this way makes it a Left-Right model with
periodicity. Using a Left-Right model starting in state one, avoids the problem
with possible permuted states.
The teacher model is used to generate signals increasing in length. Starting at a
length of 50 samples, a HMM is trained at signal lengths defined by increments of
10 from the initial length of 50 samples, i.e. the HMM is trained on generated
signals of length 50,60,70 up to 2000 samples. For each model based on the
generated signal, the summed difference between the various HMM parameters
were calculated together with the total difference. The results are presented
in Figure 6.11 and shows how the total sum of differences between the teacher
model and learned model decrease inconsistently at first and later more steadily
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Figure 6.10: Top plot shows five seconds of a normal ECG. The remaining plot
shows the optimal state sequence given the ECG of the top plot
and a HMM trained on that ECG. Plots 2-4 from the top corre-
sponds to a HMM trained with 8, 25 and 50 states, respectively.
For comparison, the state means are added.
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towards zero.

Figure 6.11: Four plots showing the summed difference between a teacher
HMM and the learned HMM of a simulated signal at varying
length. From the top: 1. Difference between transition matrices.
2. Difference between means. 3. Difference between covariance
matrices. 4. Total sum of differences of all HMM parameters.

6.7 The Effect of ECG Noise on Classification

Section 3.4 presented five types of noise typically found in the ECG. Having a
serious chronic illness might produce uncomfortable associations with the pro-
cess of having an ECG recorded. As such, it is not unreasonable to think that
the LQT2 ECGs might be more prone to a higher biological noise source content
than the normal ECGs. The worst case scenario is that an artificial difference
between the two study populations is introduced this way. This was the ra-
tionale behind the baseline wander filtration and preferably further filtration
should have been performed.
It was chosen to assess the effect of noise on the classification by adding noise to
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the test data used in the classification; i.e. noise was not added to the training
data but only to the test data. A fused noise source were created by adding the
3 biological noise sources and PLI. The rms amplitude ratios between the three
biological noise sources were preserved as they appear in the original noise data.
As the impairment of the ECG caused by PLI, compared to e.g. BW at the
same SNR, is far more devastating, the PLI rms amplitude in the fused noise
source was considered. By visual inspection of the noisy ECGs it was chosen
to define the rms amplitude of the PLI as half of the lowest rms amplitude of
the three biological noise sources. This method resulted in a fused noise source
whose component wise rms amplitude distribution was 30%, 16%, 46% and 8%
for BW, MA, EM and PLI, respectively. Subsequently the fused signal was
multiplied with a constant factor, calculated for each ECG to which noise was
applied, in order to match a predefined level of noise in dB (SNR) as described
in section 3.4.2. Besides the fusion of the noise signals, the individual and ran-
dom noise samplings for each lead, were performed and applied as described in
section 3.4.2. The BW filtration was performed after the addition of noise to
the unfiltered test ECGs.



Chapter 7
Results of Model
Identification and

Classification Applied to ECGs

The current chapter presents the results of applying the methods described
in chapter 6 to the normal and LQT2 ECGs. Section 7.1 presents the mean
accuracies of the trained models and the most extreme ECGs identified by the
best models, according to the mean classification accuracy. Section 7.2 presents
the generative properties in terms of simulations and finally section 7.3 presents
the results of classifying normal and LQT2 ECGs.

7.1 Basic Discriminative Properties

Following the procedure of model training described in section 6.2 the classi-
fication accuracy was evaluated for different parameter settings in the models.
Results are summarized and presented in Figure 7.1, showing the mean classifi-
cation accuracy of the four crossfolds for an increasing number of states. Results
are presented for the three types of transition matrices all applying both one and
two Gaussians, respectively. The blue line corresponds to the LR type transition
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with one forward degree of freedom, the red line represents the corresponding
two forward degrees of freedom and the magenta line shows the full type tran-
sition. Punctuation refers to the use of two Gaussians in the model. None of
the models produce a steady course through the increasing number of states,
however, there seems to be a common tendency of a decrease in classification
accuracy from 40 to 45 states and a common increase between from 25 to 30
states. Comparing the mean accuracy curves representing the application of two
Gaussians, with the corresponding curves for a single Gaussian, two Gaussians
seem to produce a lower or similar mean classification accuracy except at states
40, 45 and 50 for the LR types. The mean accuracies corresponding to the full
type transition is more ambiguous and shows no clear tendency with regards to
the use of one or two Gaussians.

Figure 7.1: Mean classification accuracy for the models corresponding to the
three types of transition matrices. The blue line corresponds to
the LR type transition with one forward degree of freedom, the red
line represents the corresponding two forward degrees of freedom
and the magenta line shows the full type transition. Punctuation
refers to the use of two Gaussians in the model.



7.1 Basic Discriminative Properties 91

Following the procedure introduced in section 6.5 the extreme case ECGs, iden-
tified by their likelihoods, are identified and plotted for inspection. The next
six pages presents these extreme case ECGs for each type of model. First, the
LR type transition with one forward degree of freedom, one Gaussian and 35
states are presented in Figure 7.2 for crossfold 1. The top part of the figure
presents the likelihood for the test set given the normal model plotted against
the likelihood for the test set given the LQT2 model. The line through the di-
agonal represents equality in likelihoods. Blue asterisks denote normal subjects
whereas red asterisks denote LQT2 subjects. The green triangles indicate the
most likely subject with each model and the black circles represent the maximal
probability ratios for the case where the normal model is more likely than the
LQT2 model and vice versa. The bottom part shows the most likely ECGs with
both models in the top subfigure, corresponding to the green triangle. ECGs
corresponding to the black circle are presented in the lower subfigure of the
bottom part. The setup remains the same for the following figures and will not
be addressed further.

