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Summary

Multiple sclerosis is a complex disease that can affect all parts of the brain.
The symptoms are varying from patient to patient and the disease is difficult to
diagnose. Changes in the default mode network has been observed in patients
with multiple sclerosis.
In this thesis resting state networks are detected by using the infinite relation
model. SVM and KNN is used to classify subjects into two groups: A healthy
group and a group of patients with multiple sclerosis. The elements in the η
(link density) matrix are used as feature vector for classification. In the end the
correlation between link densities and the progression in the disease is evaluated.
The participants in the resting state fMRI study were 30 healthy subjects and
42 patients with multiple sclerosis. The two groups were matching in sex and
gender.
The highest mean classification rate was 0.65 when using SVM and 0.61 for
KNN. A large variation between the runs were found. For one run the classifi-
cation rate was 0.73 when using SVM and 0.66 when using KNN. These results
are comparable to classification results represented in the literature. 32 com-
munities were detected by using the infinite relation model, and some of the
communities were comparable with the default mode network, primary motor
network, and the frontal network presented in the. One community seems to be
comparable with both the primary visual and the extra-striate visual network.
No significant correlation between EDSS and link density was found.
The results show that commonly represented resting state networks in the lit-
erature can be detected when using the infinite relation model. The best classi-
fication rates for using SVM and KNN were comparable with previous results,
but the large variability in the classification rate is not optimal.
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Resumé

Multipel sclerose er en komplex sygdom, der kan påvirke alle dele af hjernen.
Symptomer varierer fra patient til patient, og sygdommen er svær at diagno-
sticere. Ændringer i default mode netværket er blevet observeret hos patienter
med multipel sclerose.

I denne afhandling anvende infinite relation model til at detektere resting state
netværk. SVM og KNN anvendes til at klassificere test personer, således at de op-
deles i to grupper med henholdsvis raske og syge. Elementerne i η (link densitet)
matricen anvendes som feature vector til brug i klassifikationen. Korrelationen
mellem link densiteter og udviklingen af multipel sclerose bliver evalueret.

Resting state fMRI blev foretage på en gruppe testpersoner bestående af 30
raske og 42 patienter med multipel sclerose. De grupper var sammenlignelig
i forhold til køn og alder. Den bedste middel klassifikationsrate var på 0.65
for SVM og på 0.61 for KNN. Der blev observeret en stor variation imellem
de enkelte runs. Den bedste klassifikationsrate for et enkelt run var på 0.73 for
SVM og på 0.66 for KNN. Disse resultater er sammenlignelige med med lignende
klassifikationsresultater fra literaturen. 32 communities blev detekteret ved at
bruge infinite relation model. Nogle af disse communities var sammenlignelige
med default mode netværket, primary motor netværk samt frontalnetværket,
som er beskrevet i litteraturen. En enkelt community var sammenlignelig med
både det primary visuelle og the extra-striate visuelle netværk. Ingen significant
korrelation blev fundet mellem EDSS og link densiteten.

Resultaterne viser at ofte beskrevne resting state netværk fra literaturen kan
detekteres med brug af infinite relation model. Den bedste klassifikationsrate
for anvendelsen af SVM og KNN var sammenlignelig tidligere resultater, men
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den store variation mellem klassifikationsraterne for enkelte runs er ikke optimal.
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Chapter 1

Introduction

1.1 The central nervous system

The central nervous system (CNS) is part of the nervous system and consists of
the brain and the spinal cord. The brain is a complex network, which consists
of different regions with specific tasks and functions. The brain can be divided
into the cerebrum, cerebellum, diencephalon and the brainstem. Cerebrum is
the largest part of the brain, and it consists of a left and a right hemisphere.
Each hemisphere is divided into the frontal lobe, parietal lobe, occipital lobe and
temporal lobe, see Figure 1.1. The primary motor cortex is a part of the pos-
terior frontal lobe, and the primary sensory area is a part of the post central gyri.

The cerebral cortex is gray matter, which mainly consist of neuronal cell bodies.
Small areas of gray matter are found deep inside the brain and these clusters
are called nuclei. The white matter is the central part of the cerebrum, between
the cortex and the nuclei. It mainly contains myelinated axons, which connect
different areas in the cerebral cortex with each other and connect the cerebral
cortex with other parts in the CNS [36].
There are connections between neurons inside the regions but also connections
between neurons in different regions [45]. The functions in the frontal lobe are
problem solving, executive function, motor movements and thinking. In the
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Figure 1.1: The different areas of the brain are shown. The figure is copied
from [1].

parietal lobe the function is visuospatial processing. The functions in the tem-
poral lobe is processing auditory and language. The functions in the occipital
lobe is visual processing. The functions in cerebellum is controlling motor move-
ments [36]. The brain can be divided into different areas. In this thesis the brain
was divided into 116 regions covered in Automated Anatomical Labeling (AAL)
[44]. The AAL will be described in Chapter 3.3.

The brain has a very high energy demand. During rest about 17 % of the cardiac
output goes to the brain. This is a very large part because the brain only makes
up about 2 % of the body weight. About 25 % of the oxygen carried in the
blood are consumed by the resting brain. Because the energy reserves are very
small and the anaerobic capacity in the brain tissue is very limited, continuous
and adequate blood supply to the brain is necessary to sustain the functions[36].

1.2 Multiple sclerosis

Multiple Sclerosis (MS) is a degenerative disease in the CNS and is character-
ized by acute focal inflammation, demyelination and loss of axons, and chronic
multifocal plaques will occur [9]. MS affects women two times as often as men
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and is often diagnosed in young people between the ages of 20 and 40. In the
industrialized societies it is the most common cause of neurological disability
in young adults [48]. The cause of MS is unknown, but the environment and
genetic predisposition influence the susceptibility to the disease [43] [9].
The neurological symptoms depend on the location and size of the focal lesion
and vary from patient to patient. Some of the symptoms are spasticity, cogni-
tive impairment, visual disruptions and weakness in the extremities [9].
In the early stages of MS the relapsing-remitting pattern is often seen. This
means that the patient loses function, for example vision or motor function but
the function recovers during remission. After 10-15 years with MS approxi-
mately 50 % of the patients has reached a more chronic stage. In this stage the
neurological deficits occur cumulative without remission [48] [43].
Myelin is essential for axonal signal conduction. Demyelination and degenera-
tion of axons influences the transmission of the neuronal signal along cortico-
cortical and cortico-subcortial connections by delay or disruption. This can
induce the neuronal synchronization and functional connection between regions
in the brain [48] [43].
Plaques in the white matter have been shown with structural Magnetic Reso-
nance Imaging (MRI). Modern functional Magnetic Resonance Imaging (fMRI)
and pathological studies have shown widespread demyelination in the white mat-
ter of the brain and spinal cord in patients with MS. These findings are done in
MS patients before it is possible to detect plaques in the same area with struc-
tural MRI. This indicates that the demyelization affect the brains functional
connectivity [16]. To classify the disability in patients with multiple sclerosis
the Expanded Disability Status Score (EDSS)[28] is used. The score range from
0 - 10. Where 0 is when a normal neurological examination are done and 10 is
when the person is death due to MS. The score can be used to see the progres-
sion in the disability for a patient with MS, but it can also be used to group
patients with MS when clinical trials are done.

1.3 Functional magnetic resonance imaging

Hydrogen atom nuclei in the body are slightly magnetic and magnetic properties
are used when making MRI. A magnetic field B0 is induced to the subject in the
scanner, which partially aligns the nuclei. By inducing radio waves orthogonal
to B0 the magnetic field is rotated. Two different relaxing time scales are used.
T1 is he relaxation time for the longitudinal magnetization, which is the time
it takes the magnetic field B0 to return to equilibrium after the radio waves
are induced. The transversal relaxation time T2, is the time it takes to loss the
induced magnetic field. This is due to the difference in spin frequency. The
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transverse relaxation time depend on both the phase difference measured in T2
and the inhomogeneity in the magnetic field. T ∗2 is the time constant describing
how fast the dephasing happens caused by the inhomogeneity [31].
In fMRI the Blood Oxygenation Level Depend (BOLD) contrast is measured.
It is an indirect measure of the neural activity [37] .
The energy demand is increased during neuronal activity in the brain, which
results in an increased hemodynamic response. When the supply of oxygenated
hemoglobin in the blood is larger than the demand of oxygen, the concentra-
tion of oxygenated hemoglobin increases and the concentration of deoxygenated
hemoglobin decrease [33]. Deoxyhemoglobin is paramagnetic and distort the
magnetic field. Increased Inhomogeneity in the magnetic field, caused by de-
oxygenated hemoglobin, will make the dephasing faster. The measured signal is
proportional to the transversal net magnetization, so an increased inhomogene-
ity in the magnetic field will attenuate the MRI signal [31].

1.4 Resting state networks

A Resting State Network (RSN) is defined as anatomically separated brain re-
gions, which have a high level of functional connectivity during rest[45]. Known
functional networks are represented in most of the RSNs.
In the literature different methods have been used when analyzing resting state
rs-fMRI data, with the purpose of detecting brain regions with high connectiv-
ity. Seed-based correlation and Independent Component Analysis (ICA) have
been the most common methods in fMRI studies[50] but also clustering based
analysis have been used [45]. The first method used was seed based analysis.
With this method connectivity between the region of interest and the other
voxels have been evaluated. When using ICA and clustering based analysis the
connectivity between all the regions are analysed. With ICA the independents
components must be assigned to known networks [50].
The Default Mode Network (DMN) was the first detected RSN. It was first
identified from PET and fMRI data by Raichle et al. [40] in 2001. They found
decreased oxygen extraction fraction compared to baseline in DMN regions in
the brain during specific tasks. In 2003 Greicius et al. [22] were the first to
identify DMN using fMRI by showing significant connectivity in the areas cor-
responding to DMN.
With task based fMRI it has been shown, that the connectivity in the DMN is
decreased compared to resting state. This have not been seen in other reported
RSN [45]. The functional meaning of the DMN is related to remembering the
past, envisioning the future and mind wandering[7] .
Abnormal activity in the DMN have been shown in patients with Alzheimer’s
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disease [23] and patients with MS [6].
The DMN during resting state have been reported by Damoiseaux et al. [11],
Deluca et al. [12], Pizoli et al. [38] and Van Dijk et al. [47], Beckmann et al.
[4] using ICA. The DMN has been confirmed by seed based methods (Greicius
et al. [22], Fox et al. [19] and Raichle et al. [39]).
Formations of significant functionally linked brain regions during resting state
have been reported from group resting state studies. The regions are referred
to as resting state networks. RSN have been found in studies made by Raichle
et al. [39], Damoiseaux et al. [11], Greicius et al. [22], Salvador et al. [41],
Beckmann et al. [4], Fox et al. [19], Vandijk et al. [47], Laird et al. [29], van
den Heuvel et al. [46], Deluca et al. [12] and Pizoli et al. [38]. An overview over
these studies is found in Table A.1 and A.2 in Appendix A, where the applied
method, the detected resting state networks, how the RSN are described and the
material for the experiment are listed. An overlap between the reported RSNs
are seen in the literature even though the studies have used different analysis
methods [45].
Van den Heuvel et al. [45] have described eight consistently reported resting
state networks: primary motor, primary visual, insular-temporal/anterior cin-
gulate cortex (ACC), left parietal-frontal, right parietal-frontal, default mode
network and frontal. A graphical illustration of the eight RSN in the brain is
shown in Figure 1.2.

Figure 1.2: Eight resting state networks, which are consistently reported in
the literature. The figyre is copied from[45].
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1.5 Motivation

MS is a complex disease that can affect all parts of the brain. The symp-
toms varies from patient to patient. It is a difficult and time consuming job to
diagnose a patient with MS using the current diagnosis methods. Early diagno-
sis makes it possible to start treatment of the disease at an earlier stage, and
thereby improve the life quality of the patient. The current methods for diagno-
sis includes: Clinical examination, MRI, lumbar puncture and blood tests [32].
More knowledge about how the disease affects the brain is required in order to
optimize the diagnosis and treatment.
Resting state fMRI studies [6] have shown abnormal activity in the default mode
network of MS patients. These results indicates that further investigations of
the DMN of patients with MS and healthy subjects can lead to better under-
standing of how MS affects the communication pattern in the human brain.
The DMN and other RSNs can be detected using the IRM. A method that
classifies subjects into patients with MS and healthy subjects could be useful
for speeding up the diagnosis process. It is interesting to investigate if the link
density data detected by the IRM could be used as a feature vector for classifi-
cation of subjects.

