
Exploring Size Metrics for Models

Panagiotis Tsakos
s101571

Kongens Lyngby 2013
IMM-MSc-2013-7

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-PhD-2013-7

Abstract

The goal of this thesis is to look into models from a different perspective, the
metrics point of view. Since there are many model size metrics that can be
exported from different models. We believe that this thesis is a good opportunity
to create a tool that will try to measure and visualize them. We have the belief
that with using it there might derive interesting finding. The contribution of
our tool will help students and researchers to broader the academic views and
give them a chance to explore the world of model size metrics!

ii

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modeling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Computer Science and Engineering.

The thesis deals with measurement, visualization and exportation of model size
metrics.

The thesis was developed under the supervision of Harald Störrle.

Lyngby, 01-January-2013

Panagiotis Tsakos
s101571

iv

Acknowledgements

Firstly I would like to thank my family, and especially my mother Vasiliki
Ntouni, my aunt Athina Kiousi and my uncle Ioannis Ntounis who made it
possible for me to complete my studies at the Technical University of Denmark
- Department of Informatics and Mathematical Modeling.

Finally, I would like to thank my supervisor Harald Störrle for his guidance and
help ,throughout the development of this thesis.

vi

Contents

Abstract i

Preface iii

Acknowledgements v

1 Background 1
1.1 Problem statement . 1
1.2 Problem justification . 3
1.3 Related work . 4

1.3.1 Class metrics . 4
1.3.2 Use case metrics . 4
1.3.3 SDMetrics . 5
1.3.4 Sparx Enterprise Architect 6

1.4 Background outcome . 6
1.5 Outline . 7

2 Analysis 9
2.1 Requirements . 9

2.1.1 Environment requirements 10
2.1.2 Tool interaction requirements 10
2.1.3 File import requirements 11
2.1.4 File export requirements 11
2.1.5 Model size metrics requirements 12
2.1.6 Visualizations requirements 13
2.1.7 User requirements . 13

2.2 User scenarios . 14
2.2.1 Student scenario . 14
2.2.2 Researcher scenario . 15

viii CONTENTS

2.3 Use cases . 16
2.3.1 Use cases presentation . 16
2.3.2 Student use case diagram 18
2.3.3 Researcher use case diagram 19

2.4 Information model . 20

3 Design of the plugin 23
3.1 Design technologies . 24

3.1.1 Eclipse PDE . 24
3.1.2 Extensions . 24
3.1.3 SWT and layouts . 26
3.1.4 User interface . 26
3.1.5 Architecture . 31

4 Implementation 35
4.1 Technology . 35

4.1.1 Eclipse plug-in development environment 36
4.1.2 SWT and JFace . 36

4.2 Plug-in development . 36
4.2.1 Plug-in project creation 37
4.2.2 The “plugin.xml” file . 37
4.2.3 Views . 38
4.2.4 Pop Up Menu . 43
4.2.5 Perspective . 43

4.3 Libraries and components . 44
4.3.1 SDMetrics open core . 45
4.3.2 JFreeChar . 46
4.3.3 iText . 46
4.3.4 Window Builder Editor 47

5 Evaluation 49
5.1 Testing stages . 49

5.1.1 Unit testing . 49
5.1.2 Functional testing . 51
5.1.3 Compatibility evaluation 53

5.2 Requirements evaluation . 54

6 Conclusion 57

A Installation Manual 59
A.1 Installation Methods . 59

A.1.1 Install as Project Repository 59
A.1.2 Install Eclipse Plug-in manually 67
A.1.3 Install from Online Repository 68

CONTENTS ix

Bibliography 69

x CONTENTS

Chapter 1

Background

This chapter presents the problem that our thesis addresses, justify it and af-
terwards we will follow with a review to the related work that focuses on the
problem.

1.1 Problem statement

The problem we attemp to resolve by our thesis is the exportation and visual
representation of model size metrics from different UML model files. Since there
is no tool available that can easily perform model size metrics on different model
files in order to allow students and researchers focusing on the field of system
modeling to compare them and end up into useful results. We believe that the
development of such a tool will be valuable.

There is an unlimited number of metrics that can be counted up by UML mod-
els but the ones that our tool is going to focus on are meta-class metrics, class
metrics, activity metrics, component metrics, package metrics and usecase met-
rics. Which of these are metrics are useful? It is not completely clarified but
with the development of this tool, we create the foundation on which different
models can be measured and might end up in useful conclusions by our users.

2 Background

In order to present the problem in a more simple way we will now give you a
simple case study of how the models are being exported into an XMI file from
a modeling tool and how it’s metrics should be imported by our application in
order to be further processed.

We have designed a very simple use case diagram using the MagicDraw modeling
tool 1.1.

Figure 1.1: MagicDraw modeling tool - Use case diagram

From the diagram we can identify that we have an actor “Test User”, a system
“Test System”, and action “Test Action” and an association between the actor
and the action.

If we then export the above diagram into an XMI file we will have all these
components into an XMI format that will look like this 1.2.

The XML language can successfully and efficiently represent all the meta-classes,
elements and associations used in the UML use case diagram that we created.
Using the model XMIs our tool should export the metrics out of it. In our case
study we have the metrics of one use case metaclass, actor, system, action and
association between the actor and the action.

These metrics could be then be available for our users to navigate through and
visualize in different chart types and export them in different file types. It would
be great if we had such a tool that with easiness and usability allowed us to
perform all these actions.

1.2 Problem justification 3

Figure 1.2: XMI example - Use case diagram

1.2 Problem justification

The reason we decided to go through the development of such a tool is to look
into models from a different perspective, the perspective of their metrics. We
know that the most commonly used methods for measuring the source code
program size such as Source Lines of Code (SLOC) can not apply to UML
models, therefore model size metrics is the abvious way that we should focus
on. SLOC can be used in order to estimate the effort used to develop a program
and programming productivity. model size metrics can be used in order to
measure the programming productivity and quality[DF11] when using model
driven engineering(MDE) software development methodology. And according
to “city inforum” the use of model metrics is even more important to numerous
valuable applications in earlier stages of the development process like scheduling,
cost estimation, quality assurance, and personnel task assignments. So a tools
that both students and researchers can use in order to compare different model
metrics might be essential. Easily exported metrics and visualizations can help
to find more of what model size metrics can offer to us. Cross-screen comparisons
will ease researchers to find patterns and associations between the model size
metrics and end up into some very interesting outcomes.

4 Background

1.3 Related work

There has been quite a lot of research in order to identify useful metrics. We
believe it is important to look into some metrics that were found interesting and
see what information they can offer.

1.3.1 Class metrics

Class metrics are mostly used in order to define the complexity of software. Ac-
cording to Shyam R. Chidamber, Object Oriented Design Metrics Suite[CK94],
he identifies six metrics that can be measured by using the classes of a model.

These metrics are:

1. Weighted methods per class (WMC) - Metric regard to the complexity of
a class method.

2. Depth of inheritance tree (DIT) - Metric that measures the lenght from
the class to the root of the inheritance.

3. Number of children (NOC) - Represents the number of children and de-
scendants of a certain class.

4. Response for a class (RFC) - Number of methods that can be invoked by
an object of a given class.

5. Coupling between object classes (CBO) - Two classes are related when a
method of a class uses and instance or method of another class.

6. Lack of cohesion in methods (LCOM) - Measures the number of sets of
instance variables accessed by every pair of methods of a given class.

We believe that the above metrics are very effective in defining the complexity
of software and we will try to support most of these metrics in our tool.

1.3.2 Use case metrics

Use Case metrics are in the other hand useful not only to define the complexity
of a system but also to predict the work effort needed for this system to be

1.3 Related work 5

developed. On article by M. Marchesi[Mar98] he presents a set of use case
metrics that are interesting to see.