Considering Figure 7.2 it appears that the most likely ECGs is the same normal
subject for both models. The likelihood ratios capture a LQT2 ECG whose lead
V5 is strongly corrupted with noise (remaining leads are more normal). Note
that the 2D probability is based on all leads whereas only lead V5 is presented
for inspection. The corresponding normal ECG seems to be similar to the most
likely ECG. Figure 7.3 presents the LR type, one degree of freedom and two
Gaussians (crossfold 4). Most likely ECGs are captured from each group and
seem to have similar P-waves and QRS-complexes. The T-wave in the LQT2,
however, seems to be wider, flatter and noisier. The maximum likelihood ratios
seem to capture the same differences in two ECGs. Figure 7.4 (LR type, two
degrees of freedom , one Gaussian and crossfold 3) captures the same normal
ECGs as being the most likely with both models. The ECGs selected with the
likelihood ratios show a normal looking LQT2 ECG and a normal ECG with
a remarkably higher heart rate. Figure 7.5 presents the corresponding 2 Gaus-
sian case, which also had crossfold 3 as the best, with regards to classification
accuracy. Thus the same test data are plotted, using different models of course,
but the selected ECGs are the same. Figure 7.6 presents the full type transition
(crossfold 2). The most likely ECG is again the same normal subject. ECGs
identified with the most extreme likelihood ratio show a smooth normal with a
relatively wide T-wave. The LQT2 ECG is of lower amplitude, far more noisy
and has a wider T-wave. The corresponding 2 Gaussian case (crossfold 2) is
presented in Figure 7.7 where the most likely ECG is again the same normal
subject for both models. ECGs identified with the most extreme likelihood ra-
tio show a normal ECG of generally lower amplitude than the LQT2 ECG. The
normal T-wave looks a bit noisy whereas the LQT2 T-wave is smooth and far
wider than the normal T-wave.
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Figure 7.2: [35 states, 1K, crossfold 1] The top part of the figure presents the
likelihood for the test given the normal and LQT2 model where the
diagonal represents equality in likelihoods. Blue and red asterisks
denote normal and LQT2 subjects, respectively. Green triangles
indicate the most likely subject with each model and the black
circle represents the maximal probability ratios for the case where
the normal model is more likely than the LQT2 model and vice
versa. The bottom part shows the ECGs corresponding to the
green triangle(s) in the top subfigure and the black circles in the
bottom subfigure.
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Figure 7.3: [35 states, 2K, crossfold 4] The top part of the figure presents the
likelihood for the test given the normal and LQT2 model where the
diagonal represents equality in likelihoods. Blue and red asterisks
denote normal and LQT2 subjects, respectively. Green triangles
indicate the most likely subject with each model and the black
circle represents the maximal probability ratios for the case where
the normal model is more likely than the LQT2 model and vice
versa. The bottom part shows the ECGs corresponding to the
green triangle(s) in the top subfigure and the black circles in the
bottom subfigure.
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Figure 7.4: [30 states, 1K, crossfold 3] The top part of the figure presents the
likelihood for the test given the normal and LQT2 model where the
diagonal represents equality in likelihoods. Blue and red asterisks
denote normal and LQT2 subjects, respectively. Green triangles
indicate the most likely subject with each model and the black
circle represents the maximal probability ratios for the case where
the normal model is more likely than the LQT2 model and vice
versa. The bottom part shows the ECGs corresponding to the
green triangle(s) in the top subfigure and the black circles in the
bottom subfigure.



7.1 Basic Discriminative Properties 95

Figure 7.5: [10 states, 2K, crossfold 3] The top part of the figure presents the
likelihood for the test given the normal and LQT2 model where the
diagonal represents equality in likelihoods. Blue and red asterisks
denote normal and LQT2 subjects, respectively. Green triangles
indicate the most likely subject with each model and the black
circle represents the maximal probability ratios for the case where
the normal model is more likely than the LQT2 model and vice
versa. The bottom part shows the ECGs corresponding to the
green triangle(s) in the top subfigure and the black circles in the
bottom subfigure.
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Figure 7.6: [5 states, 1K, crossfold 2] The top part of the figure presents the
likelihood for the test given the normal and LQT2 model where the
diagonal represents equality in likelihoods. Blue and red asterisks
denote normal and LQT2 subjects, respectively. Green triangles
indicate the most likely subject with each model and the black
circle represents the maximal probability ratios for the case where
the normal model is more likely than the LQT2 model and vice
versa. The bottom part shows the ECGs corresponding to the
green triangle(s) in the top subfigure and the black circles in the
bottom subfigure.
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Figure 7.7: [30 states, 2K, crossfold 2] The top part of the figure presents the
likelihood for the test given the normal and LQT2 model where the
diagonal represents equality in likelihoods. Blue and red asterisks
denote normal and LQT2 subjects, respectively. Green triangles
indicate the most likely subject with each model and the black
circle represents the maximal probability ratios for the case where
the normal model is more likely than the LQT2 model and vice
versa. The bottom part shows the ECGs corresponding to the
green triangle(s) in the top subfigure and the black circles in the
bottom subfigure.
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7.2 Generative Properties