1.6 This thesis

This thesis seeks to detect RSNs with the IRM and to investigate classification
of subjects using link density between communities as a feature vector. The
classification seeks to group subjects into two groups: Healthy subjects and
subjects with MS.

Chapter 2: The theoretical background of the IRM is described, and it is com-
pared with other blockmodels. Evaluation criteria and classification methods
are also described in this chapter.

Chapter 3: Describes the concept of rs-fMRI, the participants and the acquisi-
tion and pre-processing of the experimental data. Furthermore the method for
making the graph of a brain network is described.

Chapter 4: The detected community structures are presented as a result of in-
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ference with the IRM based on correlation. The subjects are classified using the
link density between communities as feature vector and correlation with EDSS
is estimated.

Chapter 5: The obtained results are discussed and evaluated i comparison with
results from the literature.
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Chapter 2

Theory

2.1 Networks models

Networks can be described as a system which contain nodes that are linked. The
brain is a complex network which consist of regions with different functions. In-
formation are continuously shared between different regions in the brain [45].
Complex networks can also be found in sociology, biology and computer science
[17]. Graph theory can be used to examine the properties of complex networks
[45].
A network can be represented by a graph G(N,E), where N is the nodes and E is
the connection between two nodes, defined as edges or links. In graph theory the
adjacency matrix, A represents the connections in the network. The adjacency
matrix is binary, and it has nodes in the rows and columns. Ai,j = 1 if there is
a link between node i and j and Ai,j = 0 if there are no link between the nodes
[42] .
Real networks contain patterns of connections between nodes. These patterns
can be defined as community structures, which are a relevant feature for graphs
representing real systems. Nodes are organized in communities, where the num-
ber of links within a community is high and the number of links between com-
munities is low [17].
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A network could describe the connection between airports in USA. The nodes
in the graph will represent the airports in USA and a link between two airports
is defined if there is an airline route between the two airports. This is an undi-
rected graph. The graph is directed if an airline is flying between airport a and
b, but no airline flies between b and a. When links are defined as ones in the ad-
jacency matrix the graph is unweighted. For a weighted graph the link between
two airports will define that there is a flight between the two airports, and at
the same time tells the number of scheduled flights between the two airports.
In situations with a weighted graph the adjacency matrix will not be binary.
In this thesis rs-fMRI data is analyzed and the graphs are undirected and un-
weighted.

2.1.1 Stochastic blockmodel

The optimal partition of nodes into blocks has been a focus area in the litera-
ture the last 40 years [21]. This is known as blockmodeling or as detection of
community structures.

A stochastic blockmodel is a generative model, where structures in the network
are detected[21]. It is also known as a relation model [34]. In a simple stochastic
blockmodel the number of communities is predefined as K, and each node is
assigned to one of the communities. The links are undirected and independent.
The link probability is a function of the community assignment of the nodes. η
is a matrix with size K x K where each element is the link probability between
two communities, and it is a function of community assignment,. The link
probability between two nodes are given by the link probability between the
two communities the nodes are assigned to. Z is a matrix of size K x N and
it tells which community each of the nodes is assigned to. The column zi in Z
indicates which community the i’th node belong to. A is the adjacency matrix,
where links between the nodes in the network is defined. A is a symmetric NxN,
undirected and unweighted. The diagonal elements are zero because self-links
does not have any interest [26] [42]. In the adjacency matrix the nodes are
reordered, so the blocks are shown down the diagonal and the off diagonal is
more sparse compared to the diagonal [21].
The probability of the network given the parameters Z and η is known as the
likelihood for the network, and is defined as [42]

p(A | θ) =
∏
i,j

p(Ai,j |zi, zj , η) (2.1)
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where θ is the parameters zi, zj and η.
The parameters zi, zj and η that maximizes the likelihood, can be determined
by integration [8].

2.1.1.1 Bayesian stochastic blockmodel

Bayes theorem is given by [8]

p(Y | X) =
p(X | Y )p(Y )

p(X)
(2.2)

where p(Y | X) is the posterior probability distribution, p(X | Y ) is the like-
lihood function, p(Y) is the prior, and the denominator is the normalization
constant.
Inference is in Bayesian modelling described by probabilities. In this way the
degree of certainty about the parameters is quantified. Because of the lack of
knowledge about the parameters, they are modelled as random variables. The
parameters are assigned a prior probability distribution. This represents the
certainty of the model parameters before observing any data. Parameters of the
prior distribution are named hyper parameters [42].
In the Bayesian stochastic blockmodel the likelihood function is the same as the
one in the stochastic blockmodel (2.1).
The conditional distribution of the parameters given the observed data, known
as the posterior, see (2.3), is specified in the Bayesian model when the likelihood
and the prior are both known [42].

p(zi, zj , η | A) = p(A | zi, zj , η) · p(η) · p(Z) (2.3)

The likelihood function p(A | zi, zj , η) defines the link probability between
nodes, and it is defined as a Bernoulli distribution [42]. The Bernoulli distribu-
tion is a special case of the binominal distribution, but with a biased probability.
The Bernoulli distribution is given by [8]

p(Ai,j | zi, zj , η) = Bernoulli(Ai,j | ziηzj)
= (ziηzj)

Ai,j (1− ziηzj)1−Ai,j (2.4)
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p(η), in (2.3) is the prior for the parameter η. It tells something about the
probability of having a link between two nodes assigned to communities. The
prior distribution for the parameter η is the Beta distribution for each pair of
communities [42].

p(ηl,m) = Beta(a, b)

=
1

B(a, b)
(ηa−1l,m )(1− ηb−1l,m ) (2.5)

a and b are the hyper parameters for η. ηl,m is the link probability between
community l and m. When a and b both are set to 1, Beta(1,1) is a uniform
distribution [8].

The prior for the parameter Z, p(Z), in (2.3), tells something about how probable
it is for a given node to be assigned to all of the K communities. The prior is the
Dirichlet distribution, where the probability of being assigned to a community
varies from community to community [42].

p(Z) = Dirichlet(α). (2.6)

α is the hyper parameter for Z.

2.1.1.2 Infinite Bayesian stochastic blockmodel

Until now the models have been based on a finite number of communities. In real
complex networks the number of communities are unknown. Thus an infinite
model is required to analyze these networks. If the number of communities are
larger than the number of nodes, some of the communities will be empty. So
in reality the number of communities can maximally be equal to the number
of nodes. During the process where nodes are assigned to communities, the
number of communities are infinite, but when all the nodes are assigned to a
community the number of communities is finite [42].
To make the stochastic blockmodel infinite the prior p(Z) is chosen to be the
Chinese Restaurant Process (CRP)

p(Z) = CRP (α) (2.7)
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α is the hyper parameter for Z. In CRP the size of a community affects the prob-
ability for assigning a new node to this community. This means that a node
has a larger probability for being assigned to a community with many nodes
compared to a community with fewer nodes or an empty community.

2.1.2 Infinite relation model

The IRM is a Bayesian generative model. In this thesis it is used to detect
community structures in rs-fMRI data [34][27]. IRM is defined by

Z | α ∼ CRP (α)

η
(n)
l,m | β

+, β− ∼ Beta(β+
l,m, β

−
l,m) (2.8)

A
(n)
i,j | Z, η ∼ Bernoulli(ziη

(n)zTj )

Z defines which community a given node is assigned to. CRP is the prior for
assigning nodes to communities, with α as the hyper parameter. η is a K x
K symmetric matrix. Each element, ηl,m is the probability of having a link
between the two communities l and m. It also gives the probability of having
a link between node ni,l (node i assigned to community l) and node nj,m. The
Beta distribution is the prior for the link probability, having β+

l,m and β−l,m as
the hyper parameters. β+

l,m is the pseudo count of links within a community
and β−l,m is the pseudo count of nonlinks between communities l and m. β+

and β− are vectors with two elements. The first element is the pseudo counts
of links and nonlinks respectively within a community and the second element
is between the communities. A(n) is the adjacency matrix for graph n and each
term in the likelihood function is iterated from the Bernoulli distribution. The
Bernoulli distribution depends on the link probability between two communities
to which the nodes are assigned [2] [34] [27].

2.1.2.1 Chinese restaurant process

When using CRP as the prior distribution for Z the number of possible com-
munities is infinite. Once all nodes are assigned to a community the number of
communities becomes finite. A small number of communities is favored by CRP,
and it only creates as many communities as the data warranted [34] [27][35].
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The distribution over the communities for node i conditioned on the communi-
ties assignment for the rest of the nodes is given by [27]

p(zi = l | Zri) =


nl

i− 1 + α
nl > 0

α

i− 1 + α
l is a new community

(2.9)

nl is the number of nodes already assigned to the given community l. It is seen
in (2.9) that the probability of assigning a node to a community is dependent
on the number of nodes already assigned to the specific community. α describes
the probability of assigning a node to an empty community. The probability
of assigning a node to an empty community is increased when the value of α
increases [34] [27].

For different values of α and β+ and β− value set to [1 1] and [1 1] respectively,
IRM has been applied a synthetic network generated. The synthetic network
contains of 100 nodes, divided into 4 communities with 25 nodes in each. The
link probability within the communities is 0.4 and the link probability is 0.1.
The density of the graph is 0.17. The adjacency matrix and the Z matrix for
the synthetic network is shown in Figure 2.1 and Figure 2.2.
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Figure 2.1: The adjacent matrix A
for the synthetic network.
The number of nodes is
100 and it have four clus-
ters with 25 node in each.
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Figure 2.2: The true Z matrix for the
synthetic network.

The estimated η matrix for the synthetic network when α is set to 1 is shown
in Figure 2.4 and for α set to 40 is shown in Figure 2.3. When α is set to 1
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and β is set to [1 1] and [1 1] four communities were detected, which correspond
to the true number of communities. For α set to 40, the number of detected
communities was 5, which is one more than the true number of communities. So
for high values of α the probability of being assigned to an empty community
increases, which means that too many communities is detected.
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Figure 2.3: The estimated η matrix
for the synthetic network
when Inference was made
with IRM. α = 40, β+ =
[1 1] and β− = [1 1].
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Figure 2.4: The estimated η matrix
for the synthetic network
when Inference was made
with IRM. α = 1, β+ = [1
1] and β− = [1 1]

2.1.2.2 Beta distribution.

As mentioned above, the prior for the link probability is the Beta distribution.
The hyper parameters β+ and β− control the shape of the function.
IRM was applied the synthetic network for different values of β when α was set
to 1. With β+ set to [50 3] and β− to [3 50] 6 communities were detected. The
estimated η matrix is shown in Figure 2.5.

2.1.2.3 Inference

Inference with IRM is based on Gibbs sampling in combination with split-merge
sampling[25]. By inference the assignment of nodes to a community and the
number of communities is determined.

The Beta distribution is the conjugated prior for the Bernoulli distribution,
so η can be integrated out analytically. Which means that the relations are
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Figure 2.5: The estimated η matrix for the synthetic network when Inference
was made with IRM. β+ = [50 3], β− = [3 50] and α = 1

determined by the community assignment in Z.
The derivation is not shown in this thesis, but the analytically solution is given
by

p(A(n) | Z, β+, β−)

=

∫
P (A(n) | η(n), Z)p(η(n) | β+, β−)dη(n)

=
∏
n

∏
l≥m

Beta(n+lm + β+
lm, n

−
lm + β−lm)

Beta(β+
lm, β

−
lm)

where n+lm is the number of links between community l and m, and n−lm is the
number of nonlinks between community l and m.

The posterior likelihood is then given by

p(Z | A(1)...AN | Z, β+, β−, α) ∝ (
∏
n

p(A(n) | Z, β+, β−))p(Z | α) =

CRP (α)
∏
n

∏
l≥m

Beta(n
+(n)
lm + β

+(n)
lm , n

−(n)
lm + β

−(n)
lm )

Beta(β
+(n)
lm , β

−(n)
lm )

(2.10)
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In Gibbs sampling [8] the assignment of the i’th node is iteratively drawn from
the conditional distribution, see (2.11), given the assignment of all the remaining
nodes

p(zi = l | Zrn, A) (2.11)

Zrn is the assignment of all the nodes except zn.

zi is replaced by the value sampled from the conditional distribution. This is
done for all nodes in each iteration. The first drawn samples will be dependent
of the initial state distribution, but after many iterations the samples will be
independent of the initial state distribution.