These are:

1. NA - Number of Actors of the System

2. UC1 - Number of Use Cases in the System

3. UC2 - Number of communications among UC and Actors

4. UC3 - Number of communications among UC and Actors without redun-
dancies

5. UC4 - Global complexity of the system

UC4 metric that represents the global complexity is calculated by the metric
values of UC1, UC2 and UC3.

Our tool should also perform these metrics so that the users should be able to
measure the complexity of a system.

1.3.3 SDMetrics

SDMetrics 1.3 [sdm]measuring tool is one of the few available measuring tools
that can be used in order to analyze different types of UML diagrams. The tool
can present the metrics information of a model file in the form of tables and
histograms. Other features such as the Rule Checker can be used in order to
find problems in the uml design. One more very interesting feature allows the
user to define its own custom metrics and rules.

SDMetrics can measure metrics of class, activity, usecase and statemachine di-
agrams. It includes most of the metrics that were found to have some type
of interest such as the class and usecase metrics we described previously, that
define complexity and work effort. There is an open core version of SDMetrics
that its code can be used for non commercial use, in order to implement and
measure SDMetrics supported metrics in your own application.

We believe that SDMetrics is a very powerful tool but it does not provide many
types of metrics visualizations such as scatterplots and bubble charts. As well
it can not manipulate multiple model files simultaneously in order to visualize
them and make it easier for the user to compare them visually.

6 Background

Figure 1.3: An SDMetrics Histogram

1.3.4 Sparx Enterprise Architect

Sparx Enterprise Architect[spa] is a modeling tool but it is as well supports some
use case metrics for predicting work effort and cost of a system modeled. The
use metric features of Sparx might be interesting for a software development
company since it can predict the cost of projects, but it might not be so useful
for the users of our tool, since they want to explore model size metrics for
academic reasons.

One drawback is that it does not support many different metrics except those
use case metrics who are related with system complexity. It does not provide
visualization of metrics in terms of charts and graphical comparison features.
In the next figure we see Sparx making a prediction on estimated work effort
and cost of system by using its use case metrics 1.4.

1.4 Background outcome

By working on this chapter, we reach into the outcome that model size metrics
can truly help in earlier stages of development to understand the complexity of
systems and predict the effort needed for developing them. Therefore model size
metrics tools can also be very useful both in academic and commercial areas.
The model size metric tools that are available are very useful but they do not
support multiple types of chart visualizations of metrics and visual comparison
of different models at the same time. For this reason we believe that the devel-
opment of a tool that can help students and researchers to compare, visualize
and export models is essential. We definitely believe that this thesis will be
useful and will help students and researchers understand more of what model
size metrics can offer.

1.5 Outline 7

Figure 1.4: Sparx Enterprise Architect

1.5 Outline

This thesis is divided into five chapters and one appendix. The outline of the
chapters and the appendix are presented below:

Chapter 1 - “Background” : In this chapter we describe the problem that our
thesis wants to solve, we describe why this problem should addressed and we as
well have a look in the related work that was done.

Chapter 2 - “Analysis” : In the analysis chapter we will define the requirements
we wish for our application and then make an analysis on them by using use
case diagrams and other.

Chapter 3 - “Design” : In this chapter we will take a look to the implementation
possibilities we have in order to make the correct choices for implementing our
tool. We will also try to design the GUI of you tool.

Chapter 4 - “Implementation” : In this chapter we will try to explain how the
implementation phase was done in more advanced and technical matters.

8 Background

Chapter 5 - “Evaluation” : In this chapter we will try to evaluate our work so
far. Give some testing examples and finally perform a requirements evaluation.

Chapter 6 - “Conclusion” : We will conclude our thesis in this chapter.

Appendix A - “Installation Manual” : Installation manual for our plug-in.

Chapter 2

Analysis

In this chapter we will look and analyze the problems stated in the previous
chapter.

We are starting by describing the requirements we define for the tool that we
wish to develop. The users of the plug-in are going to be mentioned and use
cases will be presented.

2.1 Requirements

Let us now look into the requirements that we set for the development of our tool.
The tool should be able to comply with the majority of the requirements and we
are going to evaluate that in the final chapter of our thesis “cite evaluation”.We
will try to be as more analytic as possible to help the reader understand what,
how and for whom we want to do something.

10 Analysis

2.1.1 Environment requirements

The requirements that we start with are for the environment that we want
our tool to be based. We decided that the environment that we want our
tool to be based on is Eclipse. Therefore our tool will actually be an eclipse
plug-in that performs model size metrics on different model files. The reason
we decided to go on with that possibility is because Eclipse allows to use its
own extensions and components to create a usable and flexible graphical user
interface for our tool. The Eclipse allows developers to create plug-ins by using
Eclipse Plug-in Development Environment (PDE) which is based on Java and
uses Standard Widget Toolkit (SWT) that ensure compatibility in all types of
Operating Systems (OS)[EC08].

2.1.2 Tool interaction requirements

The interaction with the tool will be developed using eclipse PDE extensions.
These extensions should ease the user to navigate through the tool environment
in order to import and maintain model files, pass their metrics through different
components, visualize them and export them. Such interactions features should
be:

• Project explorer - With which the user will be able to import and maintain
his model files for the cause of performing model size metrics on them.

• Measurements and visualizations viewer - A simple viewer from which
the user can see which measurements, when and on which files have they
been performed. Which visualization have been created and under which
measurements they are based on. He should also be able to navigate
through the different measurements and navigations and delete them.

• View components flexibility - The components viewing something in the
interface of the tool should be able to be closed, be created and be moved
around the environment of the plug-in. This is essential because if we allow
the view components to be moved around in the environment, will help the
user to adjust the environment in his own needs and view different multiple
metric visualizations on his screen and perform cross-screen comparisons.

• Drag and drop - Files should be able to be draged and droped into the
project explorer than just getting imported.

2.1 Requirements 11

2.1.3 File import requirements

Let us now have the a look to the model files that our plug-in should be able to
import and perform model size metrics on. Most modeling tools such as Magic-
Draw are able to export the models that where designed by using them in XML
language. More specifically the exportations are made using XML Metadata
Interchange (XMI) which is a standard for exchanging metadata information
via XML language. XMIs are ideal for exporting UML models in a serialized
way. So the requirements that we set for our tool is to support importation of
model files in the XMI format for UML. The versions of XMI and UML we want
to support are

• XMI: 1.0,1.1,1.2,2.0,2.1

• UML: 1.x,2.x

The actual difference between UML v1.0 and v2.0 is that the older one supports
less metaclass types, so it is obvious that we can measure less model size metrics
from and XMI file using UML v1.x than one which uses v2.x .

One more important issue concerning import requirements that we should set
is, that since the meta-class metrics that can be measured from a model file
are so many and perhaps our user does not want to get metrics for all of them.
A filter file feature should exist which should be written in Comma Separated
Value (CSV) format. This filter file should state all the user desired meta-class
metrics and the tool should then parse it and only measure the desired ones.

It is also important and we state it as a requirement, that our tool should be
able to import multiple model files and perform model size metrics on them for
comparison reasons.

2.1.4 File export requirements

Now that we defined the import requirements, we can look into the export ones.
Since our tool will be handling metrics and visualizations, it is very important
that the users could export these in order to save them and reuse them whenever
they want it to. Concerning the model size metrics, we can define as requirement
that the tool should support their exportation in two different types of files:

1. CSV files - The metrics that would be exported in CSV format might be

12 Analysis

very useful since they can be easily reused from spreadsheet programs such
as Microsoft Office Excel for further processing.

2. PDF files - It would also be good if the plug-in could export the metrics
of different models in a PDF file, which suits perfectly when the user want
to export metrics for reporting reasons.