Following the procedure of simulation described in section 6.4.1 the mean emis-
sions are simulated while constricting the number of self-transitions to expec-
tation. Doing so, all 8 leads of an ECG are simulated with the best single
Gaussians models, based on classification accuracy, for the normal and LQT2
group. Figure 7.8 presents the LR type transition with one forward degree of
freedom. The best model consisted of 35 states and 1 Gaussian. One cycle, or
"heartbeat", is shown for each lead with lead I and II in row one and leads V1,
V2, V3, V4, V5 and V6 in row 2 through 4. All leads are presented in individual
subfigures and for comparison the normal (blue line) and LQT2 (red line) ECG
simulations are aligned by visual inspection. Comparing with the biological
normal ECG presented in Figure 3.3 it seems that the P-wave, QRS-complex
and T-wave are recognizable in some form although some additional excursions
are present for both the normal and the LQT2 ECG simulations. The larger
negative component of the biological QRS complex in some leads (e.g. lead V2
and V3 in Figure 3.3) also seem to be present in the simulation. Considering the
excursions in the QRS-complex region in both groups they seem to be similar in
their shape and amplitude except for lead V3 and lead V4 where the amplitude
of the normal ECG simulations are larger. The baseline and P-wave section pre-
ceding the QRS-complex is stable with smaller excursions in the normal ECG
simulation and none of the leads exhibit any distinct excursions that could be
attributed to the model capturing the dynamics of the P-wave. The LQT2 ECG
simulation however, has an excursion in the area of the P-wave that is distinct
in most of the leads. The baseline section preceding these excursions, also seem
to show a larger variability between mean values than in the normal simulation.
The section of the simulation following the QRS-complex region where the T-
wave is found in the biological ECGs shows distinct excursion in both groups.
Comparing the groups the LQT2 excursions are the same or lower amplitude
than in the normal ECG simulation. Furthermore, there is a tendency of the
excursions to initiate earlier than with the normal simulation. Depending on
the level at which the return to the baseline is defined, the LQT2 excursions in
the T-wave region also seem to be wider in the LQT2 group.
Figure 7.9 presents an ECG simulation applying the LR type transition with
two forward degrees of freedom. The best model, according to classification
accuracy, consisted of 30 states and 1 Gaussian. Due to the randomness in the
non self-transitions an interlead variability will be present, and so two consecu-
tive beats are shown. Comparing with the biological normal ECG presented in
Figure 3.3 again, the biological ECG features are not recognizable to the same
degree as with the simulation in Figure 7.8. The most distinct excursions are
seen at times 0.25 s and 0.55 s in both the normal and the LQT2 simulation and
have similarities with the QRS-complex region of the biological ECGs. Except
for lead V2 and lead V3 the LQT2 ECG simulations have larger amplitudes.
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Considering the QRS-complex region further, the normal simulations shows flat
areas in all the leads which is not observed in the LQT2 simulation. Baseline
regions are stable in both cases and excursions related to the P-wave are not
distinct in the LQT2 ECG simulation. In the normal case the flat part of the
simulation in the QRS-complex region covers the expected area of the P-wave.
The areas following the QRS-complex regions show distinct excursions immedi-
ately after the QRS-complex region. The differences in this region between the
normal and LQT2 ECG simulation are not remarkable but the lower amplitude
and wider excursions seen in Figure 7.8 with LQT2 in the T-wave region are
observable on a far smaller scale in Figure 7.9 in lead I, II, V5 and V6.
Figure 7.10 presents an ECG simulation applying the full transition type. The
best model, according to classification accuracy, consisted of 5 states and 1
Gaussian. The randomness in the non self-transitions has a far larger influ-
ence yielding the aperiodic appearance of the ECG simulation. Comparing the
normal and LQT2 ECG simulation they both seem irregular and of lower am-
plitude than the LR types and the most distinct difference, if any, seems to
be the larger amplitude seen in the LQT2 ECG simulations. In the LR type
transition simulations the highest amplitude spikes appeared as being related
to the QRS-complex region of the biological ECG. Considering these spikes in
Figure 7.10 as related to the QRS-complex, no systematic excursions preceding
or following this region, that could be related to the P-wave or T-wave, are seen
in either the normal or the LQT2 ECG simulation.

To generalize, the trained HMMs assume stationarity in the ECG and map
all observations corresponding to a given state into a density with mean and
variance. As one group could potentially have a larger inter-subject variability
in some waves, it is also of interest to inspect the SD of the means as presented
in row two of Figure 6.3. As the clarity of these properties, by visual inspection,
is poor, only lead V5 of the normal and LQT2 model are presented in Figure
7.11, for the three types of transitions matrices. Figure 7.11 shows the sim-
ulated mean emissions, while taking expectation of self-transitions, and their
corresponding SDs. The left column represents the normal model and the right
column represents the LQT2 model. The top row corresponds to the LR type
transition with one forward degree of freedom, the second row presents the cor-
responding two forward degrees of freedom and row three presents the full type
transition. Considering the top row (LR1) quantification of any differences is
complex. However, the T-wave region in the normal simulation seems to have a
larger part (longer duration) with higher SD than seen in the LQT2 case where
the SD seems to decrease towards the end of the T-wave region. In the middle
row (LR2) the oddly shaped P-Q region in the normal case obviously introduces
a difference, however this beat type is not observed every second time as the
figure might indicate. It suggests, however, a larger variability in this region
than in the LQT2 case. In contradiction, within the QRS complex region, the
LQT2 simulation seems to possess a slightly higher SD of the mean emission
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which is present in a wider region. The full type transition in the bottom is
difficult to quantify. The SDs of the normal and LQT2 simulations are compa-
rable except the in the first 0.3 seconds where the LQT2 SD is larger. Due to
the randomness of the simulations however, this might not be the general case.
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Figure 7.8: ECG simulation corresponding to LR type transition with one
forward degree of freedom (35 states, 1 Gaussian). One cycle,
or "heartbeat", is shown for each lead with lead I and II in row
one and leads V1, V2, V3, V4, V5 and V6 in row 2 to 4. All
leads are presented in individual subfigures and for comparison
the normal (blue line) and LQT2 (red line) ECGs are aligned by
visual inspection.
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Figure 7.9: ECG simulation corresponding to LR type transition with two
forward degree of freedom (30 states, 1 Gaussian). One cycle,
or "heartbeat", is shown for each lead with lead I and II in row
one and leads V1, V2, V3, V4, V5 and V6 in row 2 to 4. All
leads are presented in individual subfigures and for comparison
the normal (blue line) and LQT2 (red line) ECGs are aligned by
visual inspection.
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Figure 7.10: ECG simulation corresponding to full type transition (5 states,
1 Gaussian). One cycle, or "heartbeat", is shown for each lead
with lead I and II in row one and leads V1, V2, V3, V4, V5 and
V6 in row 2 to 4. All leads are presented in individual subfigures
and for comparison the normal (blue line) and LQT2 (red line)
ECGs are aligned by visual inspection.
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Figure 7.11: Simulated mean emissions, while taking expectation of self-
transitions, and their corresponding SDs. The left column rep-
resents the normal model and the right column represents the
LQT2 model. The top row corresponds to the LR type tran-
sition with one forward degree of freedom, second row presents
the corresponding two forward degrees of freedom and row three
presents the full type transition.
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Comparing Figure 7.8 and 7.9 it appears as if the "heart rate" of the simulation
doubles in the case with two forward degrees of freedom. Following the proce-
dure described in section 6.4.2 the "heart rate" of the LR type transitions are
calculated and presented in Figure 7.12. The top plot shows the "heart rate" of
the LR type with one forward degree of freedom and the bottom plot shows the
corresponding two forward degrees of freedom. The "heart rate" is calculated
for all sizes of the transitions matrix (states) and for all crossfolds for both the
normal (blue line) and LQT2 (red line) model. The best models, according
to classification accuracy, are marked. Furthermore, the true heart rate of the
biological ECGs are marked at the optimal number of states for comparison.
Comparing the top and bottom plot, the "heart rate" of the one forward degree
of freedom type is closer to the true heart rate of the data. The "heart rate" of
the two forward degree of freedom model is high as suggested by Figure 7.9.
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Figure 7.12: The top plot shows the "heart rate" of the LR type transition
matrix with one forward degree of freedom and the bottom plot
shows the corresponding two forward degrees of freedom calcu-
lated for all model sizes and crossfolds for the normal (blue line)
and LQT2 (red line) model. The black plus marks the optimal
models. The true heart rate of the data is marked with a cross
(normal) and triangle (LQT2).
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7.3 Classification

The of results using the different classification schemes described in section 6.3
are presented in the following.

