
Programming of the T-CREST
real-time multi-processor platform

Rasmus Bo Sørensen

Kongens Lyngby 2013
IMM-MSc-2013-5

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-MSc-2013-5

Abstract (English)

The goal of this thesis is to integrate the T-CREST components into a tool chain
for programming a multi-processor real-time platform. We present our view of
the T-CREST tool chain, and we implement an initial tool chain, restricted
by the current state of the T-CREST project. The T-CREST project is an
ongoing research project supported by the European Union’s 7th Framework
Programme, aiming to develop a homogeneous time-predictable multi-processor
platform. To integrate the components into a common tool chain, we define the
interfaces between the components of the tool chain, and extend the components
to implement the specified interfaces. With the intuition gain from integrating
the components we propose extensions to improve performance or reduce cost.

ii

Resumé (Danish)

Målet for denne afhandling er at integrere T-CREST komponenterne ind i en
værktøjskæde til programmering af en multi-processor sandtids platform. Vi
præsenterer vores blik på T-CREST værktøjskæden, og vi implementerer en
foreløbig værktøjskæde, begrænset af den nuværende tilstand af T-CREST pro-
jektet. T-CREST projektet er et igangværende forsknings projekt støttet af
den Europæiske Unions 7. rammeprogram, hvis mål er at udvikle en homogen
tidsforudsigelig multi-processor platform. For at integrere komponenterne ind
i en fælles værktøjskæde, definerer vi grænsefladerne mellem komponenterne i
værktøjskæden. Vi udvider komponenterne til at implementere de specificerede
grænseflader. Med udgangspunkt i den intuition vi har vundet ved at integre-
re komponenterne, foreslår vi udvidelser for at forbedre ydeevne eller reducere
omkostningerne.

iv

Preface

This thesis was carried out at the Department of Informatics and Mathemat-
ical Modelling, at the Technical University of Denmark, in fulfillment of the
requirements for acquiring an M.Sc. (Hons.) in Informatics.

During my master studies I was enrolled in the Honors program, at the Technical
University of Denmark. The objective of the Honors program is to familiarize the
student with research projects on an international level. During the main part of
my studies, I have been participating in the early stages of the time-predictable
multi-core architecture for embedded systems project (T-CREST), supported
by the European Union’s 7th Framework Programme. I have been taking part
in the weekly project meetings, and most of the projects I have worked on during
my master studies have been related to the T-CREST project. This thesis deals
with the programming of the T-CREST platform. As a whole the thesis presents
a first attempt at developing a coherent tool chain for software programming
and hardware configuration of the T-CREST platform. The tool chain draws
upon, and extends, several of the projects I have worked on during my master
studies.

This thesis should be seen as a stand alone report on the early and first iteration
of the tool chain for the T-CREST platform. The T-CREST processor and the
T-CREST worst-case execution time (WCET) compiler are under development,
and are not yet stable for integration. These components in the tool chain
are therefore replaced with a stable processor and compiler. This compiler is
not optimizing for WCET, and the thesis will therefore not go into details with
WCET-aware compilation. I have concentrated on integrating the tools into the
tool chain, to enable the developers of the T-CREST platform to test various
ideas.

vi

My work for this thesis has been carried out simultaneously with the first iter-
ation of the T-CREST project. The uncertainty of when and which hardware
components will become available, has proved an additional unforeseen chal-
lenge. I spent the first month of my thesis working on the S4NoC platform,
before the T-CREST NoC platform was available. The work I did on the S4NoC
platform is published in [1]. The S4NoC is only mentioned briefly in the thesis.

Lyngby, 07-December-2012

Rasmus Bo Sørensen

Acknowledgements

I would like to thank my supervisor Jens Sparsø for all his great input to my
work and my report, and my co-supervisor Martin Schoeberl for his comments
and his advice on the JOP processor. Also I would like to thank the rest of
the T-CREST members at the Technical University of Denmark for the good
discussions we have had about the T-CREST project. Finally I would like to
thank Mark Ruvald Pedersen, Lars Bo Sørensen, Tabita Niemann Kristensen
and Madava Dilshan Vithanage for their sparring.

viii

Contents

Abstract (English) i

Resumé (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Background 5
2.1 Real-time systems . 5
2.2 Network-on-Chip . 7

2.2.1 Static routing in real-time Network-on-Chip 9
2.2.2 Source routing . 9
2.2.3 Distributed routing . 9

2.3 Message passing . 10

3 Tool chain 13
3.1 Our tool chain . 14
3.2 The T-CREST tool chain . 16

4 Hardware platforms 19
4.1 Related work . 19
4.2 The S4NoC platform . 20

4.2.1 Programming the platform 21
4.3 The T-CREST NoC platform . 22

4.3.1 Configuration interface . 23
4.3.2 Integration of the hardware platform 25

x CONTENTS

4.4 Storage of static routing information 26
4.5 Discussion . 30

4.5.1 Scheduling limitations . 30
4.5.2 Backwards flow control 31

5 TDM scheduler 33
5.1 Related work . 33
5.2 Static routing . 34
5.3 All-to-all scheduling . 35
5.4 Application specific scheduling 35
5.5 Schedule converter . 37
5.6 WCET-aware compiler . 37
5.7 Discussion . 38

6 Message passing interface 41
6.1 Related work . 41
6.2 Communication primitives . 42
6.3 MPI in the T-CREST platform 43

6.3.1 Address space . 43
6.3.2 Communication primitives 45

6.4 Discussion . 46
6.4.1 Dynamic allocation of buffering space 46
6.4.2 Compiler optimizations 47

7 Test 49
7.1 Hello World! . 49
7.2 Microbenchmarks . 51

8 Conclusion 57
8.1 Summary of findings . 57
8.2 Project contribution . 58
8.3 Future work . 59

A S4NoC paper 61

B T-CREST NoC source code 69

C JOP infrastructure 93

D TDM scheduler source code 111

E MPI source code 133

F Test and benchmark source code 141

CONTENTS xi

Bibliography 151

xii CONTENTS

Chapter 1

Introduction

This thesis is concerned with programming the T-CREST[2] real-time multi-
processor platform.

The T-CREST research project is supported by the European Union and the
goal of the T-CREST project is to develop a real-time multi-processor hardware
platform in which all components (processors, interconnection network, and
compiler) are designed to facilitate a predictable worst case execution time of
the application executing on the platform. The T-CREST project creates a
novel hard real-time multi-processor platform.

To program the T-CREST platform four tasks need to be performed in order:

1. Creation of a static schedule for the time-predictable interconnect.

2. Compilation of the source code.

3. Calculation of the worst-case execution time (WCET) of the application,

4. Configuration of the hardware platform.

The work of this thesis is carried out in close interaction with the T-CREST
project. As we often need to describe details of the T-CREST work, it can be

2 Introduction

R

NI

P

R

NI

P

R

NI

P

R

NI

P

R

NI

P

R

NI

P

R

NI

P

R

NI

P

R

NI

P

Figure 1.1: Conceptual view of the homogeneous multi-processor T-CREST
platform with the three components, a processor (P), a network
interface (NI) and a router (R).

confusing to the reader to distinguish our work from the work of T-CREST.
We will refer to the work done in this thesis as “our something” or “we have
done”. The work of the T-CREST project will be referred to as “the T-CREST
component name”. When referring to this thesis we mean both the report and
the work behind it.

In this thesis we integrate the T-CREST tools into a coherent tool chain. Our
goal is to provide a tool chain that allows developers to investigate architectural
features and flaws in the system. Our tool chain can help the developer to gain
insight into the challenges of developing the T-CREST platform, and to improve
the platform. Our tool chain will be a modular design, enabling individual
testing of the modules and testing of the evolving T-CREST platform. Even
though our tool chain is not the final T-CREST tool chain it can help avoid
flaws in the final T-CREST platform. To support portability of applications
between hardware revisions, a message passing interface (MPI) is needed.

A conceptual view of the homogeneous T-CREST hardware platform is shown
in Figure 1.1; A regular grid of identical processors connected by a network-
on-chip. The interconnect in the T-CREST platform is statically scheduled to
achieve time-predictability. The static schedule is created by a scheduler at
compile time. Each processor has a local memory to support message passing
between processors. An application calls the MPI when it needs to communicate
to another processor.

3

The T-CREST platform was under development during the work of this thesis,
so the requirement to align our work with the availability of the T-CREST
components, had an impact on the topics to which we have contributed to. The
following points describe the decisions we took to limit the scope of our work in
this thesis.

Allocation and mapping The bandwidth allocation and hardware mapping
of an application could be found doing static analysis on the source code.
In this thesis we assume the bandwidth allocation and hardware mapping
for an application is supplied to the tool chain along with the application
source code. The bandwidth allocation depends on the hardware mapping.

Code generation The T-CREST processor Patmos[3] and its compiler is at
the time of writing still unstable. In this project we use the stable JOP[4]
processor with a compiler. As the processor we use is not the final
T-CREST processor, we will in this thesis not be concerned with code
generation for this processor. The final compiler should optimize worst-
case paths and not average case paths as regular compilers do.

Worst-case execution time analysis Analyzing the worst-case execution time
(WCET) of an application is very dependent of the processor architecture.
In this thesis we do not integrate WCET analysis in the tool chain, but
we will make the tool chain ready for it.

Evaluation The tool chain should enable the designers of the T-CREST tools
and the hardware platform to evaluate them. It is difficult to evaluate
each component in the tool chain without the whole tool chain. We create
a modular tool chain where each module can be evaluated and optimized
while decoupled from the other components. In this thesis we concentrate
on functional evaluation.

Contributions In this thesis we have worked in three main areas of research;
A time-predictable multi-processor platform, a time division multiplexing sched-
uler for routing traffic statically and a message passing interface. The contri-
butions of this thesis are described in the following bullet points, along with an
indication of in which chapter the given contribution is described.

• Proposal of interfaces between the T-CREST tools. [Chapter 3]

• An implementation and publication of the minimalistic time-predictable
S4NoC[1] platform. [Chapter 4, Appendix A]

• Integration of the T-CREST NoC platform and the JOP processor. [Chap-
ter 4]

4 Introduction

• A theoretical comparison of the demand for storage bits in source routing
and in distributed routing. [Chapter 4]

• Proposals of extensions to the T-CREST NoC platform. [Chapter 4]

• Extension of the TDM scheduler to integrate it into our tool chain. [Chap-
ter 5]

• Proposal of an extension to the TDM scheduler reducing the worst-case
latency in the static schedule. [Chapter 5]

• Implementation of an MPI for the T-CREST platform in Java. [Chap-
ter 6]

• Proposal of improvements to the MPI to reduce the buffering space. [Chap-
ter 6]

• The first working tool chain for programming our homogeneous multi-
processor platform. [Chapter 7]

This thesis consists of: An explanation of the main terms and concepts re-
lated to the T-CREST platform in Chapter 2. The tool chain and its compo-
nents are outlined in Chapter 3. In Chapter 4 we present two hardware plat-
forms, the S4NoC platform and the T-CREST Network-on-Chip platform and
discuss improvements to the latter. In Chapter 5, a time division multiplex-
ing (TDM) scheduler is presented and the implementations of its interaction
with the WCET-aware compiler is described. Chapter 6 contains a discus-
sion of which communication primitives to implement in the MPI library and
a description of the implementation. A test of our tool chain and hardware
platform is presented in Chapter 7. A conclusion of the project is given in
Chapter 8. The related work is presented in the beginning of the chapters
it relates to. The source code we have written or changed is shown in the
appendices, and in the beginning of each appendix we have written a short
explanation of what we have done. The source files are also available online
at http://rbscloud.dk/sourcecode.zip. We reference the appendices from
where it is relevant.

http://rbscloud.dk/sourcecode.zip

Chapter 2

Background

In this chapter we introduce the main topics of our project: real-time systems,
network-on-chip and message passing.

2.1 Real-time systems

There are basically two different kinds of real-time systems; soft real-time and
hard real-time. Soft real-time systems may miss a deadline once in a while and
is typically applied in non-safety critical systems, such as TV set-top boxes or
other streaming applications. Hard real-time requires all timing requirements
to be met at all times, and is typically applied in safety-critical systems, such as
aviation and train-control systems. The systems addressed in this thesis belong
to the hard real-time category. Implementing hardware for real-time systems
requires that the hardware is time-predictable and analyzable.

In Figure 2.1 we show how the different run times of a program relate to each
other on the time axis. Due to different inputs to the program, the execution
time can vary. Also a varying system state before and during the execution can
vary the execution time of the program. A varying system state can be the
state of the caches and the state of other programs running in parallel. The

6 Background

BCET
ACET

W
CET

Cal
cu

la
te

d

W
CET

Execution time

Figure 2.1: Relating the best-case execution time (BCET), the avarage-
case execution time (ACET), the worst-case execution time
(WCET)and the calculated WCET.

shortest possible execution time is called the best-case execution time (BCET),
which is generally not interesting in any kind of computer systems. The aver-
age execution time when the program is executed multiple times is called the
average-case execution time (ACET), which in general purpose systems is re-
garded as the performance of a program. The longest possible execution time
of the program is called the worst-case execution time (WCET). The WCET is
reached when the system receives the worst-case input in the worst-case system
state. The performance of a real-time system is equal to the WCET of the given
application.

The WCET is found by analyzing the application together with the hardware
platform. To find the actual WCET all possible inputs and systems states
must be analyzed. An exhaustive analysis is usually not feasible, and in that
case a pessimistic estimate of the WCET can be calculated. Depending on the
complexity of the systems, the calculated WCET might be far from the actual
WCET. The gap between the calculated WCET and the actual WCET can be
minimized by using a more accurate model or by making the hardware eas-
ier to predict. A more accurate model results in a more complicated WCET
analysis. The calculated WCET is regarded as the system performance in real-
time systems. More accurate WCET models may result in tighter and lower
WCET bounds, but will increase the complexity of the calculation. In paral-
lel real-time systems the WCET analysis is known to be difficult, maybe even
impossible. The T-CREST project addresses analysability in parallel real-time
systems. The hardware for real-time systems must be deterministic. If the hard-
ware is non-deterministic the analysis must always rely on worst-case latencies.
The worst-case in non-deterministic systems might not even be bounded making
the analysis impossible.

2.2 Network-on-Chip 7

T T T T

T T T T

T T T T

T T T T

I
O

Router

I O

I
O

IO

I
OI

O

North

South

East

W
est

Local

Network Interface

S

Processor

M

Streaming interface

Transaction interfaceLi
n

k

Li
n

k

Link

Link

LinkLink

Link

Link

Figure 2.2: The basic Network-on-Chip component a tile (T) contains: A
router, a network interface and a processor. The interface between
the processor and the network interface is a transaction based mas-
ter slave interface, and the interface between the network interface
and the router is a streaming interface.

2.2 Network-on-Chip

A Network-on-Chip (NoC) is a type of interconnect supporting many commu-
nicating nodes. The basic component of a multi-processor platform with a NoC
interconnect is illustrated in Figure 2.2. There are two main types of compo-
nents in a NoC: routers and network interfaces. The processing cores connected
to a NoC are each connected through a network interface to the network of
routers. In this structured design we group a processor, a network interface
and a router into a Tile. The connections between routers are called links. To
ease the understanding when describing the ports of a router the ports are usu-
ally named after the corners of the world. So the north port of one router is
connected to the south port of the router “above”.

These routers can be connected in many different topologies. In this thesis
we will only concentrate on grid topologies, such as torus, bidirectional-torus
(bitorus) and mesh shown in Figure 2.3. In network-on-chip there are no general
restrictions on the topology of the network of routers. The network of routers
consists of the routers and the links between them. The links are just wires, but
as the wires can be very long they can infer a considerable latency in the path.

8 Background

(a) (b) (c)

Figure 2.3: The grid topologies relevant to this thesis: (a) a torus network,
(b) a bidirectional-torus network and (c) a mesh network.

To increase the clock frequency the links can be pipelined, which increases the
amount of buffering in the network. When packets are sent through the network
they are chopped into smaller pieces. The smallest amount of data that the
network enforces flow control on is called a flit and each flit can be divided
into smaller chunks called phits. The phits are the smallest physical data units
transmitted over a link, usually equal to the link width.

The basic functionality of the router is very simple. When the router receives
a flit on an input port, the router decides to which output port it is sent. Im-
plementing the logic to make routing decisions dynamically can be a complex
problem, because the hardware has to ensure that no deadlocks can happen,
and that all packets are routed to their destination. Dynamic routing can be
implemented in many different ways. In the T-CREST project all routing de-
cisions are made statically. This simplifies the hardware as well as the WCET
analysis, because the latency is known in advance. The router implementation
scales quite well, as the number of ports stay constant when the size of the whole
systems grows.

The basic functionality of the NI, is to convert the transactional requests from
a processing core, to the streaming interface of the network. The detailed func-
tionality of the NI depends very much on the routing scheme in the network.
The scalability issues of Network-on-Chip are most dominant in the NI. This is
where the hardware needs to consider all cores that it is communicating with.

2.2 Network-on-Chip 9

2.2.1 Static routing in real-time Network-on-Chip

Static routing is applied and enforced in such a way that the communication
behavior of one processor cannot affect the communication of other processors.
Making the scheduler responsible of avoiding colliding flits, allows the hardware
to be very simple and efficient. Deciding the routes statically is done by dividing
access to the transmission medium in time. This approach is called time division
multiplexing (TDM). Only one communication channel must be scheduled on
a link in a given time slot. The scheduling of communication channels in the
network is done at compile time, before the WCET analysis.

If the communication behavior of one processor can affect the communication
behavior of another processor, the WCET will increase dramatically. If for ex-
ample a real-time system runs on a general purpose platform, the communication
between one pair of communicating processors can interfere with the commu-
nication of another pair of communication processors. In this case the WCET
analysis will have to assume the worst-case of interfering communication, this
will increase the WCET estimate by orders of magnitude.

2.2.2 Source routing

The static route of a flit is stored in the flit header. The route in the flit header
is read on its way through the network. The sending NI needs to store a route
for each time slot and the destination ID of that route. When a flit reaches
a router, the router reads the header to determine whereto the incoming flit
should be routed. The receiving NI can see the origin of a flit in its header.

2.2.3 Distributed routing

In distributed routing the static routing information is distributed to the routers
where it is needed. This implies that the flits does not need a header, which
increases the bandwidth. The sending NI stores an entry table with the desti-
nation ID of the flit that is allowed to enter the network in the given time slot.
The router stores how its input ports are connected to its output ports in each
time slot. The receiving NI stores an exit table with the source ID of the flits
which can arrive from the network in the given time slot.

10 Background

2.3 Message passing

Message passing is a way of communicating between tasks, as opposed to shared
memory communication. The conceptual difference of communicating with mes-
sage passing and shared memory in multi-processor systems is illustrated in
Figure 2.4.

Interconnect

MM

CPU CPU

NI NI

(a) Message passing

Interconnect

MM

CPU CPU

NI NI

(b) Shared memory

Figure 2.4: Conceptual illustration of message passing and shared memory
communication. (a) With message passing the processors (CPU)
communicate directly through the network interface (NI) and the
interconnect. (b) With shared memory communication the com-
munication goes through the main memory (MM).

Message passing is when a packet of data is sent directly from one processing
core to another. When tasks are being executed on different processors, which
have no locally shared memory, a message can be sent to the other processor
through the interconnect. Data that is transported via message passing must
only reside in the local memory of the processor or the internal registers of the
processor. Message passing is a benefit when the data is transferred directly
from one local memory to another local memory. It is only allowed to write
the data to the main memory once, when it should not be used any longer.
Thus applications with a high level of interprocessor communication, such as
streaming applications, are well suited for message passing architectures.

Shared memory is widely used in many kinds of computer systems today. Com-
municating between processing cores using shared memory the data will go
through the main memory, or a lower level cache, which adds additional com-
plexity due to cache coherency.

2.3 Message passing 11

Message passing can increase the bandwidth and lower the latency of inter-
processor communication compared to shared memory communication. Some
systems will have both the possibility of message passing and shared memory
communication. When the local on-chip memory is no longer sufficient, the
off-chip main memory will come in to play.

12 Background

Chapter 3

Tool chain

In this chapter we present two tool chains. The first tool chain is the tool chain
we have implemented, we refer to this tool chain as our tool chain. The second
tool chain is how we imagine the final version of the T-CREST tools will work
together, we refer to this tool chain simply as the T-CREST tool chain. Our
tool chain is slightly different from the T-CREST tool chain because not all the
T-CREST tools are at a stable state.

The component based structure of the tool chains helps the integration and test-
ing of new components. Each component can be replaced, by a component with
the same interfaces. The T-CREST project dictates that the tool chain should
be compatible with multi-processor platforms using TDM in the interconnect.

In the T-CREST platform, the interprocessor communication and the com-
munication to the main memory are decoupled because there is a dedicated
interconnect for each of the two communication types. The NoC is only used
for interprocessor communication, in the form of message passing. Managing
the main memory and the caches is all done by the compiler, therefore we have
not focused on main memory access, as the compiler is out of the scope of this
thesis. In the following section, we describe how our tool chain is implemented,
and in the next section we describe how the implementation the T-CREST tool
chain differs.

14 Tool chain

Hardware
Configuration

JOP
Compiler

TDM
Scheduler

Bandwidth
Graph

Source
Code

MPI

.XML

.Java

.Java

Schedule
Converter

.XML

.BIN .VHDL

.Java

Figure 3.1: An illustration of our tool chain programmed in Java.

3.1 Our tool chain

A block diagram of our tool chain is shown in Figure 3.1. The arrows between
blocks are the flow of data, and the labels on the arrows are the file formats of
the interfaces. The diamond shapes are inputs to the tool chain, describing the
application and its requirements. The elliptic shape is a platform specific library,
mapping an abstract application interface to the given hardware platform. The
rectangular shapes are the tools in the tool chain. The tool chain takes source
code and a bandwidth graph as inputs. The source code describes the desired
application, and the bandwidth graph describes the bandwidth requirements
between all processing cores and the topology of the NoC.

First, the schedule is generated by the TDM scheduler. Then the schedule con-
verter converts the schedule to either hardware or software tables, depending on
the hardware platform. The compiler then compiles the application source code
along with the MPI (message passing interface) and possibly the software tables.
In the end the application is loaded on to the hardware platform. Loading the
application onto the hardware, can be done before or after synthesis depending
on the hardware platform. Since we use the Java programmed JOP processor,

3.1 Our tool chain 15

Listing 3.1: XML example of the bandwidth specification in a 3 by 3 bitorus.
1 <?xml v e r s i o n=" 1 .0 " ?>

<topology width=" 3 " he ight=" 3 ">
3 <graph type=" b i t o r u s ">

<l i n k source=" (0 , 0) " s ink=" (1 , 0) " />
5 </ graph>

</ topology>
7 <channe l s type=" a r b i t r a r y ">

<channel from=" (0 , 0) " to=" (1 , 1) " bandwidth=" 10 " />
9 <channel from=" (0 , 1) " to=" (2 , 2) " bandwidth=" 2 " />

<channel from=" (0 , 2) " to=" (2 , 2) " bandwidth=" 2 " />
11 <channel from=" (1 , 1) " to=" (2 , 2) " bandwidth=" 2 " />

. . .
13 </ channe l s>

we also use the JOP compiler.

The mapping between processes and processors are done by the application
programmer. The mapping is specified in the source code and in the input to
the TDM scheduler. The input to the TDM scheduler is an XML formated file,
describing the topology of the network-on-chip and the communication pattern
of the application. We use XML because it is human readable, flexible and
expendable. An example of the XML input format can be seen in Listing 3.1.
In the example a bitorus topology is specified, other possible topology types
are the mesh type and arbitrary type. If a arbitrary topology is specified,
each link in the topology must be specified inside the graph tag using a link
tag. When bitorus or mesh is specified the link tags are ignored. The TDM
scheduler schedules the specified traffic in the topology graph. The amount of
traffic scheduled between two nodes in the NoC is specified in the bandwidth
attribute of the channel tag in the input XML file.

Besides the schedule, the TDM scheduler also calculates the worst-case latency
(WCL) of each communication channel. The WCL of a communication channel
is the worst-case time separation in time slots between access to two commu-
nication paths. If the scheduled latencies are not sufficient to meet a given
real-time deadline, re-scheduling with a different bandwidth specification could
decrease the WCL. The output of the scheduler is an XML file. This XML file
describes how the router and network interface of each tile should be configured
in every time slot and the WCL of each communication channel. An example of
the output XML file can be seen in Listing 3.2, specifying a schedule of length
9. The data is separated into tiles, and in a tile each time slot describes the NI
and the router. In each tile the WCL for each destination is specified.

Our MPI implements the communication primitives. The MPI hides all the

16 Tool chain

Listing 3.2: XML example of the scheduled communication channels in a 3 by
3 bitorus.

1 <?xml v e r s i o n=" 1 .0 " ?>
<schedu le l ength=" 9 ">

3 < t i l e id=" (2 , 0) ">
<t i m e s l o t va lue=" 0 ">

5 <ni rx=" (2 , 1) " tx=" (1 , 1) " />
<r o u t e r>

7 <output id="N" input="D" />
<output id=" S " input="D" />

9 <output id="E" input="L" />
<output id="W" input="D" />

11 <output id="L" input=" S" />
</ r o u t e r>

13 </ t i m e s l o t>
. . .

15 <l a t e n c y>
<d e s t i n a t i o n id=" (0 , 0) " WCL=" 8 " />

17 <d e s t i n a t i o n id=" (1 , 0) " WCL=" 8 " />
<d e s t i n a t i o n id=" (0 , 2) " WCL=" 8 " />

19 . . .
</ l a t e n c y>

21 </ t i l e>
</ schedu le>

hardware specific implementation details of the communication primitives from
the application programmer. In this case of embedded real-time systems, the
MPI could just as well be called the communication driver. If the hardware is
changed, the driver also needs to be changed, but the application source code will
not have to be changed. The WCET-aware compiler compiles and analyzes the
application source code, along with the MPI library, and the timing information
from the TDM scheduler.

3.2 The T-CREST tool chain

A block diagram of the T-CREST tool chain is shown in Figure 3.2. The
difference from our tool chain is the programming language and the WCET-
aware compiler. The T-CREST platform is programmed in C and the WCET-
aware compiler optimizes the worst-case execution path in the control flow graph
(CFG) instead of the average-case execution path. The WCET-aware compiler
uses the information from the TDM scheduler to find the worst-case execution
path.

3.2 The T-CREST tool chain 17

Hardware
Configuration

WCET
Compiler

TDM
Scheduler

Bandwidth
Graph

Source
Code

MPI

.XML

.c

.c

Schedule
Converter

.XML

.BIN

.c

.XML

Figure 3.2: An illustration of how we imagine the T-CREST tool chain.

18 Tool chain

Chapter 4

Hardware platforms

In this chapter we present two hardware platforms and a theoretical comparison
of methods to store static routing information. The current state-of-the-art
real-time NoC platforms, presented in the related work section, are complex
hardware devices. The first platform we present is the S4NoC platform, it is an
attempt to design a minimalistic hardware platform. We made this minimalistic
NoC to gain intuition on how simple a NoC can be, and as the first hardware
platform for our tool chain. The second hardware platform is the first version
of the T-CREST platform.

4.1 Related work

Network-on-chip has been an active research area for many years, in this project
we need time-predictability to enforce real-time. The following NoC platforms
provide time-predictability.

Æthereal lite The Æthereal[5] NoC was developed at Philips. Æthereal pro-
vides guaranteed service and best-effort traffic. Guaranteed service is provided
using TDM. A lite version of Æthereal called aelite has been developed only

20 Hardware platforms

providing guaranteed service. aelite is an application specific NoC, which can
be instantiated in a topology that fits to the application. The Æthereal design
flow is proprietary and application specific. The hardware generation and map-
ping is carried out in one step. Several versions of Æthereal has been made,
some using source routing and others using distributed routing.

Mango The MANGO[6] NoC was developed at the Technical University of
Denmark. MANGO is an asynchronous NoC with delay insensitive links. MANGO
provides both best effort traffic and guaranteed service. The guaranteed service
is provided using virtual channels and rate control, opposed to TDM.

Nostrum The Nostrum[7] NoC was developed at the Royal Institute of Tech-
nology in Sweden. Nostrum implements guaranteed service with their concept
of looped container, which are statically scheduled containers looping in the
network. A flit can be sent via a looped container to its destination.

4.2 The S4NoC platform

The S4NoC1 [8, 1] is a light-weight time-predictable NoC using distributed rout-
ing. The paper we wrote about the S4NoC is presented in Appendix A. To enable
time-predictability the S4NoC implements TDM. The S4NoC consists of a very
simple router and network interface(NI). We show a 64 core FPGA implemen-
tation of the S4NoC connected to Leros processors in [1]. The Leros processor is
presented in [9]. Leros is an accumulator machine programmed in assembler or
in Java. A block diagram of an S4NoC tile is shown in Figure 4.1. The router is
very simple, containing one slot counter, one slot table and 5 output ports. One
output port is a register and a 4-to-1 multiplexer. The NI has one word queues
for each communication channel in and out of the node. These are placed in the
RX and TX buffers, implemented in block RAM. The processor can read and
write single words to the RX and TX buffers. Status registers indicate when
words are sent and received, these status registers can also be accessed by the
processor. The limited buffering makes this platform hard to program in such
that the full bandwidth is utilized for all communication channels.

1The S4NoC is open source and is publicly available at https://github.com/t-crest/
s4noc.

https://github.com/t-crest/s4noc
https://github.com/t-crest/s4noc

4.2 The S4NoC platform 21

I
O

Per putput port:
1 reg
1 4-to-1 mux

I O

I
O

IO

I
OI

O

S

Leros
Processor

M

Network Interface

Router

Slot
Count

Routing
Table

Rx buffer

Tx buffer

Status
Bits

Control

Slot counter
Entry table
Exit table

Figure 4.1: Block diagram of the S4NoC. The Leros processor can read the
status bits, write the Tx buffer and read the Rx buffer.

4.2.1 Programming the platform

The Leros processors run from a local instruction ROM, no code can be loaded
into it at run time. The NI is connected through the 8 bit I/O address space
of Leros. Figure 4.2 shows the address space of the NI connected to Leros.
The communication channel to and from each other processor in the system is
mapped to the address matching its core ID. Writing to that address sends a
data word to the given core, reading from the address receives a data word from
the given core. The status registers indicate the receive and transmit status of
each communication channel, on a word level. Flow control on a higher level
than single data words needs to be implemented by the processor. The upper
addresses of the address space are for the UART, the CPU ID and the total
number of cores in the system.

To synchronize with the TDM slots, the NI has a counter, an entry table and
an exit table, dictating when and which packets enter or exit the network. The
router has a routing table dictating which input port should be routed to which

22 Hardware platforms

Communication
channels
TX/RX

0

#Cores - 1

#Cores

Tx status register(s)

Rx status register(s)

(UART RX/TX) Optional

(UART status) Optional

Core ID

#Cores in system

255

254

253

252

#Cores + (#Cores/
Word size)

⁞

Figure 4.2: The address space of the S4NoC NI connected to the I/O address
space of the Leros processor.

output ports. The tables in the NI and the router are ROMs, which in an FPGA
implementation can be implemented in look-up-tables (LUTs). These tables
are generated at design time, and the whole design has to be re-synthesized
to change the tables. The S4NoC tables can be generated by our application
specific TDM scheduler.

4.3 The T-CREST NoC platform

The T-CREST NoC, presented in [10], is a time-predictable interconnect using
source routing. A block diagram of the T-CREST NI and router connected to
the JOP processor can be seen in Figure 4.3. The T-CREST NoC uses direct
memory accesses (DMA) to move data form one processor the another. To utilize
as much of the bandwidth as possible several DMAs can be interleaved, each
waiting for their time slot. This enables utilization of time slots from different
communication channels at the same time. Controlling these interleaved DMAs
is the core function of the NI. The interleaved DMA controller moves data from
its local scratch pad to the local scratch pads of other processors. The local
scratch pad memory is a dual ported memory, with one port connected to the
processor, and one port connected to the NI. The individual DMA transfers are
stored in a DMA table along with the route to the destination. To keep the

4.3 The T-CREST NoC platform 23

I
O

I O

I
O

IO

I
OI

O
JOP

Processor

Network Interface

Router

Local scratch
pad memory

Config. Interface

HPU
HPU

H
P

U

HPU

H
P

U
Xbar

SC
ST

S

M

DMAs Routes
DMA Table

Figure 4.3: A block diagram of the DMA NoC. In the router, each input port
is connected to a header parsing unit (HPU), each output port is
connected to the crossbar (Xbar). The JOP processor can access
the data in the local scratch pad memory and configure the slot
tables (ST) and the DMA table in the NI.

synchronization with the TDM slots, a slot table is indexed by the slot counter.
The slot table indexes into the DMA table. When a flit is sent from the NI,
its route is stored in the flit header, along with the write pointer. The router
needs to decode the header of a flit before it routes the flit to a output port.
The decoding of the flit header is done in the header parsing unit (HPU) in the
router. The flits are sent to the crossbar and multiplexed to the output port.

4.3.1 Configuration interface

The configuration of the DMA table, and the slot table, is carried out by the
processor. Before the processor can send any packets through the NoC, the
processor has to configure the slot table and the routes in the DMA table. The
first operation is to write the routes of each DMA entry to the DMA table.

24 Hardware platforms

Communication
scratch pad

DMA tables

Protected
DMA routes

Protected slot
table enties

0

1

0

1
1

0

19 bits

21 bits

Figure 4.4: The local address space for each processor in the system. The
21 st bit is the protection bit, indicating whether to access the
protected part of the local address space or not. The protected
part of the address space is only for configuration of the TDM
schedule.

Then it is written in each entry of the slot table, which DMA is allowed to send
in that given time slot.

There are 4 segments in the local address space of each processor, the scratch
pad, the DMA tables, the protected DMA routes, and the protected slot table.
The number of accessible addresses in the 4 segments of the address space are
not constant, nor is the ratio between them, this is because they vary depending
on the current system configuration. We decide to make the simple division of
the address space as seen in Figure 4.4. This is a flexible solution, but it wasts
address space. The most significant bit of the 21 bits of the address space is the
protection bit. The part of the address space addressed with the protection bit,
should only be changed during the configuration phase of the NI.

The task of configuring the NI is done in software. Each processor needs access
to the configuration data for the TDM schedule. To give access, we write the
configuration data in static arrays, and compile it along with the application
source code.

4.3 The T-CREST NoC platform 25

Sim
p
C
o
n O

C
P

wr_data

address

wr

rd

MData

MAddr

SDatard_data

rdy_cnt

MCmd

SC
m
d
A
cc
ep

t

SResp

rst en

en

rst

rst

set

Figure 4.5: Conversion from SimpCon to OCP. The reset (rst), set and enable
(en) are all synchronous signals. The circuit adds 2 clock cycles
of latency to a request. The latency can be removed by adding
multiplexers to bypass the registers, delivering stable signals one
clock cycle earlier in each direction.