On the other hand the users of our tool should also be able to export different
visualizations created by it. Of course the most suitable way to export visu-
alization is in image files. So we define as requirement that the visualization
created by our tool should be able to get exported into two types of image files:

1. Images based on pixel format: These are the most commonly used image
format that is used by most computer users and they should be supported.
These image file types are JPEG, PNG and many more.

2. Images based on vector format: These images are more suitable for those
who need to resize the images and not lose any quality.

There should also be a possibility for the user to print the visualization from
the GUI.

2.1.5 Model size metrics requirements

Model size metrics requirements are difficult to define by ourselves which are
the most important ones, so we will try to adapt the requirements that other
model size metrics tools define and as well allow the user to define meta-class
metrics by themselves. We have looked in what other MSM tools support in the
related work section(cite Related work). From what it was mentioned in the
articles we studied, we can define as required metrics:

• Class metrics - Which can help our users to predict the software complex-
ity.

• Use case metrics - Which can help our users predict the system complexity
and the work effort required for system development.

• Meta-class metrics - Which can also help our users to measure productivity
of models designed. For these type of metrics as we mentioned before, we
will let the users to specify by themselves which should be measured.

2.1 Requirements 13

2.1.6 Visualizations requirements

By visualizations requirements we mean what types of visualizations our tool will
be able to draw for to the user. The visualization must also be able to present
model size metrics measured from multiple model files. The visualizations that
we define are:

1. Table views - A table which will include all the metrics measured from
a model file. Table view is very useful because the users can see all the
metrics derived from each model file and compare them with other table
views or visualizations.

2. Histograms - A histogram will give the ability to the user to easier compare
the size of different metrics, the size of each metric from one model file
with the same metric from another model file.

3. Scatterplots - This type of chart will allow the user to combine two different
metrics or metaclasses and compare them with others on a scatterplot
drawing.

4. Bubblecharts - This is a three dimension chart that can help the users
to compare three different metrics or meta-class types. It is that chart
that you should use when you want to perform more complex graphical
comparisons.

Whenever we measure metrics for multiple model files, there should be a way
that the user can even visualize the addition of those metrics than visualizing
multiple model files in a single visualization.

2.1.7 User requirements

Let us now look in the requirements that our users should have in order to use
our plug-in. We can divide the users of our application into two different user
categories.

1. Students - The students and most preferably master students who are
interested in conducting metrics for the course (02341 -Model Based Soft-
ware). Those student may want to explore model size metrics for educa-
tional related matters. The tool will help them to understand the basic
uses of model size metrics and perform some measurement themselves.

14 Analysis

2. Researcher - The researches who have want to look into different model
size metrics, do simple and more complex comparisons and end up with
some results that have scientific interest.

The general requirements that we can define for both of these categories are the
following:

• All user should have some basic knowledge in system modeling and more
specifically UML modeling in order to understand the measurements and
visualizations that the plug-in can perform.

• The plug-in interface is written in English so an average knowledge of
English language is a requirement.

• Average knowledge of the Eclipse IDE is required since the users will use
components of Eclipse to perform Model Size Metrics.

2.2 User scenarios

As we defined previously there will be two user categories for out tool the stu-
dents and researchers. In this section we will try to demonstrate in two scenarios
how each one of these user categories will interact with the tool.

2.2.1 Student scenario

Let us create a simple scenario for students, since we expect them to have less
knowledge in the field of system modeling than the researchers. We expect
students in our scenario to only perform simple actions with our tool. In the
figure 2.1 we made a drawing that tries to demonstrate exactly that scenario.

As we see in the figure 2.1 there is a student which interacts with the tool and
provides it with a single model file, metric settings, visualization settings and
as well he asks to export it in a pixel based image file. By metric settings we
mean what type of mertics he wants to be measured and be provided to him.
By visualization setting we mean the type of visualization in this scenario it
is a histogram. In the next phase according to the flow of the drawing the
tool is generating the requested metrics and shows their visualization on the
display. Then a pixel based image file with the visualization is exported and it
is delivered to the student.

2.2 User scenarios 15

Figure 2.1: Student scenario

2.2.2 Researcher scenario

For the researchers user category we are going to create and draw a more ad-
vanced scenario. The scenario will present two types of visualizations a his-
togram and a bubble chart. We decided to use bubble chart in this scenario
since it is the most complex chart type that our tool supports as it is a three
dimensions chart. Each bubble location in the chart depends on two different
metrics (x and y) and its size - ratio (pi) is defined by one more metric. The
figure 2.2 tries to demonstrate that more advanced scenario.

As we can see from the figure 2.2 in this scenario we have a researcher that
interacts with model size metrics tool. He provides the tool with multiple model
files and his metric and visualization settings in order to demonstrate all those
models in a single bubble chart in one display. He also creates a histogram
which appears in the second display. He can compare the visualizations of both
displays by using Eclipse cross-workbench feature.

16 Analysis

Figure 2.2: Researcher scenario

2.3 Use cases

In this section we will write down all the use cases that we want our tool to to
implement and afterwards we will try to provide in use case diagrams for all the
actions that each one of the user categories can perform on our system. The
actions will be presented as use cases, the users as actors and our model size
metrics tool as the system.

2.3.1 Use cases presentation

• UC-ID: Import Model

1. Description: Action that allows single or multiple model file imports
into the system

2. Scenario: The user has some model files that he wishes to find their

2.3 Use cases 17

metrics.With this action he can import these files into the system

• UC-ID: Get Metrics

1. Description:Action that allows to get the metrics from a single or
multiple model files

2. Scenario: The user has already imported his model files into the
system. He now wishes to get their metrics. He can just use this
action to do so

This use case requires Import Model as precondition

• UC-ID: Show Visualization

1. Description: Action that the user takes when he wants to get the
metrics as a visualization files

2. Scenario: The user has already got the metrics out of his model files
and he now wishes to visualize them in a histogram. He takes this
action in order to do so

This use case requires Import Model and Get Metrics as preconditions

• UC-ID: Export Metrics

1. Description: Action that the user takes when he wishes the metrics
to be exported in some type of the supported format

2. Scenario: After user have got the metrics from a model file by using
this action. He can export them into CSV or PDF format

This use case requires Import Model and Get Metrics as preconditions

• UC-ID: Export Images

1. Description: Action that the user takes when he wishes to export a
visualization as an image

2. Scenario: After user have got a visualization from the tool he can
then use this action in order to export it in pixel or vector based
image formats

This use case requires Import Model, Get Metrics and Show Visualization
as preconditions

18 Analysis

• UC-ID: Compare Visualizations

1. Description: The user might create multiple visualization and he can
compare them using this action

2. Scenario: The user might want to have multiple model file metrics
in a single visualization in order to compare them. Or might have
multiple visualizations that he compare cross-platform

This use case requires Import Model, Get Metrics and Show Visualization
as preconditions

2.3.2 Student use case diagram

The use case 2.3 diagram tries to present all the actions that a student might
perform on our tool always according to the requirements that we defined and
the user scenarios that we described previously.

Figure 2.3: Student use case diagram

By looking into the use case diagram we identify some actions that the student
user can do with our system. These actions derive from the requirements and

2.3 Use cases 19

do not limit the student to perform even more advanced actions that might not
be stated in the usecase diagram. The reason we separated the actions that
can be performed into two different user categories is just because we try to
demonstrate which actions are more appropriate for a student user, which more
often will not need to perform complex actions with our tool.

2.3.3 Researcher use case diagram

The figure 2.4 tries to demonstrate the actions that are more appropriate for
a researcher to perform using our tool. Which they should definitely be more
complex.

