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Summary, English

In this thesis a new algorithm is examined with respect to its application to
electroencephalography (EEG) source reconstruction and its potential use in
EEG biofeedback. The novel technique is named the variational Garrote (VG)
and was suggested by Kappen et al. in a not yet published article. The algo-
rithm makes two key assumptions; the problem at hand is linear, and it has a
sparse solution. The latter is obtained by including a binary switch for each
input variable in the linear model that determines whether a variable is rele-
vant or not. The solution is found using Bayesian inference. The assumptions
potentially make the algorithm well-suited for solving the highly underdeter-
mined EEG inverse problem. Main contributions of this thesis include verifying
VG in EEG settings and expanding the algorithm to the time domain. Pub-
lications of �ndings are submitted to the International Conference on Acous-
tics, Speech, and Signal Processing 2013 and the IEEE International Winter
Workshop of Brain-Computer Interface 2013. The algorithm's performance, as
described by Kappen et al., was con�rmed initially. Reformulations of the VG
problem reducing computation complexity using the Kailath Variant relation
and a dual representation, respectively, were compared to applying the least
absolute shrinkage and selection operator (LASSO) and to a sparse Bayesian
model with a linear basis. Here, a forward �eld matrix was used as input while
the source distribution was synthetically created. The dual formulation of the
VG algorithm was found to be superior and was expanded from the time instan-
taneous formulation. Under the assumption that activity in a source is present
for a certain but possibly short amount of time, the individual binary switches
were assumed to have constant modes (on or o�) across 20-25 time samples,
corresponding to 100 ms in EEG settings. The time-expanded version of the
dual VG formulation was validated using synthetic data and EEG data with the



ii

visual stimuli paradigm described by Henson et al. (2003). The resulting source
distribution was comparable to that presented in studies of the response mea-
sured by EEG as well as by other modalities. The VG algorithm is suggested
to be further expanded to perform online tracking of brain activity by reducing
the computation complexity further and to include spatial smoothness.

Keywords: Sparsity, EEG, Real-time imaging, Bayesian inference, Variational
Garrote, LASSO, ARD.



Summary, Danish

I denne afhandling undersøges en ny algoritme med hensyn til dens anvendelse
i elektroencefalogra� (EEG) kilde lokalisation og dens potentielle brug i EEG
biofeedback. Den nye teknik kaldes variational Garrote (VG) og blev foreslået
af Kappen et al. i en endnu upubliceret artikel. Algoritmen foretager to vigtige
antagelser: problemet der skal løses er lineært, og det har en sparse løsning. Det
sidstnævnte opnås ved inkludering af en binær parameter for hver inputvariabel
i den lineære model, der bestemmer om en variabel er relevant eller ej. Løsnin-
gen �ndes via Bayesian inferens. Antagelserne gør potentielt VG velegnet til
at løse det stærkt underbestemte inverse EEG problem. Hovedbidrag i denne
afhandling inkluderer veri�kation af VG i EEG sammenhænge og udvidelse af
algoritmen til tidsdomænet. Publikationer af fund er indsendt til International
Conference on Acoustics, Speech, and Signal Processing 2013 og IEEE Interna-
tional Winter Workshop of Brain-Computer Interface 2013. Algoritmens evner,
som beskrevet af Kappen et al., blev bekræftet i et forstudie. Reformuleringer af
VG problemet blev udført for at reducere beregningskompleksiteten ved hjælp
af Kailath Variant relationen og en dual repræsentation. Begge blev sammen-
lignet med least absolute shrinkage and selection operator (LASSO) og med en
sparse Bayesian model med lineær basis. En forward �eld matrix blev her brugt
som input, mens kildefordelingen var syntetisk dannet. Den duale formuler-
ing af VG problemet blev fundet overlegen og blev udvidet fra den momentane
formulering. Under antagelsen om at aktivitet i en kilde er til stede i et vist,
muligvist kort, tidsrum, blev de enkelte kilders binære variabel modelleret til at
være konstant tændt henholdsvis slukket inden for 20-25 tidssamples, svarende
til 100 ms i EEG sammenhænge. Den udvidede tidsversion af den duale VG-
formulering blev valideret via syntetisk data og via EEG data med det visuelle
stimuli paradigme beskrevet af Henson et al. (2003). Den resulterende kilde-
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fordeling var sammenlignelig med den fundet i litteraturen, både fra studier af
responset målt med EEG og målt med andre billedmodaliteter. Det foreslås
at udvide VG-algoritmen til brug af online tracking af hjerneaktivitet ved at
reducere beregningskompleksiteten yderligere og inkludere spatial glathed.
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Abbreviations

ARD Automatic relevance determination

BCI Brain computer interface

BEM Boundary element method

COH Coherence

DMLT Donders machine learning toolbox

EEG Electroencephalography

EP Evoked potential

EPSP Excitatory postsynaptic potential

ERP Event-related potential

FEM Finite element method

(f)MRI (Functional) Magnetic resonance imaging
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ICA Independent component analysis

IPSP Inhibitory postsynaptic potential

LARS Least angle regression

LASSO Least absolute shrinkage and selection operator

LORETA Low resolution brain electromagnetic tomography

MCE Minimum current estimate

MEG Magnetoencephalography

MNE Minimum norm estimate

(n)MSE (Normalized) Mean squared error

MSP Multiple sparse prior

OLS Ordinary least squares

PET Positron emission tomography

PSP Postsynaptic potential

RVM Relevance vector machine

SBL/M Sparse Bayesian learning/model

SNR Signal to noise ratio

SPM Statistical Parametric Mapping

SVM Support vector machine

VG Variational Garrote

VG-dual Dual formulation of variational Garrote

VG-KV Kailath Variant formulation of variational Garrote



Nomenclature

diag(v) Diagonal matrix with the vector v in the diagonal

Vdiag Vector of diagonal elements in matrix V

|a| The absolute value of the scalar a

E[a] Expected value of a

v Mean of v

∇ Gradient operator

δ Kronecker delta

� Element-wise division

� Element-wise multiplication

.2 Element-wise square

σ2 Variance

β Precision
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n Number of sources/input variables; index i

p Number of electrodes/output samples; index µ

T Number of time samples; index t

y (and Y) Samples of response/EEG potentials in electrodes (across time)

w (and W) EEG sources (across time)

X Input/transposed forward �eld matrix

χ Input covariance matrix

ξ Noise component

F Variational free energy

si Binary switch in VG

mi Activation, probability of si = 1 in VG

γ Sparsity level in VG

λ Regularization parameter in LASSO

αi hyperparameter/weight decay in ARD and SBM

φ(·) Basis function

Fs Source retrieval index
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Chapter 1

Introduction

In this chapter the general problems of investigating the functional brain are
introduced. Electroencephalography (EEG) represents one of the earliest at-
tempts of looking inside the brain. This technique exploits the electric �elds
generated by neuronal activity which are measurable at the scalp. Later addi-
tions to neuroimaging includes positron emission tomography (PET) and func-
tional magnetic resonance imaging (fMRI), both of which use the hemodynamics
of the brain as an expression of brain activity [HFT00]. PET and fMRI have
higher spatial resolution than EEG, however EEG is superior in respect to time
resolution. The goal of this thesis is to achieve online tracking of brain activity,
i.e. to investigate time dependent conditions of the brain. EEG is therefore the
most suitable modality for the current application. Further adding to its use in
this setting is its portability and low cost compared to many other neuroimaging
modalities.

Backtracing from the measured EEG potentials at the scalp to the actual genera-
tors in the brain is a highly underdetermined task. Research in this area is there-
fore intense and ongoing. Numerous mathematical models have been suggested,
and many of these approach the problem by introducing sparseness into the solu-
tion [SHH+97, UHS99, DET06, SSL06, FHD+08, HNZ+08, HTD+11, DPO+12].
The aim of this thesis is to explore the sparsity-inducing algorithm; variational
Garrote (VG), presented by Kappen et al. (2012) [KG12]. Especially its perfor-
mance in solving the inverse EEG problem is investigated along with the possi-
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bilities of using the algorithm for EEG biofeedback. VG is further described in
section 2.5.

First an overview of the brain's organization is given, on a larger as well as on
a smaller scale. Next the mechanisms behind EEG are explained and �nally
the di�culties and considerations of using the measured EEG to create a 3D
reconstruction of the brain are reviewed.

1.1 The Structural and Functional Brain

The ability to make realistic interpretations of signal measured from the brain
largely includes understanding the building blocks and mechanisms of the brain
[NS06]. Misunderstandings of what produces e.g. EEG data is an obstacle in
translating the signal and using it in clinical applications.

This section brie�y explains the elements of the brain's composition which are
important for the problem at hand. The further technical description of the
generation and use of EEG signal is left for the next head section.

1.1.1 Macro structure and organization

The cerebrum is the most relevant part of the brain in EEG contexts. It consists
most importantly of neurons, whose orientation and location of structural parts
are what create the white and gray matter of the brain [NHW03]. The cell
bodies, or somas, of the neurons are located in the gray matter. The gray
matter is found at the surface of the brain, where it forms the cortex, and
embedded in the white matter where it is known as the nuclei [NHW03]. The
white matter consists of the neurons' myelinated axons. These carry information
between neurons in related areas, to the brain stem or spinal cord, or to the
other hemisphere. It is these approximately 1014 interconnections that make up
'intelligence' [NHW03, NS06].

The 1010 neurons of the cerebral cortex are among other things responsible
for motor function, perception, visual function, language and communication
between these brain processes [SST08]. The cerebrum is functionally divided
into lobes, which are areas with specialized functions, see �gure 1.1.

The nuclei of the brain include the thalamus (responsible for passing sensory
information to the correct cortex area), the hypothalamus (known for monitoring
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Frontal Lobe
Movement
Thinking initiation
Reasoning (judgement)
Behavior (emotions)
Memory
Speaking

Parietal Lobe
Knowing right from left
Sensation
Reading
Understanding spatial relationships

Cerebellum
Balance
Coordination
Fine muscle control

Occipital Lobe
Vision
Color blindnessTemporal Lobe

Understanding language
Behavior
Memory
Hearing

Brain Stem
Breathing
Blood pressure
Heartbeat
Swallowing
Alertness/sleep
Body temperature
Digestion

Figure 1.1: The division of the cerebrum into lobes is visualized together with
the brain stem and cerebellum. The main functions of these struc-
tures are presented. Modi�ed from [Gra06].

the water balance and temperature), and the basal ganglia [SST08]. The latter
act in processing of voluntary movement and in many mental functions [SST08].
The basal ganglia includes the largest nucleus of the brain; the substantia nigra.

One of the most common diseases of the brain is Parkinson's disease [MWDD05].
The majority of the symptoms produced are caused by deterioration of the
dopamine producing neurons of the substantia nigra [MWDD05, TT08]. As
mentioned, this area plays a role in movement, and this function is thus a�ected
by the degeneration [TT08]. The etiology is largely unknown and treatment
options are sparse, indicating the complexity of the disease and of the brain.

1.1.2 Physiology of neurons

The typical neuron consists of a cell body from where an axon, or nerve �ber,
along with several dendrites extend [SST08]. The dendrite is the place of signal
reception from other neurons through their respective axons [HVG+07]. The
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signal propagates along the axon as action potentials, and this at a speed of
15-100 m/s [SST08].

In the cerebrum a signal is transmitted between neurons through a chemical
synapse. At the terminal of the axon, neurotansmitters are released following
an action potential. When these neurotransmitters reach a dendrite of the post-
synaptic neuron, ligand gated ion channels open [SST08]. This can either result
in depolarization or hyperpolarization of the postsynaptic neuron, i.e. create an
excitatory postsynaptic potential (EPSP) or an inhibitory postsynaptic poten-
tial (IPSP), respectively [HVG+07]. An IPSP will push the postsynaptic neuron
further away from triggering an action potential, while the EPSP will do the
opposite. The reaction of the neuron is a summation of all of the postsynaptic
potentials (PSPs) it receives at its dendrites [HVG+07, SST08].

The pyramidal neurons are in EEG applications the most interesting [NS06,
Tep02]. They have one axon but many dendrites. The dendrites of neighbor-
ing neurons in the cortex are highly aligned and perpendicular to the scalp
[HVG+07]. The electric �elds generated by the in�ux or e�ux of ions at the
dendrites are thus from a distance summed to create a �eld measurable with
EEG [HVG+07]. Although the axons also carries ions, their generated potential
di�erence is shorter in duration, 0.3 ms compared to 10-20 ms, and often not
summable between neighboring axons as these are not aligned [HVG+07]. It
is assumed that primarily the neurons in the cortex give rise to the electrical
�eld measured by scalp electrodes, as potential �elds generated at the nuclei are
most likely too far away to be easily detected [BML01].

1.2 Principles of EEG

Measuring EEG is relatively simple. Understanding the origin of the signal and
extracting information from it, is not as straightforward. This section introduces
EEG with respect to how it is produced and how it is used.

1.2.1 Generation of EEG signal

The origin of EEG signal was brie�y explained in the previous section and will
be elaborated in the following.

Most signal recorded by EEG is the result of PSPs at cortical pyramidal neurons.
The PSPs occur at the dendrites of the neuron and create sources or sinks,
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depending on the nature of the PSP, i.e. inhibitory or excitatory, respectively.
To conserve electrical neutrality a sink/source arises in a di�erent place of the
neuron [PM09]. An example where an EPSP depolarizes the neuron by letting
in Na+, is seen in �gure 1.2.

Compared to the distance from the cortex to the EEG electrodes at the scalp,
the distance between the source and sink of the neuron is very small. The neuron
is thus comparable to a current dipole [PM09]. The current illustrated by the
fat arrow in �gure 1.2 is called the primary current and runs inside the neuron.
To close the circuit, extracellular cations �ow along the membrane towards the
sink of the dipole, as removal of cations from this area makes it less positive than
the surroundings [NS06]. On the intracellular side of the membrane the current
moves in the opposite direction (away from the sink) and exits at another part
of the membrane (the source), and thus the current loop across the membrane
is connected, creating an intra- as well as extracellular potential [NS06]. It is
the latter that can be measured by EEG [HVG+07].

Predominately the neurons near the scalp produce a measurable signal. For deep
dipoles to show up on EEG they have to be of high magnitude as the potential is

Figure 1.2: Current dipole representation of a cortical pyramidal neuron un-
dergoing EPSP. The thin arrow indicates position of cation in�ow,
and thus the place of the sink. The fat arrow indicates the move-
ment of cations from the sink towards the source, this current is
called the primary current. Outside the neuron, current �ows in
the opposite direction. From [PM09].
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inversely proportional to the squared distance, approximately [NS06]. However
if many synchronous neurons are at play, this relation overestimates the e�ect
distance has on the potential �eld.

1.2.2 Recording EEG

EEG can be recorded using scalp electrodes or intracranial electrodes. The
latter is, as the name implies, a very invasive approach, and is mostly used to
locate epileptic foci. The current application is the non-invasive scalp EEG and
the description of the procedure in measuring EEG will thus be focused on this
type of recording.

EEG contains potential di�erences measured between pairs of electrodes, which
are fed into an ampli�er that boosts the signal preparing it for analog-to-digital
conversion [NS06, Tep02]. The common-mode potential, consisting mainly of
artifacts from power lines, is sought removed [NS06]. Often all electrodes utilized
for EEG registration are placed on the scalp, and by using the di�erence between
their measured potentials non-brain produced scalp potentials are calculated
out. One speci�c electrode can be chosen to work as reference for the other
electrodes. The recording can later be re-referenced to another electrode or to
an average reference [NS06]. A bipolar montage is also sometimes applied, here
the potential di�erence is measured between two neighboring electrodes [NS06].
Furthermore non-scalp EEG electrodes can be used as reference [Tep02].

Additional processing of the recorded data is performed. This includes �ltering
to reduce artifacts e.g from blinking and employing band pass �lters to remove
noise [Tep02].

1.2.3 Application of EEG

The recorded EEG signal can be divided into spontaneous potentials and evoked
potentials (EPs)/event-related potentials (ERPs)[NS06]. The spontaneous po-
tentials are subdivided according to their frequency content; delta (1-4 Hz),
theta (4-8 Hz), alpha (8-12 Hz), beta (13-20 Hz) and gamma (>20 Hz) bands
[NS06]. The potentials generated by the neurons of the brain are usually a mix
of these. EPs are the direct response to a speci�c stimulus while ERPs require a
higher order of processing of the presented stimulus. To clearly see the EP/ERP,
many repetitions of the stimuli are often necessary in order to facilitate an aver-
aging out of the spontaneous potentials as well as to remove noise. The EP/ERP
normally produces a waveform of a speci�c appearance, maximum 0.5 seconds
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after presentation of stimulus [NS06]. The N170 complex is an example of a
component found in the ERP speci�c to the face-evoked responses [HGGG+03].
This ERP shows peak activity around 170 ms post-stimulus.

As scalp EEG is a non-invasive brain imaging technique with high temporal
content, it is applied in several areas of research of human behaviour and
cognition[NS06], often in the form of EP/ERPs. The spontaneous EEG data
is widely utilized in diagnostics; e.g. in the area of epilepsy, head injury and
sleep disorders, to name a few [NS06]. Alzheimer's disease is one example where
research is performed to expand the knowledge of its pathophysiology and to
enable earlier detection of the condition [NS06].

A newer advance in the application of EEG is neurofeedback. The goal is for
the user/patient to train speci�c activation of a brain area by receiving infor-
mation about the state of their brain [Tep02]. The information can consist of
the frequency content of the potentials received at electrode level or of source
reconstruction images. The former was done in a study of ADHD patients who
trained their brain wave activity through EEG biofeedback [LHR96]. The re-
sults were an increase in intelligence functioning and attention ability [LHR96].
Symptom reduction in a patient with Parkinson's disease has also been described
[TT08]. The focus was on increasing the activity of the sensor motor rhythm,
which is seen decreased in Parkinson's patients [TT08].

Using 3D images as biofeedback, so far, poses a trade o� between quality of the
applied model and computation complexity. Achieving source reconstructed im-
ages of the brain online, thus restricts the method by computation time, as too
big a delay between activation and reproduction of activation will confuse the
user. Therefore often the minimum norm estimate (MNE) is applied, which has
a closed form solution, but not optimal performance. Promising results was seen
using a Baysian MNE approach to perform source reconstruction in a study dif-
ferentiating emotional responses [PSS11]. Here a delay of 150 ms was achieved.
Making this study even more relevant to the focus of the current study, is the
use of a wireless EEG headset synchronized with a smartphone, thus making
the interface between user and system simple. This interface was introduced in
[SLS11]. Initial research on real-time imaging in clinical applications has been
performed [IHCL07]. It was found that distinctions in the cortical alpha rhythm
between healthy subjects and persons with dementia were indeed detectable. A
latency of 200 ms was reported using an MNE approach, and where the cortex
was split into 1000 vertices and applied to 128 time samples.

Another real-time application of EEG source reconstruction is Brain Computer
Interface (BCI) [BMG11]. In this context source reconstruction has been shown
to outperform electrode level information in decoding mental imagery tasks
[BMG11]. A combination of source and sensor level information has also shown
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to improve results [AHJ12]. It is argued that the improvement is caused by a
denoising of the sensor data by projecting it on to source space, thus making
previously invisible information visible.

1.2.4 Example of EEG data

The multimodal face-evoked data set is a recording of subjects being presented
with stimuli: either a face or a scrambled face [ACM+12]. The data is created
as described by Henson et al. (2003), see phase 1 in [HGGG+03] for paradigm
description. The intention is to reveal the di�erence between the human per-
ception of a face versus an unde�nable object. Also human recognition of faces
was investigated by using familiar faces versus unfamiliar faces. The unfamiliar
and familiar faces have however been collapsed in the present study. Further-
more the subjects in the study indicated by �nger tapping the symmetry of the
images.

The data set is interesting to work on as it has been analyzed multiple times
and contains not only EEG data, but also magnetoencephalography (MEG)
and fMRI data. This supplies a certain knowledge about what to expect, when
applying a novel algorithm. As several EEG source localization experiments
have been conducted on this data set, a qualitative comparison with the current
experiment is thus possible. The data set is available through the website of
Statistical Parametric Mapping (SPM): http://www.fil.ion.ucl.ac.uk/spm/
data/mmfaces/, created by the Functional Imaging Laboratory (Fil), Wellcome
department of Imaging Neuroscience, Institute of Neurology at University Col-
lege London, UK and is described in the SPM8 manual [ACM+12].

Some of the relevant results reported in the SPM8 manual [ACM+12] are shown
in �gure 1.3. For the di�erential ERP (the average face response minus the
average scrambled face response) the strongest source at time = 180 ms is found
to be at [−37,−80,−16] mm, and can be seen in �gure 1.3a as the red trace.
The N170 component is seen in this source. The inverse solution is found using
a multiple sparse priors model (MSP) [FHD+08]. Activation was recovered in
the occipito-temporal areas as well as in the fusiform gyri. Other studies have
also indicated face-related activation in occipito-temporal areas [HGGG+03].

Findings of the fMRI experiment on the face-evoked response paradigm have
shown increased hemodynamic activity in bilateral fusiform as well as in the
right superior temporal cortices [HGGG+03]. MEG source reconstructions have
found activity to be increased in the occipito-temporal cortex [SHH+97, LHH+91].
Applying MSP to MEG has shown activity in the fusiform gyri [HMPF09].

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
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(a) Time development of the strongest source
for di�erential ERP (red) and averaged ERP
(gray). Location of strongest source at 180
ms post stimulus for the di�erential ERP:
[−37,−80,−16] mm.

(b) Source reconstruc-
tion of di�erential
ERP, time = 180 ms.
Sagittal, transverse
and coronal views.

Figure 1.3: Results obtained on the multimodal face-evoked response data set
with SPM8 using multiple sparse priors. The paradigm applied
to reveal the face-evoked response is described by Henson et al.
(2003). Modi�ed from [ACM+12].

MSP has been seen to outperform the MNE and the coherence (COH) models
[FHD+08]. MNE assumes that the sources are independent and identically dis-
tributed and imposes solutions with minimum total energy [HMPF09]. MNE
has a closed form solution and therefore has low computational complexity,
however it is prone to produce very di�use and super�cially located sources
[HMPF09, MMHM12]. COH enforces smoothness in the solution, like low res-
olution brain electromagnetic tomography (LORETA), thus it assumes that if
a speci�c source is active the neighbors probably are too. MSP is a method
that combines assumptions of sparsity and smoothness, regularized by pruning
priors; i.e. a few well-de�ned areas are presumed capable of explaining the data
[FHD+08, HMPF09].
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1.3 Motivation of Thesis

As already indicated the objective of this project is to obtain an e�cient and
precise method that solves the EEG inverse problem. The intention is that the
source reconstruction is done in a way that makes it applicable in biofeedback
settings, thus a fast algorithm is required. The VG algorithm is suggested to be
the answer and is consequently the main focus. VG exploits Bayesian inference
to obtain a sparse solution to a linear problem.

In this section some of the motives behind applying the algorithm, described
by Kappen et al., on EEG data are presented. Emphasis is on clarifying that
the forward problem is linear and that assuming sparsity in the number of EEG
generators is reasonable. It also includes reviewing some of the di�culties faced
when doing EEG source reconstruction and how VG can be a method in a
direction of mending these obstacles.

1.3.1 General considerations

A huge number of neurons (1010) are believed to be EEG generators and with
only e.g. 128 electrodes, and often even less, EEG source reconstruction is a
highly underdetermined problem. It is important to note that one neuron is
not su�cient to generate a measurable electric �eld at the scalp. Bundles of
synchronized neurons are therefore more accurately termed EEG generators.
These have a size of 40-200 mm2 [PM09].

Programs like SPM (Functional Imaging Laboratory, Wellcome department of
Imaging Neuroscience, Institute of Neurology at University College London,
UK) o�er working with 5124, 8196 or 20484 EEG generators [ACM+12]. As-
suming signi�cantly fewer EEG generators than cortical neurons makes source
reconstruction simpler and less computational heavy. However, obtaining the
correct source representation is still a di�cult task and an ideal solution has not
yet been found.