The accuracy, specificity, sensitivity and area under the receiver operating char-
acteristic curve (AUC), are calculated for each of the models with the highest
accuracy and shown in Table 7.1. The models presented in this section is pre-
sented in a short notation form, where e.g. LR1K135, is a strict Left-Right
model using 35 states and 1 Gaussian per state.

Accuracy Specificity Sensitivity AUC

LR2K130 72.6% 68.4% 79.9% 0.70
FULLK230 71.9% 68.4% 79.9% 0.72
LR1K135 71.9% 69.9% 79.4% 0.72
LR2K210 71.9% 71.5% 73.8% 0.72
FULLK15 70.3% 68, 0% 76.5% 0.68
LR1K235 69.5% 67.7% 75.8% 0.70

Table 7.1: The optimal number of states for each of type of transition matrix
models. The highest score for each measure is highlighted.

Due to the variance and small number of cross folds, no statistical significance
can be established between the models using a significance level of 5%. Eval-
uating the table by simply looking at the magnitudes, the model using a 30
state Left-Right transition structure with an extra degree of freedom and states
modeled with one Gaussian component seems to be the best choice. It has
the highest accuracy and sensitivity yielding 72, 6% and 79.9%, respectively.
Weighting the AUC higher than the accuracy, the FULLK230 and LR1K135
would be good candidates, but in general is it difficult to distinguish between
the models.

To visually compare the models the mean ROC curves are shown in Figure 7.13.
The course of the mean ROC curves looks very much alike. Only LR2K130 and
LR1K135 seem to positively stand out around a false positive rate of 0.3 and
0.6, respectively.
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Figure 7.13: Mean ROC curves for the models with the highest accuracy for
each combination of models from Table 7.1. The course of the
mean ROC curves look very much alike. Only LR2K130 and
LR1K135 seems to positively stand out around a false positive
rate of 0.3 and 0.6, respectively

.
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7.3.1 Combining Best Of Each Model Types

Classification using combinations of the six models from Table 7.1 with the dif-
ferent classification schemes is performed. The range of the resulting accuracies
due to the different classification schemes are shown in Table 7.2.

Range of Accuracy
HMMBiggest∆ 71.1− 71.9%
HMMV oting 71.9− 75.0%
SVMLinear 72.7− 75.8%
SVMpoly2 71.1− 74.2%
SVMpoly3 72.7− 73.4%
SVMpoly4 71.1− 75.0%
SVMrbf 71.9− 74.2%
SVMquadratic 71.9− 74.2%
SVMmlp 72.7− 75.0%

Table 7.2: The Table shows the range of the resulting accuracy using the
combination of models from Table 7.1 with different classification
schemes.

The model with the highest accuracy from Table 7.2 is a combination of LR2K130
and LR1K135 using SVM without a kernel (linear kernel). This yields an accu-
racy of 75.8%.

7.3.2 Combining Models Having the Best Accuracies

The models having the six highest accuracies (see Figure 7.1) disregarding model
type, were combined in different ways, using the different classification schemes.
The results are seen in Table 7.3.

Based on the highest accuracy the best classification is performed doing the fol-
lowing: Calculate the log likelihood differences between the normal and LQT2
models corresponding to the LR2K1 models consisting of 10, 30 and 40 states,
respectively, and apply them as features to an SVM using a multi-layer percep-
tron as kernel. From here on this procedure is named the BestModel. A mean
confusion matrix for the BestModel is seen in Table 7.4. The model is equally
good at predicting LQT2 and Normal ECGs.
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Range of Accuracy
HMMBiggest∆ 70.3− 73.4%
HMMV oting 72.7− 75.0%
SVMLinear 73.4− 77.3%
SVMpoly2 74.2− 75.8%
SVMpoly3 73.4− 76.6%
SVMpoly4 72.7− 75.8%
SVMrbf 71.9− 75.8%
SVMquadratic 74.2− 76.8%
SVMmlp 75.0− 78.1%

Table 7.3: The table shows the classification accuracies of the models having
the six highest accuracies (see Figure 7.1) disregarding model type
while using the different classification schemes.

Predicted as LQT2 Predicted as Normal
LQT2 12.5 3.5

Normal 3.5 12.5

Table 7.4: A mean confusion matrix for the BestModel.

The accuracy, specificity and sensitivity of the BestModel is presented in Table
7.5.

Accuracy Specificity Sensitivity

BestModel 78.1% 78.2% 78.2%

Table 7.5: The accuracy, specificity and sensitivity of the model combination
yielding the highest accuracy. The transition matrix is a Left-Right
structure able to make a transition two states ahead. Each state is
modeled using one Gaussian component.

Comparing the single best model from Table 7.1 and BestModel the accuracy
increases with 5.5%, the sensitivity decreases 1.7% while specificity increases
9.8%.
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7.3.3 Combining QTcB and Best Model

As described in section 2.4 the QTcB is the golden standard for classifying
LQT2 patients. Applying the SVM with different kernels using QTcB yields the
classification accuracy presented in Table 7.6.

QTcB

SVMLinear 81.3%
SVMpoly2 82.0%
SVMpoly3 82.0%
SVMpoly4 79.7%
SVMrbf 81.3%
SVMquadratic 82.0%
SVMmlp 81.3%

Table 7.6: The classification accuracy using QTcB in an SVM with seven dif-
ferent kernels.

The accuracy found by combining the QTcB and the BestModel is seen in Table
7.7.

QTcB +BestModel

SVMmlp 84.4%

Table 7.7: The accuracy using the QTcB feature combined with the best found
combination of HMM’s using an SVM with a multi-layer perceptron
kernel.