Figure 2.4: Researcher use case diagram

The researcher user will mostly try to compare multiple model files and perform
visualizations that represent multiple metrics. We expect the researcher to in-
vestigate different metrics that have the potential to bring up useful conclusions.

20 Analysis

And that he will be using a lot the cross-workbench comparison feature for his
research.

2.4 Information model

The goal of this section is to sum all the requirements and use cases that we
described in this chapter and provide an analysis level class diagram 2.5 that
includes the most major ones.

Figure 2.5: Analysis level class diagram

As you can see from the class diagram we separated our tool into four different
classes that will implement our requirements.

• MSMInterface - This should be the main class of our tool. It should im-
plement the environment of the tool and have as attributes all the objects
created by the rest three classes. It implements some general methods that
perform actions such as “Import New Model File”, “Show Visualization”
and “Export Metrics or Visualizations”.

• MSMMetrics - Is a class that we add each one of the model files loaded to
system and then use its method “MeasureMetrics” to perform and store
model size metrics as its attributes.

• MSMVisualization - Is the class responsible for visualization metrics into
table views or charts and then show them to the users. It has as methods

2.4 Information model 21

“Set Metrics” which actually gets the metrics that we wish to visualize and
“Start Visualization” with a visualization types as parameter to specify
what type of visualization we want.

• MSMExport - Is a class that care of the exportation both for metrics and
visualization. It gets as attributes a list of metrics and it can then exports
it in CSV or PDF format. It also has a method names “ExportVisualiza-
tion” that takes as parameter and MSMVisualization object and export
its visualization as different images.

22 Analysis

Chapter 3

Design of the plugin

In this chapter we will go through different design technologies that we looked
into in order to design our plug-in. We will explain and justify our choices.
We will go through eclipse Plug-in Development Enviroment (PDE) tools that
helped us to create our application. There will be presentations concerning
the design of the plug-ins Graphical User Interface (GUI). The sketches will be
shown that were used as GUI design drafts in the early stages of the development
of this thesis.

Through this chapter we will try to satisfy all the requirements that were defined
in the analysis chapter and as well provide usability to our users in the most
efficient way.

In the end of this chapter we will demonstrate the data structures that we
created for metric storing and retrieving. And as well explain in simple examples
the algorithms and procedures that should be implemented in order to achieve
the desired outcome.

24 Design of the plugin

3.1 Design technologies

As design technologies we mean all the technologies, tools, components available
that can help us design our tool. In order to start we must begin first by looking
at the environment that we will be using to design our plug-in and this is PDE.
PDE is the environment of Eclipse that allows developers to create Rich Client
Platforms (RCP) and Plug-ins for eclipse.

3.1.1 Eclipse PDE

For the development of our tool we first had to see through the different design
options we had and then justify why we decided to design an eclipse plug-in. The
actual difference between plug-ins and RCP applications is that RCP applica-
tions are stand-alone applications implementing the same tools and components
that plug-ins use. This means that the implementation of RCP application is
pretty much the same with the plug-in implementation, with the difference that
RCP actually runs in stand alone basis in contrast with plug-ins that runs as
embedded extensions of the eclipse environment. The reasons we decided to
design a plug-in that will perform model size metrics are:

• Because it is better for our case to use some of the already provided eclipse
functional and reliable components such as the package manager than
creating our own from scratch.

• And as well because we would like to use Eclipse workbench to stack, move
around, minimize and close the different views that we will design.

Eclipse PDE provides different types of components that we can extend in order
to reach our design goal[EC08]. These components are referred in by eclipse as
extensions. There are so many different types of extensions that we can utilize
for designing our tool. We of course not going to explain all of them but we will
have a look into the most important ones.

3.1.2 Extensions

In this section we will see the mostly used plug-in extensions and more specifi-
cally focus on the ones that we used in order to design our plug-in.

3.1 Design technologies 25

The most important and most commonly used extension is eclipse PDE is the
view.

3.1.2.1 Views

The view is actually an empty window inside Eclipse IDE which we can fill up
with widgets needed for performing different actions. The view is also very useful
for our tool development, since it will allow us to fill them up with visualizations
and then be free to move them, close and stack them everywhere around the
IDE and this way perform cross-workbench comparisons.

3.1.2.2 Pop up menu

The pop up menu is an extension that places an extra menu entry when a right
click is occurred on a file that was imported while using the eclipse’s package
manager. We will include that extension in the design of our tool since a file
manipulation view such as the package manager, will allow us to import and
perform measurements on different model files. A pop up menu can filter and
only provide actions to the files specified by the extension.

3.1.2.3 Perspective

Perspectives are extensions that help us pre-define the initial positions that each
view will be placed in the API. The perspective extension adds a perspective
entry in window menu of eclipse from where we can open it. It is very functional
because without we should have opened all the views required for our tool to
function manually. We will definitely use a perspective extension for our plug-in.

3.1.2.4 Menu

The menu extension can add menu entries on Eclipse’s main menu or tool bar.
We had used menu extension to add a tool bar button on eclipse’s API which
whenever clicked it was opening our tool’s perspective. Since that was not very
functional we decided to drop it and not use it as part of our design. Since it
does not make any significant contribution and eclipse IDE by default provides
a very simple and functional way for opening perspectives from its menu.

26 Design of the plugin

3.1.3 SWT and layouts

Since the Eclipse plug-ins graphical widgets that by using them we will allow
our users to perform different actions on our tool are constrained to function
only under Standard Widget Toolkit (SWT) technology. We will give a short
explanation about what SWT widgets actually are and how we are going to
include them in our design. And then we will discuss about the available layouts
a view extension can use, in order to place the different widgets on its body.

3.1.3.1 SWT

SWT is a graphical widget toolkit that supports plenty of widgets which imple-
ment many and very usable functionalities. Such widgets are buttons, combo
boxes, text boxes, tables, trees, labels and generally all these tools that a user
can get information from or by interacting with them perform actions with the
plug-in. Another big advantage of SWT except the usability that it provides,
is the native look that guarantees up to certain point, that the look of the de-
sign will be pretty much the same when our plug-in will be running in different
operating systems.

3.1.3.2 Layouts

In order the for the widgets to be placed correctly in a view and more precisely
in a SWT composite. We must first assign a layout to that composite that will
positions its children “other SWT Widgets” inside it. There are many different
types of layouts available and the most standard ones are the FillLayout, the
RowLayout, the GridLayout and the FormLayout. Since all these layouts create
constrains in the freely and with no limitations positioning and sizing of the
widgets. We decided to use as a layout for our plug-in the so called absolute or
null layout that allows to freely place and size each widget simply by defining its
bound properties. Except the visualization views because of JFreeChart library
constrains.

3.1.4 User interface

The user interface of our plug in is going to ensure usability for our users and
we are going to explain the process of designing it in this section. We will first
start by presenting the design that we have made in the beginning stages of

3.1 Design technologies 27

development. We will argue about it and explain why we rejected it. Finally
we will show sketches of the final design template as well with explanations
regarding its functionality.

3.1.4.1 Early stages of design

The first tries for designing the user interface were done on a image drawing
software. The figure 3.1 shows the drawing of how user interface was suppose
to look like inside eclipse’s IDE.

Figure 3.1: User interface drawing

As we can see from the figure on the left side of the drawing the project explorer
of eclipse is shown. The project explorer was going to act as a file browser for
our plugin, where the users could import their model files that they wanted to
perform count metrics on. If the file the user have chosen is not appropriate
an error message appears stating the error that the file was invalid. The plugin
would starts to perform the count metrics by right clicking on the model file and
then a pop-up menu would appear with the option to “Perform count metrics”
on different view tabs. The view tabs appear on the right side of the drawing

28 Design of the plugin

where the count metrics results for each file is shown and there are also options
of visualizations we want to perform on those results.