The conditional distribution can be found by evaluation with changes in the
likelihood and the prior will happens when node n is assigned for different
communities. For n assigned for different communities the posterior is given by

p(Zil = 1 | Z_Zir , A
1, ..., AN ) ∝


ma

∏
n

∏
b

Beta(n+lm + β+
lm, n

−
lm + β−lm)

Beta(β+
lm, β

−
lm)

ifml > 0

α
∏
n

∏
b

Beta(n+lm + β+
lm, n

−
lm + β−lm)

Beta(β+
lm, β

−
lm)

otherwise

(2.12)

zi is the i’th row of Z, N is the number of graphs and ma is the size of the a’th
cluster ma =

∑
j 6=i Z(j, a). The posterior depends on the community size and

the number of links and nonlinks between communities, and the β parameter.

To detect community structures in rs-fMRI data inference with IRM is made
in this thesis. An adjacency matrix for each subject is given as input and one
Z matrix for all subjects have been detected, at the same time an η matrix for
each subject is estimated.
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2.1.2.4 Other blockmodels IDM, IHW and BCD

Other Bayesian networks models are the simpler Infinite Diagonal Model (IDM)
and an Infinite extension of the Hofman-Wiggins model (IHW) proposed by Hof-
man et al. [24] and the more complex model Bayesian Community Detection
(BCD) [35].

The difference between the four models is in the definition of the link probability
between communities. In IRM the link probability varies in the upper triangle,
see (2.13). In IDM the link probability within a community is different for
each community but only one link probability between communities is defined,
see (2.14). IHW has two parameters one describing the link probability within
communities and one describing the link probability between communities, see
(2.15) [35].

ηIRM =


η1,1 η1,2 · · · η1,m
η2,1 η2,2 · · · η2,m
...

...
. . .

...
ηm,1 ηm,2 · · · ηm,m

 (2.13)

ηIDM =


η1 η0 · · · η0
η0 η2 · · · η0
...

...
. . .

...
η0 η0 · · · ηm

 (2.14)

ηIHW =


η1 η0 · · · η0
η0 η1 · · · η0
...

...
. . .

...
η0 η0 · · · η1

 (2.15)

BCD is described in the paper by Mørup et al. [35]. The link probability within
a community varies as in IRM. A community gap between 0 and 1 is generated
for each community. The maximum of the inter community link probability
is defined by multiplying the community gap with the link probability within
the community. Next the inter community link probability is generated, so the
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value is less than the maximum link probability between communities for each
of the two communities [35].

2.1.2.5 Model verification with synthetic data

The IRM model has been evaluated against the models IDM, IHW and BCD.
A study like this has been done by Andersen et al.[2], where IRM was evaluated
against IDM and IHW.

Synthetic data from each of the four generative models IRM, IDM, IHW and
BCD were generated. Datasets containing 100 nodes and 20 adjacency matrices
were generated for each model. 500 iterations were made. The parameter α for
the CRP was set to α = 5, the parameters for the Beta distribution were set to
β+ = [2 1] and β− = [3 5].
The data was randomly split into two sets with equal size, and inference with
the four models were made for the two splits separately. This was done 20 times
for each model.
To evaluate the models the predictability and reproducibility were estimated.
The test log likelihood was used as a measure for the predictability. To estimate
the test log likelihood the Maximum A posteriori Probability (MAP) solution
was used. The method is described in Section 2.2.
Mutual Information (MI) was used as a measure for the reproducibility of the
identified community structures. The method for estimation MI is described in
Section 2.2

The Figures 2.6, 2.8, 2.10 and 2.12 shows the predictability as a function of
reproducibility for the four models IRM, IDM, IHW and BCD. Data was gen-
erated respectively with IRM, IDM, IHW and BCD. The dotted line in the top
of the plots is the log likelihood for the model which has generated the data
(the true model). The dotted line in the bottom of the plot is the log likelihood
for a random model, which have identical elements in the η matrix (the density
in the adjacency matrix). The vertical line in the right side of the plot is the
entropy. Entropy is a measure of reproducibility of the model, and it is defined
as log(true number of communities) [8].
The Figures 2.7, 2.9, 2.11 and 2.13 shows the histograms of the number of com-
munities estimated by the four models. The dotted vertical line is the true
number of communities in the dataset.
In Figure 2.6 data were generated from IRM. The models IDM and IHW have
low predictability and reproducibility and BCD have high predictability and re-
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producibility. BCD has a higher reproducibility compared with IRM and IRM
has the highest predictability compared to BCD.
Figure 2.7 shows that IRM is close to detecting the correct number of commu-
nities, BCD detect a few communities more than the correct number. IHW and
IDM both detect too few communities. With data generated with IDM, IRM,
IHW and BCD all have a high predictability close to the log likelihood for the
true model, see Figure 2.8. IDM has the highest reproducibility of the three
models. It seems like IRM and BCD almost have the same reproducibility but
the scattering in the 20 points are larger with BCD compared to IRM. IHW
has a lower predictability compared to the three other models but the highest
reproducibility. The reproducibility for IHW is higher than the entropy, for
some of the points. In Figure 2.9 it can be seen that too many communities
are detected with IHW compared to the true number of communities in the
data. The number of detected communities influences the mutual information.
Small number of detected communities gives a small mutual information and
vice versa.
In Figure 2.10 it can be seen, that all four models have a high predictability
when data is generated with IHW. IDM and IHW both have values around the
predictability for the true model. IRM has the lowest reproducibility and IHW
has the highest reproducibility. The largest scatter in the reproducibility is seen
for BCD. IDM and IHW almost detect the true number of communities, IRM
detects too few and BCD has a large spread in number of detected communities,
but too few communities are detected in most cases.
For data generated with BCD the results for the four models is seen in Figure
2.12. IDM and IHW have the lowest predictability. The predictability for BCD
is a little bit higher compared to the values for IRM, which also has a larger
spread. One of the IHW data points has a low reproducibility and a relative
low predictability compared to the other points. It seems like the IHW model
can be unstable. IHW and BCD have the largest reproducibility, and IDM has
the lowest. In Figure 2.13 it is seen that BCD detect the correct number of
communities most of the time. IRM and IDM detect too few communities and
IHW detect too many communities.
The complex models IRM and BCD generates more complex data compared
to the model IDM and IHW. It is seen that for data generated with the most
complex models IRM and BCD, IRM and BCD have the highest predictability
and reproducibility compared the IDM and IHW. For the more simple data gen-
erated with IDM and IHW the four models almost have the same predictability,
and IDM and IHW have the highest reproducibility.
The results seems comparable with the results presented by Andersen et al. [2],
even only 20 number of splits have been made in this thesis.
It seems like IRM and BCD are the best models when analysing complex data.
Resting state fMRI data consists of complex networks, and IRM is used to eval-
uate rs-fMRI data in this thesis.
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Figure 2.6: Predictability as function
of reproducibility. Data
was generated with IRM.
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2.2 Evaluation criteria

In this thesis log likelihood, Mutual Information (MI), Normalised Mutual In-
formation (NMI) and Area Under Curve (AUC) of the receiver operating char-
acteristic have been used as evaluations criteria.
The evaluation parameters have been estimated when the data have been di-
vided into two splits (S1, S2) and each split have been inferred with the model
independently. It is the MAP solution of the inference which is used.

2.2.0.6 log likelihood

Log likelihood is an estimate for how likely the adjacency matrix from S1 is
when the adjacency matrix for S2 is used for inference with the model. The log
likelihood is given by [2]

logL(Z, η | AS2,(1), ..., AS2,(N)) =
1

N

N∑
n=1

∑
j>i

A
S2,(n)
ij log(ziηz

T
j )

+ (1−AS2,(n)
ij )log(1− ziηzTj ) (2.16)
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Figure 2.8: Predictability as function
of reproducibility. Data
was generated with IDM.
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2.2.0.7 Mutual information

MI is used as a measure for the reproducibility of the detected community
structure between ZS1 and ZS2. MI is defined as [34] [2]

MI(Z(S1), Z(S2)) =
∑
i=1

∑
j=1

p(zS1
i , zS2

j )log

(
p(zS1

r , zS2
j )

p(zS1
i )p(zS2

j )

)
(2.17)

NMI is defined by [26]

NMI(Z(S1), Z(S2)) =
2 ∗MI(Z(S1), Z(S2))

MI(Z(S1), Z(S1)) +MI(Z(S1), Z(S2))
(2.18)

2.2.0.8 Area under curve

AUC of the Receiver Operating Characteristic (ROC) curve is a measure for
how good the model is to predict links [15]. It can be used when the true data
is unknown.
The ROC curve is made by plotting the true positive rate vs. the false positive
rate. These two performance can be reduced to one value, which represent the
expected performance, by estimating the AUC. The value of AUC is between 0
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and 1. A random classifier has an area of 0.5.
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Data was generated with
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2.3 Classification methods

2.3.1 Singular value decomposition

Singular Value Decomposition (SVD) is used to factorize a matrix. SVD is ap-
plied for feature extraction. The decomposition of a matrix X (m x n) is given
by [14]

X = USV ′ (2.19)

Where U is a unitary matrix of size m x m. V is a unitary matrix of size n x
n. The components are in the columns. The components are ordered, so the
first is the one with the largest variance. S is a diagonal matrix (m x n) with
singular values in the diagonal.

In this thesis SVD is used for feature extraction of the correlation and η matri-
ces. Both the correlation matrix and the η matrix are symmetric so only the
elements in the upper diagonal have been used as features. In the η matrix
the diagonal have also been used. The upper triangle of the matrix have been
converted to a vector, and SVD is applied to the vector of each subject.

2.3.2 K nearest neighbours

K Nearest Neighbours (KNN) is a simple algorithm used to classify objects in
feature space. The number of classes, K is given, and the distance in feature
space is calculated as the Euclidean distance. The test data is classified to the
group with the highest representation among the K nearest training data points
[8].
In this thesis the η matrix for each subject have been used for the classification.
To reduce the number of features SVD is applied to the η matrices before KNN
have been used for classification. The first 10 components in V have been used
as features to classify the subjects by using KNN.
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2.3.3 Support vector machine

Support Vector Machine (SVM) can be used for classification and regression.
The parameters are determined by optimization. In this thesis SVM has been
used to classify in to two groups: A healthy group and a MS group.
A two class classification problem using linear models can be defined as [8]

y(x) = wTφ(x) + b (2.20)

φ(x) is the fixed feature space transformation, w is the normal to a hyper plane,
b is the bias parameter and x is the training data. Corresponding to the training
data a target vector t is given. The values in t are -1 or 1, and tells which class
the given object belongs to. The test data is classified according to the sign of
y(x). A correct classification satisfy tny(xn) > 0 [8].
It is assumed that the class distributions are overlapping in feature space, so
it is not possible to make a correct classification for all training data points.
Misclassification of some of the training data points have to be allowed [8].

The best separation is found by maximizing the margin and at the same time
penalizing points that lie on the wrong side of the margin boundary softly. This
is done by minimizing

C

N∑
n=1

ξn +
1

2
|| w ||2 (2.21)

ξn is the slack variables. It is defined as ξn = 0 for points on the correct side of
the margin boundary and ξn =| tn− y(xn) | for other points. C is a soft margin
parameter, that controls the trade-off between the slack variable penalty and
the margin [8].



Chapter 3

Experiments

3.1 Method of resting state fMRI

With task based fMRI the activated brain area during a given task is measured,
from the BOLD constant. In rs-fMRI no task is made. The patient has to lie
totally still in the scanner with closed eyes, in some studies the eyes have to be
fixed at a cross in the top of the scanner, during the rs-fMRI. The subject is
instructed before the scanning in being awake and not doing any kind of volun-
tary cognitive task or movement [18].
In rs-fMRI it is the spontaneous fluctuation in the BOLD signal which is mea-
sured [18]. The regional BOLD-signal oscillates in synchrony and thus provides
an index of functional connectivity [5].

In 1995 Biswal et al. [5] found a high correlation between fMRI BOLD time-
series in the right and left motor cortex during resting state. Afterwards other
studies[10] [11] have replicated these results by showing high functional connec-
tivity between the right and left motor cortex. Also high correlation between
other regions in the brain are found [41] [4]. Cordes et al. found high correlation
in the auditory and visual cortices [10].
These results show that the spontaneous BOLD activity is not random noise
but organized activity in the resting brain [18].
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Cordes et al. [10] have shown that physiological noise is low frequent, the respi-
ratory frequency is 0.1 - 0.5 Hz and the cardiac frequency is 0.6 - 1.2 Hz. The
fluctuation frequencies of interest in the BOLD signal is below 0.1 Hz, which is
below the physiological noise [10] [5].

