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Summary (English)

Background: In the planning process of external radiation therapy, CT is used
as the main imaging modality. The advantage of using CT is that the voxel
intensity values are directly related to electron density which is needed for dose
calculations. Furthermore, CT provides an accurate geometrical representation
of bone needed for constructing digitally reconstructed radiographs. In recent
years, interest in replacing CT with MRI in the treatment planning process
has emerged. This is due to the fact that MRI provides a superior soft tissue
contrast; a desirable property that could increase the accuracy of target and
risk volume delineation. The challenge in replacing CT with MRI is that the
MRI intensity values are not related to electron densities and conventional MRI
sequences cannot obtain signal from bone.

The purpose of this project was to investigate the use of Gaussian Mixture
Regression (GMR) and Random Forest regression (RaFR) for creating a pseudo-
CT image from MRI images. Creating a pseudo-CT from MRI would eliminate
the need for a real CT scan and thus facilitate an MRI-only work �ow in the
radiation therapy planning process. The use of GMR for pseudo-CT creation has
previously been reported so the reproducibility of these results was investigated.
dUTE and mDixon MRI image sets as well as Local Binary Pattern (LBP)
feature images were investigated as input to the regression models.

Materials and methods: Head scans of three patients �xated for whole brain
radiation therapy were acquired on a 1 T open MRI scanner with �ex coils.
dUTE and mDixon image sets were obtained. CT head scans were also acquired
using a standard protocol. A registration of the CT and MRI image sets was
carried out and LBP feature images were derived from the dUTE image sets.
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All RaFR and GMR models were trained with the dUTE image sets as basic
input. Some of the models were trained with an additional mDixon or LBP
input in order to investigate if these inputs could improve the quality of the
predicted pseudo-CT. More speci�cally, the impact of adding the LBP input
was investigated using RaFR and the impact of adding an mDixon input was
investigated using both RaFR and GMR. A study of the optimal tree depth
for RaFR was also carried out. The quality of the resulting pseudo-CTs was
quanti�ed in terms of the prediction deviation, the geometrical accuracy of bone
and the dosimetric accuracy.

Results: In the LBP input study, the results indicated that using LBPs could
improve the quality of the pseudo-CT.

In the mDixon input study, the results suggested that both RaFR and GMR
models were improved when adding the mDixon input. The improvement was
mainly observed in terms of smaller prediction deviations in the bone region of
the pseudo-CTs and a greater geometrical accuracy. When comparing RaFR
and GMR, it was found that using RaFR produced pseudo-CTs with the small-
est prediction deviations and greatest geometrical accuracy. In terms of the
dosimetric accuracy, the di�erence was less clear.

Conclusion: The use of GMR and RaFR for creating a pseudo-CT image
from MRI images was investigated. The reproducibility of previously reported
results using GMR was demonstrated. Furthermore, the impact of adding LBP
and mDixon inputs to the regression models was demonstrated and showed that
an improvement of the pseudo-CT could be obtained. The results serves as a
motivation for further studies using more data and improved feature images.



Summary (Danish)

Baggrund: I planlægningen af ekstern stråleterapi anvendes CT som den pri-
mære skanningsmodalitet. Fordelen ved at anvende CT er, at voxel-intensitetsværdier
er direkte relateret til elektrontætheden af vævet, der afbildes. Dette er nød-
vendigt for at kunne udføre dosisberegninger. Desuden giver CT en nøjagtig
geometrisk repræsentation af knogle, som er nødvendig for at generere digitalt
rekonstruerede røntgenbilleder a�edt fra CT. I de seneste år er interessen for at
erstatte CT med MRI i planlægningsprocessen opstået. Dette skyldes det fak-
tum, at MRI er CT overlegen, når det kommer til bløddelskontrast; en vigtig
egenskab, der kan øge indtegningsnøjagtigheden af tumorvolumener og risiko-
organer. Udfordringen i at erstatte CT med MRI er, at MRI intensitetsværdier
ikke er direkte relateret til elektrontæthed samt at konventionelle MRI sekvenser
ikke kan opnå signal fra knogle.

Formålet med dette projekt var at undersøge brugen af Gaussian Mixture Re-
gression (GMR) og Random Forest regression (RaFR) for at skabe et pseudo-CT
billede ud fra MRI-billeder. Dannelsen af et pseudo-CT fra MRI kan potentielt
eliminere behovet for en CT-scanning og dermed muliggøre et work �ow base-
ret udelukkende på MRI. Anvendelsen af GMR til at generere pseudo-CTer er
tidligere blevet rapporteret, så et mål med projektet var at undersøge repro-
ducerbarheden af resultaterne. dUTE og mDixon MRI skanninger samt Local
Binary Pattern (LBP) featurebilleder blev undersøgt som input til regressions-
modellerne.

Materialer og metoder: Tre patienter som skulle modtage helhjerne stråle-
behandling blev skannet på en 1 T åben MRI-skanner med �ex-spoler. dUTE og
mDixon billedsæt blev optaget. En CT skanning af hovedet blev også optaget
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ved hjælp af standardprotokol. CT- og MRI-billedsæt blev indbyrdes registre-
ret og LBP featurebilleder blev a�edt fra dUTE billedsættene. Alle RaFR og
GMR modeller blev trænet med dUTE billedsæt som grundlæggende input.
Nogle af modellerne blev trænet med et yderligere mDixon eller LBP input med
henblik på at undersøge om disse billedsæt kunne forbedre kvaliteten af pseudo-
CTerne. Speci�kt blev virkningen af at tilføje LBP input undersøgt for RaFR
og virkningen af at tilføje mDixon input undersøgt for både RaFR og GMR. En
undersøgelse af den optimale tree depth for RaFR blev også udført. Kvaliteten af
de resulterende pseudo-CTs blev kvanti�ceret ved hjælp af den gennemsnitlige
afvigelse mellem pseudo-CT og reference CT, den geometriske nøjagtighed af
knogle i pseudo-CTet samt den dosimetriske nøjagtighed når pseudo-CTet blev
brugt til at beregne dosefordelinger.

Resultater: I undersøgelsen af LBP input viste resultaterne, at anvendelsen af
LBP kunne forbedre kvaliteten af pseudo-CTet.

I undersøgelsen af mDixon input viste resultaterne, at både RaFR og GMR
modellerne blev forbedret ved brug af mDixon input. Forbedringerne gav sig
hovedsagligt til udtryk i mindre afvigelser i knogleregionen af pseudo-CTerne
samt ved større geometrisk nøjagtighed. Ved sammenligning af RaFR og GMR
fandtes det, at pseudo-CTer genereret med RaFR havde de mindste gennem-
snitlige afvigelser samt største geometriske nøjagtighed. Med hensyn til den
dosimetriske nøjagtighed var forskellen mellem GMR og RaFR ikke tydelig.

Konklusion: Anvendelsen af GMR og RaFR for at generere pseudo-CT-billeder
fra MRI-billeder blev undersøgt. Reproducerbarheden af tidligere rapporterede
resultater ved anvendelse af GMR blev demonstreret. Endvidere blev virkningen
af at tilføje LBP og mDixon input til regressionsmodellerne undersøgt. Det blev
vist, at en forbedring af pseudo-CTet derved kunne opnås. Resultaterne tjener
som en motivation for at udføre yderligere undersøgelser med mere data og
forbedrede featurebilleder.
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Acronyms and symbols

Acronyms

CART Classi�cation and Regression Tree
CNR Contrast-to-Noise Ratio
CT Computed Tomography

DRR Digitally Reconstructed Radiograph
dUTE di�erence UTE (dual echo UTE)
DVH Dose-Volume Histogram

EM Expectation Maximization

FOV Field of View

GMM Gaussian Mixture Model
GMR Gaussian Mixture Regression
GTV Gross Tumour Volume
Gy gray

HU Houns�eld unit

ICRU The International Commission on Radiation
Units & Measurements

LBP Local Binary Pattern
LINAC Linear accelerator



x Acronyms

MAPD Mean Absolute Prediction Deviation
mDixon multi-echo Dixon
MPD Mean Prediction Deviation
MRI Magnetic Resonance Imaging
MSPD Mean Squared Prediction Deviation
MU Monitor Unit - a standardized measure of ma-

chine output for a LINAC

OR Organ at Risk

pCT pseudo-CT
pdf Probability Density Function
PET Positron Emission Tomography
PRV Planning Risk Volume
PTV Planning Target Volume

RaF Random Forest
RaFR Random Forest Regression
RF Radio Frequency
RT Radiation Therapy

SNR Signal-to-Noise Ratio
std Standard Deviation

T Tesla

UTE Ultra Short Echo Time
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List of symbols

α Flip angle
β Split parameters of a node in a decision tree
dTE Time interval between echo acquisitions in the

multi-echo Dixon sequence
F Magnitude of the magnetization of fat
φ Multivariate Gaussian Probability density func-

tion
πj Prior weight in a Gaussian Mixture Model
T1 Longitudinal magnetization relaxation time

constant
T2 Transversal magnetization relaxation time con-

stant
T ∗2 Time constant of the free induction decay
TAQ Acquisition time
TE Echo time
Θ Phase angle
θ Parameters of a Gaussian Mixture Model
ϕ Error phase due to �eld inhomogeneities
ϕ0 Error phase due to MRI system �aws
W Magnitude of the magnetization of water
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Chapter 1

Introduction and
Background

Despite the growing interest in using magnetic resonance imaging (MRI) in the
planning process of external radiation therapy (RT), Computed Tomography
(CT) remains the golden standard. This is due to the fact that a planning CT
scan provides electron density information which is critical to the calculation of
the 3D dose distribution in the irradiated tissues. Furthermore, the CT provides
an accurate geometrical representation of bone, which is needed for constructing
a digitally reconstructed radiograph (DRR); a 2D planar reference image created
from the CT image set. This is used in combination with traditional X-ray
images taken at the linear accelerator (LINAC) to verify proper patient setup
with respect to the isocenter of the LINAC [1].

In conventional external RT planning, CT is the only imaging modality used. A
consequence of this is that delineation of e.g. the tumour volume and potential
organs at risk (ORs) must be done on the CT image sets. In 2006, Khoo and
Joon outlined the advantages of introducing MRI in the planning process [2].
Their main point was that MRI contributes with an increased soft tissue con-
trast, yielding a better characterization of tissues, which in CT appear very
similar. Kristensen et al. later showed that delineating structures on MRI im-
ages leads to more accurate volume de�nitions [3]. For this reason, an MRI/CT
work �ow has become common practice at Herlev Hospital where structures are
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delineated on MRI image sets and then transferred to the CT image sets for
dose plan calculation. The transfer of delineations is carried out using a rigid
registration between the MRI and CT image sets.

Aside from requiring an extra scan of the patient, the MRI/CT work �ow has
some disadvantages. Nyholm et al. estimated that systematic spatial uncertain-
ties of 2 mm are introduced with the rigid registration between MRI and CT [4].
The term systematic refers to the fact that the same error is repeated over and
over, as opposed to the random errors introduced with e.g. a less than perfect
patient alignment with respect to the LINAC. The systematic errors may in
other words cause a constant partial miss of the tumour volume and potentially
result in an increased dose to organs at risk (ORs).

1.1 MRI-only Radiation Therapy Planning

With the advances of MRI in RT treatment planning and with the introduc-
tion of PET/MRI systems, the interest and research in entirely replacing CT
with MRI has increased [5�7]. This would eliminate the registration induced
systematic errors and reduce the amount of scanning sessions needed. The ap-
proach has been to generate an estimate of CT images from MRI images, a so
called pseudo-CT (pCT) which could then be used for dose calculation in RT
treatment planning and for attenuation correction in PET/MRI. The challenge
is that there is no direct relation between MRI intensity and electron density.
Furthermore, conventional MRI cannot depict cortical bone very well because
the bone signal is lost before the readout begins. This is due to the short T2 of
cortical bone.

1.1.1 dUTE Imaging

In 2003, Robson et al. described the basic ultra short echo time (UTE) MRI
sequence and its ability to acquire signal from bone and ligaments [8]. The
so-called di�erence UTE (dUTE) sequence was also introduced as a means of
enhancing the visibility of short T2 components. This was achieved by acquir-
ing a gradient echo shortly after the �rst acquisition and then subtracting the
two image sets to isolate the short T2 components. Several authors have later
used the dUTE sequence for pCT estimation or attenuation correction [5,9�11].
At Herlev Hospital, Kjer investigated the dUTE sequence and found optimal
acquisition parameters for the 1 Tesla (T) open MRI scanner on site [12]. With
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regard to these parameters, it should be noted that at the stated optimal sec-
ond echo time of the dUTE, phase cancellation artefacts may occur due to the
chemical shift between water and fat. This in turn may cause non-bone tissue
to appear as bone (see Section 2.1 for more details).

1.1.2 Dixon Imaging

In the �eld of PET/MRI some of the same challenges are present as in MRI-only
RT treatment planning. Here, attenuation maps for attenuation correction need
to be derived. This was previously obtained from CT using its direct correlation
with electron density. Because it has been found important to account for
adipose tissue in whole-body MRI-based attenuation correction, the Dixon MRI
sequence has been investigated for its possible use in generating attenuation
maps [9,13,14]. This sequence provides water-only and fat-only image sets and
for this reason is appropriate for segmenting water and fat in MRI images.