The previous described design was rejected for the following reasons:

• It does not provide multiple model file measurements and visualizations.

• It does not give file related information to the user that might be useful
such as the time last modified, the date last modified, the model file XMI
and UML version.

• It does not provide an easy way to see and navigate through the metric
measurements and visualizations created.

• It does not allow us to have unlimited amount of measurements and visu-
alizations since the total amount of views that can be created is defined.

We will now in the following sections provide you with the sketches that we
drawn for the final version of our tool.

3.1.4.2 Perspective and measurements user interface design

As we can see from the sketch 3.2 the final plug-in perspective design will look
like this. On the left size of the perspective there will be the package manager
from where the user can import all the model files that he would like to perform
model size metrics and visualize them. The actual interaction between the user
and package manager except importing, will be the ability to select a single or
multiple model files using (CTRL) key from the keyboard and then by right
clicking on them from the pop-up menu to choose the measure action. The
measure action will parse and measure the metrics from the single or multiple
files and then register it as a measurement on the measurements view next to it
on the right side.

The measurements view will show to the user all the measurements that were
done and also work as a navigation bar. Whenever a measurement in the mea-
surement view is selected the plug-in should activate it and open it in the right
side of the perspective where measurement’s information and visualization views
can stack.

In this sketch we present the appearance of the measurement information view.
The measurement information view on the top holds model file related informa-
tion such as name, path, last time,last day modified, XMI and UML versions.

3.1 Design technologies 29

Figure 3.2: Perspective and measuments sketch

This way we inform and the user know if the file or files measured are the ones
he actually wants. At the bottom of this view the user can select visualization
types that he wants his data to be visualized.

Such types can be as we described at the analysis part:

• Table View - Including the metrics

• Histogram

• Scatter Plot

• BubbleChart

There is also a table that the user can put more specific settings of the visual-
ization he wants. Such as the color of a dataset series, sorting options, specify
metrics to be visualized in a scatter plot and other.

Finally there is a button named visualize which when clicked it creates the
visualization defined by the settings and present it in a different view. Whenever

30 Design of the plugin

a new visualization is made it adds up a child under the measurement object at
the navigation located at the measurements view. This way the user can also
navigate through the open visualizations. Whenever a measurement is closesd
its children visualizations will also get closed.

3.1.4.3 Metrics table user interface design

Figure 3.3: Metrics table sketch

The metrics table view can be seen from the sketch 3.3 we provided. The table
has as goal to present model size metrics such as metaclass, class, activity,
usecase, component, package and other diagram metrics to the user. The table
it self is a type of visualization show it can be shown just like all the rest types of
visualizations. Each metric name can be identified by the name of each column
and each row represents objects of a specific metric type. The metrics table
view will also appear in the navigation menu and it can be closed or moved
around the IDE.

3.1.4.4 Visualizations user interface design

In the sketch 3.4 we try to show the design of a scenario where having two chart
visualization one Histogram and one Scatterplot created. The chart visualiza-

3.1 Design technologies 31

Figure 3.4: Visualization sketch

tions will fit in another type of view that we call visualization view. Such views
when created can moved everywhere around the IDE and in this scenario they
are placed side to side for cross-workbench comparison. Like tables they will
also be added at the navigation toolbar of the measurements view.

3.1.5 Architecture

In this section we will look into different design diagrams that will try to illus-
trate the architecture of our plug-in.

3.1.5.1 Data flow diagram

A data flow diagram will try to explain you the flow of the data that will be
manipulated by the plug-in we are disigning.

The figure 3.5 tries to give us a general idea of how the main plugin handles
the data flow for importing and exporting data. In the beginning we start with
an input which is a model file. The model file data are then flown to the MSM

32 Design of the plugin

Figure 3.5: Data flow diagram

plug-in and the plug-in passes this data to the metrics measure functions which
is then returns to MSM plug-in the metrics. Then the metrics can even get
exported in a CSV or PDF file or sent together with settings for visualization
to the display. Then the visualization is sent back to the plug-in which can then
export it as an image file. For sure the exportation of data feature should be
present in the plug-in interface implementation.

3.1.5.2 Composite structure diagram

The next diagram 3.6 that we designed tries to demonstrate the interaction
between the processes that are responsible for visualizing metrics in different
views at the runtime. We can identify parts that play a role in the visualization
such as the model file, the perform count metrics process and the metrics viewer
process which are actually responsible for visualizing the metrics. And finally we
have ports named in the diagram as views from which we are actually presenting
the visualizations to the user.

3.1.5.3 Data structures

It is important in the design phase to try to demonstrate how the data structures
will be. We definitely are in need of good data structures since we will have to

3.1 Design technologies 33

Figure 3.6: Composite-Structure diagram

manipulate a lot of metrics data. When the data will be exported should be
stored in dynamic and easily accessible way. For this way we decided to store
the metrics that the plug-in will manipulate internally in a HashTable data
structure.

The reason we decided that is because hash tables are good to handle large
amounts of data and can drastically minimize the searching of an entry. Also
model size metrics fit perfectly in a hash table since we can pass the metric
name as key and the size as value.

Hash tables will also allow us to easier sort data according to our needs, simply
just be transferring them to list and then specify comparators on the keys or
values that will do the job for us.

3.1.5.4 Deployment

The set up of the plugin is suppose to be simple and follow every eclipse plugin
deployment standards. The plugin is going to delivered in different ways.

• As a single deployable jar file that can be loaded on the eclipse platform
and add the plug-in on eclipse.

34 Design of the plugin

• As a zip file that contains all the project and can be imported in eclipse
as plug-in project. Therefore it could be run as an eclipse application that
includes the plug-in.

Together with the final report delivery an appendix will be included giving the
user all the instructions of installation and use.

Chapter 4

Implementation

The plugin that we have developed for our thesis passed through many im-
plementation steps. We will describe these steps in order to give better and
clearer understanding of the technologies we used, the plug-in development,
code structure and the components and libraries used to get to the final result.
This chapter focuses to make readers with advanced background in software
engineering and also other students that would like further develop it to fully
understand the development process.

4.1 Technology

The technologies we used for implementing our tool which more or less were
described in the design chapter of this thesis. In this chapter it will be described
from a more advanced software engineering aspect in this section.

Our model size metrics tool was implemented using Eclipse Plug-in Development
Environment (PDE), because it would contribute more to our goal by using
eclipse’s usable Integrated Development Environment (IDE) user interface (UI)
than creating our own from scratch. As programming language that is used is
Java.

36 Implementation

4.1.1 Eclipse plug-in development environment

Eclipse PDE will allow us to build our tool with all the advantages Java and
Eclipse IDE provides. Eclipse is an extensible IDE, everybody is able to extend
and customize its platform by creating a plug-in. Eclipse architecture for plugin
development is based in three components[EC08].

1. Eclipse Platform

2. Java Development Toolkit (JDT)

3. Plug-in Development Environment (PDE)

4.1.2 SWT and JFace

Eclipse PDE extends Eclipse abillities using “extensions”. These extensions use a
graphical widget toolkit named Standard Windows Toolkit (SWT). SWT is very
important component for plug-in development since we can create the graphics
that are going to be attached on the Eclipse platform by using it. SWT was
designed by eclipse because the existing Abstract Windows Toolkit (AWT) and
Swing did not perform well enough and did not provide native application look
and feel. SWT solved this problem with success and we can now enjoy high
performance on graphics on all of our plug-in extensions.

JFace is a high level framework that is functioning on top of SWT to make it
easy to use. It provides helpful classes for handling and implementing SWT UI
features that might be difficult to do without it[EC08].