3.1.1 Participants

The participants in the rs-fMRI study were 42 patients with MS (20 men and
22 women) and 30 Healthy Control (HC) subjects (15 men and 15 women) .
The two groups were matching in sex and age. The EDSS were made for each
patient to rate the clinical disability. The EDDS range from 0 to 7 with a
mean of 4.3 range (0-7). The median age was 45 years in both the HC group
and MS group. Only clinical stable patients with more than 3 month since last
experienced relapse were included in the study. In the healthy control group
only persons without neurological or psychiatric history were included in the
study. The patients were recruited from The Danish Multiple Sclerosis Center,
Copenhagen, Denmark. The scans were made by Anne-Marie Dogonowski and
Kristoffer H Madsen from the Danish Research Centre for Magnetic Resonance
at Hvidovre Hospital [13].

3.1.2 Data Acquisition

20 minutes rs-fMRI were performed for each subject, followed by structural
MRI at a 3.0 Tesla Magnetom Trio scanner. The rs-fMRI data was recorded
with a standard single-channel birdcage head-coil. A T2∗-weighted echo planer
imaging (EPI) sequence was used with TR = 2490 ms, TE = 30 ms and a 90o flip
angle. 480 whole brain volumes were acquired over 20 minutes (2 contiguous
axial slices, slice thickness of 3 mm, FOV = 192x192 mm, 64x64 acquisition
matrix, voxel size 3x3x3 mm).
The subjects were instructed to rest with eyes closed and not falling asleep or
thinking about anything, and they had to lie still. The patients were asked not to
consume caffeine or alcohol and smoking cigarettes six hours before the scanning
session. During the scanning the cardiac cycles and the respiratory frequency
were monitored. An infra red pulse oximeter were placed at the subjects index
finger for monitoring cardiac cycles and pneumatic thoracic belt was used to
monitor respiration frequency [13].
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3.2 Preprocessing resting state fMRI data

The SPM81 software toolbox was used for preprocessing the rs-fMRI data. The
steps in the preprocessing were: realignment, slice wise, co-registration, normal-
ization and smoothing, and they will be described briefly in the following. The
preprocessing was done independently for each subject.

Realignment and reslice

During a scanning movement of the body will happen. The aim with realignment
was to remove movement artefacts [3] so the mean squared difference between
the images was minimized.
Before estimation of the transformation parameters the Gaussian Full Width
Half Maximum (FWHM) 5 mm, was applied to the images [3].
The translation in the x, y and z direction and the rotation (pitch, roll and
yaw) was estimated for each image. A least squares approach and the 6 rigid
body spatial transformation parameters were used to realign the time series of
the images [3]. The mean image was used as a reference, to which the rest
of the images were realigned to. B-spline was chosen for interpolation during
the transformation because the error is low. Higher degree interpolation often
give a better results but they are slower compared to low degree because more
neighbouring voxels are used [3].
After realignment the transformation parameters were saved so they could be
used as regressor in the general linear model in the next step slice wise, and the
images were resliced so they match the reference image in each voxel [3].

Slice wise

Slice wise2 is a toolbox for SPM8. The aim with slice wise was to remove the
nuisance noise from respiration, pulse and movements. The nuisance noise were
identified and defined as nuisance variable regressors. Physical recordings for
pulse and respiration were measured during the scan and the movement was
identified and the transformation parameters were saved after the realignment
was done. The design matrix for the data were made. Figure 3.1 shows the
design matrix for subject HC1. It contains one row for each scan and one

1http://www.fil.ion.ucl.ac.uk/spm/
2Authors: Kristoffer H. Madsen Danish Research Centre for MR: kristof-

ferm@magnet.drcmr.dk and Torben E. Lund Center for Functionally Integrative Neuroscience
(CFIN): torbenelund@mac.com
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column for each regressor. The regressors are the time series that were due to
the nuisance noise.

The general linear model (GLM) was used to filter the fMRI data. GLM is given
by [20]

Y = X ∗ β + ε (3.1)

Y is the measured fMRI data, ε is noise, β is the real fMRI data and X is the
explanatory variables also known as the design matrix [20].
In this thesis the data was rs-fMRI, so the study did not contain any task, and
the design matrix only contained nuisance regressors. When subtracting the
design matrix from the measured data the residuals are left. The residuals can
be defined as the resting state data.

Co-registration

In co-registration the functional images were aligned to the structural image.
The mean of the functional images was estimated and the mean functional image
and the structural image were co-registered. This was done by estimating pa-
rameters which best describe the spatial transformation. By maximizing mutual
information the parameters for the best transformation was found [49] [3].

Normalization

The images were normalized to Montreal Neurological Institute (MNI) space.
When this is done it is possible to compare different subjects [3]. A Bayesian
framework is used to choose the parameters having the maximized posterior
probability. [20]
The anatomic image was chosen as source image and normalized to the MNI
template. This was done by first fitting the image to the template by a linear
transformation and afterword by a nonlinear transformation (wrapping). Af-
terwards the co-registration functional images were transformed with the same
parameters. The voxel size was set to 2x2x2 when the normalized images were
written [3].
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Smoothing

The aim with smoothing was to minimize the noise and improve the signal-to-
noise ratio. An disadvantage was, that the spatial resolution of the image is
reduced [3].
The Gaussian FWHM was used to smooth the functional images. The default
value of 8 mm in each direction was chosen [3].
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Figure 3.1: The design matrix for subject HC1.
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3.3 Automated anatomic labeling regions

In this thesis the Automated Anatomic Labeling (AAL) is used to divide the
brain into regions. In 2002 Tzourio-Mazoyer et al. [44] published the Automated
Anatomic Labeling (AAL), which divides the brain into 116 regions. Each hemi-
sphere is divided into 45 regions, cerebellum into 18 regions and vermis into 8
regions. The 116 regions predominantly lies in the areas with gray matter. Ta-
ble 3.1 shows first 78 AAL regions and Table 3.2 shows the last 38 AAL regions.

3.3.1 Default mode network defined in AAL regions

In these thesis the brain has been divided into the 116 AAL regions and the
detected communities are defined by the AAL regions. To make it possible to
compare the DMN found in the literature [12] [47] [22] [38] [29] [39] [19] [46] with
the results in this thesis the DMN found in the literature have been converted
to AAL regions. The AAL regions is defined in MNI space, so the given DMN
have been converted to MNI space before the AAL regions are defined. In the
study by Beckmann et al. [4] the DMN was only described in anatomic areas
so it was not possible to convert it to AAL regions.

Table B.1 - B.4 in Appendix B shows the 8 DMN from the literature defined
in AAL regions. An AAL region is defined as being a part of the DMN if the
region is represented in minimum 4 of the 8 studies. The definition of the DMN
can be seen in table 3.3.

3.4 Making the graph

When analyzing rs-fMRI data it is the connections between the regions in the
brain that is of interest. So before the rs-fMRI data can be analyzed, a graph
has to be made for each subject. Correlation matrices have been used when
communities have been found in the literature [41]. In this thesis the graph for
each brain network is generated from the correlation matrices.
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Number AAL region Number AAL region
1 Amygdala_L 40 Frontal_Inf_Tri_R
2 Amygdala_R 41 Frontal_Med_Orb_L
3 Angular_L 42 Frontal_Med_Orb_R
4 Angular_R 43 Frontal_Mid_L
5 Calcarine_L 44 Frontal_Mid_Orb_L
6 Calcarine_R 45 Frontal_Mid_Orb_R
7 Caudate_L 46 Frontal_Mid_R
8 Caudate_R 47 Frontal_Sup_L
9 Cerebelum_10_L 48 Frontal_Sup_Medial_L
10 Cerebelum_10_R 49 Frontal_Sup_Medial_R
11 Cerebelum_3_L 50 Frontal_Sup_Orb_L
12 Cerebelum_3_R 51 Frontal_Sup_Orb_R
13 Cerebelum_4_5_L 52 Frontal_Sup_R
14 Cerebelum_4_5_R 53 Fusiform_L
15 Cerebelum_6_L 54 Fusiform_R
16 Cerebelum_6_R 55 Heschl_L
17 Cerebelum_7b_L 56 Heschl_R
18 Cerebelum_7b_R 57 Hippocampus_L
19 Cerebelum_8_L 58 Hippocampus_R
20 Cerebelum_8_R 59 Insula_L
21 Cerebelum_9_L 60 Insula_R
22 Cerebelum_9_R 61 Lingual_L
23 Cerebelum_Crus1_L 62 Lingual_R
24 Cerebelum_Crus1_R 63 Occipital_Inf_L
25 Cerebelum_Crus2_L 64 Occipital_Inf_R
26 Cerebelum_Crus2_R 65 Occipital_Mid_L
27 Cingulum_Ant_L 66 Occipital_Mid_R
28 Cingulum_Ant_R 67 Occipital_Sup_L
29 Cingulum_Mid_L 68 Occipital_Sup_R
30 Cingulum_Mid_R 69 Olfactory_L
31 Cingulum_Post_L 70 Olfactory_R
32 Cingulum_Post_R 71 Pallidum_L
33 Cuneus_L 72 Pallidum_R
34 Cuneus_R 73 ParaHippocampal_L
35 Frontal_Inf_Oper_L 74 ParaHippocampal_R
36 Frontal_Inf_Oper_R 75 Paracentral_Lobule_L
37 Frontal_Inf_Orb_L 76 Paracentral_Lobule_R
38 Frontal_Inf_Orb_R 77 Parietal_Inf_L
39 Frontal_Inf_Tri_L 78 Parietal_Inf_R

Table 3.1: The AAL regions element number in the adjacency matrix.
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Number AAL region Number AAL region
79 Parietal_Sup_L 98 Temporal_Inf_R
80 Parietal_Sup_R 99 Temporal_Mid_L
81 Postcentral_L 100 Temporal_Mid_R
82 Postcentral_R 101 Temporal_Pole_Mid_L
83 Precentral_L 102 Temporal_Pole_Mid_R
84 Precentral_R 103 Temporal_Pole_Sup_L
85 Precuneus_L 104 Temporal_Pole_Sup_R
86 Precuneus_R 105 Temporal_Sup_L
87 Putamen_L 106 Temporal_Sup_R
88 Putamen_R 107 Thalamus_L
89 Rectus_L 108 Thalamus_R
90 Rectus_R 109 Vermis_10
91 Rolandic_Oper_L 110 Vermis_1_2
92 Rolandic_Oper_R 111 Vermis_3
93 Supp_Motor_Area_L 112 Vermis_4_5
94 Supp_Motor_Area_R 113 Vermis_6
95 SupraMarginal_L 114 Vermis_7
96 SupraMarginal_R 115 Vermis_8
97 Temporal_Inf_L 116 Vermis_9

Table 3.2: The AAL regions element number in the adjacency matrix.

3.4.1 Correlation matrix

To find the connectivity between the 116 regions in the brain, the correlation be-
tween each pair of regions have been calculated. This was done by extracting the
mean time-series from each of the regions and then calculating the correlation
using (3.2).

ρij =
1

N

N∑
n=1

(xni − x−i )(xnj − x
−
j )

(σiσj)
(3.2)

where ρij is the correlation between the time series in the i and j region. N is
the length of the time series, xni is a element in the time series from region i
and σi is the standard deviation in the i’th time-series [8].

The correlation between a given time-series and it self is 1 because they are
perfectly correlated. If two of the time-series were uncorrelated the correlation
coefficient would be 0. The diagonal in the correlation matrix was set to 0 [8].
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DMN
Frontal_Sub_R

Frontal_Sup_Medial_L
Cingulum_Post_L

Angular_R
Angular_L

Temporal_Mid_R

Table 3.3: Result when evaluate the DMN detected in different studies. The
AAL region were defined as a part of the DMN if 4 of more of the
studies has the given region in their DMN.

The correlation matrix is symmetric because ρij = ρji. Each element in the
correlation matrix is identical to one of the AAL regions. In the Tables 3.1 - 3.2
the element number and the matching AAL region are shown.
The correlation matrix for subject HC1 is shown in Figure 3.2. The plot shows,
that the correlation matrix is symmetric and have a diagonal with elements of
zeros. A high correlation is seen between the elements 15-26 but also between
the elements 27 - 106 with out the elements 69-72 and 87-90. All so the elements
1-6 have a high correlation with the elements 29 - 106.
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Figure 3.2: The correlation matrix for subject HC1.