Proving that an approach �nds the correct source distribution is in itself di�cult
as the 'truth' is not fully known. Part of the solution to this is to either test
algorithms on synthetic data or to work on multimodal data, where informed
guesses on the source distribution can be made. The multimodal face-evoked
data set presented in section 1.2.4 is an example of the latter. Here EEG, MEG
and fMRI have been recorded under the same settings. It is expected that
on a larger time scale some correlations are visible, as also demonstrated in
[HGGG+03].
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1.3.2 The forward model

The forward model relates the sources in the brain to the measured potentials at
the scalp [HVG+07]. The problem is most often modeled as a volume conductor.
The electric �elds generated in the brain are instantaneous, as charge is not build
up extracellularly; at least compared to the sampling frequency used in EEG
[HVG+07]. The lack of time dependency in the electric �elds is an important
element in describing the relation in the forward model, as magnetic �elds can be
disregarded and thus facilitates application of Maxwell's quasi-static equations
[HVG+07][NS06]. Poisson's equations can be derived via Maxwell's equations,
but can also be obtained through the divergence operator as done by Hallez et
al. (2007). The latter is recapped here, thus notation and equations are from
[HVG+07] and in part from [KG12].

The divergence of the current density, which is described as the �ux or current
entering/leaving a small volume making the current negative/positive, respec-
tively, is

∇J = Im, (1.1)

where Im is termed the current density source and can be divided into three
cases. First, the case where the volume encases a small extracellular space. Here
the �ux leaving and entering the volume cancel out each other, thus making
∇J = 0. Secondly, the case where the volume surrounds a current sink, with
the position r1. This will cause current to leave the extracellular space, and is
thus described as a negative current, ∇J = −Iδ(r−r1). The singularity is added
to indicate that the sink is in�nitesimally small. The opposite case describes
the third case, where the sink is replaced by a source in r2, thus making the
current positive; ∇J = Iδ(r− r2). Combining these three examples the current
source density is

∇J = Iδ(r− r2)− Iδ(r− r1). (1.2)

The goal is to relate a potential �eld measured at the scalp to the current sources
in the brain. To achieve this Ohm's law is used

J = κE, (1.3)

where κ is conductivity, which can be modeled as being isotropic or more real-
istically, anisotropic. E is the electric �eld and is related to the potential �eld
Y by the gradient operator

E = −∇Y. (1.4)
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Poisson's di�erential equation can now be presented combining equations (1.2),
(1.3) and (1.4)

∇(κ∇Y ) = Iδ(r− r1)− Iδ(r− r2). (1.5)

The head can be modeled as having several layers. At each boundary of these
layers, boundary conditions must be met. The Neumann boundary condition
dictates that the current exiting one layer must enter another

J1en = J2en. (1.6)

Here en is the normal component on the boundary between the two compart-
ments. Additionally, current can not leave the head through the air, as it has
very low conductivity

J3en = 0. (1.7)

This restriction is called the homogeneous Neumann boundary condition. Fur-
thermore the Dirichlet boundary condition is considered for potentials crossing
an interface inside the head, and is

Y1 = Y2. (1.8)

Each dipole d at position rdip in the brain a�ects the potential measured by an
electrode at the scalp in position r by g(r, rdip,d). The potentials caused by
the dipoles are summable

Y (r) =

p∑

i=1

g(r, rdip,d) =

p∑

i=1

g(r, rdip, ed)wi, (1.9)

where ed is the orientation of d and w its magnitude. Equation (1.9) is true for
all p potentials measured at the scalp and can be written as a set of equations
or on matrix form. Assuming the neurons are oriented perpendicular to the
surface of the cortex the matrix relation is

Yp×T = (Xn×p)
Twn×T + ξp×T , (1.10)

where the dimension of time has been added. Equation (1.10) represents the
forward problem with dimensions noted in subscript. Note that noise ξ has been
added. The matrix XT is termed the gain matrix. A column of this matrix
describes a source's contribution to each electrode and is called the forward
�eld. A row relates the potential of one electrode to all of the sources and is
called the lead �eld. Thus lead �eld matrix and forward �eld matrix are used
interchangeable with gain matrix. Solving the forward problem is equivalent to
solving Poisson's equations, where �nding the potentials is the objective. The
solution to the forward problem depends on the chosen head model.
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1.3.3 Head models

One problem of locating the EEG sources is the geometry and structure of the
head. The brain is protected by the �ve layers of the scalp as well as by the
skull, cerebrospinal �uid and the three meningeal layers [NHW03]. Each layer
has di�erent conductive characteristics, as does the brain itself, this makes the
solution to the forward problem di�cult. Especially sources on the interfaces
between layers, thus including the sources at the outer rim of the cortex, are
prone to be estimated with error [GPOC11].

The three-shell spherical model is a simpli�cation of the electrical properties of
the head. Here the head is modeled as three nested spheres acting as the scalp,
skull and brain [HVG+07]. Each sphere is isotropic and homogeneous, which
of course are very crude assumptions [BML01]. The white matter is highly
anisotropic as the conductivity on a current �ux in the direction of the axons is
much higher than it is in an angle [NS06]. One way to reveal the organization is
to use di�usion tensor magnetic resonance imaging (MRI), as it is expected that
the measured water di�usion tensor is strongly related to electric conductivity
tensor [WAT+06].

More realistic head models use MRI scans, which also solve the problem of
variations between individuals; that is if individual head scans are performed
[BML01]. If structural information from MRI scans are not available Akalin
Acar et al. (2013) argue that it is crucial to describe the head geometry and
conductivity, and the electrode placement as accurately as possible [AM13].
The boundary element method (BEM) is an approach to solve Poisson's equa-
tion that can use the interfaces of the head found by MRI scans [BML01]. The
method however still assumes isotropic and homogeneous conductivity in the
implemented head compartments. The symmetric BEM is an improved version
of BEM. It enhances the capability of locating dipoles near interfaces between
compartments with high conductivity ratios [HVG+07]. BEM calculates the
potentials only on each interface as opposed to e.g. the �nite element method
(FEM). BEM thus has fewer unknowns to �nd, and thereby computational cost
is reduced [KCA+05]. FEM however has the ability to model the conductivities
of each compartment as being anisotropic [BML01]. As computational com-
plexity is reduced by advances in mathematical modeling of FEM, the method
becomes more desirable, as it facilitates more accurate models of the organiza-
tion of the brain [WGH04, SSJ+10].

The VG algorithm can basically be giving any head model, however its solution
is expected to be dependent on the choice. Therefore not to introduce errors in
the input, a head model which approaches the actual electrical properties of the
head is preferred.
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1.3.4 Linearity of the forward problem

As mentioned the space between the EEG source and the EEG electrode con-
tains many di�erent layers, many of which are inhomogeneous and have varying
conductivities. Experiments have however shown that the tissue of the brain can
be modeled as a linear conductor, meaning that superposition of sources is pos-
sible [NS06]. This means that the potential di�erence measured by an electrode
set can be assumed to originate from a sum of sources inside the brain, as also
seen in equations (1.9) and (1.10). Note that speci�c weights are placed on each
of these sources, determined by their location relative to the scalp electrode.

The VG algorithm assumes the problem at hand is linear by having the linear
regression problem at its core. In the aspect of linearity, VG is therefore an
appropriate candidate to solve the EEG inverse problem.

1.3.5 Sparsity of the EEG sources

Including the attribute of sparsity in a solution has been done in many machine
learning tasks, see [MJOB10] for references. It has the clear advantage of making
the solution easier to interpret especially when there are many variables, as in
EEG. Additionally using a solution which is capable of describing the data
and has high sparsity is often found to be the correct solution to overcomplete
systems [DET06].

Single dipole �tting [SB91] assumes one dipole can explain the main part of the
measured signal [PM09]. Of course this is very simplistic but does perform well
in certain settings. This includes when one area of the brain is responsible for
a strong dipole moment, as in locating epileptic foci [PM09]. The problem with
dipole �tting is that the number of dipoles must be known beforehand and of
course that the maximum allowable number of dipoles could be too low.

Several other EEG source reconstruction techniques attempt to solve the prob-
lem by assuming some degree of sparsity. MSP is one example [HMPF09]. As
mentioned MSP has been found to be better at explaining the data compared
to more di�use methods such as MNE [FHD+08]. In the application of e.g.
independent component analysis (ICA) only the strongest dipoles are investi-
gated further [DPO+12]. It is in [DPO+12] assumed that a few strong sources
can explain the measured signal and that they are independent in time. It has
however been shown that functional connectivity between brain regions exist in
e.g. processing of stimuli [VSSBLC+05, Fri94, HT10]. It is thus more cautiously
to model the time series of sources simultaneously.
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Sparsity can also be employed via regularization with the L1-norm as done in
minimum current estimate (MCE) [UHS99]. However, this approach is liable to
produce a scattered distribution of dipoles around the true source [HTD+11].
Adding the L2-norm in the regularization (in combination with L1-norm), en-
forces smoothness and has shown promising results [HNZ+08][MMHM12].

In the BCI setting, reduction of the number of sources used to describe the
measured EEG signal is also sometimes enforced [BMG08]. The goal is also
here to make the solutions more interpretable without loosing accuracy of the
model. Univariate and multivariate variable selection are examples of methods
that reduce the solution space [BMG08].

Whether a sparse prior is prudent or not depend on whether the actual source
distribution is indeed sparse or not. The performance of the VG algorithm,
which enforces sparsity by turning sources on or o�, is thus dependent on the
physiology of the neuronal interactions. Even though many distributed sources
should be present, imposing sparsity is still reasonable if the algorithm �nds the
most relevant and/or dominating sources.
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Chapter 2

Linear Regression Theory

The linear regression problem is relevant in many applications. It is used be-
cause of its fundamental simplicity and �exibility, i.e. by using di�erent basis
functions variable complexity can be added [Bis06]. The description of the linear
regression problem and methods of solving it is described below. The symbol
notation follows mostly that of [KG12].

The linear regression problem is in its simplest form

yµ =

n∑

i=1

wiXiµ + w0 + ξµ, (2.1)

where yµ is a one of the p responses, Xiµ indexes the n input variables for each
sample µ, and ξµ is zero-mean noise with inverse variance (precision) β. Finally
wi is one of the n weights and w0 is a bias.

Relations to the EEG problem:

� y contains electrodes as samples, i.e. µ indexes over p electrodes.

� X is the transpose of the forward �eld matrix, seen in section 1.3.2, equa-
tion (1.10).
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� w contains the magnitudes of the n sources (EEG generators).

Presented below are selected solutions to the linear regression problem.

2.1 Ordinary Least Square

The linear regression problem can be solved by minimizing an error function
consisting of the sum of squares di�erence between the target and the predictions
made by the model

1

2

p∑

µ=1

(
n∑

i=1

wiXiµ − yµ
)2

. (2.2)

The solution to the above can be solved analytically

w = χ−1b, where (2.3)

w0 = y −
n∑

i=1

wiXi:,

where χij =
1

p

∑p
µ=1XiµXiµ and bi =

1

p

∑p
µ=1Xiµyµ. Additionally Xi: and y

are the mean values of Xi: and y, respectively. By centralization of the data,
these are equal to zero. This is assumed done from now on.

The solution in equation (2.3) is called the ordinary least squares (OLS) solution.
Its solutions are prone to over�tting, especially if the number of samples is
smaller than the number of input dimensions [Bis06]. In this situation the
model can describe the training set exactly but will not perform well on a test
set as noise will probably be falsely modeled as signal. Non-sparse solutions are
furthermore di�cult to interpret [Tib96]. Remedies are e.g. subset selection,
where weights are discarded or kept, this however gives an unstable model.
Additionally ridge regression can be applied, which shrinks the coe�cients using
L2-norm regularization. This does not make the solution sparse and over�tting
is still a problem. [Tib96].

OLS assumes that the error terms are uncorrelated, which might not be the case,
and thus induce further errors [DW50]. Also note that when the dimension n
is larger than the number of samples p, χ is singular and can therefore not be
inverted, instead the pseudo-inverse must be applied.
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2.2 Least Absolute Shrinkage and Selection Op-

erator

The least absolute shrinkage and selection operator (LASSO) technique [Tib96]
revises the solution to the linear regression problem by setting some weights to
0 and shrinking others. This is done using the following linear restriction to the
OLS

n∑

i=1

|wi| ≤ t, (2.4)

i.e. the L1-norm is applied to the weights. The size of t determines the degree
of sparseness introduced in the model [Tib96]. A scaling of t by the sum of
the absolute values of the weights in the OLS solution is termed s; s = t/t0,
where t0 =

∑n
i=1 |wOLSi | andwOLS is found using OLS. Setting t = t0/2 broadly

corresponds to creating a feature subset of size n/2 by the shrinkage and removal
of weights [Tib96].

The constraint region created by the L1-norm is a rotated square for two weights,
and a (hyper-)cube for higher dimensions, centered at origin [Bis06]. The prob-
ability of the least squares solution hitting one of this quantity's corners, i.e.
0, is higher than hitting 0 using the circular L2-norm constraint region. This
explains why the LASSO algorithm �nds more weights equal to 0 compared to
ridge regression, that only shrinks the parameters. Note that in EEG source
reconstruction settings using LASSO corresponds to MCE and ridge regression
to MNE.

The following is de�ned to be the LASSO problem [Tib96]

argmin
w

p∑

µ=1

(yµ −wTX:µ)2 subject to

n∑

i=1

|wi| ≤ t. (2.5)

In addition to centering of the data, the rows of X are also further scaled;∑p
µ=1X

2
iµ/p = 1. The same solution as found above for a value of t can be

found for a value of λ in the following

argmin
w

p∑

µ=1

(yµ −wTX:µ)2 + λ

n∑

i=1

|wi|. (2.6)

The above can be solved for a range of values of λ, and e.g. optimized by
cross-validation. Using least angle regression (LARS) [EHJT04] the problem
is solved computationally e�cient for λ ∈ [0,∞[ [TT11]. LARS compares to
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forward selection, where the variable with highest correlation to the response,
y, is chosen to describe the response entirely, this leaves a residual [EHJT04,
HTTW07]. The remaining variables are projected orthogonally to the found
variable and the correlation between them and the residual, determines the next
variable to be added, and so on [EHJT04]. This method is fast but will be overly
greedy for applications with highly correlated variables. The forward stagewise
linear regression is an alternative which uses many small steps to build a model
with increasing involvement of predictor variables [EHJT04]. The algorithm also
�nds the variable with highest correlation to the residual (=response in step 1),
however this chosen variable's involvement is only incremented to a small degree
at each step it obtains highest correlation [HTTW07].

In between these two algorithms LARS is found. At each step the variable with
highest correlation to the residual (=response in step 1) is incremented towards
its least squares solution until a second variable becomes more correlated with
the residual. This is done in one step as opposed to several in forward stagewise
regression [EHJT04]. LARS then move in an equiangular direction between the
chosen variables until another variable enters the active set, and so on [EHJT04].
This explain the name least angle regression, as the algorithm moves in the
direction which has smallest angle between the residual and the variables. LARS
has a closed form solution to �nd the step size needed and is therefore very
e�cient. Note that one non-zero weight is added at each step, yielding n-steps in
the algorithm. A modi�cation must be added in order to make it a 'real' LASSO
solution, i.e. the option of dropping a variable in an iteration is necessary, thus
yielding more iterations than the pure LARS algorithm [EHJT04, HTTW07].
LARS has similarities with the also piece-wise linear path homotopy approach
suggested in [OPT00a].

The matlab (The MathWorks Inc.) toolbox SpaSM created by Sjöstrand
[Sjö05] implements the LASSO algorithm using the adjusted LARS technique.
More speci�cally the function lasso calculates the parameter values in a win-
dow of regularization values corresponding to all weights being set to 0 (high λ)
to applying no regularization (λ = 0). The latter results in the same solution
as the OLS. The regularization terms outputted include λ and s. The latter is
calculated straightforward as previously described, while λ is approximated to
the median of

λ = 2|Xa:r|, (2.7)

where a points to the active set; i.e. contains the indices where w have values
di�erent from 0 [SCLEl]. The residual between the output y and the estimated
outputXTw is denoted r. Expression (2.7) is found by decomposing the weights
into a positive and negative part and then applying the Karush-Kuhn-Tucker
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conditions, after which it is realized that

λ =

∣∣∣∣
∂

∂w

(
y −XT

a:wa

)2
∣∣∣∣ = 2

∣∣Xa:(X
T
a,:wa − y)

∣∣ = 2 |Xa:r| . (2.8)

Sjöstrand et al. (preprint) explain that any of the λs in the above could be
chosen, i.e. any of the variables in the active set could be used to calculate
the sought regularization λ, however they choose the median to avoid numerical
problems.

By setting some weights to zero and shrinking others, LASSO combines the as-
sumptions warranting subset selection and ridge regression [OPT00b]. However
LASSO is criticized for low prediction power when the inputs are highly corre-
lated [FHT10, KG12]. More speci�cally it has been shown by [ZY07] that under
certain conditions if a predictor, not included in the true model, is highly corre-
lated with the true predictors, LASSO will include the non-descriptive variable
in the set, and this no matter how many samples are added.

Extensions of the LASSO algorithm includes group LASSO [YL05], which uses
a penalizing function intermediate to regularizing the linear regression problem
through the L1- and L2-norm.

2.2.1 Performance of LASSO

The LASSO algorithm is tested on the data described in [KG12] example 1,
also outlined in appendix B. In brief the data is generated by having all weights
set to 0 except for the �rst which is given the value 1. The before mentioned
matlab toolbox SpaSM [Sjö05] created by Sjöstrand is utilized to �nd the
LASSO solutions. 83 steps of regularization was found to create solutions from
no active variables to all variables active.

In �gure 2.1a the normalized mean squared training and validation errors are
shown as function of applied regularization. The normalized mean squared error
(nMSE) is calculated by

nMSE =
E
[
(XTw − y)2)

]

σ2
y

, (2.9)

where E denotes the expectation.

The OLS solution corresponds, as explained, to a regularization λ of 0 and, as
expected, the validation error is high here, while the training error is minimal.
This is clearly the result of over�tting. In the neighboring �gure, �gure 2.1b,
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(a) Normalized mean squared error
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ularization is seen in �gure 2.2.

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Regularization, λ

w
−

va
lu

e

 

 
w

1
w

2:n

(b) Feature values; w1 should opti-
mally be 1, w2:n represents the
magnitude of the variable from
the non-active set with highest
absolute value. This value should
be 0.

Figure 2.1: LASSO solutions for increasing regularization. The adjusted
LARS algorithm is applied, yielding in total 83 levels of regu-
larization. Data set inspired by example 1 in [KG12].
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Figure 2.2: Optimum LASSO solution; weight distribution that give lowest
validation error, see �gure 2.1a. Optimum level of regularization:
λ = 16.7. Data set inspired by example 1 in [KG12].
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it can be seen that w1 starts out by being 1, but it is a�ected by the regular-
ization and shrunk. The shrinkage of the other weights is however greater and
their values fall to 0 at a smaller regularization. The values of the weights ob-
tained by using the solution with smallest validation error is seen in �gure 2.2.
The algorithm is successful in �nding the �rst weight as being the most domi-
nant. However the weight is given smaller magnitude than 1 and non-predicting
variables are given value.

2.3 Non-negative Garrote

The idea for the LASSO algorithm arose from Breiman's non-negative Garrote
[Bre95]. The two methods appeared about the same time, but with the non-
negative Garrote slightly earlier. The algorithm got its name from an execution
device in�icting strangulation, perhaps to emphasize its shrinkage and elimina-
tion properties.

Non-negative Garrote achieves sparseness and shrinkage by introducing the new
non-negative variable s. The problem to be minimized is de�ned as

p∑

µ=1

(
yµ −

n∑

i=1

Xiµw
OLS
i si

)2

subject to si ≥ 0 and

n∑

i=1

si ≤ t. (2.10)

The parameter s thus controls the weights by enforcing shrinkage as t decreases
[Bre95, Tib96].

Breiman showed that the non-negative Garrote is more stable to perturbations
in applied data than subset regression, and that in settings where the ratio of
actual predicting variables to total number of variables is not too big its accuracy
is at the level of ridge regression.

As seen from equation (2.10) the solution to the non-negative Garrote is depen-
dent on the OLS solution. This can cause problems if over�tting is present in
the initial OLS solution and in cases where the inverse of the input covariance
matrix is not computable (when p < n) [Tib96]. The latter problem can be
solved using the pseudo-inverse, as also mentioned earlier. However, large over-
�tting can potentially harm the non-negative Garrote solution. Errors in the
OLS from correlated error terms on the inputs will also a�ect the non-negative
Garrote solution. However, where LASSO can give inconsistent results if non-
predicting variables are correlated with the predicting variables, non-negative
Garrote is less sensitive [Zou06]. The adaptive LASSO [Zou06], presented by
Zou et al. (2006), is a LASSO variant that includes a weighting of the variables
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in the penalizing function. This method can under speci�c settings be shown
to be closely related to the non-negative Garrote [Zou06]. Extensions to the
non-negative Garrote have, like for LASSO, been suggested, see e.g. [YL05] and
[CFR11].

2.4 Automatic Relevance Determination and Sparse

Bayesian Models

The automatic relevance determination (ARD) model [HR94, MN94, Nea95]
also includes sparseness in its solution. In ARD each input variable is coupled
with a speci�c regularization, controlled by a hyperparameter. This forces the
irrelevant input variables to zero and retains the relevant.

It was originally used in neural network models, where one input variable is as-
sociated with several weights, each of these regulated by the same hyperparame-
ter [Nea95]. The variables have a Gaussian prior with zero-mean and individual
standard deviations, directly de�ned by the hyperparameter. A small standard
deviation indicates little relevance in the model while large standard deviation
indicates large relevance [Nea95].

The use of the ARD prior has been expanded to applications of linear regression
problems [Nea95, Tip09a]. In general a linear model has the form

yµ =

n∑

i=1

wiφi(X:µ), (2.11)

where φi(·) is a basis function [Bis06]. In the current employment, linearity is
assumed between the input and output and the basis functions are therefore of
the form φi(X:µ) = Xiµ. Thus translating equation (2.11) into the linear model
described in equation (2.1).

The weight prior is

p(w|α) =

n∏

i=1

N (wi|0, α−1i ), (2.12)

thus explaining that if αi is large the variance (and standard deviation) of weight
wi is small thus making the probability of wi = 0 high. Models which include
this kind of prior and using Bayesian inference are termed sparse Bayesian
models (SBMs) [Tip09b], also sparse Bayesian learning, SBL for short, is often
used [WRP+07]. The relevance vector machine (RVM) [Tip00] is an example of
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an SBM, here the basis function in equation (2.11) is a kernel thus approaching
the support vector machine (SVM) technique [Tip01].

The response measured is assumed to be a�ected by noise with zero-mean and
variance σ2. So in addition to the p + 1 hyperparameters, the variance, often
expressed as the precision β = σ−2, of the data also needs to be estimated.
Gamma distributions can be used as priors for these [Tip01].

In SBMs the goal is to predict a response given an input vector and at the same
time say something about the con�dence of the predicting model. The latter
is what separates e.g. SVM from RVM. This is however no simple task as the
posterior of the unknowns w, α and β

p(w,α, β−1|y) =
p(y|w,α, β−1)p(w,α, β−1)

p(y)
(2.13)

is not computable. Therefore SBM employs tricks such as using type-2 maxi-
mum likelihood, also known as evidence maximization, to estimate the values
of α and β and reiterates to �nd the optimum solution of these parameters
[Tip01, Bis06].

The computation cost of SBM is very high in its most simple implementation,
especially for large data sets. A more e�cient implementation is suggested by
Tipping et al. (2003). The proposed sequential method starts by having all
weights pruned and then add (or delete) one at time until convergence occurs
[TF03]. A 're�ned' edition of this approach is implemented in the matlab

toolbox SparseBayes Version 2 created by Tipping [Tip09b].

Wipf et al. (2007) reviewed the ARD framework in [WRP+07]. They concluded,
among other things, that ARD is robust to the normalization procedure of the
input matrix. Additionally it is explained that the model shows best results
when the sources are uncorrelated. Here the algorithm will converge towards
the global minimum when increasing the sample size. Trujillo-Barreto et al.
(2004) employ many models with di�erent priors and exploits their posterior
probability to construct weights that dictate their in�uence in the �nal model.
This is termed Bayesian model averaging and is presented in [TBAVVS04]. The
technique is found to increase the ability of �nding deep sources, such as activity
in the thalamus. Additionally fewer ghost sources was found, i.e. non-predicting
variables given activity.