4.2 Plug-in development

This is the section explaining the steps, procedures, plug-in components and
programming techniques that were used for the development of our plug-in.

In order to start we should present the initial steps needed to create our plug-in
in Eclipse PDE.

4.2 Plug-in development 37

4.2.1 Plug-in project creation

To create our plug-in project we first starding by creating a new plug-in project
in Eclipse. Eclipse wizard creates all the the basic plug-in project folders and
files which are:

• The “plugin.xml” file: Defines the extension aspects of the plug-in.

• The “META-INF” folder: Which contains the MANIFEST.MF file.

• The “MANIFEST.MF” file: Defined the runtime aspects of the plug-in.

• The Activator class: Represents the plug-in from a programmatic stand-
point.

• The “build.properties” file: Includes building configurations and runtime
information.

• The “src” folder: Where we should create our packages and implement our
classes.

The “plugin.xml” file is a very important file for the plug-in development in
eclipse and we will have closer look into it.

4.2.2 The “plugin.xml” file

The “plugin.xml” file is a file using xml format to specify plug-in extensions. It
can be edited as a plain XML file or by using Eclipse plug-in editor.

As we can see from the figure 4.1, we are using four type of view extensions for
our tool.

“MSMmeasurement”, “MSMInfo”, “MSMTable” and “Visualization”. The last
three mentioned include in their contents the setting “allowMultiple=true”, which
actually allows us to create multiple instances of these views in the IDE. Later
on in this chapter we are going to speak in details about the each view we im-
plemented. We can also see how all our extensions appear in Eclipse plug-in
editor in the figure 4.2.

38 Implementation

Figure 4.1: The views extensions in “plugin.xml” file as XML

4.2.3 Views

Views extend the “org.eclipse.ui.IViewPart” class. Views can be easily resized,
opened, closed and moved anywhere on the workbench by the user. They are
very useful for our tool since we can implement on them all the widgets needed
to perform actions, present and visualize model size metrics. In our plug-in we
have four views which we extending with the implementation of four classes,
one for each. The figure 4.3 show a class diagram of these four classes and how
they associate with eachother.

4.2 Plug-in development 39

Figure 4.2: All extensions of our “plugin.xml” file seen by using Eclipse plug-in
editor

4.2.3.1 MSMMeasurements view

From this view 4.4 we can track down all the model size metrics measurements
performed by our tool. According to the “Model Size Metrics” perspective that
we are using, it is placed on the middle left side of the workbench. Everytime
the users request a single or multiple model file measurement.

It checks if there are any available model file paths to be loaded from the
FilePath array. If there are, it uses the ModelParser class objects that get
as a parameter the filepath and access their model size metrics information us-
ing the SDMetrics XMI Parser, if there are not it shows and error message.
The ModelParser is actually a class created by us that uses the SDMetrics func-
tionalities to load and transfer all those important metrics into an appropriate
data structure for us to manipulate. The structure is based on six element
classes that we created which store the metrics of “class diagrams”,”activity
diagrams”,”packages”,“usecase diagrams”,”components” and ”other diagrams” in
their attributes. All these classes are then loaded into a greater class named
ModelMetrics as its attributes, meaning that for every ModelMetrics objects we
can have all the metrics of an XMI model file loaded ready for manipulation.
The view has a level two tree and a tree viewer. The names of a single or multi-
ple model files measured are displayed as tree nodes, and their children are the
visualizations created based on those measurements. Whenever a new measure-
ment has been performed it creates an instance of the view “MSMInfo”. Each
instance has a special ID used for its identification. The metrics data structures
created by the measurements are then passed to that “MSMInfo” instance for
further processing.

40 Implementation

Figure 4.3: Plug-in views class diagram and associations

4.2.3.2 MSMInfo view

In order to explain the functionality of the “MSMInfo” view 4.5, we must first
separate into to parts. The first part that is located at the top of the view and
the second part that is located at the bottom.

• The first part provides file and UML XMI related information and aswell
the functionalities of loading meta-ckass metrics by providing a filter file
in CSV format and metric exportation to files in CSV and PDF format.

• The second part at the bottom of the view allows us to specify the set-
tings for the creation of visualizations. There is combobox with the label
“Visualization Type” from which the user should select the visualization
type he would like to create and be displayed. Whenever a choice is made
the table labeled “Visualization Settings” provides the user with all the
available settings for each visualization type. The visualization settings
for example of a table view visualization is a filter combobox that we can
choose the type of metrics we want to display.

4.2 Plug-in development 41

Figure 4.4: MSMMeasurements view on the right side of the project explorer

4.2.3.3 MSMTable view

In this view 4.6 we can see in table format all the metrics loaded from the XMI
files. This is very important since we can look more into details that we could
not easily see in the visualizations.

The table has the sorting feature by using a class name SWTTableSorter that
uses bubble sort algorithm and it as well supports srolling to make it easy for
user to explore through all of its items. On the top left corner of the view
there is combobox that is visable only if we have performed a multiple model
measurement, from this combobox you can specify the model file you wish see
its metrics data. The view uses the Grid Layout for presenting the widgets on its
parent composite. The table column names for this specific metric are created on
the table and there it parsing process happening through the “ModelMetrics”
class to get the data which are then added as items on the table. We can
have many instances of this view and each instance has an ID attribute for
identification.

4.2.3.4 Visualization view

This is the view where the visualizations are drawn with the use of the JFreeChart
library. We could not add widgets that might helped us to perform more actions

42 Implementation

Figure 4.5: MSMInfo view screenshot

inside this view, because the JFreeChart library was implemented only for AWT
environments and since Eclipse PDE only supports SWT, there is a constrain
that allows JFreeChart to be drawn on SWT composites that only use FillLay-
out. That layout actually covers the whole space of the parent composite, giving
us no possibility to add any more widgets on it. For that reason and since we
wanted to be able to export visualizations from this view. We had to add that
feature on the action bar of the view that would support visualization export
when clicked. The action appears when the user presses the down arrow that
appears on the top right corner of each visualization view and then chooses the
action “Export Visualization”.

In figure 4.7 we can see a scatterplot that was created on the visualization view,
and on the top right cornet we highlight the action for exporting it.

In figure 4.8 we present two histogram visualizations drawn in two different in-
stances of the visualization view. We can see how cross-workbench comparison
seems like and how multi model file metrics can be drawn in a single visualiza-
tion. In order to understand which model file is which, in this histogram we just
have bars with different colors for each one.

4.2 Plug-in development 43

Figure 4.6: MSMTable view screenshot

4.2.4 Pop Up Menu

The Eclipse PDE also allow us to use and adjust all the Eclipse already created
useful components, such as editors, project explorers and many others. In our
care we added a pop up menu extension on the eclipse’s package manager so
we can improve usability for our users. And only allow supported files to be
measured by the use of the pop-up menu filter setting. The pop up action is
named as “Measure”.

The figure 4.9 shows how the new pop up menu appears when we right click on
one or multiple supported files.

4.2.5 Perspective

Most plug-ins require a perspective so the user can automaticallity load, order
and adjust all the components inside the IDE. A perspective is also a plug-in
extension saying the IDE what components to load and where to place them.
These actions are done programmatically by the perspective class that imple-
ments the interface “IPerspectiveFactory”. For our plug-in we also include a
perspective to increase the usability.

Our perspective consists of:

• The project explorer: Placed on the left side of the workbench.

44 Implementation

Figure 4.7: Scatterplot drew inside “Visualization” view and export visualiza-
tion action highlight

• MSMMeasurements: Placed on the right side of the project explorer.

• A placeholder: Covering the half right part of the workbench in which
the”MSMInfo”, “MSMTable” and “Visualizations” instances can stack on.

4.3 Libraries and components

In this section we will present the libraries and components that helped us to
create our eclipse plug-in.