4.3.2 Integration of the hardware platform

The T-CREST processor Patmos[3] was not in a stable state at the time we were
ready for integration into our tool chain. To ease our work of integrating all these
alpha state components, we decided to use the well tested JOP[4] processor,
with good support. The JOP processor has a SimpCon[11] interface, whereas
the T-CREST NoC has a simple subset of the open core protocol (OCP)[12]
interface, thus some conversion is needed. To integrate the JOP2 processors
and the T-CREST NoC3 platform we have wrapped the NoC in an array of
SimpCon interfaces. The wrapped NoC is then instantiated in the JOP top
level and connected to the JOP processors. The source files we have written
and changed for wrapping the T-CREST NoC platform in SimpCon interfaces
can be seen in Appendix B. These files also include a testbench for the NoC
wrapped in SimpCon interfaces. The source files we have changed to connect
the JOP processors and the T-CREST NoC platform can be seen in Appendix C.

2The JOP processor is open source and is publicly available at https://github.com/
jop-devel/jop.

3The T-CREST NoC platform is open source and is publicly available at https://github.
com/t-crest/t-crest-noc.

https://github.com/jop-devel/jop
https://github.com/jop-devel/jop
https://github.com/t-crest/t-crest-noc
https://github.com/t-crest/t-crest-noc

26 Hardware platforms

A diagram of the conversion between the SimpCon and the OCP interfaces can
be seen in Figure 4.5. The SimpCon interface supports pipelined accesses, it
holds the master signals stable for one clock cycle and waits for the rdy_cnt to
be 0. The reply data of the SimpCon interface is expected to be stable until the
next request is started. The OCP interface needs the master signals to be stable
until the slave acknowledges the request. The reply data of the OCP interface
is high in one clock cycle. The incompatibilities of the SimpCon interface and
the OCP interface adds 2 clock cycles of extra latency to a request. The latency
can be removed by adding multiplexers to bypass the registers. These bypass
multiplexers should be controlled by the enable signals, and would deliver stable
signal one clock cycle earlier. Since the final T-CREST processor has an OCP
interface we have focused on getting this preliminary platform to work, and not
to optimize it.

4.4 Storage of static routing information

Through our work with the hardware platforms described in this chapter and
the TDM scheduler, we have made two observations:

• Storage of the static routing information is a considerable part of the total
resource consumption, this can be seen in [1] for the S4NoC and in [10]
for the T-CREST NoC platform.

• The port configurations of the router in distributed routing stores redun-
dant information.

The first observation has made us interested in optimizing the second observa-
tion. The following comparison, has not been verified in an implementation,
but is a theoretical comparison, which could be the target for future T-CREST
experiments. In the literature there are several methods to compress routing
tables, such as [13] and [14]. These methods does not work in TDM NoCs.
In [14] it is described how static routing tables are compressed, this kind of
static routing means that the path of a flit is static, but not the arrival time
as in our TDM NoCs. We have not found any compression methods in the
literature that works for TDM NoCs. We compare the required storage bits
for source routing, distributed routing and compressed distributed routing. A
summary of the storage bits for each routing method is shown in Table 4.1

Storage bits in source routing In source routing one node in the network
needs to store a route and a destination ID in each time slot. The number

4.4 Storage of static routing information 27

of storage bits for storing a route depends on the size of the network, in the
T-CREST platform 2 bits are used for each hop in the network. The route
can be stored in dlog2(2 × H)e bits, where H is the maximum number of hops
between two processors in the network.

Storage bits in distributed routing In distributed routing one node in the
network needs to store a destination ID, a source ID and the router configuration
in each time slot. An ID of a processor can be stored in dlog2(N)e bits, where
N is the number of CPUs in the system. The common way of storing the router
configuration in a time slot is to store 2 bits for each output port per time
slot. The 2 bits describe which one of the 4 possible input ports is connected
to the given output port. With 5 ports this is 10 bits, which is 1024 possible
combinations, not all these combinations are valid.

Compressing the distributed routing tables The distributed routing ta-
bles can be compressed because there are not 1024 possible router configurations.
A router configuration can be perceived as a permutation of the 5 input ports,
connected to the 5 output ports. An example of a port permutation is shown
in Figure 4.6a. The sequence of the output ports is static and the sequence of
the input ports change. In the following we calculate the number of valid port
permutations.

In the actual system there are 3 restrictions on the router configurations:

1. No output port must be connected to multiple input ports.

2. No input port must be connected to multiple output ports.

3. No incoming flit must be routed out the same direction that it arrived,
e.g., a flit arriving at the south input port must not depart from the south
output port.

The first and second restriction implies that a valid router configuration must
be a permutation of the 5 distinct input ports, such a valid router configuration
can be seen in Figure 4.6a. We call a router configuration a port permutation.

The third restriction implies that if an input port is connected to the output
port in the same direction it is considered as unconnected.

A port permutation where two or more ports are unconnected is is redundant
because it can be represented by a permutation where the ports are swapped, i.e.,

28 Hardware platforms

N L E S W
W N L E S

Valid
Output
Ports

Input
Ports

(a)

N L E S W
W - L E -

Redundant

(b)

Figure 4.6: Router configurations, perceived as permutations of the 5 input
ports. (a) is a valid port permutations and (b) is a redundant
port permutation because it can be represented by (b)

the port permutation in Figure 4.6b can be represented by the port permutation
in Figure 4.6a. The static schedule guarantees that no flit is routed through the
ports that are swapped.

In combinatorics a port permutation with no unconnected ports is called a de-
rangement, and a permutation with one unconnected port is called a partial
derangement with one fixed point. We call the number of all valid port permu-
tations V. V can be stored in dlog2(V)e bits. V is found using equation 4.1, the
general formula is shown in [15].

V = D5,0 + D5,1 =
[

5!
e

]
+

(
5
1

)
·
[

4!
e

]
= 89 (4.1)

Where D5,0 is the number of derangements of 5 elements, and D5,1 is the number
of derangements of 5 elements with one fixed point. The number of bits to store
the router configuration in one time slot is:

dlog2(V)e = dlog2(89)e = 7 (4.2)

Comparing the storage of the routing methods A summary of the stor-
age bits for distributed routing and source routing is shown in Table 4.1.

Table 4.1: Storage bits per time slot per core for source routing (Src), dis-
tributed routing (Dist) and distributed routing with compression
(Dist w/comp).

NI ID (Bit) NI Route (Bit) Router (Bit)
Src dlog2(N)e dlog2(2×H)e –
Dist 2× dlog2(N)e – 10
Dist w/comp 2× dlog2(N)e – 7

4.4 Storage of static routing information 29

0

10

20

30

40

50

60

70

0 50 100 150 200 250

St
o

ra
ge

 b
it

s
fo

r
o

n
e

 n
o

d
e

 p
e

r
ti

m
e

 s
lo

t

Number of processing cores in the system

Source Bitorus

Source Mesh

Distributed

Distributed w. compression

Figure 4.7: The number of storage bits for one node per time slot for source
routing in a bitorus and in a mesh, and distributed routing with
and without compression, as a function of network size. The stor-
age requirements for distributed routing is the same for bitorus
and mesh.

In Figure 4.7 we show the storage requirements for distributed routing and
source routing as a function of the network size. The number of storage bits
with source routing in a mesh network scales very poorly compared to the other
routing methods. Using source routing in a bitorus scales better, due to a
smaller maximum distance of two nodes in a bitorus network. The storage
requirements in distributed routing is invariant for the bitorus topology and
the mesh topology. The difference is in the number of time slots needed. The
number of time slots when routing in a bitorus is smaller than routing the
same communication pattern in a mesh topology. As can be seen in Figure 4.7,
distributed routing with compression is the most efficient way in terms of storage
bits for networks as small as 64 nodes. In the case of 36 and 49 nodes it can
be argued that the increase in bandwidth due to distributed routing makes
distributed routing with compression the most efficient routing method. This
only comes at the expense of one more storage bit per time slot for each network
node.

30 Hardware platforms

One could argue that it is not a fair comparison, because the source routing
information could also be compressed. The problem with compressing the source
routing information is that it adds latency through a router. The router can not
start decompressing the route before the flit arrives, whereas the decompression
of the router configuration with distributed routing can be pipelined.

Compressed distributed routing requires less storage bits, the decompression
adds no latency to the routing, and the bandwidth is higher because no header
is sent through the network.

4.5 Discussion

In this section we discuss the current limitations of the T-CREST platform, and
we propose possibilities to avoid these limitations.

4.5.1 Scheduling limitations

We have found two limitations of the current T-CREST NoC platform that limit
the schedules:

• The platform does not support TDM schedules where one communication
channel can send in multiple time slots on different routes.

• The platform only allows for reconfigurable schedule period lengths, at
synthesis.

The first limitation adds another restriction to the scheduler, this additional
restriction can increase the TDM period. At this point the T-CREST NoC
platform, together with the TDM scheduler we are using, only supports sched-
ules where each communication channel has a bandwidth of one time slot per
schedule period. The second limitation requires to re-synthesis to change the
schedule period. For larger systems synthesis can be very time consuming, and
in an ASIC, which is the target for the T-CREST project even impossible.

A block diagram of a redesigned version of the T-CREST hardware platform
can be seen in Figure 4.8. To resolve the mentioned restrictions we propose to
extend the architecture by moving the routes out of the DMA table, and into the
slot table. The packets of a communication channel can be routed on different

4.5 Discussion 31

I
O

I O

I
O

IO

I
OI

O
JOP

Processor

Network Interface

Router

Local scratch
pad memory

Config. Interface

HPU
HPU

H
P

U

HPU

H
P

U
Xbar

SC
ST

DMAs
Routes

S

M

Figure 4.8: Extended block diagram of the DMA noc NI. The JOP processor
can access data in the scratch pad memory, and configure the slot
counter (SC), the slot table (ST) and the routes.

paths in each time slot of a schedule period. This extension requires more
configuration storage, but is more flexible and can decrease the TDM period.
One slot entry and one route can be written in the same configuration write,
reducing the configuration time. Also the size of the static array is reduced,
because the two values can be saved in the same 32 bit integer. We propose to
make the TDM period configurable in run time to support variable length TDM
schedules at run time. This can be supported by extending the counter to have
a variable reset, configured along with the slot table.

4.5.2 Backwards flow control

In the current T-CREST NoC platform there is no backward flow control. In
real-time systems where performance is analyzed, we can guarantee that tokens
can be consumed at a certain rate. As long as this rate is higher than the rate
at which tokens are produced there are no problems. The problem arises during

32 Hardware platforms

application development. The developer might not want to analyze the proto-
type because it takes time, or might need to lower the speed with debugging
info. In these cases backwards flow control can ease development. The back-
wards flow control can be implemented in hardware or software. In hardware
the backwards flow control can be implemented by sending empty tokens back
when a place in the receiving buffer is freed by software. These empty tokens
can be sent back as a specially formatted package that is processed by the NI.
In software the backwards flow control can be implemented by sending a normal
message back to a special address that the software in the other end is polling
when it tries to send. Analyzing the systems with backwards flow control might
be difficult, so backwards flow control should not be used when the application
is analyzed.

Chapter 5

TDM scheduler

In this chapter we describe the scheduling problem and two types of schedulers.
We also describe how we integrate an application specific scheduler into our tool
chain.

5.1 Related work

The scheduling problem that the TDM scheduler needs to solve, is known as
a integer multi-commodity flow problem. This problem has been proven to be
NP-hard in [16]. A scheduler for scheduling all-to-all communication in these
kinds of networks is shown in [17]. The advantage of this scheduler is that the
schedules are symmetric, meaning that the routing tables for each router are
the same, allowing for resource sharing. A scheduler for the Æthereal is shown
in [18]. This scheduler schedules in two phases, the first phase is path allocation
and the second is time slot allocation to TDM slots. The Æthereal scheduler
instantiates extra hardware to increase the capacity on links if needed. Our
tool chain needs a scheduler for scheduling application specific communication
requirements on to the homogeneous T-CREST NoC platform.

34 TDM scheduler

5.2 Static routing

In the TDM interconnect we route packets statically, to guarantee that no pack-
ets collide. This guarantee enables us to make very simple hardware, with no
arbitration mechanism or buffering. We need a TDM scheduler to create virtual
end-to-end circuits. The interconnect in the T-CREST platform is a time-
predictable TDM NoC. Time-predictability in the TDM NoC is enforced by a
static routing. In the following we define the routing terms.

A static routing is a mapping of communication channels to the TDM links
fulfilling the specification. This mapping is performed by a TDM scheduler.
The communication channels are specified by the application.

Definition 5.1 The communication channel from a to b is a collection of com-
munication paths which can route data from a to b.

The TDM scheduler finds a collection of communication paths that satisfy the
specification of the communication channels. The bandwidth of a communi-
cation channel is the number of communication paths in the communication
channel, divided by the schedule period.

Definition 5.2 A communication path from a to b, is a sequence of neighboring
links mapped to consecutive time slots. This sequence starts in a and ends in b.

A valid communication path is mapped to one of the shortest paths from a to
b. In regular topologies the length of a valid communication path is equal to
the Manhattan distance from a to b.

Definition 5.3 The schedule period is equal to the length of the complete
schedule in time slots. The complete schedule is a schedule that satisfies all
communication channels given in the application requirements.

The requirements to a schedule is specified in the XML input of the TDM sched-
uler. It is specified which communication channels the application needs and
the bandwidth for each communication channel. When the application devel-
oper needs a schedule for an application, the developer specifies the platform
topology and the communication channels in the XML input. There are two
types of schedules, there is the all-to-all schedule and the application specific
schedule.

5.3 All-to-all scheduling 35

5.3 All-to-all scheduling

An all-to-all schedule is a schedule where all processors in the network can com-
municate directly to all other processors in the network with equal bandwidth.
All-to-all schedules have advantages and disadvantages. It is an advantage that
the schedule is application independent, and there is only need to configure the
schedule once, and it can be implemented in hardware. For small networks the
latency of an all-to-all schedule is quite small, and it is more likely that all
processors need to communicate to all other processors. The all-to-all schedule
is ideal in systems where the communication pattern is very uniform between
all processors. It could also be an advantage to use the all-to-all schedule when
prototyping a system, as long as the developer is testing functionality and not
runtime requirements. An all-to-all scheduler is shown in [8], the advantage
of this approach is that the schedule for each router is the same, allowing for
resource sharing, and the generated all-to-all schedules are close to optimal in
terms of a short schedule period.

In large networks the number of processors each processor talks to is very de-
pendent on the application, therefore an all-to-all schedule might wast a consid-
erable amount of bandwidth. In systems with low latency requirements or high
bandwidth requirements, an application specific schedule should be calculated.

5.4 Application specific scheduling

An application specific schedule is a schedule where only processors that are
specified to communicate can communicate. Creating an application specific
schedule can lower the schedule period compared to an all-to-all schedule. The
lowered schedule period decreases the latency and increases the bandwidth.

In our tool chain we used the Static NoC TDM scheduler1 (SNTs)[19] to sched-
ule the communication channels described in the XML input. The SNTs is a
metaheuristic scheduler using adaptive large neighborhood search (ALNS)[20]
and greedy randomized adaptive search procedures (GRASP)[21] to optimize
the schedule period. The SNTs schedules the static routes in a time expanded
graph of the NoC topology. A scheduled communication path in a time ex-
panded graph of a 3 by 3 mesh is shown in Figure 5.1. The communication path
marked with yellow is routed from processor 0 to processor 5. Each consecutive
link of the routed communication path is routed in a consecutive time slot. The
metaheuristic optimization algorithms break down part of the initial solution

1The SNTs is open source and is publicly available at https://github.com/t-crest/SNTs.

https://github.com/t-crest/SNTs

36 TDM scheduler

Ti
m
e

0

51

2

8T0

0

51

2

8T1

0

51

2

4 8

733

6

T2

Figure 5.1: Time expanded graph of a 3 by 3 mesh topology, with a commu-
nication path routed from processor 0 to processor 5.

and rebuild it trying to make the new solution shorter than the initial. The
SNTs is designed to run for days, or as long as the application designer wants,
continuously trying to optimize the solution.

To integrate the scheduler into the tool chain, we have made the following
extension to the scheduler:

• Support of arbitrary bandwidths for any communication channel.

• Calculation of the WCL for all communication channels.

• XML formatted output of the calculated schedule and WCL.

The files we have added to the scheduler are the .cpp and .h files listed and
described in Appendix D. Support for arbitrary bandwidth is given, by allowing
multiple communication paths to be routed from source to destination of a com-
munication channel. The arbitrary bandwidth is specified in the input XML file.
The WCL time for a communication path of a given communication channel is
calculated when the scheduler is done. When the schedule has been created, the
scheduler goes through the schedule and counts the maximum space between
any two consecutive communication paths belonging the the same communica-
tion channel. The scheduler writes the schedule and WCL together into an XML
formated output file. The output from the scheduler is written to an XML file

5.5 Schedule converter 37

with the open source pugixml[22] library. The representation of the schedule in
the TDM scheduler is router centric. The schedule describes the configuration
of each router in each time slot, this description aligns with distributed routing.
A description that aligns with a source routing is a schedule describing the NI
and the flit routes from the NI, called an NI centric schedule. To avoid multiple
conversion back and forth between router centric and NI centric schedules the
schedule in the XML file is router centric.

5.5 Schedule converter

To keep the design modular, we have made a schedule converter that writes
the platform specific details of the schedule. The source files of the schedule
converter are the .java files in Appendix D. It converts the XML file into
the format that is supported by the JOP processor and the T-CREST NoC
platform. This conversion involves a conversion from a router centric schedule
to a NI centric schedule. The conversion is performed by following the outgoing
routes from each NI in each time slot. The static routing can be configured in
the NoC in two ways: compile time configuration and run time configuration.

Compile time configuration is done by configuring the schedule in hardware ta-
bles at compile time. Compile time configuration is normally used in FPGA
implementations. For compile time configuration we convert the schedule to
VHDL tables for each node in the network, connecting it directly to the re-
source it is controlling. Conversion to VHDL tables is integrated into the SNTs
scheduler. It prints out one VHDL entity containing a table for each router, the
tables are indexed with the node ID.

Run time configuration is done by configuring the schedule by programming it
from the processor at systems startup. For run time configuration we convert the
schedule to a static array of integers such that each processor indexes the array
with their processor ID and loads the contents of the array into the hardware
configuration tables. The conversion of the XML file to a static Java array is
done by a small Java program, which wraps the static array in a Table class
that also defines methods for loading and verifying the schedule.

5.6 WCET-aware compiler

To get good real-time performance the compiler needs to optimize the WCET
path in the control flow graph (CFG). Optimizing the WCET path, the compiler

38 TDM scheduler

knows the WCET path, thus the analysis and compilation could benefit from
being performed by one tool. To find the WCET path, the compiler needs to
make a pessimistic estimate of the run time of the given path. With more precise
models the estimate can be less pessimistic. The estimate of the WCET path
is found by assigning worst-case latencies to each instruction. The worst-case
latencies might vary with the state of the system. Routing the interprocessor
communication statically decouples this communication from the state of the
system, reducing it to the WCL and the bandwidth between the two communi-
cation processes. For many core systems such a reduction in the state space is a
great benefit and makes it possible to analyze the system. As an example, the
latencies of a memory access to the communication scratch pad vary depending
on the latency and bandwidth given by the scheduler. The latency does not
have to be constant even for the same instruction, it can vary with the system’s
state. The latency of transferring a message ML in the system can be calculated
as follows:

ML = WCL + MSGSize

ChannelBandwidth
(5.1)

Where WCL is the worst-case latency of waiting the a channel time slot, MSGSize
is the size of the message and the ChannelBandwidth is the bandwidth of the
channel to the message destination. In the case where the WCET is higher than
allowed the ML can be lowered by scheduling more communication paths for
the given communication channel or spread out the communication paths in the
schedule.

5.7 Discussion

In this section we suggest two improvements to the scheduler that could decrease
the latency of a communication channel in a schedule. If the bandwidth of a
communication channel needs to be increased, more communication channels are
routed. If the latency of a communication channel needs to be decreased, more
communication paths can be added, but adding more communication paths does
not guarantee this. If all the communication paths of a communication channel
are routed closely together, the latency of the communication channel is worse
than if the communication paths would be evenly distributed throughout the
schedule. The first improvement is to make the scheduler aware of the proximity
of other communication paths, when routing. A low latency channel could be
specified by a low latency tag in the XML file.

5.7 Discussion 39

The second improvement will decrease the latency of a complete transaction
through the network, the scheduler could be made to support reply messages.
A reply message is a message sent from a to b followed by a reply from b to a.
If we know the time separation of the first message arrival and the reply mes-
sage departure, called the response delay, we can schedule two communication
channels, such that only the departure of the first message needs to wait for
its time slot. When the reply message is ready for departure it gets its time
slot right away. This could be useful when slave components are accessed with
known response delays, especially for a single word reads where the WCL is the
largest contributer to the latency.

40 TDM scheduler

Chapter 6

Message passing interface

In this chapter we will create a message passing interface (MPI) for use with
our tool chain. We will discuss the communication primitives in communicating
sequential processes (CSP)[23] and Kahn process network (KPN)[24] and choose
which communication type to implement. We will describe the software for
transferring data from one processing core to another. This software takes care
of the low level, hardware specific details of data transfers.

6.1 Related work

For message passing in large computer systems, the MPI [25] standard has been
made. The MPI standard specifies an interface for sending and receiving mes-
sages in a large computer system without shared memory. The MPI standard
defines a set of operations for communication through message passing and run
time management of processes on massively parallel systems. An open source
implementation of the MPI standard is the Open MPI [26]. The MPI standard
is made for large computer systems made up of many computers connected to-
gether in a cluster. What we need for our tool chain at this point is a very
simple MPI with only the most basic communication primitives.

42 Message passing interface

6.2 Communication primitives

To design a correct and efficient parallel application the parallelism should be
considered from the early design phase. A specification of the application could
be written in a formal language that supports message passing natively, such
as CSP or KPN. Our hardware platform is designed to run one process on
one processor. This design feature comes from the fact that running multiple
processes on one processor will make the processes interfere, and the uncertainty
of this interference will increase the WCET. When mapping an application
onto the platform of this thesis, the application should be divided into different
processes, to utilize multiple processing cores. The number of processors to map
one application to, is determined by the timing requirements of the application
and the resources available to the application.

Processes in both KPNs and CSP communicate by passing messages between
each other. The CSP semantics implement synchronous message passing and
the KPN semantics implement asynchronous message passing. Synchronous
message passing is when the two processes synchronize when they exchange
a message. The two processes are connected directly. This means that the
sender and receiver returns from the execution of the send and receive function
calls at the same time. In asynchronous message passing the two processes are
connected by an infinite FIFO, meaning that the sender can send multiple mes-
sages without the receiver attempting to receive anything. Infinite FIFOs can
of course not be implemented and in practice the FIFOs are bounded in size.
Asynchronous message passing makes it possible to interleave calculation and
communication. Both synchronous and asynchronous message passing can be
implemented on top of each other. We chose the style of message passing with
the lowest implementation overhead. The hardware implements asynchronous
message passing with bounded FIFOs, so this is our choice. If needed, syn-
chronous message passing can be implemented on top of our MPI, but this
results in poor performance. The communication primitives we have chosen to
implement are:

Send() The Send() primitive sends the specified data to the specified recipient.
If the bounded FIFO towards the recipient is full the Send() primitive
blocks until there is room in the FIFO.

Receive() The Receive() primitive receives data from a specified sender. If
the bounded FIFO from the sender is empty the Receive() primitive
blocks until there is data in the FIFO.

RdySend() The RdySend() primitive is a way of avoiding blocking Send() calls.
The RdySend() primitive checks if there is room in the bounded FIFO

6.3 MPI in the T-CREST platform 43

towards the specified recipient. RdySend() returns true if there is room
in the FIFO and false if the FIFO is full.

RdyReceive() The RdyReceive() primitive can be used to avoid blocking Receive()
calls. The RdyReceive() primitive checks if there is data in the bounded
FIFO from the specified sender. RdyReceive() returns true if there is
data in the FIFO and false if it is empty.

6.3 MPI in the T-CREST platform

As the programming language in our tool chain is Java, and the programming
language in the T-CREST tool chain is C, we will only use basic Java for our
MPI, which can easily be ported to C. Many of the observations we make will
also be applicable in C. The source code for our MPI can be seen in Appendix E.
The Tables.java file is the static array written by the schedule converter. In
this embedded Java ported to JOP it is difficult to manage the location of vari-
ables and objects, this is a problem because the performance of message passing
depends on placing the data for communication locally. In this JOP multi-
processor system, Garbage collect was not available, which limits the memory
footprint and the run-time of the applications running on the system.

In the T-CREST platform, processors setup DMAs to transfer data from its
local scratch pad to other processors’ local scratch pad. The hardware platform
we use in our tool chain is limited because it has to copy data in and out of
the local scratch pad memory. Setting up a DMA requires a read pointer and a
write pointer. The sending and receiving processors of a DMA transfer has to
agree on the write pointer. One way of agreeing on the write pointer is to let
the receiver send the next write pointer to the sender, each time it is ready to
receive. Another way to agree is to layout the address space of which buffers
are placed where. Allocating buffers statically is easy to analyze for the WCET-
aware compiler, and it avoids the extra latency of sending new write pointers
back. The downside of allocating buffers statically, is that it might waste space
in the already limited local scratch pad if not all buffers are used.

6.3.1 Address space

The size of the local scratch pad of a single processor varies with the configura-
tion of the system. Therefore the systems should be designed not to depend on
a specific address space. Local scratch pad memory is very limited and accesses
to main memory is very time consuming because many cores need to share the

44 Message passing interface

Processor 0 buffers

Processor 1 buffers

Processor n-1 buffers

Processor N-1 buffers

Processor n+1 buffers

Processor N-2 buffers

⁞

⁞

Figure 6.1: The static DMA NI address space of the nth processor in a systems
with N processors.

R
X

Statu

s TX bufferRX buffer 1 RX buffer 2

TX

Statu
s

0 1 2 11 12 21 22 31

Figure 6.2: The address space in the local DMA NI of the buffers for one
processor.

same off-chip memory. This means that address space of the local scratch pad
should be compact. In this first version we support all-to-all communication by
having buffers for all cores in the network in each tile. The static address space
of the nth processor is shown in Figure 6.1

In a network with N nodes each NI has buffers for the N-1 other nodes. The
nodes are zero indexed. We need to know the addresses statically, and we need
to compact the address space. The buffers for the N − 1th node is positioned
in place of the local tile buffers. In this way all nodes can calculate their buffer
address in all other cores. The address space of the buffers for one processor is
shown in Figure 6.2.

The hardware does not support any way of signaling that a DMA transfer is
finished. To signal that a DMA transfer is done we wrap the data in a header
and a footer phit. The header phit carries the length of the complete DMA
transfer and the footer carries 0xFFFFFFFF. The size of the maximum data

6.3 MPI in the T-CREST platform 45

Listing 6.1: Pseudo code for the Send() primitive.
Send ()

2 whi le not RdySend () do
do nothing

4 od ;
copy message to mem

6 swap r e c e i v e b u f f e r
setup DMA

Listing 6.2: Pseudo code for the Receive() primitive.
1 Receive ()

whi l e not RdySend () do
3 do nothing

od ;
5 copy message from mem

swap r e c e i v e b u f f e r

message is 8 words (32 bytes).

6.3.2 Communication primitives

In this section we describe how the communication primitives are implemented.

Send() The Send() primitive, setup a DMA transfer to transmit the data to
the recipient. To send a packet we need to check that there is not a DMA
transfer in progress. If no DMA is in progress the message is copied into the
transmit buffer, and the buffer in the receiving end is swapped. To complete
the send operation we need to set up the DMA transfer. The pseudo code for
the Send() primitive is shown in Listing 6.1.

Receive() The Receive() primitive, waits until a DMA transfer has com-
pleted. When the transfer has completed, the message is copied out and the
receive buffer is swapped. The pseudo code for the Receive() primitive is shown
in Listing 6.2.

RdySend() The RdySend() primitive checks if the DMA is ready to setup. To
check the status of the DMA, the DMA done bit is read from the NI. The pseudo

46 Message passing interface

Listing 6.3: Pseudo code for the RdySend() primitive.
RdySend ()

2 read DMA done b i t
i f done b i t equa l s 1

4 r e turn true
f i ;

6 r e turn f a l s e

Listing 6.4: Pseudo code for the RdyReceive() primitive.
RdyReceive ()

2 read header
i f f o o t e r equa l s −1

4 r e turn true
f i ;

6 r e turn f a l s e

code for the RdySend() primitive is shown in Listing 6.3.

RdyReceive() The RdyReceive() primitive checks if a DMA transfer has com-
pleted. To check if a DMA transfer has completed we read the header for the
length of the transfer. We wait for the footer of the transfer to be 0xFFFFFFFF.
The pseudo code for the RdyReceive() primitive is shown in Listing 6.4.

6.4 Discussion

In this section we discuss possible improvements to our MPI.

6.4.1 Dynamic allocation of buffering space

To make better use of the scratch pad, dynamic allocation of the buffering space
can be applied. Then the first step in sending a message would be to allocate
a buffer of the size of the message. After the message was sent the buffering
space would then be freed. Allocating the message buffers to the local scratch
pad could be done using the first fit algorithm, starting from the lowest address
finding the first possible place to allocated the buffer. In real-time systems
dynamic behavior can make analysis more difficult, because the system’s state

6.4 Discussion 47

is more complicated. One way of modelling the state is to fix the maximum
message size and then only allocate buffers of this size. Then the compiler can
keep a worst-case count of the number of outstanding packets. The first prob-
lem with dynamic allocation is to determine who will free the allocated buffers.
The hardware is the last to use the transmit buffers, and the software is the
last to use the receive buffers. If the software is freeing the buffers, then it
needs to poll the transmit buffers to check if they are done. If the hardware is
freeing the buffers, the bookkeeping needs to be in the communication buffer,
which is already crowded. This will infer an unwanted overhead into the com-
munication primitives. The dynamic allocation still suffers from having to send
information about its receive buffers to the processors trying to transmit to it. A
compromise to avoid sending addresses of receive buffers back is to allocate the
receive buffers statically and the transmit buffers dynamically. This would also
simplify the analysis because the dynamic behavior is local and independent of
other processors.

6.4.2 Compiler optimizations

If the WCET-aware compiler can find the message sizes when it analyzes an ap-
plication, it can allocate both the static and dynamic buffers in the local scratch
pad, avoiding unused buffering space. The tool chain and programming model
should help the programmer to parallelize the applications. The WCET-aware
compiler should help the programmer by giving feedback. Such feedback could
be information on the load of the different processors helping the programmer
to load balance the application. In this first iteration, where we do not have a
compiler with these abilities we choose to implement the dumb all-to-all address
space and communication primitives.

48 Message passing interface

Chapter 7

Test

In this chapter we show how a Hello World program is implemented with our
tool chain, and show how the system could be benchmarked.

7.1 Hello World!

We will show how a Hello World program is taken through our tool chain and
finally implemented on the T-CREST NoC platform. Our Hello World program
sends a message through all processors in a ring. In Listing 7.1 we show a
piece of the source code for processor zero. The full source code can be seen
in Appendix F. Processor zero initializes the DMA NI by writing the static
tables. Then it initializes the other processors by setting a runnable. When the
other processors are started, processor zero starts by sending the message to the
processor with the highest ID. When the message reaches processor zero again
“Hello World!” is written to the console. The stringbuffer is a message queue
for the other processors for writing out their start messages.

Listing 7.2 shows the XML input for the TDM scheduler. In the XML file we
specify that the topology is a 3 by 3 bitorus and the communication pattern
of the application is all-to-all. For the Hello World application the actual com-
munication pattern is a ring. We will show application specific schedules in the

50 Test

Listing 7.1: Source code the the Hello World application.
Tables . load (0) ; // I n i t i a l i z a t i o n o f DMA NI

2 System . out . p r i n t l n (" Core 0 s t a r t e d ") ;
f o r (i n t i =0; i<sys . nrCpu−1; ++i) {

4 Runnable r = new HelloDMA(i +1) ;
Startup . setRunnable (r , i) ;

6 }
// s t a r t the other CPUs

8 sys . s i g n a l = 1 ;
i n t [] message = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;

10 i n t [] rmessage = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
NoC. send (message , sys . nrCpu −1 ,0) ;

12 f o r (; ;) {
i n t s i z e = msg . s i z e () ;

14 i f (s i z e !=0) {
S t r i n g B u f f e r sb = (S t r i n g B u f f e r) msg . remove (0) ;

16 System . out . p r i n t l n (sb) ;
}

18 i f (NoC. recvRdy (1 , 0)) {
NoC. recv (rmessage , 1 , 0) ;

20 f o r (i n t i = 0 ; i < message . l ength ; i++){
i f (message [i] != rmessage [i]) { System . e x i t (1) ; }

22 }
System . out . p r i n t l n (" He l lo World ! ") ;

24 }
}

7.2 Microbenchmarks 51

Listing 7.2: XML input for the Hello World application.
<?xml v e r s i o n=" 1 .0 " ?>

2 <topology width=" 3 " he ight=" 3 ">
<graph type=" b i t o r u s "></ graph>

4 </ topology>
<channe l s type=" a l l 2 a l l ">

6 </ channe l s>

Listing 7.3: Console output of the Hello World application running on the
hardware.

JOP s t a r t V 20110107
2 60 MHz, 2048 KB RAM, 9 CPUs

Core 0 s t a r t e d
4 Core 1 s t a r t e d

Core 2 s t a r t e d
6 Core 3 s t a r t e d

Core 4 s t a r t e d
8 Core 5 s t a r t e d

Core 6 s t a r t e d
10 Core 7 s t a r t e d

Core 8 s t a r t e d
12 Hel lo World !

following section. The application output to the console is shown in Listing 7.3.
First we see the JOP processor starting, then each processor in the network
starts. At last the message is passed around the network and “Hello World!” is
written to the console.

7.2 Microbenchmarks

To measure the performance of a system real applications should be used as
benchmarks. For our current tool chain we do not have any real applications,
so microbenchmarks are the only way of benchmarking the system. With the
current state of the T-CREST platform, microbenchmarks is a good way of
characterizing specific design features. Microbenchmarks are good for evaluating
different design alternatives, which is what the T-CREST project needs in its
current state. The NoC Benchmark by OCP-IP states that microbenchmarks[27,
sec. 2.3] for a NoC should benchmark:

• Packets and transactions

52 Test

• Unloaded and loaded cases

• Temporal and spatial distribution

• Best effort and guaranteed services

• Network size

Not all these benchmarks apply for our statically scheduled NoC. The latency
and bandwidth of communication channels are invariant of the communication
load in the network. Therefore it is also irrelevant to benchmark temporal
and spatial distributions of the traffic in the network. Also the system does
not provide best effort services. For our network it is only relevant to do mi-
crobenchmarks for packet transfers and complete transactions as a function of
the network size. Our FPGA only fit 9 JOP processors and the T-CREST NoC,
so varying the network size is not interesting.

In general purpose systems benchmarks are used to measure the performance
of the system. In real-time systems, where the performance is equal to the
calculated WCET, the benchmarks should be analyzed by the WCET-aware
compiler. In the current state of the T-CREST project, where we do not have a
WCET-aware compiler, we do the measurements in hardware. In our benchmark
we will measure the following operations:

Send() The time it takes to perform a send operation when there is room in
the transmit buffer.