Additions to the SBM framework have been presented by e.g. Zhang et al.
(2011) in [ZR11]. Assuming temporal correlation a model is build which enforces
block sparsity (identical to row sparsity) but at the same time exploits that an
input variable at an instance in time is coupled with the samples obtained within
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a certain time frame. This is often applicable to e.g. EEG source distribution.
In this type of data Zhang et al. (2011) achieved superior performance to
algorithms not including temporal correlation.

2.4.1 Performance of a sparse Bayesian model

The matlab toolbox SparseBayes Version 2.0 [Tip09b] created by Tipping is
modi�ed to evaluate an SBM model with a Gaussian likelihood model and linear
basis. The same data set as used to explore the LASSO model is applied to the
SBM model. To make the comparison between the algorithms discussed in this
chapter fair, only one parameter is optimized. For SBM, α is estimated while
β, the precision of the noise in the data, is chosen through a validation set.

The normalized mean squared training and validation errors are visualized in
�gure 2.3a for the range of β values: 0.01 to 1, with a total of 50 steps and
maximum 100 iterations for each β value are applied.

It is apparent from �gure 2.3b that SBM has a range of values until approx-
imately β = 0.1 where all the non-predicting variables are set to zero. The
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Figure 2.3: SBM solutions for increasing precision of noise β. The β values
are investigated in the range from 0.01 to 1, with 50 incrementing
steps each with maximum 100 iterations. Data set inspired by
example 1 in [KG12].
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Figure 2.4: Optimum SBM solution; weight distribution that give lowest vali-
dation error, see �gure 2.3a. Optimum level of precision: β = 0.15.
Data set inspired by example 1 in [KG12].

predicting variable w1 however does not entirely reach the desired value of 1 in
this region.

The SBM solution chosen by the validation set, indicated by a black dot in �gure
2.3a, is seen in �gure 2.4. In this �gure it is clari�ed that, like LASSO, SBM
estimates the predicting variable's value to be smaller than the 'truth'. SBM
does however only give one non-predicting variable relevance. Interestingly this
variable is the same as found as the strongest non-predicting variable using
LASSO. This non-predicting variable could therefore be speculated to have a
noise component, both LASSO and SBM are partial to.

2.5 Variational Garrote

Another model which is close in appearance to the non-negative Garrote is
the variational Garrote (VG) [KG12] suggested by Kappen et al. in a yet un-
published article. In this approach sparseness is introduced into the regression
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Figure 2.5: Prior probability of the binary switch si in VG.

problem by adding the variable s. The problem in now de�ned as

yµ =

n∑

i=1

wisiXiµ + ξµ, (2.14)

where si is either 0 or 1 and its prior is

p(s|γ) =

n∏

i=1

p(si|γ), (2.15)

where

p(si|γ) =
exp (γsi)

1 + exp (γ)
. (2.16)

When γ is very negative, si is very likely to be 0. At γ = 0 the probabilities
of si being 0 or 1 are of equal sizes, see �gure 2.5. By introducing sparseness
in to the likelihood, the problem is no longer convex, as opposed to the LASSO
problem where the L1-norm guarantees convexity [KG12]. A local optimum
might therefore be the result of the VG algorithm. However, Kappen et al.
showed that VG performs better than LASSO, and than ridge regression on
highly correlated inputs.

As also done in SBM, VG is solved using Bayesian inference. Kappen et al.
suggest �nding the optimum solution to the problem described in equation (2.14)
by variational approximation. First the posterior probability of the model given
the data is de�ned

p(s,w, β|D, γ) =
p(w, β)p(s|γ)p(D|s,w, β)

p(D|γ)
, (2.17)
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with D being the full data set. Instead of maximizing the posterior probability
in equation (2.17)1, the discrete variable s is marginalized out, giving rise to
the marginal posterior, p(w, β|D, γ). This expression is to be optimized with
respect to the parameters w and β. The denominator in equation (2.17) does
not depend on the two latter variables and is therefore not relevant in the
maximization. Furthermore de�ning the joint prior likelihood of w and β to
be uniform, simpli�es the problem additionally. The resulting expression to
maximize is now

log p(w, β|D, γ) ∝ log
∑

s

p(s|γ)p(D|s,w, β), (2.18)

where the logarithm operation has been added in order to make further deriva-
tions simpler. Equation (2.18) is di�cult to maximize, by setting the dif-
ferential coe�cient equal to 0, due to the sum inside the logarithm expres-
sion. Therefore Jensen's inequality is applied. This approach can be used
because the logarithmic function is a concave function [Bis06]. Concavity im-
plies that on a chord to the concave function every point's value is smaller
than that of the function. A point on a chord which has contact points with
the concave function f(x) in (x1, f(x1)) and (x2, f(x2)) can be described by
(θx1 + (1− θ)x2, θf(x1) + (1− θ)f(x2)), where θ ∈ [0, 1]. Due to concavity the
following is thus true

f(θx1 + (1− θ)x2) ≥ θf(x2) + (1− θ)f(x2). (2.19)

The above can be rewritten to

f(θ1x1 + θ2x2) ≥ θ1f(x1) + θ2f(x2), (2.20)

where θ1 + θ2 = 1. By induction, the above can be extended to

f

(∑

h

θhxh

)
≥
∑

h

θhf(xh), (2.21)

where θh ≥ 0 and
∑
h θh = 1, corresponding to a probability distribution. Now

de�ning q(s) to have the same properties as θ and multiplying and dividing with
it in equation (2.18) Jensens's inequality can be applied

log
∑

s

q(s)

q(s)
p(s|γ)p(D|s,w, β ≥ −

∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)
. (2.22)

The variational approximation q(s) is de�ned in [KG12] to be a fully factorized
distribution and satis�es q(s) =

∏n
i=1 qi(si), where qi(si) = misi + (1−mi)(1−

si). This implies that mi is the probability that si is equal to 1.

1It would be very complex to �nd the MAP solution to the 'complete' posterior probability

as s has been de�ned to be binary.
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Now de�ning the variational free energy

F (q,w, β) =
∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)
. (2.23)

Minimizing F (q,w, β) then corresponds to maximizing the log likelihood in
equation (2.18). It is noted that −F (q,w, β) is the lower bound on the log-
likelihood and should therefore be maximized, i.e. the same as minimizing
F (q,w, β). The latter is expanded

F (q,w, β) =
∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)
= −F1 − F2 + F3, with

F1 =
∑

s

q(s) log p(D|s,w, β), F2 =
∑

s

q(s) log p(s|γ) and F3 =
∑

s

q(s) log q(s).

(2.24)

The derivation of these can be seen in appendix A, the results are presented
here

F1 =
p

2
log

β

2π

− pβ

2


σ2

y +

n∑

i=1

n∑

j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii − 2

n∑

i=1

miwibi




(2.25)

F2 =γ

n∑

i=1

mi − n log(1 + exp(γ)) (2.26)

F3 =

n∑

i=1

(mi log(mi) + (1−mi) log(1−mi)), (2.27)

where σ2
y =

1

p

∑p
µ=1 y

2
µ.

The variational free energy can now be presented

F (m,w, β) =− p

2
log

β

2π
+
pβ

2
σ2
y

+
pβ

2




n∑

i=1

n∑

j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii − 2

n∑

i=1

miwibi




− γ
n∑

i=1

mi + n log(1 + exp(γ))

+

n∑

i=1

(mi log(mi) + (1−mi) log(1−mi)) (2.28)
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The expression F (m,w, β) is minimized by �nding its derivatives with respect
to w, m and β and setting them equal to 0. These derivations can be seen in
appendix A. The parameters are found to be

w =(χ′)−1b (2.29)

mi =

(
1 + exp

(
−βp

2
w2
i χii − γ

))−1
= σ

(
βp

2
w2
i χii + γ

)
(2.30)

1

β
=σ2

y −
n∑

i=1

miwibi (2.31)

where σ(x) = (1 + exp(−x))
−1

and b and χ are as de�ned in section 2.1. Ad-
ditionally de�ning: χ′ij = mjχij + (1−mj)χjjδij and noting that the inverse of
χ′ must exist, i.e. χ′ should be non-singular, alternatively the pseudo-inverse
should be applied.

The implementation of the algorithm is suggested to consist of cross-validation
on γ [KG12]. The details can be seen in appendix B. Of applied tricks the
incorporation of the smoothing parameter η is worth mentioning. The parameter
more precisely smooths the activation vector m by

mnew = (1− η)mold + ηmcurrent, (2.32)

where mcurrent is calculated by equation (2.30). The value of η is initialized
to 1 for each γ, and is halved every time the maximum absolute value of the
di�erence between the new and old m is bigger than 0.1. This means that if the
di�erence between old and new m is 'big', then in the next iteration mnew is
forced to become closer to the previous value and thereby the activation vector
is smoothed across iterations.

2.5.1 Performance of VG

The performance of the VG-algorithm is also veri�ed using the data setup sug-
gested in [KG12], example 1. The prediction of a response can be obtained from
the VG solution by

yµ =

n∑

i=1

miwiXiµ =

n∑

i=1

viXiµ, (2.33)

where vi = miwi.

Each of the 50 implemented levels of sparsity γ has 100 updating iterations.
The activation vector m is initialized to zeros for each γ. As the number of
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Figure 2.6: VG solutions for decreasing sparsity, from −35 to −0.7 with 50
steps, each with 100 iterations. Data set inspired by example 1 in
[KG12].

samples is smaller than the number of input dimensions, the pseudo-inverse is
used to calculate w.

From �gure 2.6b it is seen that in the region of sparsity γ = −15 to −10, the
�rst weight is approximately equal to 1 and the others are 0. Also in this region,
the lowest validation nMSE is found, indicated in �gure 2.6a by a black dot.
This found optimum solution of feature values is depicted in �gure 2.7. Note
that the feature value vector, v, corresponds to the element-wise multiplication
of the vectors m and w. Visible from �gure 2.7 is that VG �nds the correct
active weight, sets it to 1, and �nds the remaining to be 0, thus performing
better than LASSO and SBM.

Now 100 data sets are generated with the speci�cations suggested by Kappen et
al. in example 1 in [KG12] through which the algorithms VG, SBM and LASSO
are compared. The results are expressed as the mean nMSE ± the standard
deviation around this mean, see table 2.1. Note that the test set contains eight
times more samples than the validation and training sets, thus explaining the
lower standard deviations seen for the test set. The table clari�es that VG is
best at approximating the weights, followed by SBM.

VG, LASSO and SBM are also compared through their learning curves, see
�gure 2.8. The curves are created by generating 100 data sets and extracting
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Figure 2.7: Optimum VG solution; weights that give the lowest validation
error. Optimum level of sparsity: γ = −11.9. Data set inspired
by example 1 in [KG12].

Training error Validation error Test error
VG 0.44±0.011 0.52±0.011 0.52±0.0042

LASSO 0.44±0.012 0.56±0.012 0.58±0.0069
SBM 0.46±0.011 0.53±0.010 0.55±0.0061
True 0.51±0.011 0.51±0.010 0.50±0.0040

Table 2.1: The normalized MSE of VG, LASSO and SBM compared to appli-
cation of the 'true' weights. Generated by 100 repetitions of the
data set described in example 1 in [KG12]. The mean values ± the
standard deviations around the means are reported.

an increasing number of samples for training and for choosing the best regular-
ization parameter, i.e. number of samples used for validation. A test error is
calculated on the same test set with 400 samples for all training sizes in the 100
repetitions. The data again has the same characteristics as the data of exam-
ple 1 in [KG12]. The training and test error for each repetition are calculated
as mean squared errors, for VG; MSE = E

[
(XTv − y)2

]
, and for LASSO and

SBM; MSE = E
[
(XTw − y)2

]
.

In �gure 2.8 it is demonstrated that VG, LASSO and SBM converge towards the
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Figure 2.8: Learning curves for VG, LASSO and SBM. The sizes of the train-
ing and validation sets are increased and an MSE on a test set is
reported. 100 repetitions are performed. VG and SBM are run
with 20 iterations for each γ and β, respectively. The distinction
between the stipled and non-stipled is di�cult, however the train-
ing error is always the lower of the two equally colored graphs.
Data set is inspired by example 1 in [KG12].

variance of the data, however VG and SBM converge after 40 training examples
and LASSO not until 400. This implies that VG and SBM demand a smaller
training set compared to LASSO to �nd a good solution. The �gure also shows
that as expected, higher variability in error is seen between smaller training sets.

2.5.2 Reformulation using Kailath Variant

With the purpose of reducing computation time, an alternative calculation of w
is presented. Calculating the inverse of a large matrix is high in computational
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cost and the pseudo-inverse even higher. The latter is necessary when the matrix
at hand is singular. Therefore χ′ is rewritten using Kailath Variant, which is
expressed as (A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1 [PBT+08].
Making this recasting of the problem is of course only relevant if calculating
the inverses of A and I + CA−1B is low in computational cost, i.e. if they are
low-dimensional, and if they are in fact invertible.

Breaking χ′ into A, B and C

A = diag((1−mj)χjj)j=1:n ⇐⇒ Aij =

{
(1−mj)χij for i = j

0 for i 6= j
(2.34)

B =
1

p
X⇐⇒ Biµ =

Xiµ

p
(2.35)

C = XTdiag(m)⇐⇒ Cµj = Xjµmj . (2.36)

(2.37)

Veri�cation of the decomposition

A + BC = diag((1−mj)χjj)j=1:n +
1

p
XXTdiag(m) = χ′. (2.38)

The operation diag(d) refers to inserting vector d in a diagonal matrix. The
�rst expression to invert is A. It can be done e�cient, as it is a diago-
nal matrix and the elements in the inverted matrix is just the inverse of the
values in the original matrix: A−1ii = 1/Aii, or expressed in matrix form:
A−1 = diag

(
1� ((1−m)� χdiag)

)
= diag (ainv), where χdiag is an n-vector

with elements from the diagonal in the covariance matrix χ. The notations �
and � indicate an element-wise division and multiplication, respectively. Note
that if an element in m is 1, A−1 is not computable. This can however be
�xed by replacing such instances by 1 − ε, where ε is a small number. In the
matlab implementation of VG in Donders Machine Learning Toolbox (DMLT)
[Dis12] created by Donders Institute for Brain, Cognition and Behavior ε is set
to 10−10.

The next to invert is I + CA−1B, which becomes a p × p-matrix. This means
that instead of the computational cost of inversion is dependent on the number
of dimensions, it is now dependent on the number of samples (corresponding to
the number of electrodes in the EEG problem, which is much smaller than the
number of sources in the brain).

In order to increase computation e�ciency additionally, b is included in the
derivation of χ′, thus yielding w directly. The expression to compute is then:
(A + BC)−1b = A−1b −A−1B(I + CA−1B)−1CA−1b. The �rst expression
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can be calculated element-wise as

A−1jj bj =
bj
Ajj

=
bj

(1−mj)χjj
, (2.39)

or in matrix form

A−1b = (1� ((1−m)� χdiag))� b = ainv � b. (2.40)

The second expression that demands inversion

I + CA−1B = I + XTdiag(m� ainv)
1

p
X. (2.41)

Calculation of w in vector form can now be completed

w =ainv � b−
1

p
ainv �

(
X

((
I + XTdiag(m� ainv)

1

p
X

)−1 (
XT (m� ainv)� b

)
))

.

(2.42)

Note that the multiple parentheses ensure that an n × n-matrix is not cre-
ated, and thereby avoiding multiplications with a 'big' matrix, hence reducing
computation time. The above is calculated more comprehensively and using
element-wise notation in appendix C.

2.5.3 Dual formulation

Kappen et al. also suggest a technique that improves computation e�ciency.
The problem is reformulated to a dual representation. The variables zµ =∑n
i=1miwiXiµ are de�ned and Lagrange multipliers λ are added. Making the

variational free energy

F (m,w, β, z, λ) =− p

2
log

β

2π
+
β

2

p∑

µ=1

(zµ − yµ)2 +
pβ

2

n∑

i=1

mi(1−mi)w
2
i χii

− γ
n∑

i=1

mi + n log(1 + exp(γ))

+

n∑

i=1

(mi log(mi) + (1−mi) log(1−mi))

+

p∑

µ=1

λµ

(
zµ −

n∑

i=1

miwiXiµ

)
. (2.43)
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Setting the partial derivative of the above equation, with respect to the variables,
equal to 0 yields the following equations to be iterated

Aµν =δµν +
1

p

n∑

i=1

miXiµXiν

(1−mi)χii
, (2.44)

yµ =

p∑

ν=1

Aµν ŷν , (2.45)

1

β
=

1

p

p∑

µ=1

ŷµyµ, (2.46)

λµ =βŷµ, (2.47)

wi =
1

βpχii(1−mi)

p∑

µ=1

λµXiµ, (2.48)

mi =

(
1 + exp

(
−βp

2
w2
i χii − γ

))−1
. (2.49)

The derivations can be seen in appendix D.

2.5.4 Time-expanded dual formulation

In this thesis the dual VG formulation is expanded to the application of time
windows. It is assumed that an EEG source in the brain has a certain time
period of activation. The strength of the activation might vary, e.g. oscillate
with some frequency. The binary variable (s) is therefore held constant in
the time window while w is allowed �uctuations. Using more time samples to
calculate the parameters should make the model stronger and thereby improve
the performance.
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Dual representation of F with time dependent w, y, z and λ

F (m,w, β, z, λ) =− Tp

2
log

β

2π
+
β

2

T∑

t=1

p∑

µ=1

(zµt − yµt)2 +
pβ

2

T∑

t=1

n∑

i=1

mi(1−mi)w
2
itχii

− γ
n∑

i=1

mi + n log(1 + exp(γ))

+

n∑

i=1

(mi log(mi) + (1−mi) log(1−mi))

+

T∑

t=1

p∑

µ=1

λµt

(
zµt −

n∑

i=1

miwitXiµ

)
. (2.50)

Notice that only the parts in the above equation stemming from the likelihood
term in the variational free energy, i.e. equation (2.25), are a�ected by the
summation over time samples.

The procedure of �nding the parameters follows that of the VG primal and dual
formulation. The partial derivatives of F are found and subsequently set to 0.

∂F

∂wit
= βpmi(1−mi)χiiwit −

p∑

µ=1

λµtmiXiµ, (2.51)

∂F

∂zµt
= β(zµt − yµt) + λµt, (2.52)

∂F

∂β
= −Tp

2β
+

1

2

T∑

t=1

p∑

µ=1

(zµt − yµt)2 +
p

2

T∑

t=1

n∑

i=1

mi(1−mi)w
2
itχii, (2.53)

∂F

∂mi
=
βp

2

T∑

t=1

(1− 2mi)w
2
itχii − γ + log

(
mi

1−mi

)
−

T∑

t=1

p∑

µ=1

λµwitXiµ,

(2.54)

∂F

∂λµt
= zµt −

n∑

i=1

miwitXiµ. (2.55)

(2.56)

Solving
∂F

∂wit
= 0 yields

wit =
1

pβ(1−mi)χii

p∑

µ=1

λµtXiµ, (2.57)
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and
∂F

∂zµt
= 0

zµt = yµt −
1

β
λµt. (2.58)

These equations are used in the following. Starting with
∂F

∂β
= 0

β =
1

Tp

T∑

t=1

p∑

µ=1

p∑

ν=1

λµtλνtAµν , (2.59)

when de�ning

Aµν = δµν +
1

p

n∑

i=1

mi

(1−mi)χii
XiµXiν . (2.60)

Next
∂F

∂λµt
= 0

βyµt =

p∑

ν=1

λνt

(
δµν +

n∑

i=1

mi

p(1−mi)χii
XiνXiµ

)
=

p∑

ν=1

λνtAµν . (2.61)

Introducing

p∑

ν=1

Aµν ŷνt = yµt, (2.62)

and inserting this in equation (2.61) yields

λνt = βŷνt. (2.63)

Inserting (2.63) and (2.62) in (2.59) yields a simpli�cation of β

1

β
=

1

Tp

T∑

t=1

p∑

µ=1

ŷµtyµt. (2.64)

Using equation (2.57), m is derived

mi = σ

(
βp

2
χii

T∑

t=1

w2
it + γ

)
. (2.65)
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The �nal equation set is then

wit =
1

pβ(1−mi)χii

p∑

µ=1

λµtXiµ, (2.66)

Aµν =δµν +
1

p

n∑

i=1

mi

(1−mi)χii
XiµXiν , (2.67)

p∑

ν=1

Aµν ŷνt =yµt, (2.68)

1

β
=

1

Tp

T∑

t=1

p∑

µ=1

ŷµtyµt, (2.69)

λνt =βŷνt, (2.70)

mi =σ

(
βp

2
χii

T∑

t=1

w2
it + γ

)
. (2.71)

Appendix E presents more detailed calculations, along with a vector/matrix
representation of the above equation set.

A �ve-fold cross-validation experiment using synthetic data is performed to
illustrate the performance of the algorithm. The training and test data each
consist of 50 samples, the input dimension is 100 and X is a random matrix. A
time frame of 25 samples is chosen corresponding to 100 ms if using a sampling
frequency of 250 Hz. Within this time frame ten parameters are set to be active
with the temporal development of a sine wave with amplitude 1 and a period
of 100 ms. The temporal source distribution thus corresponds to an alpha
frequency wave in ten sources. One 'true' source is depicted in �gure 2.9 as the
green curve.

Re-initialization of the activation vector, m = 0, is done for each γ. The
smoothing parameter η is set heuristically to 0.5. To facilitate a direct compar-
ison between the dual formulation in single and combined time, 100 iterations
are used for each γ, thus disregarding possible convergence. For each fold in the
cross-validation an optimum sparsity is found as the γ with lowest error on the
validation set. The mean value of these �ve γs is de�ned to be the optimum γ.
The optimum γ is applied to the combined training and validation set yielding
one solution.

Figure 2.9 shows a solution for the two dual formulations with a level of signal
to noise ratio (SNR) of 10. The SNR is calculated as the mean value of the
pure signal divided by the added noise, across time samples. It is revealed in
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(b) VG-dual using combined time sam-
ples.

Figure 2.9: The feature values as function of time samples. SNR=10. 'True'
appearance of the ten equal strength active sources is shown in
bright green. For each level of sparsity 100 iterations are applied.
Five-fold cross-validation is used to �nd optimum level of sparsity.

�gure 2.9a that the single time solution only locates the sources in some of the
time samples. Especially the activation in time samples with low magnitudes
is not recovered. It is clear from �gure 2.9b that using multiple time samples
greatly increases the proximity to the 'true' feature values. Additionally the
non-active sources v11:100 are more accurately represented, having the value 0.
It is thus concluded that applying multiple time samples increases the ability of
the algorithm to obtain the correct source distribution.

The two dual formulations are further examined as function of the SNR of the
applied data. Ten repetitions of �ve-fold cross-validations for 25 levels of SNR
are performed. The test errors obtained is compared to applying the 'true'
weight distribution. The comparison of the two algorithms' performances with
respect to the test error is seen in �gure 2.10. Both solutions start of by having
a large test error and both follow the curve of the best possible test errors
(blue curve). However the dual time combined model obtains better results and
approaches the optimum MSE closer.
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Figure 2.10: Test error as function of 25 levels of SNR. The sources' tempo-
ral development are estimated one time sample at a time and
combined, respectively. These are compared to the 'true' source
distribution. For each level of sparsity 100 iterations are applied
in ten �ve-fold cross-validations.



Chapter 3

Experimental Design

As described in the previous chapter, VG outperformed SBM and LASSO on
the simple setup presented. VG is thus chosen as the main focus in the following
experiments. To ensure superiority in the EEG framework, the algorithms are
now compared using a forward �eld matrix as input.

The VG algorithm should be re�ned to �t EEG settings, thus several experi-
ments to obtain this are required. Synthetic sources are initially applied as the
weight vector w. This is done to make the solutions acquired easy to evaluate.
Later, well-known EEG data will be used to verify the VG algorithm.

First experiments on the instantaneous VGs; the dual formulation of VG (VG-
dual) and the Kailath Variant VG (VG-KV), and LASSO and SBM are pre-
sented. Then follows a description of the experiments on the time-expanded
VG-dual, where a constant mode of activation of each source within a given
time window is assumed.

All experiments are performed in matlab 2011b (The MathWorks Inc).
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3.1 Sparse Algorithms in Single Time

The experiments examining VG, where the inputX is a transposed forward �eld
matrix and a synthetic weight vector is applied, are:

1. Stability in number of cross-validation folds. The number of folds to create
in K-fold cross-validation is investigated, i.e. the optimal ratio between
training and validation sizes is found.