For the development of the Model Size Metrics plug-in we have used the following
libraries and component:

• SDMetrics - Open source application for parsing XMI Model Metrics Files.

• JFreeChart - Chart creation java library using AWT and image exporting.

• iText - Library for PDF creation used in reporting.

4.3 Libraries and components 45

Figure 4.8: Two visualization view instances for cross-workbench comparison
of metrics

• Window Builder Editor - Eclipse Plug-in for easy creation of SWT GUIs.

4.3.1 SDMetrics open core

The SDMetrics open code V2.3 we have used in this project is actually a set of
java classes that comprise of[sdm].

1. The configurable XMI parser for XMI1.0/1.1/1.2/2.0/2.1 input files.

2. The metrics engine to calculate the user-defined design metrics.

3. The rule engine to check the user-defined design rules.

For our case we have used the XMI parser and the metrics engine to export
the data from the model files. Next the data is manipulated by our plug-in
functionalities.

The open core version comes as an extra to actual SDMetrics application which
is a standalone application for model size metrics. It supports metrics and

46 Implementation

Figure 4.9: Pop up menu item for measuring new single (left) and multiple
(right) model files

visualizations but not in the same way our plug-in implements them, since it
does not support multiple model files metrics to be loaded and compared.

4.3.2 JFreeChar

JFreeChart 4.10 is a free java library for chart creation. It was used by our
Model Size Metrics Visualization View to present model metrics data into charts.
JFreeChart supports many types of charts including scatter plots, pie charts,
line charts, histograms, etc. It is a very powerful tool for chart creations as it
is easy to use, free, efficient and rich in utilities. It also exists in open source
version for further development. It was created to work on AWT graphics library
but there is further work done to support SWT aswell[Gil08].

4.3.3 iText

iText is free library for creation and manipulation of PDF files. It is available
in Java and in C#. We have used iText in our plug-in to create PDF files for
reporting matters. The exports that our plug-in supports can be created in CSV
and PDF format. For CSV plain text is used and no library was required but for
PDF, iText was the solution. Inside the PDF files it enables table support and

4.3 Libraries and components 47

Figure 4.10: JFreeChart samples

landscape page allignment which both suits perfect for metrics reporting[ite].

4.3.4 Window Builder Editor

Window Builder Editor 4.11 is an eclipse plug-in for easy SWT graphical GUI
design. It has helped us to create the GUIs in the views of our plug-in. It
supports all SWT widgets and swings to design GUIs graphically and most
coding on difficult cases such as positioning and layouts is carried out by it.
Windows Builder Editor is free and it can be download through eclipse’s Install
New Software feature.

Its interface appearance can be seen in the following figure[wbe].

48 Implementation

Figure 4.11: Window builder editor

Chapter 5

Evaluation

This chapter tries to evaluate our work and the tool that we have developed.
We will start by passing through some different testing stages and present our
findings. Then we will back to the analysis chapter take a look at the require-
ments we defined back then and try to see which of these requirements have
been fully fulfilled, partially fulfilled or have not been accomplished. We will
try to be as much critical as we can with our results since this will help us to
improve and become better software engineers!

5.1 Testing stages

5.1.1 Unit testing

Throughout the phase of implementation we had to test our code in order to
find mistakes and solve them. The unit testing was being done mostly in an
agile way during the development. The technique we used for testing different
units of the source code was by console outputs. Whenever we wanted to be sure
that a method returns or an attribute has correct values, we were outputting
those values and compare them with those we would expect. If the expectations
were not correct then we were looking in the code for errors to fix.

50 Evaluation

One example of unit test that we performed is that we wanted to make sure
that the pop up action “Measure” gets the correct file paths from the model
files. We first created a unit test 5.1 inside the code which stores the filepaths
in an “ArrayList” of “String” values and then we printed it out at the console of
eclipse in order to see the results and check if everything is appropriate.

Figure 5.1: Unit test code for correct model file paths.

Now we had to try perform the “Measure” 5.2 action on some files which we
knew their file paths and compare them with the ones that would appear at the
console.

Figure 5.2: Unit test “Measure” action

Finally we get the results from the console output and in this test case the
results seem fine 5.3. But during the development we were not getting the
correct file paths because we were not calling the correct methods “getRawLo-
cation().toOSString()” of the “IFile” object. This is a unit test example that
was actually very useful to us.

5.1 Testing stages 51

Figure 5.3: Unit test console output

5.1.2 Functional testing

Functional testing is a form of quality assurance (QA) process. Since our tool is
mostly GUI based functional testing is important for us in order to prove that
it perform the way it is supposed to do. We will go through two different test
cases and see if the results are appropriate.

The first case is based on the question if the metrics measured from a model file
are correctly presented in a histogram chart that is being created by “JFreeChart”
library. To do that, we will first see a table view in which we can see the metrics
measured one by one and a histogram to see if the metrics are presented there
in a good way.

In figure 5.4 we can see the table view of class metrics of the model file “A1.mdxml”.

Figure 5.4: Functional testing class metrics table view

From the table view 5.5 we focus on the number of attributes (NumAttr) metrics
of different classes. We have sorted it in order to see only the classes that have

52 Evaluation

attributes. If we count all those number we find out that the total number of
attributes of all the classes existing in the model file “A1.mdxml” is equal to
thirty one (31). Now if we see the histogram chart of class metrics we will find
out that it shows the same number.

Figure 5.5: Functional testing class metrics histogram

So we can now say that this functional test case is passed.

In the next functional test case we will try to prove that the exportation of
metrics functions as it should be. The way we are going to do that, is by trying
to export the class metrics into a CSV file and see if the are actually exported
correctly by comparing with the metrics we can see from the “MSMTable” view.

So in order to start we will use the “Export Metrics” button located in the
“MSMInfo” view as we can see in figure 5.6.

Figure 5.6: Functional testing export metrics in CSV format

If we now compare the metrics from the table with the metrics exported in the

5.1 Testing stages 53

CSV we can easily see that both match 5.7. So in that case we can say that this
functional test case has passed.

Figure 5.7: Functional testing export metrics CSV file

5.1.3 Compatibility evaluation

For this section we have chosen to test our plug-in into two different computers
running different operating systems.

The first computer’s specifications were:

• Processor: Intel R© CoreTM i3 CPU M 330 @ 2.13GHz

• RAM: 3.5 GB

• OS: Ubuntu Linux 12.04 64-bit

• GUI: Gnome 3.4.2

• Eclipse: Indigo 3.7.2

The plug-in run as it was suppose to do. This is quite normal for the reason that
the plug-in was developed on this machine from the start. Because if something
was not working as it was suppose to do during the agile development phase, it
should have been fixed. So this first compatibility test case is passed.

The second computer’s specifications were:

54 Evaluation

• Processor: Intel R© CoreTM i7-3770 @ 3.40 GHz

• RAM: 8.0 GB

• OS: Windows 7 Enterprise 64-bit

• Eclipse: Juno 4.2.1

The plug-in and its functionalities worked as they were suppose to do. But
there were some differences in the way SWT widgets looked live and some minor
differences in the way the perspective was placing the views inside the IDE. Since
we were expecting SWT to be completelly native and work the exact same way
in all OS as it was stated in its specifications. We can understand that this is
not exacly true.

So the second compatibility test is passed partially.

5.2 Requirements evaluation

Now we will have a look to requirements we set at the analysis chapter and
evaluate which of them have been fulfilled and which not.

• Environment requirements: The requirement we defined concerning the
environment which is the implementation of an eclipse plug-in performing
model size metrics has been fulfilled.