To see the variation in the time-series during time for one subject, two cor-
relation matrices for each of the 30 HC subject were made. This was done by
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splitting the volumes for one subject (480 volumes) in to two parts, and estimate
a correlation matrix for each of the two parts. The two correlation matrices for
subject HC1 is shown in Figures 3.3 and 3.4. The pattern seen in Figure 3.2
is also seen in the Figures 3.3 and 3.4. A higher correlation is found in the
correlation matrix for the last part of the volumes compared to the correlation
matrix for the first part.
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Figure 3.3: The correlation matrix for the first half of the volumes. Subject
HC 1.

3.4.1.1 Adjacency matrix

In this thesis the focus was on the fact whether a link between the pairs of
regions exists or not, so the graph to generate was undirected and unweighted.
This means that the adjacency matrix A was binary and symmetric and has
the size 116 x 116. The diagonal in the matrix was zero because we are not
interested i self-links.
For each density the number of links in the the Adjacency matrix was estimated.
The total number of links are shown in Table 3.4. When generating an adjacency
matrix with density 32 % for subject HC1 the number of links in the full matrix
has to bee 4268, which is the same as 2134 links in the upper matrix. Because
the adjacency matrix was symmetric the upper triangle was created first. A
threshold was set, so the 2134 elements with the highest correlation was found,
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Figure 3.4: The correlation matrix for the second half of the volumes. Subject
HC1.

we only look for the positive correlation. The threshold for subject HC1 was set
to 0.4978. Figure 3.6 shows the elements in the upper triangle with a correlation
value above or equal to 0.4978. These elements were set to one and the rest of the
elements were set to zero in the upper triangle with out the diagonal. This gave
a binary upper triangular matrix, which is reflected to the lower triangular and
the adjacency matrix for subject HC1 was generated, see Figure 3.7. The same
was done for the HC and MS subjects for all the six densities. The Adjacency
matrices were made with a density of 2 %, 4 %, 8 %, 16 %, 32 % and 50 % for
all the subjects. The mean threshold set for the HC and MS group at different
densities and the standard deviations are shown in Figure 3.5. As expected it
can bee seen, that the threshold value decreases when the density increases. The
mean threshold for the HC group and MS group were relatively equal for all the
density.
For the six densities two adjacency matrices were also estimated using the two
correlation matrices for each of the HC subjects.
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density number of links
2 266
4 534
8 1068
16 2134
32 4268
50 6670

Table 3.4: The number of links in the adjacency matrix for different densities.
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densities when generating A and the standard deviation.
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Figure 3.6: The elements in the upper triangle of the correlation matrix with
a correlation value above or equal to 0.4978. The density was 32
% and the correlation matrix was for subject HC1.
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Figure 3.7: The adjacency matrix for subjects HC1 with density 32.



Chapter 4

Data analysis

4.1 Correlation matrices

A correlation matrix for each of the 72 subjects have been estimated. The mean
of the correlation matrices for the HC subjects and the standard deviation in
each element are shown in Figure 4.1 and Figure 4.2. Figure 4.3 and Figure 4.4
shows the mean of the correlation matrices for the MS subjects and the standard
deviation in each element.
The mean correlation matrices for the HC subjects and the MS subjects almost
look alike. In both plots a high correlation is seen between the regions 15-26,
61-68 and 109-116. Regions 15-26 are parts of cerebellum, region 61-68 is in the
occipital lobe. 109-116 is vermis, which is a part of cerebellum. A general low
correlation with other regions is found for region 87 and 88, which are the right
and left putamen, region 89 and 90, which are the right and left part of rectus
and region 109-11 which are parts of vermis.
In both plots of the standard deviation it can be seen that the highest values
are found in areas with a low correlation. The plot of the standard deviation
between MS subjects, Figure 4.4, is a little bit brighter compared to the plot
for the HC subjects, Figure 4.2, so the variation between the subjects seems to
be higher for the MS subjects compared to the HC subjects.
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Figure 4.1: The mean of the correlation matrices for the HC subjects.
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Figure 4.2: The standard deviation for each element in the mean correlation
matrix for the HC subjects.
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Figure 4.3: The mean of the correlation matrices for the MS subjects.
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Figure 4.4: The standard deviation for each element in the mean correlation
matrix for the MS subjects.
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4.1.1 Singular value decomposition for the correlation ma-
trices

The rs-fMRI data for each subject consists of 480 volumes (20 min). To exam-
ine the variation across the volumes, SVD was applied to the two correlation
matrices for each of the 30 HC subjects.
The correlation matrix for the first part of the volumes are named corr1 and
the correlation matrix for the last part of the volumes are named corr2. Fig-
ure 4.5 shows the first and second component plotted against each other from
the decomposition of the two correlation matrix for each subject. Each dot is
numbered, and the number refer to the subject. The distance between the red
and blue dots from the same subject is small. It is not possible to separate the
corr1 matrices from corr2 matrices, when looking at the first component plotted
against the second. The same is seen for the other components, which are not
shown. The distance between the two correlation matrices from one subject
is in general smaller than the distance between correlation matrices from two
subjects. It seems like the robustness for the two correlation matrices for one
subject is high.

In this thesis it is examined if it is possible to discriminate the HC and MS
subjects. SVD was applied to the correlation matrices from the HC and MS
subjects, to see if it was possible to distinguish the subjects from each other
using the correlation matrices as features. The correlation matrices is symmetric
with zeroes in the diagonal, so only the elements in the upper triangle without
the diagonal were converted to a vector for each subject and used for the SVD.
The decomposition was made for a matrix, which consist of the vectors for each
subject.
The results are shown in Figure 4.6 where the first and second component, the
first and third component, the first and fourth component and the second and
third component are plotted against each other respectively. The HC and MS
subjects form a complex pattern and it is not possible to separate the two groups
from each other by apply SVD to their correlation matrices.

4.2 Evaluation of IRM when varying hyper pa-
rameters

IRM has been implemented in MATLAB by Morten Mørup1, and those scripts
have been used in this thesis. It was necessary to understand the implementa-

1http://www.mortenmorup.dk/MMhomepageUpdated_files/Page327.htm
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Figure 4.5: SVD was applied to the two correlation matrices for each of the
30 HC subjects. The first and second component, from the de-
composition are plotted against each other. The blue dots are the
correlation matrices for the first half of the volumes in the dataset
and the red dots are the correlation matrices for the last part of
the volumes. Each dot is numbered and refer to the HC subject.

tion before the scripts have been used.

The hyper parameters α and β had to be set before IRM could be used. It was
unknown which values would be a good choice when analyzing rs-fMRI data.
Three different values of α and β were tested. The hyper parameters were varied
independently of each other. The α values were 0.1, 1 and 10 and the β values
were [1 1], [1 0.1] and [5 1] for β+ and [1 1], [0.1 1] and [1 5] for β−. When α
was varied the β value was set to β+ = [1 1] and β− = [1 1], and when β was
varied α was set to 1. When the hyper parameters are set to 1 they are neutral.
The data used to evaluate IRM for different hyper parameters were the two
adjacency matrices for the HC subjects. By random the adjacency matrices were
divided into two splits S1 and S2. Each split contained 30 adjacency matrices,
one from each subject. Half of the adjacency matrices were from the first part
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of the volumes and the other half were from the last part of the volumes.
Inference with IRM was made for S1 and S2 separately. The number of iterations
was 500, the initial guess of number of communities was set to 50. Ten splits
were made for each value of α and β and it was done for the densities 2, 4, 8,
16, 32, 50 %. One Z matrix and a η matrix for each subject are estimated for
each split.

Reproducibility, predictability, link prediction, and the number of detected com-
munities are used as evaluation parameters.
The reproducibility is given by the mutual information and normalised mutual
information, which were estimated for the Z matrices from S1 and S2 in each of
the 10 splits.
Log likelihood is the estimate for how good IRM is to predict data. The log
likelihood for the adjacency matrix in S1 when the adjacency matrix for S2 is
used for inference with IRM, is estimated for each of the adjacency matrices in
S1 and S2 for each split.
AUC is a measure for link prediction. AUC is estimated for each adjacency
matrix in S1 and S2 for each of the 10 splits.
The mean value of MI and NMI for the 10 splits for each value of the hyper
parameters is estimated for each of the six densities and the results are shown
in Figure 4.7 when varying α and Figure 4.11 when varying β.
The mean of the log likelihood for all the adjacency matrices in S1 and S2
respectively is estimated. The mean of this values for the 10 splits and the
standard deviation are estimated and the results for each density are shown in
Figure 4.8, when varying α and Figure 4.12, when varying β. The left column
in the plots are the results from S1 and the right column are the results from
S2. One value of the hyper parameter are represented in each of the rows.
AUC for each of the adjacency matrices in S1 and S2 respectively were esti-
mated and the mean value was found. The mean of this mean value in each
split and the standard deviation are estimated for each density and the results
are shown in Figure 4.9, when varying α and Figure 4.13, when varying β. The
mean of the number of clusters detected in S1 and S2 respectively for each of
the 10 runs and the standard deviation for each density are shown in Figure
4.10, when varying α and in Figure 4.14, when varying β. The plots are divided
as described for the plots of the log likelihood.

Varying the hyper parameter α

In Figure 4.7 the MI and NMI are shown. The MI increases when the density
increases for all the α values. The NMI increases except between density 4 %
and 8 % where it decreases. The NMI is higher for density 4 % compared to
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density 16 %. This is seen for all values of α.
For all values of α the log likelihood decreases when the density increases. The
difference between the log likelihood for different α values is small, and the re-
sults for the two splits are not consistent for all the densities, see Figure 4.8. In
Figure 4.9 it can be seen that the highest AUC is found for the densities 8, 16,
32 and 50 % for all values of α. The smallest value is found for density 2 %.
Only a small difference in AUC values are seen for the different values of α.
In Figure 4.10 it can been seen that the number of detected communities is cor-
related to the density. When the density increases the number of communities
increases.
The model is stable for the three different α values. An α value of 1 is chosen.