(a) Comparison of performances of VG-dual, VG-KV, LASSO and SBM.

2. Initialization of γ and m in VG-dual. The optimum solution path of VG-
dual is investigated. Re-initialization of the activation vector, m = 0, for
each level of sparsity, γ, is compared to using a backward, forward and
combined path.

3.1.1 Synthetic data

The synthetic sources are set to 1 in ten of the 8196 positions of the weight
vector. The remaining sources are set to 0. The active sources are placed in the
back of the left hemisphere, i.e. the left occipital lobe, corresponding to position
one through ten in the weight vector.

The same forward �eld matrix is applied to all experiments in this chapter.
This matrix relates 8196 sources to 128 channels. The forward �eld matrix
is the result of solving the forward problem using a symmetric BEM three-
layered head model with structural MRI information from a subject enrolled
in the multimodal face-evoked response study [HGGG+03]. The forward �eld
matrix is created using SPM8 [ACM+12] and applying the open source software
OpenMEEG [GPOC11].

Data creation in summary

� The transposed forward �eld matrix is used as input. i.e. X is a 8196×128-
matrix.

� X is scaled so
∑p
µ=1Xiµ/p = 0 and

∑p
µ=1X

2
iµ/p = 1.

� The weight matrix contains zeros at all elements except for the �rst ten,
which have ones.
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� The response y is created by y = XTwtrue + ξ, where ξ ∼ N (0, 1). Thus
making y a column vector with 128 elements, corresponding to potential
di�erences measured by 128 electrodes/channels.

� Finally the order of the channels is randomized.

3.1.2 Experiment 1.1: Stability in number of cross-validation

folds

The performances of VG, LASSO and SBM are investigated across number of
folds used in cross-validation. Two di�erent formulations of the solution to
VG are evaluated, VG-KV and VG-dual, both presented in section 2.5. The
solutions of the models are compared to the weight vector that generated the
output; i.e. wtrue.

Before describing the implementation of each of the four algorithms the cross-
validation steps are outlined in the following.

Two-level K-fold cross-validation

Ten samples (channels) are extracted 50 times from the created input and out-
put, these are used as test sets, thus 50 repetitions are executed. The means
are subtracted from Xtest and ytest.

1. K is chosen between 2 and 15. For each K:

(a) The data remaining after extraction of test set is split into K folds.

(b) For k = 1 : K the following is performed:

i. The kth data set is used for validation. The rest is used for
training. The means are subtracted from the response and input
in the two data sets.

A. The model is applied to each relevant level of regularization.

B. A validation error is calculated for the solutions w (v for the
VGs) found for each level of regularization

MSEval = E
[
(XT

valw − yval)
2
]
. (3.1)

C. The minimum validation error is found across regulariza-
tions, the corresponding optimum regularization is reported.
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(c) A mean optimal regularization-level is found across the K-folds. This
level of regularization is used to calculate the solution wK (vK for
the VGs), where both training and validation data is applied to train
the model.

(d) A test error is calculated for each K as the normalized mean squared
error

nMSEtest,K =
E
[
(XT

testwK − ytest)
2
]

σ2
ytest

. (3.2)

The 50 splits of training and test data are used to calculate means and standard
deviations of the test errors for eachK (see �gure 4.1). The setup is implemented
in the matlab function twolevel_crossval, seen in appendix F.1.

Application of VG-dual

DMLT [Dis12] created by Donders Institute for Brain, Cognition and Behaviour
implements the dual VG-algorithm. The toolbox is available through the open
source network github https://github.com/distrep/DMLT. The relevant equa-
tion set used, is equivalent to equations (2.44) through (2.49). The implemen-
tation approach is very similar to that described by Kappen et al. which is also
reproduced in appendix B. DMLT however has the following adjustments:

� Convergence/stopping criteria:

� Maximum absolute di�erence in current and previous m, default:
10−12

� Maximum number of iterations, set to 50 in the current application.

� Upper boundary of inverse variance β, set to default: 1000.

� The smoothing parameter η is halved when the di�erence between current
and previous variational free energy is bigger than 10−10, instead of when
the maximum absolute di�erence in current and previous m is bigger than
0.1.

� To avoid numerical problems the values of m are �xed between 10−10 and
1− 10−10.

The approach used in the toolbox is adapted to �t the current two-level cross-
validation experiment, thus modi�cations and additions are made. As described

https://github.com/distrep/DMLT
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in the cross-validation step 1.(c) an optimal level of sparsity, γopt, is determined
for each K. This value is fed into a new function, which �nds the optimal
solution vopt by running VG from γmin to γopt and then backwards from γmax

to γopt. The direction giving lowest variational free energy at γopt is chosen
to de�ne vopt. The range of sparsity is heuristically de�ned as being from
γmin = −50 to γmax = −1 with 50 steps.

Two �nal alterations are performed to ensure at least three updating iterations
are performed for each level of sparsity: 1) not letting the code stop before
three iterations have been executed and 2) removing the break which is set
into action when 'eta<1e10'. As the smoothing parameter η is always smaller
than 1 this will always break the iterations, this implementation must therefore
be a mistake.

Application of VG Kailath Variant

The Kailath Variant formulation of VG implements the equations (2.29), (2.30)
and (2.31). Equation (2.29), describing w, is implemented in matlab using
equation (2.42), repeated here

w = ainv � b

− 1

p
ainv �

(
X

((
I + XTdiag(m� ainv)

1

p
X

)−1 (
XT (m� ainv)� b

)
))

.

One noteworthy di�erence from VG-dual is that the activation vector, m, is re-
initialized for each level of sparsity. Thus only one pathway search is necessary.
The same range of sparsity, as used for VG-dual, is applied. 50 iterations are
used if not stopped by an update in m that is smaller than 10−8. The values
of m are �xed to be below 1 − 10−10. The Kailath Variant formulation is
implemented in the matlab function vgKV, seen in appendix F.2.

Application of LASSO

The matlab toolbox SpaSM [Sjö05], created by Sjöstrand and described in sec-
tion 2.2, is applied for creating the LASSO solutions. The same preprocessing
as done for VG-dual and VG-KV is used; the mean values are subtracted re-
spectively in training, validation and test sets in both X and y. The e�ect of
scaling the row variances in X, in the before mentioned data sets, was inves-
tigated beforehand. As the same results were obtained with and without this
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scaling, it was found unnecessary to perform the scaling, and thus facilitating
equal preprocessing procedure for the four models.

The matlab function lasso is extended to output the penalty, i.e. t in equation
(2.5). When the mean optimum penalty has been found, this value can then be
applied and the optimum solution found.

Application of the sparse Bayesian model

The matlab toolbox SparseBayes Version 2.0 [Tip09b] created by Tipping is
utilized to create an SBM model with a Gaussian likelihood model and a linear
basis. As done in the previous chapter, the hyperparameters α controlling the
weights are estimated, while β, the precision of the noise in the data, is chosen
through cross-validation. Across folds the optimum value of β is found and
applied to the SBM model together with both the training and validation set.

3.1.3 Experiment 1.2: Initialization of γ andm in VG-dual

The dual formulation of the VG problem is tested with respect to the initial
level of sparsity, γmin. The purpose is to examine the stability of the algorithm
with respect to this parameter. The forward (starting at γmin) and backward
(starting at γmax) pathway searches are compared to the solution obtained when
combining the two. The combination of the two is for each γ de�ned by the
direction of pathway search with lowest variational free energy. Additionally
the e�ect of initializing the activation vector, m = 0, for each γ is explored.

From the transposed forward �eld matrix, with the dimensions 8196× 128, 118
electrodes are extracted in 50 di�erent ways and used as X. This data is used
to train the model, thus 50 repetitions are performed. The data is created as in
the two-level cross-validation experiment with ten active sources with a value of
1.

The source retrieval index Fs [MKSW99]

Fs =
2 · precision · recall
precision + recall

=
2TP

TP + FP + TP + FN
=

2TP

TP + TP + 10
, (3.3)

is used to evaluate the performance, where TP, FP and FN are the number of
true positives, false positives and false negatives, respectively. Note that since
ten sources are active is TP + FN = 10.
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An interval of γmin from −55 to −45 is applied and all solutions on the path to
γmax = 0 are stored. The best solution from each initialization is de�ned to be
the solution with highest source retrieval index. Note that when re-initializing
m for each γ, this is unnecessary, therefore the direct solutions obtained in the
same interval are reported, i.e. γopt = γmin. The results can be seen in �gure
4.6.

3.2 Time-expanded VG-dual

The following section details the setup of experiments on the time-expanded
dual formulation of VG. The algorithm assumes that each source has a constant
mode of activation (on or o�) for all of the time samples applied to the algo-
rithm. The equation set, equations (2.66) to (2.71), describing this algorithm,
is implemented in matlab using the following vector/matrix equations

Wn×T =
(
1�

(
pβ(1−m).� χdiag

)
· 1′T

)
� (X · λ), (3.4)

Ap×p = Ip×p +
1

p
XT · diag(m� ((1−m)� χdiag)) ·X, (3.5)

Ŷp×T = A\Y, (3.6)

β1×1 = Tp/sum(Ŷ �Y), (3.7)

λp×T = βŶ and (3.8)

mn×1 = σ

(
βp

2
sum(W.2, 2) + γ

)
. (3.9)

1T denotes a column vector of ones of length T . In equation (3.7) 'sum' indicates
the sum over all elements in the matrix generated by Ŷ �Y. In equation (3.9)
the sum is along the rows of the squared elements in W.

Common for the following experiments is the use of VG-dual applied to a time
window, and that the transposed forward �eld matrix, described in section 3.1.1,
functions as the input matrix,X. The �rst experiment is designed to validate the
approach on a synthetic data set. The second experiment is created to compare
the found solution to that obtained by SPM8 [ACM+12] with the MSP model.
Finally a time window in a single epoch from the multimodal face-evoked data
set is fed to the time-expanded VG-dual. In summary the experiments are:

1. Performance on synthetic data. The synthetic temporal source distribu-
tion consists of sine waves applied as ten sources.
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� Search for an optimum value of the smoothing parameter η.

2. Performance on di�erential ERP. The di�erential ERP from the multi-
modal face-evoked response data set is used as samples of the response.

3. Performance on single face epoch. A time window from one epoch, where
an image of a face is presented to the subject in the multimodal face-evoked
response data set, is used as samples of the response.

3.2.1 Multimodal face-evoked response data set

The data set is available through the SPM website: http://www.fil.ion.ucl.
ac.uk/spm/data/mmfaces/. The stimuli setup is detailed in [HGGG+03] and
is brie�y outlined in section 1.2.4.

The multimodal face-evoked response data was recorded on a 128 channel Ac-
tiveTwo system (additionally two earlobes and two bipolar, HEOG and VEOG,
channels), sampled at 2048 Hz. The raw data from two runs on one subject is
preprocessed in SPM8 as described in the SPM manual [ACM+12], including
the following steps:

� Converting: loads the data into a .mat and .dat �le.

� Downsampling: the sampling rate is decreased to 200 Hz.

� Montage: removes channels without relevant EEG data.

� Epoching: sets the window on the recorded EEG data to the relevant
area: -200 ms to 600 ms, with respect to stimulus presentation. Includes
baseline correction; baseline from -200 to 0 ms.

� Artifact rejection: marks trials as containing artifacts if data magnitude
exceeds 200 µV. Out of 344 trials, 305 remain.

� Robust averaging: calculates a weighted mean response for each of the two
conditions. As there approximately is an equal number of trials in each
condition, both conditions are used for calculating the means.

� Contrasting: creates di�erence (di�erential ERP) and mean (average ERP)
of averaged responses from face and scrambled stimuli.

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
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3.2.2 Experiment 2.1: Performance on synthetic data

Synthetic data is used to verify that the VG-dual time formulation is applicable
to the forward �eld matrix. The synthetic source distribution is similar to that
used in section 2.5.4, where ten sources are active with the appearance of a
sine wave through 25 time samples, see �gure 2.9. The output is generated by
Y = XTWtrue + ξ, where ξ ∼ N (0, 1).

A search for a suitable level of the smoothing parameter (η) of the activation
vector (m) see equation (2.32), is performed in the range from 0.3 to 1. Kappen
et al. describe that if the maximum absolute di�erence between the old and
new m is bigger than 0.1, η should be halved. This value is reduced to 0.05, as
it was seen to improve the solution.

50 combinations of ten channels are used as 50 test sets, leaving 118 channels
for each combination which are applied to a �ve-fold cross-validation. The
118 channels are thus split into a training and a validation set. The activation
parameters m are re-initialized for each level of sparsity, γ. The cross-validation
investigates γ from -150 to 0, with 60 steps and 100 iterations for each γ. An
SNR of approximately 40 is used.

The performance is evaluated by the mean squared test error, and by the number
of true and false positives. The number of positives is de�ned to be the number
of sources with activation mi higher than 0.5.

The general implementation of the dual VG on time windows can be seen in the
matlab script presented in appendix F.3

3.2.3 Experiment 2.2: Performance on di�erential ERP

Real EEG data is now fed to the VG-dual time model, however in this experi-
ment in the form of the di�erential averaged data. This data set is the di�erence
in EEG between faces and scrambled faces that have been averaged over 305
trials/epochs. This is the �nal step before applying the model to one single
epoch. The experiment is performed to enable a comparison with the results
produced by SPM8 using MSP, see section 1.2.4.

As in the above experiment, using synthetic data, a �ve-fold cross-validation
experiment is conducted, the data now being the di�erential ERP. First the
entire frame of time, from −200 to 600 ms is used as the time window. Then
only 20 samples, corresponding to 100 ms, are extracted; more speci�cally from
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100 to 200 ms. 100 iterations are used for each γ, which is in the range from
−80 to 0 with 100 steps. Finally η is set to the found value in experiment 2.1;
i.e. 0.55.

Additionally, 100 ms of the peristimulus area are extracted, from −100 to 0
ms, and applied to the same settings as the above. This is done to check
if background brain activity is e�ectively removed by the performed baseline-
correction.

3.2.4 Experiment 2.3: Performance on single face epoch

The same approach as in experiment 2.2 is executed with a time frame from 100
to 200 ms. The data set now consists of a single epoch, where the stimulus is
an image of a face. The experiment is repeated for di�erent epochs and results
from two representing epochs are shown.



Chapter 4

Results

The outcome of the experiments described in the previous chapter is presented
here following the same section structure. Initial comments on the results are
included while discussions are left for the next chapter.

4.1 Sparse Algorithms in Single Time

4.1.1 Experiment 1.1: Stability in number of cross-validation

folds

The results of applyingK-fold cross-validation withK from 2 to 15 using the two
formulations of the VG algorithm; VG-dual and VG-KV, and the L1-inducing
LASSO, as well as the sparse Bayesian learning method SBM are seen in �gures
4.1-4.5. Selected �ndings of the �gures have been submitted to International
Conference on Acoustics, Speech, and Signal Processing 2013, preprint is seen
appendix G.

As seen from �gure 4.1, the test errors obtained by the four methods are very
similar. VG-dual performs slightly better than SBM, which is followed by
LASSO and �nally by VG-KV. Especially VG-dual, LASSO and SBM are very
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Figure 4.1: Normalized mean squared test error after performing 50 two-level
K-fold cross-validations. K is investigated from 2 to 15. The
algorithms are optimized with respect to one parameter; for the
VGs the sparsity level γ, for LASSO the regularization parameter
λ and for SBM the precision of the noise β. The solution of the
VGs are in the form of v, while LASSO and SBM are in the form
of w. Ten sources out of 8196 are de�ned to be active in the 'true'
weight distribution.

stable across number of folds in validation and training sets. Note that the
mean squared test errors have been normalized by the variance on ytest which
have an average value of 55, thus the test error is presented in the form of the
normalized MSE in �gure 4.1.

Comparing the two VG methods the di�erence in test error is perhaps caused
by a potential error introduced when/if mi = 1. Of course such an error might
also be introduced to VG-dual, since this model also has to 'hard-code' its way
out of numerical problems. The solutions obtained by the two VG formulations
were compared to the original formulation (not shown) and it was seen that
increasing the number of times m had to be manipulated, worsened the result
of VG-KV. VG-dual was less a�ected.
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(a) True sources, threshold= ±0.5.
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(b) False sources, threshold= ±0.5.
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(c) True sources, threshold= ±0.01.
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(d) False sources, threshold= ±0.01.

Figure 4.2: Mean number of true/false sources across 50 two-level K-fold
cross-validation repetitions with indicated threshold applied to
the solutions. The algorithms' performances are evaluated on
K = 2 : 15. The algorithms are optimized with respect to one
parameter; for the VGs the sparsity level γ, for LASSO the regu-
larization parameter λ, and for SBM the precision of the noise β.
The solutions of the VGs are in the form of v, while LASSO's and
SBM's are in the form of w. The actual number of active sources
is ten, in total 8196 sources are applied.

The performances of the models are further investigated in �gure 4.2. In this
�gure the number of true sources (active sources in i = 1 : 10) and false sources
(active sources outside i = 1 : 10) is found on two levels of threshold. Note that
the thresholds are not scaled to the maximum value in the data. The goal is of
course to have ten true sources and zero false sources.

From �gure 4.2a and 4.2c it is seen that LASSO obtains most true sources, fol-
lowed by VG-dual, then SBM and �nally VG-KV. LASSO is however also the
method which results in most false sources. This is especially true when decreas-
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ing the threshold on the weights to 0.01. The two VG methods remain rather
stable to the threshold, with the VG-dual solution having slightly fewer false
sources on the lower threshold and more true sources on both thresholds. SBM
is more stable to the threshold than LASSO but worse than the VG methods.

It should be noted that LASSO and SBM should not need a threshold at all to
�nd sparse solutions, while for VG a 0.5-threshold on the activationm is natural
since mi > 0.5 implies p(si = 1|D) > 0.5. Additionally the values of m are seen
typically to be either very close to 1 or 0, thus often making the thresholding of
m redundant.

In �gure 4.3 the methods are thresholded more fair to their describing algo-
rithms. The VG methods have a threshold applied to their activation parameter
m of 0.5, thus only keeping the sources with a probability greater than 0.5 of
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Figure 4.3: Average number of wrong predictions for 50 repetitions of the two-
level K-fold cross-validation. K is investigated from 2 to 15. The
algorithms are optimized with respect to one parameter; for the
VGs the sparsity level γ, for LASSO the regularization parameter
λ, and for SBM the precision of the noise β. The solution of the
VGs are in the form of v where a threshold of 0.5 is set on m.
The weights w found using SBM and LASSO are thresholded at
0.01. In total 8196 sources are applied of which ten are set active.
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being active. The weights of LASSO and SBM are thresholded at 0.01. Note
that this threshold could have been set even lower. From �gure 4.3 it is seen
that counting the number of wrongly classi�ed sources, i.e false negatives and
false positives a clear distinction between LASSO and the other algorithms is
apparent. LASSO makes approximately 47 wrong predictions, SBM 12 and the
VGs around eight.

In �gure 4.4 the solutions obtained through one ten-fold cross-validation are
depicted. The most obvious di�erence between the solutions of the four methods,
is that LASSO has many (small) sources outside the activated area, SBM has
a few while the VGs have none. All algorithms have problems estimating the
values of the sources they do �nd, perhaps caused by compensation for their
missing sources.

In �gure 4.5 the same sources as found in �gure 4.4 are visualized in 3D together
with the 'true' distribution of the sources. A threshold of 0.5 on m is set to
the VGs and 10−10 on LASSO and SBM, corresponding to 'no threshold'. As
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Figure 4.4: Optimum solutions for one example of a ten-fold cross-validation.
The algorithms are optimized with respect to one parameter; for
the VGs the sparsity level γ, for LASSO the regularization param-
eter λ, and for SBM the precision of the noise β. The solutions for
the VGs correspond to v, while for LASSO and SBM the solution
presented is w. As seen from the 'true' distribution of sources
wtrue (black trace) ten sources are active with the value 1, in total
8196 sources are applied. Inset is zoom of the �rst 14 features.
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already seen VG is better at restricting the sources to the active region, with
VG-dual �nding one 'true' source more than VG-KV.

(a) VG-dual (b) VG-KV (c) LASSO (d) SBM (e) True

Figure 4.5: Sources estimated in the context of a 3D cortex structure are com-
pared with the 'true' distribution. The algorithms are optimized
through ten-fold cross-validation with respect to one parameter;
for the VGs the sparsity level γ, for LASSO the regularization
parameter λ, and for SBM the precision of the noise β. The so-
lutions for the VGs correspond to v including a threshold on the
activation m set to 0.5. For LASSO and SBM the solution pre-
sented are w with a treshold on the weights set to 10−10. Heavy
or thin arrows indicate sources with magnitudes larger or less than
0.5, respectively. Black arrows indicate true sources and red false
sources. View is from the back of the left hemisphere. No sources
are found in the right hemisphere for the VGs, only low-strength
sources for LASSO and one low strength for SBM. Note individual
color maps are used.
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4.1.2 Experiment 1.2: Initialization of γ andm in VG-dual

In this experiment the stability of VG-dual, with respect to the initial level
of sparsity applied, is investigated and thereby how the forward and backward
solutions are a�ected by γmin. These pathway searches are compared to the
combined solution, which chooses for each γ the solution from the forward or
backward search that gives lowest variational free energy. Additionally the con-
sequence of re-initializing the activation parameters, m for each γ is examined.
The latter makes a forward/backward search redundant, as information obtained
from the previous γ is not used.

The source retrieval index Fs is used as a measure of how good the solutions are
at reproducing the correct source distribution, see equation (3.3). The results
can be seen in �gure 4.6.

In �gure 4.6a the maximum source retrieval index is found across sparsity in
solutions for each γmin and each repetition. This is done for the forward, back-
ward and combined pathways. For the solutions obtained with re-initialization
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for shown solution paths with
γmin = −48.

Figure 4.6: Source retrieval index Fs for VG-dual as function of γmin and
applied regularization in solution, respectively. The results are
averaged over 50 repetitions of �ve-fold cross-validations, searching
for optimim level of sparsity. Three pathway searches are applied.
The forward solution starts at γmin and ends at γmax, the backward
does the oppposite. The combined consists of both the forward and
backward solution, where the variational free energy determines
the involvement. Finally the solutions where m is initialized to all
zeros for each γ are shown, only included in (a).
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ofm for each γ, the maximum source retrieval index is de�ned to be the solution
obtained directly at γmin, see black dashed line in �gure 4.6a. For this reason
this solution does not make sense to include in �gure 4.6b.

From �gure 4.6a it is clear that the dual VG is sensitive to the initialization
of γmin. Additionally it is noticeable that the forward and combined solutions
are very similar after γmin = −52. After this value of initialization of sparsity,
the combined pathway is thus successful in choosing the pathway with highest
source retrieval index.

The forward solutions and solutions from re-initializing m attain the same level
of performance. This of course implies that using the connected paths to search
for the optimal solution is unnecessary. The reason for this is evident in �gure
4.6b, where the mean value of Fs across repetitions is seen for γmin = −48. The
performances of the methods are seen to be very constant as the sparsity in the
solution is reduced.

As the weight distribution found by VG-dual is very much dependent on the
initialization of γ, it is no surprise that the backward search performs worse
than the others. Remember that the backward search is initialized at γmax = 0.
In the current application with only ten active sources out of 8196 possible, the
solution will thus probably not achieve the sparsity inherent in the data.

4.2 Time-expanded VG-dual

In the following experiments it is investigated whether the time formulation
of VG-dual, as described in section 2.5.4, is applicable to EEG settings. In
this version of the dual VG the activation parameters are �xed through the
time window applied, while the weights are allowed to �uctuate. Again the
transposed forward �eld matrix is utilized as X. First the performance of the
algorithm is shown on synthetic data and �nally on the multimodal face-evoked
response data.

4.2.1 Experiment 2.1: Performance on synthetic data

The current experiment is made to act as a pre-stage to implementation of
actual EEG data. The purpose is to validate the VG-dual time formulation
and to �nd a suitable value of the smoothing parameter η. The sine in �gure
2.9, also presented as the green trace in �gure 4.8, is applied as the temporal
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development of ten sources in the 'true' weight matrix. The mean squared test
error, and count of true and false positives as function of η are seen in �gure
4.7.