1.1.3 Estimating CT from MRI

Di�erent approaches have been used to generate pCTs. One is an atlas-based
estimation. With this method, an atlas of many co-registered MRI and CT
image sets is made. To estimate a pCT for a new patient, the MRI atlas can
be deformed to �t the new patient's MRI. The same deformation can then
be applied to the CT atlas to obtain an estimate of the pCT. A variation of
the standard atlas-based method was done by Hofmann et al. [15]. They used
patches in T1 weighted images and the spatial position from an atlas as features
to train a regression model used to predict the pCT. The fact that no special
MRI sequences, such as the dUTE, was needed to generate the pCT seems to be
the main strength of this atlas-based method. In general however, atlas-based
methods are known to su�er from inaccuracies when the inter-patient variability
is large [16].

Another approach has been to do a voxel-wise segmentation of the MRI. Here
a characterization of each voxel in the MRI is done in order estimate a pCT.
A common characteristic of the voxel-wise methods seems to be the need for
special MRI sequences like the dUTE or Dixon in order to compensate for the
previously mentioned shortcomings of conventional MRI.
In the �eld of PET/MRI Martinez-Möller et al. used thresholds to segment
Dixon MRI images into air/lung/fat/soft tissue classes which were then assigned
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bulk attenuation factors. They did not take bone into account [13]. Berker et
al. used a combined dUTE/Dixon sequence to obtain an air/bone/fat/soft tis-
sue segmentation, again using thresholds [9]. Both Martinez-Möller et al. and
Berker et al. reported improvements in segmentation accuracy when using the
Dixon sequence. They quanti�ed the accuracy of their methods by looking at
the agreement with CT attenuation correction and not at the similarity between
the pCT and real CT, which makes it hard to compare their method with others'.

Instead of segmenting the MRI images into di�erent tissue classes, Johansson
et al. tried to predict the CT image by using a Gaussian mixture regression
(GMR) method. Data was collected from 5 patients who were CT scanned (one
image set) and MRI scanned on a 1.5 T scanner with two dUTE sequences at
di�erent �ip angles and one T2 weighted sequence (5 image sets in total). Each
of the 5 MRI image sets were �ltered using a mean �lter and a standard devia-
tion (std) �lter to create 10 more image sets (5 mean �ltered and 5 std �ltered).
An air mask was used to reduce the data amount and the regression model was
then estimated using k-means and expectation maximization (EM) algorithms
to estimate the mixing proportions, mean values and covariance matrices. The
pCT was compared to the actual CT image using the mean absolute prediction
deviation (MAPD) inside the air mask. It was found to be 137 HU on average
for all �ve patients with a variation from 117 to 176 HU for individual patients.
The method showed very promising results and was able to distinguish bone
from air. The largest di�erences between pCT and CT were seen at bone/tissue
and air/tissue interfaces (paranasal sinuses). This was attributed to suscepti-
bility e�ects causing a very short T ∗2 . In a later publication, Johansson et al.

explored the voxel-wise uncertainty of the model and used the mean prediction
deviation (MPD) and MAPD to determine if model reduction was possible [16].
Here, they found that the T2 weighted image set was redundant in their model.

1.2 Random Forest Regression

Random Forest regression (RaFR) has to the knowledge of the author not been
used for predicting pCTs from MRI prior to this project. However, it has been
used to predict organ bounding boxes in both MRI Dixon and CT image sets
with promising results [17,18]. To predict organ bounding boxes in Dixon MRI
image sets, Pauly et al. used a local binary pattern-like feature in order to
describe each pixel by its neighbourhood appearance [17]. The regression task
was a bit di�erent from that of predicting a pCT since they were not trying to
predict a CT value but a distance to a bounding box for every MRI voxel.
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1.3 Objectives

Inspired by the approach of Johansson et al., a regression approach was taken
on in this project in order to �nd a mapping of MRI intensity values into CT
densities. More speci�cally, the Gaussian mixture regression model was used
in order to test its robustness and the reproducibility of results in a di�erent
clinical set up. Motivated by the promising results of Pauly et al. Random
Forest regression was studied as a method for predicting pCTs. Also, the use of
Local Binary Pattern (LBP) as input to RaFR was studied.

Building on the prior experiences with voxel-wise methods, it was expected that
special MRI sequences would be needed to generate a pCT. For this reason
the dUTE acquisition method was adopted. The data was collected using the
scanner-speci�c dUTE acquisition parameters reported by Kjer. From the model
reduction study by Johansson et al., the method of using two di�erent �ip angles
for the dUTE and adding �ltered images to the regression models showed to
improve the prediction accuracy. These methods were also adopted.

As mentioned, phase cancellation artefacts in water/fat containing voxels were
suspected to be present in the dUTE image sets; an issue speci�c for the 1 T
scanner at Herlev Hospital. Based on the experience that the Dixon sequence
can help in distinguishing water and fat it was investigated whether the sequence
could improve the regression models used.

With this established, the main objectives of the project can be summarized as
follows:

1. Investigate the use of Gaussian mixture regression for pCT generation.

2. Investigate the use of RaFR for pCT generation. This includes looking into
optimizing the model parameters and using a Local Binary Pattern-like
feature.

3. Investigate the impact of using a Dixon sequence in both models.

4. Compare the performance of Gaussian mixture regression versus that of
Random Forest regression for pCT generation.

5. Quantify the di�erences between the reference CT and the pCT in mea-
sures relevant for radiation therapy.
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Chapter 2

Theory

2.1 dUTE MRI Sequence

Conventional MRI sequences are able to begin the readout of signal at a min-
imum TE of about 8-10 ms [8]. This makes them inappropriate for detection
of signal from tissues that lose their transversal magnetization faster than this.
Tissues such as cortical bone, periosteum and ligaments which have a T2 in the
range 0.05-10 ms thus appear with a similar intensity as air in conventional MRI
images.

The ultra short echo time (UTE) MRI pulse sequence is optimized to detect sig-
nal from tissues with a short T2. This means that an unconventional acquisition
approach has been taken in order to minimize the time from excitation to read-
out and to maximize the amount of signal coming from short T2 components in
this time frame. Because the image acquired with a UTE sequence shows high
signal intensities from both tissues with a short and a long T2, it is common to
record a second (or dual) echo shortly after the �rst. This technique is referred
to as the di�erence UTE (dUTE) technique. In the resultant second image set
the tissues with short T2 will have lost a signi�cant amount of signal compared
to the long T2 tissues. The second image can thus be subtracted from the �rst
to identify/isolate the short T2 components (see Figure 2.1).
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Figure 2.1: Dual echo UTE images. Left: Image acquired at TE = 0.09 ms.
Right: Image acquired at TE = 3.5 ms. As can be seen signal
has been lost from short T2 components in the second echo image.

Below, the UTE deviations from conventional MRI sequences will be outlined.
It should be noted that these parameter deviations are related to the acquisition
of the �rst echo of the dUTE sequence, since this is recorded with an ultra short
echo time. The second echo is a conventional gradient echo.

2.1.1 Parameters

In general, 3 parameters are important when acquiring signal from short T2 com-
ponents. These are the RF pulse duration, the echo time TE and the acquisition
time TAQ.

RF pulse duration. In conventional MRI imaging the duration of the ex-
citation RF pulse is not a concern since the T2 of the tissues being imaged is
longer than the pulse duration. However, when dealing with tissues with a short
T2, loss of signal during the RF pulse becomes a problem [19]. To maximize
the transversal component of the magnetization in short T2 components, short
RF pulses are used which ensures the least amount of T2 relaxation during ex-
citation. A consequence of this is that the �ip angle becomes lower than the
conventional 90◦ (typically 40-70◦ less). It is important to note, that this lower
�ip angle actually produces more signal from short T2 components, contrary to
what one might intuitively think.
In a 3D UTE sequence a single RF pulse of short duration is used, where after
3D radial readout gradients are used to traverse k-space.
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Echo time. To get the most amount of signal from short T2 components the
optimal TE would ideally be 0 ms. This is not possible because the MRI coils
used for both excitation and signal acquisition need a little time to switch from
transmit to receive mode. This is a physical limitation that depends on the
scanner hardware used and in practice the shortest possible TE is used.

Acquisition time. With conventional MRI sequences k-space is traversed in a
linear rectangular manner. To save time, sampling in UTE imaging is done in a
non-linear fashion and simultaneous with the ramp up of the readout gradient,
which leads to a radial (or centre-out) sampling. This in turn means that k-space
becomes oversampled close to the centre and thus low spatial frequencies have
a higher signal-to-noise ratio (SNR) than high ones [19]. TAQ is the sampling
duration and this must be short enough for the short T2 tissues to not lose
signal before the end of acquisition. On the other hand, some time is needed to
traverse a certain distance from the centre of k-space in order to capture high
spatial frequency components. In practice, a compromise must be made that
maximizes signal and minimizes blurring, which means a TAQ of approximately
the T2 of the tissue being imaged [19].

2.1.2 dUTE Artefacts

Because of the ultra short echo time, it is actually the free induction decay that
is measured during the readout of the �rst echo (which is thus not an echo in
the traditional sense). This means that it is impossible to distinguish between
relaxation due to T2 e�ects and relaxation due to T ∗2 e�ects. However, for fast
relaxing components, it is reasonable to assume that T2 ≈ T ∗2 [20]. This may
not hold at tissue interfaces where susceptibility e�ects cause de-phasing within
voxels due to �eld inhomogeneities. This yields signal intensity artefacts because
tissue with an otherwise long T2 loses signal rapidly due to a short T ∗2 induced
by the �eld inhomogeneity.

Concerning the second echo acquisition, another artefact worth noting is the
chemical shift or phase cancellation artefact. Because hydrogen bound in water
has a slightly di�erent resonance frequency than that of hydrogen in fat, the
signal from these will at certain times after excitation periodically be in or out
of phase. At out of phase times, less or no signal will be present in voxels
containing a mixture of water and fat. Since the phase cancellation is time
dependent, the severity of the artefact depends on the chosen TE . The chemical
shift (or di�erence in resonance frequencies) is measured in parts per million
(ppm) and for water and fat it is 3.4 ppm. At 1 T, water has a resonance
frequency of 42 MHz, which in turn means that water and fat will be in phase
at a frequency of 3.4 ppm · 42 MHz = 142.8 Hz. This corresponds to every
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7 ms. The �rst time after excitation when water and fat are out of phase is
thus 3.5 ms. As mentioned, Kjer previously investigated the optimal acquisition
parameters for the dUTE sequence at the MRI scanner at Herlev Hospital. He
found that a TE of 3.5 ms was close to the optimal echo time for the second echo
in the dUTE sequence in terms of contrast-to-noise ratio (CNR) of the dUTE
image sets [12]. The dUTE image sets recorded on the 1 T scanner are thus
susceptible to phase cancellation artefacts.
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2.2 Dixon MRI Sequence

The Dixon technique was invented by W.T. Dixon in 1984 [21]. In short, the
technique facilitates separating the signal originating from water and fat in MRI
images, which makes it possible to make water-only and fat-only images. The
rationale is that, in many standard MRI sequences, fat appears hyper-intense,
thus covering signal from other contents. This means that water-containing
structures of interest or contrast agents may be hard to discern in high-fat
regions [22]. Also, the chemical shift artefact between water and fat may cause
phase cancellation or spatial shifts which is undesirable.
In its original form, the Dixon technique is relatively simple. It is based on the
recording of two images, one where water and fat are in phase (Θ = 0◦) and
one were they are 180◦ out-of-phase (Θ = 180◦), a so-called 2-point method
(because of the number of images recorded). By representing the MRI data as
a complex signal it can be described using its magnitude and phase. If it is
assumed that the imaged object only consists of water and fat, the signal can
be described as [23]:

S(x, y) = [W (x, y) + F (x, y) · eiΘ] · eiϕ(x,y) · eiϕ0(x,y)

where x and y are spatial coordinates, W and F are the magnitudes of the
magnetizations of water and fat, Θ is the phase angle between water and fat,
ϕ is an error phase due to �eld inhomogeneities and ϕ0 is an error phase due
to various minor system �aws. Disregarding the �eld inhomogeneity and the
spatial coordinates the two signals acquired at Θ = 0◦ and Θ = 180◦ can be
written as [23]:

S0 = (W + F ) · eiϕ0 (2.1)

S180 = (W − F ) · eiϕ0 (2.2)

Which can be rewritten to:

W =
|S0 + S180|

2
(2.3)

F =
|S0 − S180|

2
(2.4)

This is the basic principle behind Dixon's technique. In reality, however, �eld
inhomogeneities are present (along with noise and artefacts) and equations 2.3
and 2.4 are not su�cient to provide a good separation. Consequently there is a
need to estimate ϕ in order to use the Dixon technique for water/fat separation.
It turns out that this estimation is not straightforward. If φ is taken into
account, Equation 2.2 becomes [23]:

S180 = (W − F ) · eiϕeiϕ0 (2.5)
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and φ can then be estimated as:

ϕ̂ =
arctan

(
(S180 · S∗0 )2

)
2

(2.6)

The challenge here lies in the fact that the arctan operation limits the phase
estimation to be in the interval [−π, π], i.e. the phase is wrapped. If the actual
phase is above or below the aforementioned interval a multiple of 2π will be
added or subtracted to the estimated value to make it �t in the interval. The
consequence of phase wrapping is that water voxels may be misinterpreted as
fat voxels and vice versa. Di�erent approaches have been taken to compensate
for the phase wrapping using both 1-point, 2-point or 3-point recordings and
with di�erent phase recovering algorithms, but it is beyond the scope of this
report to go in to details with these.