Recv() The time it takes to perform a receive operation when there is a message
in the receive buffer.

Echo() The time from sending a message to another processor till a message
is received from the given processor.

Roundtrip() The time it takes to send a message through all processors in the
network.

The source code of the microbenchmark can be seen in Appendix F. In Figure 7.1
we show the execution time of the microbenchmarks as a function of the message
size. For echo and roundtrip we also show two interleaved operations. The
execution time of the interleaved roundtrip operation is around 6 percent larger
than the normal operation, sending twice the data around in the network. The
execution time of the interleaved echo operation is around 60 percent larger
than the normal operation, sending twice the data.

7.2 Microbenchmarks 53

0

100

200

300

400

500

600

700

800

900

4 8 12 16 20 24 28 32

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
ic

ro
se

co
n

d
s

Message size in bytes

Avg roundtrip

Avg interleaved
roundtrip
Avg echo time

Avg interleaved echo
time
Avg send time

Avg recv time

Figure 7.1: Measured execution time of the microbenchmarks as a function of
the message size with an all-to-all schedule.

To optimize the execution time of the microbenchmarks we make an appli-
cation specific schedule, and the XML file specifying this application specific
communication pattern can be seen in Listing 7.4. In the XML file only the
communication channels that are needed are specified. Using an application
specific schedule decreases the execution time slightly. A plot of the execution
times of the roundtrip benchmark and the echo benchmark, with and without
an application specific schedule, is shown in Figure 7.2. One reason why the
execution time with the application specific schedule is not a greater improve-
ment could be the size of the network. For small networks such as the 3 by 3 bi
directional torus, the all-to-all schedules have quite low latencies, and an appli-
cation specific schedule can not improve the run time by an order of magnitude.
The application specific schedule will result in larger improvements for larger
networks. Since the design is optimized for WCET we expect to see a larger
improvement when the benchmarks are analyzed.

Another reason could be that the execution time of the benchmarks is dominated
by processor I/O. We have measures the execution time of a single read from
the local scratch pad memory to be 28 clock cycles. With a schedule period of
10 or less these I/O capabilities suppress the significance of the NoC delay.

54 Test

Listing 7.4: XML bandwidth specification for the microbenchmark.
<? xmlvers ion=" 1 .0 " encoding="UTF−8" ?>

2 <topology width=" 3 " he ight=" 3 ">
<graph type=" b i t o r u s "></ graph>

4 </ topology>
<channe l s type=" a r b i t r a r y ">

6 <channel from=" (0 , 0) " to=" (2 , 2) " bandwidth=" 1 " />
<channel from=" (0 , 0) " to=" (1 , 1) " bandwidth=" 1 " />

8 <channel from=" (0 , 0) " to=" (0 , 1) " bandwidth=" 1 " />
<channel from=" (0 , 0) " to=" (2 , 0) " bandwidth=" 1 " />

10 <channel from=" (0 , 0) " to=" (1 , 0) " bandwidth=" 1 " />
<channel from=" (1 , 0) " to=" (0 , 0) " bandwidth=" 1 " />

12 <channel from=" (2 , 0) " to=" (1 , 0) " bandwidth=" 1 " />
<channel from=" (2 , 0) " to=" (0 , 0) " bandwidth=" 1 " />

14 <channel from=" (0 , 1) " to=" (2 , 0) " bandwidth=" 1 " />
<channel from=" (0 , 1) " to=" (0 , 0) " bandwidth=" 1 " />

16 <channel from=" (1 , 1) " to=" (0 , 1) " bandwidth=" 1 " />
<channel from=" (1 , 1) " to=" (0 , 0) " bandwidth=" 1 " />

18 <channel from=" (2 , 1) " to=" (1 , 1) " bandwidth=" 1 " />
<channel from=" (0 , 2) " to=" (2 , 1) " bandwidth=" 1 " />

20 <channel from=" (1 , 2) " to=" (0 , 2) " bandwidth=" 1 " />
<channel from=" (2 , 2) " to=" (1 , 2) " bandwidth=" 1 " />

22 </ channe l s>

7.2 Microbenchmarks 55

0

100

200

300

400

500

600

700

800

900

4 8 12 16 20 24 28 32

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
ic

ro
se

co
n

d
s

Message size in bytes

Avg roundtrip

Avg echo time

Avg roundtrip w/ APS

Avg echo time w/ APS

Figure 7.2: Measured execution time of a message round trip, with all-to-all
and application specific schedules (APS).

56 Test

Chapter 8

Conclusion

In this chapter we conclude the work carried out in this thesis. First we summa-
rize our findings and describe the contributions of the thesis. Finally we point
to future areas of work.

8.1 Summary of findings

In this thesis we have presented our tool chain for programming a real-time
multi-processor platform. This tool chain is very similar to how we imagine the
final T-CREST tool chain. Our tool chain is ready for integration in the full
T-CREST platform.

We used our tool chain to implement the first application sending messages
around between processors with the T-CREST NoC platform in an FPGA.
During the work of integrating the hardware platform into the tool chain, we
have identified limitations and suggested how they can be removed. The current
platform is limited by low run-time configurability, no optimization of WCL
and static buffer allocation in the MPI. We have changed the interface of the
TDM scheduler to be compatible with our tool chain. We have implemented a
Kahn process network style message passing interface in Java to communicate
asynchronously between processors.

58 Conclusion

We have also tested our tool chain by implementing a “Hello World” program
using 9 processors to send one message around. Another test was to implement
a few microbenchmarks and measuring their execution time. The benchmarks
shows that the tool chain is ready to help the developers of the T-CREST project
to evaluate their components.

8.2 Project contribution

The contribution bullets from the introduction are elaborated in the following
bullets in a one to one correspondence.

• We have defined the file format of the interfaces in the block diagram for
both the tool chains. We have presented the structure and tags of the
XML files.

• We have implemented a minimalistic time-predictable NoC platform that
is published in [1].

• We have integrated the the T-CREST NoC platform and the JOP proces-
sor to one hardware platform that can be programmed by our tool chain.

• We have shown that distributed routing is more efficient than source rout-
ing in terms of storage bits for larger networks. In networks of 36 nodes
or larger, we have shown that distributed routing is a better trade-off,
because bandwidth is higher, hardware is simpler, and the storage bits are
about the same or less.

• Working with the T-CREST NoC platform we have suggested to extend
the hardware by making it more configurable in run-time. We proposed
to move the routes in the DMA table to the slot table, and to make a
programmable reset of the slot counter. These extensions will make the
hardware more flexible and enable better utilization of the hardware.

• We have changed the scheduler to support arbitrary bandwidths for com-
munication channels, calculate the WCL and output schedule and latency
information to the WCET-aware compiler in XML format. To configure
the network interfaces we convert the schedule into a static array, which
is loaded into the network adapters at run-time. This approach can be
extended to enable loading of a new schedule at run-time, if the mode of
operation changes.

• To reduce the WCL we propose to make the scheduler aware of the location
of other paths in the same communication channel when scheduling a path.

8.3 Future work 59

When the scheduler knows the path locations it can spread out the paths
minimizing the the WCL for the given bandwidth.

• We have implemented a message passing interface using statically allo-
cated buffers. These statically allocated buffers can be made more efficient
with the suggested compiler support. The MPI implements asynchronous
message passing with bounded buffers.

• We have proposed to change the MPI to use dynamic allocation of transmit
buffers and static allocation of receive buffers.

• We have implemented a Hello World program on the T-CREST NoC plat-
form using our tool chain. We have made microbenchmarks to enable
evaluation of design features for the developers of the T-CREST platform.

8.3 Future work

The T-CREST NoC platform should be updated with the suggested improve-
ments, to increase the flexibility of the platform. A version of the T-CREST
platform using compressed distributed routing should be investigated. Our re-
sults indicate that the resource consumption should decrease and the bandwidth
should increase. Also the hardware complexity of the router should decrease to
something similar to the router of the S4NoC platform. When the T-CREST
WCET-aware compiler and the Patmos processor are stable, they should be
integrated into the T-CREST tool chain.

60 Conclusion

Appendix A

S4NoC paper

Our published paper about the S4NoC is attached in the following pages of this
appendix.

A Light-Weight Statically Scheduled
Network-on-Chip

Rasmus Bo Sørensen, Martin Schoeberl, Jens Sparsø
Department of Informatics and Mathematical Modeling

Technical University of Denmark
Email: rasmus@rbscloud.dk, masca@imm.dtu.dk, jsp@imm.dtu.dk

Abstract—This paper investigates how a light-weight, statically
scheduled network-on-chip (NoC) for real-time systems can be
designed and implemented. The NoC provides communication
channels between all cores with equal bandwidth and latency. The
design is FPGA-friendly and consumes a minimum of resources.
We implemented a 64 core 16-bit multiprocessor connected with
the proposed NoC in a low-cost FPGA.

I. INTRODUCTION

For chip-multiprocessor (CMP) systems used in real-time
systems we need time-predictable processors, memories, and
communication channels. For on-chip core-to-core communi-
cation, a network-on-chip (NoC) is a scalable solution. In order
to build a time-predictable CMP, the NoC is time-division-
multiplexed (TDM). The NoC uses a static schedule; tables
implementing this schedule are stored in each router and each
network adapter. We use a schedule that provides all-to-all
communication between all nodes, as depicted conceptually
in Figure I.

In [11] we have shown that a router for a statically scheduled
NoC is very small. In this paper we explore the full design,
containing a processor, the network adapter, and the router.
We explore how small this system can be and still represent
a usable architecture. In other words we aim at a many-core
architecture in a medium size FPGA. With our size-optimized
processor Leros [10], which can be implemented in about
190 logic cells (LC), we set a very low bar for a NoC. One
expects that the communication infrastructure is smaller than
the processing node.

One TDM based router and one minimalistic network
adapter consumes 665 LCs and 2 on-chip memory blocks
for an 8x8 bi-torus configuration. Therefore, we were able to
synthesize and run a 8x8 CMP system, containing 64 proces-
sors, network adapters, and routers, in the low-cost Cyclone II
FPGA EP2C70 on the DE2-70 board. The contributions of the
paper are:

• The design of a minimal network adapter for a TDM
based NoC

• A 64 core CMP, running a simple test application
• Providing the NoC in open-source form
The paper is organized as follows: The following section

presents related work in the area of real-time NoCs. Section III
presents the design of the TDM scheduled network-on-chip.
A minimal network adapter is described in Section IV. The
simple implementation of the system is presented in Section V.

µP

µ
P

µPµP

µP
µP

µP

µ
P

Fig. 1. A conceptual interconnect providing all-to-all connection between
micro processors (µP).

An alternative implementation of the system is described
in Section VI. We present our results in Section VII. In
Section VIII we discuss the strengths and weaknesses of the
design. The paper is concluded in Section IX.

II. RELATED WORK

Æthereal [4] uses TDM, i.e., reserves resources for certain
points in time. In each time slot a block of data is forwarded
through a router without waiting or blocking traffic, hence,
contention cannot occur. Slot tables with routing information
are contained in the routers and no arbitration or link-to-
link flow control is required. Instead, a credit-based flow
control is applied for end-to-end control, saving buffer space
between links. Guaranteed services are combined with best
effort routing in order to utilize unreserved resources. aelite,
a light version of Æthereal, only offers guaranteed services
resulting in a simpler router design [5]. Slot tables are placed
in the network adapter and routing is done through message
headers. In the latest version of aelite, called dAElite [12], the
static routing tables are back in the routers to support multicast
routing.

SoCBUS [13] and the NoC presented in [14] use a circuit-
switching NoC, i.e., no resources, such as wires and router
buffers, are shared between connections. This lowers utiliza-
tion and increases costs. However, once a connection has been
established, real-time guarantees are trivially achieved. It is,
however, possible that a requested connection cannot be set

(a)

R R

R R

Processor

IM DM

Network Adapter

(b)

⁞

Slot table

Slot table

Slot table

(c)

Fig. 2. The network architecture: (a) the bidirectional torus topology, (b) a node/tile, and (c) the router.

up due to lack of resources (links) – this may compromise the
real-time properties.

MANGO [1] is an asynchronous NoC, which supports both
guaranteed service (GS) and best effort (BE) traffic, by using
non-blocking routers and rate control. A non-blocking router
requires a separate physical buffer for each virtual circuit, an
elaborate arbitration mechanism for each router output port,
and a credit-based flow control mechanism among output
buffers in neighboring routers. This indicates a considerable
hardware cost of the rate-controlled routers.

A time-triggered NoC (TT-NoC) applies the concepts of
the time-triggered architecture (TTA) [6] to NoCs [9]. The
TT-NoC consists of a ring structure and is therefore only
intended for a small number of IP-cores. As the ring is
built out of simple multiplexers and registers, it is clocked
at double the frequency of the computation nodes. Similar to
our presented design, the communication schedule is static and
predetermined.

Paukovits and Kopetz use a time-triggered NoC for the
time-triggered system-on-chip (TTSoC) architecture [7]. The
messages use wormhole routing and the TDM slotting is based
on complete message transmissions. The TTSoC is topology
agnostic. The prototype uses an uncommon version of a
mesh topology: a 3x2 mesh supporting 10 computation nodes.
Therefore, the corner routers are connected to two computation
nodes. Our design shares the idea of static scheduling based on
TDM. However, we base our schedule on the finer granular
network clock and take pipeline effects into account in the
network.

III. A STATICALLY SCHEDULED NOC

In [11] we presented the idea of a statically scheduled TDM-
based NoC, called S4NoC, that provides all-to-all communica-
tion in regular topologies (e.g., mesh, torus, bi-torus, tree). We
presented results on the minimum period of a schedule that
provides all-to-all communication and derived first resource

estimates for the routers. All-to-all communication schedules,
which are only 15% to 20% longer than theoretical lower
bounds, can be calculated with a heuristics [2].

In this paper we design a simple network adapter to go
along with the simple router and we implement the whole
system. The network adapter has to do some bookkeeping and
buffering of data and thus the design will be more complex
than that of the router. We still aim to keep the design as
simple as possible.

A router for the NoC is very simple, which is one of the
motivations for using a statically scheduled TDM-based NoC.
For a mesh or a bi-torus a router has 5 bi-directional ports
(north, east, south, west, local) and each output port is a
pipeline stage consisting of a register with a 4-to-1 multiplexer
on its input (in and out of the same port is not allowed).
The multiplexers are controlled by schedule tables indexed
by a slot counter. This avoids the need to transmit address
information with the packet. Without the pressure to amortize
for the header overhead we can use arbitrary short packets.
Therefore, we transmit and schedule single words as packets,
which helps to keep the schedule period short and the latency
moderate.

For the evaluation described in the following sections we
assume a bi-torus topology, as shown in Figure 2(a). Each
node consists of a processor with local instruction and data
memories, a network adapter, and a router, as shown in Fig-
ure 2(b). The processors execute from their local memories and
communicate by sending messages across the network. The
NoC provides (virtual) channels, all with the same bandwidth,
allowing a processor to send messages to and receive messages
from all other processors. For simplicity we restrict to single
word messages, and by using the same width of the links and
routers in the NoC we get a simple design, as illustrated in
Figure 2(c), where a message traverses a router in one clock
cycle.

The router is obviously very simple (i.e. small and fast) and

Tx Buffer

Tx/Rx status
registers

Rx Buffer

Slot Table
Counter

Control Logic

R
o

u
te

r
P

ro
cesso

r

Block RAM

Fig. 3. A tile including the Leros processor, the network adapter with receive, transmit, and status registers, the interface to the router, and the router.

the sizes of different processors targeting FPGA implementa-
tions are also quite well known. The third and last component
in a tile is the network adapter. Despite our aim for simplicity
its function is non-trivial, and its size and speed is difficult
to assess. This is one of the main reasons for the design
experiment reported in this paper – to get reliable speed and
area figures and to gain insight in the design of this critical
component.

The network adapter’s interface towards the processor is
similar to a memory mapped IO-device, and it offers input
and output registers corresponding to all the incoming and
outgoing (virtual) channels connecting it to all the other
processors. The design is described in more detail in the
following.

IV. THE NETWORK ADAPTER

The basic functionality of a minimalistic network adapter
(NA) is to present an interface to the processing core, which
enables the processor to access communication channels to
other cores efficiently. The processing core should not be con-
cerned with managing time slots. To fully utilize the network,
there are the following requirements to the minimalistic NA:

• Provide an interface to view the status of all channels to
the processor

• Send and receive single data words to and from the
network in line with the TDM mindset to all other cores
in the system

• The NA must be able to transmit and receive data in all
consecutive time slots

To synchronize the sending and receiving of flits (transmit-
ted logical words) to the router, the NA uses a time slot table.
The time slot table is generated from the static schedule of
the size and topology of the desired system. The time slot
table in a NA, maps a given time slot to a source and a
destination address. These addresses are the ID of the receiving

or transmitting processing core, thus the time slot tables are
different for all NAs. The time slot table is driven by a counter
in the NA.

The block diagram of the NA is shown in Figure 3. The
processor can write to the transmit (Tx) buffer, or read from
either the receive (Rx) buffer or the status registers. The status
registers shows the status of each register in the Tx or Rx
channels, i.e., if the Tx register is ready to receive or if the
Rx register is ready to be read out.

The interface to the processor is an address space, where
each communication channel is mapped to one address and
status registers are mapped to several registers depending on
the number of cores in the network. In each of the two status
registers, each bit represents a communication channel to one
other core in the system. Maximizing the utilization of the
given hardware, the static schedule is made such that the NA
can both send and receive flits in each time slot.

In this simple NA not much control is needed. The task of
the control logic is to set and reset bits in the status registers
when flits are received and transmitted. The task of controlling
each bit of the status registers individually is not complicated,
but an increasing number of bits lead to an increasing amount
of control logic. To set and reset each bit of the status registers
efficiently the status registers should be implemented in flip-
flops.

V. IMPLEMENTATION

In this first simple implementation the whole system resides
in one global clock domain. Our design is technology agnostic,
but in this section the implementation decisions are related to
the Cyclone II FPGA we have used for testing.

Processor Interface: On the processor side of the network
adapter, the processor needs the ability to read out the status
of the communication channels and to read or write data
to the individual communication channels. The data to the

communication channels are written or read directly to/from
the block RAM. Because the address on the block RAM
is registered there is a one cycle delay on a read form the
communication buffer. The simple way of solving this problem
is to require that when the processor wants to read data, the
same read instruction should be executed twice. When the
status registers are read there is a multiplexer for selecting
which part of the status register to select. In a design where
a read from the NA would be limiting the clock frequency
of the processor, the NA could implement indirect addressing.
For indirect addressing the processor writes the address of a
request into an address register and in the following clock
cycle the data on that address can be accessed. Indirect
addressing will cut the processor I/O bandwidth in half, but
the clock frequency of the system could increase.

Communication Buffer: In this simple implementation
we use one dual ported block RAM for each communication
buffer. A block RAM in a Cyclone II FPGA is 4 KBit. Using
the block RAMs as buffers, one port is only used for writing
and the other port only used for reading. Our system supports
all-to-all communication and each communication channel
requires two 16-bit words of storage in the NA. The two
RAM blocks will support systems of up to 16x16 nodes. In the
Cyclone II FPGA the RAM blocks will not be fully utilized.
In systems where block RAMs can be instantiated with a finer
granularity the resource consumption can be decreased. In an
ASIC design the utilization can be made to 100 %.

Control Logic: Our implementation of the described
design is not tuned for any specific number of processing
cores. The circuitry for selecting and updating the status
registers are (Number of cores)-to-1 multiplexers, and 1-to-
(Number of cores) decoders. Updating the status registers can
be limiting the clock frequency for a sufficient number of cores
in the system. When instantiating a system of a specific size,
the control logic can be pipelined, if the desired frequency
is not obtained. This pipelining results in a longer latency
for status register updates, both for setting and resetting, the
software should be aware of this longer latency.

VI. ALTERNATIVE DOUBLE-CLOCK IMPLEMENTATION

The routers are simple: just registers connected with 4:1
multiplexers. Therefore, those can be run at a higher frequency
than a processor. If we use a second clock, synchronous to
the main clock and double the frequency, we can time share
the router. Thus reducing the size of the router by 50%. The
block RAM usually can also run at a higher frequency (e.g.,
at up to 250 MHz in the Cyclone II device). Therefore, it can
also use the double-frequency clock. Then we need only one
block RAM for both communication buffers. The block RAM
consumption for an FPGA implementation can be reduced for
all NoC sizes up to 11x11.

Running the network at a higher frequency requires the NA
to split a single flit into two phits. An extra pipeline stage is
needed to align phits (physically transmitted words) to flits in a
TDM time slot. The processors in the dual clock design all run
in the primary clock domain. The network i.e., the routers and

TABLE I
RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF ONE NETWORK

ADAPTER (NA) AND ONE ROUTER (R) IMPLEMENTED IN A CYCLONE II
(EP2C70) FPGA. THE NUMBERS INCLUDE THE TDM TIME SLOT TABLES.

Cores 16 25 36 49 64
LUT 278 383 484 517 665
Reg 145 171 186 197 217
RAM (KBits) 1 1 2 2 4
Freq. (MHz) 106.6 106.7 104.3 106.0 104.8

part of the NAs run in the double-clock domain. As the clocks
are synchronous there is no real clock domain crossing needed.
Only the back-end of the NA needs to handle the splitting and
merging of phits between the two clock domains. The block
RAM is using the double clock to double the number of ports.

If both sides of the block RAM are clocked with the network
clock, the NA can return the value of a read to the processor
in the same clock cycle as the read is made, thus the need to
execute the read instruction twice is eliminated. Furthermore
the NA can be made to support simultaneously read/write from
the processor, which is supported in the processor interface
but not in the Leros Processor. Implementing the Tx and Rx
buffers in one block RAM requires three ports to the block
RAM. One read/write port for the processor interface, one read
port for the Tx channel on the network side of the block RAM
and one write port for the Rx channel on the network side of
the block RAM. The NA buffers the phits of a flit until the
entire flit is sent or received. A flit can be read from the Tx
buffer in every even clock cycle and a flit can be written to
the Rx buffer in every odd clock cycle.

Additional complexity is added to the NA when the data
width of the router is cut in half. The reduction in data width
calls for serialization in the NA, taking more area. Also the
multipumped block RAM increases complexity, multiplexing
the Rx and Tx data through the same port on the block RAM.
A not so obvious source of added complexity is the control
logic. If the large multiplexers for selecting the status bit to
update are clocked on the fast clock, they may need pipelining.

VII. RESULTS

To obtain results for resource consumption and maximum
frequency we have used Quartus II 12.0 to compile and
synthesize the design. We have also tested the implementation
in our Cyclone II FPGA with a small program sending mes-
sages between all cores and when all messages are received a
message is written to the UART connected to core zero. The
test program is written in assembler for a 16-core system, but
can easily be extended to 64 cores.

The resources shown on Table I are for one tile except
the processor itself for the different network sizes that fits in
our Cyclone II FPGA. The resource consumption is shown in
lookup tables (LUT), registers (Reg), and memory bits (RAM).
Along the resource consumption we also show the maximum
frequency that the components can operate at. The numbers
include the TDM time slot tables in the router and the network
adapter.

TABLE II
RESOURCE CONSUMPTION AND SCHEDULE PERIOD OF THE TDM TIME

SLOT TABLES FOR THE NETWORK ADAPTER (NA) AND THE ROUTER (R).

Cores 9 16 25 36 49 64 81
Period (clocks) 10 19 27 42 58 87 113
NA (LUT) 6 12 23 39 46 71 96
R (LUT) 12 28 38 63 78 127 173

TABLE III
A RELATIVE COMPARISON BETWEEN THE SINGLE CLOCKED AND THE

DUAL CLOCKED IMPLEMENTATIONS.

Cores LUT Reg RAM Freq.
16 1.18 1.48 0.50 0.97
64 1.44 1.91 0.50 0.74

The resource consumption of the different entities of the
system differs from core to core. The numbers in Table I
are from the entities of core zero (upper left corner) for
the given network size. Core zero is usually the largest
entity, but it can differ from the different network sizes. The
resource consumption of tiles is not uniform throughout the
implemented systems.

The major reasons for the increase in the resource con-
sumption on one network adapter and a router as the number
of cores in the system grows are:

1) Bookkeeping of the status bits in the NA, increases both
Reg and LUT count

2) The size of the routing tables grows, increases the LUT
count

3) Buffering more data channels, increase the RAM size
The frequency appears to be close to constant for the

network sizes we have synthesized, with small fluctuations
from run to run of the synthesis. We expect the frequency to
decrease when the systems size grows larger than what we
have experimented with, because of the increase in bookkeep-
ing. To avoid the frequency slowdown for larger systems the
bookkeeping mechanism can be pipelined.

In Table II we present numbers for the resource consump-
tion of the slot tables located in the routers and network
adapters along with the period of the TDM schedule. The
number of lookup tables increase proportional to the period
of the TDM schedules. The numbers for these slot tables are
not specific to our implementation of the network adapter, but
more general for these types of TDM schedules.

In Table III we show the relative size of the double-clock
design compared to the single clock design. The dual-clocked
design was intended to be smaller as the router multiplexers
are only half the size. However, only the RAM consumption
is lower due to double clocking. The logic consumes more
resources. The additional circuit in the NA for the packing
and unpacking offset the reduction in the routers.

Furthermore there is also a relative decrease in frequency
when using the double-clocked implementation. The disadvan-
tages of the double-clocked implementation increase as the
system size grows. On top the complexity of the dual clocked
network is higher, thus making it more complicated to debug

and harder to maintain.
Therefore, the double clocking of the network structure

proves not to be beneficial. However, the double clocking
of the communication memory reduced the number of block
RAMs to a single one. Therefore, one design point can be a
single clock per packet NoC and NA, but double-clock the
block RAM.

VIII. DISCUSSION

In Section VI we have described an alternative imple-
mentation with double clocked routers. However, the results
presented in Section VII show a higher resource consumption
for this alternative. This is another indication that simplicity
often wins, as the simple NA implementation was the smallest
and fastest.

With higher number of nodes, the resource consumption
of the routing tables increases per node. However, it has to
be noted that the router tables start very small and therefore
the increase is moderate. A complete NA and router with the
routing tables for a 64-core system is still just 665 LCs.

If one would even like to reduce this size further, an
application specific schedule can be used, i.e., a schedule
where not all cores can communicate to all other cores. An
application specific schedule can reduce the period length of
the slot table schedule and thereby the resource consumption.
It will also reduce the latency due to the shorter period.

An application specific schedule requires reconfigurable
hardware. However, this extra hardware complexity could
reduce the benefit of application specific schedule. In the
natively reconfigurable hardware of an FPGA the application
specific schedule can be part of the FPGA configuration and
therefore be quite efficient. No programming of the schedule
during runtime is needed.

The scheduler presented in [8] is capable of making such
application specific schedules. These schedules have been
tested on the implementation of our NoC.

As our target is to explore many-core architectures in
medium sized FPGAs, we decided to use a small micropro-
cessor, Leros [10], as the processing node. Leros is a 16-bit
processor intended for small applications and utility functions
similar to Xilinx’s PicoBlaze [15]. Leros is an accumulator
machine and uses on-chip memory for instructions and data.
The data memory also contains a register file, i.e., the first 256
data locations can be directly addressed. Leros implements a
two-stage pipeline and can be clocked faster than 100 MHz
in Cyclone and Spartan devices.

Tiny microprocessors, like Leros, are usually programmed
in assembler. Leros also comes with an assembler. However,
to provide a higher level programming language, the muvium
Java system has been adaped for Leros [3]. Muvium compiles
Java class files into Leros assembler. The Java supported
by Muvium/Leros is a very restricted subset. However, it is
enough to write test and example programs for the presented
NoC configuration.

IX. CONCLUSION

This paper presents a network-on-chip for real-time systems.
The communication is scheduled statically in a time-division-
multiplexed manner. This static schedule provides all-to-all
communication for the chip-multiprocessor system. The result-
ing router is quite small and calls for an efficient implemen-
tation of the network adapter. The presented network adapter
provides one word of buffer for each transmit and receive
channel. By time-multiplexing a single on-chip memory it can
be used to buffer input and output channels, even with one
receive and one transmit word per clock cycle.

The presented network adapter is small and therefore is a
good fit for the small and simple router. With a tiny processor
we where able to build a 64-core system connected via a
bidirectional torus network-on-chip in a medium sized FPGA
from the low-cost series Altera Cyclone-II.

Acknowledgment

We would like to thank James Caska for his support on
the Java bytecode compiler muvium for Leros. Furthermore,
we thank Florian Brandner, who has helped us with the
schedule generation for the router and NA tables. This work
was partially funded under the European Union’s 7th Frame-
work Programme under grant agreement no. 288008: Time-
predictable Multi-Core Architecture for Embedded Systems
(T-CREST).

Source Access

We provide the VHDL code of the NoC and Leros in open
source. The design is vendor agnostic; only the Makefile has
this board as default target. The default target of our design
is the Altera DE2-70 board. The source can be found at

https://github.com/t-crest/s4noc
The source can be downloaded via a zip file or with git

git clone git://github.com/t-crest/s4noc.git

With a DE2-70 board attached, the whole design can be
built and downloaded with a simple:

cd s4noc
make

See the Makefile for different build options. The build
process on a Windows PC needs Altera Quartus, a Java
compiler for the Leros application compilation, and a Cygwin
environment for the make and git command.

REFERENCES

[1] T. Bjerregaard and J. Sparsø. A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-
Chip. In date, pages 1226–1231. IEEE Computer Society Press, 2005.

[2] Florian Brandner and Martin Schoeberl. Static routing in symmetric
real-time network-on-chips. In Proceedings of the 20th International
Conference on Real-Time and Network Systems (RTNS 2012), Pont a
Mousson, France, November 2012.

[3] James Caska and Martin Schoeberl. Java dust: How small can embedded
Java be? In Proceedings of the 9th International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES 2011), York,
UK, Spetember 2011. ACM.

[4] Kees Goossens and Andreas Hansson. The AEthereal network on chip
after ten years: Goals, evolution, lessons, and future. In Proceedings of
the 47th ACM/IEEE Design Automation Conference (DAC 2010), pages
306 –311, 2010.

[5] Andreas Hansson, Mahesh Subburaman, and Kees Goossens. aelite:
a flit-synchronous network on chip with composable and predictable
services. In Proceedings of the Conference on Design, Automation and
Test in Europe (DATE 2009), pages 250–255, Leuven, Belgium, 2009.

[6] Hermann Kopetz and Günther Bauer. The time-triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[7] C. Paukovits and H. Kopetz. Concepts of switching in the time-triggered
network-on-chip. In Proceedings of the 14th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2008), pages 120 –129, August 2008.

[8] Mark Ruvald Pedersen, Jaspur Højgaard, and Rasmus Bo Sørensen.
Scheduling in a real-time network-on-chip. Technical report,
https://github.com/t-crest/SNTs, 2012.

[9] Martin Schoeberl. A time-triggered network-on-chip. In International
Conference on Field-Programmable Logic and its Applications (FPL
2007), pages 377–382, Amsterdam, Netherlands, August 2007. IEEE.

[10] Martin Schoeberl. Leros: A tiny microcontroller for FPGAs. In Pro-
ceedings of the 21st International Conference on Field Programmable
Logic and Applications (FPL 2011), Chania, Crete, Greece, September
2011. IEEE Computer Society.

[11] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kas-
apaki. A statically scheduled time-division-multiplexed network-on-chip
for real-time systems. In Proceedings of the 6th International Symposium
on Networks-on-Chip (NOCS), Lyngby, Denmark, May 2012. IEEE.

[12] Radu Stefan, Anca Molnos, Angelo Ambrose, and Kees Goossens. A
TDM NoC supporting QoS, multicast, and fast connection set-up. In
Proceedings of the Design, Automation and Test in Europe Conference
(DATE 2012), 2012.

[13] Daniel Wiklund and Dake Liu. SoCBUS: Switched network on chip
for hard real time embedded systems. In International Parallel and
Distributed Processing Symposium (IPDPS’03), page 78a, Los Alamitos,
CA, USA, 2003. IEEE Computer Society.

[14] Pascal T. Wolkotte, Gerard J.M. Smit, Gerard K. Rauwerda, and L. T.
Smit. An energy-efficient reconfigurable circuit switched network-on-
chip. In Proc. Int’l Parallel and Distributed Processing Symposium
(IPDPS), April 2005.

[15] Xilinx. PicoBlaze 8-bit embedded microcontroller user guide, 2010.