Varying the hyper parameter β

When varying the hyper parameter β it can bee seen in Figure 4.11 that the MI
increases when the density increases for the values β+ = [1 1] and β− = [1 1].
For β+ = [1 0.1] and β− = [0.1 1] the highest MI value is achieved for density 16
% and for β+ = [5 1] and β− = [1 5] the highest value is achieved at a density
of 32 %. The results for β+ = [1 1] and β− = [1 1] is the same as for α = 1.
The NMI has a maxima at 0.94 with a density of 16 % for the parameter values
β+ = [1 0.1] and β− = [0.1 1]. For the parameter values β+ = [5 1] and β− =
[1 5] the NMI curve has two maxima, one with a density of 4 % with a value of
0.91 and one with a density of 32 % with a value of 0.90.
Figure 4.12 shows a correlation between the log likelihood and density. The log
likelihood decreases when the density decreases for all the β values. The stan-
dard deviation is largest for the high densities 32 % and 50 %. The standard
deviation is larger in the first split compared to the second split. The highest
log likelihood values are found for the densities 2 % - 16 % with β+ = [1 0.1]
and β− = [0.1 1] and for densities 32 % and 50 % with the parameter values β+
= [5 1] and β− = [1 5].
Figure 4.13 shows that for β+ = [1 1] and β− = [1 1] the greatest AUC values
are found for the three largest densities, and the values are in S1 0.915, 0.918
and 0.917 and in S2 0.9197, 0.9196 and 0.9178. For β+ = [1 0.1] and β− = [0.1
1] the AUC values are quite equal for the densities 2 %, 4 % and 8 %. For the
higher densities the values decrease. This is seen in both S1 and S2. For β+ =
[5 1] and β− = [1 5] the maximum AUC value are found with a density of 16 %
in S1 and 8 % in S2. The highest AUC values are found for β+ = [1 0.1] and
β− = [0.1 1] for the densities 2 % - 32 % and for β+ = [1 1] and β− = [1 1] with
a density of 50 %. The largest standard deviation is found with density 2 % for
all the values of β.
Figure 4.14 shows the number of detected communities. For the values β+ = [1
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1] and β− = [1 1] there is a positive correlation between the number of commu-
nities and the density. For the values β+ = [1 0.1] and β− = [0.1 1] the number
of communities has a maxima at the densities 8 % and 16 %, where the mean
value is 34.5 and 34.9 in the S1. In S2 the number of communities have the
highest value with a density of 16 %. For β+ = [5 1] and β− = [1 5] the highest
number of communities are detected with the densities 16 % and 32 % in both
splits.
The hyper parameter values for β are chosen to β+ = [1 0.1] and β− = [0.1
1], because IRM has a high reproducibility and predictability with these values.
Also the link predictability is high for these parameter values. With the choice
of β values the priori favoured a higher within community link density compared
to the between link density.
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Figure 4.6: The result from SVD applied the correlation matrices for HC and
MS subject. Top left: The first component plotted against the
second component. Top right: The first component plotted against
the third component. Bottom left: The second component plotted
against the third component. Bottom right: The first component
plotted against the fourth component. The blue dots are the HC
subjects and the red dots are the MS subjects.
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Figure 4.7: Mean value of mutual information and normalized mutual infor-
mation were estimated for the Z matrices from S1 and S2 in each
of the 10 splits. When α was varied between 0.1 1 and 10. β was
set to 1. The mean of mutual information and normalised mutual
information of the 10 splits and the standard deviation for each
density is shown.
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Figure 4.8: The mean and the standard deviation in S1 and S2. The mean over
the subjects mean log likelihood over the 10 run for each densities
and the standard deviation are shown, when α was varied between
0.1, 1 and 10. β was set to 1. The results from split 1 is in the
left column and for split 2 in the right column.
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Figure 4.9: AUC for the two splits are calculated for each of subjects in the
10 inference with IRM. The mean over the subjects mean AUC
over the 10 run, for each densities and the standard deviation are
shown, when α was varied between 0.1, 1 and 10. β was set to 1.
The results from split 1 is in the left column and for split 2 in the
right column.
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Figure 4.10: Number of communities detected when making inference with
IRM 10 times. The mean number of communities over the 10
runs, fore each density and the standard deviation are shown. α
was varied between 0.1, 1 and 10. β was set to 1. The results
from split 1 is in the left column and for split 2 in the right
column.
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Figure 4.11: Mutual information and normalized mutual information were es-
timated for the Z matrices from the two splits in each of the
10 inference runs with IRM. When the hyper parameter β+ was
varied between [1 1], [1 0.1] and [5 1] and β− was varied between
[1 1], [0.1 1] and [1 5]. α was set to 1.
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Figure 4.12: The mean over the subjects mean log likelihood over the 10 runs
for each density and the standard deviation are shown. β+ was
varied between [1 1], [1 0.1] and [5 1] and β− was varied between
[1 1], [0.1 1] and [1 5]. α was set to 1. The results from split 1 is
in the left column and for split 2 sin the right column.
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Figure 4.13: AUC for the two splits are calculated for each subjects in the 10
inference runs with IRM. The mean over the subjects mean AUC
over the 10 runs for each density and the standard deviation are
shown. β+ was varied between [1 1], [1 0.1] and [5 1] and β−
was varied between [1 1], [0.1 1] and [1 5]. α was set to 1. The
results from split 1 is in the left column and for split 2 sin the
right column.
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Figure 4.14: Number of communities detected after 10 inference runs with
IRM. The mean over number of clusters detected in the 10 runs
for each density and the standard deviation are shown. β+ was
varied between [1 1], [1 0.1] and [5 1] and β− was varied between
[1 1], [0.1 1] and [1 5]. α was set to 1. The results from split 1 is
in the left column and for split 2 sin the right column.
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4.3 Inference with IRM

When inference with IRM is made in the rest of this thesis, the hyper parameters
are set to α = 1 ,β+ = [1 0.1] and β− = [0.1 1]. The values of the hyper
parameters are found in the section above where IRM was evaluated for different
values of the hyper parameters. The number of iterations is set to 500 and the
initial guess of number of communities is set 50. The iteration with the highest
log likelihood is chosen as the maximum a posteriori probability (MAP) solution.
One community assignment matrix Z and an adjacency matrix for each subject
are estimated for each run.
Inference with IRM is made for the adjacency matrices from the subjects. 20
runs are made for each of the six densities 2, 4, 8, 16, 32 and 50 % of the
adjacency matrices, and the run with the highest log likelihood for each density
is defined as the MAP run for the given density.

Table 4.1 shows the mean of the number of detected communities and the stan-
dard deviation. The largest number of communities is found when the density is
16 %. The log likelihood decreases when the density of the networks decreases.

The community structures are detected for the HC and MS subjects by inference
with IRM. Figure 4.15 shows the log likelihood for density 32 % and run number
11. The burn in period is seen in the first 15 iterations, after the first 15
iterations the curve begin to flatten off. It seems like the log likelihood is
relative stable when 500 iteration are made during inference.
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Figure 4.15: Log likelihood during inference with IRM in run number 11 for
density 32 %.
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Number of communities
Density [%] mean std

2 21.15 ± 1.35
4 29.3 ± 2.11
8 34.2 ± 1.85
16 35.75 ± 1.80
32 30.55 ± 1.47
50 26.25 ± 1.02

Table 4.1: The Mean of the detected number of communities for each density
and the standard deviation.

For density 32 %, MAP run 11 the estimated η matrices for the HC subjects is
shown in Figure 4.16 and the standard deviation in each element of the matrix is
shown in Figure 4.17. The mean of the estimated η matrices for the MS subject
is shown in Figure 4.18 and the standard deviation in each element is shown in
Figure 4.19. Only small differences are seen between the two mean η matrices.
Also the standard deviation in each element in the two η matrices seems relative
equal.
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Figure 4.16: The mean of the estimated η matrices for the HC subjects. MAP
run 11, density 32 %.
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4.3.1 SVD applied the η matrices

SVD is applied the η matrices for the HC and MS subjects in order to see if it is
possible to distinguish between the two groups. This is done for each of the 20
runs and for each of the six densities independently. The method is described in
Chapter 2.3. The first and second component from the decomposition is shown
in Figure 4.20 for density 32 %, MAP run 11. It is not possible to partition the
subjects into two groups when looking at the first and second component from
the SVD or some of the other components, which are not shown.
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Figure 4.17: The standard deviation in each voxel of the mean HC η matrix.
MAP run 11, density 32 %.
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Figure 4.18: The mean of the estimated η matrices for the MS subjects. MAP
run 11, density 32 %.
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Figure 4.19: The standard deviation in each voxel of the mean MS η matrix.
MAP run 11, density 32 %.
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Figure 4.20: Result from SVD applied the η matrices from all the HC and MS
subjects. The first and second component are plotted against
each other. MAP run 11, density 32 %.
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4.4 Community detection

The community structures in rs-fMRI is detected by IRM. IRM was applied the
adjacency matrices from the 30 HC subjects and the 42 MS subjects. The MAP
run 11 for density 32 % is used when analysing the detected communities.
The detected community structures are given by the cluster assignment matrix,
and the link density between the regions are given by teh η matrix. 32 com-
munities are detected and the size of the communities is varying from 1 - 12
regions. Table 4.2 shows the AAL regions in community 1-20 and Table 4.3
shows the AAL regions community 21-32. Figures C.1 - C.32 in Appendix C
shows plots of the communities in the brain. Axial slices of the brain are shown
in the Figures. The regions in a community is marked with different colors, and
the name of the regions are shown in the lower right corner. The communi-
ties are symmetric, which means that they consist of the same region in both
the right and the left side of the brain, if the region are represented in both sides.

The median of the 72 estimated η matrices is shown in Figure 4.21. Each ele-
ment in the matrix is the median of the link density between two communities.
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Figure 4.21: The median of the 72 η matrices. MAP run 11 for density 32 %.

The link densities within the communities are between 0.95 and 0.99 except com-
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Community AAL regions Community AAL regions
1 Supp_Motor_Area_R 11 Frontal_Inf_Orb_R

Supp_Motor_Area_L Frontal_Inf_Orb_L
Precentral_R
Precentral_L

2 Amygdala_R 12 Vermis_8
Amygdala_L Vermis_7

Cerebelum_8_R
Cerebelum_8_L

3 Thalamus_R 13 Cerebelum_10_R
Thalamus_L Cerebelum_10_L

4 Angular_R 14 ParaHippocampal_R
Angular_L ParaHippocampal_L

Hippocampus_R
Hippocampus_L

5 Caudate_R 15 Vermis_9
Caudate_L Cerebelum_9_R

Cerebelum_9_L
6 SupraMarginal_R 16 Cerebelum_Crus2_R

SupraMarginal_L Cerebelum_Crus2_L
Cerebelum_7b_R
Cerebelum_7b_L

7 Parietal_Sup_R 17 Temporal_Mid_R
Parietal_Sup_L Temporal_Mid_L
Parietal_Inf_R Temporal_Inf_R
Parietal_Inf_L Temporal_Inf_L

Fusiform_R
Fusiform_L

8 Vermis_3 18 Olfactory_R
Vermis_1_2 Olfactory_L
Cerebelum_3_R
Cerebelum_3_L

9 Vermis_6 19 Precuneus_R
Vermis_4_5 Precuneus_L
Cerebelum_4_5_R Cingulum_Mid_R
Cerebelum_4_5_L Cingulum_Mid_L

10 Cerebelum_Crus1_R 20 Cingulum_Post_R
Cerebelum_Crus1_L Cingulum_Post_L
Cerebelum_6_R
Cerebelum_6_L

Table 4.2: The AAL regions in community 1 - 20, which have been detected
by using IRM. MAP run 11 for density 32 %.
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Community AAL regions Community AAL regions
21 Frontal_Inf_Tri_R 27 Frontal_Sup_R

Frontal_Inf_Tri_L Frontal_Sup_L
Frontal_Inf_Oper_R Frontal_Mid_R
Frontal_Inf_Oper_L Frontal_Mid_L

22 Putamen_R 28 Frontal_Sup_Medial_R
Putamen_L Frontal_Sup_Medial_L
Pallidum_R Cingulum_Ant_R
Pallidum_L Cingulum_Ant_L

23 Temporal_Pole_Sup_R 29 Temporal_Pole_Mid_R
Temporal_Pole_Sup_L Temporal_Pole_Mid_L

24 Rectus_R 30 Postcentral_R
Rectus_L Postcentral_L
Frontal_Med_Orb_R Paracentral_Lobule_R
Frontal_Med_Orb_L Paracentral_Lobule_L

25 Frontal_Sup_Orb_R 31 Occipital_Sup_R
Frontal_Sup_Orb_L Occipital_Sup_L
Frontal_Mid_Orb_R Occipital_Mid_R
Frontal_Mid_Orb_L Occipital_Mid_L

Occipital_Inf_R
Occipital_Inf_L
Lingual_R
Lingual_L
Cuneus_R
Cuneus_L
Calcarine_R
Calcarine_L

26 Temporal_Sup_R 32 Vermis_10
Temporal_Sup_L
Rolandic_Oper_R
Rolandic_Oper_L
Insula_R
Insula_L
Heschi_R
Heschi_L

Table 4.3: The AAL regions in community 21 - 32, which have been detected
by using IRM. MAP run 11 for density 32 %.
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munity 32, with a density of 0.91 and community 13 with 0.48 in link density.
Community 13 consist of a part of the left and right cerebellum. Community
32 only consist of the region vermis_10, and it has very low link densities with
the rest of the communities.
The link density between communities varying between the different communi-
ties. Community 1 consist of the regions Supp_Motor_Area right and left and
the right and left precentral regions, which form the primary motor cortex. The
link density between community 1 and 6 and 19 and 30 is above 0.89. Com-
munity 17 has a link probability around 0.5 with relative many of the other
communities. Community 13 consists of regions in part of cerebellum. The
highest link density with community 13 is found between community 13 and 10
and it has a value of 0.45

The communities 8, 9, 10, 12, 13, 15, 16 and 32 all consist of regions in cere-
bellum and vermis. When looking at the four highest link densities for these
communities only community 8, 9, 10 and 32 have connections to other parts
of the brain among these. Community 9 and 10 both have a link density of
0.78 to community 3 which consist of the right and left thalamus region. A
communication structures between the communities in cerebellum is seen.

Community 11, 21, 25, 27 and 28 all contains regions in the frontal lobe. They
are all connected to some of the other communities in the frontal lobe with a link
density above 0.78. Community 11 has the highest link density to community
23 which is a part of the temporal lobe. Community 21 has the highest link
density to community 1, which is in the motor cortex and community 27 has the
highest link probability to community 19 which consist of regions in the right
and left precunes and part of the right and left cingulum. The communities in
the frontal lobe is connected.