Figure 2.2: Dixon water and fat separated images. Left: Image with a ma-
jority of water containing components. Right: Image with a ma-
jority of fat containing components.

As with most MRI sequences, the scan time of the Dixon sequence should be
minimized to reduce motion artefacts and patient discomfort. Most of the Dixon
sequences require the acquisition of more than one image and as such they
are more susceptible to motion artefacts. A way to reduce scan time is by
using multiple readouts per excitation, the so called multi-echo Dixon (mDixon)
technique [24]. In this way data can be sampled for both images in one excitation
increasing the e�ciency. See Figure 2.2 for an example of Dixon water and fat
images.
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2.3 Registration Method

The CT and MRI images are recorded on two di�erent scanning facilities and as
a result, these image sets are often of di�erent resolution and spatially unaligned.
Training a regression model on unaligned data makes little sense and the need
to ensure that one voxel in the MRI corresponds to the same voxel in the CT is
thus evident. Below follows a description of the alignment method used in this
project.

A rigid registration involves positioning the MRI and CT in the same frame of
reference and then translate and/or rotate one of the images until the desired
correspondence with the other (stationary) image is achieved. An assumption is
that little or no anatomical di�erences exist from one image to the other. This
is often assumed for an intra-patient registration of scans done at approximately
the same instance in time.

The mutual information method provides a tool for registering multi-modality
image sets [25]. To arrive at the de�nition of mutual information, a description
of the joint histogram of grey-values is needed.

The joint histogram is a 2D representation of the combination of grey-values
for all corresponding voxels in two image sets. The appearance of the joint
histogram is thus determined by the alignment of the two image sets. If they are
perfectly registered, there is an overlap between all air voxels in the two image
sets. This will show as a clearly de�ned cluster in the joint histogram because
many air-air voxel combinations are counted. Similar clusters will appear for
overlapping tissue voxels. If the two images are not aligned, the joint histogram
will conversely show a large dispersion because many di�erent combinations of
grey-values appear.

The entropy can measure the dispersion of a probability distribution. By nor-
malizing the joint histogram with the total amount of observations, the joint
probability density function (pdf) of grey-values can be estimated. The entropy
of the joint probability density function (pdf) is now de�ned as [26]:

H(A,B) = −
∑
a,b

pdf(a, b) log pdf(a, b) (2.7)

where A is the image set being transformed, B is the stationary image set
and pdf(a, b) is the joint probability of observing the overlapping grey-values a
and b in image A and B, respectively. The joint entropy is calculated for the
overlapping region of the two image sets and by measuring the dispersion of the
joint pdf it can be used to determine the degree of alignment between the image
sets. A low entropy means a low degree of dispersion.
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Equation 2.7 provides a means of registering images but it is not always robust.
One may encounter situations where the overlapping regions show a low entropy
even though they are not spatially correlated. To avoid this, the marginal
entropies of grey-values in image set A and B (in the overlapping region) can
be taken into account. This yields the mutual information, I [26]:

I(A,B) = H(A) +H(B)−H(A,B) (2.8)

where the marginal entropies are calculated as

H(A) = −
∑
a

pdf(a) log pdf(a)

and
H(B) = −

∑
b

pdf(b) log pdf(b)

with the marginal densities calculated from the joint pdf as pdf(a) =
∑
b pdf(a, b)

and pdf(b) =
∑
a pdf(a, b).

The registration strategy then involves �nding the transformation parameters
which maximize the mutual information. Typically a crude alignment of the im-
age sets is done �rst, for instance by aligning the centroids, then an optimization
algorithm is used to maximize the mutual information.

As the transformation parameters are continuous in nature the transformed
image coordinates will almost inevitably fall in between voxel coordinates, which
means an interpolation of the transformed image to the new voxel coordinates
is necessary.
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2.4 Gaussian Mixture Regression

This section describes the theory behind regression using a Gaussian mixture
model (GMM).

2.4.1 Gaussian Mixture Model

The foundation for doing Gaussian mixture regression (GMR) is to model the
joint density of the input/output (X/Y) space by a weighted sum of K multi-
variate Gaussian probability density functions (pdfs) [27]:

fX,Y (x, y) =

K∑
j=1

πjφ(x, y;µj ,Σj) (2.9)

here, πj is a prior weight subject to the constraint
∑K
j=1 πj = 1 and φ is a

multivariate Gaussian pdf with mean µj =

[
µjX
µjY

]
and covariance matrix Σj =[

ΣjXX ΣjXY
ΣjY X ΣjY Y

]
. By de�nition Σj is symmetric so ΣjXY = ΣjY X . Equation

2.9 is called a Gaussian mixture model (GMM). Each Gaussian, or component,
in the model is sought to explain the distribution of a sub-population in the
data.

In the context of this project, the input, X, consists the MRI image sets and
the output, Y , is the corresponding CT image set. x and y are spatially cor-
responding voxel intensity values in the MRI and CT image sets, respectively.
Equation 2.9 is then used to model the joint distribution of voxel intensities in
the image sets. The assumption is that, even though there are variations in the
appearance of the same tissue type from one MRI scan to another, the intensi-
ties will still centre around a mean value. This in turn means that, even though
there is no direct relation between an MRI and a CT intensity value, their joint
distribution will still consist of a discrete amount of tissue clusters [5].

The parameters θj = (πj , µj ,Σj) of each Gaussian in the Gaussian mixture
model (GMM) are often not known in advance and need to be estimated from the
data at hand. A common way of doing this is by maximizing the log likelihood
function which explains the probability of the data given the parameters [28]:

θ̂ = argmax
θ

(p(X,Y |θ)) (2.10)
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where X,Y denotes the data. The expectation maximization (EM) algorithm
can be used to achieve this. This optimization method iteratively estimates the
maximum likelihood parameters from an initial guess of the parameter values.
It is beyond the scope of this report to go into the details on how the expecta-
tion maximization (EM) algorithm optimizes the log likelihood, but two things
should be noted about the method. Firstly, the EM algorithm cannot determine
the number of components to use. This means that, for a good estimation of
the GMM, one needs a prior knowledge as to the number of components or sub-
populations that exist in the data. Furthermore, the EM method may converge
to a local (and not global) maximum of the log likelihood function depending on
the initial starting point. Hence, the initial parameter guess is quite important
as it may a�ect which optimum is found. In order to come up with a quali�ed
initial guess on the composition of the components in the GMM, a k-means
clustering algorithm can be applied to the data to make a rough estimation of
θ̂. This does not solve all problems because the k-means clustering algorithm
also needs to be provided with initial values of the centres of the clusters (so-
called seeds). In this project, the seeds were chosen as K random samples from
the training data. This has the consequence that the result from the k-means
clustering (and thus the initial parameters for the EM algorithm) may vary each
time a model is trained even if the same training data is used.

2.4.2 Regression using a Gaussian Mixture Model

Gaussian mixture regression (GMR) consists of a training phase and a test
phase. When a decision has been made as to the number of components to
use in the GMM, the training phase is, as described in the previous sections,
composed of estimating the parameters of the GMM using the EM algorithm.
Once the GMM has been estimated, it can be used for regression. This is the test
phase, which means the GMM is used on previously unseen input data, to make
a prediction on the appearance of the output. In relation to this project, the
input test data would be the MRI image sets of a new patient and the predicted
output would be the pseudo-CT (pCT). To make predictions, the expected value
of Y given an observed value of X = x should be found. From the de�nition of
joint density, each Gaussian in Equation 2.9 can be partitioned as the product
of the conditional density of Y and the marginal density of X of each Gaussian:

φ(x, y;µj ,Σj) = φ(y|x;mj(x), σ2
j )φ(x;µjX ,ΣjXX), j ∈ 1, 2, ...,K (2.11)

where
mj(x) = µjY + ΣjY XΣ−1

jXX(x− µjX) (2.12)

σ2
j = ΣjY Y − ΣjY XΣ−1

jXXΣjXY (2.13)
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are the conditional mean function and variance of Y. Inserting the result of
Equation 2.11 into Equation 2.9 yields:

fX,Y (x, y) =

K∑
j=1

πjφ(y|x;mj(x), σ2
j )φ(x;µjX ,ΣjXX) (2.14)

The conditional density of Y|X is now de�ned as:

fY |X(y|x) =
fX,Y (x, y)

fX(x)
(2.15)

Where

fX(x) =

∫
fY,X(y, x) dy =

K∑
j=1

πjφ(x;µjX ,ΣjXX) (2.16)

is the marginal density of X. Inserting the de�nitions of fX,Y (x, y) and fX(x)
into Equation 2.15 �nally yields:

fY |X(y|x) =

K∑
j=1

πjφ(y;mj(x), σ2
j )φ(x;µjX ,ΣjXX)∑K

j=1 πjφ(x;µjX ,ΣjXX)
(2.17)

This can also be expressed as:

fY |X(y|x) =

K∑
j=1

wj(x)φ(y;mj(x), σ2
j ) (2.18)

with the mixing weight:

wj(x) =
πjφ(x;µjX ,ΣjXX)∑K
j=1 πjφ(x;µjX ,ΣjXX)

(2.19)

The expected value of Y for a given X = x can now be found as the conditional
mean function of Equation 2.18:

E[Y |X = x] = m(x) =

K∑
j=1

wj(x)mj(x) (2.20)

Equation 2.20 is the regression function in a GMR model and as can be seen,
once the GMM has been established all the parameters needed for regression is
actually contained in Equation 2.9. In other words, the crucial part of doing
GMR lies in estimating a proper GMM. A simple example of GMR illustrating
the steps involved can be seen in Figure 2.3.
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Figure 2.3: Illustration of GMR using simple univariate input and output.
Left: Data generated by adding Gaussian noise to three linear
functions. Middle: A GMM consisting of K = 3 components
is estimated using the EM algorithm with k-means initialisation,
mean values are marked as red dots. Right: GMR estimates the
expected value of y given 400 values of x in the interval [−10, 170],
marked in green.

2.4.3 Impact of Changing the Number of Components

Once the k-means algorithm is used with random seeds to make the initial
parameter guess for the EM algorithm, the only parameter to tweak in GMR
is the number of components to use in the GMM. As mentioned, ideally, one
should have a prior knowledge as to the number of sub-populations in the data
in order to estimate a model that explains the data well. In the example in
Figure 2.3 it was known a priori that the regression problem consisted of three
linear functions and for this reason it made sense to use three components to
model it. In Figure 2.4, the impact of varying the number of components is
illustrated. As can be seen, using too many components leads to over-�tting the
data, which is undesirable if noise is present. On the other hand, using too few
components leads to a higher degree of smoothing of the data, which may mean
that important variations are missed. With real-world multidimensional data
it can be quite hard to know how many components should be used. A way
to �nd the optimal number of components is to set up a measure of regression
accuracy, evaluate di�erent models and choose the one that performs the best.
The mean squared prediction deviation (MSPD) is a measure which has been
used before [29]. To be able to evaluate the performance, one needs to have
a ground truth to compare the predictions against. This means that training
must be done on one part of the data at hand and testing on another. A model
is then estimated using the training data which is then used to predict the
response on the test data. The mean squared error can then be calculated and
used to quantify the quality of the model. Formally the mean squared prediction
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deviation (MSPD) can be written as:

MSPD =

∑N
i=1(yi − ŷi)2

N
(2.21)

where N is the data size, yi is the i'th true output value of the test data and ŷi
is the i'th predicted value when applying the regression model on the test data.

Figure 2.4: Illustration of GMR using a di�erent number of components. Data
is the same as in Figure 2.3. Left: The GMM has been estimated
using 25 components. Right: The GMM has been estimated using
2 components.
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2.5 Random Forest Regression

The concept of Random Forests (RaFs) is as an extension to the classi�cation
and regression tree (CART) methodology introduced by Breiman et al. in 1984
[30]. It basically consists of using an ensemble of weak classi�ers or predictors for
classi�cation or regression. Using an ensemble shows to improve the accuracy of
classi�cation or prediction compared to using a single classi�er or predictor [31].

In this section the use of a Random Forest (RaF) for regression will be described
and illustrated. Examples in this section have been generated by our own RaF
implementation based on a paper by Criminisi et al. [32]. It should be noted,
however, that the method used for producing the pCTs later in this report was
based on Breiman's RaF as implemented in the Statistics toolbox of Matlab
R2012a [31]. Our own implementation provided greater parameter �exibility
than the Matlab version, and hence, was a good tool for illustrating simple
RaFR. It did, however, prove to be inferior in robustness when handling large
amounts of data which is why it was not used for the actual pCT predictions.
Some minor di�erences exist between the method by Breiman (who uses the
CART methodology for tree training) and the one by Criminisi et al.. These
will also be outlined below.

2.5.1 Decision Trees

The decision tree is the basic building block of a random forest. The main
principle consists of pushing data through so-called nodes and at each node do
a binary test on the data in order to split it in two. The process is repeated
on the split data to do another split and this continues until a stop criterion is
met. When sketched, the resulting structure of the nodes resembles that of a
tree and, to keep with this analogy, the last nodes of the tree are similarly called
leaf nodes, see Figure 2.5. When using decision trees for regression (called a
regression tree), a prediction is made at each leaf node as to what the value of
the output variable should be given the input data that reached the node.