68 S4NoC paper

Appendix B

T-CREST NoC source code

This appendix contains the following files:

sc2ocp_noc.vhd is the a wrapper for the whole T-CREST NoC platform.
The wrapper converts from an OCP interface on the NoC to an SimpCon
interface on the JOP, the file starts on page 70

tb_sc2ocp.vhd is a testbench for the the T-CREST NoC wrapper. The test-
bench test the different parts of the T-CREST NoC address space, the file
starts on page 72

test.vhd is a package with procedures for the testbench, the file starts on
page 75

noc_node.vhd this file comes from the T-CREST NoC platform, the file de-
scribes a scratch pad and a network interface. The modifications we have
made to this file were to merge the port to the scratch pad and the port to
the network interface and add address decoding. The file starts on page 76

nAdapter.vhd this file comes from the T-CREST NoC platform, the file de-
scribes the network interface. The modifications we have made to this
file were changes to the address decoding and the command types for the
OCP interface. The file starts on page 81

70 T-CREST NoC source code

Listing B.1: sc2ocp_noc.vhd
l i b r a r y i e e e ;

2 use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

4 use work . d e f s . a l l ;
use work . sc_pack . a l l ;

6

8 e n t i t y sc2ocp_noc i s

10 port (
c l k : in s td_log i c ;

12 r e s e t : in s td_log i c ;

14 sc_noc_out : in sc_out_array_type (0 to (N∗N) −1) ;
sc_noc_in : out sc_in_array_type (0 to (N∗N) −1)

16

) ;
18

end sc2ocp_noc ;
20

a r c h i t e c t u r e s t r u c t o f sc2ocp_noc i s
22 −− NoC s i g n a l s

s i g n a l procM : procMasters ;
24 s i g n a l procS : procS laves ;

−− SimpCon s i g n a l s
26 s i g n a l sc_noc_out_reg , sc_noc_out_next : sc_out_array_type (0

to (N∗N) −1) ;
s i g n a l sc_noc_in_reg , sc_noc_in_next : sc_in_array_type (0 to (

N∗N) −1) ;
28

begin
30

noc : e n t i t y work . noc
32 port map(

p_clk => clk ,
34 n_clk => clk ,

r e s e t => r e s e t ,
36 p_ports_in => procM ,

p_ports_out => procS
38) ;

sc_noc_in <= sc_noc_in_reg ;
40 −−

−−

−− Connecting the Noc the the p r o c e s s o r s
42 −−

−−

44 p r o c e s s (sc_noc_out_reg , sc_noc_in_reg , sc_noc_out , procS)
begin

46 NoC2Proc : f o r i in 0 to N−1 loop
innerNoC2Proc : f o r j in 0 to N−1 loop

71

48

procM (i) (j) .MCmd <= (sc_noc_out_reg (i ∗N+j) . wr or
sc_noc_out_reg (i ∗N+j) . rd) & sc_noc_out_reg (i ∗N+j) . wr ;

50 procM (i) (j) . MAddr <= std_log ic_vector (to_unsigned (0 ,
OCP_ADDR_WIDTH−SC_ADDR_SIZE)) & sc_noc_out_reg (i ∗N+j) .
address ;

procM (i) (j) . MData <= sc_noc_out_reg (i ∗N+j) . wr_data ;
52

sc_noc_out_next (i ∗N+j) <= sc_noc_out_reg (i ∗N+j) ;
54 sc_noc_in_next (i ∗N+j) <= sc_noc_in_reg (i ∗N+j) ;

56 i f procS (i) (j) . SCmdAccept = ’1 ’ and sc_noc_out_reg (i ∗N+j) .
wr = ’1 ’ then −− The ackowledge o f a wr i t e

sc_noc_out_next (i ∗N+j) . rd <= ’ 0 ’ ;
58 sc_noc_out_next (i ∗N+j) . wr <= ’ 0 ’ ;

sc_noc_out_next (i ∗N+j) . address <= (ot h e r s => ’ 0 ’) ;
60 sc_noc_out_next (i ∗N+j) . wr_data <= (ot h e r s => ’ 0 ’) ;

sc_noc_in_next (i ∗N+j) . rd_data <= (ot h e r s => ’ 0 ’) ;
62 sc_noc_in_next (i ∗N+j) . rdy_cnt <= (o t he r s => ’ 0 ’) ;

end i f ;
64

i f procS (i) (j) . SResp = ’1 ’ and sc_noc_out_reg (i ∗N+j) . rd =
’1 ’ then −− The ackowledge o f a read

66 sc_noc_out_next (i ∗N+j) . rd <= ’ 0 ’ ;
sc_noc_out_next (i ∗N+j) . wr <= ’ 0 ’ ;

68 sc_noc_out_next (i ∗N+j) . address <= (ot h e r s => ’ 0 ’) ;
sc_noc_out_next (i ∗N+j) . wr_data <= (ot h e r s => ’ 0 ’) ;

70 sc_noc_in_next (i ∗N+j) . rd_data <= procS (i) (j) . SData ;
sc_noc_in_next (i ∗N+j) . rdy_cnt <= (o t h e r s => ’ 0 ’) ;

72 end i f ;

74 i f sc_noc_out (i ∗N+j) . wr = ’1 ’ or sc_noc_out (i ∗N+j) . rd = ’1 ’
then

sc_noc_out_next (i ∗N+j) <= sc_noc_out (i ∗N+j) ;
76 sc_noc_in_next (i ∗N+j) . rdy_cnt <= (o t he r s => ’ 1 ’) ;

end i f ;
78

80 end loop ;
end loop ; −− NoC2Proc

82 end p r o c e s s ;

84 noc_reg : p r o c e s s (c lk , r e s e t) i s
begin

86 i f r i s ing_edge (c l k) then
f o r i in 0 to N−1 loop

88 f o r j in 0 to N−1 loop
i f r e s e t = ’1 ’ then

90 sc_noc_out_reg (i ∗N+j) . rd <= ’ 0 ’ ;
sc_noc_out_reg (i ∗N+j) . wr <= ’ 0 ’ ;

92 sc_noc_out_reg (i ∗N+j) . address <= (ot h e r s => ’ 0 ’) ;
sc_noc_out_reg (i ∗N+j) . wr_data <= (ot h e r s => ’ 0 ’) ;

94 sc_noc_in_reg (i ∗N+j) . rd_data <= (ot h e r s => ’ 0 ’) ;
sc_noc_in_reg (i ∗N+j) . rdy_cnt <= (o t h e r s => ’ 1 ’) ;

96 e l s e

72 T-CREST NoC source code

sc_noc_in_reg (i ∗N+j) <= sc_noc_in_next (i ∗N+j) ;
98 sc_noc_out_reg (i ∗N+j) <= sc_noc_out_next (i ∗N+j) ;

end i f ;
100 end loop ;

end loop ;
102 end i f ;

end p r o c e s s noc_reg ;
104

end s t r u c t ;

Listing B.2: tb_sc2ocp.vhd
1 l i b r a r y i e e e ;

use i e e e . std_logic_1164 . a l l ;
3 use i e e e .NUMERIC_STD. a l l ;

use work . d e f s . a l l ;
5 use work . sc_pack . a l l ;

use work . t e s t . a l l ;
7 use work . t x t _ u t i l . a l l ;

9 e n t i t y tb_sc2ocp i s
end tb_sc2ocp ;

11

a r c h i t e c t u r e RTL o f tb_sc2ocp i s
13 constant CLOCK_PERIOD : time := 10 ns ;

constant RESET_TIME : time :=21 ns ;
15 constant temp1 : s td_log ic_vector (31 downto 0) := DMA_P_MASK &

std_log ic_vector (to_unsigned (0 ,OCP_ADDR_WIDTH−ADDR_MASK_W)) ;
constant DMA_P_ADDR : natura l := to_integer (unsigned (temp1)) ;

17 constant temp2 : s td_log ic_vector (31 downto 0) := SPM_MASK &
std_log ic_vector (to_unsigned (0 ,OCP_ADDR_WIDTH−ADDR_MASK_W)) ;

constant SPM_ADDR : natura l := to_integer (unsigned (temp2)) ;
19 constant temp3 : s td_log ic_vector (31 downto 0) := DMA_MASK &

std_log ic_vector (to_unsigned (0 ,OCP_ADDR_WIDTH−ADDR_MASK_W)) ;
constant DMA_ADDR : natura l := to_integer (unsigned (temp3)) ;

21 constant temp4 : s td_log ic_vector (31 downto 0) := ST_MASK &
std_log ic_vector (to_unsigned (0 ,OCP_ADDR_WIDTH−ADDR_MASK_W)) ;

constant ST_ADDR : natura l := to_integer (unsigned (temp4)) ;
23 s i g n a l c l k : s td_log i c ;

s i g n a l r e s e t : s td_log i c ;
25 s i g n a l sc_noc_out : sc_out_array_type (0 to (N∗N) −1) ;

s i g n a l sc_noc_in : sc_in_array_type (0 to (N∗N) −1) ;
27

a l i a s sc_in i s sc_noc_in (0) ;
29 a l i a s sc_out i s sc_noc_out (0) ;

31 a l i a s sc_in_2 i s sc_noc_in (2) ;
a l i a s sc_out_2 i s sc_noc_out (2) ;

33

35 a l i a s sc_in_4 i s sc_noc_in (4) ;
a l i a s sc_out_4 i s sc_noc_out (4) ;

37

39 begin

73

−− Clock and r e s e t
41 c lock_generator : clockGen (c lk ,CLOCK_PERIOD) ;

r e s e t_genera to r : resetGen (r e s e t ,RESET_TIME) ;
43

dut : e n t i t y work . sc2ocp_noc
45 port map(c l k => clk ,

r e s e t => r e s e t ,
47 sc_noc_out => sc_noc_out ,

sc_noc_in => sc_noc_in) ;
49

s t i m u l i _ p ro c e s s : p r o c e s s
51 v a r i a b l e r e s u l t : na tura l ;

begin
53 f o r i in 0 to N−1 loop

f o r j in 0 to N−1 loop
55 i f r e s e t = ’1 ’ then

sc_noc_out (i ∗N+j) . rd <= ’ 0 ’ ;
57 sc_noc_out (i ∗N+j) . wr <= ’ 0 ’ ;

sc_noc_out (i ∗N+j) . address <= (ot h e r s => ’ 0 ’) ;
59 sc_noc_out (i ∗N+j) . wr_data <= (ot h e r s => ’ 0 ’) ;

end i f ;
61 end loop ;

end loop ;
63 wait u n t i l r e s e t = ’ 0 ’ ;

wait f o r 11 ns ;
65 −− r e p o r t "−−−−−−−− Test ing DMA P −−−−−−−−";

−− f o r i in 0 to 10 loop
67 −− wait u n t i l r i s ing_edge (c l k) ;

−− sc_write (c lk ,DMA_P_ADDR+i , i , sc_out , sc_in , 5) ;
69 −− wait f o r CLOCK_PERIOD;

−− end loop ;
71 −−

−− f o r i in 0 to 10 loop
73 −− wait u n t i l r i s ing_edge (c l k) ;

−− sc_read (c lk ,DMA_P_ADDR+i , r e s u l t , sc_out , sc_in , 6) ;
75 −− a s s e r t r e s u l t = i r e p o r t "Wrong r e s u l t read out ! " s e v e r i t y

f a i l u r e ;
−− wait f o r CLOCK_PERIOD;

77 −− end loop ;
−− r e p o r t "−−−−−−−− DMA t e s t passed −−−−−−−−";

79

wait u n t i l r i s ing_edge (c l k) ;
81

sc_write (c lk ,DMA_P_ADDR, 5 4 , sc_out_4 , sc_in_4 , 5) ;
83 wait u n t i l r i s ing_edge (c l k) ;

sc_write (c lk ,ST_ADDR+2 ,16 , sc_out_4 , sc_in_4 , 5) ;
85 −− Write to spm

wait u n t i l r i s ing_edge (c l k) ;
87 sc_write (c lk ,SPM_ADDR+22 ,3 , sc_out_4 , sc_in_4 , 5) ;

wait u n t i l r i s ing_edge (c l k) ;
89 sc_write (c lk ,SPM_ADDR+22+1,6 ,sc_out_4 , sc_in_4 , 5) ;

wait u n t i l r i s ing_edge (c l k) ;
91 sc_write (c lk ,SPM_ADDR+22+2,9 ,sc_out_4 , sc_in_4 , 5) ;

wait u n t i l r i s ing_edge (c l k) ;
93 sc_write (c lk ,SPM_ADDR+22+3 ,12 , sc_out_4 , sc_in_4 , 5) ;

74 T-CREST NoC source code

wait u n t i l r i s ing_edge (c l k) ;
95 sc_write (c lk ,SPM_ADDR+22+4 ,15 , sc_out_4 , sc_in_4 , 5) ;

wait u n t i l r i s ing_edge (c l k) ;
97 sc_write (c lk ,SPM_ADDR+22+5 ,18 , sc_out_4 , sc_in_4 , 5) ;

wait u n t i l r i s ing_edge (c l k) ;
99 sc_write (c lk ,SPM_ADDR+22+6 ,21 , sc_out_4 , sc_in_4 , 5) ;

wait u n t i l r i s ing_edge (c l k) ;
101 sc_write (c lk ,SPM_ADDR+22+7 ,24 , sc_out_4 , sc_in_4 , 5) ;

wait u n t i l r i s ing_edge (c l k) ;
103 sc_write (c lk ,SPM_ADDR+22+8 ,27 , sc_out_4 , sc_in_4 , 5) ;

wait u n t i l r i s ing_edge (c l k) ;
105 sc_write (c lk ,SPM_ADDR+22+9 ,30 , sc_out_4 , sc_in_4 , 5) ;

−− Setup dma
107 wait u n t i l r i s ing_edge (c l k) ;

sc_write (c lk ,DMA_ADDR+1 ,1441922 , sc_out_4 , sc_in_4 , 5) ;
109 wait u n t i l r i s ing_edge (c l k) ;

sc_write (c lk ,DMA_ADDR,32778 , sc_out_4 , sc_in_4 , 5) ;
111 wait u n t i l r i s ing_edge (c l k) ;

113

115

sc_write (c lk ,SPM_ADDR+224 ,4 , sc_out , sc_in , 5) ;
117 wait u n t i l r i s ing_edge (c l k) ;

sc_read (c lk ,SPM_ADDR+224 , r e s u l t , sc_out , sc_in , 5) ;
119 a s s e r t r e s u l t = 4 r e p o r t " Something i s very wrong ! " s e v e r i t y

f a i l u r e ;
wait u n t i l r i s ing_edge (c l k) ;

121

wait f o r 300 ns ;
123

125 −− t e s t_f un c t i o n (c lk , sc_out , sc_in ,DMA_P_ADDR,CLOCK_PERIOD) ;
−− t e s t_f un c t i o n (c lk , sc_out , sc_in ,SPM_ADDR,CLOCK_PERIOD) ;

127 −− t e s t_f un c t i o n (c lk , sc_out , sc_in ,DMA_ADDR,CLOCK_PERIOD) ;
−− t e s t_f un c t i o n (c lk , sc_out , sc_in ,ST_ADDR,CLOCK_PERIOD) ;

129

−− r e p o r t "−−−−−−−− Test ing SPM −−−−−−−−";
131 −− f o r i in 0 to 10 loop

−− wait u n t i l r i s ing_edge (c l k) ;
133 −− sc_write (c lk ,SPM_ADDR+i , i , sc_out , sc_in , 5) ;

−− wait f o r CLOCK_PERIOD;
135 −− end loop ;

−−
137 −− f o r i in 0 to 10 loop

−− wait u n t i l r i s ing_edge (c l k) ;
139 −− sc_read (c lk ,SPM_ADDR+i , r e s u l t , sc_out , sc_in , 6) ;

−− a s s e r t r e s u l t = i r e p o r t "Wrong r e s u l t read out ! " s e v e r i t y
f a i l u r e ;

141 −− wait f o r CLOCK_PERIOD;
−− end loop ;

143 −− r e p o r t "−−−−−−−− SPM t e s t passed −−−−−−−−";

145 wait ;
end p r o c e s s ;

75

147

end a r c h i t e c t u r e RTL;

Listing B.3: test.vhd
l i b r a r y i e e e ;

2 use i e e e . std_logic_1164 . a l l ;
use work . sc_pack . a l l ;

4

package t e s t i s
6 procedure clockGen (s i g n a l c l k : out s td_log i c ; constant per iod :

in time) ;
procedure resetGen (s i g n a l r e s e t : out s td_log i c ; constant

reset_time : in time) ;
8 procedure t e s t_ fu nc t i on (s i g n a l c l k : in s td_log i c ; s i g n a l sc_out

: out sc_out_type ; s i g n a l sc_in : in sc_in_type ; constant
addr : in natura l ; constant per iod : in time) ;

10 end package t e s t ;

12 package body t e s t i s
procedure clockGen (s i g n a l c l k : out s td_log i c ; constant per iod :

in time) i s
14 v a r i a b l e c lk_int : s td_log i c := ’ 0 ’ ;

begin −− Care fu l t h i s p r o c e s s runs f o r e v e r :
16 loop

c lk_int := not c lk_int ;
18 c l k <= clk_int ;

wait f o r per iod /2 ;
20 end loop ;

end ;
22

procedure resetGen (s i g n a l r e s e t : out s td_log i c ; constant
reset_time : in time) i s

24 begin −− Care fu l t h i s p r o c e s s runs f o r e v e r :
r e s e t <= ’ 1 ’ ;

26 wait f o r reset_time ;
r e s e t <= ’ 0 ’ ;

28 wait ;
end ;

30

32 procedure t e s t_ fu nc t i on (s i g n a l c l k : in s td_log i c ;
s i g n a l sc_out : out sc_out_type ;

34 s i g n a l sc_in : in sc_in_type ;
constant addr : in natura l ;

36 constant per iod : in time) i s
v a r i a b l e r e s u l t : na tura l ;

38 begin
r e p o r t "−−−−−−−− Test ing " & addr ’ simple_name & " −−−−−−−−" ;

40 f o r i in 0 to 10 loop
wait u n t i l r i s ing_edge (c l k) ;

42 sc_write (c lk , addr+i , i , sc_out , sc_in , 5) ;
wait f o r per iod ;

44 end loop ;

76 T-CREST NoC source code

46 f o r i in 0 to 10 loop
wait u n t i l r i s ing_edge (c l k) ;

48 sc_read (c lk , addr+i , r e s u l t , sc_out , sc_in , 6) ;
a s s e r t r e s u l t = i r e p o r t "Wrong r e s u l t read out ! " s e v e r i t y

f a i l u r e ;
50 wait f o r per iod ;

end loop ;
52 r e p o r t "−−−−−−−− " & addr ’ simple_name & " t e s t passed −−−−−−−−"

;
end ;

54

end package body t e s t ;

Listing B.4: noc_node.vhd
1 l i b r a r y i e e e ;

use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;

use work . d e f s . a l l ;
5

7 e n t i t y noc_node i s
port (

9 p_clk : s td_log i c ;
n_clk : s td_log i c ;

11 r e s e t : s td_log i c ;

13 proc_in : in ocp_master ;
proc_out : out ocp_slave ;

15

inNorth : in network_link ;
17 inSouth : in network_link ;

inEast : in network_link ;
19 inWest : in network_link ;

21 outNorth : out network_link ;
outSouth : out network_link ;

23 outEast : out network_link ;
outWest : out network_link

25

) ;
27

end noc_node ;
29

a r c h i t e c t u r e s t r u c t o f noc_node i s
31

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−component d e c l a r a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

33 −−2 spms
component bram_tdp i s

35

g e n e r i c (
37 DATA : i n t e g e r := 32 ;

ADDR : i n t e g e r := 14

77

39) ;

41 port (
−− Port A

43 a_clk : in s td_log i c ;
a_wr : in s td_log i c ;

45 a_addr : in s td_log ic_vector (ADDR−1 downto 0) ;
a_din : in s td_log ic_vector (DATA−1 downto 0) ;

47 a_dout : out s td_log ic_vector (DATA−1 downto 0) ;

49 −− Port B
b_clk : in s td_log i c ;

51 b_wr : in s td_log i c ;
b_addr : in s td_log ic_vector (ADDR−1 downto 0) ;

53 b_din : in s td_log ic_vector (DATA−1 downto 0) ;
b_dout : out s td_log ic_vector (DATA−1 downto 0)

55) ;
end component ;

57

−−1 na
59 component nAdapter i s

61

port (
63 −− General

na_clk : in s td_log i c ;
65 na_reset : in s td_log i c ;

67 −− Proces sor Ports
−− DMA Conf igurat ion Port − OCP

69 proc_in : in ocp_master ;
proc_out : out ocp_slave ;

71

−− SPM Data Port − OCP?
73 spm_in : in ocp_slave_spm ;

spm_out : out ocp_master_spm ;
75

−− Network Ports
77 −− Incoming Port

pkt_in : in network_link ;
79

−− Outgoing Port
81 pkt_out : out network_link

83) ;
end component ;

85

−−1 r o u t e r
87 component r o u t e r i s

port (
89 c l k : in s td_log i c ;

r e s e t : in s td_log i c ;
91 inPort : in routerPort ;

outPort : out routerPort
93) ;

78 T-CREST NoC source code

end component ;
95

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−s i g n a l d e c l a r a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

97

s i g n a l ip_to_net : network_link ;
99 s i g n a l net_to_ip : network_link ;

101 s i g n a l spm_to_net : ocp_slave_spm ;
s i g n a l net_to_spm : ocp_master_spm ;

103

s i g n a l proc_spm_out_h : ocp_slave ;
105 s i g n a l proc_spm_out_l : ocp_slave ;

s i g n a l proc_noc_in : ocp_master ;
107 s i g n a l proc_noc_out : ocp_slave ;

109 s i g n a l spm_h_access : s td_log i c ;
s i g n a l spm_l_access : s td_log i c ;

111 s i g n a l dma_access : s td_log i c ;

113 s i g n a l spm_h_wr : s td_log i c ;
s i g n a l spm_l_wr : s td_log i c ;

115

s i g n a l rd_rdy , next_rd_rdy : s td_log i c ;
117

type proc_se l i s (spm_h_sel , spm_l_sel , dma_sel , none) ;
119 s i g n a l proc_out_sel : proc_se l ;

s i g n a l cmd_acc : s td_log i c ;
121

begin
123

125 −− High SPM i n s t a n c e
spm_h : bram_tdp

127 g e n e r i c map (DATA=>DATA_WIDTH, ADDR => SPM_ADDR_WIDTH−1)
port map (a_clk => p_clk ,

129 a_wr => spm_h_wr ,
a_addr => proc_in . MAddr(SPM_ADDR_WIDTH−1 downto 1) ,

131 a_din => proc_in . MData ,
a_dout => proc_spm_out_h . SData ,

133 b_clk => n_clk ,
b_wr => net_to_spm .MCmd(0) ,

135 b_addr => net_to_spm . MAddr(SPM_ADDR_WIDTH−2 downto 0) ,
b_din => net_to_spm . MData(63 downto 32) ,

137 b_dout => spm_to_net . SData (63 downto 32)) ;

139 spm_h_wr <= proc_in .MCmd(0) and spm_h_access ;

141 −− Low SPM i n s t a n c e
spm_l : bram_tdp

143 g e n e r i c map (DATA => DATA_WIDTH, ADDR => SPM_ADDR_WIDTH−1)
port map (a_clk => p_clk ,

145 a_wr => spm_l_wr ,
a_addr => proc_in . MAddr(SPM_ADDR_WIDTH−1 downto 1) ,

147 a_din => proc_in . MData ,

79

a_dout => proc_spm_out_l . SData ,
149 b_clk => n_clk ,

b_wr => net_to_spm .MCmd(0) ,
151 b_addr => net_to_spm . MAddr(SPM_ADDR_WIDTH−2 downto 0) ,

b_din => net_to_spm . MData(31 downto 0) ,
153 b_dout => spm_to_net . SData (31 downto 0)) ;

155 spm_l_wr <= proc_in .MCmd(0) and spm_l_access ;

157 −− NA i n s t a n c e
na : nAdapter

159 port map(
−− General

161 na_clk=>n_clk ,
na_reset=>r e s e t ,

163

−− Proces sor Ports
165 −− DMA Conf igurat ion Port − OCP

proc_in=>proc_noc_in ,
167 proc_out=>proc_noc_out ,

169 −− SPM Data Port − OCP?
spm_in=>spm_to_net ,

171 spm_out=>net_to_spm ,

173 −− Network Ports
−− Incoming Port

175 pkt_in=>net_to_ip ,

177 −− Outgoing Port
pkt_out=>ip_to_net

179) ;

181 proc_noc_in . MData <= proc_in . MData ;
proc_noc_in . MAddr <= proc_in . MAddr ;

183 proc_noc_in .MCmd(1) <= proc_in .MCmd(1) and dma_access ;
proc_noc_in .MCmd(0) <= proc_in .MCmd(0) and dma_access ;

185

−− r o u t e r i n s t a n c e
187 r : r o u t e r

port map (
189 c l k => n_clk ,

r e s e t => r e s e t ,
191 inPort (0) => inSouth ,

inPort (1) => inWest ,
193 inPort (2) => inNorth ,

inPort (3) => inEast ,
195 inPort (4) => ip_to_net ,

outPort (0) => outSouth ,
197 outPort (1) => outWest ,

outPort (2) => outNorth ,
199 outPort (3) => outEast ,

outPort (4) => net_to_ip
201) ;

80 T-CREST NoC source code

203 proc_log ic : p r o c e s s (proc_in , proc_spm_out_h , proc_spm_out_l , rd_rdy
, proc_noc_out , dma_access)

begin
205 spm_h_access <= ’ 0 ’ ;

spm_l_access <= ’ 0 ’ ;
207 dma_access <= ’ 0 ’ ;

next_rd_rdy <= ’ 0 ’ ;
209 cmd_acc <= ’ 0 ’ ;

proc_out_sel <= none ;
211

i f proc_in . MAddr(OCP_ADDR_WIDTH−1 downto SPM_ADDR_WIDTH) =
SPM_MASK & std_log ic_vector (to_unsigned (0 ,OCP_ADDR_WIDTH−
ADDR_MASK_W−(SPM_ADDR_WIDTH))) then −− Access to the spm port

213 i f proc_in . MAddr(0) = ’0 ’ then −− Access high spm
spm_h_access <= ’ 1 ’ ;

215 proc_out_sel <= spm_h_sel ;
e l s e −− Access low spm

217 spm_l_access <= ’ 1 ’ ;
proc_out_sel <= spm_l_sel ;

219 end i f ;
−− Write opera t i on

221 i f proc_in .MCmd(0) = ’1 ’ then
cmd_acc <= ’ 1 ’ ;

223 end i f ;
−− Read opera t i on

225 i f proc_in .MCmd(1) = ’1 ’ and proc_in .MCmd(0) = ’0 ’ then
next_rd_rdy <= ’ 1 ’ ;

227 end i f ;
e l s e −− Access to the dma c o n f i g u r a t i o n port

229 dma_access <= ’ 1 ’ ;
proc_out_sel <= dma_sel ;

231 end i f ;
end p r o c e s s ;

233

p r o c e s s (proc_out_sel , proc_spm_out_h , proc_spm_out_l , proc_noc_out ,
rd_rdy , cmd_acc)

235 −−p r o c e s s (a l l)
begin

237 proc_out . SData <= (ot h e r s => ’ 0 ’) ;
proc_out . SResp <= ’ 0 ’ ;

239 proc_out . SCmdAccept <= ’ 0 ’ ;
−− Proc_out mux

241

case proc_out_sel i s
243 when spm_h_sel =>

proc_out . SData <= proc_spm_out_h . SData ;
245 proc_out . SCmdAccept <= cmd_acc ;

proc_out . SResp <= rd_rdy ;
247 when spm_l_sel =>

proc_out . SData <= proc_spm_out_l . SData ;
249 proc_out . SCmdAccept <= cmd_acc ;

proc_out . SResp <= rd_rdy ;
251 when dma_sel =>

proc_out <= proc_noc_out ;
253 when none =>

81

proc_out . SData <= (ot h e r s => ’ 0 ’) ;
255 proc_out . SResp <= ’ 0 ’ ;

proc_out . SCmdAccept <= ’ 0 ’ ;
257 end case ;

259 end p r o c e s s ;

261 p r o c e s s (p_clk)
begin

263 i f r i s ing_edge (p_clk) then
i f r e s e t = ’1 ’ then

265 rd_rdy <= ’ 0 ’ ;
e l s e

267 rd_rdy <= next_rd_rdy ;
end i f ;

269 end i f ;
end p r o c e s s ;

271

end s t r u c t ;

Listing B.5: nAdapter.vhd
−−

2 −− Copyright Technica l U n i v e r s i t y o f Denmark . Al l r i g h t s r e s e r v e d .
−− This f i l e i s part o f the T−CREST p r o j e c t .

4 −−
−− R e d i s t r i b u t i o n and use in source and binary forms , with or

without
6 −− modi f i ca t i on , are permitted provided that the f o l l o w i n g

c o n d i t i o n s are met :
−−

8 −− 1 . R e d i s t r i b u t i o n s o f source code must r e t a i n the above
copyr ight not i ce ,

−− t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a i m e r .
10 −−

−− 2 . R e d i s t r i b u t i o n s in binary form must reproduce the above
copyr ight

12 −− not i ce , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g
d i s c l a i m e r in the

−− documentation and/ or other m a t e r i a l s provided with the
d i s t r i b u t i o n .

14 −−
−− THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ‘ ‘AS IS ’ ’ AND

ANY EXPRESS
16 −− OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES
−− OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN
18 −− NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY
−− DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES
20 −− (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES ;

82 T-CREST NoC source code

−− LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND

22 −− ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
LIABILITY , OR TORT

−− (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF

24 −− THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
.

−−
26 −− The views and c o n c l u s i o n s conta ined in the so f tware and

documentation are
−− those o f the authors and should not be i n t e r p r e t e d as

r e p r e s e n t i n g o f f i c i a l
28 −− p o l i c i e s , e i t h e r expres sed or impl ied , o f the copyr ight ho lder .

−−
30

32 −−
−−

−− Network Adaptor (NI) f o r the TDM NoC with DMAs.
34 −−

−− Author : Evange l ia Kasapaki
36 −−

−−

38 l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;

40 use i e e e . numeric_std . a l l ;
use work . d e f s . a l l ;

42

44 e n t i t y nAdapter i s

46 port (
−− General

48 na_clk : in s td_log i c ;
na_reset : in s td_log i c ;

50

−− Proces sor Ports
52 −− DMA Conf igurat ion Port − OCP

proc_in : in ocp_master ;
54 proc_out : out ocp_slave ;

56 −− SPM Data Port − OCP?
spm_in : in ocp_slave_spm ;

58 spm_out : out ocp_master_spm ;

60 −− Network Ports
−− Incoming Port

62 pkt_in : in network_link ;

64 −− Outgoing Port
pkt_out : out network_link

83

66

) ;
68 end nAdapter ;

70

a r c h i t e c t u r e r t l o f nAdapter i s
72

74 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− s i g n a l d e c l a r a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s i g n a l s l t_index : s td_log ic_vector (SLT_WIDTH−1 downto 0) ;
76 s i g n a l sc_en : s td_log i c ;

s i g n a l s l t_en : s td_log i c ;
78

s i g n a l s l t_ent ry : s td_log ic_vector (DMA_IND_WIDTH downto 0) ;
80 s i g n a l v ld_s l t : s td_log i c ;

82 s i g n a l c o n f i g : s td_log ic_vector (3 downto 0) ;
s i g n a l conf ig_reg : s td_log ic_vector (4 downto 0) ;

84

s i g n a l dma_index : s td_log ic_vector (DMA_IND_WIDTH−1 downto 0) ;
86 s i g n a l dma_entry : s td_log ic_vector (DMA_WIDTH−1 downto 0) ;

s i g n a l dma_entry_updated : s td_log ic_vector (DMA_WIDTH−1 downto 0) ;
88

s i g n a l dma_ren : s td_log ic_vector (2 downto 0) ;
90 s i g n a l dma_wen : s td_log ic_vector (2 downto 0) ;

s i g n a l dma_waddr : s td_log ic_vector (DMA_IND_WIDTH−1 downto 0) ;
92 s i g n a l dma_wdata : s td_log ic_vector (DMA_WIDTH−1 downto 0) ;

s i g n a l dma_raddr : s td_log ic_vector (DMA_IND_WIDTH−1 downto 0) ;
94 s i g n a l dma_rdata : s td_log ic_vector (DMA_WIDTH−1 downto 0) ;

96 s i g n a l dma_cnt : unsigned (BLK_CNT−1 downto 0) ;
s i g n a l dma_cnt_new : unsigned (BLK_CNT−1 downto 0) ;

98 s i g n a l dma_rp_new : unsigned (SPM_ADDR_WIDTH−1 downto 0) ;
s i g n a l dma_wp_new : unsigned (SPM_ADDR_WIDTH−1 downto 0) ;

100

s i g n a l dma_ctrl : s td_log i c ;
102 s i g n a l dma_ctrl_new : s td_log ic_vector (1 downto 0) ;

s i g n a l done : s td_log i c ;
104 s i g n a l done_new : s td_log i c ;

106 s i g n a l state_cnt : unsigned (1 downto 0) ;
s i g n a l va l : unsigned (1 downto 0) ;

108

s i g n a l dIn_h : s td_log ic_vector (DATA_WIDTH−1 downto 0) ;
110 s i g n a l dOut_l : s td_log ic_vector (DATA_WIDTH−1 downto 0) ;

112 s i g n a l address : s td_log ic_vector (SPM_ADDR_WIDTH−1 downto 0) ;
s i g n a l m_cmd : s td_log i c ;

114

s i g n a l dOutreg_ld : s td_log i c ;
116 s i g n a l dInreg_ld : s td_log i c ;

s i g n a l adreg_ld : s td_log i c ;
118

s i g n a l mux_out : s td_log ic_vector (DATA_WIDTH−1 downto 0) ;

84 T-CREST NoC source code

120 s i g n a l hdr_phit : s td_log ic_vector (DATA_WIDTH−1 downto 0) ;

122 s i g n a l phitOut : s td_log ic_vector (PHIT_WIDTH−1 downto 0) ;
s i g n a l ph i t In : s td_log ic_vector (PHIT_WIDTH−1 downto 0) ;

124

s i g n a l pkt_ctr l : s td_log i c ;
126 s i g n a l dma_ctrl_reg : s td_log i c ;

s i g n a l ctr lOutreg_ld : s td_log i c ;
128

130 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Components d e c l a r a t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

component counter
132 g e n e r i c (

WIDTH : i n t e g e r
134) ;

port (
136 c l k : in s td_log i c ;

r e s e t : in s td_log i c ;
138 enable : in s td_log i c ;

cnt : out s td_log ic_vector (WIDTH−1 downto 0)
140) ;

end component ;
142

component dma_sdp
144 g e n e r i c (

DATA : i n t e g e r := 64 ;
146 ADDR : i n t e g e r := 2

) ;
148 port (

c l k : in s td_log i c ;
150 r e s e t : in s td_log i c ;

152 ren : in s td_log ic_vector (2 downto 0) ;
wen : in std_log ic_vector (2 downto 0) ;

154 waddr : in s td_log ic_vector (ADDR−1 downto 0) ;
wdata : in s td_log ic_vector (DATA−1 downto 0) ;

156 raddr : in s td_log ic_vector (ADDR−1 downto 0) ;
rdata : out s td_log ic_vector (DATA−1 downto 0)

158) ;
end component ;

160

component bram
162 g e n e r i c (

DATA : i n t e g e r := 32 ;
164 ADDR : i n t e g e r := 14

) ;
166

port (
168 c l k : in s td_log i c ;

rd_addr : in s td_log ic_vector (ADDR−1 downto 0) ;
170 wr_addr : in s td_log ic_vector (ADDR−1 downto 0) ;

wr_data : in s td_log ic_vector (DATA−1 downto 0) ;
172 wr_ena : in s td_log i c ;

rd_data : out s td_log ic_vector (DATA−1 downto 0)

85

174) ;
end component ;

176

178

begin
180

−− component i n s t a n t i a t i o n s
−−

182 −− S l o t Counter
s l t_cnt : counter

184 g e n e r i c map (WIDTH=>SLT_WIDTH)
port map (c l k=>na_clk , r e s e t=>na_reset , enable=>sc_en , cnt=>

s l t_index) ;
186

−− DMA Table − s imple block ram
188 dma_table : dma_sdp

g e n e r i c map (DATA=>DMA_WIDTH, ADDR=>DMA_IND_WIDTH)
190 port map (c l k=>na_clk , r e s e t=>na_reset ,

ren => dma_ren ,
192 wen => dma_wen,

waddr => dma_waddr ,
194 wdata => dma_wdata ,

raddr => dma_raddr ,
196 rdata => dma_rdata

) ;
198

200 s l t_en <= ’1 ’ when c o n f i g=ST_ACCESS and proc_in .MCmd(0) = ’1 ’
e l s e ’ 0 ’ ;

202 −− S l o t Table
s l t _ t a b l e : bram

204 g e n e r i c map (DATA=>DMA_IND_WIDTH+1, ADDR=>SLT_WIDTH)
port map (c l k => na_clk ,

206 rd_addr => slt_index ,
wr_addr => proc_in . MAddr(SLT_WIDTH−1 downto 0) ,

208 wr_data => proc_in . MData(DMA_IND_WIDTH downto 0) ,
wr_ena => slt_en ,

210 rd_data => s l t_ent ry
) ;

212

dma_index <= s l t_ent ry (DMA_IND_WIDTH−1 downto 0) ;
214 v ld_s l t <= s l t_ent ry (DMA_IND_WIDTH) ;