The link densities between community 4 and community 19, 20 and 27 are above
0.78. The link density between community 19 and community 20 and 27 respec-
tively is above 0.89. The link density between community 20 and community
4 and 19 respectively is above 0.80 and community 27 and 28 respectively are
0.67. Community 27 has a link density of 0.94 with community 19 and com-
munity 28. The link density between community 28 and 27 is 0.94 and 0.80
between community 28 and 19. It seems like there is a high connection between
community the five communities 4, 19, 20, 27 and 28. Community 19, 27 and
28 are described above, community 4 is the right and left angular region and
community 20 is a part of the cingulum.
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Community 31 is the largest community, and it consists of 12 regions in the
occipital lobe.

4.5 Classification

4.5.1 K nearest neighbours

Until now it has not been possible to differentiate the HC and MS subjects from
each other after SVD was applied the η matrices. The classification methods
KNN and SVM will now be tested.
For optimizing the classification rate for KNN different values of K were tested.
The K values are the odd numbers between 1 and 30. Only the odd values are
chosen because it can be difficult to classify when K is an eval number. An
example could be when K is 4 and two of the nearest subjects is HC and two of
them is MS.
SVM is evaluated for different values of C. The tested C values are integers
between 1 and 30.
The η matrix for each subject was used for the classification. KNN and SVM
were test by the method leave a HC and a MS subject out. The remaining 70
subjects were used as training data and the two subjects were used as test data.
This was done randomly 1000 times for each of the 20 runs for each K and C
value respectively. To make it possible to evaluate for which density KNN and
SVM have the highest classification rate, the tests are made for each of the six
densities.
Before classification is done with KNN, SVD is applied the η matrices, and then
the 10 components with the largest variance was used as feature vector in KNN.
The mean of the 20 classification rates for each vale of K was estimated and the
results are shown in Figure 4.22 for the six densities. It is seen that the results
from KNN depend of the K value. For the high densities a low value of K gets
the best classification rate. The same is seen for density 2 %. For densities 4
% and 8 % the highest classification rate is found for a high value of K. The
highest classification rate is 0.6079 and it was achieved for a density of 50 %
and a K value of 7. The classification rate was below 0.5 for all values of K for
the densities 2 %, 4 % and 8 %. Baseline for classification is 0.58, so only with
the densities 32 % and 50 % it has been possible to achieve a classification rate
above baseline.
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4.5.2 Support Vector Machine

The η matrices are used for classification with SVM. The mean of the 20 classi-
fication rates for each value of C are estimated and Figure 4.23 shows the results
for the six densities. The classification rate of SVM is relative stable when the
C value varied, so the classification rate does not seems to depend on the C
value. The highest classification rate is achieved
The Highest classification rate with SVM is achieved for C = 7 and a density of
32 %. The classification rate is higher for density 16 % compared to 50 %. The
classification rate for the low densities 2 %, 4 % and 8 % is below 0.5, which is
below the baseline rate.

SVM has a higher classification rate compared to KNN in the high densities 16
%, 32 % and 50 %. With both classification methods a gap in classification rate
is seen between the low densities 2 %, 4 % and 8 % and the high densities 16
%, 32 % and 50 %.

Figure 4.24 shows the log likelihood vs. classification rate for SVM and KNN,
for each of the 20 runs with density 32 %, C = 7 and K = 7. The classifica-
tion rate between the runs for both methods are relative large. The highest
classification rate for KNN is 0.66 and the lowest is 0.5. For SVM the highest
classification rate is 0.73 and 0.59 for the lowest. It is seen, that the run with
the highest classification rate for both KNN and SVM does not has the highest
log likelihood.

The results of the classification shows, that with a density of 16 %, 32 % and 50
% it is possible to classify the subjects when using the elements in the η matrix
as features. on the basis of this it is assumed that there is a difference in some
of the elements in the η matrix between the HC subjects and the MS subjects.
MAP run 11, density 32 % is used.
A permutation test is made to test the null hypothesis: No difference between
an element in the mean of the HC η matrices and the mean of the MS η matri-
ces. Each element in the η matrix is tested independently. Because a η matrix
is symmetric only the elements in the upper triangle of the matrix and the di-
agonal is tested.
The mean of the HC η matrices and the mean of the MS η matrices are esti-
mated and the absolute difference is found in each element. The 72 subjects
were randomly divided into two groups one with 30 subjects and one with 42
subjects. The mean of the η matrices in each group are estimated and the dif-
ference between the two mean matrices in each element are estimated. This is
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done 1000 times. It is the absolute values of the difference which have been
used. The distribution over the 1000 differences in each element is made and a
significance level of 0.05 is chosen. If the probability of getting the true absolute
difference between the HC and MS is below 0.05 the null hypothesis is rejected.
Figure 4.25 shows the elements in the η matrix with p < 0.05. Four of the
elements had a p value below 0.005. These four elements, for which a differ-
ence between HC and MS have been found is (6,2), (25,6), (25,17) and (25,21).
The different AAL regions in community 2 and 6 are shown in Table 4.2 and
i community 17, 21 and 25 are shown in Table 4.3. The five different commu-
nities and their matching AAL regions are shown in axial slices of the brain
in Appendix C. Community 2 is amygdala, community 6 is the primary motor
cortex, community 17 is part of the temporal lobe and communities 21 and 25
are parts of the frontal lobe. The difference in link density is found between
the regions in the frontal lobe and the primary motor cortex and the temporal
lobe respectively. Difference is also found between amygdala and primary motor
cortex. The expected error rate for p<0.005 is about three elements and five
elements are found in this permutation test.

4.6 Correlation between the link density and the
EDSS.

Inference with IRM was made for the 42 MS subject. 20 runs were made for a
density of 32 %. The MAP run 12 is used, and 28 communities were detected
in this run.
The correlation between each element in the η matrices for the MS subjects
and theirs EDSS was estimated. Because the η matrix is symmetric only the
element in the upper triangle and the diagonal are used. The null hypothesis:
No correlation between the link density and the EDSS is tested against the al-
ternative hypothesises: There is a non zero correlation. The significance level is
set to p<0.05. Figure 4.26 shows the 29 elements with p<0.05 in the η matrix
represented by their p value. Figure 4.27 shows the correlation values for the 29
elements. 14 of the elements have a positive correlation and 15 of the elements
have a negative correlation. A positive correlation means that when EDSS in-
creases the link density increases. A negative correlation means that the higher
EDSS the lower link density between the elements.
6 of the elements in the η matrix have a p value < 0.005. The elements are
(10,4), (10,5), (10,15), (10,21) and (13,4) which have a negative correlation and
the element (22,18) which has a positive correlation. Table 4.4 shows the re-
gions which represents the eight communities. The expected error rate for a
significance level of 0.005 is about 4.
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Community AAL regions
10 Vermis_9

Vermis_8
Cerebelum_8_R
Cerebelum_8_L
Cerebelum_9_R
Cerebelum_L

4 Caudate_R
Caudate_L

5 Precuneus_R
Precuneus_L
Cingulum_Mid_R
Cingulum_Mid_L

13 Cerebelum_Crus1_R
Cerebelum_Crus1_L
Cerebelum_Crus2_R
Cerebelum_Crus2_L

15 Supp_Motor_Area_R
Supp_Motor_Area_L
Precentral_R
Precentral_L
Postcentral_R
Postcentral_L
Paracentral_Lobule_R
Paracentral_Lobule_L

18 Frontal_Inf_Orb_R
Frontal_Inf_Orb_L

21 Frontal_Sup_R
Frontal_Sup_L
Frontal_Mid_R
Frontal_Mid_L

22 Frontal_Sup_Orb_R
Frontal_Sup_Orb_L
Frontal_Mid_Orb_R
Frontal_Mid_Orb_L

Table 4.4: The communities which have significant correlation between the
link densities The elements, in the η matrix, with a significant cor-
relation between the link probability and the EDSS. Also the regions
representing the eight communities are shown.
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Figure 4.22: The mean classification rate of the 20 run made for different
values of K, when using KNN for classification. The results are
shown for the six densities.
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Figure 4.23: The mean classification rate of the 20 run made for different
values of C, when using SVM for classification. The results are
shown for the six different densities.
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Figure 4.24: The likelihood plotted as a function of classification rate for the
20 runs. Density 32 %, C = 7 and K = 7 .
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Figure 4.25: The elements in η with a p value ≤ 0.05 when comparing the
mean values for the HC and MS group.
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Figure 4.26: The elements in the η matrix for MS subjects, with significant
(p<0.05) correlation between link density and EDSS, represented
by their p values.
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Figure 4.27: The elements in the η matrix for MS subjects, with significant
(p<0.05) correlation between link density and EDSS, represented
by their correlation values.
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Chapter 5

Discussion

5.1 Resting state networks

In this thesis 32 communities have been detected during resting state, this is
more than the 8 RSN presented by [45]. A higher level of details in the commu-
nication pattern are seen when the number of detected communities are high.
The detected communities have been compared to the RSN defined by van den
Heuvel et al. [45]. Communication patterns are found between communities,
which is a part of cerebellum and also between communities, which is a part of
the frontal lobe.

A high link density is found between the communities 4, 19, 20, 27 and 28.
These communities consists of the brain regions angular, precuneus, cingulum
and part of the frontal lobe. The detected regions are symmetric so both the
left and right region is a part of the networks. The DMN defined in Table 3.3
( defined from the DMN described in the 8 papers.) is not symmetric. This
could be caused by the converting from the given areas in the article to the
AAL regions. The precuneus regions are part of community 19 but it is not
represented in Table 3.3. In the literature the precuneus is described as a part
of the DMN [45]. The angular, cingulum and the regions in the frontal lobe is
a part of the default mode networks. In the communities detected in this thesis
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all the regions in cingulum are a part of the network. The network found from
the literature contain only one region of the cingulum. A region in the temporal
lobe are not represented in the five communities detected in this thesis. A region
in the tempral lobe is represented in the network shown in Table 3.3. Region
in the temporal lobe is also described in the literature [45]. Community 17
consist of parts of the temporal area, and this community has a relative high
link probability to community 19 and 27. It seems like the communities 4, 19,
20, 27 and 28 form a network which is comparable with the DMN defined from
the 8 papers. It can be discussed if community 17 should be a part of this
network.
Community 31 consists of regions in the occipital lobe, and it seems comparable
to the with the primary visual and the extra-striate visual network.
Community 1 contains the regions left and right Supp_Motor_Area and left
and right Precentral, these regions can be defined as the primary motor cortex.
This network seems to be comparable with the primary motor network.
It has not been possible to detect a network which could be compared to the
right and left parietal-frontal networks. Community 25 consist of part of the
frontal lobe and community 7 is a part of the parietal lobe, but the link density
between the two communities are 0.06, so only very low communication between
these communities are found. With such a low link density it is not comparable
with the parietal-frontal network in the literature.
The RSN in this thesis have been detected by using rs-fMRI data from both
HC subjects and MS subjects. Changes in the connectivity in the DMN have
been found in patients with MS [6]. To achieve an understanding of the RSN in
HC subjects and MS subjects, studies have to be made separate for these two
groups.
The communities detected with IRM is comparable with the DMN, primary
motor, primary visual and extra-striate visual. The results indicates that it is
possible to detect RSN when using IRM rs-fMRI data.

5.2 Classification

It was not possible to classify the HC and MS subjects after SVD were made
for the feature vector of the elements in the correlation matrices and η matrices
respectively. Instead KNN and SVM were used for classification.
The best classification rate was found for a density of 32 %. When using SVM
and for a density of 50 % when using KNN. SVM and KNN were used to dis-
criminate between the HC and MS subjects. The best mean classification rate
for SVM was 0.65 and 0.61 for KNN. The baseline probability is 0.58 so the
classification rate when using KNN was only above baseline for the density 0.5.
For density 32 % the classification rate and baseline was almost the same and
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for the low densities 2 %, 4 %, 8 % the calssification rates were below baseline.
When using SVM the classification rate for the densities 16 %, 32 % and 50
% were above baseline. The classification rates for both methods for the low
densities 2 %, 4 % and 8 % are significant lower compared to the classification
rates for the three highest densities. The brain is divided into 116 regions, so
the size of the graphs is relative small. This means, that for the low densities
the number of links in the adjacency matrices are small. This could be an ex-
planation for why the classification rate is so low for the low densities.
When using SVM the highest classification rate is found for density 32 %, and
the classification rates are higher for density 16 % compared to the classification
rate for density 50 %. With a density of 50 % the highest half of correlations
between regions are defined as a link. This means that links are defined even
between regions with a low correlation, so the noise in the graph can be high,
and this can have an influence on the results. When using KNN for classifica-
tion the highest rate is achieved for density 50 %, which deviate from the results
with SVM.