2.5.1.1 Constructing a Regression Tree

In order to create a regression tree, training data is used to estimate the optimal
split parameters of the binary decision functions at each node. Criminisi et al.
uses a continuous formulation of information gain as a measure of the split
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Figure 2.5: Illustration of a regression tree. t1 is the root node. t2-t3 are the
internal nodes of the tree. t4-t7 are the so-called leaf nodes.

quality:

Ij =
∑
xj∈Sj

log(σy(xj))−
∑

i∈{L,R}

 ∑
xj∈Si

j

log(σy(xj))

 (2.22)

where x and y is the input and output training data, Sj denotes the set of
data reaching node j, σy is the conditional variance of y given xj found from a
linear least squares model �t to yj . S

i
j , i ∈ L,R denotes the set of training data

reaching the left (L) and right (R) node below node j. To put it simply, by
maximizing Equation 2.22, one �nds the split which minimizes the uncertainty
at all training points of a linear �t. Breiman's measure of split quality is the
least absolute deviation:

LAD(d) =
1

Nj

∑
xj∈Sj

|y(xj)− d(xj)| (2.23)

where Nj is the size of the data at node j, d(xj) is the predicted value of the
output at input xj and y(xj) is the actual value. It turns out that the predictor
that minimizes the LAD is the median of y(xj), denoted υ(y(xj))). To put it
in a similar form as Equation 2.22, the LAD measure for a split of node j into
it's left and right nodes can be written as:

Ij =
∑
xj∈Sj

|y(xj)−υ(y(xj))|−
∑
xj∈SL

j

|y(xj)−υ(y(xj))|−
∑
xj∈SR

j

|y(xj)−υ(y(xj))|

(2.24)
Maximizing Equation 2.24 corresponds to �nding the optimal split of node j
by minimizing the sum of the absolute deviations from the left and right node
medians.
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Now that a measure of the optimal split has been established, one needs to
decide the structure of the binary decision function. The function takes the
form:

h(u, βj) ∈ {0, 1} (2.25)

where u is a vector of the input variables (or features) and βj are the split
parameters at node j. The split is achieved by choosing one or more of the
input variables and then choosing a threshold on the value of those variables (or
a linear combination thereof) to decide which data goes left and right.

The training of the regression tree is now straightforward. At each node, Equa-
tion 2.22 or 2.24 is maximized with respect to βj to �nd the thresholds and
features that best split the data. This can be done either by an exhaustive
search or by a specialized update algorithm [31]. The found parameters are
saved at each node. Growing of the tree stops when a pre-speci�ed minimum
amount of data reaches a node, when all output training data that reaches a
node has the same value or the tree reaches a pre-speci�ed depth (number of
node levels). At the leaf nodes Criminisi et al. save the parameters of a least
squares linear regression model �tted to the data at each node. Breiman saves
the median of the output training data at each leaf.

2.5.1.2 Prediction

Once the tree has been constructed, making predictions on test data is done
by sending the data through the nodes and splitting it using the learned split
parameters. Once the leaf nodes are reached, a prediction can be made. Using
Breiman's method the predicted value is the stored leaf node medians whereas
Criminisi et al. apply the linear regression model to the data. In other words,
using Breiman's method the prediction is a constant at each leaf node whereas
it is a function of the input test data in Criminisi et al.'s method.

2.5.2 Random Forests

Random Forest regression (RaFR) is an ensemble method. It consists of train-
ing a number of regression trees, each randomly di�erent from each other, and
then using the average of all tree outputs as the forest output. Each tree should
be a weak predictor of the output, which means that they should not be fully
optimized as described in Section 2.5.1.1. Instead randomness is induced when
training each tree to ensure de-correlation between the outputs of each tree.
This can be done by either training each tree on a random subset of the train-
ing data, called bagging (short for bootstrap aggregating), or by only letting a
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random subset of split parameters be available at each node, called random node
optimization. A combination of the two can also be used. In Figure 2.6, a simple
case of regression using a random forest is visualized. In the left panel, arti�cial
data has been generated by adding Gaussian noise to three linear functions. In
the middle panel, the predictions of 200 randomly di�erent regression trees are
shown. In the right panel, the �nal prediction of the random forest is shown.
A maximum tree depth of 3 was used, meaning that the largest tree could con-
sist of a root node, two internal nodes and 4 leaf nodes. If less than 5 data
points reached a node it was declared a leaf node. Random node optimization
was used, meaning that at each node 10 randomly chosen splits where made
available.
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Figure 2.6: Illustration of regression using a random forest. Left: Arti�cial
data. Middle: Predictions of 200 random regression trees shown
in red. Right: The �nal prediction of the random forest shown
in green.

2.5.3 E�ect of Forest Size

In general, the larger an ensemble of trees, the better predictions. The prediction
accuracy will, however, converge towards a constant as the number of trees
are increased. Adding more trees hereafter, will only increase the prediction
accuracy very little. An advantage of random forests is that increasing the
number of trees does not lead to over-�tting. It will, however, increase the
computation time and in practice the number of trees is chosen as a compromise
between prediction accuracy and computation time.
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2.5.4 E�ect of Tree Depth

Tree depth is a measure of how many splits are made before tree growing stops.
As mentioned, there are di�erent ways of deciding when to stop growing a tree.
One way is to specify the minimum amount of data that should be in each leaf.
Another way is to simply specify the tree depth explicitly.

Whereas increasing the forest size does not lead to over-�tting, increasing the
tree depth does. In a way, the e�ect of the tree depth can be compared to that
of the number of Gaussians used in GMR. Having a deep tree may cause an
over-partitioning of the data. This means that regression will be performed on
small clusters which makes it sensitive to variations in the data that may just be
due to noise. In Figure 2.7 the e�ect of di�erent tree depths is visualized. To the
left regression using an over-�tting forest is shown and to the right regression
by an under-�tting forest is illustrated. Again 200 trees were used with random
node optimization and the constraint to the tree depth, that if less than 10 data
points reached a node it was declared a leaf node.
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Figure 2.7: Illustration of the impact of tree depth on the regression. The
same data as in Figure 2.6 has been used. Left: A forest with a
maximum tree depth of 6 has been used. Right: A forest with a
maximum tree depth of 2 has been used.

As with the number of components in a GMR model, the MSPD measure (Equa-
tion 2.21) can be used to �nd the optimal tree depth. When bagging is used
to induce tree randomness, the data that is not used at each tree (so-called
out-of-bag data), can be used to calculate the MSPD.
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2.6 Local Binary Pattern Feature Representation

Because MRI intensity values can vary from scan to scan even for the same
tissues, it makes sense to try and �nd a representation of the MRI images that
is invariant to the scaling of the grey-values (grey-scale invariance). A way of
achieving this is to cast the MRI images into a feature space where each voxel
is characterized by the appearance of its neighbourhood.

The Local Binary Pattern (LBP) is a tool for describing 2D textural information
in images in a grey-scale invariant way [33, 34]. It consists of comparing each
pixel to the pixels in a circular neighbourhood around it. Let gc denote the
pixel intensity of a center pixel and gp the pixel intensity of the pth pixel in the
circular neighbourhood around the center pixel, then a comparison can be done
using the binary decision function, s:

s(gp − gc) =

{
1, gp − gc ≥ 0
0, gp − gc < 0

(2.26)

The center pixel can now be described by the binary number resulting from the
comparisons with its P neighbouring pixels. Typically interpolation is used to
account for the fact that the neighbouring pixels may not lie exactly on the
circumference of the circle. The binary number can be converted to a decimal
number, which then encapsulates the information about the neighbourhood of
the center pixel. This is the LBP of that pixel [34]:

LBP (gc) =

P−1∑
p=0

s(gp − gc)2p (2.27)

where P denotes the number of pixels in the circular neighbourhood. P can be
varied as well as the radius, R, of the circle de�ning which neighbours to use.
Using multiple values of P and R, one can achieve a description of each pixel
and its neighbourhood at multiple spatial scales. In Figure 2.8, the generation
of a LBP is visualized. In the left grid, the center pixel value gc and its 8
circular neighbours g0-g7 are shown. In the middle grid, the value of the center
pixel (50) is shown in the centre and the value of its 8 circular neighbours are
shown around it (assume an interpolation has been done to �nd the value of
the surrounding pixels). In the right grid, the result of the evaluation with the
binary decision function is shown. Because 85 > 50 a value of 1 is assigned to
the top left neighbour pixel. 42 < 50, so a value of 0 is assigned to the top
centre pixel and so on. Finally the binary number is converted to a decimal
number using Equation 2.27.
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Figure 2.8: Illustration of LBP. The values gc and g0-g7 are the center and
neighbourhood pixel values, respectively, shown in the left grid. In
the middle grid example values of the center and neighbourhood
pixels are shown. Here gc = 50, g0 = 85, g1 = 42, g2 = 96 etc. In
the right grid, a binary decision function is used to assign values
of 1 or 0 to the neighbourhood pixels and the resulting binary
number is converted to a decimal number, yielding the LBP.
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2.7 Evaluation of Results

There are a number of di�erent ways to quantify the quality of the predicted
pCTs. In this report, three methods have been chosen. These will be described
in the following sections.

2.7.1 Prediction Deviation

From a model optimization/selection point of view a natural choice is to look
at voxel-wise deviations from the desired output. The mean squared prediction
deviation has already been introduced as a tool for model optimization. When
calculated on the entire image, this measure is well suited for screening of suit-
able models. To look at an overall estimate of error, however, is not always
informative, since deviations are expected to vary throughout di�erent intensity
ranges. For instance, it might be more interesting to look at the deviation in the
bone intensity range, since this is where MRI is known to be inferior to CT. Also,
when adding MRI sequences such as the Dixon, it may be interesting to look at
the deviations in speci�c intensity ranges, to investigate in what situations (if
any) the sequence may provide valuable information for the regression models.
For these reasons it makes sense to calculate prediction deviations in bins, so
as to quantify the error in smaller ranges. This can be achieved by sorting the
CT values (measured in Houns�eld unit (HU)) in ascending order, keep track of
which pCT voxels correspond to which CT values and then calculate the error
in bins of 20 HU.

Due to the square operation in the MSPD it is quite sensitive to outliers. A mea-
sure which is less sensitive is the mean absolute prediction deviation (MAPD):

MAPD =

∑N
i=1 |yi − ŷi|

N
(2.28)

where N is the data size, yi is the i'th true output value of the test data and ŷi
is the i'th predicted value when applying the regression model on the test data.
The MAPD measures absolute error and thus cannot tell whether the error is
attributed to an over- or underestimation of the real value. One may also be
interested in looking at whether the model continuously over-/underestimates
or if the error is more random in nature. For this the mean prediction deviation
(MPD) can be used:

MPD =

∑N
i=1 yi − ŷi
N

(2.29)
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2.7.2 Geometric Evaluation

Because correct bone information is crucial for generating DRRs, other than
looking at the voxel-wise deviations in the bone intensity range, a geometrical
evaluation can be made to measure how well the pCT catches the bone volume
compared to the real CT. For this purpose the Dice similarity measure can be
used [35]:

DICE =
2(A ∩B)

A+B
(2.30)

Where A is the volume of bone in the pCT and B is the true volume of bone
in the real CT. A complete overlap of the two volumes will result in a Dice
coe�cient of 1, whereas no overlap will result in a coe�cient of 0. This method
requires that the bone volumes in the pCT and real CT are known. A CT
bone segmentation can be done using thresholds and the volumes can then be
calculated using the known voxel resolution. Along with the Dice coe�cient one
may report the percentage of falsely classi�ed bone and missed bone in the pCT
to give a more thorough picture of the geometrical accuracy. These measures
can be de�ned as follows:

Miss% =
B − (A ∩B)

B
· 100% (2.31)

False% =
A− (A ∩B)

A
· 100% (2.32)

2.7.3 Dosimetric Evaluation

The pCT is supposed to be used instead of CT for dose planning in radiation
therapy. For that reason, it is sensible to compare a pCT dose plan with a CT
dose plan in terms of the estimated delivered dose to organ at risks (ORs) and
tumour volumes. A 3D dose plan contains a large amount of dosimetric data
and as such it can be hard to compare one against another. The dose-volume
histogram (DVH) provides a clinically well established tool for condensing the
data and making it easier to interpret and compare [1]. Once a dose plan has
been made, an organ can be divided in a dose grid of e.g. 144 5×5×5 mm voxels.
The di�erential DVH is then constructed by counting the number of voxels that
falls into given dose bins, see Figure 2.9, left. A cumulative variation of the
DVH can be constructed by letting each bin represent a percentage of volume
that receives a dose equal to or greater than a given dose, illustrated in Figure
2.9, right.