The mean squared test error in �gure 4.7a shows several local minima, and
it seems as though the relationship between MSE and η is not straightforward.
Looking at the true and false positives in �gure 4.7b more of a tendency is visible;
the number of active sources seems to decrease with η until η = 0.9. Hereafter,
especially for η = 1, many sources are modeled as being active. Based on 4.7b
η = 0.55 seems a sensible choice, as the number of true positives is relatively
high and the number of false positives relatively low. This seems as a reasonable
choice looking at the test error too, as a local minimum is present here.

The sources found in one cross-validation run with the chosen level of smoothness
of 0.55 are plotted in �gure 4.8. The results from �gure 4.8 show that although
the algorithm is not capable of �nding all the active sources it does give a good
approximation. Another interesting �nding is that taking the mean of the ten
�rst estimated sources returns the appearance of one 'true' source. It can thus
be speculated that the algorithm compensates the excess sparsity in the solution
by increasing the magnitudes of the found sources.
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Figure 4.7: A search on η, the smoothing parameter of m, is conducted with
the purpose of optimizing the results of the VG-dual time algo-
rithm. A synthetically generated weight distribution is used. It
contains ten active sources out of 8196 possible. The graphs are
the result of the average of 50 repetitions of two-level �ve-fold
cross-validations.



62 Results

5 10 15 20 25

−3

−2

−1

0

1

2

3

Time samples

F
ea

tu
re

 v
al

ue
s

 

 
v

1:10

v
11:8196

w
true,1:10

E[v
1:10

]

Figure 4.8: One example of the solution to a �ve-fold cross-validation. The
feature values are shown as function of time samples. SNR=40.
Synthetic data is applied with 25 time samples. vi is equal to
miwi and denotes the solution obtained for the source in location
i in one point in time using time-expanded VG-dual. 'True' ap-
pearance of one of the ten equal strength active sources is shown
in bright green. Source 1 through 10 have this temporal develop-
ment, the remaining are constantly 0. The mean value of the �rst
ten estimated sources, E[v1:10], is also shown.

4.2.2 Experiment 2.2: Performance on di�erential ERP

The following experiment investigates if the VG-dual time algorithm �nds the
expected sources on real EEG. The results from running source localization on
the di�erential (faces-scrambled faces) ERP using SPM8 [ACM+12] with MSP
are seen in section 1.2.4, �gure 1.3 and are repeated in �gure 4.9 to facilitate
comparison with VG-dual. Especially note that the strongest source at 180
ms post-stimulus, found for the di�erential ERP using SPM8 with MSP, is at
location = [−37,−80,−16 mm].

Applying VG-dual on the complete ERP, from 200 ms before stimulus to 600 ms
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(a) Time development of the strongest source
for di�erential ERP (red) and averaged ERP
(gray). Location of strongest source at 180 ms
for the di�erential ERP: [−37,−80,−16] mm.

(b) Source reconstruc-
tion of di�erential
ERP, time = 180 ms.
Sagittal, transverse
and coronal views.

Figure 4.9: Results obtained on the multimodal face-evoked data set with
SPM8 using MSP. The paradigm applied to reveal the face-evoked
response is described by Henson et al. (2003). Modi�ed from
[ACM+12].

after stimulus, yields at 180 ms the two strongest sources seen in �gure 4.10a.
The time courses of these two sources have many of the same characteristics
as the strongest source obtained by SPM MSP. Especially the peek at 180 ms,
which is the N170 component, is visible with both methods. Additionally the
position of the strongest source; [−34.9,−89.9,−22.0 mm] in the VG-dual so-
lution, approximately matches the position of the strongest source obtained by
SPM. Note that the second strongest source obtained by VG-dual is located
bilaterally to the strongest source, which seems reasonable since brain functions
of the two hemispheres are often located symmetrically.

In �gure 4.10b the time frame of the di�erential ERP is reduced to 100 ms
equivalent to 20 time samples; the range is from 100 to 200 ms post stimulus.
The same two sources as shown in �gure 4.10a are seen to be dominant and to
contain similar characteristics in this smaller time frame. The positions of the
strongest sources from the two time windows are visualized in the context of
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(a) Time window from −200 to 600 ms.
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(b) Time window from 100 to 200 ms.

Figure 4.10: The two sources with highest activation at 180 ms found in dif-
ferential ERP by VG-dual in two time windows. The two im-
plementations give the same two strongest sources which have
locations [−34.9,−89.9,−22.0 mm] and [41.1,−78.4,−25.4 mm].
These are found in the left and right occipital lobes, respectively.
Five-fold cross-validation is used to �nd optimum level of spar-
sity.

(a) Full ERP: −200 to 600 ms. (b) 100 ms ERP: 100 to 200 ms.

Figure 4.11: Source reconstruction on di�erential ERP at time instance 180
ms. Arrows point to the two strongest sources. The strongest
of the two is found in the left hemisphere. A threshold of 0.5 is
imposed on the activation vector m. The source distribution is
found using �ve-fold cross-validation. Posterior view.

the cerebrum in �gure 4.11, where they are marked with arrows.

The results from the di�erential ERP obtained by the full and 100 ms time
window are very similar in the number of sources found, as well as in their
locations. This is seen in the glass brain representation of the sources found at
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(a) Full ERP.
Threshold on
m of 0.5.

(b) Full ERP.
No threshold
on m.

(c) 100 ms ERP.
Threshold on
m of 0.5.

(d) 100 ms ERP.
No threshold
on m.

Figure 4.12: Glass brain representation of sources found for di�erential ERP
at time instance 180 ms. The two windows are full ERP:
from −200 to 600 ms, and 100 ms ERP: from 100 to 200 ms.
The presented source distribution is found using �ve-fold cross-
validation. Sagittal, transverse and coronal views are presented.

180 ms post-stimulus in �gure 4.12. In �gures 4.12a and 4.12c a threshold of
0.5 is imposed on m, thus only the sources with probability higher than 0.5 of
being active are shown. Both �gures show that sources are found mainly in the
occipital and temporal lobes, bilaterally. And most non-occipital sources are
located in the right hemisphere. However the 100 ms time window has more
sources radiating from the occipital lobes to the temporal lobes, and one source
clearly in the temporal lobe. Additionally the full time window has two sources
in the right frontal lobe where the 100 ms time window only has one. SPM MSP
also �nds sources in the temporal and frontal lobes, however more scattered and
in both hemispheres, though also with the strongest sources on the right.

In �gures 4.12b and 4.12d the same results are shown as in �gures 4.12a and
4.12c but with no threshold onm. These of course show more sources active and
are more similar to the result obtained by SPM MSP, by additionally showing
activity in the fusiform area.
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Figure 4.13: 100 ms peristimulus time window. Source reconstruction on dif-
ferential ERP. Shown is time instance −100 ms. The source dis-
tribution is found using �ve-fold cross-validation. View is such
that all sources are visible, here two.

The comparison with the found sources using SPM MSP indicates that the VG-
dual time algorithm �nds more sparse solutions, but is capable of �nding the
most dominating sources.

To ensure that the above results are not obtained by chance, a 100 ms window in
the peristimulus area is extracted. The sources found at time −100 ms are seen
in �gure 4.13. The source reconstruction of the peristimulus window reveals
only two sources with low magnitude in the right frontal lobe, note the range
on the color bar compared to those in �gures 4.11a and 4.11b.

4.2.3 Experiment 2.3: Performance on single face epoch

A single face-stimulus epoch is extracted from the face-evoked response data
set and a time window from 100 to 200 ms is used to form the employed EEG
response. This procedure is repeated several times and the results from two
representing epochs are shown here.

A very sparse solution is obtained for epoch 35, visualized in �gures 4.14 and
4.15. One source is found in each occipital lobe and two sources are seen in the
right temporal lobe. The sources of the occipital lobes are located in the visual
cortex and are seen to peak around 160 ms, i.e. similar to the occipito-temporal
sources found in the di�erential ERP. The same applies for the posterior tem-
poral source. The anterior temporal source appears to have a mirrored time
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Figure 4.14: Face 35. The sources found in single face-evoked epoch by VG-
dual using a time window from 100 to 200 ms. The temporal
source distribution is found using �ve-fold cross-validation.

Figure 4.15: Face 35. The sources found in single face-evoked epoch by VG-
dual using a time window from 100 to 200 ms, visualized at time
instance 180 ms. The source distribution is found using �ve-fold
cross-validation. View is such that all four sources are visible.

course of the three others.



68 Results

110 120 130 140 150 160 170 180 190
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time [ms]

S
ou

rc
e 

st
re

ng
th

 

 
Occipital lobe, left
Occiptital lobe, right
Frontal lobe, left
Temporal lobe, right

Figure 4.16: Face 173. The sources found in single face-evoked epoch by VG-
dual using a time window from 100 ms to 200 ms. The temporal
source distribution is found using �ve-fold cross-validation.

(a) Posterior view. (b) Anterior view

Figure 4.17: Face 173. The sources found in single face-evoked epoch by VG-
dual using a time window from 100 to 200 ms, visualized at time
instance 180 ms. The source distribution is found using �ve-fold
cross-validation. Views are such that all eight sources are visible.
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The source reconstruction from face epoch 173, seen in �gures 4.16 and 4.17,
shows more activated sources, with most located in the left occipital lobe and
in the occipito-temporal area. The found sources, excluding the two sources in
the frontal lobe, have peak activity in 160-190 ms. The N170 complex is thus
also seen for this epoch.

Most of the examined epochs show activity in the visual cortex and in the
occipito-temporal areas. Several also show activity in the frontal lobes, as also
seen in the di�erential ERP and the baseline study. Also unilateral activity of
the motor cortex is seen in some epochs, possibly caused by the instructed �nger
tapping.
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Chapter 5

Discussion

Solving the highly underdetermined EEG inverse problem often includes ei-
ther assuming smoothness, e.g. with MNE [HI84, IHCL07, BMG11, PSS11] or
LORETA [PMML94, FGPM+01, Con06], or sparseness, e.g. with MCE/LASSO
[UHS99], dipole �tting [SB91] or Bayesian inference [TBAVVS04, ZR11, PSS11],
of the EEG generators. This thesis has focused on applying the sparsity assump-
tion. Not only does it make the results more interpretable it has also been shown
to be well suited for EEG applications [FHD+08, DPO+12, UHS99, TBAVVS04,
PM09].

This chapter analyzes the results presented in the previous chapter. The con-
clusions drawn from the experiments are related to prior studies. The chapter
is divided in to three main sections covering the instantaneous algorithms and
the dual formulation of VG applied to time windows. The chapter is concluded
with re�ections that apply to both types of implementation.

5.1 Sparse Algorithms in Single Time

The algorithms discussed in this section; the two VG formulations as well as
LASSO and the sparse Bayesian Learning method SBM, all have the follow-
ing in common; they solve the linear problem under a sparsity assumption.
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Additionally their solutions were in this thesis optimized with respect to one
parameter through cross-validation.

The two-level cross-validation experiment in section 4.1.1 not only compared the
two VG formulations (VG-dual and VG-KV) and LASSO and SBM, but also
showed these algorithms' stability with respect to number of folds, K. These
results are important for further investigations, as using the optimum value of
K will ensure that the algorithms are represented under their most favorable
settings. As seen in �gure 4.1 the mean squared test error is very stable across
number of folds for generally all algorithms. This of course indicates that any
of the explored values of K, from 2 to 15, can be applied. That the algorithms
are stable to the number of folds is in itself a signi�cant result as it adds to the
algorithms' merits.

Comparing the performances of the algorithms with respect to their test errors,
see �gure 4.1, the dual formulation of VG, SBM and LASSO are found within
one standard deviation of each other. The lowest obtainable test error, created
by using the 'true' source distribution, had highest proximity to VG-dual, SBM
followed very closely, and so did LASSO. These result are very similar to those
presented in section 2, where VG was shown to be slightly superior to SBM and
even more so to LASSO.

The solutions of the four algorithms were further explored in �gure 4.2. Here
the number of true and false positives were compared across number of folds in
the cross-validation. LASSO was found to obtain most true positives, but also
gave many non-predicting variables non-zero weights. The dual formulation of
VG showed on average a little fewer true sources than LASSO, but its ability
to set the non-predicting variables to zero was much better. For LASSO it thus
seems that a higher number of true positives is found with the trade o� of lower
prediction power in the non-active regions. From �gure 4.3 it was seen that the
total number of errors made, clearly separates VG-dual from LASSO, with VG-
dual being much superior. Another interesting way to evaluate the algorithms
would be in the form of a receiver operating curve, however this would not
be entirely natural for either of the two algorithms. The solution of LASSO
and VG, respectively, would only give one point in the curve, as a threshold is
already inherent in the algorithms; for LASSO a threshold of 0, or of a very
small value, and for VG a threshold of 0.5 on the activation parameters, are
obvious choices.

Judging whether LASSO or VG-dual is better in general, entirely depends on
the application. If it is most important to �nd as many true sources as possible
LASSO is slightly better than VG-dual. However if avoiding ghost sources is de-
sired, VG-dual is the most obvious choice between the two. In EEG applications
the weighing of the trade o�s might also di�er. Generally the existence of ghost
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sources will confuse the interpretation of the acquired source distribution. They
are however often present in linear inverse solutions [TBAVVS04, HNZ+08].
Trujillo-Barreto et al. (2004) showed in [TBAVVS04] that using Bayesian in-
ference via Bayesian model averaging, ghost sources could be avoided. The
three models using Bayesian inference; VG-dual, VG-KV and SBM, did indeed
have fewer false positives than the non-Bayesian LASSO, as seen in �gure 4.2d.
Among the Bayesian solutions VG-dual found most true sources and was inter-
mediate in the number of false sources (�gures 4.2a to 4.2d).

The positions of the wrongly classi�ed sources should also be considered. Many
scattered spurious sources far from actual sources might be more confusing than
ghost sources located near the 'true' sources. The L1-norm has been found
to produce sources around the actual source [HTD+11]. In �gures 4.4 and
4.5 this was investigated for one example. In this presented example the VG
formulations did not show any ghost sources, LASSO however had many small.
The two strongest were seen to be close to the true region of activation, while the
smaller were scattered across the whole cortex, thus partly supporting the claim
made about the L1-norm by Haufe et al. (2011). SBM had one ghost source
close to the active area and one far from it. Supplementary investigations on
the location of the ghost sources should be done for it to be used in evaluating
the algorithms' performances more generally.

As LASSO only obtained a somewhat higher average of true positives than
VG-dual, but had many more false positives, when the threshold was set low,
VG-dual was hypothesized to be more applicable to the current problem. For
these reasons VG-dual was chosen to expand upon.

In �gure 4.1 it was shown that the Kailath Variant formulation had a bit higher
test error and some small �uctuations across the number of folds, compared
to the three other algorithms. This might be a result of the introduction of
numerical errors. These could potentially occur since the possibility of a division
with 0 was present in the algorithm, which necessitated an requirement on the
activation parameters m; if mi = 1 a small value would be subtracted from
it. A similar problem is encountered in the dual formulation of VG, and it
could therefore be expected that its solution would be a�ected in the same
manner. The formulations of VG were compared (not shown) to the original
formulation, seen in equations (2.29) to (2.31). It was found that increasing the
number of times a value in m had to be manipulated the more deviated the
Kailath Variant formulation from the results of the original formulation. The
deviation was less pronounced for the dual formulation. This could explain the
less stable appearance of VG-KV and the higher test error seen in �gure 4.1,
compared to especially VG-dual.

The two implementations of VG also di�ered in their search for the optimum
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level of sparsity. In the code (from the DMLT toolbox) implementing VG-dual,
the solution obtained from the previous level of sparsity was used as initialization
of the new level. For VG-KV the parameters were reset for each level of sparsity.
This could be expected to in�uence their respective solutions. However, it does
not directly explain why VG-KV performed worse as seen from the experiment
on the pathway searches in �gure 4.6. From this �gure it was found that re-
initializing the activation parameter vector m for each level of sparsity was as
good as carrying out a connected pathway search. Most often it will even be
better to re-initializem, as not choosing the correct initialization of sparsity will
cause the algorithm to get stuck in a local optimum. The latter is suspected
to be likely to occur, as it was found that the solutions obtained by VG-dual
are very much dependent on the initial γ applied. The search for the optimal
applied sparsity is however still essential, but only one direction is necessary.
Computation time is therefore reduced, as the solution using the found optimum
sparsity level does not have to be calculated starting from γmin and/or γmax,
but can be calculated directly. The main �nding was therefore that the levels
of sparsity should be evaluated separately.

Additional experiments on the performances of the algorithms could have fur-
ther revealed their strengths and weaknesses. For example it would have been
interesting to use a less or more sparse weight vector as the source distribution,
or to include correlations between the input variables. The latter has been ex-
amined in [FHT10, KG12, ZY07] for LASSO where it was found that LASSO's
performance decrease under speci�c types of correlation. Also SBMs have been
found to be a�ected by correlated input variables [WRP+07]. As the VG is a
very new technique, results of its performance by reviewers have not yet been
published - note that even the article describing the VG algorithm [KG12] only
exists as a preprint. However in this preprint Kappen et al. presented good
results for VG on correlated inputs.

In summary the discussed experiments gave insight into the pronounced stability
of the algorithms with respect to number of folds to include in cross-validation
setups. It showed that under the analyzed conditions VG-dual was superior but
also that the algorithm does sacri�ce �nding some of the actual sources for the
bene�t of reducing the number of ghost sources. Furthermore it was found that
the activation parameter should be initialized for each level of investigated spar-
sity in order to avoid getting caught in a local optimum. These considerations
were taking into account during evaluation of the VG-dual formulation under
time-constant activation settings.
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5.2 Time-expanded VG-dual

The results obtained with the dual formulation of VG in instantaneous time
were applied to the time expanded version, where the activation modes of the
sources are assumed constant in the applied time window. It is expected that the
nature of the algorithm is mostly unchanged, although it would be interesting to
investigate the di�erences in the two formulations. Convergence could perhaps
be found on a lower iteration count for the time-expanded formulation as it
exploits knowledge of sources' activity within a range of time. For now it is
however assumed that e.g. re-initializing the activation parameter vector m for
each level of sparsity is also the best choice for the time-expanded VG-dual.

Initial investigations on the characteristics of VG-dual using time windows were
however performed on the applied smoothing parameter, as indications from
prestudies showed relevance of this parameter. Again a synthetic source distri-
bution was applied. The chosen source distribution was a sine wave over a time
frame of 100 ms applied to ten neighboring sources. The temporal appearance
of each of the ten sources mimicked an alpha frequency wave. EEG signal shows
activity in the alpha frequency band in the occipital lobes in a relaxed person
with eyes closed [NS06]. Indeed the positions of the ten sources were in one
of the occipital lobes, more speci�cally the left. The smoothing parameter η,
which is enforced on the activation parameter vector m, was by Kappen et al.
suggested to initially have the value 1. Only if an update in m is 'large', is η
forced smaller, thus increasing smoothness of the solutions between iterations.
Initializing η to be less than 1 will make the initial guess on m increasingly
important, at least for the �rst couple of iterations. Since m is initialized to all
zeros for each new sparsity level, it could be presumed that an initial low value
of η would create more sparse solutions, than e.g. η = 1. In �gure 4.7b it was
indicated that the sparsity level of the solution seems to decrease until η = 0.85,
thus in this region the opposite of the expected was found. This can possibly
partly be explained by the relatively high number of iterations; i.e. 100.

The number of true and false positives depicted in �gure 4.7b showed the same
characteristic (by both decreasing with increasing smoothness). Although at
η = 0.55 a small increase in the number of true positives was present, while
the number of false positives continued to decrease. Therefore this value was
chosen for implementation in the next experiments. The test error in �gure 4.7a
was di�cult to use as guidance for determining η. The smallest value of η gave
minimum test error but it was found (not shown) that the active weights did
not have much resemblance with an alpha wave when applying small values of
η. A local minimum was seen around η = 0.6, this �ts well with the value of η
chosen from �gure 4.7b.
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The value determining whether η should be reduced or not, i.e. the permitted
maximum absolute di�erence between the new and previousm, was heuristically
set. A grid search on this value and η-level would have been to prefer. The
number of iterations is another issue that could a�ect the solution signi�cantly.
If few iterations are applied it might be necessary to relax the smoothing as
the solution might not otherwise have time to converge. However, since the VG
solution seems to be very dependent on the initial parameters, there might not
be much di�erence between iteration numbers.

As explained, the synthetic source distribution imitated an alpha wave, which
belongs to the spontaneous type of EEG signals. Applying a synthetic source
distribution of a known ERP, could also be interesting. This would indicate if
the algorithm's use is appropriate on higher states of brain processing as well.

The above was indirectly and more interestingly done using real EEG data.
More speci�cally the di�erential ERP from the multimodal face-evoked response
data set [HGGG+03] was applied. This data set was, as previously mentioned,
obtained by presenting visual stimuli consisting of faces or scrambled faces to
the enrolled participants. The di�erential ERP was then obtained by subtract-
ing the averaged scrambled face-evoked response from the averaged face-evoked
response. The resulting di�erential ERP is generally linked with a face-evoked
response showing increased activity in areas of the occipito-temporal cortices
and fusiform gyri around 150-190 ms [HGGG+03]. The peak response is called
the N170 complex.

The two strongest sources at 180 ms, found by VG-dual using time windows,
shown in �gure 4.10a, had the characteristics of the N170 complex. This �gure
was created using the full length of the ERP as the response. The neighbor-
ing �gure, where a smaller time window had been extracted around N170, also
showed peak activity around 180 ms. The two implementations of the di�er-
ential ERP resulted in exactly the same locations of the two strongest sources.
However all of the sources did not overlap. This is not unexpected as the smaller
time window focused on activity in fewer time samples. While the full time win-
dow is assumed to �nd the sources that are dominating over a longer period of
time, and/or give relevance to activity occurring before or after the 100 ms time
window.

Analyzed fMRI data obtained simultaneous with the described EEG data in
[HGGG+03] showed that face stimuli triggers activation in bilateral fusiform and
lateral ventral occipital regions. While scrambled faces were related to medial
and posterior bilateral occipital regions [HGGG+03]. Sams et al. (1997) showed
in [SHH+97] that face speci�c responses are predominately found in the inferior
occipito-temporal cortex using single dipole �tting of MEG data. The greatest
di�erence between faces and non-faces was found around 160 ms poststimulus.
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In another MEG study [LHH+91] three sources outside the visual cortex was
found dominant in face-evoked responses. These were near the occipito-temporal
junction, in the inferior parietal lobe and in the middle temporal lobe, listed in
chronological order in the time span from 105 to 560 ms from stimuli. Studies
on persons with lesions in the occipito-temporal cortices show de�ciency in face
processing and therefore support the claim of face-processing activity in this
region [SHH+97, HGGG+03].

The VG-dual time formulation showed peak activity in the occipito-temporal
areas on the same time scale as the mentioned studies. Additionally the 100
ms time window showed a low magnitude source in the central part of the
right temporal lobe. Only when removing the threshold on m, were sources
found in the parietal lobes. Lu et al. (1991) found that the activity in the
parietal lobes was also seen doing other forms of visual stimuli [LHH+91]. It
could therefore be speculated that the parietal response has to some degree been
subtracted out of the di�erential ERP, assuming that the same parietal activity
is present for scrambled face stimuli. The fusiform area has, also using the EEG
modality, been found to be speci�c for face-stimulated processes via the MSP
method [FHD+08]. In VG, only when removing the threshold on the activation
parameters, were sources visible in this area. Even though the found activation
was low it is noteworthy that the algorithm is capable of �nding these sources
without a prior assumptions of spatial smoothness.

A study of the baseline activity of the di�erential ERP was conducted to en-
sure that baseline correction had been successful in removing spontaneous EEG
signal. The results of this study, presented in �gure 4.13, showed two very low
magnitude sources found in the right frontal lobe, anteriorly. Only this kind
of activity is therefore expected to appear as ghost sources in the ERP. Two
frontal sources were found applying the full di�erential ERP window, including
the baseline. One was found in the 100 ms time window, from 100 to 200 ms.
This phenomenon could either be the result of an algorithm prone to produce
low magnitude ghost sources in the frontal lobe or that the baseline correction
was not entirely successful. Either way, the frontal sources are of such low
magnitude that they do not seem to disturb the interpretation notably.