• Tool interaction requirements:

1. Have a project explorer to import and mentain model files has been ful-
filled.

2. Measurements and visualization viewer where we keep track of the mea-
surements and visualizations created. And allow the easy navigation be-
tween them has been fulfilled.

3. View components flexibilty has been fullfilled since Eclipse PDE supports
that.

4. Drag and drop (DND) support has not been accomplished.

5.2 Requirements evaluation 55

• File import requirements:

1. Support of different XMI and UML exists.

2. Support for custom selection of meta-class metrics from the user is also
fulfilled.

• File export requirements:

1. Support for CSV and PDF exportation of metrics is fulfilled.

2. Support for pixel and vector based image exportation is fulfilled.

3. Support for printing visualization from the GUI is not fulfilled.

• Model size metrics requirements:

1. Class metrics can be measured.

2. Use case metrics can be measured.

3. User specified meta-class metrics can be measured.

• Visualization requirements:

1. Table views for metrics can be visualized.

2. Single and multiple model file histograms for metrics can be visualized.

3. Single and multiple model file scatterplots for metrics can be visualized.

4. Single and multiple model file bubble charts for metrics can be visualized.

5. Addition of the metrics of different model files for visualizations has not
been accomplished.

56 Evaluation

Chapter 6

Conclusion

In this thesis we have managed to implement a model size metrics eclipse plug-
in that can import and measure model files created by different UML modeling
tools. We successfuly achieved to manipulate these metrics and visualize them in
different type of charts. The thesis helped us to better learn Java programming
language and how to implement Eclipse plug-ins.

He had to deal with many different obstacles in every phase of the tool develop-
ment. Those obstacles acquired a great deal of knowledge in the field of software
engineering, and specially in Eclipse plug-in development.

Usability was very important for us since students and researches will use our
tool. We believe we did a great effort in making our tool as usable as possible.

There can be improvements in our piece of software and we hope that more
people will try to get into it and make it better.

We definetely believe that this thesis contributed a lot in order to become great
software engineers!

58 Conclusion

Appendix A

Installation Manual

A.1 Installation Methods

In this document we will give instruction for installing the Model Size Met-
rics(MSM) Eclipse plug-in that we are developing for our Master Thesis.

There are three ways for installing plug-ins in Eclipse software delevopment
platform and we will explain them using helpful screenshots in the following
sections.

A.1.1 Install as Project Repository

Let us say that we just run our Eclipse platform on an empty workspace as
shown in the next figure.

60 Installation Manual

Figure A.1: Eclipse with an empty workspace

In the next step we right click on “Project Explorer” tab and from the pop-up
menu choose “Import”.

A.1 Installation Methods 61

Figure A.2: Import on Project Explorer

Afterwards on the Import window that pop’s up under the “General” category
we select as import source the “Existing Projects into Workspace” and click
“Next”.

Figure A.3: Import Existring Projects into Workspace

62 Installation Manual

Then we click browse and select as root directory our plug-in project which is
located in our svn repository under the path “Thesis/Application/MSE_Thesis”
and click “Ok”.

Figure A.4: Select Plug-in Project from svn Repository

After choosing our project the import window should be looking like the one
that follows and we just click have to click “Finish”.

A.1 Installation Methods 63

Figure A.5: Finish Plug-in Project Import

Now that we have imported the plug-in project on our workspace we can simply
run it by right clicking on the project and then choose “Run As -> Eclipse
Application”.

64 Installation Manual

Figure A.6: Run As Eclipse Application

The plug-in should be now be running under the new eclipse platform that
poped-up. In order to perform model size metrics now we should use the “Project
Explorer” which now acts as file explorer for our plug-in.

We must now right click on the “Project Explorer” and select “New -> Project”.
We need this new project to import our files and perform Model Size Metrics
on them.

A.1 Installation Methods 65

Figure A.7: Create New Project

We should now create a new project under the “General” category as shows in
the next Figure. Name it “Model Files” and click “Finish”.

66 Installation Manual

Figure A.8: Create New Project Menu

Now that the new project is ready we must import the files in it to perform
Model Size Metrics. Right Click on the Project and then click Import.

A.1 Installation Methods 67

Figure A.9: Import Files on the Project

Then from the General Category choose “File System” and click next. After-
wards browse from the directory and point to the Model Size Metrics Test Files
directory.

A.1.2 Install Eclipse Plug-in manually

This way to install plug-ins is not recommended for plug-ins that are in the devel-
opment phase. It is rather more usable for finished and ready to use plug-ins. In
order to install an eclipse plug-in manually you need to have the plug-in project
extracted into a “jar” file. Then the only thing that you should do is to place the
jar file in the “dropins” folder which is located in the eclipse installation path.
In my case under linux OS this folder is located at “/usr/share/eclipse/dropins”.
When this is done it will automatically load the plug-in every time you will run
eclipse!

68 Installation Manual

A.1.3 Install from Online Repository

This is the simplest way to install plug-ins just by pointing new software wizard
to the online plug-in repository.

This method is not applicable in our case since we don’t have an online eclipse
plug-in repository available!

Bibliography

[CK94] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. 1994.

[DF11] Jose Azevedo Jose Joao Peixoto Pedro Faria Pedro Silva Daniela Fonte,
Ismael Vilas Boas. Modeling languages: metrics and assessing tools.
2011.

[EC08] Dan Rubel Eric Clayberg. eclipse plug-ins. Pearson Education, Inc,
Boston, MA, USA, 2008.

[Gil08] David Gilbert. The JFreeChart Class Library. Object Refinery Limited,
2008.

[ite] itext pdf.

[Mar98] Michele Marchesi. Ooa metrics for the unified modeling language. 1998.

[sdm] Sdmetrics open source.

[spa] Sparx enterprise architect.

[wbe] Windows builder editor.

	Abstract
	Preface
	Acknowledgements
	1 Background
	1.1 Problem statement
	1.2 Problem justification
	1.3 Related work
	1.3.1 Class metrics
	1.3.2 Use case metrics
	1.3.3 SDMetrics
	1.3.4 Sparx Enterprise Architect

	1.4 Background outcome
	1.5 Outline

	2 Analysis
	2.1 Requirements
	2.1.1 Environment requirements
	2.1.2 Tool interaction requirements
	2.1.3 File import requirements
	2.1.4 File export requirements
	2.1.5 Model size metrics requirements
	2.1.6 Visualizations requirements
	2.1.7 User requirements

	2.2 User scenarios
	2.2.1 Student scenario
	2.2.2 Researcher scenario

	2.3 Use cases
	2.3.1 Use cases presentation
	2.3.2 Student use case diagram
	2.3.3 Researcher use case diagram

	2.4 Information model

	3 Design of the plugin
	3.1 Design technologies
	3.1.1 Eclipse PDE
	3.1.2 Extensions
	3.1.3 SWT and layouts
	3.1.4 User interface
	3.1.5 Architecture

	4 Implementation
	4.1 Technology
	4.1.1 Eclipse plug-in development environment
	4.1.2 SWT and JFace

	4.2 Plug-in development
	4.2.1 Plug-in project creation
	4.2.2 The ``plugin.xml'' file
	4.2.3 Views
	4.2.4 Pop Up Menu
	4.2.5 Perspective

	4.3 Libraries and components
	4.3.1 SDMetrics open core
	4.3.2 JFreeChar
	4.3.3 iText
	4.3.4 Window Builder Editor

	5 Evaluation
	5.1 Testing stages
	5.1.1 Unit testing
	5.1.2 Functional testing
	5.1.3 Compatibility evaluation

	5.2 Requirements evaluation

	6 Conclusion
	A Installation Manual
	A.1 Installation Methods
	A.1.1 Install as Project Repository
	A.1.2 Install Eclipse Plug-in manually
	A.1.3 Install from Online Repository

	Bibliography