A strategy for making a dosimetric evaluation of the pCT is then be to make
a dose plan in a standard way. At Herlev Hospital, this involves delineating
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Figure 2.9: Illustrative example of dose-volume histograms. Left: Di�eren-
tial DVH. One voxel received between 0 and 1 Gy and 54 voxels
received between 7 and 8 Gy. Right: Cumulative DVH. 100 %
of the volume received 0 Gy or more and 35 % received 7 Gy or
more.

structures on a T1 weighted MRI image set, transferring the structures to the
CT, optimize the plan and calculate the absorbed dose. The optimized plan is
then transferred to the pCT and the absorbed dose recalculated using the same
radiation intensities. The DVHs can then be compared to investigate if the pCT
overestimates or underestimates the delivered dose in relevant volumes such as
the planning target volume (PTV) and planning risk volumes (PRVs). Besides
visually comparing the DVHs, speci�c points on the DVH can be used to quan-
tify the performance of the pCT. Four DVH points have been chosen in this re-
port. These are D98%, Dmedian, D2% and Dmean; the absorbed dose received by
98 %, 50 %, 2 % of the volume and the mean absorbed dose, respectively. D98%,
Dmedian and D2% are values relevant to the planning target volume (PTV) and
D2% and Dmean are values relevant to the planning risk volume (PRV). These
values were chosen in accordance with recommendations by The International
Commission on Radiation Units & Measurements (ICRU) [36].
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Chapter 3

Methods and Procedures

3.1 Data Acquisition and Preprocessing

During the project, 3 patients receiving palliative cranial radiation therapy were
scanned with the dUTE and multi-echo Dixon (mDixon) sequence along with
a standard T1 weighted sequence and CT. Prior to participating, written con-
sent was obtained from the patients. After acquiring the data, all scans were
anonymized using Conquest Dicom Server software. From here on the patients
were named h01, h02 and h03 for easy distinction.

3.1.1 Scanner Set-up

Appropriate patient �xation devices were used for all scans. All CT images were
acquired on a Philips Brilliance Big Bore CT using standard settings. All MRI
images were acquired on a Philips Panorama 1 Tesla open MRI-scanner using a
Flex-coil. Two dUTE acquisitions were made. One with a �ip angle of α= 10◦

and one with a �ip angle of α= 25◦. The mDixon sequence recorded in-phase,
out-of-phase, water-only and fat-only image sets. The water-only and fat-only
image sets were used in this project. The parameters for both the dUTE and
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mDixon sequence are summarized in Table 3.1 along with image information
about all acquired images.

TE1

[ms]
TE2

[ms]
TR
[ms]

dTE
[ms]

Voxel resolution
[mm3]

FOV
[mm]

dUTE 0.09 3.5 7.1 - 1× 1× 1 256
mDixon 6.9 - 16 3.5 1× 1× 1.5 250.5
CT - - - - 0.6× 0.6× 2 220

Table 3.1: Acquisition parameters and image information. TE1
is the �rst echo

time of the dUTE and mDixon sequences. TE2
is the second echo

time of the dUTE sequence. TR is the repetition time. dTE is
the time interval between echo acquisitions in the multi-echo Dixon
sequence. FOV is the �eld of view.

3.1.2 Registration

All MRI images were acquired at the same set-up and were thus internally
registered. The CT images were rigidly co-registered with the MRI images
using the in-built mutual information algorithm of 3D Slicer (www.slicer.org).
An initial geometrical alignment was done prior to applying the algorithm. 50
bins were used to construct the joint histogram and linear interpolation was
applied to the transformed image. The result was visually inspected to ensure
that the registration had worked appropriately. All images were then re-sliced
to the resolution of the dUTE images and cropped to the smallest �eld of view
(FOV).

Due to a large artefact in the MRI image sets of patient h02 (probably suscep-
tibility artefact due to dental �llings), most of the bottom part of the head (jaw
region) was cropped on all images for this patient. This was done as to not
corrupt the training data of the models.

3.1.3 Local Binary Pattern-like Feature Extraction

Inspired by the approach by Pauly et al., who used an LBP-like feature for pre-
dicting organ bounding boxes in Dixon MRI image sets [17], a similar 3D version
of LBPs was implemented for this project. The 3D version of LBP di�ered from
the 2D version in a number of ways. First of all the the neighbourhood voxels
was not de�ned by a circular (2D) neighbourhood but by a spherical (3D) one.
This meant that 26 neighbouring voxels were used to create each LBP value.
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Also, instead of doing a voxel by voxel neighbourhood comparison, mean values
of cuboidal regions were compared. This meant that for each center voxel, the
mean value of a cube centred on that voxel was computed and compared to the
mean values of cubes centred on the spherical neighbourhood voxels. In Figure
3.1, this is visualized for a 2D example. For fast calculation of the cube mean
values, integral volume processing was implemented [37]. The 26 digit binary
number, resulting from the mean value comparisons, was then converted to a
decimal number in the same way as in the 2D method.

Figure 3.1: Example of the modi�ed LBP implementation. To calculate the
LBP in a voxel, the mean value of the voxel intensities in the red
box centred on that voxel is compared to mean values of the voxel
intensities in the green boxes centred on neighbouring voxels. Note
that this is a 2D simpli�cation. In the actual implementation the
boxes are 3D cubes and the neighbourhood is de�ned by a sphere,
not a circle.

The 3D LBP was implemented to use 3 di�erent spatial scales. This was achieved
by using a cube size of 3× 3× 3 mm and a sphere radius of 3 mm for the �rst
scale and then adding 2 and 4 mm to those values for the second and third scale,
respectively. The result of LBP feature extraction from one image set was thus
3 new image sets each consisting of the LBPs at a given scale. In Figure 3.2,
the LBP feature images corresponding to the image in Figure 3.1 can be seen.

3.1.4 Filtering

Following the approach of Johansson et al. [5], �ltered counterparts of all MRI
images were created. Each image was mean �ltered by assigning each voxel
a value corresponding to the mean value of the voxels in a 26 voxel cuboidal
neighbourhood around that voxel. Standard deviation �ltering was achieved in
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Figure 3.2: LBP feature images. The feature images correspond to the image
shown in Figure 3.1. In the left panel, a sphere with radius 3mm
and cubes of size 33 mm3 were used. In the middle panel the
sphere radius was 5mm and cube size 53 mm3. In the right panel
the sphere radius was 7mm and cube size 73 mm3.

a similar fashion, but this time �nding the standard deviation of the 26 voxel
neighbourhood. The �ltering thus resulted in two new image sets per original
MRI image set, see Figure 3.3. All �ltering was done in Matlab using scripts
developed by the author. Whenever an image set was used in a model so was
its �ltered counterpart. The only exception to this, was the LBP feature image
sets.

Figure 3.3: Example of the �ltered images. Left: A UTE image prior to �l-
tering. Middle: Mean �ltered image. Right: Standard deviation
�ltered image.

3.1.5 Air Mask

To reduce the amount of data and the computational burden when training the
models a mask was created which removed the air surrounding the head in all
images. This was achieved using Matlab built-in functions. A global threshold
was found to binarize the image in to two classes; a low intensity region (air)
and a high intensity region (foreground). Using this method some foreground
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areas were classi�ed as air, so morphological operations were applied to remove
these spots. Lastly, connected component analysis was used to determine which
region was foreground and which was air. The air mask was derived from the
mean �ltered version of echo 1 of the high angle dUTE image and applied to
all corresponding image sets. The result was visually inspected to ensure that
no important structures were removed. An example of the air mask is shown in
Figure 3.4.

Figure 3.4: Example of the air mask. The green area is the air mask and
everything outside this area is excluded from the images.

3.1.6 De�ning the Input/Output Data for the Models

Once the pre-processing was done, the training data for the models was de�ned.
Models with dUTE only, with dUTE+mDixon and with dUTE+LBP input were
to be trained. The dUTE only model consisted of 12 input variables, namely
a dUTE acquisition at 10◦ (2 image sets), a dUTE acquisition at 25◦ (2 image
sets) and their �ltered images (8 image sets). The dUTE+mDixon model had
in addition to the aforementioned images, an mDixon water and an mDixon fat
image set and their �ltered versions as input thus yielding 18 input variables
in total. The model with dUTE+LBP consisted of the same input variables as
the dUTE only model but with the addition of 3 LBP image sets per original
dUTE image set. This resulted in a total of 24 input variables.

The output variable was in all cases the CT image set.

3.2 Gaussian Mixture Regression

AMatlab implementation of Gaussian mixture regression, [38], was used through-
out this project. The implementation utilized the built-in k-means function of
the Matlab Statistics toolbox to give an initial estimate of the component mean
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values and covariance matrices for the EM algorithm. Initial seeds for the k-
means algorithm were chosen at random. EM was stopped when the increase in
log likelihood was smaller than 10−10.

3.2.1 mDixon Input Study

To evaluate the impact of using mDixon images as an additional input for the
GMR model, dUTE only and dUTE+mDixon models were trained for compar-
ison. A leave-one-out approach was taken. This meant that each model was
trained on data from two patients and then applied to the third to predict a
pCT. In this way three pCTs were predicted from dUTE+mDixon models and
three from dUTE only models. Following the method of Johansson et al., [5,16],
20 components were used for estimating all GMMs.

3.3 Random Forest Regression

The Matlab built-in implementation called TreeBagger, was used for RaFR.
With the parameter settings used in this project, TreeBagger is identical to
Breiman's version of the Random Forest framework as described earlier. For
randomization of the individual trees, a combination of bootstrap aggregating
(bagging) and random node optimization was used. This meant that only a
fraction of the total training data was used to train each tree and that only one
third of the input variables were chosen at random at each node to determine
the best split.

3.3.1 Model Optimization Study

In this study the optimal tree depth for pCT generation was investigated. In
the Matlab RaF implementation, the tree depth was controlled implicitly by the
minimum leaf size parameter. This parameter controlled the minimum amount
of data that should be in a node before it was declared a leaf. As such, the user
had no direct control over the tree depth. The Matlab implementation provided
a method for estimating the optimal minimum leaf size. This consisted of storing
which data was out-of-bag (i.e. the data not used to train each tree) for each
tree and then using this as test data to make an estimate of the prediction
error. Using this method, 5 regression forests each with 25 trees were trained
on one patient (h01) and the out-of-bag data was used to calculate the MSPD
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as a function of the number of trees. The input variables were dUTE+mDixon
image sets. The minimum leaf size was set to 5, 10, 20, 50 or 100 in the forests
for comparison.

3.3.2 LBP Input Study

In this study the e�ect of using the 3D LBP feature image sets as an input to
the RaFR model was investigated. Three RaFs were trained on data from one
patient (h01) using 25 trees in each forest and a leaf size of 10. One forest had
the dUTE image sets as input, one had the dUTE image sets along with their
corresponding LBP feature image sets as input and one had the dUTE+mDixon
image sets as input. The models were tested on data from another patient (h03)
to predict the pCTs.

3.3.3 mDixon Input Study

As in the mDixon input study of the GMR model the impact of using mDixon
images in the RaFRmodel was evaluated by training dUTE only and dUTE+mDixon
models for comparison. Again a leave-one-out approach was used to estimate
three pCTs using mDixon images and three without them. A forest consisting
of 80 trees with a minimum a leaf size of 10 was used.

3.4 Post-processing

3.4.1 Prediction Deviation

For the mDixon input studies and LBP input study, the MAPD and MPD
in bins of 20 HU were calculated to quantify the prediction errors made in
speci�c intensity ranges of the real CT image set when using the additional
input and when not using the additional input. Furthermore the MAPD for
the entire image sets and for the voxels inside the air mask was calculated in
order to be able to compare the overall accuracy of the di�erent models. These
computations were all carried out in Matlab.
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3.4.2 Geometric Evaluation

The results from the mDixon input studies were evaluated geometrically using
the Dice coe�cient and the Miss% and False%. These values were computed
by importing the pCTs and real CTs into Varian Eclipse Treatment Planning
System software. Here, the bone voxels in the image sets were automatically
segmented. The software provided tools for �nding the intersection between the
bone regions of the pCT and the real CT, as well as for measuring the volume of
these regions. These quantities were used to calculate the Dice coe�cient and
Miss% and False% as described earlier.

3.4.3 Dose Plan and DVHs

For the mDixon input studies, a dosimetric evaluation of the pCTs of patient
h03 was performed. The cerebrum, eyes and Hippocampus were automatically
segmented on the T1 weighted image set. A Volumetric Modulated Arc Therapy
(VMAT) dose plan was set up and optimized in Varian Eclipse Treatment Plan-
ning System following the standard clinical procedure at Herlev. The cerebrum
was the planning target volume (PTV) and the eyes and Hippocampus were
planning risk volumes (PRVs). 30 Gy was to be delivered in 10 fractions using 2
arcs with an output of 286 and 285 Monitor Units (MU), respectively. The sim-
ulated delivered dose was calculated using the CT (considered the true delivered
dose) and pCTs and DVHs of the PTV and PRVs were made. D98%, Dmedian,
D2% and Dmean DVH points were noted. The dose plan was pre-clinical, in the
sense that no oncologist veri�ed the dose distributions or the appearance of the
automatically segmented structures.



Chapter 4

Results

The results are presented in 3 sections. One with the result of the RaF model
optimization, one which focuses on the impact of using the LBP feature in RaFR
and one which focuses on the impact of the mDixon input for both GMR and
RaFR.