Table 7.7 indicates that the BestModel contributes to the classification accuracy
with an increase of 2.4% compared to using only QTcB.
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7.3.4 Effect of Noise on the Classification

To investigate the effect of noise, the noise application procedure described
in section 6.7 is applied. The effect of noise on the accuracy, sensitivity and
specificity of the BestModel using this procedure is presented in Figure 7.14. At
SNR levels of 40 and 35 dB the noise does not influence accuracy, sensitivity nor
specificity. Around 30 dB a small decrease in all three measures is observed. At
20 dB the accuracy reaches 71.9%. The sensitivity increases and the specificity
decreases. At 15 and 10 dB the accuracy is quickly decreasing together with the
specificity, while the sensitivity is increasing.

Figure 7.14: The effect of noise on the accuracy, sensitivity and specificity of
the BestModel.



Chapter 8

Discussion

In the current work 8-lead ECGs from normal and LQT2 subjects have been
modeled using a multi-dimensional continuous emission Hidden Markov model.
Both the generative and discriminative properties of the models were inves-
tigated. The possibility of discriminating the data were further investigated
through different classification schemes including the Support Vector Machines.
The current chapter discusses the results obtained, starting with the choice of
HMMs in section 8.1. The training and testing of the models are discussed in
section 8.2 and the generative properties of the resulting models are discussed
in section 8.3. The classification and the effect of noise on these results are
discussed in sections 8.4 and 8.5, respectively.

8.1 Choice of Model

Motivation: As the introduction presented, the primary motivation was to
create a method of characterizing and discriminating ECGs in general. Exist-
ing methods of quantifying ECGs seems to rely on single beat characterization.
This could either be the median beat as in MUSE R© (12SL R© algortihm) or ab-
normal beat recognition in 24h Holter recordings. In the current work only
LQT2 and normal ECGs were treated. Comparing the ECGs from the normal
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and LQT2 subjects revealed relevant properties in terms of the appearances of
the ECGs; the LQT2 ECGs show a large inter subject variability and more im-
portantly a subset of the LQT2 ECGs resembles the normal ECGs, which is the
typical situation in biosignal classification. It is well-known that the LQT2 is
associated with abnormal T-waves, but with regards to the QRS-complex and
P-wave no particular abnormalities are generally accepted. Applying gender
and age matched study populations should provide a good test of a potentially
more global method in that the general trends captured in each group should
preferably show some meaningful differences. It was chosen to evaluate these
differences both with regards to the classification itself but also with regards
to the generative properties of the models. It was learned from the literature
review that HMMs are often applied in ECG segmentation.

The choice of HMMs: Generally speaking the HMM is a stochastic model
in which the hidden states correspond to the underlying stochastic process that
cannot be observed; only the emissions associated with each hidden state are
observable. The hidden Markov modeling approach hence combines both sta-
tistical and structural knowledge. However, it was learned that the structural
properties that is characterized during model training assumes stationarity in
the ECG; i.e. considering e.g. a state corresponding to some part of the T-wave,
the estimated mean value of the emission density will be an expression of the
general amplitude of this region, both inter-beat and inter-subject wise. In the
study [39] by Thoraval et al. was it argued that the assumption of inter-beat sta-
tionarity is only marginally fulfilled. However, these arguments were proposed
in a segmentation context. In the current work the aim was to capture general
trends that characterizes the groups which could lay the basis of discrimination.
In that context however, the assumption of stationarity might be appropriate.
Information contained in the inter-beat variations might be lost, but considering
that HMMs are not trained for each subject, these inter-beat variations would
probably be hidden in the larger inter-subject variations anyway. In summary
the HMM approach can model the signal directly, it can include inter-subject
variability and considering the HMM as a classification method it provides prob-
abilities rather than binary outputs.

Evaluation: In order to evaluate the HMM approach both the discriminative
and generative abilities were evaluated. Depending on the criteria of success, the
modeling approach does not need to fulfill both areas but preferably the models
showing the best classification abilities should contain some generative proper-
ties making the classification method more reliable. As the discriminative and
generative abilities are discussed in other sections only the segmentation and
time warping issue is considered in the remaining. One of the selection crite-
ria was that the modeling approach should be able to deal with unsegmented
ECGs of varying heart rates. As the HMM approach was able to model 10 s
ECG segments and capture the general trends in the semi periodic signals and,
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at the same time, explain inter-subject variability, it seems that the applica-
tion of HMMs using raw ECG data was well suited for the purpose of ECG
characterization and discrimination.

8.2 Training and Testing the Hidden Markov
Models

Hidden state transition structures: Having explored the literature cov-
ering ECG modeling with HMMs, it was found that the transition structures
often applied were the fully connected and the strict Left-Right types (LR1). In
this work a Left-Right transition matrix with an extra degree of freedom was
also included (LR2). As the model achieving the highest accuracy exclusively
used combinations of the models having this LR2 transition structure with a
different number of states, it would be of interest to apply transition structures
with increasing flexibility in the Left-Right setting. Having a strict Left-Right
model with a sufficient number of states to represent a full heartbeat in one
cycle (around 30-35 states) and one Gaussian per state, the model forces the
specific parts of the heartbeat to be mapped into emissions of a single state,
thus modeling the variations through the variance of a Gaussian. Consider a
population with almost identical ECGs, with four sub populations each having
a P-wave of different amplitude. A strict Left-Right model would find the mean
and model the differences of the P-wave amplitude though a large variance. The
mean value of the P-wave captured by the model could be a value that would
actually not be present in that population. Providing a model with multiple
degrees of freedom, the model would be able to capture the four specific P-wave
amplitude subpopulations, by making it possible to skip states in the transition
matrix when the states representing the top of the lower amplitude P-wave are
encountered. Since the remaining parts of the ECGs are identical in this sce-
nario, the following transitions of the model could adapt to a strict Left-Right
structure.

Alternative transition structures: Having experienced that a number of 30
to 35 states seems to be able to model an entire heart beat realistically, it could
be of interest to build a transition matrix incorporating two Left-Right struc-
tures with periodicity that were only linked in one or two states. This could
potentially capture two different heartbeat variations present in a population
of ECGs. An example could be normal heartbeats and premature ventricular
beats. Furthermore, knowledge about the diseases that are modeled could be in-
corporated in the transition matrix through specific transition structures, which
has shown to improve modeling in certain areas such as protein transportation.
However, since the purpose was to evaluate HMMs in general ECG characteri-
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zation and discrimination, this was not pursued.