216 −− c o n f i g u r a t i o n i n t e r f a c e
−−

−− decode inputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
218 −− address map decoding

ocp_decode : p r o c e s s (proc_in . MAddr) begin
220 c o n f i g <= CNULL;

−− ST c o n f i g u r a t i o n
222 i f proc_in . MAddr(OCP_ADDR_WIDTH−1 downto OCP_ADDR_WIDTH−

ADDR_MASK_W)=ST_MASK then
c o n f i g <= ST_ACCESS;

86 T-CREST NoC source code

224 −− DMA 3/ route c o n f i g u r a t i o n
e l s i f proc_in . MAddr(OCP_ADDR_WIDTH−1 downto OCP_ADDR_WIDTH−

ADDR_MASK_W)=DMA_P_MASK then
226 c o n f i g <= DMA_R_ACCESS;

−− DMA 1 ,2 c o n f i g u r a t i o n
228 e l s i f proc_in . MAddr(OCP_ADDR_WIDTH−1 downto OCP_ADDR_WIDTH−

ADDR_MASK_W)=DMA_MASK
and proc_in . MAddr(0) = ’0 ’ then

230 c o n f i g <= DMA_H_ACCESS;
e l s i f proc_in . MAddr(OCP_ADDR_WIDTH−1 downto OCP_ADDR_WIDTH−

ADDR_MASK_W)=DMA_MASK
232 and proc_in . MAddr(0) = ’1 ’ then

c o n f i g <= DMA_L_ACCESS;
234 −− not c o n f i g u r a t i o n

e l s e
236 c o n f i g <= CNULL;

end i f ;
238 end p r o c e s s ;

240

−− bu i ld outputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
242 −− ocp data response

ocp_response : p r o c e s s (state_cnt , conf ig_reg , dma_rdata) begin
244 proc_out . SData <= (ot h e r s =>’0 ’) ;

proc_out . SResp <= ’ 0 ’ ;
246

case state_cnt i s
248 when " 00 " =>

i f conf ig_reg =(’1 ’ & DMA_R_ACCESS) or conf ig_reg =(’1 ’ &
DMA_H_ACCESS) or conf ig_reg =(’1 ’ & DMA_L_ACCESS) then

250 proc_out . SData <= dma_rdata (OCP_DATA_WIDTH−1 downto 0) ;
proc_out . SResp <= ’ 1 ’ ;

252 end i f ;
when " 01 " =>

254 i f con f ig_reg =(’1 ’ & DMA_R_ACCESS) or conf ig_reg =(’1 ’ &
DMA_H_ACCESS) or conf ig_reg =(’1 ’ & DMA_L_ACCESS) then

proc_out . SData <= dma_rdata (OCP_DATA_WIDTH−1 downto 0) ;
256 proc_out . SResp <= ’ 1 ’ ;

end i f ;
258 when o th e r s =>

proc_out . SData <= (ot h e r s =>’0 ’) ;
260 proc_out . SResp <= ’ 0 ’ ;

end case ;
262 end p r o c e s s ;

264

266 −− SPM i n t e r f a c e
−−

−−− c o n s t r u c t SPM i n t e r f a c e s i g n a l s −−>ocp ???
268 spm_interface : p r o c e s s (state_cnt , pkt_ctr l , dma_entry , address)

begin
i f s tate_cnt = " 00 " and pkt_ctr l = ’1 ’ then

270 spm_out .MCmd <= " 11 " ;

87

spm_out . MAddr <= std_log ic_vector (to_unsigned (0 ,
OCP_ADDR_WIDTH−(SPM_ADDR_WIDTH−1))) & address (
SPM_ADDR_WIDTH−1 downto 1) ;

272 e l s e
spm_out .MCmd <= " 00 " ;

274 spm_out . MAddr <= x " 0000 " & ’0 ’ & dma_entry (47 downto 33) ;
end i f ;

276 end p r o c e s s ;
spm_out . MData(SPM_DATA_WIDTH−1 downto DATA_WIDTH) <= dIn_h ;

278 spm_out . MData(DATA_WIDTH−1 downto 0) <= phi t In (DATA_WIDTH−1
downto 0) ;

280 −− network i n t e r f a c e
−−−

−− input pkt cont ro l −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
282 −− decode incoming packet

pkt_ctr l <= phi t In (PHIT_WIDTH−1) or ph i t In (PHIT_WIDTH−2) or
ph i t In (PHIT_WIDTH−3) ;

284

286 −− output pkt cons t ruc t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−
−− bu i ld hdr ph i t

288 hdr_phit <= dma_entry (DATA_WIDTH−1 downto 0) ;

290 −− mux to choose outgoing data
nout_se lect : p r o c e s s (state_cnt , dma_ctrl , dma_ctrl_reg , hdr_phit

, spm_in . SData (63 downto 32) , dOut_l) begin
292 case state_cnt i s

when " 00 " =>
294 i f dma_ctrl_reg = ’1 ’ then

−−mux on 1 (data1)
296 mux_out <= spm_in . SData (63 downto 32) a f t e r PDELAY;

e l s e
298 mux_out <= (ot h e r s =>’0 ’) a f t e r PDELAY;

end i f ;
300 when " 01 " =>

i f dma_ctrl_reg = ’1 ’ then
302 −−mux on 2 (data2)

mux_out <= dOut_l a f t e r PDELAY;
304 e l s e

mux_out <= (ot h e r s =>’0 ’) a f t e r PDELAY;
306 end i f ;

when " 10 " =>
308 i f dma_ctrl = ’1 ’ then

−−mux on 0 (hdr)
310 mux_out <= hdr_phit a f t e r PDELAY;

e l s e
312 mux_out <= (ot h e r s =>’0 ’) a f t e r PDELAY;

end i f ;
314 when o th e r s =>

mux_out <= (ot h e r s =>’0 ’) ;
316 end case ;

end p r o c e s s ;
318

88 T-CREST NoC source code

−− bu i ld outgoing packet
320 −−c o n t r o l b i t s

phitOut (PHIT_WIDTH−1) <= state_cnt (1) and dma_ctrl ; −−hdr
322 phitOut (PHIT_WIDTH−2) <= not (state_cnt (0) or state_cnt (1)) and

dma_ctrl_reg ; −−md
phitOut (PHIT_WIDTH−3) <= state_cnt (0) and dma_ctrl_reg ; −−eop

324 −−hdr or payload
phitOut (PHIT_WIDTH−4 downto 0) <= mux_out ;

326

328 −− DMA s i g n a l s
−−

dma_state_control : p r o c e s s (state_cnt , con f i g , proc_in , dma_ctrl
, dma_index , dma_entry_updated , dma_rdata) begin

330 dma_waddr <= (o t he r s => ’ 0 ’) ;
dma_wdata <= (o t he r s => ’ 0 ’) ;

332 dma_wen <= (o t he r s => ’ 0 ’) ;
dma_raddr <= (o t he r s => ’ 0 ’) ;

334 dma_ren <= (o t he r s => ’ 0 ’) ;
proc_out . SCmdAccept <= ’ 0 ’ ;

336 dma_entry <= (o th e r s => ’ 0 ’) ;

338 case state_cnt i s
when " 00 " =>

340 −− c o n f i g u r a t i o n wr i t e
i f proc_in .MCmd(0) = ’1 ’ then

342 i f c o n f i g=DMA_R_ACCESS then
dma_waddr <= proc_in . MAddr(DMA_IND_WIDTH−1 downto 0) ;

344 dma_wdata <= x " 00000000 " & proc_in . MData ;
dma_wen <= c o n f i g (2 downto 0) ;

346 proc_out . SCmdAccept <= ’ 1 ’ ;
e l s i f c o n f i g=DMA_H_ACCESS then

348 dma_waddr <= proc_in . MAddr(DMA_IND_WIDTH downto 1) ;
dma_wdata <= proc_in . MData(BANK0_W−1 downto 0) & x "

000000000000 " ;
350 dma_wen <= c o n f i g (2 downto 0) ;

proc_out . SCmdAccept <= ’ 1 ’ ;
352 e l s i f c o n f i g=DMA_L_ACCESS then

dma_waddr <= proc_in . MAddr(DMA_IND_WIDTH downto 1) ;
354 dma_wdata <= x " 0000 " & proc_in . MData & x " 0000 " ;

dma_wen <= c o n f i g (2 downto 0) ;
356 proc_out . SCmdAccept <= ’ 1 ’ ;

e l s i f c o n f i g=ST_ACCESS then
358 dma_waddr <= (o t he r s => ’ 0 ’) ;

dma_wdata <= (o t he r s => ’ 0 ’) ;
360 dma_wen <= (o t he r s => ’ 0 ’) ;

proc_out . SCmdAccept <= ’ 1 ’ ;
362 e l s e

dma_waddr <= (o t he r s => ’ 0 ’) ;
364 dma_wdata <= (o t he r s => ’ 0 ’) ;

dma_wen <= (o t he r s => ’ 0 ’) ;
366 proc_out . SCmdAccept <= ’ 0 ’ ;

end i f ;
368 −−c o n f i g u r a t i o n read or no read

89

e l s e
370 i f c o n f i g=DMA_R_ACCESS then

dma_raddr <= proc_in . MAddr(DMA_IND_WIDTH−1 downto 0) ;
372 dma_ren <= c o n f i g (2 downto 0) ;

−−bu i ld ocp s l a v e s i g n a l s
374 proc_out . SCmdAccept <= ’ 1 ’ ;

e l s i f c o n f i g=DMA_H_ACCESS or c o n f i g=DMA_L_ACCESS then
376 dma_raddr <= proc_in . MAddr(DMA_IND_WIDTH downto 1) ;

dma_ren <= c o n f i g (2 downto 0) ;
378 −−bu i ld ocp read data

proc_out . SCmdAccept <= ’ 1 ’ ;
380 e l s e

dma_waddr <= (o t he r s => ’ 0 ’) ;
382 dma_wdata <= (o t he r s => ’ 0 ’) ;

dma_wen <= (o t he r s => ’ 0 ’) ;
384 −−bu i ld ocp read data

proc_out . SCmdAccept <= ’ 0 ’ ;
386 end i f ;

end i f ;
388

when " 01 " =>
390 i f proc_in .MCmd(0) = ’1 ’ then

i f c o n f i g=DMA_R_ACCESS then
392 dma_waddr <= proc_in . MAddr(DMA_IND_WIDTH−1 downto 0) ;

dma_wdata <= x " 00000000 " & proc_in . MData ;
394 dma_wen <= c o n f i g (2 downto 0) ;

proc_out . SCmdAccept <= ’ 1 ’ ;
396 e l s i f c o n f i g=DMA_H_ACCESS then

dma_waddr <= proc_in . MAddr(DMA_IND_WIDTH downto 1) ;
398 dma_wdata <= proc_in . MData(BANK0_W−1 downto 0) & x "

000000000000 " ;
dma_wen <= c o n f i g (2 downto 0) ;

400 proc_out . SCmdAccept <= ’ 1 ’ ;
e l s i f c o n f i g=DMA_L_ACCESS then

402 dma_waddr <= proc_in . MAddr(DMA_IND_WIDTH downto 1) ;
dma_wdata <= x " 0000 " & proc_in . MData & x " 0000 " ;

404 dma_wen <= c o n f i g (2 downto 0) ;
proc_out . SCmdAccept <= ’ 1 ’ ;

406 e l s i f c o n f i g=ST_ACCESS then
dma_waddr <= (o t he r s => ’ 0 ’) ;

408 dma_wdata <= (o t he r s => ’ 0 ’) ;
dma_wen <= (o t he r s => ’ 0 ’) ;

410 proc_out . SCmdAccept <= ’ 1 ’ ;
e l s e

412 dma_waddr <= (o t he r s => ’ 0 ’) ;
dma_wdata <= (o t he r s => ’ 0 ’) ;

414 dma_wen <= (o t he r s => ’ 0 ’) ;
proc_out . SCmdAccept <= ’ 0 ’ ;

416 end i f ;
end i f ;

418 dma_raddr <= dma_index ;
dma_ren <= " 111 " ;

420

when " 10 " =>
422 dma_waddr <= dma_index ;

90 T-CREST NoC source code

dma_wdata <= dma_entry_updated ;
424 i f dma_ctrl = ’1 ’ then

dma_wen <= " 110 " ;
426 e l s e

dma_wen <= " 000 " ;
428 end i f ;

430 i f proc_in .MCmd(0) = ’0 ’ then
i f c o n f i g=DMA_R_ACCESS then

432 dma_raddr <= proc_in . MAddr(DMA_IND_WIDTH−1 downto 0) ;
dma_ren <= c o n f i g (2 downto 0) ;

434 proc_out . SCmdAccept <= ’ 1 ’ ;
e l s i f c o n f i g=DMA_H_ACCESS or c o n f i g=DMA_L_ACCESS then

436 dma_raddr <= proc_in . MAddr(DMA_IND_WIDTH downto 1) ;
dma_ren <= c o n f i g (2 downto 0) ;

438 proc_out . SCmdAccept <= ’ 1 ’ ;
e l s e

440 dma_raddr <= (o t he r s => ’ 0 ’) ;
dma_ren <= (o t he r s => ’ 0 ’) ;

442 proc_out . SCmdAccept <= ’ 0 ’ ;
end i f ;

444 end i f ;

446 i f v ld_s l t = ’1 ’ then
dma_entry <= dma_rdata ;

448 e l s e
dma_entry <= (o th e r s =>’0 ’) ;

450 end i f ;

452 when o th e r s =>
dma_waddr <= (o t he r s => ’ 0 ’) ;

454 dma_wdata <= (o t he r s => ’ 0 ’) ;
dma_wen <= (o t he r s => ’ 0 ’) ;

456 dma_raddr <= (o t he r s => ’ 0 ’) ;
dma_ren <= (o t he r s => ’ 0 ’) ;

458 proc_out . SCmdAccept <= ’ 0 ’ ;
end case ;

460 end p r o c e s s ;

462

−− DMA c o n t r o l 0 decode dma entry
464 −−v a l i d dma entry and t r a n s f e r not done yet

dma_ctrl <= dma_entry (DMA_WIDTH−1) and (not dma_entry (DMA_WIDTH
−2)) ;

466 dma_cnt <= unsigned (dma_entry (61 downto 48)) ;

468 −− update dma entry f i e l d s
dma_cnt_new <= dma_cnt − 2 ;

470 dma_rp_new <= unsigned (dma_entry (SPM_ADDR_WIDTH−1+32 downto 32))
+ 2 ;

dma_wp_new <= unsigned (dma_entry (SPM_ADDR_WIDTH−1+16 downto 16))
+ 2 ;

472

done <= ’1 ’ when dma_cnt_new=0
474 e l s e ’ 0 ’ ;

91

done_new <= dma_entry (DMA_WIDTH−1) and done ;
476 dma_ctrl_new <= dma_entry (DMA_WIDTH−1) & done_new ;

478 −− updated dma entry
dma_entry_updated <= (dma_ctrl_new &

480 s td_log ic_vector (dma_cnt_new) &
" 0000000 " & std_log ic_vector (dma_rp_new) &

482 " 0000000 " & std_log ic_vector (dma_wp_new) &
dma_entry (15 downto 0)) when dma_ctrl = ’1 ’ e l s e

484 dma_entry ;

486

488 −− c o n t r o l FSM − j u s t counter
−−

va l <= state_cnt + 1 ;
490 p r o c e s s (na_reset , na_clk)

begin
492 i f na_reset = ’1 ’ then

state_cnt <= (o t h e r s =>’0 ’) a f t e r PDELAY;
494 e l s i f r i s ing_edge (na_clk) then

i f s tate_cnt=" 10 " then
496 state_cnt <= (o t h e r s =>’0 ’) a f t e r PDELAY;

e l s e
498 state_cnt <= val a f t e r PDELAY;

end i f ;
500 end i f ;

end p r o c e s s ;
502

reg_contro l : p r o c e s s (state_cnt)
504 begin

dOutreg_ld <= ’ 0 ’ ;
506 adreg_ld <= ’ 0 ’ ;

dInreg_ld <= ’ 0 ’ ;
508 ctr lOutreg_ld <= ’ 0 ’ ;

sc_en <= ’ 0 ’ ;
510

i f s tate_cnt=" 00 " then
512 −−ld dataOut_reg

dOutreg_ld <= ’ 1 ’ ;
514 e l s i f s tate_cnt=" 01 " then

−−ld addr_reg
516 adreg_ld <= ’ 1 ’ ;

e l s i f s tate_cnt=" 10 " then
518 −−load dataIn_reg

dInreg_ld <= ’ 1 ’ ;
520 ctr lOutreg_ld <= ’1 ’;

−−update s l t_cnt
522 sc_en <= ’ 1 ’ ;

e l s e
524 dOutreg_ld <= ’ 0 ’ ;

adreg_ld <= ’ 0 ’ ;
526 dInreg_ld <= ’ 0 ’ ;

c t r lOutreg_ld <= ’ 0 ’ ;

92 T-CREST NoC source code

528 sc_en <= ’ 0 ’ ;

530 end i f ;

532 end p r o c e s s ;

534

−− r e g i s t e r s
−−

536 r e g i s t e r s : p r o c e s s (na_clk , na_reset) begin
i f na_reset = ’1 ’ then

538 dma_ctrl_reg <= ’0 ’ a f t e r PDELAY;
address <= (o th e r s =>’0 ’) a f t e r PDELAY;

540 dIn_h <= (ot h e r s =>’0 ’) a f t e r PDELAY;
dOut_l <= (o t he r s =>’0 ’) a f t e r PDELAY;

542 ph i t In <= (ot h e r s =>’0 ’) a f t e r PDELAY;
pkt_out <= (o th e r s =>’0 ’) a f t e r PDELAY;

544 conf ig_reg <= (o th e r s =>’0 ’) ;

546 e l s i f r i s ing_edge (na_clk) then
i f c t r lOutreg_ld = ’1 ’ then

548 dma_ctrl_reg <= dma_ctrl a f t e r PDELAY;
end i f ;

550 i f adreg_ld = ’1 ’ then
address <= ph i t In (SPM_ADDR_WIDTH−1+16 downto 16) a f t e r

PDELAY;
552 end i f ;

i f dInreg_ld = ’1 ’ then
554 dIn_h <= phi t In (DATA_WIDTH−1 downto 0) a f t e r PDELAY;

end i f ;
556 i f dOutreg_ld = ’1 ’ then

dOut_l <= spm_in . SData (DATA_WIDTH−1 downto 0) a f t e r PDELAY;
558 end i f ;

ph i t In <= pkt_in a f t e r PDELAY;
560 pkt_out <= phitOut a f t e r PDELAY;

conf ig_reg <= proc_in .MCmd(1) & c o n f i g ;
562

end i f ;
564 end p r o c e s s ;

566

568

570 end r t l ;

Appendix C

JOP infrastructure

This appendix contains the following files:

jopcpu.vhd this file comes from the JOP project, the file describes the core of
the JOP processor. The modification we have made to this file was to pull
out the SimpCon interface from the SPM, to connect it to the T-CREST
NoC platform. The file starts on page 93.

jopmul_512x32.vhd this file comes from the JOP project, the file describes
the top level component of a multicore JOP platform. The modifications
we have made to this file was to instantiate the T-CREST NoC platform
and connect it to the JOP cores. The file starts on page 101.

Listing C.1: jopcpu.vhd
1 −−

−−
3 −− This f i l e i s a part o f JOP, the Java Optimized Proces sor

−−
5 −− Copyright (C) 2001 −2008 , Martin Schoeber l (martin@jopdesign . com

)
−−

7 −− This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or
modify

−− i t under the terms o f the GNU General Publ ic L i cense as
publ i shed by

94 JOP infrastructure

9 −− the Free Software Foundation , e i t h e r v e r s i o n 3 o f the License ,
or

−− (at your opt ion) any l a t e r v e r s i o n .
11 −−

−− This program i s d i s t r i b u t e d in the hope that i t w i l l be u s e f u l ,
13 −− but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

−− MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 −− GNU General Publ ic L i cense f o r more d e t a i l s .

−−
17 −− You should have r e c e i v e d a copy o f the GNU General Publ ic

L i cense
−− along with t h i s program . I f not , s e e <http ://www. gnu . org /

l i c e n s e s />.
19 −−

21

−−
23 −− jopcpu . vhd

−−
25 −− The JOP CPU

−−
27 −− 2007−03−16 c r e a t i o n

−− 2007−04−13 Changed memory connect ion to r e c o r d s
29 −− 2008−02−20 memory − I /O muxing a f t e r the memory c o n t r o l l e r (

mem_sc)
−− 2008−03−03 added scratchpad RAM

31 −− 2008−03−04 c o r r e c t MUX s e l e c t i o n
−− 2009−11−15 i n c l u d e extens i on code

33 −−
−− todo : c l ean up : s u b s t i t u t e a l l s i g n a l s by r e c o r d s

35

−− comments from former extens i on . vhd
37 −−

−− 2004−09−11 f i r s t v e r s i o n
39 −− 2005−04−05 Reserve negat ive a d d r e s s e s f o r wishbone i n t e r f a c e

−− 2005−04−07 generate bsy from delayed wr or ’ ed with mem_out . bsy
41 −− 2005−05−30 added wishbone i n t e r f a c e

−− 2005−11−28 S u b s t i t u t e WB i n t e r f a c e by the SimpCon IO i n t e r f a c e
; −)

43 −− Al l IO d e v i c e s are now memory mapped
−− 2007−04−13 Changed memory connect ion to r e c o r d s

45 −− New array i n s t r u c t i o n s
−− 2007−12−22 Correc t ion o f data MUX bug f o r array read a c c e s s

47 −− 2008−02−20 Removed memory − I /O muxing
−− 2009−11−22 move MMU decode from jopcpu / extens i on to decode

49 −−

51 l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;

53 use i e e e . numeric_std . a l l ;

55 use work . jop_types . a l l ;
use work . sc_pack . a l l ;

57

95

59 e n t i t y jopcpu i s

61 g e n e r i c (
jpc_width : i n t e g e r ; −− address b i t s o f java bytecode pc =

cache s i z e
63 block_bits : i n t e g e r ; −− 2∗ block_bits i s number o f cache

b locks
spm_width : i n t e g e r := 0 −− s i z e o f scratchpad RAM (in number

o f address b i t s)
65) ;

67 port (
c l k : in s td_log i c ;

69 r e s e t : in s td_log i c ;

71 −−
−− SimpCon memory i n t e r f a c e

73 −−
sc_mem_out : out sc_out_type ;

75 sc_mem_in : in sc_in_type ;

77 −−
−− SimpCon IO i n t e r f a c e

79 −−
sc_io_out : out sc_out_type ;

81 sc_io_in : in sc_in_type ;

83

−−
85 −− SimpCon DMA i n t e r f a c e

−−
87 sc_noc_out : out sc_out_type ;

sc_noc_in : in sc_in_type ;
89

−−
91 −− I n t e r r u p t s from sc_sys

−−
93 i rq_in : in irq_bcf_type ;

irq_out : out irq_ack_type ;
95 exc_req : out exception_type ;

97 −−
−− TM except ion

99 −−

101 exc_tm_rollback : in s td_log i c := ’0 ’
) ;

103 end jopcpu ;

105 a r c h i t e c t u r e r t l o f jopcpu i s

107 −−
−− S i g n a l s

109 −−

96 JOP infrastructure

111 s i g n a l stack_tos : s td_log ic_vector (31 downto 0) ;
s i g n a l stack_nos : s td_log ic_vector (31 downto 0) ;

113 s i g n a l rd , wr : s td_log i c ;
s i g n a l mmu_instr : s td_log ic_vector (MMU_WIDTH−1 downto 0) ;

115 s i g n a l stack_din : s td_log ic_vector (31 downto 0) ;

117 −− ex tens i on /mem i n t e r f a c e

119 s i g n a l mem_in : mem_in_type ;
s i g n a l mem_out : mem_out_type ;

121

s i g n a l sc_ctrl_mem_out : sc_out_type ;
123 s i g n a l sc_ctrl_mem_in : sc_in_type ;

125 s i g n a l sc_scratch_out : sc_out_type ;
s i g n a l sc_scratch_in : sc_in_type ;

127

s i g n a l next_mux_mem : std_log ic_vector (1 downto 0) ;
129 s i g n a l dly_mux_mem : std_log ic_vector (1 downto 0) ;

s i g n a l mux_mem : std_log ic_vector (1 downto 0) ;
131 s i g n a l i s _ p i p e l i n e d : s td_log i c ;

133 s i g n a l mem_access : s td_log i c ;
s i g n a l noc_access : s td_log i c ;

135 s i g n a l i o_acces s : s td_log i c ;

137 s i g n a l bsy : s td_log i c ;

139 s i g n a l bc_wr_addr : s td_log ic_vector (jpc_width−3 downto 0) ; −−
address f o r jbc (in words !)

s i g n a l bc_wr_data : s td_log ic_vector (31 downto 0) ; −− wr i t e
data f o r jbc

141 s i g n a l bc_wr_ena : s td_log i c ;

143 −− SimpCon i o i n t e r f a c e

145 s i g n a l sp_ov : s td_log i c ;

147 −− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ s i g n a l s from extens i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

149 −−
−− s i g n a l s f o r m u l i t i p l i e r

151 −−
s i g n a l mul_dout : s td_log ic_vector (31 downto 0) ;

153 s i g n a l mul_wr : s td_log i c ;

155

s i g n a l wr_dly : s td_log i c ; −− generate a bsy with delayed
wr

157

s i g n a l exr : s td_log ic_vector (31 downto 0) ; −−
ex tens i on data r e g i s t e r

159

161 begin

97

163 exc_req . r o l l b a c k <= exc_tm_rollback ;

165 −−
−− components o f jop

167 −−

169 core : e n t i t y work . core
g e n e r i c map(jpc_width)

171 port map (
c l k => clk ,

173 r e s e t => r e s e t ,
bsy => bsy ,

175 din => stack_din ,
mem_in => mem_in ,

177 mmu_instr => mmu_instr ,
mul_wr => mul_wr ,

179 wr_dly => wr_dly ,
bc_wr_addr => bc_wr_addr ,

181 bc_wr_data => bc_wr_data ,
bc_wr_ena => bc_wr_ena ,

183 i rq_in => irq_in ,
irq_out => irq_out ,

185 sp_ov => sp_ov ,
aout => stack_tos ,

187 bout => stack_nos
) ;

189

exc_req . spov <= sp_ov ;
191

mem: e n t i t y work . mem_sc
193 g e n e r i c map (

jpc_width => jpc_width ,
195 block_bits => block_bits

)
197 port map (

c l k => clk ,
199 r e s e t => r e s e t ,

a in => stack_tos ,
201 bin => stack_nos ,

203 np_exc => exc_req . np ,
ab_exc => exc_req . ab ,

205

mem_in => mem_in ,
207 mem_out => mem_out ,

209 bc_wr_addr => bc_wr_addr ,
bc_wr_data => bc_wr_data ,

211 bc_wr_ena => bc_wr_ena ,

213 sc_mem_out => sc_ctrl_mem_out ,
sc_mem_in => sc_ctrl_mem_in

215) ;

98 JOP infrastructure

217

−−
219 −− Generate scratchpad memory when s i z e i s != 0 .

−− Resu l t s in warnings when the s i z e i s 0 .
221 −−

sc1 : i f spm_width /= 0 generate
223 scm : e n t i t y work . sdpram

g e n e r i c map (
225 width => 32 ,

addr_width => spm_width
227)

port map (
229 wrclk => clk ,

data => sc_scratch_out . wr_data ,
231 wraddress => sc_scratch_out . address (spm_width−1 downto 0) ,

wren => sc_scratch_out . wr ,
233 r d c l k => clk ,

rdaddress => sc_scratch_out . address (spm_width−1 downto 0) ,
235 rden => sc_scratch_out . rd ,

dout => sc_scratch_in . rd_data
237) ;

end generate ;
239

sc_scratch_in . rdy_cnt <= (o t he r s => ’ 0 ’) ;
241

−−
243 −− S e l e c t f o r the read mux

−−
245 −− TODO: t h i s mux s e l e c t i o n works ONLY f o r two c y c l e p i p e l i n i n g !

−− 2 5 . 3 . 2 0 1 1 : should now be ok − at l e a s t the bug with
247 −− SPM, NoC IO , and TDMA a r b i t e r d i sappeared

−− TODO: should check more c o n f i g u r a t i o n s
249 −−

251 p r o c e s s (c lk , r e s e t)
begin

253 i f (r e s e t = ’1 ’) then
dly_mux_mem <= (o th e r s => ’ 0 ’) ;

255 next_mux_mem <= (ot h e r s => ’ 0 ’) ;
i s _ p i p e l i n e d <= ’ 0 ’ ;

257 e l s i f r i s ing_edge (c l k) then

259 i f sc_ctrl_mem_out . rd = ’1 ’ or sc_ctrl_mem_out . wr= ’1 ’ then
−− i f sc_ctrl_mem_out . rd = ’1 ’ then

261 −− h i g h e s t address b i t s d e c i d e s between IO , memory , and on−
chip memory

−− save the mux s e l e c t i o n on read or wr i t e
263 next_mux_mem <= sc_ctrl_mem_out . address (SC_ADDR_SIZE−1 downto

SC_ADDR_SIZE−2) ;
−− a read or wr i t e with rdy_cnt o f 1 means p i p e l i n i n g

265 i f sc_ctrl_mem_in . rdy_cnt = " 01 " then
i s _ p i p e l i n e d <= ’ 1 ’ ;

267 end i f ;
−− remeber f o r the next mux s e l e c t i o n in case o f p i p e l i n i n g

269 dly_mux_mem <= next_mux_mem ;

99

end i f ;
271 −− −− delayed mux s e l e c t i o n f o r p i p e l i n e d a c c e s s

−− i f sc_ctrl_mem_in . rdy_cnt (1) = ’0 ’ then
273 −− dly_mux_mem <= next_mux_mem ;

−− end i f ;
275 −− p i p e l i n i n g i s over

i f sc_ctrl_mem_in . rdy_cnt = " 00 " then
277 i s _ p i p e l i n e d <= ’ 0 ’ ;

end i f ;
279

end i f ;
281 end p r o c e s s ;

283 p r o c e s s (next_mux_mem, dly_mux_mem, sc_ctrl_mem_out , sc_ctrl_mem_in ,
sc_mem_in , sc_io_in , sc_noc_in , i s_p ipe l ined , mux_mem)

begin
285

mem_access <= ’ 0 ’ ;
287 noc_access <= ’ 0 ’ ;

i o_acces s <= ’ 0 ’ ;
289

−− f o r one c y c l e p e r i p h e r a l s we need to s e t the mux from
next_mux_mem

291 mux_mem <= next_mux_mem ;
−− f o r p i p e l i n i n g we need to de lay the mux s e l e c t i o n

293 i f i s _ p i p e l i n e d = ’1 ’ then
mux_mem <= dly_mux_mem ;

295 end i f ;

297 −− read MUX
case mux_mem i s

299 when " 10 " =>
−−sc_ctrl_mem_in <= sc_scratch_in ;

301 sc_ctrl_mem_in <= sc_noc_in ;
when " 11 " =>

303 sc_ctrl_mem_in <= sc_io_in ;
when o th e r s =>

305 sc_ctrl_mem_in <= sc_mem_in ;
end case ;

307

−− s e l e c t
309 case sc_ctrl_mem_out . address (SC_ADDR_SIZE−1 downto SC_ADDR_SIZE

−2) i s
when " 10 " =>

311 noc_access <= ’ 1 ’ ;
when " 11 " =>

313 i o_acces s <= ’ 1 ’ ;
when o th e r s =>

315 mem_access <= ’ 1 ’ ;
end case ;

317

end p r o c e s s ;
319

sc_mem_out . address <= sc_ctrl_mem_out . address ;
321 sc_mem_out . wr_data <= sc_ctrl_mem_out . wr_data ;

100 JOP infrastructure

sc_mem_out . wr <= sc_ctrl_mem_out . wr and mem_access ;
323 sc_mem_out . rd <= sc_ctrl_mem_out . rd and mem_access ;

sc_mem_out . atomic <= sc_ctrl_mem_out . atomic ;
325 sc_mem_out . cache <= sc_ctrl_mem_out . cache ;

sc_mem_out . c i n v a l <= sc_ctrl_mem_out . c i n v a l ;
327 sc_mem_out . tm_cache <= sc_ctrl_mem_out . tm_cache ;

329 −−sc_scratch_out . address <= sc_ctrl_mem_out . address ;
−−sc_scratch_out . wr_data <= sc_ctrl_mem_out . wr_data ;

331 −−sc_scratch_out . wr <= sc_ctrl_mem_out . wr and sc ratch_acces s ;
−−sc_scratch_out . rd <= sc_ctrl_mem_out . rd and sc ratch_acces s ;

333 −−sc_scratch_out . atomic <= sc_ctrl_mem_out . atomic ;
−−sc_scratch_out . c i n v a l <= sc_ctrl_mem_out . c i n v a l ;

335 −−sc_scratch_out . cache <= sc_ctrl_mem_out . cache ;

337 sc_noc_out . address <= sc_ctrl_mem_out . address ;
sc_noc_out . wr_data <= sc_ctrl_mem_out . wr_data ;

339 sc_noc_out . wr <= sc_ctrl_mem_out . wr and noc_access ;
sc_noc_out . rd <= sc_ctrl_mem_out . rd and noc_access ;

341 sc_noc_out . atomic <= sc_ctrl_mem_out . atomic ;
sc_noc_out . c i n v a l <= sc_ctrl_mem_out . c i n v a l ;

343 sc_noc_out . cache <= sc_ctrl_mem_out . cache ;

345 sc_io_out . address <= sc_ctrl_mem_out . address ;
sc_io_out . wr_data <= sc_ctrl_mem_out . wr_data ;

347 sc_io_out . wr <= sc_ctrl_mem_out . wr and io_acces s ;
sc_io_out . rd <= sc_ctrl_mem_out . rd and io_acces s ;

349 sc_io_out . atomic <= sc_ctrl_mem_out . atomic ;
sc_io_out . c i n v a l <= sc_ctrl_mem_out . c i n v a l ;

351 sc_io_out . cache <= sc_ctrl_mem_out . cache ;

353 −− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ code from extens i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

355 ml : e n t i t y work . mul
port map (

357 c l k => clk ,
a in => stack_tos ,

359 bin => stack_nos ,
wr => mul_wr ,

361 dout => mul_dout
) ;

363

stack_din <= exr ;
365

−−
367 −− TODO: the f o l l o w i n g code i s degenerated to decode f u n c t i o n s

−− should probably go to decode . vhd
369 −−

371 −−
−− read

373 −−
−− TODO: the read MUX could be s e t by us ing the

375 −− accord ing wr/mmu_instr from JOP and not the
−− f o l l o w i n g rd /mmu_instr

101

377 −− Than no in te rmix ing o f mul/mem and i o o p e r a t i o n s
−− i s a l lowed . But we are not us ing i n t e r l e a v e d mul/mem/ i o

379 −− o p e r a t i o n s in jvm . asm anyway .
−−

381 −− TAKE CARE when mem_out . b c s t a r t i s read !
−−

383 −− ∗∗ b c s t a r t i s a l s o read without a mem_bc_rd JOP wr ! ! ! ∗∗∗
−− => a combinator ia l mux s e l e c t on rd and ext_adr==7!