4.1 Random Forest Model Optimization

In Figure 4.1 the MSPD has been plotted as a function of the number of trees
in a forest. 5 forests were trained with di�erent terminal leaf size. This study
was carried out to decide which leaf size should be used in the later studies. No
marked di�erence was observed at 25 trees, when using a leaf size of 5 or 10,
so 10 was chosen because shallower trees should be faster to train than deeper
ones. It is seen that as the number of trees increases, the MSPD decreases and
converges towards a constant value.
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Figure 4.1: The mean squared prediction deviation as function of the number
of trees in the forest for �ve forests with leaf sizes of 5, 10, 20, 50
or 100.
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4.2 Random Forest LBP Input

In Figure 4.2 the MAPD and MPD have been plotted as a function of the real
CT value (calculated in bins of 20 HU) for comparison of a model with dUTE
only input and one with dUTE+LBP input. It is observed, that in the air
region (-1000 HU), the MAPD is lowest for dUTE+mDixon and highest for
dUTE+LBP. In the range −700-−100 HU the MAPD is lowest for dUTE+LBP
and highest for dUTE+mDixon. In the range 500-1500 HU the MAPD is lowest
for dUTE+mDixon and highest for dUTE only. It is observed from the MPD,
that the di�erences in MAPD are mainly due to systematic errors, i.e. a con-
sistent overestimation of air and underestimation of bone ( in the 700+ HU
range). In table 4.1, the MAPDs are shown for the three pCTs. It is observed
that the error is lowest for dUTE+mDixon and highest for dUTE+LBP when
looking at the entire image sets. When only looking in the region inside the air
mask, the error is still lowest for dUTE+mDixon but highest for dUTE only. It
is observed that including the air region increases the MAPD for dUTE+LBP
and decreases it for dUTE+mDixon and dUTE only.
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Figure 4.2: The MAPD (left) and MPD (right) as a function of the real CT
value (calculated in bins of 20 HU) for models using dUTE only,
dUTE+LBP and dUTE+mDixon input.

dUTE only dUTE+LBP dUTE+mDixon
MAPD, entire image 121.7 HU 184.3 HU 81.1 HU
MAPD, inside air mask 145.9 HU 133.0 HU 122.6 HU

Table 4.1: The mean absolute prediction deviation for the entire image sets
and inside the air mask for models using dUTE only, dUTE+LBP
and dUTE+mDixon input.



42 Results

4.3 mDixon Input Study

The results of the mDixon input variable studies for both models have been
collected in this section.

4.3.1 Prediction Deviations

In Figure 4.3 the MAPD and MPD have been plotted as a function of the real
CT value (calculated in bins of 20 HU) for the three patients. In the top panels
(4.3a) the results for GMR with and without mDixon are shown and in the
bottom panels (4.3b) the same are shown for RaFR.

Looking at the top panels (GMR), similar patterns are observed both with and
without the mDixon: the absolute error is observed to be low when predict-
ing CT values around −1000 HU and 0 HU. Looking at the impact of using
dUTE+mDixon, for two patients the MAPD is observed to be lower in the 500-
1000 HU range for the dUTE+mDixon pCTs compared to the dUTE only. In
the 1000-1500 range the opposite is the case. The MPD, which as mentioned can
quantify the systematic errors, reveals that the absolute error seen in the ranges
from −1000 HU to −100 HU and 250-1500 HU is mainly due to a consistent
underestimation of the real CT value.

Looking at the bottom panels (RaFR), a lower MAPD is observed for the
dUTE+mDixon compared to the UTE only in the 500-1500 HU range. Looking
at the MPD, it is observed that the systematic error is also lower (closer to 0)
for the UTE+mDixon compared to the UTE only in the 500-1500 HU range.

In Table 4.2, the mean absolute prediction deviation is shown for all predicted
pCTs using RaFR and GMR with dUTE+mDixon or dUTE only as inputs.
Results calculated for the entire image sets (top half) and inside the region of
the air mask (bottom half) are shown. When looking at the entire image set,
on average GMR with dUTE only has the lowest overall absolute error followed
by RaFR with dUTE+mDixon. It is seen that RaFR with dUTE+mDixon has
the lowest standard deviation. Looking at the the region inside the air mask,
on average, RaFR with dUTE+mDixon has the lowest error, followed by GMR
with dUTE+mDixon, RaFR with dUTE only and GMR with dUTE only.
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(b) RaFR

Figure 4.3: The MAPD (left) and MPD (right) as a function of the real CT
value (calculated in bins of 20 HU) for the pCTs for the three
patients. The top panels are for GMR and the bottom panels are
for RaFR.



44 Results

Entire image set
GMR
dUTE+
mDixon

GMR
dUTE only

RaFR
dUTE+
mDixon

RaFR
dUTE only

MAPD, h01 68.7 HU 67.9 HU 70.0 HU 69.5 HU
MAPD, h02 75.0 HU 73.4 HU 70.0 HU 88.2 HU
MAPD, h03 70.3 HU 65.6 HU 69.3 HU 78.7 HU
Mean value 71.3(±2.65)HU 69.0(±3.25)HU 69.8(±0.32)HU 78.8(±7.62)HU

Inside air mask
GMR
dUTE+
mDixon

GMR
dUTE only

RaFR
dUTE+
mDixon

RaFR
dUTE only

MAPD, h01 127.3 HU 133.4 HU 112.2 HU 125.6 HU
MAPD, h02 128.1 HU 142.1 HU 112.8 HU 137.6 HU
MAPD, h03 128.1 HU 139.3 HU 113.2 HU 134.5 HU
Mean value 127.8(±0.4)HU 138.3(±3.6)HU 112.7(±0.4)HU 132.6(±5.1)HU

Table 4.2: The mean absolute prediction deviation (MAPD) calculated for
each predicted pCT using the di�erent regression models. Also the
mean MAPD for each method with one standard deviation con�-
dence interval is shown. Values calculated for the entire image sets
and for voxels inside the air mask are shown.

4.3.2 Geometric Evaluation

In Table 4.3 theMiss%, False% and Dice score for the individual patients along
with the average when using GMR and RaFR is shown. It is observed that the
general tendency for the individual patients is a lowerMiss% and False% and a
higher Dice score when using dUTE+mDixon compared to dUTE only. This is
the case for both GMR and RaFR and is further con�rmed by the mean values
computed over all three patients. It is also observed that on average, the pCTs
predicted using RaFR with dUTE+mDixon input have the lowest Miss% and
False% and highest Dice score. This is also the method that shows the lowest
standard deviation. On average GMR using dUTE only produces the highest
Miss% and False% and lowest Dice score.
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GMR
dUTE + mDixon dUTE only

h01, Miss% 18.3% 26.0%
h02, Miss% 16.7% 17.4%
h03, Miss% 23.4% 27.3%
h01, False% 31.5% 31.1%
h02, False% 26.2% 33.4%
h03, False% 29.0% 30.8%
h01, Dice 0.75 0.71
h02, Dice 0.78 0.74
h03, Dice 0.74 0.71
Mean Miss% 19.5%(±3.48%) 23.6%(±5.44%)
Mean False% 28.9%(±2.63%) 31.7%(±1.42%)
Mean Dice 0.76(±0.38) 0.72(±0.02)

RaFR
dUTE + mDixon dUTE only

h01, Miss% 20.3% 25.8%
h02, Miss% 13.9% 16.1%
h03, Miss% 17.5% 24.9%
h01, False% 22.1% 26.8%
h02, False% 22.4% 30.2%
h03, False% 22.3% 28.7%
h01, Dice 0.79 0.74
h02, Dice 0.82 0.76
h03, Dice 0.80 0.74
Mean Miss% 17.2%(±3.22%) 22.0%(±5.14%)
Mean False% 22.3%(±0.15%) 28.6%(±1.75%)
Mean Dice 0.80(±0.01) 0.75(±0.01)

Table 4.3: Bone miss percentage, false bone percentage and Dice score for
GMR and RaFR with and without mDixon input for the three
patients. The values below the dashed lines are the mean values
calculated over all three patients with one standard deviation con-
�dence limits in parentheses.
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4.3.3 Dosimetric Evaluation

The dosimetric evaluation was performed for patient h03. In Figure 4.4, the
dose-volume histograms of the planning target volume (PTV) and planning risk
volumes (PRVs) (eyes and Hippocampus) for CT and pCT based dose calcu-
lations are shown. From a visual inspection, it is observed that the largest
di�erences are present in the eye volume for both RaFR and GMR. It is hard
to see if there are any di�erences between using dUTE+mDixon or dUTE only.

In Table 4.4, the DVH points, D98%, Dmedian, D2% and Dmean, are shown
for the three volumes of Figure 4.4 along with the percent deviation between
the points estimated from the pCT based doses and the CT based doses. It is
observed that all deviations are smaller than 2 %. When a deviation is observed
in the PTV it is due to an underestimation of the true dose at D98% and due
to an overestimation at Dmedian and D2%. For the eyes and Hippocampus, the
deviation in Dmean is due to an underestimation of the true dose and in D2% it
is due to an overestimation.
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(a) Comparison of GMR models.
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(b) Comparison of RaFR models.

Figure 4.4: Dose-volume histograms. The cerebrum was the planning target
volume (blue) and the eyes (red) and hippocampus (green) were
the planning risk volumes. The CT calculated dose is marked
with triangles for comparison with the dose calculated based on
pCTs from models using dUTE+mDixon (squares) and dUTE only
(circles).
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CT RaFR
dUTE+
mDixon

RaFR
dUTE
only

GMR
dUTE+
mDixon

GMR
dUTE
only

PTV, D98% 26.49 Gy 26.28 Gy 26.31 Gy 26.25 Gy 26.28 Gy
% deviation - 0.79 % 0.68% 0.91 % 0.79%
PTV,
Dmedian

30.05 Gy 30.06 Gy 30.10 Gy 30.05 Gy 30.09 Gy

% deviation - -0.03 % -0.17 % 0.00 % -0.11 %
PTV,
D2%

30.99 Gy 30.99 Gy 31.02 Gy 30.99 Gy 31.02 Gy

% deviation - 0.00 % -0.10 % 0.00 % -0.10 %

Eyes,
Dmean

13.42 Gy 13.20 Gy 13.22 Gy 13.23 Gy 13.17 Gy

% deviation - 1.65 % 1.45% 1.39% 1.83%
Eyes,
D2%

16.50 Gy 16.59 Gy 16.59 Gy 16.59 Gy 16.59 Gy

% deviation - -0.55 % -0.55% -0.55% -0,55%

Hippocampus,
Dmean

18.04 Gy 18.02 Gy 18.03 Gy 18.00 Gy 18.01 Gy

% deviation - 0.12% 0.06% 0.19% 0.16%
Hippocampus,
D2%

20.43 Gy 20.58 Gy 20.58 Gy 20.55 Gy 20.58 Gy

% deviation - -0.73% -0.73% -0.59% -0.73%

Table 4.4: Comparison of DVH points for the planning target volume (PTV),
eyes and Hippocampus using the di�erent models. The percent de-
viations from the dose calculated using the real CT are also shown.
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4.3.4 Comparing GMR and RaF

In Figure 4.5a the MAPD and MPD have been plotted as a function of the
real CT value (calculated in bins of 20 HU) for RaFR and GMR both using
dUTE+mDixon input. It is observed that the MAPD is lower for RaFR for
high density CT values (1000-1500 HU). Also the MPD is closer to 0 in that
range for RaFR. It is seen that in the range from approximately -700 HU to
-400 HU the MPD is closer to zero for GMR. In Figure 4.5b the same is shown
as in Figure 4.5a, but for models with dUTE only. Here, it is observed that the
MAPD is lower for two of the patients for CT values of 1000+ HU using GMR.

In Figure 4.6, the pCTs and real CT from patient h03 are shown for three axial
slices through the head. It is observed that noise is present in the air region of
the pCTs predicted using dUTE+mDixon. A few di�erences between the pCTs
and the real CT should be noted. First of all, the �xation device seen in the
real CT is not present in the pCTs. Secondly, the streak artefact due to dental
�llings seen in the real CT is not present in the pCTs (although the tooth from
which it originates has a di�erent intensity than the rest of the teeth). In the
middle row of Figure 4.6, it is seen that to various degrees, the pCTs su�er from
errors in the nasal region, the paranasal sinuses and in the ear region.
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(a) With mDixon input.

-1000 -500 0 500 1000 1500
0

100

200

300

400

500

600

700

800

900

1000

Real CT Number [HU]

M
ea

n 
ab

so
lu

te
 p

re
di

ct
io

n 
de

vi
at

io
n 

[H
U

]

 

 
GMR
RaFR

-1000 -500 0 500 1000 1500
-1000

-800

-600

-400

-200

0

200

Real CT Number [HU]

M
ea

n 
pr

ed
ic

tio
n 

de
vi

at
io

n 
[H

U
]

 

 
GMR
RaFR

(b) Without mDixon input.

Figure 4.5: Comparison of RaFR and GMR, with and without mDixon input.
The MAPD (left) and MPD (right) plotted as a function of the
real CT value (calculated in bins of 20 HU).
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Chapter 5

Discussion

5.1 Random Forest Model Optimization Study

The purpose of this study was to �nd a suitable tree depth for pCT prediction
using RaFR. As mentioned, this involved looking at the minimum leaf size. The
mean squared prediction deviation (MSPD) as a function of the number of trees
was shown in Figure 4.1 for forests with a minimum leaf size of 5, 10, 20, 50 or
100 data points. It was observed that using 5 or 10 data points produced the
lowest MSPD using 25 trees, so 10 was chosen as the optimal minimum leaf size
due to the theoretically faster training and testing using shallow trees compared
to deep ones. Figure 4.1 also serves to demonstrate one of the properties of the
RaF framework: as the number of trees increases the prediction error decreases
towards a constant value. The out-of-bag data for each tree was sampled with
replacement so as the number of trees increased, the number of weak predictions
made with the same input data also increased. Therefore, what is shown is that
as the number of weak predictions increases the �nal prediction error decreases.
The optimization study was meant as a preliminary study to �nd an estimate
of the optimal tree depth before training the �nal models. The training was
performed on data from one patient and with 25 trees in each forest. This
may pose a problem to the generalisability of the results, i.e. the data from
one patient may not be representative of the entire population of data and the
trend in the MSPD curves may change for forests of more than 25 trees. This, of
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course, should be considered before drawing any �nal conclusions on the optimal
minimum leaf size. A more thorough study, using data from more patients and
a forest size closer to the one used for actual pCT prediction could be carried
out in the future.