The application of a single epoch in source reconstruction is very scarce in the
literature. Generally an averaging is performed across multiple epochs, thus
reducing noise and artifacts. The di�erential ERP produced in the multimodal
face-evoked response is such an example. Additionally in the ERP, two types of
responses have been compared, thus further un-clouding information from the
EEG data and focusing on the stimuli-evoked processing. Obtaining information
about the brain activity on the same time scale as it is produced is however
needed, e.g. in EEG biofeedback [PSS11] and BCI [BMG11] applications. The
intention with the VG algorithm is to facilitate online tracking of brain activity
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from a single epoch, or more precisely from small time windows of a single epoch.
Short EEG recordings are thus the only information available for the source
reconstruction. Even though this information is possibly more clouded than the
averaged ERP, meaningful results have been obtained. Im et al. (2007) were
able to show di�erences of the cortical distribution of alpha activity between
patients with dementia and healthy subjects [IHCL07]. They chose to apply
MNE for source reconstruction as it has a closed form solution, thus keeping
computation time low.

As studies using only a single epoch as the response could not be found in the
literature for the face-evoked paradigm, the results of �gures 4.14 to 4.17 are
compared to general knowledge of brain processing of faces and visual stim-
uli in general. Dominating sources after visual stimuli should include areas of
the visual cortex [SST08]. In many of the inspected face epochs, sources in
the visual cortices were reproduced with VG. The more face-speci�c responses
includes activation in the occipito-temporal and fusiform areas, as mentioned.
This activation was reproduced in a varying degree by VG. However in none of
the investigated face epochs were sources with activation above 0.5 obtained in
the fusiform areas. Some epochs additionally showed activation in the motor
cortex. The latter can be explained by the �nger tapping required to judge the
symmetry of the presented images.

A more statistical comparison of the source reconstructions of the single epochs
would have been useful to make more quantitative statements about the single
epoch results. Perhaps a comparison with the averaged face-evoked response
could have given further insight into the applicability of the single epoch. The
source reconstruction on the single epoch did however show brain activity in
many of the expected areas, and the VG algorithm thus seems to perform well
on non-averaged EEG signal as well.

5.3 General Re�ections

Two main assumptions have to be ful�lled for the VG algorithm to be appli-
cable to EEG source reconstruction. First of all linearity between the currents
generated in the gray matter and the potentials measured at the scalp must be
present. This demand is well backed by scienti�c studies describing the physiol-
ogy of the brain which models the head as a linear volume conductor [HVG+07].
Poisson's equation which is linear, is thus used to relate the currents generated
to the potentials measured.

Secondly sparsity is assumed. The presence of sparsity in the number of EEG
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generators is di�cult to study on a physiological level [SMFK09]. The con-
nections between neurons of the brain have thus only been studied to some
degree. It is estimated that approximately 1014 connections are found in the
brain [NS06]. A comprehensive study showing how many of these are linking
close-by neurons and how many transfer information to far away neurons is
to be desired. This task is very di�cult and even if possible the activation
of these connections during stimuli processing must also be known in order to
biologically verify functional sparsity [SMFK09]. Studies have however been
performed that indicate the existence of localized activity in the brain, e.g. in
connections with brain trauma to speci�c areas, where e.g. face perception is
deteriorated after lesions to the occipito-temporal area [SHH+97]. Additionally,
as also explained in the introduction of this thesis, sparsity has been applied
to the EEG inverse problem with success [SHH+97, UHS99, DET06, SSL06,
FHD+08, HNZ+08, HTD+11, DPO+12], and the assumption can therefore be
considered reasonable. Especially so if the most relevant sources are found in
the sparse representation of the actual source distribution, as seems to be the
case with VG.

Inferring spatial smoothness is also a standard technique used in locating EEG
sources [TBAVVS04], e.g. LORETA and MSP. MSP obtains smoothness by
including smoothing priors where the data supports this. MSP has obtained
good results and has facilitated reproduction of the face-evoked response in
the fusiform areas, as also found with fMRI and subdural EEG recordings
[HGGG+03]. So perhaps a next step for the VG algorithm is an expansion
where similar activity in neighboring vertices is assumed, thus possibly making
the found response in the fusiform area greater.

The current application of VG only gives one degree of freedom to each source.
Also in SPM8 [ACM+12], source reconstruction is limited to the use of the
sources' magnitude component perpendicular to the cortex. It has been shown
that dipole orientation does hold important information [PLD+05]. Henson et
al. (2009) however showed that MSP actually performs best when constraining
the dipole direction to the normal of the mesh [HMPF09].

A symmetric BEM head model, generated in SPM8, was used to construct the
applied forward �eld matrix. This limits the reconstruction space to the surface
of the cortex. Thus deep sources are projected on to this surface. Using, e.g. an
FEM head model, which includes voxels in the entire cerebrum volume, might
have improved the solution, including enhancement of the estimation of deep
sources. FEM furthermore has the attractive ability to model the conductivity
of the head anisotropically [BML01]. As FEM is becoming more competitive
with BEM with respect to computation complexity its use is likely to be much
increased [WAT+06, SSJ+10].
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Chapter 6

Conclusion and Perspectives

The current thesis has described the sparsity enforcing methods; least absolute
shrinkage and selection operator (LASSO), sparse Bayesian model (SBM) and
variational Garrote (VG), as ways of solving the underdetermined linear problem
that is EEG source reconstruction. The dual formulation of VG resulted in a
solution with few ghost sources and was a competitor to LASSO with respect to
�nding the actual predicting variables. This was proven with the application of a
synthetic source distribution and an actual forward �eld matrix, thus imitating
EEG settings under controlled conditions.

The dual formulation of VG assuming time-constant activation modes of the
sources also showed satisfactory results under these conditions and more impor-
tantly, meaningful results on the face-evoked response data set were obtained.
As an exact description of the events occurring in processing of face-stimulus
does not exist on EEG level, the results obtained were largely veri�ed through
similar studies applying EEG, MEG or fMRI. Activation in the fusiform area
was only reproduced when removing the threshold on the activation parameters.
It is hypothesized that incorporation of spatial smoothness is needed to obtain
these sources more clearly, as also done in multiple sparse priors (MSP).

The time window from a single epoch, also from the face-evoked response study,
applied to VG-dual returned for many examples of epochs, activation in the
visual cortex as well as in the more face-speci�c areas, including the occipito-
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temporal cortices. The VG algorithm thus showed great promise of usability in
real-time settings.

Suggestions for improvement of the dual VG, were indicated in the previous
chapter. They consist of performing various experiments to tweek the param-
eters in the model, e.g. the smoothing parameter η and the size of the time
window applied. A further description of the performance of the algorithm, e.g.
in the presence of correlated input variables and varying the number of active
variables, is also desirable. For the time-expanded version of VG-dual it could
be interesting to mimic sources as being correlated across time, as higher order
brain processing of stimuli includes activation of di�erent centers of the brain
on interlocked time scales.

The convergence rates will also be an important next step to investigate, with
the goal being application to real-time EEG based imaging. Initial studies re-
vealed that the algorithm converged rather quickly. Additionally computational
complexity of the dual and Kailath Variant formulations of VG both scaled with
the number of samples used. An expectation of a fast run time is therefore rea-
sonable. Often in real-time EEG imaging minimum norm estimates (MNE) are
applied, mostly because of its low computational cost, thus sacri�cing model
accuracy. Applying the VG algorithm instead, could potentially lead to more
precise descriptions of the instantaneous activation pattern of the brain.

An intermediate step between the time indexed VG-dual and actual applica-
tion to real-time imaging is missing, i.e. a moving time window which allows
continually updates of activity. One way would be to create overlapping time
windows, with temporal resolution of the representation depending on the degree
of overlap, and the time delay reliant on the number of iterations and samples/
electrodes. Information from previous time windows could furthermore be used
to obtain enhanced solutions. This could be incorporated in the model by mod-
ulating the prior on the binary switches to enforce a bias towards activation in
the sources found active in the previous time window(s).

This thesis adds to the already extensive �eld of EEG source localization by
employing an algorithm that both assume Ockham's razor to be valid and holds
potential for applications to EEG biofeedback. The qualities of VG can thus be
exploited in clinical settings, such as training patients with Parkinson's disease
to control speci�c activation of their brain with the objective to reduce symp-
toms. It is thus the hope that the VG algorithm can be a further step towards
understanding the formation of the measured EEG signal, and to use this infor-
mation to improve the quality of life in persons with neurological disorders.



Appendix A

Derivation of VG in Primal

Space

The problem of VG is de�ned as

yµ =

n∑

i=1

wisiXiµ + ξµ, (A.1)

where si is either 0 or 1 and its prior is

p(s|γ) =

n∏

i=1

p(si|γ), (A.2)

where

p(si|γ) =
exp (γsi)

1 + exp (γ)
. (A.3)

Variational approximation is used to solve (A.1). First the posterior probability
of the model given the data is de�ned

p(s,w, β|D, γ) =
p(w, β)p(s|γ)p(D|s,w, β)

p(D|γ)
, (A.4)
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with D being the full data set. Instead of maximizing the posterior probability
in equation (A.4)1, the discrete variable s has been marginalized out, giving rise
to the marginal posterior, p(w, β|D, γ). This expression is to be optimized with
respect to w and β. The denominator in equation (A.4) does not depend on the
two latter variables and is therefore not relevant in the maximization. Further-
more de�ning the joint prior likelihood of w and β to be uniform, simpli�es the
problem. The resulting expression to maximize is now

log p(w, β|D, γ) ∝ log
∑

s

p(s|γ)p(D|s,w, β), (A.5)

where the logarithm operation has been added in order to make the further
derivations simpler. Equation (A.5) is di�cult to maximize, by setting the
di�erential coe�cient equal to 0, due to the sum inside the logarithm expression.
Therefore Jensen's inequality is applied. This approach can be used because the
logarithmic function is a concave function. Concavity implies that every point's
value on a chord is smaller than that of the function. A point on a chord which
has contact points with the concave function f(x) in (x1, f(x1)) and (x2, f(x2))
can be described by (θx1 + (1 − θ)x2, θf(x1) + (1 − θ)f(x2)), where θ ∈ [0, 1].
Due to concavity the following is thus true

f(θx1 + (1− θ)x2) ≥ θf(x2) + (1− θ)f(x2). (A.6)

The above can be rewritten to

f(θ1x1 + θ2x2) ≥ θ1f(x1) + θ2f(x2), (A.7)

where θ1 + θ2 = 1. By induction the above can then be extended to

f(θ1x1 + θ2x2 + ..+ θixh + ...+ θHxH) ≥
θ1f(x1) + θ2f(x2) + ..+ θhf(xh) + ..+ θHf(xH), (A.8)

hence

f

(∑

h

θhxh

)
≥
∑

h

θhf(xh), (A.9)

where θh ≥ 0 and
∑
h θh = 1, corresponding to a probability distribution. Now

de�ning q(s) as having the same properties as θ and multiplying and dividing
with it in equation (A.5) Jensens's inequality can be applied

1It would be very complex to �nd the MAP solution to the 'complete' posterior probability

as s has been de�ned to be binary.
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log
∑

s

p(s|γ)p(D|s,w, β) = log
∑

s

q(s)

q(s)
p(s|γ)p(D|s,w, β) =⇒

log
∑

s

p(s|γ)p(D|s,w, β) ≥
∑

s

q(s) log
p(s|γ)p(D|s,w, β)

q(s)
⇐⇒

log
∑

s

p(s|γ)p(D|s,w, β) ≥ −
∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)
. (A.10)

The variational approximation q(s) is de�ned by [KG12] to be a fully factorized
distribution and satis�es q(s) =

∏n
i=1 qi(si), where qi(si) = misi + (1−mi)(1−

si). This implies that mi is the probability that si is equal to 1.

Now de�ning the variational free energy

F (q,w, β) =
∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)
. (A.11)

Minimizing F (q,w, β) then corresponds to maximizing the log likelihood in
equation (A.5). It is noted that −F (q,w, β) is the lower bound on the log-
likelihood and should therefore be maximized, i.e. the same as minimizing
F (q,w, β). The latter is expanded

F (q,w, β) =
∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)
= −F1 − F2 + F3, with

F1 =
∑

s

q(s) log p(D|s,w, β), F2 =
∑

s

q(s) log p(s|γ) and F3 =
∑

s

q(s) log q(s).

(A.12)

Calculating F1

Before F1 is found the likelihood p(D|s,w, β) is de�ned

p(D|s,w, β) =

p∏

µ=1

p(yµ|Xµ, s,w, β) (A.13)
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The conditional likelihood of one example of the output, yµ, is assumed to follow
a Gaussian distribution centered at

∑n
i=1 wisiXiµ and with variance β−1

p(yµ|Xµ, s,w, β) =

√
β

2π
exp


−β

2

(
yµ −

n∑

i=1

wisiXiµ

)2



=

√
β

2π
exp


−β

2


y2µ +

n∑

i=1

n∑

j=1

wiwjsisjXiµXjµ − 2yµ

n∑

i=1

wisiXiµ




 .

(A.14)

The conditional likelihood for the whole data set using equation (A.13)

p(D|s,w, β) =

(
β

2π

)p/2
exp


−β

2




p∑

µ=1


y2µ +

n∑

i=1

n∑

j=1

wiwjsisjXiµXjµ − 2yµ

n∑

i=1

wisiXiµ








=

(
β

2π

)p/2
exp


−pβ

2


σ2

y +

n∑

i=1

n∑

j=1

sisjwiwjχij − 2

n∑

i=1

wisibi






(A.15)

Here χ and b are as de�ned in section 2.1 and σ2
y =

1

p

∑p
µ=1 y

2
µ. The found

expression is plugged into F1

∑

s

q(s) log p(D|s,w, β) =

∑

s

q(s)


p

2
log

(
β

2π

)
−


pβ

2


σ2

y +

n∑

i=1

n∑

j=1

sisjwiwjχij − 2

n∑

i=1

wisibi








∑

s

q(s)
p

2
log

(
β

2π

)
−
∑

s

q(s)
pβ

2
σ2
y −

∑

s

q(s)
pβ

2




n∑

i=1

n∑

j=1

sisjwiwjχij − 2

n∑

i=1

wisibi


 .

(A.16)

The �rst two parts only depend on s in q(s) and since
∑

s q(s) = 1, they can be
simpli�ed

∑

s

q(s)
p

2
log

(
β

2π

)
−
∑

s

q(s)
pβ

2
σ2
y =

p

2
log

(
β

2π

)
− pβ

2
σ2
y. (A.17)
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The third, and �nal, expression in equation (A.16) is reformulated

pβ

2

∑

s

q(s)




n∑

i=1

n∑

j=1

sisjwiwjχij − 2

n∑

i=1

wisibi


 =

pβ

2


∑

s

q(s)

n∑

i=1

n∑

j=1

sisjwiwjχij −
∑

s

q(s)2

n∑

i=1

wisibi


 . (A.18)

The �rst expression inside the parenthesis

∑

s

q(s)

n∑

i=1

n∑

j=1

sisjwiwjχij =
∑

s

n∑

i=1

n∑

j=1

q(s)sisjwiwjχij . (A.19)

Since si is binary the following applies

∑

s

n∑

i=1

n∑

j=1

q(s)sisj =

{ ∑n
i=1 q(si)si

∑n
j=1 q(sj)sj =

∑n
i=1

∑n
j=1mimj for i 6= j∑n

i=1 q(si)s
2
i =

∑n
i=1 q(si)si =

∑n
i=1mi for i = j

, (A.20)

where also using that
∑

s q(s) = 1 and q(si)si = mi for si = 1 and q(si)si = 0
for si = 0. Finishing equation (A.19)

n∑

i=1

n∑

j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii, (A.21)

where the last sum substitutes the addition of a product with the factor m2
i

with mi, thus taking the case where i = j into consideration.

The second expression in equation (A.18)

∑

s

q(s)2

n∑

i=1

wisibi = 2

n∑

i=1

miwibi, (A.22)

where the result in equation (A.20) is applied.

Combining equations (A.16)-(A.22), F1 is found

F1 =
p

2
log

β

2π
− pβ

2


σ2

y +

n∑

i=1

n∑

j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii − 2

n∑

i=1

miwibi


 .

(A.23)



88 Derivation of VG in Primal Space

Calculating F2

∑

s

q(s) log p(s|γ) =
∑

s

q(s)

n∑

i=1

(γsi − log(1 + exp(γ)))

= γ

n∑

i=1

q(si)si − n log(1 + exp(γ))

= γ

n∑

i=1

mi − n log(1 + exp(γ)). (A.24)

Calculating F3

∑

s

q(s) log q(s) =
∑

s

(
n∏

i=1

(misi + (1−mi)(1− si))
n∑

i=1

log(misi + (1−mi)(1− si))
)

=

n∑

i=1

(mi log(mi) + (1−mi) log(1−mi)) (A.25)

The total variational free energy

The variational free energy can now be presented

F (m,w, β) =− p

2
log

β

2π
+
pβ

2
σ2
y

+
pβ

2




n∑

i=1

n∑

j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii − 2

n∑

i=1

miwibi




− γ
n∑

i=1

mi + n log(1 + exp(γ))

+

n∑

i=1

(mi log(mi) + (1−mi) log(1−mi)) . (A.26)

The expression F (m,w, β) is now minimized by �nding its derivatives with
respect to w, m and β and setting them equal to 0.
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Calculating
∂F

∂wk
= 0

0 =
βp

2


 ∂

∂wk

n∑

i=1

n∑

j=1

mimjwiwjχij +
∂

∂wk

n∑

i=1

mi(1−mi)w
2
i χii − 2mkbk


⇐⇒

2mkbk =
∂

∂wk

n∑

i=1

n∑

j=1

mimjwiwjχij +
∂

∂wk

n∑

i=1

n∑

j=1

mi(1−mj)wiwjχijδij ⇐⇒

2mkbk =
∂

∂wk

n∑

i=1

n∑

j=1

mi(mjχij + (1−mj)χijδij)wiwj ⇐⇒

2mkbk =
∂

∂wk

n∑

i=1

n∑

j=1

miχ
′
ijwiwj , (A.27)

when de�ning: χ′ij = mjχij + (1−mj)χjjδij , and noting that (1−mj)χijδij =
(1−mj)χjjδij .

Continuing the derivation

2mkbk =

n∑

i=1

n∑

j=1

miχ
′
ij(wjδik + wiδkj)⇐⇒

2mkbk =

n∑

i=1

n∑

j=1

(mkχ
′
kjwj +miwiχ

′
ik)⇐⇒

2mkbk =

n∑

j=1

mkχ
′
kjwj +

n∑

i=1

miχ
′
ikwi. (A.28)

The above is expanded to make way for a later simpli�cation

2mkbk =

n∑

j=1

(mkχkjmjwj +mk(1−mj)χjjδkjwj)

+

n∑

i=1

(miχikmkwi +mi(1−mk)χkkδikwi)⇐⇒

2mkbk =

n∑

j=1

mkχkjmjwj +mk(1−mk)χkkwk

+

n∑

i=1

miχikmkwi +mk(1−mk)χkkwk). (A.29)
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Due to symmetry in χ the following is true

2mkbk =2mk

n∑

j=1

χ′kjwj ⇐⇒

bk =

n∑

j=1

χ′kjwj ⇐⇒

b =χ′w =⇒
w =(χ′)−1b. (A.30)

For the �nal expression to be true the inverse of χ′ of course has to exist, i.e.
χ′ should be non-singular, otherwise the pseudo-inverse must be applied.

Calculating
∂F

∂mk

Line two in equation (A.26) is considered �rst, starting with di�erentiating the
�rst and second expression inside the parenthesis

∂

∂mk




n∑

i=1

n∑

j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii




=

n∑

i=1

n∑

j=1

(mjδik +miδjk)wiwjχij + w2
kχkk − 2mkw

2
kχkk

=

n∑

j=1

mjwkwjχkj +

n∑

i=1

miwkwiχik + w2
kχkk − 2mkw

2
kχkk

=2

n∑

j=1

mjwkwjχkj + w2
kχkk − 2mkw

2
kχkk. (A.31)

The third expression di�erentiated, using equation (A.30)

∂

∂mk
2

n∑

i=1

miwibi =2wkbk ⇐⇒

=2wk

n∑

j=1

(χkjmj + (1−mj)χjjδkj)wj ⇐⇒

=2

n∑

j=1

χkjmjwjwk + 2(1−mk)χkkw
2
k. (A.32)
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Combining equation (A.31) and (A.32)

2

n∑

j=1

mjwkwjχkj + w2
kχkk − 2mkw

2
kχkk − 2

n∑

j=1

χkjmjwjwk − 2(1−mk)χkkw
2
k

= −w2
kχkk. (A.33)

Finishing the partial derivation of F with respect to mk and setting it equal to
0

0 =− βp

2
w2
kχkk − γ + log(mk) + 1− log(1−mk)− 1⇐⇒

log(1−mk)− log(mk) =− βp

2
w2
kχkk − γ ⇐⇒

1−mk

mk
= exp

(
−βp

2
w2
kχkk − γ

)
⇐⇒

mk =

(
1 + exp

(
−βp

2
w2
kχkk − γ

))−1

mk =σ

(
βp

2
w2
kχkk + γ

)
, (A.34)

where σ(x) = (1 + exp(−x))
−1
.

Calculating 0 =
∂F

∂β

0 =− p

2β
+
p

2


σ2

y +

n∑

i=1

n∑

j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii − 2

n∑

i=1

miwibi


⇐⇒

1

β
=σ2

y +

n∑

i=1

n∑

j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii − 2

n∑

i=1

miwibi (A.35)

Looking only at the last expression in the above equation and inserting the
found expression for bi

2

n∑

i=1

miwibi = 2

n∑

i=1

miwi

n∑

j=1

(χijmjwj + (1−mj)χjjwjδij)

= 2

n∑

i=1

n∑

j=1

miwi(χijmjwj + (1−mj)χjjwjδij)

= 2

n∑

i=1

n∑

j=1

miwiχijmjwj + 2

n∑

i=1

mi(1−mi)χiiw
2
i . (A.36)
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Thus the inverse precision can be simpli�ed to

1

β
= σ2

y −
n∑

i=1

miwibi. (A.37)



Appendix B

Details of VG-code

The following is a description of how Kappen et al. suggest implementing VG.
In the current thesis, not all of the steps are carried out as proposed.

First, speci�cations of the data set in example 1 in [KG12] is given:

� De�ne dimensions on input, n = 100, and number of samples, p = 50.

� De�ne input data: Xiµ ∈ N (0, 1).

� Construct output data by yµ =
∑n
i=1 ŵiXiµ + dξµ, with:

� dξµ ∼ N (0, σ̂), where σ̂ = 1,

� ŵ1 = 1 and ŵi = 0 for i 6= 1,

The implementation of VG:

� Preprocess data so input and output have zero mean;
1

p

∑p
µ=1Xiµ = 0

and
1

p

∑p
µ=1 yµ = 0.

� Compute σ2
y =

1

p

∑p
µ=1 y

2
µ.
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� Construct the input-output covariance vector b by: bi =
1

p

∑p
µ=1Xiµyµ.

� Compute the input covariance matrix if n < p by; χij =
1

p

∑p
µ=1XiµXjµ

� Compute minimum sparsity input by equation (20) in [KG12] (slightly
modi�ed to remove suspected error)

γmin = − pb2i
2σ2

yχii
+ σ−1(ε) +O(ε), (B.1)

where σ(x) = (1 + exp(−x))−1 and ε = 0.001 (for example 1 in [KG12]).

� De�ne γmax = 0.02γmin and ∆γ = −0.02γmin.

� Initialize m by all zeros

� For γ = γmin : ∆γ : γmax

� De�ne η = 1

� Iterate until parameters have converged.

* If n < p use equations 9-10 in [KG12], corresponding to equations
(2.29) and (2.31) in this thesis.

w = (χ′)−1b, where χ′ij = χijmj + (1−mj)χjjδij (B.2)

1

β
= σ2

y −
n∑

i=1

miwibi. (B.3)

* If n > p use equations 15-19 in [KG12], corresponding to equa-
tions (2.44) to equation (2.48).

Aµν = δµν +
1

p

n∑

i=1

mi

1−mi

XiµXiν

χii
(B.4)

p∑

ν=1

Aµν ŷν = yµ (B.5)

1

β
=

1

p

p∑

µ=1

ŷµyµ (B.6)

λµ = βŷµ (B.7)

wi =
1

βpχii

1

1−mi

p∑

µ=1

λµXiµ. (B.8)



95

* Compute smoothed version of m

m′i = (1− η)mi + ησ(γ +
βp

2
w2
i χii). (B.9)

* If max
i
|m′i −mi| > 0.1 then η =

1

2
η.