The number of cross-folds: In order estimate the mean accuracy of the
implemented models a 4-fold cross validation was performed. The number of
folds were solely chosen based on an estimation of the training process com-
putation time. Going through the machine learning literature the number of
cross-folds applied ranges between 5 and 20. Had the number of cross-folds
been increased, a more accurate estimate of the accuracy could perhaps have
been found. Further this would facilitate the establishment of statistical signif-
icance between models (if any). However, given the limited time of the project
and the speed of the implementation this was not feasible.

Covariance structure: In the current work the covariance between all 8 leads
of the ECGs were modeled. It was included in order to capture any class related
covariance between the leads which could potentially improve the discrimination
between the normal and the LQT2 ECGs. However, estimating a full covariance
implies estimating numerous parameters thus making it more prone to overfit-
ting. One way to relax the model complexity would be to use only a diagonal
covariance matrix, ignoring the covariance between leads. Doing so it could
have been investigated whether the covariance actually contributed to the dis-
criminative capabilities.

8.3 Generative Properties of the Hidden Markov
Model

Simulations: The key issue with the HMM approach is the question of what
general trends are actually captured in each group. As the trained models should
be able to represent both inter-beat and inter-subject variations it is not straight
forward to anticipate which ECG structures are captured. Consulting section
7.2 the three types of transition models, all applying only one Gaussian, were
used to simulate ECGs. The best models with the LR types, according to the
mean classification accuracy, both had a relatively high number of states (35 and
30). The best model with the full transition type, however, only had 5 states.
Without considering the actual simulations it is not anticipated that the full
type transition will be able to capture the same general trends as the LR types
due to the low number of states. The LR1 type produced the most realistic
looking simulation. Most of the anticipated ECG waveforms were recognizable
and the amplitude and duration of the beat corresponded well to the actual data
for both the normal and the LQT2 simulation. The LR2 case produced less rec-
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ognizable waveforms and the duration of a beat seemed far shorter than in the
data. Even though individual waveforms were not distinguishable to the same
degree as in the LR1 case the notion of two beats in the presented time win-
dow seemed clear. As expected, the 5-state full transition model produced what
looked like random patterns of which not even the peak amplitudes are compara-
ble to that of the typical ECGs. Besides evaluating the fidelity of the simulations
the differences between the groups was also of great interest. It is noted that
it was chosen to consider the mean emissions and to perform the simulation
using an expected number of self-transitions. In order to consider the variance
of the mean emissions the SDs was also plotted (Figure 7.11). When comparing
the captured trends between the normal and LQT2 group, both the course of
the simulations in terms of the mean emissions as well as the captured variance
should be considered. Generally speaking, the variances seem to be comparable
whereas the amplitude of the excursions seem larger with the LQT2 simulations
for the full transition and LR2 transition while being more comparable in the
LR1 case. Hence, to generalize the visually most obvious difference in the sim-
ulations does not seem to be the captured variance or the general amplitude,
but rather the structure of the simulation (excursions). Considering the LR1
case it seems reasonable to say that there appears to be a difference both in the
P-wave area end T-wave area when comparing the normal and LQT2 model.
However, observing abnormal T-waves in the LQT2 model is less clear. On the
other hand, the wide and sometimes notched LQT2 T-waves in the data are of-
ten of low amplitude and maybe the simulation actually shows a wider T-wave.
The most distinct difference though, would be the earlier onset of the T-wave
in the LQT2 simulation. The LR2 case is more difficult to compare and also
seems to exhibit some difference in the resulting "heart rate" between the nor-
mal and LQT2 simulations, besides generally being higher than in the LR1 case.

"Heart rate" of the simulations: As variable duration was not included
explicitly in the HMM model, the inherent exponential duration of the states
was effectively applied. This limitation might have affected the choice of model.
Consulting the "heart rate" plots (Figure 7.12) it seems that only the LR1 type
captured the true mean heart rate whereas the LR2 simulation seems to repre-
sent an almost doubled heart rate. It should also be noted that the best models
as according to the classification accuracy seem to represent an intersection of
the normal cross-folds’ "heart rates" and the LQT2 cross-folds’ "heart rates"
(over the increasing states), which could imply that the best discrimination is
achieved when the "heart rates" of the models representing each group are rel-
atively similar, which corresponds well to the actual situation in the data. The
"heart rate" plots shown for the LR types along with the simulations for all
three types of transition suggest that the LR1 type seems to be the HMM type
showing the best generative properties.

Extreme log-likelihood ECGs: By calculating the probability of the ECGs
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given the HMMs the most likely and the most extreme ECGs were investigated.
These ECGs does not present actual generative properties of the models, but
they were included to aid in the evaluation of what trends that were actually
captured. Following comments hence relates to Figures 7.2 - 7.7. To generalize,
the most likely ECG was almost without exception the same (normal) ECG
for both the normal and the LQT2 model. Depending on the crossfold and
model in question this normal ECG changed but in all cases except with LR1,
2 Gaussians, a normal looking normal ECG was selected as the most likely for
both models. This confirms the anticipation that some overlap occurs between
the groups in that a normal looking normal ECG results in a high probability
with both models. The largest differences in log-likelihoods however, were dif-
ferent from model to model. In most cases the LQT2 ECG would be of higher
amplitude, have a wider T-wave and contain more noise. It should be noted
however, that even though the mean heart rate of the populations are similar,
the heart rate from ECG to ECG varies significantly. Take for example both
LR2, 1 Gaussian and LR2, 2 Gaussians (Figures 7.4 and 7.5); the normal ECG
seems to represent a higher heart rate than observed with the LQT2 ECG in
both cases. The LR1 results seem to capture the expected typical normal and
typical LQT2 better in the 2 Gaussian case but unfortunately the 1 Gaussian
case captures an extremely noisy LQT2. The full transition seems to result in
normal and LQT2 ECGs of similar heart rate and the T-wave is wider in the
LQT2 ECG in both cases.

Evaluation: Considering the small number of test subjects and the fact that
the differences in performance, as according to the mean classification accuracy,
often differ with only a single subject, the difference in performance between LR1
and LR2 does not seem to be that large when consulting Figure 7.1. Hence, the
type of model that provides the most realistic simulations, represents the true
heart rate of the data well, results in reasonable extreme ECGs and has proven
its basic discriminative capabilities is the LR type with one degree of freedom.