5.2 Random Forest Local Binary Pattern Input

Study

This study was carried out in order to investigate if the LBP feature image
sets could improve the prediction accuracy of RaFR. It was observed in Figure
4.2 that in the air region (-1000 HU), the model with LBP feature image sets
had a larger MAPD and MPD compared to models with dUTE+mDixon and
dUTE only input. This can probably be explained by the air mask used to limit
the training data amount prior to training the models. Because the LBP of a
voxel contains information about the neighbourhood of that voxel, air voxels
close to the head have a di�erent LBP value than those far from the head that
are surrounded only by other air voxels. When the air mask was applied to
the training data, it essentially removed all the air voxels that were spatially
far from the head. Because the training data lacked these voxels, the resulting
model was not trained to handle their LBP value, resulting in prediction errors
in those voxels. The error is clearly seen in Figure 5.1, where a dark �halo� of
correctly predicted air values surround the head but further away, the air voxels
are overestimated. A solution to this problem could be to assign a bulk intensity
value of -1000 HU to all pCT voxels outside the air mask.
In Figure 4.2, it was seen that in the range from approximately−700 HU to−100
HU, the model with dUTE+LBP input had the lowest MAPD. In theory, lung
tissue is the only tissue type in this Houns�eld range, so voxels of this intensity
should not be present in the head region of the body. From inspection of the real
CTs used in this project, it was found that voxels of these intensities were placed
in transition regions going from air to tissue. Instead of a sharp transition, a
smooth gradient was observed, which lead to intensity values between -1000
HU and -100 HU. These regions of smooth transitions were observed along all
such edges, meaning on the entire periphery of the head and in the air cavities
inside the head. It was investigated whether the smoothing artefact was due
to the interpolation done when registering and reslicing the CT image sets to
the dUTE image sets. This was not the case, since it was also present in the
unprocessed CT images. It was thus assumed that the artefact was introduced
in the CT acquisition phase. From the error curves in Figure 4.2, it seems that
the model with the LBP feature is better able to mimic this property of the real
CT compared to the models without it.
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Figure 5.1: Example of air mask related prediction error when using LBP fea-
ture image sets. The shown pCT was predicted using dUTE+LBP
input. As can be seen, the value of the air voxels far from the head
is overestimated.

The three models showed similar error-wise behaviour in the soft tissue region
(-100 HU to 500 HU), with the exception that the model with dUTE only input
had larger errors in the 500 HU area.

When looking at the error in the bone range (500+ HU), the model with
dUTE+LBP input had a performance between that of the models with dUTE
only input (worst) and dUTE+mDixon input (best). It was closest to the
dUTE+mDixon curve in the range from 500 HU to 1000 HU and the dUTE
only curve from 1000 HU to 1500 HU. From this, it seems that adding the LBP
feature input improves the prediction accuracy in the bone region compared to
using dUTE only.

Due to the prediction errors made outside the air mask when using the dUTE+LBP
input, the MAPDs shown in Table 4.1 were calculated both for the entire pCT
and for the voxels inside the air mask. When looking at the entire image sets, the
relatively large error observed for the model with dUTE+LBP input is mainly
caused by all the air voxels far from the head which were overestimated. When
looking at the head region only (inside the air mask), it was seen that the model
with dUTE+LBP input performs better than the one with dUTE only input
and worse than the model with dUTE+mDixon input. This con�rms what was
observed in the error curves of Figure 4.2.

Summary: It seems to be possible to get better predictions when using the
LBP feature image sets as an additional input compared to using dUTE only
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input. This may be attributed to the neighbourhood information that these
image sets contain. Still, using the dUTE+mDixon input resulted in better
overall predictions than using the dUTE+LBP input. An advantage of the LBP
feature image sets is that they are derived directly from the dUTE images, so no
additional scans are needed. A reduction in scan time is thus obtained compared
to using the mDixon input. Given this fact and the results shown, the method
looks promising although further studies using more data and a larger forest
should be carried out.

5.3 mDixon Input Study

The RaFR LBP input study already suggested that using the mDixon input
produced better predictions compared to using dUTE only input. In this study
a more thorough investigation of the mDixon input was carried out using more
data and a larger forest. Furthermore, the use of GMR for pCT prediction using
both dUTE+mDixon and dUTE only input was investigated. All resulting pCTs
were evaluated thoroughly using both the prediction deviation, Dice score and
dosimetric deviation.

5.3.1 Gaussian Mixture Regression

The piecewise deviations of the pCTs from the real CT value was shown in
Figure 4.3a for GMR using dUTE+mDixon and dUTE only input. From the
MAPD and MPD error curves it was hard to determine whether the GMR
model was improved when using the mDixon input. In one region (500-1000
HU) the predictions were better (for two patients) but in another they were
worse (1000-1500 HU).

When looking at the MAPDs in Table 4.2, the di�erence between using mDixon
or not for the entire image sets seems relatively small. When looking in the
con�ned region of the air mask, however, the di�erence is larger and consistently
in favour of using the mDixon input. From visual inspection of the pCTs, it
was noticed that when using the mDixon input, predictions in the surrounding
air region was more a�ected by errors than when using dUTE only input (see
Figure 4.6). It was also observed that the mDixon image sets themselves were,
in general, more in�uenced by noise in air voxels than the dUTE image sets (the
noise in the air voxels can be seen in Figure 2.2). This may be attributed to
the post-processing done to these image sets in order to derive the water-only
and fat-only image sets. The noise may be the reason that the models with
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mDixon input do not show smaller errors than models with dUTE only input
when looking at the entire image sets. Again, one could consider assigning a
bulk value of -1000 HU to all pCT voxels outside the air mask.

As mentioned in the introduction, the GMR model has previously been used
by Johansson et al. to predict pCTs [5, 16]. One of the goals of this project
was to investigate the robustness of the model and the ability to reproduce the
results in a di�erent clinical set-up (e.g. using a 1 T MRI scanner instead of a
1.5 T MRI scanner). Johansson et al. reported an average MAPD inside the air
mask of 137 HU with a minimum of 117 HU and maximum of 176 HU for the
individual patients. Their study included 5 patients and used dUTE input as
well as an additional T2 weighted MRI image set (which was later found to be
redundant). In the present study, the average MAPD inside the air mask was
found to be 138.3 HU for dUTE only input, which is close to what Johansson et

al. reported. Johansson et al. also did a piecewise evaluation of the error using
the MAPD and MPD calculated in bins of 20 HU. However, they calculated
the error curves as a function of the predicted CT value and not the real CT
value (as done in this report) so a direct comparison was not possible. Still, the
overall MAPD results were comparable and also from a visual inspection the
results obtained in this project look similar to those reported by Johansson et

al. The di�erence in clinical set-up thus seems to not a�ect the accuracy of the
predicted pCTs as long as the GMR model is trained on data from the speci�c
clinical set-up that it should be used in.

The geometrical evaluation showed a tendency in favour of using the mDixon
input. Referring to Table 4.3, the boneMiss% for each patient pCT was consis-
tently lower for models using the mDixon input compared to models with dUTE
only input. Except for the pCT of patient h01, the same was the case for the
bone False%. Furthermore, the Dice coe�cient was higher for all pCTs when
using mDixon input, suggesting a better geometrical accuracy of bone in these
image sets. This in turn should lead to DRRs more similar to those generated
with the real CT.

Looking at the DVHs in Figure 4.4a, it was clear that the largest dosimetric
deviation was present in the eyes. It was not possible to visually distinguish the
DVHs originating from the model with dUTE+mDixon input and the model
with dUTE only input. Looking at the DVH points in Table 4.4, the visually
large deviations observed for the eye volume was con�rmed by > 1% deviations
in Dmean for that volume for both models with and without mDixon input.
Inspection of the pCTs of patient h03 revealed that parts of both eyes were
given a bone density value, so this may be the reason for the deviations. In
general, all deviations were < 2% and the di�erence between using mDixon
input and dUTE only input was not obvious.
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Summary: The reproducibility of results when using a GMR model with dUTE
input was demonstrated in this study. From the results obtained, there was
an indication that the addition of the mDixon input could improve both the
prediction accuracy and the geometric accuracy. The dosimetric accuracy was
within 2 % for models both with and without mDixon input.

5.3.2 Random Forest Regression

Looking at the MAPD and MPD curves in Figure 4.3b, it was seen that using
the mDixon input improved the prediction accuracy for CT values above 500
HU. In Table 4.2, the MAPDs for both the entire image sets and for voxels
inside the air mask were lower when using the mDixon input. The di�erence
was more distinct when looking inside the air mask. As was the case for GMR,
the pCTs predicted with RaFR using mDixon input had more noise in the air
region which may be what caused this behaviour.

The geometric evaluation showed the same tendency as the prediction devia-
tions. Using the mDixon input resulted in consistently lower bone miss volumes
and false bone volumes and a higher Dice score compared to not using it.

As with GMR, the DVHs showed the largest deviations in the eye volume, which
was con�rmed by the Dmean DVH points in Table 4.4. Again, the pCTs revealed
that some voxels in the eyes were given a bone density value, which may be the
reason for the deviations. It was hard to spot a clear tendency from the DVH
points in favour of using mDixon input. The deviations were < 1.7% for all
DVH points.

Summary: The impact of using mDixon image sets as an additional input
to a RaFR model was demonstrated. It was found that using mDixon input
improved the prediction accuracy and geometric accuracy of the models. It was
not possible to conclude whether the dosimetric accuracy was improved when
adding mDixon input.

5.3.3 Comparing GMR and RaFR

In Figure 4.5a, the MAPD and MPD curves were shown for GMR and RaFR
models with mDixon input. For high density values, the RaFR model had the
lowest MAPD. In Figure 4.5b, the same curves were shown for models with
dUTE only input with an indication that the GMR model performed better in
the high density region.
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Looking at the MAPD inside the air mask in Table 4.2, RaFR using mDixon
input consistently produced the lowest error. On average, the next best model
was GMR with mDixon input followed by RaFR with dUTE only input and
lastly GMR with dUTE only input.

From a geometrical viewpoint, RaFR with dUTE+mDixon input produced the
best results. The worst results were obtained with GMR using dUTE only
input. Which one of GMR with dUTE+mDixon input and RaFR with dUTE
only input performed the best was not clear.

Looking at the DVHs and DVH points, it was hard to decide which model
to prefer. The largest deviation from the CT based dose was 1.83 % and the
di�erence in the individual deviations was a maximum of 0.38 percentage points.
It should be investigated whether these numbers are signi�cant. For the eye
volume all pCTs showed the largest dosimetric deviation from the real CT. As
already touched upon, prediction errors were present in the eyes causing some
voxels to appear as bone. This is probably what caused the dose distribution
to appear less homogeneous in this volume.

When looking at prediction deviations in the air mask and the geometrical
accuracy, the results were mostly in favour of using RaFR with mDixon input
compared to any GMR model and RaFR with dUTE only input. This means
that the pCTs produced with this model would probably produce the most
satisfactory DRRs. The next best models were GMR with dUTE+mDixon input
and RaFR with dUTE only input. Because the dosimetric evaluation was less
conclusive, the question arises whether the improvement in geometrical accuracy
is worth the extra scan time that the mDixon sequence requires (approximately
2.5 minutes). It could be that the geometrical accuracy of one of the dUTE only
models is su�cient for creating usable DRRs. The RaFR model with dUTE only
input had an almost similar Dice score to the GMR model with dUTE+mDixon
so it may be worth investigating if this model produces su�cient pCTs for RT
planning.

Another thing to take into account is the time e�ciency of the two regression
implementations. On a Linux node with 2×2.66 GHz quad-core processors and
24 GB memory, the current implementations of GMR and RaFR used on average
50 hours to train a model using dUTE+mDixon data from two patients. When
using dUTE only data the time was reduced to approximately 35 hours. To
predict a new pCT took approximately 20 minutes for GMR and 5 hours for
RaFR. These numbers speak in favour of using GMR.

It should also be noted that it was not investigated whether 20 components used
in the GMM was the optimal number suited for the task. The 20 components
were chosen based on what Johansson et al. used in their study. It may be
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the case that when adding the mDixon input, more components are needed to
model the joint distribution of MRI and CT intensities. A di�erent number of
components could potentially improve the prediction performance of GMR.

5.3.4 General Comments on the pCTs

In Figure 4.6, axial slices of all the predicted pCTs and the real CT for patient
h03 were shown. As already mentioned, the pCTs predicted with models using
mDixon input showed errors in the air region surrounding the head. This is most
clearly observed in the inferior axial slices shown in the top row of Figure 4.6.
Another interesting thing to note in this row is that the streak artefact present
in the real CT is not predicted in the pCTs. This could be seen as an advantage
because it would mean that such artefacts would not be present in the DRRs
generated from pCTs. It should be noted that streak artefacts were present in
all the CTs used in this project. Except for patient h02, these were not removed
from the training data. Optimally, the models should be trained on images
without such artefacts, because they would then be better representations of
the general appearance of a CT image. The pCTs were compared to the real
CT when calculating the piecewise deviations. This included the region where
streak artefacts were present and this could be the reason that for high density
values in the real CT the pCT has a large MAPD and MPD.