* m = m′

� Store the found w, m, β for the speci�c value of γ.

� Compute the variational free energy:

F (γ) =− p

2
log

β

2π
+
βp

2




n∑

i,j=1

mimjwiwjχij +

n∑

i=1

mi(1−mi)w
2
i χii

−2

n∑

i=1

miwibi + σ2
y

)
− γ

n∑

i=1

mi + n log(1 + exp(γ))

+

n∑

i=1

(mi logmi + (1−mi) log(1−mi)).

� Repeat above for γ = γmax : −∆γ : γmin.

� For each γ use the forward or backward algorithm's solution, determined
by the one with lowest variational free energy.

� Use the validation error to �nd the optimum solution.
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Appendix C

Extensions to VG Kailath

Variant Formulation

In this appendix the Kailath Variant formulation of VG is presented more thor-
oughly than in section 2.5.2. Especially the element-wise calculations are ex-
panded on.

The parameter χ′ is rewritten using Kailath Variant, which is expressed as
(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

Breaking χ′ into A, B and C

A = diag((1−mj)χjj)j=1:n ⇐⇒ Aij =

{
(1−mj)χij for i = j

0 for i 6= j
(C.1)

B =
1

p
X⇐⇒ Biµ =

Xiµ

p
(C.2)

C = XTdiag(m)⇐⇒ Cµj = Xjµmj (C.3)

A + BC = diag((1−mj)χjj)j=1:n +
1

p
XXTdiag(m) = χ′. (C.4)

Here the operation diag(d) refers to inserting vector d in a diagonal matrix.
The �rst expression to invert is A, giving a diagonal matrix with A−1ii = 1/Aii.
Expressed in matrix form: A−1 = diag

(
1� ((1−m)� χdiag)

)
= diag (ainv),

where χdiag is a n-vector with elements from the diagonal in the covariance
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matrix χ. The notations � and � indicate an element-wise division and multi-
plication, respectively. Note that if an element inm is 1, A−1 is not computable.
This can however be �xed by replacing such instances by 1−ε, where ε is a small
number.

In order to increase computation e�ciency additionally, b is included in the
derivation of χ′ and thus yielding w directly. The expression to compute is then:
(A + BC)−1b = A−1b −A−1B(I + CA−1B)−1CA−1b. The �rst expression
can be calculated element-wise as

A−1jj bj =
bj
Ajj

=
bj

(1−mj)χjj
, (C.5)

or in matrix form

A−1b = (1� ((1−m)� χdiag))� b = ainv � b. (C.6)

Looking at the second expression that demands inversion

I + CA−1B =I + XTdiag(m)diag (1� ((1−m)� χdiag)))
1

p
X

=I + XTdiag(m� ainv)
1

p
X = D or (C.7)

(
I + CA−1B

)
µν

=δµν +

n∑

j=1

CµjA
−1
jj Bjν = Dµν . (C.8)

Finishing the calculation of w in vector form

w = ainv � b− 1

p
ainv �

(
X

((
I + XTdiag(m� ainv)

1

p
X

)−1 (
XT (m� ainv)� b

)
))

.

(C.9)

Note that the multiple parentheses ensures that an n×n-matrix is not created,
thereby a big matrix is avoided and computation time is reduced.

Now w element-wise, when de�ning the pseudo-inverse of D as F

wi =
bi
Aii
−

n∑

j=1

(
A−1ii

p∑

ν=1

p∑

µ=1

BiµFµν

n∑

k=1

Cνk
Ajj

δkj

)
bj

=
bi
Aii
−

n∑

j=1

p∑

ν=1

p∑

µ=1

A−1ii BiµFµν
Cνj
Ajj

bj . (C.10)
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Inserting A, B and C �nally returns wi

wi =
bi

(1−mi)χii
−

n∑

j=1

p∑

ν=1

p∑

µ=1

1

p(1−mi)χii
XiµFµν

(XT )νj
(1−mj)χjj

bj . (C.11)
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Appendix D

Extensions to Dual

Formulation of VG

Derivation of the �xed point equations, which solve the dual formulation of VG,
are presented in this appendix. The partial derivatives of the variational free
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energy F , see equation (2.43), are

∂F

∂wk
=
βp

2
2mk(1−mk)wkχkk −

p∑

µ=1

λµmkXkµ

= mk

(
βp(1−mk)wkχkk −

p∑

µ=1

λµXkµ

)
(D.1)

∂F

∂zµ
=
β

2
(2zµ − 2yµ) + λµ

= β(zµ − yµ) + λµ (D.2)

∂F

∂β
= − p

2β
+

1

2

p∑

µ=1

(zµ − yµ)2 +
p

2

n∑

i=1

mi(1−mi)w
2
i χii (D.3)

∂F

∂mk
=
βp

2
(1− 2mk)w2

kχkk − γ + 1 + log(mk)− log(1−mk)− 1−
p∑

µ=1

λµwkXkµ

=
βp

2
(1− 2mk)w2

kχkk − γ + log

(
mk

1−mk

)
−

p∑

µ=1

λµwkXkµ (D.4)

∂F

∂λµ
= zµ −

n∑

i=1

miwiXiµ. (D.5)

First the partial derivative of F with respect to wk is set equal to zero

0 = mk

(
βp(1−mk)wkχkk −

p∑

µ=1

λµXkµ

)
⇐⇒

wk =
1

βp(1−mk)χkk

p∑

µ=1

λµXkµ. (D.6)

The same is done to �nd zµ

0 = β(zµ − yµ) + λµ ⇐⇒

zµ = yµ −
1

β
λµ. (D.7)

The above two results are used to �nd the remaining variables, which partial
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derivatives also are set to 0. First revision of equation (D.3)

∂F

∂β
= 0 = − p

2β
+

1

2

p∑

µ=1

(zµ − yµ)2 +
p

2

n∑

i=1

mi(1−mi)w
2
i χii ⇐⇒

1

β
=

1

p

p∑

µ=1

(zµ − yµ)2 +

n∑

i=1

mi(1−mi)w
2
i χii ⇐⇒

1

β
=

1

p

p∑

µ=1

(yµ −
1

β
λµ − yµ)2+

n∑

i=1

mi(1−mi)χii
1

βp(1−mi)χii

p∑

µ=1

λµXiµ
1

βp(1−mi)χii

p∑

ν=1

λνXiν ⇐⇒

1

β
=

1

p

p∑

µ=1

(− 1

β
λµ)2 +

1

β2p2

n∑

i=1

mi

(1−mi)χii

p∑

µ=1

p∑

ν=1

λµXiµλνXiν ⇐⇒

β =
1

p

p∑

µ=1

λ2µ +
1

p2

n∑

i=1

mi

(1−mi)χii

p∑

µ=1

p∑

ν=1

λµXiµλνXiν ⇐⇒

β =
1

p

p∑

µ=1

p∑

ν=1

λµλν

(
δµν +

1

p

n∑

i=1

mi

(1−mi)χii
XiµXiν

)
⇐⇒

β =
1

p

p∑

µ=1

p∑

ν=1

Aµνλµλν (D.8)

with

Aµν = δµν +
1

p

n∑

i=1

mi

(1−mi)χii
XiµXiν . (D.9)

Continuing with equation (D.5)

∂F

∂λµ
= 0 = zµ −

n∑

i=1

miwiXiµ ⇐⇒

0 = yµ −
1

β
λµ −

n∑

i=1

miXiµ

βp(1−mi)χii

p∑

ν=1

λνXiν ⇐⇒

βyµ =

p∑

ν=1

λν

(
δµν +

1

p

n∑

i=1

mi

(1−mi)χii
XiνXiµ

)
⇐⇒

βyµ =

p∑

ν=1

λνAµν (D.10)
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Additionally introducing ŷ

p∑

ν=1

Aµν ŷν = yµ (D.11)

and making the following derivations

p∑

ν=1

Aµν ŷν =
1

β

p∑

ν=1

Aµνλν ⇐⇒

0 =

p∑

ν=1

Aµν

(
1

β
λν − ŷν

)
=⇒

λν = βŷν (D.12)

and using equations (D.8) and (D.10)

β =
1

p

p∑

µ=1

λµ

p∑

ν=1

Aµνλν ⇐⇒

β =
1

p

p∑

µ=1

λµβyµ ⇐⇒

β =
1

p

p∑

µ=1

βŷµβyµ ⇐⇒

1

β
=

1

p

p∑

µ=1

ŷµyµ (D.13)

equations (2.46) and (2.47) are obtained. Finally equation (2.30) is derived

∂F

∂mk
= 0 =

βp

2
(1− 2mk)w2

kχkk − γ + log

(
mk

1−mk

)
−

p∑

µ=1

λµwkXkµ ⇐⇒

0 =
βp

2
(1− 2mk)w2

kχkk − γ + log

(
mk

1−mk

)
− w2

kβp(1−mk)χkk ⇐⇒

0 = βpw2
kχkk

(
1

2
−mk − 1 +mk

)
− γ + log

(
mk

1−mk

)
⇐⇒

log

(
1−mk

mk

)
= −βp

2
w2
kχkk − γ ⇐⇒

mk =

(
1 + exp

(
−βp

2
w2
kχkk − γ

))−1
. (D.14)



Appendix E

Extensions to

Time-expanded VG-dual

The following expands on the calculations given in section 2.5.4.

Original dual representation of F

F (m,w, β, z, λ) =− p

2
log

β

2π
+
β

2

p∑

µ=1

(zµ − yµ)2 +
pβ

2

n∑

i=1

mi(1−mi)w
2
i χii

− γ
n∑

i=1

mi + n log(1 + exp(γ))

+

n∑

i=1

(mi log(mi) + (1−mi) log(1−mi))

+

p∑

µ=1

λµ

(
zµ −

n∑

i=1

miwiXiµ

)
(E.1)
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Dual representation of F with time dependent w, y, z and λ

F (m,w, β, z, λ) =− Tp

2
log

β

2π
+
β

2

T∑

t=1

p∑

µ=1

(zµt − yµt)2 +
pβ

2

T∑

t=1

n∑

i=1

mi(1−mi)w
2
itχii

− γ
n∑

i=1

mi + n log(1 + exp(γ))

+

n∑

i=1

(mi log(mi) + (1−mi) log(1−mi))

+

T∑

t=1

p∑

µ=1

λµt

(
zµt −

n∑

i=1

miwitXiµ

)
. (E.2)

Notice that only the parts in the above equation stemming from the likelihood
term in the variational free energy, i.e. equation (2.25), are a�ected by the
summation over time samples.

The procedure of �nding the parameters follows that of the VG primal and dual
formulation. The partial derivatives of F are found and subsequently set to 0.

The partial derivatives

∂F

∂wit
= βpmi(1−mi)χiiwit −

p∑

µ=1

λµtmiXiµ (E.3)

∂F

∂zµt
= β(zµt − yµt) + λµt (E.4)

∂F

∂β
= −Tp

2β
+

1

2

T∑

t=1

p∑

µ=1

(zµt − yµt)2 +
p

2

T∑

t=1

n∑

i=1

mi(1−mi)w
2
itχii (E.5)

∂F

∂mi
=
βp

2

T∑

t=1

(1− 2mi)w
2
itχii − γ + log

(
mi

1−mi

)
−

T∑

t=1

p∑

µ=1

λµwitXiµ (E.6)

∂F

∂λµt
= zµt −

n∑

i=1

miwitXiµ (E.7)

. (E.8)

Solving for
∂F

∂wit
= 0

wit =
1

pβ(1−mi)χii

p∑

µ=1

λµtXiµ, (E.9)
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and for
∂F

∂zµt

zµt = yµt −
1

β
λµt. (E.10)

These equations are used in the following. Starting with
∂F

∂β
= 0

Tp

2β
=

1

2

T∑

t=1

p∑

µ=1

(zµt − yµt)2 +
p

2

T∑

t=1

n∑

i=1

mi(1−mi)w
2
itχii ⇐⇒

1

β
=

1

Tp

T∑

t=1

p∑

µ=1

(zµt − yµt)2 +
1

T

T∑

t=1

n∑

i=1

mi(1−mi)w
2
itχii ⇐⇒

1

β
=

1

Tp

T∑

t=1

p∑

µ=1

(
yµt −

1

β
λµt − yµt

)2

+
1

T

T∑

t=1

n∑

i=1

χiimi(1−mi)

p2β2(1−mi)2χ2
ii

p∑

µ=1

λµtXiµ

p∑

ν=1

λνtXiν ⇐⇒

β =
1

Tp

T∑

t=1

p∑

µ=1

λ2µt +
1

Tp2

T∑

t=1

n∑

i=1

mi

(1−mi)χii

p∑

µ=1

p∑

ν=1

λµtXiµλνtXiν ⇐⇒

β =
1

Tp

T∑

t=1

p∑

µ=1

p∑

ν=1

λµtλνtδµν +
1

Tp2

T∑

t=1

p∑

µ=1

p∑

ν=1

λµtλνt

n∑

i=1

mi

(1−mi)χii
XiµXiν ⇐⇒

β =
1

Tp

T∑

t=1

p∑

µ=1

p∑

ν=1

λµtλνt

(
δµν +

1

p

n∑

i=1

mi

(1−mi)χii
XiµXiν

)
⇐⇒

β =
1

Tp

T∑

t=1

p∑

µ=1

p∑

ν=1

λµtλνtAµν , (E.11)

when de�ning

Aµν = δµν +
1

p

n∑

i=1

mi

(1−mi)χii
XiµXiν . (E.12)
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Next
∂F

∂λµt
= 0

0 = zµt −
n∑

i=1

miwitXiµ ⇐⇒

yµt −
1

β
λµt =

n∑

i=1

mi
1

pβ(1−mi)χii

p∑

µ=1

λµtXiµXiµ ⇐⇒

βyµt = λµt +

p∑

ν=1

n∑

i=1

mi

p(1−mi)χii
λνtXiνXiµ ⇐⇒

βyµt =

p∑

ν=1

λνt

(
δµν +

n∑

i=1

mi

p(1−mi)χii
XiνXiµ

)
=

p∑

ν=1

λνtAµν . (E.13)

Introducing

p∑

ν=1

Aµν ŷνt = yµt, (E.14)

and inserting this in equation (E.13) yields

β

p∑

ν=1

Aµν ŷνt =

p∑

ν=1

λνtAν ⇐⇒

0 =

p∑

ν=1

Aµν

(
1

β
λνt − ŷνt

)
=⇒

λνt = βŷνt. (E.15)

Inserting (E.15) and (E.14) in (E.11) yields a simpli�cation of β

β =
1

Tp

T∑

t=1

p∑

µ=1

λµt

p∑

ν=1

λνtAµν ⇐⇒

β =
1

Tp

T∑

t=1

p∑

µ=1

βŷµtβyµt ⇐⇒

1

β
=

1

Tp

T∑

t=1

p∑

µ=1

ŷµtyµt. (E.16)
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Using from equation (E.9) witpβ(1−mi)χii =
∑p
µ=1 λµtXiµ, m is derived

log

(
1−mi

mi

)
=
βp

2

T∑

t=1

(1− 2mi)w
2
itχii − γ −

T∑

t=1

p∑

µ=1

λµwitXiµ ⇐⇒

log

(
1−mi

mi

)
= βp

T∑

t=1

(
1

2
−mi

)
w2
itχii − γ −

T∑

t=1

witwitpβ(1−mi)χii ⇐⇒

log

(
1−mi

mi

)
= βp

T∑

t=1

w2
itχii

(
1

2
−mi − 1 +mi

)
− γ ⇐⇒

log

(
1−mi

mi

)
= −βp

2

T∑

t=1

w2
itχii − γ ⇐⇒

mi =

(
1 + exp

(
−βp

2

T∑

t=1

w2
itχii − γ

))−1

= σ

(
βp

2
χii

T∑

t=1

w2
it + γ

)
. (E.17)

The �nal equation set is then

wit =
1

pβ(1−mi)χii

p∑

µ=1

λµtXiµ, (E.18)

Aµν =δµν +
1

p

n∑

i=1

mi

(1−mi)χii
XiµXiν , (E.19)

p∑

ν=1

Aµν ŷνt =yµt, (E.20)

1

β
=

1

Tp

T∑

t=1

p∑

µ=1

ŷµtyµt, (E.21)

λνt =βŷνt and (E.22)

mi =σ

(
βp

2
χii

T∑

t=1

w2
it + γ

)
. (E.23)
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Vector/matrix implementation of the above

Wn×T =
(
1�

(
pβ(1−m).� χdiag

)
· 1′T

)
� (X · λ), (E.24)

Ap×p = Ip×p +
1

p
XT · diag(m� ((1−m)� χdiag)) ·X, (E.25)

Ŷp×T = A\Y, (E.26)

β1×1 = Tp/sum(Ŷ �Y), (E.27)

λp×T = βŶ and (E.28)

mn×1 = σ

(
βp

2
sum(W.2, 2) + γ

)
. (E.29)

1T denotes a column vector of ones of size T .



Appendix F

Selected Matlab

Implementations

F.1 Two-level Cross-validation

1 function [testMSE trueMSE y_test_var REG_opt] = ...
2 twolevel_crossval(Maxit,Minreg,Maxreg,Nreg,Convalue,Maxrep)
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Two−level K−fold cross−validation setup
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % twolevel_crossval − describes the steps involved in a two level
7 % K−fold cross−validation experiment. The script can be used
8 % to test the stability of an algorithm with respect to K, and
9 % to find the optimal number of folds.

10 %
11 % Inputs: Maxit: Number of maximum iterations performed
12 % Minreg: Minimum regularization applied
13 % Maxreg: Maximum regularization applied
14 % Nreg: Number of regularization levels
15 % Convalue: Convergence is obtained at this value
16 % Maxrep: Number of repetitions, max 50 is allowed
17 %
18 % Outputs: testMSE: Test MSE found by algorithm
19 % trueMSE: MSE found with w_true
20 % y_test_var: Variance on test set outputs
21 % REG_opt: Found optimum regularizations
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22 %
23 % The setup of this script has been used to compare the performances
24 % of the algorithms; variational Garrote, in the Kailath Variant and
25 % in the dual formulation, as well as LASSO and a sparse Bayesian
26 % model with linear basis
27 %
28 % For each algorithm one parameter is optimized through
29 % cross−validation.
30 % The data is plit into test and training sets, the latter is
31 % further divided into a smaller training set and a validation set.
32 %
33 % This script shows the implementation of the Kailath Variant
34 % formulation, thus it inputs the function 'vgKV'.
35 %
36 % Created by Sofie Therese Hansen, s072331.
37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38

39 % Load data file where data has been randomized across samples:
40 load data_EEG_split_comb_rand
41 % contains x_all (input), y_all (output)
42 % and w_true (true weight distribution)
43

44 [nd,ns] = size(x_all); % No. of dimensions on x and no. of samples
45

46 load samps % Matrix dictating which ten samples to use as test set
47 % for 50 repetitions
48 pt = size(samps,2); % Number of test samples, here 10
49

50 % Define range of regularization/parameter to optimize on:
51 REG = linspace(Minreg,Maxreg,Nreg);
52

53 Kfolds = 2:15; % Range of K values to investigate in K−fold
54 % cross−validation
55 nK = length(Kfolds);
56

57 % Preallocations for speed:
58 WW = zeros(nK,Maxrep,nd);
59 testMSE = zeros(nK,Maxrep);
60 trueMSE = zeros(Maxrep,1);
61 y_test_var = zeros(Maxrep,1);
62 REG_opt = zeros(nK,Maxrep);
63 % Main loop:
64 for rep =1:Maxrep
65 tic
66 % Allocating samples and preprocessing test data:
67 indtt = samps(rep,:); % Choose indices for test set samples
68 x_data = x_all; y_data = y_all;
69 x_test = x_data(:,indtt)− repmat(mean(x_data(:,indtt),2),1,pt);
70 y_test = y_data(indtt);
71 y_test = y_test−mean(y_test);
72 % Variance on test sample outputs:
73 y_test_var(rep) = 1/pt*y_test*(y_test)';
74 % Training and validation data:
75 x_data(:,indtt) = [];y_data(indtt)=[];
76 ppv = ns − pt; % Number of samples in training and validation set
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77 % Investigate number of folds, K, in K−fold cross−validation:
78 for K = 2:15;
79 % Find indices for splits:
80 [indices] = crossvalind('Kfold',ppv,K);
81

82 % Preallocate optimum regularizations:
83 reg_min = zeros(K,1);
84 for i = 1:K; % Each split of K folds
85 % Allocate training and validation data:
86 x_val = x_data(:,indices==i);
87 y_val = y_data(indices==i);
88 x = x_data(:,indices6=i);
89 y = y_data(indices6=i);
90 p = size(x,2); % Size of training set
91

92 % Preprocess training and validation data:
93 x = x−repmat(mean(x,2),1,p);
94 x_val = x_val − repmat(mean(x_val,2),1,ppv−p);
95 y = y − mean(y);
96 y_val = y_val − mean(y_val);
97 % Reset validation error for each split in fold:
98 error_val = zeros(Nreg,1);
99

100 % Test each level of regularization/hyperparameter:
101 for nreg = 1:Nreg
102 reg = REG(nreg);
103 % Run algorithm and find solution:
104 v = vgKV(x,y,reg,Maxit,Convalue);
105 % Calculate mean squared validation error:
106 error_val(nreg) = mean((v'*x_val−y_val).^2);
107 end
108 % Find optimim value of regularization
109 % by the validation error:
110 [valmin i_reg] = min(error_val);
111 reg_min(i) = REG(i_reg);
112 end
113 % Find mean optimum level of regularization across splits
114 reg_opt = mean(reg_min);
115 REG_opt(K−1,rep) = reg_opt; % Save optimal parameters
116 % Run algorithm and find solution
117 ptv = size(x_data,2);
118 x_trainval = x_data−repmat(mean(x_data,2),1,ptv);
119 y_trainval = y_data−mean(y_data);
120 vopt = vgKV(x_trainval,y_trainval,reg_opt,Maxit,Convalue);
121 % Save found solution for each K and repetition
122 WW(K−1,rep,:)=vopt;
123 testMSE(K−1,rep) = mean((vopt'*x_test−y_test).^2);
124 % Mean squared test error
125 end
126 % Mean squared test error using true weights
127 trueMSE(rep) = mean((w_true*x_test−y_test).^2);
128 toc
129 end
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F.2 Kailath Variant Formulation of VG

1 function [v m] = vgKV(x,y,gamma,Maxit,Maxdiff)
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % vgKV − Kailath Variant formulation of variational Garrote
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % This functions calculates the solution to the linear problem
6 % using the variational Garrote, suggested by Kappen et al. (2012)
7 % The Kailath Variant relation is used to reduce computational
8 % complexity.
9 %

10 % Inputs: x: Input data with samples in columns and input
11 % dimensions in rows
12 % y: Samples of the one dimensional response
13 % gamma: Level of sparsity
14 % Maxit: Maximum number of iterations
15 % Maxdiff: Stop when maximum absolute difference between
16 % current and old m is smaller than Maxdiff
17 %
18 % Created by Sofie Therese Hansen, s072331.
19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20

21 [n p] = size(x);
22 b = 1/p .* x*y'; % Compute input−output covariance vector
23 x_cov_diag = mean(x.*x,2); % Define input covariance matrix
24 y_var = 1/p*y*(y)'; % Variance of outputs
25 eta = 1; % Smoothing parameter
26 m = zeros(n,1); % Initalize m
27 mdiff = 1;
28 k = 1; % First iteration
29 while k <Maxit && (mdiff>Maxdiff);
30 k = k+1;
31 m = min(m,1−1e−10); % Avoid numerical problems
32 % Calculate weights:
33 dA_inv = 1./((1−m).*x_cov_diag);
34 w = dA_inv.*b−dA_inv.*(x./p*((eye(p)+x'.*...
35 repmat(m.*dA_inv,1,p)'*x./p)^(−1)*(x'*(m.*(dA_inv.*b)))));
36 % Variance and precision:
37 beta_inv = y_var−sum(m.*w.*b);
38 beta = 1/beta_inv;
39 % Updated m is computed:
40 tmp2 = gamma+beta*p/2*w.^2.*x_cov_diag;
41 m_mark = (1−eta).*m+eta*(1+exp(−tmp2)).^(−1);
42

43 % If maximum absolute difference between current and previous m
44 % is bigger than 0.1 decrease eta to increase smoothing:
45 mdiff = max(abs(m_mark−m));
46 if mdiff>0.1
47 eta = eta/2;
48 end
49 m = m_mark;
50

51 end
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52 v = m.*w;
53 end

F.3 Time-expanded VG-dual

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Time−expanded version of dual formulation of variational Garrote
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % Locations of activation are held active for the specified time
5 % window.
6 % This script generates synthetic weights corresponding to ten
7 % sines in ten locations. A repsonse is created using this weight
8 % distribution together with a forward field matrix. This can easily
9 % be substituted with real EEG, by replacing y with the measured EEG.