385 −−
−− The r e s t could be s e t with JOP wr s t a r t t r a n s a c t i o n

387 −− I s t h i s a l s o t rue f o r io_data ?
−−

389 −− 29 .11 . 2005 evening : I th ink t h i s s o l u t i o n d r i v i n g the exr
−− mux from mmu_instr i s q u i t e ok . The p i p e l i n i n g from rd /ext_adr

391 −− to A i s f i x e d .
−−

393 p r o c e s s (c lk , r e s e t)
begin

395 i f (r e s e t = ’1 ’) then
exr <= (o t he r s => ’ 0 ’) ;

397 e l s i f r i s ing_edge (c l k) then

399 i f (mmu_instr=LDMRD) then
exr <= mem_out . dout ;

401 e l s i f (mmu_instr=LDMUL) then
exr <= mul_dout ;

403 −− e l s i f (mmu_instr=LDBCSTART) then
e l s e

405 exr <= mem_out . b c s t a r t ;
end i f ;

407

end i f ;
409 end p r o c e s s ;

411

−− a JOP wr g e n e r a t e s the f i r s t bsy c y c l e
413 −− the f o l l o w i n g are generated by the memory

−− system or the SimpCon dev i ce
415 bsy <= wr_dly or mem_out . bsy ;

417 end r t l ;

Listing C.2: jopmul_512x32.vhd
1 −−

−−
3 −− This f i l e i s a part o f JOP, the Java Optimized Proces sor

−−
5 −− Copyright (C) 2001 −2008 , Martin Schoeber l (martin@jopdesign . com

)
−−

7 −− This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or
modify

−− i t under the terms o f the GNU General Publ ic L i cense as
publ i shed by

102 JOP infrastructure

9 −− the Free Software Foundation , e i t h e r v e r s i o n 3 o f the License ,
or

−− (at your opt ion) any l a t e r v e r s i o n .
11 −−

−− This program i s d i s t r i b u t e d in the hope that i t w i l l be u s e f u l ,
13 −− but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

−− MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 −− GNU General Publ ic L i cense f o r more d e t a i l s .

−−
17 −− You should have r e c e i v e d a copy o f the GNU General Publ ic

L i cense
−− along with t h i s program . I f not , s e e <http ://www. gnu . org /

l i c e n s e s />.
19 −−

21

−−
23 −− jopmul_512x32 . vhd

−−
25 −− top l e v e l f o r a 512 x32 SSRAM board (e . g . Al tera DE2−70 board)

−−
27 −− 2006−08−06 adapted from jopcyc . vhd

−− 2007−06−04 Use jopcpu and change component i n t e r f a c e to
r e c o r d s

29 −− 2010−06−25 Working v e r s i o n with SSRAM
−−

31

33 l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;

35 use i e e e . numeric_std . a l l ;

37 use work . jop_types . a l l ;
use work . sc_pack . a l l ;

39 use work . sc_arbiter_pack . a l l ;
use work . jop_conf ig . a l l ;

41 use work . d e f s . a l l ;

43

e n t i t y jop i s
45

g e n e r i c (
47 ram_cnt : i n t e g e r := 3 ; −− c l o c k c y c l e s f o r e x t e r n a l ram

−− rom_cnt : i n t e g e r := 3 ; −− c l o c k c y c l e s f o r e x t e r n a l rom OK
f o r 20 MHz

49 rom_cnt : i n t e g e r := 15 ; −− c l o c k c y c l e s f o r e x t e r n a l rom f o r
100 MHz

jpc_width : i n t e g e r := 12 ; −− address b i t s o f java bytecode pc =
cache s i z e

51 block_bits : i n t e g e r := 5 ; −− 2∗ block_bits i s number o f cache
b locks

spm_width : i n t e g e r := 7 ; −− s i z e o f scratchpad RAM (in number
o f address b i t s f o r 32− b i t words)

53 cpu_cnt : i n t e g e r := 9 −− number o f cpus
) ;

103

55

port (
57 c l k : in s td_log i c ;

−−
59 −− s e r i a l i n t e r f a c e

−−
61 ser_txd : out s td_log i c ;

ser_rxd : in s td_log i c ;
63 oUART_CTS : in s td_log i c ;

iUART_RTS : out s td_log i c ;
65

−−
67 −− watchdog

−−
69 wd : out s td_log i c ;

71 −−
−− LEDs

73 −−
oLEDR : out std_log ic_vector (17 downto 0) ;

75 −− oLEDG : out std_log ic_vector (7 downto 0) ;

77

79 −−
−− Switches

81 −−
iSW : in std_log ic_vector (17 downto 0) ;

83

−−
85 −− only one ram bank

−−
87 oSRAM_A : out std_log ic_vector (18 downto 0) ; −− e d i t

SRAM_DQ : inout s td_log ic_vector (31 downto 0) ; −− e d i t
89 oSRAM_CE1_N : out s td_log i c ;

oSRAM_OE_N : out s td_log i c ;
91 oSRAM_BE_N : out std_log ic_vector (3 downto 0) ;

oSRAM_WE_N : out s td_log i c ;
93 oSRAM_GW_N : out s td_log i c ;

oSRAM_CLK : out s td_log i c ;
95 oSRAM_ADSC_N : out s td_log i c ;

oSRAM_ADSP_N : out s td_log i c ;
97 oSRAM_ADV_N : out s td_log i c ;

oSRAM_CE2 : out s td_log i c ;
99 oSRAM_CE3_N : out s td_log i c

) ;
101 end jop ;

103 a r c h i t e c t u r e r t l o f jop i s

105 −−
−− components :

107 −−

109 component p l l i s

104 JOP infrastructure

g e n e r i c (multiply_by : natura l ; divide_by : natura l) ;
111 port (

i n c l k 0 : in s td_log i c ;
113 c0 : out s td_log i c ;

c1 : out s td_log i c ;
115 l ocked : out s td_log i c

) ;
117 end component ;

119

−−
121 −− S i g n a l s

−−
123 s i g n a l c lk_int : s td_log i c ;

s i g n a l c lk_int_inv : s td_log i c ;
125 s i g n a l p l l_ lo ck : s td_log i c ;

127 s i g n a l in t_res : s td_log i c ;
s i g n a l res_cnt : unsigned (2 downto 0) := " 000 " ; −− f o r the

s imu la t i on
129

a t t r i b u t e a l t e r a _ a t t r i b u t e : s t r i n g ;
131 a t t r i b u t e a l t e r a _ a t t r i b u t e o f res_cnt : s i g n a l i s "POWER_UP_LEVEL

=LOW" ;

133 −−
−− jopcpu connect i ons

135 −−
s i g n a l sc_arb_out : arb_out_type (0 to cpu_cnt −1) ;

137 s i g n a l sc_arb_in : arb_in_type (0 to cpu_cnt −1) ;

139 s i g n a l sc_mem_out : sc_out_type ;
s i g n a l sc_mem_in : sc_in_type ;

141 s i g n a l sc_local_mem_out : sc_out_array_type (0 to cpu_cnt −1) ;
s i g n a l sc_local_mem_in : sc_in_array_type (0 to cpu_cnt −1) ;

143

s i g n a l sc_io_out : sc_out_array_type (0 to cpu_cnt −1) ;
145 s i g n a l sc_io_in : sc_in_array_type (0 to cpu_cnt −1) ;

s i g n a l sc_noc_out : sc_out_array_type (0 to cpu_cnt −1) ;
147 s i g n a l sc_noc_in : sc_in_array_type (0 to cpu_cnt −1) ;

149 s i g n a l i rq_in : irq_in_array_type (0 to cpu_cnt −1) ;
s i g n a l irq_out : irq_out_array_type (0 to cpu_cnt −1) ;

151 s i g n a l exc_req : exception_array_type (0 to cpu_cnt −1) ;

153 −−
−− IO i n t e r f a c e

155 −−
s i g n a l ser_in : ser_in_type ;

157 s i g n a l ser_out : ser_out_type ;
type wd_out_array i s array (0 to cpu_cnt −1) o f s td_log i c ;

159 s i g n a l wd_out : wd_out_array ;

161 −− f o r gene ra t i on o f i n t e r n a l r e s e t
−− memory i n t e r f a c e

105

163

s i g n a l ram_addr : s td_log ic_vector (18 downto 0) ;
165 s i g n a l ram_dout : s td_log ic_vector (31 downto 0) ;

s i g n a l ram_din : s td_log ic_vector (31 downto 0) ;
167 s i g n a l ram_dout_en : s td_log i c ;

s i g n a l ram_clk : s td_log i c ;
169 s i g n a l ram_nsc : s td_log i c ;

s i g n a l ram_ncs : s td_log i c ;
171 s i g n a l ram_noe : s td_log i c ;

s i g n a l ram_nwe : s td_log i c ;
173

−− cmpsync
175

s i g n a l sync_in_array : sync_in_array_type (0 to cpu_cnt −1) ;
177 s i g n a l sync_out_array : sync_out_array_type (0 to cpu_cnt −1) ;

179 −− not a v a i l a b l e at t h i s board :
s i g n a l ser_ncts : s td_log i c ;

181 s i g n a l se r_nrts : s td_log i c ;

183 −− remove the comment f o r RAM a c c e s s count ing
−− s i g n a l ram_count : s td_log i c ;

185

−− NoC s i g n a l s
187 s i g n a l procM : procMasters ;

s i g n a l procS : procS laves ;
189

begin
191

ser_ncts <= ’ 0 ’ ;
193 −−

−− i n t e r n r e s e t
195 −− no extern r e s e t , epm7064 has too l e s s p ins

−−
197

−− should a l s o use PLL lock s i g n a l
199 p r o c e s s (c lk_int)

begin
201 i f r i s ing_edge (c lk_int) then

i f (res_cnt/=" 111 ") then
203 res_cnt <= res_cnt +1;

end i f ;
205

i n t_res <= not res_cnt (0) or not res_cnt (1) or not res_cnt (2) ;
207 end i f ;

end p r o c e s s ;
209

−−
211 −− components o f jop

−−
213 p l l _ i n s t : p l l g e n e r i c map(

multiply_by => pll_mult ,
215 divide_by => pl l_div

)
217 port map (

106 JOP infrastructure

i n c l k 0 => clk ,
219 c0 => clk_int ,

c1 => clk_int_inv ,
221 l ocked => pl l_ lo ck

) ;
223 −− c lk_int <= c l k ;

225 −− p r o c e s s (wd_out)
−− v a r i a b l e wd_help : s td_log i c ;

227 −− begin
−− wd_help := ’ 0 ’ ;

229 −− f o r i in 0 to cpu_cnt−1 loop
−− wd_help := wd_help or wd_out(i) ;

231 −− end loop ;
−− wd <= wd_help ;

233 −− end p r o c e s s ;

235 wd <= wd_out (0) ;

237 gen_cpu : f o r i in 0 to cpu_cnt−1 generate
cpu : e n t i t y work . jopcpu

239 g e n e r i c map(
jpc_width => jpc_width ,

241 block_bits => block_bits ,
spm_width => spm_width

243)
port map(clk_int , int_res ,

245 sc_arb_out (i) , sc_arb_in (i) ,
sc_io_out (i) , sc_io_in (i) ,

247 sc_noc_out (i) , sc_noc_in (i) ,
i rq_in (i) , irq_out (i) , exc_req (i)) ;

249 end generate ;

251 sc_noc : e n t i t y work . sc2ocp_noc
port map(

253 c l k => clk_int ,
r e s e t => int_res ,

255 sc_noc_out => sc_noc_out ,
sc_noc_in => sc_noc_in

257) ;

259

a r b i t e r : e n t i t y work . a r b i t e r
261 g e n e r i c map(

addr_bits => SC_ADDR_SIZE,
263 cpu_cnt => cpu_cnt ,

write_gap => 2 ,
265 read_gap => 2 ,

s l o t_ length => 3
267)

port map(clk_int , int_res ,
269 sc_arb_out , sc_arb_in ,

sc_mem_out , sc_mem_in) ;
271

−− i o f o r p r o c e s s o r 0

107

273 i o : e n t i t y work . s c i o g e n e r i c map (
cpu_id => 0 ,

275 cpu_cnt => cpu_cnt
)

277 port map (clk_int , int_res ,
sc_io_out (0) , sc_io_in (0) ,

279 i rq_in (0) , irq_out (0) , exc_req (0) ,

281 sync_out => sync_out_array (0) ,
sync_in => sync_in_array (0) ,

283

txd => ser_txd ,
285 rxd => ser_rxd ,

nct s => oUART_CTS,
287 n r t s => iUART_RTS,

289 oLEDR => oLEDR,
−− oLEDG => oLEDG,

291 iSW => iSW ,

293 wd => wd_out (0) ,
l => open ,

295 r => open ,
t => open ,

297 b => open
−− remove the comment f o r RAM a c c e s s count ing

299 −− ram_cnt => ram_count
) ;

301

−− i o f o r p r o c e s s o r s with only sc_sys
303 gen_io : f o r i in 1 to cpu_cnt−1 generate

i o2 : e n t i t y work . sc_sys g e n e r i c map (
305 addr_bits => 4 ,

c lk_f req => clk_freq ,
307 cpu_id => i ,

cpu_cnt => cpu_cnt
309)

port map(
311 c l k => clk_int ,

r e s e t => int_res ,
313 address => sc_io_out (i) . address (3 downto 0) ,

wr_data => sc_io_out (i) . wr_data ,
315 rd => sc_io_out (i) . rd ,

wr => sc_io_out (i) . wr ,
317 rd_data => sc_io_in (i) . rd_data ,

rdy_cnt => sc_io_in (i) . rdy_cnt ,
319

i rq_in => irq_in (i) ,
321 i rq_out => irq_out (i) ,

exc_req => exc_req (i) ,
323

sync_out => sync_out_array (i) ,
325 sync_in => sync_in_array (i) ,

wd => wd_out(i)
327 −− remove the comment f o r RAM a c c e s s count ing

108 JOP infrastructure

−− ram_count => ram_count
329) ;

end generate ;
331

scm : e n t i t y work . sc_mem_if
333 g e n e r i c map (

ram_ws => ram_cnt−1,
335 addr_bits => 19

)
337 port map (clk_int , int_res ,

clk_int_inv ,
339 sc_mem_out , sc_mem_in ,

341 ram_addr => ram_addr ,
ram_dout => ram_dout ,

343 ram_din => ram_din ,
ram_dout_en => ram_dout_en ,

345 ram_clk => ram_clk ,
ram_nsc => ram_nsc ,

347 ram_ncs => ram_ncs ,
ram_noe => ram_noe ,

349 ram_nwe => ram_nwe
) ;

351

353 −− s y n c r o n i z a t i o n o f p r o c e s s o r s
sync : e n t i t y work . cmpsync g e n e r i c map (

355 cpu_cnt => cpu_cnt)
port map

357 (
c l k => clk_int ,

359 r e s e t => int_res ,
sync_in_array => sync_in_array ,

361 sync_out_array => sync_out_array
) ;

363

365 p r o c e s s (ram_dout_en , ram_dout)
begin

367 i f ram_dout_en= ’1 ’ then
SRAM_DQ <= ram_dout ;

369 e l s e
SRAM_DQ <= (ot h e r s => ’Z ’) ;

371 end i f ;
end p r o c e s s ;

373

ram_din <= SRAM_DQ;
375

−− remove the comment f o r RAM a c c e s s count ing
377 −− ram_count <= ram_ncs ;

379 −−
−− To put t h i s RAM address in an output r e g i s t e r

381 −− we have to make an assignment (FAST_OUTPUT_REGISTER)
−−

109

383 oSRAM_A <= ram_addr ;
oSRAM_CE1_N <= ram_ncs ;

385 oSRAM_OE_N <= ram_noe ;
oSRAM_WE_N <= ram_nwe ;

387 oSRAM_BE_N <= (o t he r s => ’ 0 ’) ;
oSRAM_GW_N <= ’ 1 ’ ;

389 oSRAM_CLK <= ram_clk ;

391 oSRAM_ADSC_N <= ram_nsc ;
oSRAM_ADSP_N <= ’ 1 ’ ;

393 oSRAM_ADV_N <= ’ 1 ’ ;

395 oSRAM_CE2 <= not ram_ncs ;
oSRAM_CE3_N <= ram_ncs ;

397

end r t l ;

110 JOP infrastructure

Appendix D

TDM scheduler source code

This appendix contains the following files:

IOutput.h is the abstract class that describes the interface of an Output class,
the file starts on page 112.

xmlOutput.h is the header file of the Output class that writes the xml output,
the file starts on page 112.

xmlOutput.cpp is the Output class that writes the xml output, the file starts
on page 113.

vhdlOutput.h is the header file of the Output class that writes the vhdl out-
put, the file starts on page 117.

vhdlOutput.cpp is the Output class that writes the vhdl output, the file starts
on page 118.

ScheduleConverter.java is the main class of the schedule converter that con-
verts the xml file to a Java array, the file starts on page 125.

SchedulePrinter.java is the SchedulePrinter class that formats and prints the
Java file, the file starts on page 128.

TileCoord.java is a class for saving the coordinate of a tile, the file starts on
page 131.

112 TDM scheduler source code

Listing D.1: IOutput.h
/∗

2 ∗ F i l e : IOutput . h
∗ Author : Rasmus Bo Soerensen

4 ∗
∗ Created on 6 . august 2012 , 11 :07

6 ∗/

8 #i f n d e f IOUTPUT_H
#d e f i n e IOUTPUT_H

10

#i n c l u d e " schedu le . hpp "
12

c l a s s IOutput
14 {

p u b l i c :
16 v i r t u a l bool output_schedule (const network_t& n) =0;

} ;
18

#e n d i f /∗ IOUTPUT_H ∗/

Listing D.2: xmlOutput.h
/∗

2 ∗ F i l e : xmlOutput . h
∗ Author : T410s

4 ∗
∗ Created on 6 . august 2012 , 11 :13

6 ∗/

8 #i f n d e f XMLOUTPUT_H
#d e f i n e XMLOUTPUT_H

10

#i n c l u d e <iostream>
12 #i n c l u d e <fstream>

#i n c l u d e <s t r i n g >
14 #i n c l u d e <math . h>

#i n c l u d e <s t d l i b . h>
16 #i n c l u d e <unordered_map>

#i n c l u d e <cs td io >
18 #i n c l u d e " IOutput . h "

#i n c l u d e " lex_cast . h "
20 #i n c l u d e " pugixml . hpp "

22

c l a s s xmlOutput : p u b l i c IOutput {
24 p r i v a t e :

s t r i n g output_dir ;
26

char p2c (port_id p) ;
28 void print_coord (const pair <int , int > r , char ∗ co , const s i z e_t

b u f f e r _ s i z e) ;

30 p u b l i c :

113

xmlOutput (s t r i n g _output_dir) ;
32 ~xmlOutput () ;

34 bool output_schedule (const network_t& n) ;

36 } ;

38 #e n d i f /∗ XMLOUTPUT_H ∗/

Listing D.3: xmlOutput.cpp
1 /∗

∗ F i l e : xmlOutput . cpp
3 ∗ Author : Rasmus

∗
5 ∗ Created on 6 . august 2012 , 11 :13

∗/
7

#i n c l u d e <s t r i n g . h>
9

#i n c l u d e " xmlOutput . h "
11

13 bool xmlOutput : : output_schedule (const network_t& n)
{

15 i n t numOfNodes = n . r o u t e r s () . s i z e () ;
i n t countWidth = c e i l (l og2 (n . bes t)) ;

17

xml_document doc ;
19 xml_node schedu le = doc . append_child (" schedu le ") ;

s chedu le . append_attr ibute (" l ength ") . set_value (n . bes t) ;
21

f o r (vector <router_t ∗ >:: c o n s t _ i t e r a t o r r = n . r o u t e r s () . begin () ; r
!= n . r o u t e r s () . end () ; r++){ // For each router , wr i t e Network

Adapter Table and Router Table
23 // New xml t i l e

xml_node t i l e = schedu le . append_child (" t i l e ") ;
25 char co [1 0] ;

pr int_coord ((∗ r)−>address , co , s i z e o f (co)) ;
27 t i l e . append_attr ibute (" id ") = co ;

// Vector f o r sav ing data to c a l c u l a t e Worst−Case L a t e nc i e s
29 vector <router_id> d e s t i n a t i o n s (n . best , (∗ r)−>address) ;

f o r (t i m e s l o t t = 0 ; t < n . bes t ; t++){ // Write t a b l e row f o r
each t i m e s l o t

31 // New t i m e s l o t
xml_node t s = t i l e . append_child (" t i m e s l o t ") ;

33 t s . append_attr ibute (" va lue ") = t ;
i n t t0 = t −1;

35 i n t t1 = t ;
i f (t == 0) {

37 t0 = n . best −1;
t1 = n . bes t ;

39 }
// Write row in Network Adapter t a b l e

41 router_id dest_id = (∗ r)−>address ;

114 TDM scheduler source code

router_id src_id = (∗ r)−>address ;
43 i f ((∗ r)−>loca l_in_best_schedule . has ((t +2)%n . bes t)) {

dest_id = (∗ r)−>loca l_in_best_schedule . get ((t +2)%n . bes t)−>
to ;

45 }
i f ((∗ r)−>local_out_best_schedule . has (t1))

47 src_id = (∗ r)−>local_out_best_schedule . get (t1)−>from ;
d e s t i n a t i o n s [t] = dest_id ;

49 // New na
xml_node na = t s . append_child (" na ") ;

51 print_coord (src_id , co , s i z e o f (co)) ;
na . append_attr ibute (" rx ") = co ;

53 print_coord (dest_id , co , s i z e o f (co)) ;
na . append_attr ibute (" tx ") = co ;

55

// Write row in Router t a b l e
57 port_id por t s [5] = {__NUM_PORTS, __NUM_PORTS, __NUM_PORTS,

__NUM_PORTS, __NUM_PORTS} ;
// New r o u t e r

59 xml_node r o u t e r = t s . append_child (" r o u t e r ") ;

61

f o r (i n t out_p = 0 ; out_p < __NUM_PORTS−1; out_p++){
63 // For a l l 4 output por t s not being the l o c a l port .

i f (! (∗ r)−>out ((port_id) out_p) . has_l ink ()) {
65 cont inue ; // No outgoing l i n k from the port .

}
67 i f (! (∗ r)−>out ((port_id) out_p) . l i n k () . best_schedule . has (t)) {

por t s [(port_id) out_p] = __NUM_PORTS; // No outgoing
channel on l i n k

69 cont inue ;
}

71 // I f the re i s a channel comming out o f the port , f i n d the
// input port from which the channel i s comming from .

73 const channel ∗ out_c =(∗ r)−>out ((port_id) out_p) . l i n k () .
best_schedule . get (t) ;

f o r (i n t in_p = 0 ; in_p < __NUM_PORTS−1; in_p++){
75 // For a l l 4 input por t s not being the l o c a l port .

i f (! (∗ r)−>in ((port_id) in_p) . has_l ink ())
77 cont inue ; // No l i n k i n t o t h i s port

i f ((∗ r)−>in ((port_id) in_p) . l i n k () . best_schedule . has (t0)) {
79 const channel ∗ in_c =(∗ r)−>in ((port_id) in_p) . l i n k () .

best_schedule . get (t0) ;
i f (out_c == in_c) {

81 // The c o r r e c t l i n k found
por t s [(port_id) out_p] = (port_id) in_p ;

83 break ;
}

85 }
}

87 i f (por t s [(port_id) out_p] != __NUM_PORTS) {
cont inue ; // Channel was found on one o f the input por t s .

89 }
// I t should be on the l o c a l in port , but we t e s t i t anyway

.

115

91 i f ((∗ r)−>loca l_in_best_schedule . has (t)) {
const channel ∗ in_c = (∗ r)−>loca l_in_best_schedule . get (t)

;
93 i f (out_c == in_c) {

// The c o r r e c t l i n k found
95 por t s [(port_id) out_p] = L ;

} e l s e {
97 cout << " F a i l u r e : Channel r o s e from nothing l i k e a

f e n i x . " << endl ;
}

99 }
}

101

i f ((∗ r)−>local_out_best_schedule . has (t1)) { // For the l o c a l
out port .

103 const channel ∗ out_c = (∗ r)−>local_out_best_schedule . get (t1
) ;

f o r (i n t in_p = 0 ; in_p < __NUM_PORTS−1; in_p++){
105 // For a l l 4 input por t s not being the l o c a l port .

i f (! (∗ r)−>in ((port_id) in_p) . has_l ink ())
107 cont inue ; // No l i n k i n t o t h i s port

i f ((∗ r)−>in ((port_id) in_p) . l i n k () . best_schedule . has (t0)) {
109 const channel ∗ in_c =(∗ r)−>in ((port_id) in_p) . l i n k () .

best_schedule . get (t0) ;
i f (out_c == in_c) {

111 // The c o r r e c t l i n k found
por t s [L] = (port_id) in_p ;

113 break ;
}

115 }
}

117 i f (por t s [L] == __NUM_PORTS) {
// I f channel was not found on any o f the 4 input por t s .

119 // I t should be on the l o c a l in port , but we t e s t i t
anyway .

cout << " F a i l u r e : Not a l lowed to route back in to l o c a l . "
<< endl ;

121 }
// and so on . . .

123 }
f o r (i n t p = 0 ; p < __NUM_PORTS; p++){

125 // New output
xml_node output = r o u t e r . append_child (" output ") ;

127 s p r i n t f (co , "%c " , p2c ((port_id)p)) ; // Should be s n p r i n t f ,
avo id ing b u f f e r over f l ow

// s p r i n t f (co , s i z e o f (co) ,"% c " , p2c ((port_id)p)) ;
129 output . append_attr ibute (" id ") = co ;

s p r i n t f (co , "%c " , p2c (por t s [(port_id)p])) ; // Should be
s n p r i n t f , avo id ing b u f f e r over f l ow

131 // s p r i n t f (co , s i z e o f (co) ,"% c " , p2c (por t s [(port_id)p])) ;
output . append_attr ibute (" input ") = co ;

133 }

135 }
xml_node l a t e n c y = t i l e . append_child (" l a t e n c y ") ;

116 TDM scheduler source code

137 // The f o l l o w i n g f o r loop i s slow and unnecessary , can be
changed to improve runtime

for_each (n . channe l s () , [&] (const channel & c) {
139 i f (c . from != (∗ r)−>address) {

re turn ; // Channel not from r o u t e r
141 }

// For each channel from r o u t e r
143 i n t WCL = 0 ;

i n t l a t e = 0 ;
145 i n t i n l a t e = 0 ;

bool i n i t = true ;
147 f o r (i n t i = 0 ; i < n . bes t ; i++){

i f (c . to != d e s t i n a t i o n s [i]) {
149 // Increment l a t e n c y

l a t e ++;
151 cont inue ;

}
153 // Correct d e s t i n a t i o n

i f (i n i t) {
155 i n i t = f a l s e ;

i n l a t e = l a t e ;
157 }

i f (l a t e > WCL) {
159 WCL = l a t e ;

}
161 l a t e = 0 ;

}
163 l a t e += i n l a t e ;

i f (l a t e > WCL) {
165 WCL = l a t e ;

}
167 // Analyze the l a t e n c y

xml_node d e s t i n a t i o n = l a t e n c y . append_child (" d e s t i n a t i o n ") ;
169 print_coord (c . to , co , s i z e o f (co)) ;

d e s t i n a t i o n . append_attr ibute (" id ") = co ;
171 d e s t i n a t i o n . append_attr ibute ("WCL") = WCL;

}) ;
173 }

char co [5 0 0] ;
175 s p r i n t f (co , "%soutput . xml " , output_dir . c_str ()) ; // Should be

s n p r i n t f , avo id ing b u f f e r over f l ow
// s p r i n t f (co , s i z e o f (co) ,"% soutput . xml " , output_dir . c_str ()) ;

177 doc . s a v e _ f i l e (co) ;

179 d e l e t e t h i s ;
r e turn true ;

181 }

183 void xmlOutput : : pr int_coord (const pair <int , int > r , char ∗ co , const
s i z e_t b u f f e _ s i z e) {

s p r i n t f (co , "(%i ,% i) " , r . f i r s t , r . second) ; // Should be s n p r i n t f ,
avo id ing b u f f e r over f l ow

185 // s p r i n t f (co , b u f f e r _ s i z e ,"(% i ,% i) " , c . to . f i r s t , c . to . second) ;
}

187

117

char xmlOutput : : p2c (port_id p) {
189 char c ;

i f (p == N) c = ’N ’ ;
191 i f (p == E) c = ’E ’ ;

i f (p == S) c = ’S ’ ;
193 i f (p == W) c = ’W’ ;

i f (p == L) c = ’L ’ ;
195 i f (p == __NUM_PORTS) c = ’D ’ ;

197 r e turn c ;
}

199

xmlOutput : : xmlOutput (s t r i n g _output_dir) : output_dir (_output_dir) {
201 }

203 xmlOutput : : ~ xmlOutput () {

205 }

Listing D.4: vhdlOutput.h
1 /∗

∗ F i l e : vhdlOutput . h
3 ∗ Author : T410s

∗
5 ∗ Created on 6 . august 2012 , 11 :13

∗/
7

#i f n d e f VHDLOUTPUT_H
9 #d e f i n e VHDLOUTPUT_H

11 #i n c l u d e <iostream>
#i n c l u d e <fstream>

13 #i n c l u d e <s t r i n g >
#i n c l u d e <math . h>

15 #i n c l u d e <unordered_map>
#i n c l u d e " IOutput . h "

17 #i n c l u d e " lex_cast . h "

19

c l a s s vhdlOutput : p u b l i c IOutput {
21 p r i v a t e :

enum port {North , East , South , West , Local ,DC} ;
23

// c l a s s STslot {
25 // p u b l i c :

// port por t s [5] ;
27 // i n t x_dest ;

// i n t y_dest ;
29 // i n t x_src ;

// i n t y_src ;
31 // STslot () {

// f o r (i n t i = 0 ; i < 5 ; i++){
33 // por t s [i] = DC;

// }

118 TDM scheduler source code

35 // x_dest = 0 ;
// y_dest = 0 ;

37 // x_src = 0 ;
// y_src = 0 ;

39 // }
//

41 // } ;

43 ofstream niST ;
ofstream routerST ;

45 s t r i n g numOfNodesStr ;

47 s t r i n g bin (i n t val , i n t b i t s) ;
char p2c (port_id p) ;

49 void startST (i n t num, ofstream ∗ ST) ;
void writeHeaderRouter (i n t countWidth) ;

51 void endArchRouter () ;
void wr i t eS lo tRoute r (i n t slotNum , i n t countWidth , port_id ∗

por t s) ;
53 void writeHeaderNI (i n t countWidth , i n t numOfNodes) ;

55 void wr i teS lotNIDest (i n t slotNum , i n t countWidth , i n t des t) ;
void wr i t eS lo tNISrc (i n t s r c) ;

57

void star tn iST (i n t num) ;
59 void s ta r t route rST (i n t num) ;

void endniST (i n t num) ;
61 void endrouterST (i n t num) ;

63 void endArchNI () ;
p u b l i c :

65 vhdlOutput (s t r i n g output_dir) ;
~vhdlOutput () ;

67

// bool output_schedule (network_t& n) ;
69 bool output_schedule (const network_t& n) ;

71 } ;

73 #e n d i f /∗ VHDLOUTPUT_H ∗/

Listing D.5: vhdlOutput.cpp
/∗

2 ∗ F i l e : vhdlOutput . cpp
∗ Author : T410s

4 ∗
∗ Created on 6 . august 2012 , 11 :13

6 ∗/

8 #i n c l u d e " vhdlOutput . h "

10

bool vhdlOutput : : output_schedule (const network_t& n)
12 {

119

i n t numOfNodes = n . r o u t e r s () . s i z e () ;
14 numOfNodesStr = : : lex_cast<s t r i n g >(numOfNodes) ;

i n t countWidth = c e i l (l og2 (n . bes t)) ;
16

th i s −>writeHeaderRouter (countWidth) ;
18 th i s −>writeHeaderNI (countWidth , numOfNodes) ;

20 f o r (vector <router_t ∗ >:: c o n s t _ i t e r a t o r r = n . r o u t e r s () . begin () ; r
!= n . r o u t e r s () . end () ; r++){ // For each router , wr i t e Network

Adapter Table and Router Table
i n t r_id = (∗ r)−>address . f i r s t + (∗ r)−>address . second ∗ n . c o l s

() ;
22 th i s −>startn iST (r_id) ;

th i s −>star t route rST (r_id) ;
24 f o r (t i m e s l o t t = 0 ; t < n . bes t ; t++){ // Write t a b l e row f o r

each t i m e s l o t
i n t t0 = t −1;

26 i n t t1 = t ;
i f (t == 0) {

28 t0 = n . best −1;
t1 = n . bes t ;

30 }
// Write row in Network Adapter t a b l e

32 router_id dest_id = (∗ r)−>address ;
router_id src_id = (∗ r)−>address ;

34 i f ((∗ r)−>loca l_in_best_schedule . has ((t +2)%n . bes t)) {
dest_id = (∗ r)−>loca l_in_best_schedule . get ((t +2)%n . bes t)−>

to ;
36 }

i f ((∗ r)−>local_out_best_schedule . has (t1))
38 src_id = (∗ r)−>local_out_best_schedule . get (t1)−>from ;

40 i n t des t = dest_id . f i r s t + dest_id . second ∗ n . c o l s () ;
i n t s r c = src_id . f i r s t + src_id . second ∗ n . c o l s () ;

42

th i s −>wri teS lotNIDest (t , countWidth , des t) ;
44 th i s −>wr i t eS lo tNISrc (s r c) ;

// Write row in Router t a b l e
46 // th i s −>wri teS lo tRoute r (t , countWidth , por t s) ;

port_id por t s [5] = {__NUM_PORTS, __NUM_PORTS, __NUM_PORTS,
__NUM_PORTS, __NUM_PORTS} ;

48

f o r (i n t out_p = 0 ; out_p < __NUM_PORTS−1; out_p++){
50 // For a l l 4 output por t s not being the l o c a l port .

i f (! (∗ r)−>out ((port_id) out_p) . has_l ink ()) {
52 cont inue ; // No outgoing channel from the port .

}
54 i f ((∗ r)−>out ((port_id) out_p) . l i n k () . best_schedule . has (t)) {

// I f the re i s a channel comming out o f the port , f i n d
the

56 // input port from which the channel i s comming from .
const channel ∗ out_c =(∗ r)−>out ((port_id) out_p) . l i n k () .

best_schedule . get (t) ;
58 f o r (i n t in_p = 0 ; in_p < __NUM_PORTS−1; in_p++){

// For a l l 4 input por t s not being the l o c a l port .