From inspection of the pCTs, it was observed that the regions with the largest
visual deviations from the real CT were found near the nose, ears and para-
nasal sinuses. These are all regions with air-tissue interfaces so a reasonable
explanation could be that susceptibility artefacts in the MRI image sets are
causing this.

Using dUTE+mDixon input produced the lowest overall error inside the air
mask for both GMR and RaFR, so it seemed that the mDixon image sets in-
cluded some information that was not captured by the dUTE image sets. As
previously mentioned, the reason for using the mDixon water and fat image
sets, was to compensate for water/fat phase cancellation artefacts in the dUTE
image sets recorded on a 1 T scanner. These artefacts could cause non-bone
voxels to appear as bone. In other words the mDixon input should improve the
prediction accuracy of non-bone voxels. The largest di�erence in the MAPD
and MPD curves was observed in the bone region of the real CT which was not
as expected. No reasonable explanation to this behaviour was found during this
project.
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5.4 Evaluation Methods

In this section some of the limitations of the evaluation methods will be outlined.
For all methods used in this report, one limitation is that the spatial information
is lost. This means that the methods cannot reveal in what spatial region of
the image set an error is present. This information would be useful since it
may show in what regions the input MRI image sets lack information or are
in�uenced by artefacts. From visual inspection of the pCTs, it seems that errors
are made in the paranasal sinuses, nose and ear regions. None of the evaluation
methods can back this up. The idea of calculating the MAPD for local regions
was carried out to some extend by using the air mask as a region, but it may
be useful to look into calculating errors in smaller regions in order to quantify
the local errors better. This could also be done for the geometric evaluation.
A subtraction of the reference CT and pCT could also serve to show in which
spatial regions the errors are most profound.

5.4.1 Prediction Deviation Method

The MAPD and MPD computed in bins of 20 HU provide a tool for quanti-
fying the errors made in speci�c voxel intensity ranges of the real CT. Taking
advantage of the Houns�eld scale, it is thus possible to quantify the errors made
in speci�c tissues. To calculate the error at -500 HU, all voxels in the real CT
with an intensity of -510 HU to -490 HU along with the spatially corresponding
voxels in the pCT are used. This fact must be kept in mind when inspecting the
MAPD and MPD curves, because, depending on the the number of voxels in a
bin, the error may be calculated based on 1 voxel or thousands of voxels. If it is
calculated based on a proportionally small number of voxels, a seemingly large
error in a speci�c range may not a�ect the overall image much. This property
of the error curves does not mean that they cannot be used to compare and
elucidate the models' performance in the di�erent tissue regions, it means that
they may not provide a measure of the overall prediction accuracy. To quantify
the overall prediction accuracy of the models, the MAPDs based on the entire
image set and on the region within the air mask have been calculated.

5.4.2 Geometric Evaluation Method

Even though all images were co-registered prior to training the models, the reg-
istration was lost when the pCTs were imported into Varian Eclipse Treatment
Planning System for geometric evaluation. For this reason a new registration
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had to be made. The geometrical agreement, as measured by the Dice coe�-
cient, may include registration errors since it is a measure of the overlap between
regions, which is a�ected by the registration. However, the same registration
was applied to all pCTs belonging to a given patient, so if a registration error
was present, the same error would be incorporated into all Dice scores of the
same patient. This means that the intra-patient Dice scores should be compa-
rable, but one should keep in mind that when comparing inter-patient scores
the di�erence may be attributed to di�erent quality of the registration.

5.4.3 Dosimetric Evaluation Method

The main limitation when using dose-volume histograms (DVHs) and DVH
points for dosimetric evaluation is that even though each DVH is con�ned to
speci�c regions (PTV or PRVs), the spatial information within these regions is
lost. This means that if the simulated dose distributions in each volume are
similar using CT and pCT, spatially local deviations in the estimated delivered
dose may still exist. Comparing isodose contours in the CT and pCT could
provide a spatial evaluation of the dosimetric deviations.

5.5 Future Work

One thing that can a�ect the quality of the pCT is the amount of data used
to train the regression models. The assumption when estimating the model
parameters from training data is that the data is representative of all future
inputs and outputs. If this is not the case, i.e. the training data represents
a rarely observed case of all possible inputs and outputs, the resulting model
will not be able to make good predictions on future inputs. Artefacts in the
MRI and CT image sets, such as those originating from dental �llings, are
examples of patient speci�c deviations from the general appearance of input
and output data. Using data from many patients to train the models increases
the probability that the majority of the training data is representative of future
inputs and outputs and should in turn lead to better predictions.
In this report, the LBP input study was carried out by using data from one
patient and then predicting the pCT of another. The results presented in the
mDixon input studies were based on data from three patients using a leave-one-
out approach. Adding more patient data to all these studies could improve the
overall predictions and may help to determine whether the observed trends are
consistent.
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When doing regression using GMR, it is possible to get an estimate of the
conditional variance of the predictions. This is also possible for RaFR, if using
the method of Criminisi et al. The variance could be used to show in which
regions of the pCT the predictions have a large uncertainty and in which they do
not. Along the same line, Johansson et al. suggested that the expected absolute
deviation could be incorporated into the absorbed dose calculated using the
pCT [16]. This would then give an estimate of the uncertainty of the calculated
dose, which could be useful as a quality assurance measure. In this project, the
conditional variance of the predictions was not investigated, so this is something
to look into in the future.

A number of improvements could be made to the LBP implementation used in
this project. The LBP approach was inspired by the work by Pauly et al. who
used a 3-scale 3D LBP-like feature derived from Dixon MRI image sets to pre-
dict organ bounding boxes [17]. In their description of the feature extraction,
no details as to the radius of the spheres de�ning the neighbourhood or the
size of the 3D cubes was found. These two parameters are of vital importance
to the appearance of the resulting feature images, since they de�ne the scale
of the neighbourhood that is captured. In this project, it was not investigated
whether the three scales used for feature extraction were the optimal for cap-
turing textural information in the MRI image sets. Furthermore, because the
LBP contains neighbourhood information, the rotation of the image sets a�ects
the result. The current implementation is not rotation invariant, so this could
be included to improve the robustness.

From an time-e�ciency point of view, especially the RaFR implementation has
room for improvements. The built in Matlab implementation was run in serial,
meaning that one tree was trained at a time. The RaF framework is an obvious
candidate for parallel computing because each tree is independent from the
others. This could improve the speed of both training and predicting. It was
not possible to get the built in Matlab implementation to run in parallel, but
our own implementation, used to generate the examples in Section 2.5, was
successfully run in parallel with marked improvements in speed as a result.

Finally, a clinical validation of the pCTs could be carried out in the future.
This would include investigating if the geometrical accuracy is good enough
to generate satisfactory DRRs for patient alignment and investigating if the
dosimetric deviations are signi�cant compared to a CT based plan.
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Chapter 6

Conclusion

In this project, Gaussian mixture regression (GMR) and Random Forest re-
gression (RaFR) were investigated as a tool for obtaining pseudo-CTs (pCTs)
from MRI image sets to use in MRI-only radiation therapy planning. dUTE
and mDixon MRI image sets were investigated as input to both models and
for RaFR a Local Binary Pattern (LBP) feature input was investigated. The
results were evaluated in terms of the voxel-wise deviations described by the
mean absolute prediction deviation (MAPD) and mean prediction deviation
(MPD). A geometrical evaluation of bone in the pCTs was carried out using the
Dice coe�cient and the missed bone and false bone percentages. Furthermore,
a dosimetric evaluation was carried out by comparing dose-volume histograms
(DVHs) and DVH points based on pCT and CT dose calculations.

Gaussian Mixture Regression

GMR is a promising approach to generating pCTs. In this project the repro-
ducibility of previously reported results was demonstrated in terms of a similar
average MAPD. A new approach of adding mDixon image sets to the input
of the model showed to improve the prediction accuracy and geometrical ac-
curacy of the predicted pCTs compared to using only dUTE image input. An
average Dice score of 0.76 for dUTE+mDixon models and 0.72 for dUTE only
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models was obtained. In terms of the dosimetric accuracy, it was found that
the absorbed dose calculations based on GMR pCTs had deviations of < 2% in
clinically relevant DVH points compared to dose calculations based on CT. No
clear dosimetric di�erence was observed between adding the mDixon input and
not adding it.

Random Forest Regression

RaFR is another promising method which has not been used to generate pCTs
prior to this project. For the implementation of RaFR used in this project, it
was found that using a minimum leaf size of 10 as stopping criteria for tree
growing resulted in the smallest mean squared prediction deviation (MSPD).
It was investigated whether adding an LBP feature image as input could im-
prove the pCTs. It was found that a dUTE+LBP input improved the prediction
accuracy compared to using only dUTE input. The results were based on a rela-
tively small amount of data so further studies should be carried out. The impact
of adding mDixon input was also investigated for RaFR. Here it was found that
using dUTE+mDixon input improved the prediction accuracy and geometrical
accuracy of the pCT compared to using only dUTE input. An average Dice
score of 0.80 for dUTE+mDixon models and 0.75 for dUTE only models was
obtained. The dosimetric deviations between absorbed dose calculations based
on RaFR pCTs and real CT were found to be < 1.7% in clinically relevant DVH
points.

Comparison of Gaussian Mixture Regression and Random
Forest Regression

The RaFRmodel with dUTE+mDixon input produced the best pCTs in terms of
prediction accuracy and geometrical accuracy. The next best models were GMR
with dUTE+mDixon input and RaFR with dUTE only input. The extra scan
time required with the mDixon input and the time e�ciency of the GMR and
RaFR implementations should also be considered, before drawing conclusions
as to which model is preferred.

Future Work

The results presented in this report showed the potential of using GMR and
RaFR for predicting pCTs. A number of things could be investigated in the
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future. First of all, studies using more data could be done in order to verify
the trends observed in this report. An investigation of the signi�cance of the
geometric and dosimetric deviations could be carried out. This would also help
in determining if the improvement in geometrical accuracy observed with the
mDixon input is worth the extra scan time.

The LBP input study showed promising results but further investigation is
needed. Using feature images with neighbourhood information could prove to
make additional non-conventional MRI sequences like the mDixon redundant.
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Purpose:  For RT based on MRI only, a promising approach is to obtain a substitute CT scan from the MR 

images (a so-called pseudo CT, pCT) using a Gaussian mixture regression (GMR) model. The GMR model has 

previously been investigated on 3T MR images using a dual ultra-short echo time (dUTE) sequence and was 

shown to give sufficient information for training the GMR model. The dUTE sequence provides contrast 

between bone and tissue using dual echo times but at 1 T, chemical shift artifacts at the second echo time 

may cause voxels containing water and fat to behave like bone. The multiecho-Dixon (mDixon) MR 

sequence provides contrast between water and fat which could potentially remove this problem and 

provide valuable information for the GMR model. In this study, we investigate the robustness of the GMR 

model on predicting pCT scans from dUTE MR images of a 1 T scanner and how adding an mDixon sequence 

affects the generated pCT. 

Methods: Head scans of 2 patients fixated for whole brain RT were acquired on a 1 T open MR scanner with 

flex coils. dUTE sequences were obtained at flip angles 10 and 25 degrees, respectively. Echo- and 

repetition times TE1/TE2/TR were 0.09/3.5 /7.1 ms with a voxel resolution of 1x1x1 mm and a 256 mm 

FOV. The mDixon was acquired with TE1/dTE/TR equal to 6.9/3.5/16 ms, a voxel resolution of 1x1x1.5 mm 

and a 250.5 mm FOV. CT head scans were acquired with a voxel resolution of 0.6x0.6x2 mm and a 220 mm 

FOV. The CT was registered to the high angle TE1 UTE using a mutual information algorithm and all MR 

scans were internally registered. All scan were resliced to the dUTE resolution and cropped to the smallest 

FOV. The MR images were low- and high-pass filtered creating two new images per filtered image. The MR 

images, their filtered counterparts and the CT image were considered as random variables and the voxel 

intensities a sample from their underlying distribution. A GMR model was initialized with 20 centers using 

k-means clustering and an EM algorithm was used to train the model on the data from one of the patients. 

The model was then applied on the other patient to generate the pCT. A model using only the dUTE images 

and one adding the mDixon images were trained. A comparison using the real CT to calculate the mean 

absolute prediction error (MAPD) of the pCT in bins of 20 HU was carried out. 

Results: The pCTs of one patient using the extended model is shown in the figure. Qualitatively (upper 

images) and quantitatively (lower graph), the results are similar to those previously reported for 3T using 

dUTE only. A reduction in MAPD can be observed in the bone region (>500 HU) by adding mDixon to the 

model. 



 

 

Conclusion: The robustness of a GMR model on 1T MR images was demonstrated. The model was further 

expanded with an mDixon sequence which reduced the prediction error of predicted CT values >500 HU. 

Although a study based on larger amounts of data should be carried out, there is an indication that the 

mDixon sequence improves CT prediction from dUTE MR images. 
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