8.4 Discriminative Properties of the Hidden Markov
Model

Classification techniques: The general approach when using the HMM as a
classifier is building a HMM per class and subsequently evaluating the proba-
bility of a new test signal for each of the HMMs. The test signal is classified
according to the HMM yielding the highest probability. The same approach
was applied in this work. Furthermore, in utilizing multiple models two differ-
ent classification schemes was applied. The biggest difference method, where
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the models with the highest log-likelihood difference ruled and a voting scheme
were the classification was based on the majority of votes. In general, utilizing
multiple models increased the mean classification accuracy. It was found that
the voting scheme was a better choice than relying on the biggest difference.
However, none of these classification schemes achieved as high a mean accuracy
as using the output from the HMMs in a SVM in the form of a log-likelihood
difference between the normal and LQT2 models. Using a linear kernel and a
multi-layer perceptron kernel yielded the highest mean accuracies of 77.3% and
78.1%, respectively. It was found that ECGs having a high probability of being
generated from the normal HMM also had high probability being generated by
the LQT2 HMM and vice versa. The same seemed to be the case for low prob-
abilities. A possible explanation of why the SVM improved the accuracy is its
ability to find the maximum margin decision boundary. It could be argued that
the LR2 transition type using 1 Gaussian maybe is slightly better in capturing
the important differences between the normal and LQT2 ECGs. Each of the
models using different states could possible capture important features from sub
groups in the normal and LQT2 population. Applying the SVM using multiple
models, the possible enhanced separation of log-likelihood relationships between
the models in the specific domains can be utilized. It must be stressed that no
evidence for this hypothesis has been found and that the argumentation is solely
based on speculation.

Best classification: The best model found in this project, based on the classifi-
cation accuracy of normal and LQT2 ECGs, was found using three log-likelihood
differences between the models of the normal and LQT2 classes, using a Left-
Right transition structure (LR2) with 10, 30 and 40 states, respectively, and
applying them as features to a SVM using a multi-layer perceptron kernel. The
model yielded a mean accuracy of 78.1%. Comparing with literature the result
seems satisfactory; a study using a HMM based diagnosis system for myocardial
infarction classification applying multiple lead ECGs achieved accuracies rang-
ing from 71%-83% [51].
Using the combined output of multiple HMMs as input to the SVM increase the
model complexity and thereby the risk of overfitting. Considering the small test
set and the statistically insignificant differences between some model combina-
tions a less complex model combination could have been chosen. Applying the
principle of Ockham’s razor, the model using only the best LR1 and LR2 HMMs
in combination with a SVM with a linear kernel, yielding a mean accuracy of
75.8%, could be a good candidate. The mean accuracy is still satisfactory, but
the complexity is reduced and thereby possibly giving a better generalization.
However, this thesis pursued the model yielding the highest mean accuracy.

Choice of the optimal number of states and classification: Due to the
parameter learning of the HMM, the probability of the training data (say class
1) is maximized, without considering other classes. This is a way to accomplish
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a general representation of training data, given that the HMM has a sufficient
complexity. However, from a classification point of view, it is desirable to maxi-
mize the difference in probability between the models, given an ECG, to improve
generalization. In this work, the best discriminative model was determined by
exploring the mean accuracy of many different models while adjusting the num-
ber of states, the number of Gaussians per state and the transition structure
in the model. Other ways of improving the classification accuracy of the HMM
have been proposed in the literature; e.g. incorporating a more discriminative
approach in the HMM training by combining the HMM and SVM framework
[66]. In this work the training consisted of finding the best model representation
of the data while minimizing the classification error.

Evaluation: An excellent way to establish a reliance of the accuracy of a ma-
chine learning system is to evaluate the chosen model, on a "hidden" test data
set, which has never been used throughout the modeling process. However, bio-
logical and medical data are often sparse. As the general idea behind a learning
system is that the data should be representative for the class in question, the
removing of data from the training environment could degrade the system per-
formance. In this work only 64 LQT2 subjects were available and it was decided
to utilize all of the data in the modeling process.

8.5 The Effect of Noise on the Generative and
Discriminative Properties

ECG noise: A thorough investigation of the most common types of ECG noise
was performed in the current work. At the initial phase it was assumed that the
ECG data, that were extracted from the XML files in the MUSE R© database, were
preprocessed similarly to the ECG shown on the physical cart during the ECG
recording. It turned out, however, that the data were completely raw. Due to
the time limits of the project the most straight forward task with respect to fil-
tering, with the smallest risk of removing valuable information from the signals,
seemed to be highpass filtering. Especially it seemed that with regards to the
hidden states and their emissions, the low frequency and sometimes high am-
plitude BW, could be particularly troublesome. BW could easily be the initial
part of any of the ECG waveforms, hence influencing the probability of an ECG
given a model. EM and MA however, are more difficult to filter without remov-
ing valuable information in the signal. Unfortunately, also PLI was present in
small amounts which should preferable have been filtered.
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Noise vs. general trends: The general issue of concern is not as much the
filtering as it is the difference in the signal quality that seems to characterize the
two study populations. Very generally speaking the HMM will try to capture
a general trend within each group as this structure will result in the highest
probability. The model finds a structure that fit inter-beat and inter-subject
variability well and here the noise might have a devastating effect. If one group
is more noisy this would appear in the total group variability. As such, there is
a risk that the general trend captured by the HMM modeling normal ECGs is
more smooth and have a smaller variance than that of the LQT2 HMM. How-
ever, it is stressed that despite this negative effect, it only explains part of the
differences in the general trends that were captured.