120 TDM scheduler source code

60 i f (! (∗ r)−>in ((port_id) in_p) . has_l ink ())
cont inue ; // No l i n k i n t o t h i s port

62 i f ((∗ r)−>in ((port_id) in_p) . l i n k () . best_schedule . has (t0)
) { // REMEMBER: Change back t−1 −> t

const channel ∗ in_c =(∗ r)−>in ((port_id) in_p) . l i n k () .
best_schedule . get (t0) ;

64 i f (out_c == in_c) {
// The c o r r e c t l i n k found

66 por t s [(port_id) out_p] = (port_id) in_p ;
break ;

68 }
}

70 }
i f (por t s [(port_id) out_p] == __NUM_PORTS) {

72 // I f channel was not found on any o f the 4 input por t s
.

// I t should be on the l o c a l in port , but we t e s t i t
anyway .

74 i f ((∗ r)−>loca l_in_best_schedule . has (t)) {
const channel ∗ in_c = (∗ r)−>loca l_in_best_schedule .

get (t) ;
76 i f (out_c == in_c) {

// The c o r r e c t l i n k found
78 por t s [(port_id) out_p] = L ;

} e l s e {
80 cout << " F a i l u r e : Channel r o s e from nothing l i k e a

f e n i x . " << endl ;
}

82 }
}

84 } e l s e {
por t s [(port_id) out_p] = __NUM_PORTS;

86 }
// por t s [N] = ;

88

}
90 i f ((∗ r)−>local_out_best_schedule . has (t1)) { // For the l o c a l

out port .
const channel ∗ out_c = (∗ r)−>local_out_best_schedule . get (t1

) ;
92 f o r (i n t in_p = 0 ; in_p < __NUM_PORTS−1; in_p++){

// For a l l 4 input por t s not being the l o c a l port .
94 i f (! (∗ r)−>in ((port_id) in_p) . has_l ink ())

cont inue ; // No l i n k i n t o t h i s port
96 i f ((∗ r)−>in ((port_id) in_p) . l i n k () . best_schedule . has (t0)) {

const channel ∗ in_c =(∗ r)−>in ((port_id) in_p) . l i n k () .
best_schedule . get (t0) ;

98 i f (out_c == in_c) {
// The c o r r e c t l i n k found

100 por t s [L] = (port_id) in_p ;
break ;

102 }
}

104 }
i f (por t s [L] == __NUM_PORTS) {

121

106 // I f channel was not found on any o f the 4 input por t s .
// I t should be on the l o c a l in port , but we t e s t i t

anyway .
108 cout << " F a i l u r e : Not a l lowed to route back in to l o c a l . "

<< endl ;
}

110 // and so on . . .
}

112 th i s −>wri teS lo tRoute r (t , countWidth , por t s) ;

114 }
th i s −>endniST (r_id) ;

116 th i s −>endrouterST (r_id) ;
}

118 // n . r o u t e r (e)−>next ;
//n . r o u t e r s () . at (n) . local_out_best_schedule . get (t) . from

120

122 th i s −>endArchRouter () ;
th i s −>endArchNI () ;

124 d e l e t e t h i s ;
r e turn true ;

126 }

128 s t r i n g vhdlOutput : : bin (i n t val , i n t b i t s) {
i n t max = (i n t)pow (2 . 0 , b i t s −1) ;

130 s t r i n g s = " " ;
f o r (i n t i = 0 ; i < b i t s ; i++){

132 i f (va l /max >= 1) {
va l −= max ;

134 s += " 1 " ;
} e l s e {

136 s += " 0 " ;
}

138 max = max / 2 ;
}

140 r e turn s ;
}

142

char vhdlOutput : : p2c (port_id p) {
144 char c ;

i f (p == N) c = ’N ’ ;
146 i f (p == E) c = ’E ’ ;

i f (p == S) c = ’S ’ ;
148 i f (p == W) c = ’W’ ;

i f (p == L) c = ’L ’ ;
150 i f (p == __NUM_PORTS) c = ’D ’ ;

152 r e turn c ;
}

154

vhdlOutput : : vhdlOutput (s t r i n g output_dir) {
156 niST . open (output_dir + "ni_ST_" + numOfNodesStr + " . vhd " , i o s : :

t runc) ;

122 TDM scheduler source code

routerST . open (output_dir + " router_ST_ " + numOfNodesStr + " . vhd " ,
i o s : : t runc) ;

158 i f (! niST . good ()) {
niST . c l o s e () ;

160 s t r i n g new_fi le = output_dir + : : lex_cast<s t r i n g >((i n t) time (
NULL)) + "ni_ST_" + numOfNodesStr + " . vhd " ;

cout << " Warning : Output f a i l u r e , new output name : " + new_fi le
<< endl ;

162 niST . open (new_fi le , i o s : : t runc) ;
}

164 i f (! routerST . good ()) {
routerST . c l o s e () ;

166 s t r i n g new_fi le = output_dir + : : lex_cast<s t r i n g >((i n t) time (
NULL)) + " router_ST_ " + numOfNodesStr + " . vhd " ;

cout << " Warning : Output f a i l u r e , new output name : " + new_fi le
<< endl ;

168 routerST . open (new_fi le , i o s : : t runc) ;
}

170 // TODO: Error handl ing + S p e c i f y output f i l e name
}

172

vhdlOutput : : ~ vhdlOutput () {
174 niST . c l o s e () ;

routerST . c l o s e () ;
176 }

178 void vhdlOutput : : writeHeaderRouter (i n t countWidth) {
routerST << "

−−−\
n " ;

180 routerST << "−− router_ST_ " << numOfNodesStr << " . vhd\n " ;
routerST << "−− This i s an auto generated f i l e , do not e d i t by

hand . \ n" ;
182 routerST << "−− These t a b l e s were generated from an a p p l i c a t i o n

s p e c i f i c \n " ;
routerST << "−− schedu le by the SNTs p r o j e c t . \ n " ;

184 routerST << "−− https : // github . com/ rbsc loud /SNTs\n " ;
routerST << "

−−−\
n " ;

186 routerST << " l i b r a r y i e e e ; \ n " ;
routerST << " use i e e e . std_logic_1164 . a l l ; \ n " ;

188 routerST << " use i e e e . numeric_std . a l l ; \ n\n " ;

190 routerST << " use work . noc_types . a l l ; \ n\n " ;

192 routerST << " e n t i t y router_ST_ " << numOfNodesStr << " i s \n " ;
routerST << " \ t g e n e r i c (\n " ;

194 routerST << " \ t \tNI_NUM\ t : natura l) ; \ n " ;
routerST << " \ tpor t (\n " ;

196 routerST << " \ t \ tcount \ t : in unsigned (" << countWidth−1 << "
downto 0) ; \ n " ;

routerST << " \ t \ t s e l s \ t : out s e l e c t _ s i g n a l s \n " ;
198 routerST << " \ t \ t) ; \ n " ;

routerST << " end router_ST_ " << numOfNodesStr << " ; \ n\n" ;

123

200

routerST << " a r c h i t e c t u r e data o f router_ST_ " << numOfNodesStr <<
" i s \n " ;

202 routerST << " begin −− data \n\n " ;

204 }

206 void vhdlOutput : : endArchRouter () {
routerST << " end data ; \ n " ;

208 }

210 void vhdlOutput : : wr i t eS lo tRoute r (i n t slotNum , i n t countWidth ,
port_id ∗ por t s) {

routerST << " \ t \twhen \" " << bin (slotNum , countWidth) << " \" =>\n "
;

212 routerST << " \ t \ t \ t s e l s (N) <= " << p2c (por t s [N]) << " ; \ n " ;
routerST << " \ t \ t \ t s e l s (E) <= " << p2c (por t s [E]) << " ; \ n " ;

214 routerST << " \ t \ t \ t s e l s (S) <= " << p2c (por t s [S]) << " ; \ n" ;
routerST << " \ t \ t \ t s e l s (W) <= " << p2c (por t s [W]) << " ; \ n " ;

216 routerST << " \ t \ t \ t s e l s (L) <= " << p2c (por t s [L]) << " ; \ n " ;
}

218

void vhdlOutput : : writeHeaderNI (i n t countWidth , i n t numOfNodes) {
220 niST << "

−−−\
n " ;

niST << "−− ni_ST_" << numOfNodesStr << " . vhd\n " ;
222 niST << "−− This i s an auto generated f i l e , do not e d i t by hand . \

n " ;
niST << "−− These t a b l e s were generated from an a p p l i c a t i o n

s p e c i f i c \n " ;
224 niST << "−− schedu le by the SNTs p r o j e c t . \ n " ;

niST << "−− https : // github . com/ rbsc loud /SNTs\n " ;
226 niST << "

−−−\
n " ;

niST << " l i b r a r y i e e e ; \ n " ;
228 niST << " use i e e e . std_logic_1164 . a l l ; \ n " ;

niST << " use i e e e . numeric_std . a l l ; \ n\n " ;
230

niST << " use work . noc_types . a l l ; \ n\n " ;
232

niST << " e n t i t y ni_ST_" << numOfNodesStr << " i s \n" ;
234 niST << " \ t g e n e r i c (\n " ;

niST << " \ t \tNI_NUM\ t : natura l) ; \ n " ;
236 niST << " \ tpor t (\n " ;

niST << " \ t \ tcount \ t : in unsigned (" << countWidth−1 << " downto
0) ; \ n " ;

238 niST << " \ t \ t d e s t \ t : out i n t e g e r range 0 to " << numOfNodes−1 <<
" ; \ n " ;

niST << " \ t \ t s r c \ t : out i n t e g e r range 0 to " << numOfNodes−1 << "
\n" ;

240 niST << " \ t \ t) ; \ n " ;

242 niST << " end ni_ST_" << numOfNodesStr << " ; \ n\n" ;

124 TDM scheduler source code

niST << " a r c h i t e c t u r e data o f ni_ST_" << numOfNodesStr << " i s \n "
;

244 niST << " begin −− data \n\n " ;

246 }

248 void vhdlOutput : : s tar tn iST (i n t num) {
startST (num,& th i s −>niST) ;

250 }

252 void vhdlOutput : : s ta r t route rST (i n t num) {
startST (num,& th i s −>routerST) ;

254 }

256 void vhdlOutput : : startST (i n t num, ofstream ∗ ST) {
∗ST << " \tNI_NUM" << num << " : i f NI_NUM = " << num << "

generate \n " ;
258 ∗ST << " \ t p r o c e s s (count) begin \n\n " ;

∗ST << " \ t \ t c a s e count i s \n\n " ;
260 }

262 void vhdlOutput : : wr i teS lotNIDest (i n t slotNum , i n t countWidth , i n t
des t) {

niST << " \ t \ t \twhen \" " << bin (slotNum , countWidth) << " \" =>\n " ;
264 niST << " \ t \ t \ t \ t d e s t <= " << dest << " ; \ n " ;

}
266

void vhdlOutput : : wr i t eS lo tNISrc (i n t s r c) {
268 niST << " \ t \ t \ t \ t s r c <= " << s r c << " ; \ n " ;

}
270

void vhdlOutput : : endrouterST (i n t num) {
272 routerST << " \ t \twhen o th e r s =>\n " ;

routerST << " \ t \ t \ t s e l s (N) <= D; \ n " ;
274 routerST << " \ t \ t \ t s e l s (E) <= D; \ n " ;

routerST << " \ t \ t \ t s e l s (S) <= D; \ n " ;
276 routerST << " \ t \ t \ t s e l s (W) <= D; \ n " ;

routerST << " \ t \ t \ t s e l s (L) <= D; \ n" ;
278 routerST << " \ t \ tend case ; \ n " ;

routerST << " \ tend p r o c e s s ; \ n\n" ;
280 routerST << " \ tend generate NI_NUM" << num << " ; \ n\n " ;

}
282

void vhdlOutput : : endniST (i n t num) {
284 niST << " \ t \ t \twhen ot h e r s =>\n " ;

niST << " \ t \ t \ t \ t d e s t <= " << num << " ; \ n " ;
286 niST << " \ t \ t \ t \ t s r c <= " << num << " ; \ n\n " ;

niST << " \ t \ tend case ; \ n " ;
288 niST << " \ tend p r o c e s s ; \ n\n " ;

niST << " \ tend generate NI_NUM" << num << " ; \ n\n " ;
290 }

292 void vhdlOutput : : endArchNI () {
niST << " end data ; \ n " ;

294 }

125

Listing D.6: ScheduleConverter.java

2 package dk . rbsc loud . t c r e s t . SNTs ;

4 import java . i o . F i l e ;
import java . u t i l . ArrayList ;

6 import java . u t i l . L i s t ;
import javax . xml . p a r s e r s . ∗ ;

8 import org . w3c . dom . ∗ ;

10 /∗∗
∗ A conver t e r from xml format to Setup o f DMA t a b l e s

12 ∗ @author Rasmus
∗/

14 p u b l i c c l a s s ScheduleConverter {
p r i v a t e enum Port {N, E, S , W, L , D}

16 p r i v a t e s t a t i c L i s t <List <List <Integer > > > i n i t A r r a y ;
p r i v a t e s t a t i c f i n a l i n t SLOT_TABLE = 0 ;

18 p r i v a t e s t a t i c f i n a l i n t ROUTE_TABLE = 1 ;
p r i v a t e s t a t i c Document doc ;

20 p r i v a t e s t a t i c NodeList t L i s t ;

22 p u b l i c s t a t i c void main (S t r i n g [] a rgs) {
i f (a rgs . l ength < 1) {

24 System . out . p r i n t l n ("No input f i l e s p e c i f i e d ! ") ;
r e turn ;

26 }
parseXml (args [0]) ;

28 t ry {
i n i t i a l i z e A r r a y (t L i s t . getLength ()) ;

30 i n t numOfNodes = t L i s t . getLength () ;
new TileCoord (0 , 0 , (i n t)Math . s q r t (numOfNodes)) ; //

I n i t i a l i z i n g the s t a t i c s ideLength v a r i a b l e in TileCoord
32

/∗ For each t i l e , s l o t t a b l e and route t a b l e i s wr i t t en . ∗/
34 f o r (i n t t i l e I d x = 0 ; t i l e I d x < t L i s t . getLength () ; t i l e I d x ++)

{
Node t i l e = t L i s t . item (t i l e I d x) ;

36 i f (t i l e . getNodeType () == Node .ELEMENT_NODE) {
Element t i l e E = (Element) t i l e ;

38 TileCoord t i l e C o o r d = getTi leCoord (t i l e) ;
/∗ For each t i l e wr i t e the s l o t t a b l e ∗/

40 NodeList s l o t L i s t = t i l e E . getElementsByTagName (" t i m e s l o t "
) ;

42 i n t s lotTableWidth = (i n t)Math . c e i l (Math . l og (numOfNodes) /
Math . l og (2)) ;

/∗ For each time s l o t , s l o t t a b l e and route t a b l e i s
wr i t t en . ∗/

44 f o r (i n t s l o t I d x = 0 ; s l o t I d x < s l o t L i s t . getLength () ;
s l o t I d x++) {

Node s l o t = s l o t L i s t . item (s l o t I d x) ;
46 i f (s l o t . getNodeType () == Node .ELEMENT_NODE) {

Element s lo tE = (Element) s l o t ;

126 TDM scheduler source code

48 // Get the c o o r d i n a t e s o f the r e c e i v e r f o r t h i s
t i m e s l o t

TileCoord destCoord = getDestCoord (s lo tE) ;
50

// Write the d e s t i n a t i o n ID in the s l o t t a b l e .
52 i n t s l o t V a l = destCoord . g e t T i l e I d () | (1 <<

slotTableWidth) ;
i n i t A r r a y . get (t i l e C o o r d . g e t T i l e I d ()) . get (SLOT_TABLE) .

add (s l o t I d x , s l o t V a l) ;
54

/∗ For each t r a n s m i s s i o n s l o t wr i t e an entry in the
route t a b l e ∗/

56 S t r i n g binRoute = " " ;
i f (destCoord . g e t T i l e I d () != t i l e C o o r d . g e t T i l e I d ()) {

58 TileCoord tempTileCoord = new TileCoord (t i l e C o o r d . x
, t i l e C o o r d . y) ;

char inPort = ’L ’ ;
60 f o r (i n t i = 0 ; tempTileCoord . g e t T i l e I d () !=

destCoord . g e t T i l e I d () ; i++){
NodeList por t s = getPort s (tempTileCoord , s l o t I d x+i

) ;
62 char outPort = findOutputPort (ports , inPort) ;

binRoute = port2b in (outPort) + binRoute ;
64 inPort = oppos i tPort (outPort) ;

nextT i l e (tempTileCoord , outPort) ;
66 }

// Route to l o c a l port
68 binRoute = port2b in (inPort) + binRoute ;

}
70 i n t route = I n t e g e r . p a r s e I n t (" 0 " + binRoute , 2) ;

// Write the route to the route t a b l e in the
i n i t A r r a y .

72 i n i t A r r a y . get (t i l e C o o r d . g e t T i l e I d ()) . get (ROUTE_TABLE)
. s e t (destCoord . g e t T i l e I d () , route) ;

}
74 }

}
76 }

78 } catch (Exception e) {
e . pr intStackTrace () ;

80 }
Schedu l ePr inte r p r i n t e r = new Schedu l ePr inte r () ;

82 p r i n t e r . pr intData (i n i t A r r a y) ;
p r i n t e r . p r in tFoote r () ;

84 }

86 p r i v a t e s t a t i c NodeList getPort s (TileCoord t i l eCoord , i n t s l o t I d x
) {

Element t i l e E = (Element) g e t T i l e (t i l e C o o r d) ;
88 NodeList s L i s t = t i l e E . getElementsByTagName (" t i m e s l o t ") ;

s l o t I d x = (s l o t I d x + 2) % s L i s t . getLength () ; // The schedu le
takes p i p e l i n i n g i n t o acount .

90 // S h i f t i n g by 2 g e t s r i d o f the
p i p e l i n i n g .

127

Element s lo tE = (Element) s L i s t . item (s l o t I d x) ;
92 NodeList r L i s t = s lo tE . getElementsByTagName (" r o u t e r ") ;

Node r o u t e r = r L i s t . item (0) ;
94 Element routerE = (Element) r o u t e r ;

r e turn routerE . getElementsByTagName (" output ") ;
96 }

98 p r i v a t e s t a t i c char f indOutputPort (NodeList ports , char inPort) {
char outPort = ’ ’ ;

100 f o r (i n t nodeIdx = 0 ; nodeIdx < por t s . getLength () ; nodeIdx++){
i f (por t s . item (nodeIdx) . g e t A t t r i b u t e s () . getNamedItem (" input ") .

getNodeValue () . charAt (0) == inPort) {
102 outPort = port s . item (nodeIdx) . g e t A t t r i b u t e s () . getNamedItem (

" id ") . getNodeValue () . charAt (0) ;
}

104 }
re turn outPort ;

106 }

108 p r i v a t e s t a t i c char oppos i tPort (char p) {
i f (p == ’N ’) {p = ’S ’ ; }

110 e l s e i f (p == ’E ’) {p = ’W’ ; }
e l s e i f (p == ’S ’) {p = ’N ’ ; }

112 e l s e i f (p == ’W’) {p = ’E ’ ; }
e l s e {p = ’L ’ ; }

114 r e turn p ;
}

116

p r i v a t e s t a t i c void nextTi l e (TileCoord t i l eCoord , char outPort) {
118 i f (outPort == ’N ’) { t i l e C o o r d . moveNorth () ; }

e l s e i f (outPort == ’E ’) { t i l e C o o r d . moveEast () ; }
120 e l s e i f (outPort == ’S ’) { t i l e C o o r d . moveSouth () ; }

e l s e i f (outPort == ’W’) { t i l e C o o r d . moveWest () ; }
122 // I f l o c a l port do nothing

}
124

p r i v a t e s t a t i c S t r i n g port2b in (char p) {
126 S t r i n g bin ;

i f (p == ’N ’) { bin = " 10 " ; }
128 e l s e i f (p == ’E ’) { bin = " 11 " ; }

e l s e i f (p == ’S ’) { bin = " 00 " ; }
130 e l s e i f (p == ’W’) { bin = " 01 " ; }

e l s e { bin = " 00 " ; }
132 r e turn bin ;

}
134

p r i v a t e s t a t i c Node g e t T i l e (TileCoord t i l e C o o r d) {
136 f o r (i n t t i l e I d x = 0 ; t i l e I d x < t L i s t . getLength () ; t i l e I d x ++) {

// For each t i l e
Node t i l e = t L i s t . item (t i l e I d x) ;

138 i f (t i l e . getNodeType () == Node .ELEMENT_NODE) {
i f (t i l e C o o r d . g e t T i l e I d () == getTi leCoord (t i l e) . g e t T i l e I d ())

{
140 r e turn t i l e ;

}

128 TDM scheduler source code

142 }
}

144 r e turn t L i s t . item (0) ;
}

146

p r i v a t e s t a t i c TileCoord getTi leCoord (Node t i l e) {
148 S t r i n g [] t i l e C o o r d = t i l e . g e t A t t r i b u t e s () . getNamedItem (" id ") .

getNodeValue () . s p l i t (" \\D") ;
TileCoord t i l e I d = new TileCoord (I n t e g e r . p a r s e I n t (t i l e C o o r d [1])

, I n t e g e r . p a r s e I n t (t i l e C o o r d [2])) ;
150 r e turn t i l e I d ;

}
152

p r i v a t e s t a t i c TileCoord getDestCoord (Element s lo tE) {
154 S t r i n g [] coord = s lo tE . getElementsByTagName (" na ") . item (0) .

g e t A t t r i b u t e s () . getNamedItem (" tx ") . getNodeValue () . s p l i t (" \\
D") ;

TileCoord destCoord = new TileCoord (I n t e g e r . p a r s e I n t (coord [1]) ,
I n t e g e r . p a r s e I n t (coord [2])) ;

156 r e turn destCoord ;
}

158

p r i v a t e s t a t i c void parseXml (S t r i n g i n p u t F i l e) {
160 t ry {

F i l e fXmlFi le = new F i l e (i n p u t F i l e) ;
162 DocumentBuilderFactory dbFactory = DocumentBuilderFactory .

newInstance () ;
DocumentBuilder dBui lder = dbFactory . newDocumentBuilder () ;

164 doc = dBui lder . parse (fXmlFi le) ;
doc . getDocumentElement () . normal ize () ;

166 t L i s t = doc . getElementsByTagName (" t i l e ") ;
} catch (Exception e) {

168 e . pr intStackTrace () ;
}

170 }

172 p r i v a t e s t a t i c void i n i t i a l i z e A r r a y (i n t nrCpu) {
i n i t A r r a y = new ArrayList<List <List <Integer > > >(nrCpu) ;

174 f o r (i n t i = 0 ; i < nrCpu ; i++) {
i n i t A r r a y . add (new ArrayList<List <Integer > >(2)) ;

176 i n i t A r r a y . get (i) . add (new ArrayList<Integer >()) ;
i n i t A r r a y . get (i) . add (new ArrayList<Integer >(nrCpu)) ;

178 f o r (i n t j = 0 ; j < nrCpu ; j++){
i n i t A r r a y . get (i) . get (ROUTE_TABLE) . add (0) ;

180 }
}

182 }
}

Listing D.7: SchedulePrinter.java
package dk . rbsc loud . t c r e s t . SNTs ;

2

import java . i o . ∗ ;
4 import java . u t i l . L i s t ;

129

6 p u b l i c c l a s s Schedu l ePr inte r {
p r i v a t e s t a t i c F i l eWr i t e r o f i l e ;

8 p r i v a t e s t a t i c i n t indent = 0 ;
p r i v a t e s t a t i c f i n a l i n t SLOT_TABLE = 0 ;

10 p r i v a t e s t a t i c f i n a l i n t ROUTE_TABLE = 1 ;

12

p u b l i c Schedu l ePr inte r () {
14 t ry {

o f i l e = new Fi l eWr i t e r (new F i l e (" . . / Tables . java ")) ;
16 S t r i n g s t r = ind () + " /∗∗ "

+ ind () + " ∗ AUTO−Generated f i l e DO NOT EDIT ! ! ! "
18 + ind () + " ∗ Loads the pre c a l c u l a t e d schedu le i n t o

the S l o t and Route t a b l e s . "
+ ind () + " ∗ @author package dk . rbsc loud . t c r e s t . SNTs"

20 + ind () + " ∗/ "
+ ind () + " package dk . rbsc loud . t c r e s t . API ; "

22 + ind () + " import com . jopdes i gn . sys . Native ; "
+ ind () + " "

24 + ind () + " p u b l i c c l a s s Tables " + openBrac ()
+ ind () + " p u b l i c s t a t i c f i n a l i n t [] [] [] i n i t A r r a y = "

+ openBrac ()
26 + ind () + " " ;

/∗ p u b l i c s t a t i c f i n a l i n t [] [] [] i n i t A r r a y = {
28 {

{1 ,2 ,3 ,4 , 5} ,
30 {1 ,2 ,3}

} ,
32 {

{1 ,2 ,3 ,4 , 5} ,
34 {1 ,2 ,3}

}
36 } ;

∗/
38 o f i l e . wr i t e (s t r) ;

} catch (Exception e) {
40 e . pr intStackTrace () ;

}
42 }

44 p u b l i c void pr in tFoote r () {
t ry {

46 S t r i n g s t r = c lo seBrac () + " ; "
+ ind () + " p r i v a t e s t a t i c i n t [] ge tS lo tTab le (i n t cpuId)

" + openBrac ()
48 + ind () + " re turn i n i t A r r a y [cpuId] [0] ; "

+ c lo s eBrac ()
50 + ind () + " "

+ ind () + " p r i v a t e s t a t i c i n t [] getDmaTable (i n t cpuId) "
+ openBrac ()

52 + ind () + " re turn i n i t A r r a y [cpuId] [1] ; "
+ c lo s eBrac ()

54 + ind () + " "

130 TDM scheduler source code

+ ind () + " p u b l i c s t a t i c void load (i n t cpuId) " +
openBrac ()

56 + ind () + " // Loading the s l o t t a b l e "
+ ind () + " i n t [] s l o t T a b l e = Tables . ge tS lo tTab le (cpuId)

; "
58 + ind () + " f o r (i n t i = 0 ; i < s l o t T a b l e . l ength ; i++)" +

openBrac ()
+ ind () + " Native .wrMem(s l o t T a b l e [i] , Const .

SLOT_TBL_BASE+i) ; "
60 + closeBrac ()

+ ind () + " // Loading the dma t a b l e "
62 + ind () + " i n t [] dmaTable = Tables . getDmaTable (cpuId) ; "

+ ind () + " f o r (i n t i = 0 ; i < dmaTable . l ength ; i++)" +
openBrac ()

64 + ind () + " Native .wrMem(dmaTable [i] , Const .DMA_P_BASE+i
) ; "

+ c lo s eBrac ()
66 + closeBrac ()

+ ind () + " "
68 + ind () + " p u b l i c s t a t i c boolean v e r i f y (i n t cpuId) " +

openBrac ()
+ ind () + " // Reading and v e r i f y i n g the dma t a b l e "

70 + ind () + " i n t [] dmaTable = getDmaTable (cpuId) ; "
+ ind () + " f o r (i n t i = 0 ; i < dmaTable . l ength ; i++)" +

openBrac ()
72 + ind () + " i n t dmaData = Native . rdMem(Const .DMA_P_BASE+

i) ; "
+ ind () + " i f (dmaData != dmaTable [i]) " + openBrac ()

74 + ind () + " System . out . p r i n t l n (\ "DMA_P_BASE f a l i u r e \ ") ; "
+ ind () + " re turn f a l s e ; "

76 + closeBrac ()
+ c lo seBrac ()

78 + ind () + " re turn true ; "
+ c lo s eBrac ()

80 + closeBrac ()
+ ind () ;

82 o f i l e . wr i t e (s t r) ;
o f i l e . c l o s e () ;

84 } catch (Exception e) {
e . pr intStackTrace () ;

86 }
}

88

90 p u b l i c void printData (Lis t <List <List <Integer > > > i n i t A r r a y) {
S t r i n g s t r = " " ;

92 f o r (L i s t <List <Integer > > initCpu : i n i t A r r a y) {
s t r += ind () + openBrac ()

94 + ind () + " { " ;
f o r (i n t s l o t : in itCpu . get (SLOT_TABLE)) {

96 s t r += s l o t + " , " ;
}

98 s t r = s t r . s u b s t r i n g (0 , s t r . l ength () −1) ;
s t r += " } , " + ind () + " { " ;

100 f o r (i n t route : in itCpu . get (ROUTE_TABLE)) {

131

s t r += route + " , " ;
102 }

s t r = s t r . s u b s t r i n g (0 , s t r . l ength () −1) ;
104 s t r += " } " + c lo seBrac () + " , " ;

}
106 s t r = s t r . s u b s t r i n g (0 , s t r . l ength () −1) ;

t ry {
108 o f i l e . wr i t e (s t r) ;

} catch (Exception e) {
110 e . pr intStackTrace () ;

}
112 }

114

p r i v a t e S t r i n g ind () {
116 S t r i n g s t r = " \n " ;

i f (indent < 0) {
118 r e turn " " ;

}
120 f o r (i n t i = 0 ; i < indent ; i++) {

s t r += " \ t " ;
122 }

re turn s t r ;
124 }

126 p r i v a t e S t r i n g openBrac () {
indent++;

128 r e turn " { " ;
}

130

p r i v a t e S t r i n g c lo s eBrac (i n t b) {
132 S t r i n g s t r = " " ;

f o r (i n t i = 0 ; i < b ; i++) {
134 s t r += c lo seBrac () ;

}
136 r e turn s t r ;

}
138

p r i v a t e S t r i n g c lo s eBrac () {
140 i f (indent > 0) {

indent −−;
142 }

S t r i n g s t r = ind () ;
144 r e turn s t r + " } " ;

}
146 }

Listing D.8: TileCoord.java
/∗

2 ∗ To change t h i s template , choose Tools | Templates
∗ and open the template in the e d i t o r .

4 ∗/
package dk . rbsc loud . t c r e s t . SNTs ;

6

132 TDM scheduler source code

/∗∗
8 ∗

∗ @author Rasmus
10 ∗/

p u b l i c c l a s s TileCoord {
12 p u b l i c i n t x , y ;

p r i v a t e s t a t i c i n t s ideLength ;
14 p u b l i c TileCoord (i n t x , i n t y , i n t s ideLength) {

t h i s . x = x ;
16 t h i s . y = y ;

t h i s . s ideLength = sideLength ;
18 }

p u b l i c TileCoord (i n t x , i n t y) {
20 t h i s . x = x ;

t h i s . y = y ;
22 }

p u b l i c i n t g e t T i l e I d () {
24 r e turn x+y∗ s ideLength ;

}
26

p u b l i c void moveNorth () {
28 i f (t h i s . y == 0) {

t h i s . y = sideLength −1;
30 } e l s e {

t h i s . y−−;
32 }

}
34

p u b l i c void moveSouth () {
36 i f (t h i s . y == sideLength −1){

t h i s . y = 0 ;
38 } e l s e {

t h i s . y++;
40 }

}
42 p u b l i c void moveEast () {

i f (t h i s . x == sideLength −1){
44 t h i s . x = 0 ;

} e l s e {
46 t h i s . x++;

}
48 }

p u b l i c void moveWest () {
50 i f (t h i s . x == 0) {

t h i s . x = sideLength −1;
52 } e l s e {

t h i s . x−−;
54 }

}
56

}

Appendix E

MPI source code

This appendix contains the following files:

NoC.java is the static Java class implementing the communication primitives,
the file starts on page 133.

Const.java is a Java file with constants describing the address space of the
MPI, the file starts on page 136.

Tables.java is an example file generated by the schedule converter, it starts on
page 137.

Listing E.1: NoC.java
1 package dk . rbsc loud . t c r e s t . API ;

3 import com . jopdes i gn . sys . Native ;

5 /∗∗
∗

7 ∗ @author Rasmus Bo Soerensen
∗/

9 p u b l i c c l a s s NoC {
p u b l i c s t a t i c boolean send (i n t [] msg , i n t destCpuId , i n t cpuId) {

11 i f ((destCpuId == cpuId) | | (msg . l ength > 8)) { re turn f a l s e ; }
i n t destDMA = Const .DMA_BASE+(destCpuId << 1) ;

134 MPI source code

13 whi le (! doneDMA(destDMA)) ;
i n t txBufAddr = getTxBuf (cpuId , destCpuId) ;

15 // System . out . p r i n t l n (" txBufAddr : " + txBufAddr) ;
copyInMsg (msg , txBufAddr) ;

17 i n t localChanBuf = getChanBufAddr (cpuId , destCpuId) ;
i n t destChanBuf = getChanBufAddr (destCpuId , cpuId) ;

19 i n t w r i t e P o i n t e r = destChanBuf∗Const .CHANNEL_BUF_SIZE+swapBuf (
Const .TX_ACT_BUF, localChanBuf) ;

i n t readPointer = localChanBuf ∗Const .CHANNEL_BUF_SIZE + Const .
TX_BUF;

21 // System . out . p r i n t l n ("SRC: "+cpuId+" DEST: "+destCpuId+"
WritePointer : " + w r i t e P o i n t e r) ;

// System . out . p r i n t l n (" readPointer : " + readPointer) ;
23 // System . out . p r i n t l n (" destDMA : " + destDMA) ;

setupDMA(msg , readPointer , wr i t ePo inter , destDMA) ;
25 r e turn true ;

}
27

p u b l i c s t a t i c boolean sendRdy (i n t destCpuId) {
29 i n t destDMA = Const .DMA_BASE+(destCpuId << 1) ;

r e turn doneDMA(destDMA) ;
31 }

33 p u b l i c s t a t i c boolean recv (i n t [] msg , i n t srcCpuId , i n t cpuId) {
i f (srcCpuId == cpuId) {

35 r e turn f a l s e ;
}

37 i n t rxBufAddr = getRxBuf (cpuId , srcCpuId) ;
whi l e (! doneRecv (rxBufAddr)) ;

39 copyOutMsg (msg , rxBufAddr) ;
i n t localChanBuf = getChanBufAddr (cpuId , srcCpuId) ;

41 swapBuf (Const .RX_ACT_BUF, localChanBuf) ;
//System . out . p r i n t l n (" Swap : "+) ;

43 // i f (msg . l ength > 8) { re turn f a l s e ; }
re turn true ;

45 }

47 p u b l i c s t a t i c boolean recvRdy (i n t srcCpuId , i n t cpuId) {
i f (srcCpuId == cpuId) {

49 r e turn f a l s e ;
}

51 i n t rxBufAddr = getRxBuf (cpuId , srcCpuId) ;
r e turn doneRecv (rxBufAddr) ;

53 }

55 p r i v a t e s t a t i c boolean doneRecv (i n t addr) {
i n t l ength = Native . rdMem(addr) ;

57 i f (l ength != 0) {
i f (Native . rdMem(addr+length +1) == −1){ re turn true ; }

59 }
re turn f a l s e ;

61 }

63 p r i v a t e s t a t i c void setupDMA(i n t [] msg , i n t txBufAddr , i n t
rxBufAddr , i n t addrDMA) {

135

Native .wrMem((txBufAddr << 16) | rxBufAddr , addrDMA + 1) ;
65 i f ((msg . l ength & 1) == 0) {

Native .wrMem(msg . l ength+2 | 32768 , addrDMA) ;
67 } e l s e {

Native .wrMem(msg . l ength+3 | 32768 , addrDMA) ;
69 }

}
71

p r i v a t e s t a t i c boolean doneDMA(i n t addrDMA) {
73 i n t DMA = Native . rdMem(addrDMA) ;

i f ((DMA & 32768) != 0) {
75 i f ((DMA & 16384) == 0) { re turn f a l s e ; }

}
77 r e turn true ;

}
79

p r i v a t e s t a t i c void copyInMsg (i n t [] msg , i n t addr) {
81 Native .wrMem(msg . length , addr) ;

f o r (i n t i = 1 ; i < msg . l ength +1; i++){
83 Native .wrMem(msg [i −1] , addr+i) ;

}
85 Native .wrMem(−1 , addr+msg . l ength +1) ;

}
87

p r i v a t e s t a t i c void copyOutMsg (i n t [] msg , i n t addr) {
89 i n t l ength = Native . rdMem(addr) ;

// Native .wrMem(0 , addr) ;
91 f o r (i n t i = 1 ; i < length +1; i++){

msg [i −1] = Native . rdMem(addr+i) ;
93 // Native .wrMem(0 , addr+i) ;

}
95 // Native .wrMem(0 , addr+length +1) ;

f o r (i n t i = 0 ; i < Const .BUFFER_SIZE; i++){
97 Native .wrMem(0 , addr+i) ;

}
99 }

101 p u b l i c s t a t i c i n t getTxBuf (i n t cpuId , i n t destCpuId) {
i n t bufAddr = getChanBufAddr (cpuId , destCpuId) ;

103 r e turn Const .NI_BASE + (bufAddr ∗ Const .CHANNEL_BUF_SIZE) +
Const .TX_BUF;

}
105

p u b l i c s t a t i c i n t getRxBuf (i n t cpuId , i n t srcCpuId) {
107 i n t bufAddr = getChanBufAddr (cpuId , srcCpuId) ;

r e turn Const .NI_BASE + (bufAddr ∗ Const .CHANNEL_BUF_SIZE) +
getActBuf (bufAddr) ;

109 }

111 p r i v a t e s t a t i c i n t getChanBufAddr (i n t cpuId , i n t channId) {
i f (channId == Const .NUMBER_OF_CORES−1){

113 channId = cpuId ;
}

115 r e turn channId ;
}

136 MPI source code

117

p r i v a t e s t a t i c i n t getActBuf (i n t bufAddr) {
119 i n t actBufAddr = Const .NI_BASE + (bufAddr ∗ Const .