It have been possible to discriminate between HC and MS subjects with a clas-
sification rate above baseline. This indicates that there is a difference between
some of the elements in the estimated η matrices for the HC and the MS sub-
jects. The permutation test shows, that in four of the elements a difference
between HC and MS subjects were found with p<0.005. The accepted error
rate for the permutation test for p<0.005 is about 3, so the four elements with
p<0.005 is almost of the same size as the accepted error. So the result is not
significant, but it indicates that difference between HC and MS subjects can be
found in given communities.
The difference in link density is found between regions in the frontal lobe, be-
tween regions in the frontal lobe an regions in the temporal lobe and fusiform.
Between regions in the frontal lobe and the supra marginal region and between
amygdala and the supra marginal region. This is all regions with cognitive func-
tions like long time memory in the frontal lobe, body and face recognition and
word recognition in fusiform, storing new memory in the temporal lobe, handle
defence reactions. In multiple sclerosis the hole brain can be affected, so cogni-
tive deficits are also seen in patients with multiple sclerosis.

The classification rate is varying between the runs, with density 32. The lowest
classification rate for SVM is 0.59 and it is just above the baseline. The lowest
classification rate for KNN was 0.5, which is below the baseline. SVM has the
highest classification rate of 0.73. The MAP run (11), for the same density,
has a classification rate of 0.67 for C = 7. The same is seen when using KNN.
The highest classification rate of 0.66 was achieved for run number 1 (K=7).
The MAP run (11) has a classification rate of 0.64. The same is also seen for
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the other densities. This means that the run with the highest log likelihood for
the model fitting the data does not have the highest classification rate. The
likelihood tells something about the communication patterns in the brain and
the classification is made of the result of the changes in the brain due to the dis-
eases, this can explain why the run with the highest likelihood do not achieved
the highest classification rate.
Mørup et al.[34] analysed rs-fMRI data from HC and MS subjects, with the
purpose of detecting community structures by using IRM. KNN and SVM were
used to discriminate the HC subjects from the MS subjects. They achieved a
classification rate of 0.67 with KNN and 0.72 for SVM. Mørup et al. achieved
higher classification rates for SVM and KNN compared to the mean classifica-
tion rate found in this thesis. When comparing the results by Mørup et al. with
the highest classification rate for density 32% the classification rate for KNN
and SVM the classification rates are almost the same. In both studies IRM was
used, and the η matrices for each subjects were used as feature vector for the
classification, but in this thesis SVD was made for the feature vectors and the
first 10 components was used as features when classify with KNN. They create
the adjacency matrix by thresholding the estimated mutual information graph
and made classification for one run with IRM.
It seems like it could be difficult to classify subjects when using the η matrix as
feature vector, because of the large variation between runs.

5.3 Correlation between EDSS and elements in η

Inference with IRM were made for the data from the MS subjects. The esti-
mated η matrix for each subject was used when correlation between the EDSS
for each subject and each of the elements in the η matrices. The null hypoth-
esis that there was no correlation between the the element in η and the EDSS
was tested against the alternative hypothesis that the correlation is different
from zero between the element and EDDS. Six elements in the η matrix were
correlated to EDSS with p<0.005. Community 10 was one of the communities
represented in 4 of the elements. Each with a negative correlation with EDSS,
which mean that the link density decreases when the EDSS increases. The
communities 10 and 13 is part of the cerebellum, which in concert with motor
cortex and prefrontal areas in the brain support motor and cognitive skills [30].
The link density between cerebellum and regions in the frontal part of the brain
and cerebellum and the motor and sensory areas are negative correlated with
EDSS. This results indicates that the communication paths decreases when the
diseases progress which affects the patients cognitive and motor skills. An posi-
tive correlation is found between EDSS and the link density between regions in
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the orbitaofrontal cortex. So when the EDSS score increases for patients with
MS the link density between regions in the orbitofrontal cortex increases. This
could be because new communication paths are made to compensate for the
degenerative neurons in these regions.
Six elements in the η matrix have a p<0.005 this is just above the number of
expected errors, so the results is not significant. But the results indicate that
the communication between cerebellum and frontal and motor regions are re-
duced which have been shown in the literature.

more studies have to be made before it possible to make a conclusion.
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Chapter 6

Conclusion

The IRM has been used to detect community structures in rs-fMRI data sets.
These communities have been combined to form an equivalent resting state net-
work.
It seems that the IRM can be used for detection and evaluation of resting state
networks in the human brain.
The classification rate measured over 20 runs on the same data set varies be-
tween 59-73 % for SVM. This range is on par with baseline classification and
is comparable with the best published results [34], with a classification rate of
approximately 72 %.
Classification using KNN was found to have a mean value of 66 % compared
with 67 % by Møeup et al.[34]. The mean value in this thesis have been obtained
over 20 runs compared with a single run in [34].
Classification of the subjects is not stable, and the investigated method with link
density as feature vector can not be used as a standalone classification method.
It has been found that there is no significant correlation between the likelihood
and the classification rate.
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Precentral_L x
Precentral_R x
Frontal_Sup_L x x x
Frontal_Sup_R x x x x

Frontal_Sup_Orb_L x
Frontal_Sup_Orb_R x

Frontal_Mid_L x x x
Frontal_Mid_R x

Frontal_Mid_Orb_L x
Frontal_Mid_Orb _R x
Frontal_Inf_Oper_L
Frontal_Inf_Oper_R
Frontal_Inf_Tri_L
Frontal_Inf_Tri_R
Frontal_Inf_Orb_L x
Frontal_Inf_Orb_R x
Rolandic_Oper_L x
Rolandic_Oper_R x

Supp_Motor_Area_L x
Supp_Motor_Area_R x

Olfactory_L
Olfactory_R x

Frontal_Sup_Medial_L x x x x
Frontal_Sup_Medial_R x
Frontal_Med_Orb_L x x
Frontal_Med_Orb_R x

Rectus_L x x
Rectus_R x
Insula_L
Insula_R x

Table B.1: The DMN given by AAL regions from different studies. The AAL
regions are found from coordinates in MNI space. In [47] the coor-
dinates were given in MNI space. In [39] the coordinates were given
in 711-2B space. In [46] the network was given in Brodmann areas.
In the rest of the studies the coordinates were given in Talairach
space.
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Cingulum_Mid_L x x x
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Cingulum_Post_R x x
Hippocampus_L
Hippocampus_R

ParaHippocampal_L x x x
ParaHippocampal_R x x

Amygdala_L
Amygdala_R
Calcarine_L x x
Calcarine_R x x
Cuneus_L x
Cuneus_R x
Lingual_L x
Lingual_R

Occipital_Sup_L x
Occipital_Sup_R x
Occipital_Mid_L x x
Occipital_Mid_R x
Occipital_Inf_L
Occipital_Inf_R

Fusiform_L x x
Fusiform_R x x
Postcentral_L x
Postcentral_R x
Parietal_Sup_L x
Parietal_Sup_R x

Table B.2: The DMN given by AAL regions from different studies. The AAL
regions are found from coordinates in MNI space. In [47] the coor-
dinates were given in MNI space. In [39] the coordinates were given
in 711-2B space. In [46] the network was given in Brodmann areas.
In the rest of the studies the coordinates were given in Talairach
space.
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SupraMarginal_R x x

Angular_L x x x x x x
Angular_R x x x x x x
Precuneus_L x x x
Precuneus_R x x

Paracentral_Lobule_L x
Paracentral_Lobule_R x

Caudate_L
Caudate_R x
Putamen_L
Putamen_R
Pallidum_L
Pallidum_R
Thalamus_L
Thalamus_R x
Heschl_L
Heschl_R

Temporal_Sup_L x
Temporal_Sup_R x

Temporal_Pole_Sup_L x
Temporal_Pole_Sup_R x

Temporal_Mid_L x x
Temporal_Mid_R x x x x x

Temporal_Pole_Mid_L x
Temporal_Pole_Mid_R x

Temporal_Inf_L x x x
Temporal_Inf_R x x

Table B.3: The DMN given by AAL regions from different studies. The AAL
regions are found from coordinates in MNI space. In [47] the coor-
dinates were given in MNI space. In [39] the coordinates were given
in 711-2B space. In [46] the network was given in Brodmann areas.
In the rest of the studies the coordinates were given in Talairach
space.
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[4
6]

Cerebelum_Crus1_L
Cerebelum_Crus1_R
Cerebelum_Crus2_L x
Cerebelum_Crus2_R x

Cerebelum_3_L
Cerebelum_3_R

Cerebelum_4_5_L
Cerebelum_4_5_R
Cerebelum_6_L
Cerebelum_6_R
Cerebelum_7b_L
Cerebelum_7b_R
Cerebelum_8_L
Cerebelum_8_R
Cerebelum_9_L
Cerebelum_9_R x
Cerebelum_10_L
Cerebelum_10_R

Vermis_1_2
Vermis_3

Vermis_4_5 x
Vermis_6
Vermis_7
Vermis_8
Vermis_9
Vermis_10

Table B.4: The DMN given by AAL regions from different studies. The AAL
regions are found from coordinates in MNI space. In [47] the coor-
dinates were given in MNI space. In [39] the coordinates were given
in 711-2B space. In [46] the network was given in Brodmann areas.
In the rest of the studies the coordinates were given in Talairach
space.
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Figure C.1: The AAL regions of 1. community detected by IRM, shown in
the brain.
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Figure C.2: The AAL regions of 2. community detected by IRM, shown in
the brain.
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Figure C.3: The AAL regions of the 3. community detected by IRM, shown
in the brain.
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Figure C.4: The AAL regions of the 4. community detected by IRM, shown
in the brain.
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Figure C.5: The AAL regions of the 5. community detected by IRM, shown
in the brain.
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Figure C.6: The AAL regions of the 6. community detected by IRM, shown
in the brain.
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Figure C.7: The AAL regions of the 7. community detected by IRM, shown
in the brain.
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Figure C.8: The AAL regions of the 8. community detected by IRM, shown
in the brain.
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Figure C.9: The AAL regions of the 9. community detected by IRM, shown
in the brain.
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Figure C.10: The AAL regions of the 10. community detected by IRM, shown
in the brain.
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Figure C.11: The AAL regions of the 11. community detected by IRM, shown
in the brain.
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Figure C.12: The AAL regions of the 12. community detected by IRM, shown
in the brain.



106 Communities

Figure C.13: The AAL regions of the 13. community detected by IRM, shown
in the brain.
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Figure C.14: The AAL regions of the 14. community detected by IRM, shown
in the brain.
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Figure C.15: The AAL regions of the 15. community detected by IRM, shown
in the brain.
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Figure C.16: The AAL regions of the 16. community detected by IRM, shown
in the brain.
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Figure C.17: The AAL regions of the 17. community detected by IRM, shown
in the brain.
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Figure C.18: The AAL regions of the 18. community detected by IRM, shown
in the brain.
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Figure C.19: The AAL regions of the 19. community detected by IRM, shown
in the brain.
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Figure C.20: The AAL regions of the 20. community detected by IRM, shown
in the brain.
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Figure C.21: The AAL regions of the 21. community detected by IRM, shown
in the brain.
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Figure C.22: The AAL regions of the 22. community detected by IRM, shown
in the brain.
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Figure C.23: The AAL regions of the 23. community detected by IRM, shown
in the brain.
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Figure C.24: The AAL regions of the 24. community detected by IRM, shown
in the brain.
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Figure C.25: The AAL regions of the 25. community detected by IRM, shown
in the brain.
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Figure C.26: The AAL regions of the 26. community detected by IRM, shown
in the brain.
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Figure C.27: The AAL regions of the 27. community detected by IRM, shown
in the brain.
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Figure C.28: The AAL regions of the 28. community detected by IRM, shown
in the brain.
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Figure C.29: The AAL regions of the 29. community detected by IRM, shown
in the brain.
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Figure C.30: The AAL regions of the 30. community detected by IRM, shown
in the brain.



124 Communities

Figure C.31: The AAL regions of the 31. community detected by IRM, shown
in the brain.
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Figure C.32: The AAL regions of the 32. community detected by IRM, shown
in the brain.
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