Influence on classification: Consulting the simulations the LR1 model sim-
ulated differently shaped T-waves in the normal and LQT2 group. Also, the
most extreme ECGs chosen from data seemed to be differently shaped with re-
gards to the T-wave all implying that some of the known physiological trends
in the groups were actually captured. However, the extreme ECGs also seemed
to show more noisy LQT2 ECGs suggesting that both the noise and the general
trends were captured. Consulting the influence of noise on the best model this
also reveals itself. Noise of an SNR between 30 and 25 can be added in which
all three measures of the classification decrease slightly. This implies a gener-
ally negative effect, but apparently the general trends in the groups which are
not related to noise are still distinct enough to provide means of classification.
When the noise level increase beyond this point, however, it seems that all ECGs
moves towards being classified as LQT2; the sensitivity increases at the cost of
decreasing specificity and accuracy. From a patient safety point of view this
is not the worst situation, since an LQT2 diagnosis would lead to more elabo-
rate tests, revealing a higher number of LQT2 subjects. However, in the false
positive case, the mental stress and inconvenience of being subject to further
clinical examinations should not be taken lightly. From a health care economic
perspective, the cost of unnecessary examinations would not be welcome.
In summary, experience showed that the LQT2 group is more noisy and that
this, in part, is captured by the HMM model. The task of evaluating how much
of the classification accuracy, can be attributed to difference in noise between
the groups, is very complex. Certainly, less noisy data or better filtering prior
to the model training would provide both a better idea of the discriminative
and generative abilities of the suggested method as well as a final product that
is less sensitive to noise.
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8.6 Perspectives and Future Work

One of the key advantages of the HMM is its general capability of modeling
temporal signals. It is not dependent on any segmentation algorithms and it
can model any ECG even if the usual characteristics are not visible. Also, sig-
nals degraded by noise can be modeled, although it affects the resulting model.

With respect to the generative properties, the HMM should be improved by
incorporating some sort of explicit state duration parameter. Besides improving
the ECG simulation, multiple studies also report an increase in the classification
accuracy [64], [7]. However, the cost of explicitly modeling the state duration is
a considerable increase in computational load. However, we believe that there
are many ways to improve the speed of the program, both by optimization the
code further, by using parallel computing or by implementing the code in a
lower level program language such as C++.

From a classification point of view, the training procedure of the HMM should
also incorporate some sort of discriminative power in the optimization function.
Having introduced the Support Vector Machine as an excellent discriminative
model, it would be reasonable to try to incorporate a more discriminative ap-
proach in the HMM training by combining the HMM and SVM framework as
proposed in [4] or [66].
Combining the output of the HMM with the currently applied stationary fea-
tures at the Department of Biomedical Sciences in an optimized ensemble of
machine learning methods could potentially also prove to be a strong classifier.

In this project the developed methods have been applied to ECGs from patients
suffering from the well-studied LQT2 syndrome. Due to the general classifi-
cation abilities of the method, it would be interesting to apply it to a variety
of the different pathological ECGs where strong predictors have not yet been
established.
In it’s current form a clinical application could be the modeling of a large popu-
lation of ECGs with the HMM; ECGs having very degraded, noisy or aberrant
waveforms could be localized by evaluating their probability, given the model,
and the ECGs with the lowest probability could be investigated.
From a research point of view, investigating the temporal variation and covari-
ance of already recognized heart beat features such as T-wave amplitude and
skewness, would be interesting and the developed HMM system could be an im-
portant tool in characterization as well as classification aspects in such a study.
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Conclusion

In this thesis six hidden Markov models using different transition structures
and number of emission distributions were trained using raw ECG signals from
normal and LQT2 subjects. The models were trained using a different num-
ber of hidden states and, based on the mean accuracy, the best number of
states for each of the six HMMs were found. These hidden Markov models were
able to capture the general trends in the ECGs and, at the same time, explain
inter-subject variability. The strict Left-Right transition type showed promising
generative properties which facilitated the observation of ECG waveforms that
could be related to the ECG. Furthermore, the expected morphological changes
in the T-wave were, to some degree, captured both in terms of the simulations
and also in terms of the ECGs yielding the biggest difference in log-likelihood
between the normal and LQT2 HMMs. However, some overlap between the
groups resulted in several normal ECGs being most probable with both normal
and LQT2 HMMs. Also, the Left-Right transition types were able to match
the heart rate of the two study populations when simulating ECGs. The basic
discriminative probabilities (applying only the log-likelihoods) resulted in clas-
sification accuracies ranging from 69.5% to 72.6% for the six HMMs. Applying
the Support Vector Machine using different kernels and combining the models
in several ways, improved the classification results. The best classification result
observed was a classification accuracy of 78.1% with a corresponding specificity
of 78.2% and a sensitivity of 78.2%.
Besides capturing general trends in the ECGs, making classification possible,
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noise contained in the ECGs was also captured. Experience showed that the
LQT2 group contained more noise, which affected the classification. Applying a
substantial amount of noise to the test data prior to classification resulted in in-
creasing sensitivity at the cost of drastically decreasing accuracy and specificity.
Less noisy data or better filtering prior to the model training would definitely
provide a better idea of the discriminative and generative abilities of the HMM
approach. However, based on the results it seems that the application of HMMs
using raw ECG data is well suited for the purpose of ECG characterization and
discrimination.
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Appendix

A.1 Lagrange Multiplier Method

The Lagrange multiplier method is used to solve constrained optimization prob-
lems [61]. The steps for solving an optimization problem where the goal is to
find the minimum value of a function:

f(x1, x2.., xd) (A.1)

with an equality constraint of the form

gi(x) = 0, i = 1, 2, ...p (A.2)

is done analogously to the following three steps:

1. Construct the Lagrangian which is

L(x, λ) = f(x) +
p∑

i=1
λigi(x) (A.3)

with λi being the Lagrange multipliers.
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2. Set
∂L

∂xi
= 0 (A.4)

for i = 1,2..d
and

∂L

∂λi
= 0 (A.5)

for i = 1,2..p.

3. Solve the above mentioned p+d equations to obtain stationary point x∗
and λi.

Should the function have inequality constraints (e.g. gi(x) ≤ 0) the Lagrangian
will have the following constraints known as the Karush-Kuhn-Tucker condi-
tions:

∂L

∂xi
= 0, ∀i = 1, 2.., d (A.6)

gi(x) ≤ 0, ∀i = 1, 2.., p (A.7)
λi ≥ 0, ∀i = 1, 2.., p (A.8)

λigi(x) = 0, ∀i = 1, 2.., p (A.9)

A.2 Flow Chart of Hidden Markov Model Im-
plementation

A flow chart of the Hidden Markov Model implementation and initial classifica-
tion setup, is shown in Figure A.1.
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MATLAB file color code

GREEN = Implemented by the authors

YELLOW= Files modified by the authors
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WHITE ARROW = Call

RED ARROW = Call if condition is fulfilled

Figure A.1: Flow chart of Hidden Markov Model implementation. The green
blocks are files implemented by the authors, the yellow are files
modified by the authors and the red are files from a toolbox or
implemented from others work.
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