CHANNEL_BUF_SIZE) + Const .RX_ACT_BUF;
i n t actBuf = Native . rdMem(actBufAddr) ;

121 i f ((actBuf & 4) == 0) { re turn Const .RX_BUF_1; }
e l s e { re turn Const .RX_BUF_2; }

123 }

125 p r i v a t e s t a t i c i n t swapBuf (i n t statusAddr , i n t bufAddr) {
i n t actBufAddr = Const .NI_BASE + (bufAddr ∗ Const .

CHANNEL_BUF_SIZE) + statusAddr ;
127 i n t actBuf = Native . rdMem(actBufAddr) ;

// System . out . p r i n t l n (" actBuf : "+actBuf) ;
129 i n t newActBuf = actBuf ^ 4 ;

// System . out . p r i n t l n (" newActBuf : "+newActBuf) ;
131 // System . out . p r i n t l n (" actBufAddr : "+actBufAddr) ;

Native . wr (newActBuf , actBufAddr) ;
133 // Native . wr (10 , 4194432) ;

// i n t j = 0 ;
135 // f o r (i n t i = 0 ; i < 1000 ; i++){

// j = i +2;
137 // }

// i n t r e t = Native . rd (4194432) ;
139 // System . out . p r i n t l n (" Read from mem: " + r e t) ;

// System . out . p r i n t l n (" newActBuf : "+Native . rdMem(actBufAddr)) ;
141 // System . out . p r i n t l n (" j : "+ j) ;

143 i f ((actBuf & 4) == 0) { re turn Const .RX_BUF_1; }
e l s e { re turn Const .RX_BUF_2; }

145 }

147 p u b l i c s t a t i c void checkSPM () {
i n t v e r i f i e d = 0 ;

149 f o r (i n t i = 0 ; i < Const .COM_SPM_SIZE; i++){
Native . wr (i , i+Const .COM_SPM) ;

151 i f (Native . rd (i+Const .COM_SPM) != i) {
System . out . p r i n t l n ("SPM e r r o r at address : " + i) ;

153 } e l s e {
v e r i f i e d ++;

155 }
}

157 System . out . p r i n t l n (v e r i f i e d + " Addresses v e r i f i e d out o f " +
Const .COM_SPM_SIZE + " Addresses . ") ;

f o r (i n t i = 0 ; i < Const .COM_SPM_SIZE; i++){
159 Native . wr (0 , i+Const .COM_SPM) ;

}
161 }

}

Listing E.2: Const.java
package dk . rbsc loud . t c r e s t . API ;

2

/∗∗

137

4 ∗ Constants f o r the T−CREST DMA Network I n t e r f a c e
∗ @author Rasmus Bo Soerensen

6 ∗/
c l a s s Const {

8 /∗ DMA Network I n t e r f a c e a d d r e s s e s ∗/
p u b l i c s t a t i c f i n a l i n t NI_BASE = 0 x400000 ;

10 p u b l i c s t a t i c f i n a l i n t COM_SPM = NI_BASE;
p u b l i c s t a t i c f i n a l i n t DMA_BASE = NI_BASE + 0x80000 ;

12 p u b l i c s t a t i c f i n a l i n t DMA_P_BASE = NI_BASE + 0 x100000 ;
p u b l i c s t a t i c f i n a l i n t SLOT_TBL_BASE = NI_BASE + 0 x180000 ;

14 p u b l i c s t a t i c f i n a l i n t CONFIG_DONE = NI_BASE + 0x100 ;

16 // Channel b u f f e r cons tant s
p u b l i c s t a t i c f i n a l i n t COM_SPM_SIZE = 256 ;

18 p u b l i c s t a t i c f i n a l i n t NUMBER_OF_CORES = 9 ;
p u b l i c s t a t i c f i n a l i n t CHANNEL_BUF_SIZE = COM_SPM_SIZE/(

NUMBER_OF_CORES−1) ;
20 p u b l i c s t a t i c f i n a l i n t BUFFER_SIZE = (CHANNEL_BUF_SIZE − 2) / 3 ;

p u b l i c s t a t i c f i n a l i n t RX_ACT_BUF = 0 ;
22 p u b l i c s t a t i c f i n a l i n t TX_ACT_BUF = 1 ;

p u b l i c s t a t i c f i n a l i n t RX_BUF_1 = 2 + BUFFER_SIZE∗0 ;
24 p u b l i c s t a t i c f i n a l i n t RX_BUF_2 = 2 + BUFFER_SIZE∗1 ;

p u b l i c s t a t i c f i n a l i n t TX_BUF = 2 + BUFFER_SIZE∗2 ;
26 }

Listing E.3: Tables.java

2 /∗∗
∗ AUTO−Generated f i l e DO NOT EDIT ! ! !

4 ∗ Loads the pre c a l c u l a t e d schedu le i n t o the S l o t and Route t a b l e s
.

∗ @author package dk . rbsc loud . t c r e s t . SNTs
6 ∗/

package dk . rbsc loud . t c r e s t . API ;
8 import com . jopdes i gn . sys . Native ;

10 p u b l i c c l a s s Tables {
p u b l i c s t a t i c f i n a l i n t [] [] [] i n i t A r r a y = {

12

{
14 {17 ,18 ,19 ,20 ,24} ,

{0 ,7 ,13 ,8 , 28 ,0 , 0 , 0 , 54}
16 } ,

{
18 {17 ,16 ,17 ,17 ,17} ,

{13 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0}
20 } ,

{
22 {18 ,18 ,18 ,16 ,17} ,

{7 ,13 ,0 , 0 , 0 , 0 , 0 , 0 , 0}
24 } ,

{
26 {16 ,19 ,19 ,18 ,19} ,

{2 ,0 , 54 ,0 , 0 , 0 , 0 , 0 , 0}

138 MPI source code

28 } ,
{

30 {20 ,20 ,20 ,16 ,19} ,
{54 ,0 , 0 , 13 ,0 , 0 , 0 , 0 , 0}

32 } ,
{

34 {21 ,21 ,21 ,20 ,21} ,
{0 ,0 , 0 , 0 , 13 , 0 , 0 , 0 , 0}

36 } ,
{

38 {22 ,22 ,22 ,21 ,22} ,
{0 ,0 , 0 , 0 , 0 , 54 ,0 , 0 , 0}

40 } ,
{

42 {23 ,23 ,23 ,22 ,23} ,
{0 ,0 , 0 , 0 , 0 , 0 , 13 ,0 , 0}

44 } ,
{

46 {24 ,24 ,24 ,23 ,24} ,
{0 ,0 , 0 , 0 , 0 , 0 , 0 , 13 , 0}

48 }
} ;

50 p r i v a t e s t a t i c i n t [] ge tS lo tTab le (i n t cpuId) {
re turn i n i t A r r a y [cpuId] [0] ;

52 }

54 p r i v a t e s t a t i c i n t [] getDmaTable (i n t cpuId) {
re turn i n i t A r r a y [cpuId] [1] ;

56 }

58 p u b l i c s t a t i c void load (i n t cpuId) {
// Loading the s l o t t a b l e

60 i n t [] s l o t T a b l e = Tables . ge tS lo tTab le (cpuId) ;
f o r (i n t i = 0 ; i < s l o t T a b l e . l ength ; i++){

62 Native .wrMem(s l o t T a b l e [i] , Const .SLOT_TBL_BASE+i) ;
}

64 // Loading the dma t a b l e
i n t [] dmaTable = Tables . getDmaTable (cpuId) ;

66 f o r (i n t i = 0 ; i < dmaTable . l ength ; i++){
Native .wrMem(dmaTable [i] , Const .DMA_P_BASE+i) ;

68 }
}

70

p u b l i c s t a t i c boolean v e r i f y (i n t cpuId) {
72 // Reading and v e r i f y i n g the dma t a b l e

i n t [] dmaTable = getDmaTable (cpuId) ;
74 f o r (i n t i = 0 ; i < dmaTable . l ength ; i++){

i n t dmaData = Native . rdMem(Const .DMA_P_BASE+i) ;
76 i f (dmaData != dmaTable [i]) {

System . out . p r i n t l n ("DMA_P_BASE f a l i u r e ") ;
78 r e turn f a l s e ;

}
80 }

re turn true ;
82 }

139

}

140 MPI source code

Appendix F
Test and benchmark source

code

This appendix contains the following files:

HelloDMA.java is the Hello World program sending a message between all
processors before writing Hello World to the console, the file starts on
page 141.

DMABench.java is the microbenchmark program for the T-CREST NoC
platform, the file starts on page 143.

Listing F.1: HelloDMA.java
1 /∗

This f i l e i s part o f JOP, the Java Optimized Proces sor
3 s ee <http ://www. jopdes i gn . com/>

5 Copyright (C) 2005 −2008 , Martin Schoeber l (martin@jopdesign . com)

7 This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or
modify

i t under the terms o f the GNU General Publ ic L i cense as pub l i shed
by

9 the Free Software Foundation , e i t h e r v e r s i o n 3 o f the License , or
(at your opt ion) any l a t e r v e r s i o n .

11

142 Test and benchmark source code

This program i s d i s t r i b u t e d in the hope that i t w i l l be u s e f u l ,
13 but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Publ ic L i cense f o r more d e t a i l s .

17 You should have r e c e i v e d a copy o f the GNU General Publ ic L i cense
along with t h i s program . I f not , s e e <http ://www. gnu . org /

l i c e n s e s />.
19 ∗/

21

/∗∗
23 ∗

∗/
25 package cmp ;

27 import java . u t i l . Vector ;

29 import j o p r t . RtThread ;

31 import com . jopdes i gn . i o . IOFactory ;
import com . jopdes i gn . i o . SysDevice ;

33 import com . jopdes i gn . sys . Const ;
import com . jopdes i gn . sys . Native ;

35 import com . jopdes i gn . sys . Startup ;
import dk . rbsc loud . t c r e s t . API . ∗ ;

37

/∗∗
39 ∗ A CMP v e r s i o n o f He l lo World

∗
41 ∗ @author Rasmus

∗
43 ∗/

p u b l i c c l a s s HelloDMA implements Runnable {
45

i n t id ;
47

s t a t i c Vector msg ;
49

p u b l i c HelloDMA(i n t i) {
51 id = i ;

}
53

/∗∗
55 ∗ @param args

∗/
57 p u b l i c s t a t i c void main (S t r i n g [] a rgs) {

Tables . load (0) ;
59 SysDevice sys = IOFactory . getFactory () . getSysDevice () ;

msg = new Vector () ;
61 System . out . p r i n t l n (" Core 0 s t a r t e d ") ;

f o r (i n t i =0; i<sys . nrCpu−1; ++i) {
63 Runnable r = new HelloDMA(i +1) ;

Startup . setRunnable (r , i) ;
65 }

143

// s t a r t the other CPUs
67 sys . s i g n a l = 1 ;

i n t [] message = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;
69 i n t [] rmessage = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

NoC. send (message , sys . nrCpu −1 ,0) ;
71

f o r (; ;) {
73 i n t s i z e = msg . s i z e () ;

i f (s i z e !=0) {
75 S t r i n g B u f f e r sb = (S t r i n g B u f f e r) msg . remove (0) ;

System . out . p r i n t l n (sb) ;
77 }

i f (NoC. recvRdy (1 , 0)) {
79 NoC. recv (rmessage , 1 , 0) ;

f o r (i n t i = 0 ; i < message . l ength ; i++){
81 i f (message [i] != rmessage [i]) { System . e x i t (1) ; }

}
83 System . out . p r i n t l n (" He l lo World ! ") ;

}
85 }

}
87

p u b l i c void run () {
89 Tables . load (id) ;

S t r i n g B u f f e r sb = new S t r i n g B u f f e r () ;
91 sb . append (" Core ") . append (id) . append (" s t a r t e d ") ;

RtThread . sleepMs (300∗ id) ;
93 msg . addElement (sb) ;

i n t [] message = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
95 i n t s r c = id +1;

i f (id == 8) { s r c = 0 ;}
97 f o r (; ;) {

NoC. recv (message , src , id) ;
99 NoC. send (message , id −1, id) ;

}
101 }

}

Listing F.2: DMABench.java
/∗

2 This f i l e i s part o f JOP, the Java Optimized Proces sor
s ee <http ://www. jopdes i gn . com/>

4

Copyright (C) 2005 −2008 , Martin Schoeber l (martin@jopdesign . com)
6

This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or
modify

8 i t under the terms o f the GNU General Publ ic L i cense as pub l i shed
by

the Free Software Foundation , e i t h e r v e r s i o n 3 o f the License , or
10 (at your opt ion) any l a t e r v e r s i o n .

12 This program i s d i s t r i b u t e d in the hope that i t w i l l be u s e f u l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

144 Test and benchmark source code

14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Publ ic L i cense f o r more d e t a i l s .

16

You should have r e c e i v e d a copy o f the GNU General Publ ic L i cense
18 along with t h i s program . I f not , s e e <http ://www. gnu . org /

l i c e n s e s />.
∗/

20

22 /∗∗
∗

24 ∗/
package cmp ;

26

import java . u t i l . Vector ;
28

import j o p r t . RtThread ;
30

import com . jopdes i gn . i o . IOFactory ;
32 import com . jopdes i gn . i o . SysDevice ;

import com . jopdes i gn . sys . Const ;
34 import com . jopdes i gn . sys . Native ;

import com . jopdes i gn . sys . Startup ;
36 import dk . rbsc loud . t c r e s t . API . ∗ ;

38 /∗∗
∗ A DMA Benchmark

40 ∗
∗ @author Rasmus

42 ∗
∗/

44 p u b l i c c l a s s DMABench implements Runnable {

46 i n t id ;

48 s t a t i c Vector msg ;

50 p u b l i c DMABench(i n t i) {
id = i ;

52 }

54 /∗∗
∗ @param args

56 ∗/
p u b l i c s t a t i c void main (S t r i n g [] a rgs) {

58

msg = new Vector () ;
60 System . out . p r i n t l n (" Core 0 s t a r t e d ") ;

Tables . load (0) ;
62 SysDevice sys = IOFactory . getFactory () . getSysDevice () ;

i n t [] message = IOFactory . getFactory () . getScratchpadMemory () ;
64 f o r (i n t i = 0 ; i < message . l ength ; i++){

message [i] = i ;
66 }

// i n t [] message = {4 ,4 , 7 , 8768 ,456 ,34 ,6 , 27} ; // 8

145

68 // i n t [] message = {4 ,4 , 7 , 8768 ,456 ,34 ,6} ; // 7
// i n t [] message = {4 ,4 ,7 ,8768 ,456 ,34} ; // 6

70 // i n t [] message = {4 ,4 ,7 ,8768 ,456} ; // 5
// i n t [] message = {4 ,4 ,7 , 8768} ; // 4

72 // i n t [] message = { 4 , 4 , 7 } ; // 3
// i n t [] message = {4 ,4} ; // 2

74 // i n t [] message = {4} ; // 1

76 f o r (i n t i =0; i<sys . nrCpu−1; ++i) {
Runnable r = new DMABench(i +1) ;

78 Startup . setRunnable (r , i) ;
}

80

// s t a r t the other CPUs
82 sys . s i g n a l = 1 ;

84 // Pr int out s t a r t messages from other c o r e s
f o r (i n t printOut = 0 ; printOut < sys . nrCpu −1;) {

86 i n t s i z e = msg . s i z e () ;
i f (s i z e !=0) {

88 S t r i n g B u f f e r sb = (S t r i n g B u f f e r) msg . remove (0) ;
System . out . p r i n t l n (sb) ;

90 printOut++;
}

92 }

94 i n t tRead , t0 , t1 ;
i n t time , sum , r e s ;

96 i n t i ;
i n t i t e r a t i o n s = 10 ;

98 // Find timing overhead
t0 = Native . rdMem(Const .IO_CNT) ;

100 t1 = Native . rdMem(Const .IO_CNT) ;
tRead = t1 − t0 ;

102 System . out . p r i n t l n (" Timing overhead \ t \ t= " + tRead) ;
// Find avarage read time

104 sum = 0 ;
f o r (i = 0 ; i < i t e r a t i o n s ; i++){

106 t0 = Native . rdMem(Const .IO_CNT) ;
r e s = Native . rdMem(0 x400000) ;

108 t1 = Native . rdMem(Const .IO_CNT) ;
time = t1−t0−tRead ;

110 // System . out . p r i n t l n (" Read time = " + time) ;
sum += time ;

112 }
time = sum/ i t e r a t i o n s ;

114 System . out . p r i n t l n ("Avg read time \ t \ t= " + time) ;
// Find avarage wr i t e time

116 sum = 0 ;
f o r (i = 0 ; i < i t e r a t i o n s ; i++){

118 t0 = Native . rdMem(Const .IO_CNT) ;
Native .wrMem(0 ,0 x40000A) ;

120 t1 = Native . rdMem(Const .IO_CNT) ;
time = t1−t0−tRead ;

122 // System . out . p r i n t l n (" Write time = " + time) ;

146 Test and benchmark source code

sum += time ;
124 }

time = sum/ i t e r a t i o n s ;
126 System . out . p r i n t l n ("Avg wr i t e time \ t \ t= " + time) ;

// Time f o r s i n g l e c a l c u l a t i o n
128 t0 = Native . rdMem(Const .IO_CNT) ;

message [0] = message [0] + 1 ;
130 // i = i + 1 ;

t1 = Native . rdMem(Const .IO_CNT) ;
132 time = t1−t0−tRead ;

System . out . p r i n t l n (" Message [0]++\ t \ t= " + time) ;
134

// Find round t r i p time
136 sum = 0 ;

f o r (i = 0 ; i < i t e r a t i o n s ; i++){
138 t0 = Native . rdMem(Const .IO_CNT) ;

NoC. send (message , sys . nrCpu −1 ,0) ;
140 NoC. recv (message , 1 , 0) ;

t1 = Native . rdMem(Const .IO_CNT) ;
142 time = t1−t0−tRead ;

// System . out . p r i n t l n (" Write time = " + time) ;
144 sum += time ;

}
146 time = sum/ i t e r a t i o n s ;

System . out . p r i n t l n ("Avg roundtr ip time \ t= " + time) ;
148

// Find i n t e r l e a v e d round t r i p time
150 sum = 0 ;

f o r (i = 0 ; i < i t e r a t i o n s ; i++){
152 t0 = Native . rdMem(Const .IO_CNT) ;

NoC. send (message , sys . nrCpu −1 ,0) ;
154 NoC. send (message , sys . nrCpu −1 ,0) ;

NoC. recv (message , 1 , 0) ;
156 NoC. recv (message , 1 , 0) ;

t1 = Native . rdMem(Const .IO_CNT) ;
158 time = t1−t0−tRead ;

// System . out . p r i n t l n (" Write time = " + time) ;
160 sum += time ;

}
162 time = sum/ i t e r a t i o n s ;

System . out . p r i n t l n ("Avg i n t e r l e a v e d roundtr ip time \ t= " + time)
;

164

// Find Echo time
166 sum = 0 ;

f o r (i = 0 ; i < i t e r a t i o n s ; i++){
168 t0 = Native . rdMem(Const .IO_CNT) ;

NoC. send (message , 1 , 0) ;
170 NoC. recv (message , 1 , 0) ;

t1 = Native . rdMem(Const .IO_CNT) ;
172 time = t1−t0−tRead ;

// System . out . p r i n t l n (" Write time = " + time) ;
174 sum += time ;

}
176 time = sum/ i t e r a t i o n s ;

147

System . out . p r i n t l n ("Avg echo time \ t \ t= " + time) ;
178

180 // Find i n t e r l e a v e d echo time
sum = 0 ;

182 f o r (i = 0 ; i < i t e r a t i o n s ; i++){
t0 = Native . rdMem(Const .IO_CNT) ;

184 NoC. send (message , 2 , 0) ;
NoC. send (message , 2 , 0) ;

186 NoC. recv (message , 2 , 0) ;
NoC. recv (message , 2 , 0) ;

188 t1 = Native . rdMem(Const .IO_CNT) ;
time = t1−t0−tRead ;

190 // System . out . p r i n t l n (" Write time = " + time) ;
sum += time ;

192 }
time = sum/ i t e r a t i o n s ;

194 System . out . p r i n t l n ("Avg i n t e r l e a v e d echo time \ t= " + time) ;

196 // Find time f o r send
sum = 0 ;

198 f o r (i = 0 ; i < i t e r a t i o n s ; i++){
t0 = Native . rdMem(Const .IO_CNT) ;

200 NoC. send (message , 3 , 0) ;
t1 = Native . rdMem(Const .IO_CNT) ;

202 NoC. recv (message , 3 , 0) ;
time = t1−t0−tRead ;

204 // System . out . p r i n t l n (" Write time = " + time) ;
sum += time ;

206 }
time = sum/ i t e r a t i o n s ;

208 System . out . p r i n t l n ("Avg send time \ t \ t= " + time) ;

210 // Find time f o r recv
sum = 0 ;

212 f o r (i = 0 ; i < i t e r a t i o n s ; i++){
NoC. send (message , 4 , 0) ;

214 whi le (! NoC. recvRdy (4 , 0)) ;
t0 = Native . rdMem(Const .IO_CNT) ;

216 NoC. recv (message , 4 , 0) ;
t1 = Native . rdMem(Const .IO_CNT) ;

218 time = t1−t0−tRead ;
// System . out . p r i n t l n (" Write time = " + time) ;

220 sum += time ;
}

222 time = sum/ i t e r a t i o n s ;
System . out . p r i n t l n ("Avg recv time \ t \ t= " + time) ;

224

226 // f o r (; ;) {
// i f (NoC. recvRdy (1 , 0)) {

228 // t0 = Native . rdMem(Const .IO_CNT) ;
// NoC. recv (message , 3 , 0) ;

230 // t1 = Native . rdMem(Const .IO_CNT) ;
// time = t1−t0−tRead ;

148 Test and benchmark source code

232 // System . out . p r i n t l n (" Receive time = " + time) ;
// t0 = Native . rdMem(Const .IO_CNT) ;

234 // NoC. send (message , 3 , 0) ;
// t1 = Native . rdMem(Const .IO_CNT) ;

236 // time = t1−t0−tRead ;
// System . out . p r i n t l n (" Send time = " + time) ;

238 // message [0] = message [0] + 1 ;
// }

240 // }
}

242

p u b l i c void run () {
244 Tables . load (id) ;

//NoC. checkSPM () ;
246 S t r i n g B u f f e r sb = new S t r i n g B u f f e r () ;

i f (! Tables . v e r i f y (id)) {
248 sb . append (" Schedule f a i l u r e : CPU ") . append (id) . append (" \n ") ;

}
250 sb . append (" Core ") . append (id) . append (" s t a r t e d ") ;

RtThread . sleepMs (300∗ id) ;
252 msg . addElement (sb) ;

// sb . d e l e t e (0 , sb . l ength ()) ;
254 i n t [] message = IOFactory . getFactory () . getScratchpadMemory () ;

f o r (i n t i = 0 ; i < message . l ength ; i++){
256 message [i] = i ;

}
258 // i n t [] message = {0∗ id , 1∗ id , 2∗ id , 3∗ id , 4∗ id , 5∗ id , 6∗ id , 7∗ id } ;

// 8
// i n t [] message = {0∗ id , 1∗ id , 2∗ id , 3∗ id , 4∗ id , 5∗ id , 6∗ id } ; // 7

260 // i n t [] message = {0∗ id , 1∗ id , 2∗ id , 3∗ id , 4∗ id , 5∗ id } ; // 6
// i n t [] message = {0∗ id , 1∗ id , 2∗ id , 3∗ id , 4∗ id } ; // 5

262 // i n t [] message = {0∗ id , 1∗ id , 2∗ id , 3∗ id } ; // 4
// i n t [] message = {0∗ id , 1∗ id , 2∗ id } ; // 3

264 // i n t [] message = {0∗ id , 1∗ id } ; // 2
// i n t [] message = {0∗ id } ; // 1

266 i n t i t e r a t i o n s = 10 ;

268 i n t s r c = id +1;
i f (id == 8) {

270 s r c = 0 ;
}

272 // Roundtrip measurments
f o r (i n t i = 0 ; i < i t e r a t i o n s ∗3 ; i++){

274 NoC. recv (message , src , id) ;
message [0] = message [0] + 1 ;

276 NoC. send (message , id −1, id) ;
}

278

// Echo measurements
280 f o r (i n t i = 0 ; i < i t e r a t i o n s ∗2 ; i++){

NoC. recv (message , 0 , id) ;
282 message [0] = message [0] + 1 ;

NoC. send (message , 0 , id) ;
284 }

}

149

286 }

150 Test and benchmark source code

Bibliography

[1] Rasmus Bo Sørensen, Martin Schoeberl, and Jens Sparsø. A light-weight
statically scheduled network-on-chip. In 30th NorChip Conference, 2012.

[2] Scott Hansen. T-crest project. Project webpage http://t-crest.org, 2012.

[3] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brand-
ner, Christian W. Probst, Sven Karlsson, and Tommy Thorn. Towards a
Time-predictable Dual-Issue Microprocessor: The Patmos Approach. In
Bringing Theory to Practice: Predictability and Performance in Embedded
Systems, volume 18 of OASICS 18 Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, pages 11–21, Mar 2011.

[4] Martin Schoeberl. JOP Reference Handbook: Building Embedded Systems
with a Java Processor. Number ISBN 978-1438239699. CreateSpace, Au-
gust 2009. Available at http://www.jopdesign.com/doc/handbook.pdf.

[5] K. Goossens and A. Hansson. The aethereal network on chip after ten years:
Goals, evolution, lessons, and future. In Design Automation Conference
(DAC), 2010 47th ACM/IEEE, pages 306 –311, jun 2010.

[6] T. Bjerregaard and J. Sparsø. A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-Chip.
In date, pages 1226–1231. IEEE Computer Society Press, 2005.

[7] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth
using looped containers in temporally disjoint networks within the nostrum
network on chip. In Design, Automation and Test in Europe Conference
and Exhibition, 2004. Proceedings, volume 2, pages 890 – 895 Vol.2, feb.
2004.

http://www.jopdesign.com/doc/handbook.pdf

152 BIBLIOGRAPHY

[8] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kas-
apaki. A statically scheduled time-division-multiplexed network-on-chip
for real-time systems. In Proceedings of the 6th International Symposium
on Networks-on-Chip (NOCS), Lyngby, Denmark, May 2012. IEEE.

[9] Martin Schoeberl. Leros: A tiny microcontroller for FPGAs. In Proceed-
ings of the 21st International Conference on Field Programmable Logic and
Applications (FPL 2011), Chania, Crete, Greece, September 2011. IEEE
Computer Society.

[10] Jens Sparsø, Evangelia Kasapaki, and Martin Schoeberl. An area-efficient
network adaptor for a tdm-based network-on-chip. In Design, Autimation
and Test in Europe Conference and Exhibition 2013, 2013. Accepted to
DATE’13.

[11] Martin Schoeberl. SimpCon - a simple and efficient SoC interconnect. In
Proceedings of the 15th Austrian Workhop on Microelectronics, Austrochip
2007, Graz, Austria, October 2007.

[12] OCP-IP. Open core protocol specification. Technical report,
2012. Available at http://www.ocpip.org/uploads/dynamic_
areas/Xu4qydXgbYWof7Ihz3Uh/947/Open%20Core%20Protocol%
20Specification%203.0.pdf.

[13] Maurizio Palesi, Shashi Kumar, and Rickard Holsmark. A method for
router table compression for application specific routing in mesh topology
noc architectures. In Stamatis Vassiliadis, Stephan Wong, and TimoD.
Hämäläinen, editors, Embedded Computer Systems: Architectures, Model-
ing, and Simulation, volume 4017 of Lecture Notes in Computer Science,
pages 373–384. Springer Berlin Heidelberg, 2006.

[14] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Routing
table minimization for irregular mesh nocs. In Proceedings of the conference
on Design, automation and test in Europe, DATE ’07, pages 942–947, San
Jose, CA, USA, 2007. EDA Consortium.

[15] Wikipedia.org. Rencontres numbers, 2012. http://en.wikipedia.org/
wiki/Rencontres_numbers.

[16] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-
commodity flow problems. In Foundations of Computer Science, 1975.,
16th Annual Symposium on, pages 184 –193, oct. 1975.

[17] Florian Brandner and Martin Schoeberl. Static routing in symmetric real-
time network-on-chips. In Proceedings of the 20th International Conference
on Real-Time and Network Systems, RTNS ’12, pages 61–70, New York,
NY, USA, 2012. ACM.

http://www.ocpip.org/uploads/dynamic_areas/Xu4qydXgbYWof7Ihz3Uh/947/Open%20Core%20Protocol%20Specification%203.0.pdf
http://www.ocpip.org/uploads/dynamic_areas/Xu4qydXgbYWof7Ihz3Uh/947/Open%20Core%20Protocol%20Specification%203.0.pdf
http://www.ocpip.org/uploads/dynamic_areas/Xu4qydXgbYWof7Ihz3Uh/947/Open%20Core%20Protocol%20Specification%203.0.pdf
http://en.wikipedia.org/wiki/Rencontres_numbers
http://en.wikipedia.org/wiki/Rencontres_numbers

BIBLIOGRAPHY 153

[18] K. Goossens, A. Radulescu, and A. Hansson. A unified approach to con-
strained mapping and routing on network-on-chip architectures. In Hard-
ware/Software Codesign and System Synthesis, 2005. CODES+ISSS ’05.
Third IEEE/ACM/IFIP International Conference on, pages 75 –80, sept.
2005.

[19] Mark Ruvald Pedersen, Jaspur Højgaard, and Rasmus Bo Sørensen.
Scheduling in a real-time network-on-chip. Technical report, Department
of Informatics and Mathematical Modelling, Technical University of Den-
mark, 2012.

[20] Stefan Ropke and David Pisinger. An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Trans-
portation science, 40(4):455–472, November 2006.

[21] Thomas A. Feo and Mauricio G.C. Resende. Greedy randomized adaptive
search procedures. Journal of Global Optimization, 6:109–133, March 1995.

[22] pugixml.org. Light-weight, simple and fast xml parser for c++ with xpath
support, 2012.

[23] C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, AUG 1978. Reprinted in “Distributed Computing:
Concepts and Implementations” edited by McEntire, O’Reilly and Larson,
IEEE, 1984.

[24] G. Kahn. The semantics of a simple language for parallelprogramming. In
J. L. Rosenfeld, editor, Information processing, pages 471–475, Stockholm,
Sweden, Aug 1974. North Holland, Amsterdam.

[25] MPI-forum. MPI: A Message-Passing Interface Standard Version 3.0.
MPI-forum, 2012. Available at http://www.mpi-forum.org/docs/mpi-3.
0/mpi30-report.pdf.

[26] open mpi.org. Open mpi: Open source high performance computing, 2012.
Available at http://www.open-mpi.org/.

[27] Cristian Grecu, Andrè Ivanov, Patha Pande, Axel Jantsch, Erno
Salmimem, Umit Ogras, and Radu Marculescu. An initiative towards open
network-on-chip benchmarks. Technical report, OCP-IP, 2007.

pugixml.org
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.open-mpi.org/

	Abstract (English)
	Resumé (Danish)
	Preface
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Real-time systems
	2.2 Network-on-Chip
	2.2.1 Static routing in real-time Network-on-Chip
	2.2.2 Source routing
	2.2.3 Distributed routing

	2.3 Message passing

	3 Tool chain
	3.1 Our tool chain
	3.2 The T-CREST tool chain

	4 Hardware platforms
	4.1 Related work
	4.2 The S4NoC platform
	4.2.1 Programming the platform

	4.3 The T-CREST NoC platform
	4.3.1 Configuration interface
	4.3.2 Integration of the hardware platform

	4.4 Storage of static routing information
	4.5 Discussion
	4.5.1 Scheduling limitations
	4.5.2 Backwards flow control

	5 TDM scheduler
	5.1 Related work
	5.2 Static routing
	5.3 All-to-all scheduling
	5.4 Application specific scheduling
	5.5 Schedule converter
	5.6 WCET-aware compiler
	5.7 Discussion

	6 Message passing interface
	6.1 Related work
	6.2 Communication primitives
	6.3 MPI in the T-CREST platform
	6.3.1 Address space
	6.3.2 Communication primitives

	6.4 Discussion
	6.4.1 Dynamic allocation of buffering space
	6.4.2 Compiler optimizations

	7 Test
	7.1 Hello World!
	7.2 Microbenchmarks

	8 Conclusion
	8.1 Summary of findings
	8.2 Project contribution
	8.3 Future work

	A S4NoC paper
	B T-CREST NoC source code
	C JOP infrastructure
	D TDM scheduler source code
	E MPI source code
	F Test and benchmark source code
	Bibliography