10 %
11 % A five−fold cross−validation setup is applied to the 128 channels.
12 %
13 % Created by Sofie Therese Hansen, s072331.
14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 sigmoid1 = @(x) 1./(1+exp(−x));
16

17 % Load forward field matrix
18 load SPMgainmatrix_aceMdspm8_faces_run1_2_c
19 [p n] = size(G);
20 x_data = G';
21 x_data = x_data−mean(x_data,2)*ones(1,p);%
22 dx = sqrt(1/p*sum(x_data.^2,2));
23 x_data = x_data./(dx*ones(1,p)); % Scale inputs
24

25 % Create weight distribution of sines:
26 a = 10; % No. of active sources
27 T = 25;
28 sinus = sin(linspace(0,2*pi,T));
29 w_true = zeros(n,T);
30 w_true(1:a,:)=repmat(sinus,a,1);
31

32 % Create outputs:
33 stdev_noise = 1;
34 noise = stdev_noise*randn(size(x_data,2),T);
35 y0 = x_data'*w_true;
36 y_data = y0 + noise;
37 SNR = mean(sum(y_data.^2)./sum(noise.^2));
38

39 % Randomize data in samples
40 randind = randperm(size(x_data,2));
41 x_data = x_data(:,randind);y_data = y_data(randind,:);
42

43 % Store training and validation set:
44 x_tv = x_data;
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45 y_tv = y_data;
46 % Subtract means:
47 x_tvc = x_tv−mean(x_tv,2)*ones(1,p);
48 y_tvc = y_tv−ones(p,1)*mean(y_tv,1);
49

50 % Define sparsity range:
51 gamma_min = −150;
52 gamma_max = 0;
53 n_gamma = 60;
54 gamma_all = linspace(gamma_min,gamma_max,n_gamma);
55

56 kmax = 100; % Max. iterations on search for regularization
57 kmaxopt = 100; % Max. iterations on found optimal regularization
58 minit = zeros(n,1); % Initialize m
59 K = 5; % Number of folds in cross−validation
60 [indices] = crossvalind('Kfold',p,K); % Find split
61 % Preallocations:
62 error_val = zeros(1,n_gamma);
63 Gamma = zeros(1,K);
64 %% Main cross−validation loop
65 for kf = 1:K
66 pv = sum(indices==kf);
67 x_val = x_tv(:,indices==kf);
68 x_val = x_val−mean(x_val,2)*ones(1,pv);
69 y_val = y_tv(indices==kf,:);
70 y_val = y_val−ones(pv,1)*mean(y_val,1);
71 y_val_var = std(y_val).^2;
72 x_train = x_tv(:,indices6=kf);
73 x_train = x_train−mean(x_train,2)*ones(1,p−pv);
74 y_train = y_tv(indices6=kf,:);
75 y_train = y_train−ones(p−pv,1)*mean(y_train,1);
76 pt = p−pv;
77 chi_ii = 1/pt*sum(x_train.^2,2); % Diagonal of input covariance
78 % Regularization loop:
79 for i = 1:n_gamma;
80 m=minit % Initialize m
81 eta = 0.55; % Initialize eta
82 gamma = gamma_all(i);
83 % Iterate equation set
84 for k = 1:kmax
85 m=min(m,1−1e−8);
86 A = eye(pt)+1/pt*x_train'*spdiags(m./(1−m)./...
87 chi_ii,0,n,n)*x_train;
88 yhat = A\y_train;
89 yhaty = yhat.*y_train;
90 beta = T*pt/sum(yhaty(:));
91 lambda = beta*yhat;
92 w = (1./(pt*beta*(1−m).*chi_ii)*ones(1,T)).*...
93 (x_train*lambda);
94 w2 = w.^2;
95 mold = m;
96 m = (1−eta)*mold + eta*sigmoid1(beta*pt/2*sum(w2,2).*...
97 chi_ii+gamma);
98 % If maximum absolute difference between current and
99 % previous m is bigger than 0.1 decrease eta to
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100 % increase smoothing:
101 if max(abs(m−mold)) > 0.05
102 eta = eta/2;
103 end
104

105 end
106 % Calculate mean validation MSE across time samples
107 v = w.*repmat(m,1,T); % Solution
108 error_val(i) = mean(mean((x_val'*v−y_val).^2));
109 end
110 [temp imin] = min(error_val);
111 Gamma(kf) = gamma_all(imin);
112 end
113 gamma_mean = mean(Gamma); % Optimum sparsity level
114 %% Input found optimum sparsity in both training and val. set
115 chi_ii = 1/p*sum(x_tvc.^2,2); % Diagonal of chi
116 m = minit; % Initialize m
117 eta = 0.55; % Initialize eta
118 for k = 1:kmaxopt
119 m = min(m,1−1e−8);
120 A = eye(p)+1/p*x_tvc'*spdiags(m./(1−m)./chi_ii,0,n,n)*x_tvc;
121 yhat = A\y_tvc;
122 yhaty = yhat.*y_tvc;
123 beta = T*p/sum(yhaty(:));
124 lambda = beta*yhat;
125 w = (1./(p*beta*(1−m).*chi_ii)*ones(1,T)).*(x_tvc*lambda);
126 w2 = w.^2;
127 mold = m;
128 m = (1−eta)*mold + eta*sigmoid1(beta*p/2*sum(w2,2).*...
129 chi_ii+gamma_mean);
130 % If maximum absolute difference between current and previous m
131 % is bigger than 0.1 decrease eta to increase smoothing:
132 if max(abs(m−mold)) > 0.05
133 eta = eta/2;
134 end
135 end
136 % Calculate optimum solution:
137 v_opt = w.*repmat(m,1,T);
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SPARSE SOURCE EEG RECONSTRUCTION WITH THE VARIATIONAL GARROTE

Sofie Therese Hansen, Carsten Stahlhut, and Lars Kai Hansen

DTU Informatics, Technical University of Denmark,
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ABSTRACT

EEG imaging is an extremely ill-posed inverse problem.
Based on recent work (Delorme et al., 2011) we hypothesize
that solutions of interest are sparse. We show that direct
search for sparse solutions as implemented by the Varia-
tional Garrote (VG, Kappen 2011) can outperform solutions
based on convex relaxations (Lasso) both in terms of cross-
validation error on test data and in terms of sparsity of the
solution.

Index Terms— EEG, Imaging, Variational Garrote,
Lasso, Sparsity

1. INTRODUCTION

We are interested in real-time imaging of human brain func-
tion by electroencephalography (EEG). The EEG imaging
problem is of significant theoretical interest and real-time
EEG imaging has many potential applications including qual-
ity control, in-line experimental design, brain state decoding,
and neuro-feedback. In mobile applications these possibil-
ities are attractive as elements in systems for personal state
monitoring and well-being, and indeed in clinical settings
were proper care requires imaging under quasi-natural con-
ditions [1]. The first real-time mobile systems are based on
reconstruction methods using basic Tikhonov regularization
[1]. However, the computational challenges induced by the
highly ill-posed nature of the EEG imaging problem esca-
late in mobile real-time systems and new algorithms may be
necessary [2].

In recent work by Delorme et al. [3] it is argued that inde-
pendent components of EEG signals are dipolar in nature. In
particular it was shown that a direct dipolar fit can explain
much of the spatially distributed signal measured in scalp
electrodes. This suggests localized sparse sources and mo-
tivates reconstruction algorithms that emphasize sparsity in
contrast to the distributed spatial source patterns promoted in
classical alternatives [4].

Unfortunately, the quest for sparse solutions to the EEG
imaging problem is entirely non-trivial. We show that the
most widely used scheme based on convex relaxation is based

This research is supported in part by the Danish Research Council for
Technical and Production Sciences and the Lundbeck Foundation.

on conditions on the forward model that may not be met.
Therefore we here investigate a recent alternative for sparse
recovery proposed by Kappen [5]. It is aimed at solving the
sparse recovery problem without resorting to convex relax-
ation, enables separation of the location and magnitude esti-
mation aspects of the reconstruction task, and leads to a rel-
ative low-complexity set of non-linear equations that are iter-
ated towards the solution. All known approaches for sparse
imaging are based on trade-offs between data fit and spar-
sity measures. The trade-off is here carried out using two-
level cross-validation which allows us both to infer the op-
timal level of sparsity and provide an un-biased measure of
performance.

2. THE EEG INVERSE PROBLEM

In the quasi static approximation the relation between dipolar
sources placed at the cortical surface wi and the measured
potentials at multiple scalp locations yµ is instantaneous and
linear,

yµ =
n∑

i=1

wiXiµ + ξµ. (1)

We have denoted the forward model by Xiµ and allowed for
measurement noise ξµ, which is further assumed to be inde-
pendent of the source signal. In a typical laboratory setting the
number of measured scalp signals p can be 32−128, while the
source distribution can be represented by n = 1000− 10.000
locations. Thus we face a severely underdetermined problem
and regularization is necessary to ensure a well-defined so-
lution, see e.g., [6] for an early review. As we have noted
key processes appear to be rather dipolar, thus searching for
sparse localized solutions seems well-motivated.

Searching for the minimal cardinality source distribution
within a given level of misfit represents a non-convex combi-
natorial optimization problem [7]. Under certain conditions
convex relaxations like the least absolute shrinkage and se-
lection operator (Lasso) [8] can be shown to solve the linear
regression problem with sparsity constraints. Lasso uses a L1

penalty on the weights, which produces a sparse solution by
forcing some weights to zero and shrinking others using the



objective

p∑

µ=1

(yµ −wTXµ)
2 subject to

n∑

i=1

|wi| ≤ t. (2)

The problem can be solved for a range of values of t, if
t is small we enforce sparsity. The least angle regression
solver (LARS) is a computationally efficient constructive
path method that adds one non-zero weight at each step along
a path from the zero solution to a dense solution [9]. We will
investigate the utility of the LARS approach for EEG imaging
using the tools developed by Sjöstrand [10].

3. THE VARIATIONAL GARROTE

It is complex to check whether the conditions for the validity
of the convex relaxation are full-filled for a given EEG prob-
lem, and therefore we are interested in alternative approaches
that aim to solve the sparse approximation problem without
these assumptions. The so-called Variational Garrote (VG)
introduces sparseness into the regression problem by adding
the binary ’location’ variable si ∈ {0, 1} for absent/present
parameters [5]. Thus, the modified linear problem reads

yµ =

n∑

i=1

wisiXiµ + ξµ. (3)

The location variable is a latent binary variable with a prior

p(s|γ) =
n∏

i=1

p(si|γ), where (4)

p(si|γ) =
exp (γsi)

1 + exp (γ)
. (5)

Parameter γ will in general be assumed negative γ < 0, re-
flecting a bias towards sparsity.

The optimal solution to Eq. ((3)) can be obtained with a
variational approximation proposed in [5]. First the posterior
probability of the model given the data is established based
on a Gaussian noise assumption, ξ ∼ N(0, β−1),

p(s,w, β|D, γ) = p(w, β)p(s|γ)p(D|s,w, β)
p(D|γ) , (6)

with D being the full data set, while the prior over sources
and noise variance is assumed to be uniform p(w, β) ∝ 1.
The discrete variable s is marginalized out, giving rise to the
marginal posterior, p(w, β|D, γ). The denominator does not
depend on w and β and is therefore not relevant in the max-
imization of these. The resulting expression to maximize is
now

log p(w, β|D, γ) ∝ log
∑

s

p(s|γ)p(D|s,w, β) (7)

Expression ((7)) is bounded using Jensen’s inequality and in-
troducing a variational posterior over source locations, q(s),
a fully factorized distribution with q(s) =

∏n
i=1 qi(si), and

factors qi(si) = misi + (1−mi)(1− si) [5]

log
∑

s

p(s|γ)p(D|s,w, β) ≥ −
∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)
= −F (q,w, β). (8)

The variational free energy F (q,w, β) is minimized, corre-
sponding to maximizing the log likelihood ((7)). As noted
the EEG problem is severely underdetermined, therefore we
can simplify the model using the so-called Kernel trick with a
dual formulation with update rules for p Lagrange multipliers
λµ, ŷν [5]

Aµν =δµν +
1

p

n∑

i=1

miXiµXiν

(1−mi)χii
(9)

yµ =

p∑

ν=1

Aµν ŷν (10)

1

β
=
1

p

p∑

µ=1

ŷµyµ (11)

λµ =βŷµ (12)

wi =
1

βpχii(1−mi)

p∑

µ=1

λµXiµ (13)

mi =

(
1 + exp

(
−βp

2
w2
i χii − γ

))−1

. (14)

Fig. 1. Simulation with a single active source. Activation of
the true source shown in blue. The dotted black line repre-
sents the sum of all ’false’ sources’ activation.



(a) VG-dual (b) VG-KV (c) Lasso (d) True

Fig. 4. Sources estimated within a single 10-fold cross-validation run in the context a 3D cortex structure and compared with
the true distribution. For VG a threshold on the activation, m, is set to 0.5. Heavy arrows indicate sources with magnitude
larger than 0.5 and thin arrows indicate sources below this value. View is from the back of the left hemisphere. No sources are
found in the right hemisphere for VG and only a few low-strength sources for Lasso. Note individual color maps are used.

Fig. 2. Simulation of five active sources. True sources (v)
are shown in color together with the false source having the
highest absolute value (dotted gray line).

4. SIMULATIONS

We investigate the Variational Garrote (VG) in a series of sim-
ulation experiments. The first is based on a random forward
model, while the latter are quasi realistic simulations using
State-of-the-Art high-dimensional EEG forward models. For
the first set of simulations we form p = 50 measurements and
n = 100 unknown sources

yµ =
n∑

i=1

wiXiµ + ξµ, (15)

Fig. 3. The normalized mean square error of the solution
(nMSE) estimated from 50 splits of test and training set, with
K-fold cross-validation run on the latter to find the optimum
solution. K = 2 : 15.

and the noise precision is β−1 = 1. First, we let only a single
source element in the ’true’ generating model be set to unity,
while the rest are set to 0. VG is run on this data set with γ set
to −10 and m initialized to be all zeros. The convergence of
the activation of the first weight, corresponding to m1, across
iterations is illustrated in Figure 1. Also shown is the sum of
the (99) remaining sources. Note the swift convergence of the
posterior probabilities of the location variables. Next, to illus-
trate the role of the sparsity parameter γ a simulation is made
with five source locations set to unity in the generating model,



Fig. 5. Ability to retrieve the planted sources (F) as function
of sparsity control γ.

Fig. 6. Cross-validation error as function of γ.

while keeping the rest inactive. VG is run from γmin to γmax
and reversed. For all values of γ, the solutions with mini-
mum variational free energy across the two paths are stored.
The values of the five locations holding the active sources are
shown in Figure 2. Further, we show the magnitude of the
false positive source with largest absolute value. We note that
there is a large window of γ parameters for which the scheme
locates the sought five sources and suppresses all other loca-
tions.

5. SIMULATIONS WITH A REALISTIC EEG
FORWARD MODEL

VG and Lasso’s performances are tested in a quasi-realistic
EEG setting using synthetic sources. The latter consists of 10
sources set to the value 1, and the rest 0. Again Eq. ((15))
is applied. However, now using a normalized forward field
as X which is created in SPM (Functional Imaging Labora-
tory, Wellcome department of Imaging Neuroscience, Insti-
tute of Neurology at University College London, UK). The
forward field X here maps n = 8196 sources to p = 128
electrodes. To tune the sparsity parameters in both VG and
Lasso, and also have an unbiased test error estimate, the data

is first split into a training and test set with ptest = 10 and
ptrain = 118. On the training set we further perform K-fold
cross-validation to estimate the optimal sparsity control pa-
rameters (γ, t). We use K = 2, ..., 15, i.e., the training set is
subdivided to consist of a training set ((K−1)/K) and a val-
idation set (1/K). For each K, performances of the optimal
solution, vK for VG and wK for Lasso, are reported, using
the normalized mean squared error nMSE,

nMSEtest =
mean(vKXtest − ytest)

2

σytest
. (16)

The above procedure is repeated 50 times. Figure 3 com-
pares the performances of VG-dual, VG-KV and Lasso with
the nMSE for the ’true’ source distribution. VG-KV denotes
an alternative approach to calculate a solution to the primal
VG problem. In this scheme we use Kailath Variant of the
matrix inversion lemma to rewrite an inverse and obtain ef-
fective scalable update rules (not shown). Figure 3 demon-
strates that VG-dual outperforms the Lasso solution, while
the primal solution is less accurate. It is interesting that the
performance of the optimal sparsity parameters is quite stable
with respect to fold size K. Inspection of the optimal solu-
tions reveals that Lasso is less sparse than VG, and in fact
has many small ’false’ sources. Figure 4 visualizes the spatial
structure of the found sources in the context of a 3D ’cortex’;
w for Lasso and v for the two VG algorithms. As mi > 0.5
implies P (si) > 0.5, we threshold at this level. It is noted
that the values of m are typically either close to 1 or 0, thus
often making the thresholding redundant.

For the simulation we also check how well the VG with
optimization of sparsity using the electrode cross-validation
procedure is able to identify the actual source locations. For
this experiment we plant 10 sources and estimate source dis-
tributions for a range of sparsity parameters (γ). In Figure
6 we show that the cross-validation error as function of the
sparsity control parameter indeed is minimized in the same
range as is source retrieval index F = 2·precision·recall

precision+recall [11],
see Figure 5.

6. DISCUSSION AND CONCLUSION

EEG imaging is an extremely underdetermined inverse prob-
lem. Based on recent work we hypothesized that solutions
of interest are sparse dipole like. We have shown that direct
search for sparse solutions as implemented by Kappens Vari-
ational Garrote [5] can outperform solutions based on convex
relaxations (Lasso) both in terms of cross-validation error on
test data, and in terms of sparsity of the solutions. In a quasi-
realistic setting with an EEG forward model we found that
the VG solution provides an excellent reconstruction of the
planted sources.
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Abstract—EEG based real-time imaging of human brain function 
has many potential applications including quality control, in-line 
experimental design, brain state decoding, and neuro-feedback. 
In mobile applications these possibilities are attractive as 
elements in systems for personal state monitoring and well-being, 
and in clinical settings were patients may need imaging under 
quasi-natural conditions. Challenges related to the ill-posed 
nature of the EEG imaging problem escalate in mobile real-time 
systems and new algorithms and the use of meta-data may be 
necessary to succeed. Based on recent work (Delorme et al., 2011) 
we hypothesize that solutions of interest are sparse. We propose a 
new Markovian prior for temporally sparse solutions and a direct 
search for sparse solutions as implemented by the so-called 
“variational garrote” (Kappen, 2011). We show that the new 
prior and inference scheme leads to improved solutions over 
competing sparse Bayesian schemes based on the “multiple 
measurement vectors” approach. 

Keywords-EEG; real-time imaging; ill-posed inverse; temporal 
sparsity promoting prior. 

I.  INTRODUCTION 
Imaging electro-encephalography (EEG) is possible via 

solution of the electro-static inverse problem mapping scalp 
electrode measures to a cortical representation based on an 
assumed forward propagation model [1]. EEG based real-time 
imaging of human brain function has many potential 
applications including in-line experimental design, brain state 
decoding, neuro-feedback, and quality control [2]. 
Conventional non-imaging, i.e., “scalp based”, real-time EEG 
analyses has already found use in numerous applications 
including vigilance monitoring [3,4], human computer 
interfacing [5] and intensive care units [6]. Real-time imaging 
EEG will add several new dimensions to such applications 
including spatial localization of brain activity, improved 
localization by invoking 3D anchored prior information, and 
improvement of signal-to-noise by averaging EEG signals from 
functionally meaningful regions. Such features are highly 
attractive in mobile applications and systems for personal state 
monitoring and wellbeing, and indeed in clinical settings 
whenever proper care requires imaging under quasi-natural 
conditions [2]. 

II. IMAGING EEG 

A. The inverse problem 
Ensembles of coherent dipolar sources can produce 

measurable electrical potential differences at scalp electrodes. 
In the quasi-static approximation the relation between such 
sources placed in the cortical surface and measured scalp 
potentials is linear and instantaneous. By use of an assumed 
conductivity distribution, hence, a “head model”, the 
coefficients of the map can be estimated. In such models the 
typical number of sources far exceeds the relatively limited 
number of measurement scalp electrodes, leading to a severely 
ill-posed inverse problem which most often is regularized using 
smoothness priors [1,10]. Alternatively, the solution is 
expanded in spatial basis allowing tunable and spatially variant 
smoothness [11]. 

B. Sparsity promoting priors 
Recent work by Delorme et al., present evidence that 

prominent EEG modes have a relatively simple dipolar 
structure, hence likely stem from well localized regions [12] in 
contrast to the distributed sources assumed in conventional 
smooth reconstruction. Finding sparse solutions to ill-posed 
linear inverse problems, i.e., solutions in which only a few 
sources are non-zero, is a quite non-trivial combinatorial 
optimization problem. Sparsity promoting regularization 
methods have been proposed based on so-called Lasso or L1 
regularization terms leading to convex relaxations of the search 
problem that can be solved by efficient procedures [13].  

In probabilistic settings sparsity can be realized as sources 
being drawn from a mixture distribution with two components, 
a broad component responsible for non-zero sources and 
another narrow component centered in zero, see e.g. [14]. A 
closely related mechanism is to introduce a binary 0,1-variable 
for each source indicating presence or absence of that particular 
source, for a recent example see [16]. Such priors are attractive 
for mobile real-time systems as they directly allow integration 
of “real prior information”, e.g., spatial information from 
relevant neuroimaging studies that can limit the relevant brain 
structures or networks in a given context.  

Another often used mechanism for direct sparse 
approximation is to assume that sources are drawn from 
Gaussian priors with individual and tunable variances. If a 
source’s variance is tuned to zero, the parameter is effectively 
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pruned [15], this mechanism is in the more recent literature 
referred to as “sparse Bayesian learning”, see e.g., [17,18]. 

C. Temporal smoothness 
While typical EEG data is sampled at frequencies beyond 

100Hz, the typical high-energy modes have slowly varying 
support or location sparsity pattern [12], e.g., in independent 
component analysis individual modes are often treated as 
constant spatial patterns extending for 1000msec or more. To 
represent such relatively slowly varying sparsity patterns we 
propose here a prior with binary indicator variables linked with 
a simple first order Markov process. The 2x2 transition matrix 
has two free parameters representing the sparsity level and 
temporal smoothness, respectively. 

D. Inference schemes 
Probabilistic approaches based on approximate Bayesian 

inference are attractive as they can typically both find good 
solutions and furthermore tune prior strengths (e.g., sparsity 
levels and noise variance) and other control parameters see [19] 
for a review and references.  The so-called “variational garrote” 
(VG) introduced by Bert Kappen is a new and computationally 
efficient approximate Bayesian scheme for inference in ill-
posed linear inverse systems [16].   

III. RESULTS 

A. Single time point source reconstruction 
We first compare the quality of reconstructed sources 

obtained with Lasso regularization, sparse Bayesian learning 
(SBL), and the VG for a simulated sparse localized true source, 
a semi-realistic head model, and real world levels of 
measurement noise. We find that the Lasso solutions are 
somewhat more scattered than the true solutions, while sparse 
Bayesian learning and the VG produce more localized 
solutions with a small advantage for VG.   

B. Temporal source reconstruction 
Next, we simulate spatio-temporal sources. We produce 

measurement scalp signals from sparse, temporally smooth, but 
not constant, sources with a semi-realistic head model and 
additive white noise. We compare here two so-called “multiple 
measurement vector” schemes SBL [20,21], with solutions 
produced by the VG, now generalized to approximate spatio-
temporal sparsity patterns with the Markov prior. We find that 
the new spatio-temporal VG provides for an improved source 
reconstruction relative to the two SBL methods. Our results 
indicate that the SBL methods find correct locations while both 
seem to over-estimate the temporal smoothness of the source 
support. 
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