
Spectral Methods for Uncertainty
Quantification

Christian Brams

Kongens Lyngby 2013
DTU Compute - B.Sc.Eng.- 2013- 3

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253031
compute@compute.dtu.dk
www.compute.dtu.dk DTU Compute - B.Sc.Eng.- 2013- 3

Summary (English)

The goal of the thesis is to apply uncertainty quantification by generalized poly-
nomial chaos with spectral methods on systems of partial differential equations,
and implement the methods in the Python programming language.

We start off by introducing the mathematical basis for spectral methods for nu-
merical computations. Deriving standard forms of differential operators enable
us to implement the spectral collocation method on most partial differential
equations. We implement the spectral methods in Python, creating a stan-
dardized method for solving a numerical problem spectrally using the spectral
collocation method.

Afterwards we derive the stochastic collocation and Galerkin methods, allowing
us to combine the spectral methods with the generalized polynomial chaos meth-
ods in order to achieve exponential convergence in both the numerical solution
as well as the quantification of uncertainty.

Using Python as the medium, we implement these combined methods on a lid
driven cavity problem as well as a two dimensional tank with nonlinear free
surface movement, in order to examine the impact uncertainty on the input
can have on a system of partial differential equations, and how to efficiently
quantify the impact. It is discovered that using uncertainty quantification, we
can describe the actual effect of the variables, by looking at what changes when
the variable is subject to uncertainty, even for nonlinear systems.

The methods derived in this thesis combine excellently, and are easy to im-
plement on most partial differential equations, allowing great versatility in im-

ii

plementing these methods of uncertainty quantification on different differential
systems.

Summary (Danish)

Formålet med denne opgave er at anvende kvantificering af usikkerhed ved meto-
den generalized polynomial chaos sammen med spektrale metoder til løsning af
partielle differentialligninger, og at implmenetere dette i programmeringssproget
Python.

Vi starter med at indtroducere den matematiske basis for spektrale metoder
til numeriske beregninger. Ved at udlede standardiserede udtryk for differenti-
al operatorer, kan vi implementere spektral kollokations metoden på de fleste
partielle differential systemer. Vi implementerer de spektrale metoder i Python,
og opsætter en standardiseret metode til at løse numeriske problemer med den
spektrale kollokations metode.

Herefter udledes stokastisk kollokations og Galerkin metoder, hvilket tillader
os at kombinere spektral metoder med stokastise generalized polynomial chaos
metoder, til at opnå eksponentiel konvergens både på den numeriske løsning og
i kvantificeringen af usikkerhed i et system.

Ved at anvende Python, implementerer vi disse metoder sammen på et lid driven
cavity problem og en simuleret to-dimensionel vandtank med ikke-lineær fri over-
fladebevægelse. Med udgangspunkt i disse to problemstillinger vil vi undersøge
betydningen af usikkerhed på input i et system af partielle differentialligninger,
og hvordan man effektivt kvantificerer dette. Det viser sig at man kan sige me-
get om en enkelt konstants indflydelse på et system, ved at analysere hvordan
usikkerhed på denne konstant påvirker systemet.

Metoderne der er udledt i denne opgave kan med fordel kombineres og nemt

iv

anvendes på det fleste partielle differentialligninger, hvilket giver stor mulighed
for anvendelse til kvantificering af usikkerhed på forskellige differentiallignings-
systemer.

Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfillment of the re-
quirements for acquiring an B.Sc.Eng. in Mathematics and Technology.

The thesis deals with Spectral Methods, and the application regarding Uncer-
tainty Qualification.

The thesis consists of a study of spectral methods, their application and imple-
mentation in the Python programming language. It contains a chapter explor-
ing the method of generalized polynomial chaos (GPC) for use with uncertainty
quantification. The goal of this thesis is to be able to combine the spectral
methods with the GPC methods for uncertainty quantification, in order to cre-
ate an efficient way to quantify the propagation of uncertainty through partial
differential equation models.

In order to fully comprehend this thesis, it is assumed that the reader has basic
knowledge of numerical methods for solving differential equations, as well as an
understanding of linear algebra and programming on a basic level.

Lyngby, 31-January-2013

Christian Brams

vi

Acknowledgements

I would like to thank my supervisor Allan P. Engsig-Karup and Ph.D. student
Daniele Bigoni for their invaluable help during this project. Without their
counseling and guidance, I would likely never have finished the project.

Additionally, I would like to thank Charlotte Frausing for having an near inex-
haustible reservoir of smiles and help whenever I needed it.

I would like to thank my family for providing understanding and support, as well
as relieving me of some of the more menial tasks when the deadline approached.

Kenneth, Anna and Christine deserve a special thanks, for providing a forum
with intelligent feedback, when we first endeavored into spectral methods.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Problem statement 3

3 Spectral methods as numerical methods 5
3.1 Orthogonal polynomials . 5

3.1.1 Generating the polynomials 6
3.1.2 Differentiating the polynomials 11
3.1.3 Challenges for discrete modeling 13

3.2 Constructing spectral solvers . 15
3.2.1 Spectral methods . 15
3.2.2 Types of differential equation problems 17

3.3 Solving differential equations . 18
3.3.1 Using the spectral collocation method 18
3.3.2 Burgers’ equation . 19

4 Implementation of spectral methods 21
4.1 How to use Python for numerical computations 21

4.1.1 A comparison to MATLAB 22
4.1.2 Employed Python packages 23

4.2 Challenges using Python instead of MATLAB 25

x CONTENTS

4.2.1 Integer division . 25
4.2.2 Interfacing with MATLAB 26
4.2.3 Python overhead . 26

4.3 Implementation for spectral methods 27
4.3.1 Generating the differential operators 27
4.3.2 Employing the time-stepping method 30
4.3.3 Handling multi-dimensional problems 31
4.3.4 Sparse matrices . 34

4.4 Practical implementation . 34
4.4.1 Implementing the spectral collocation method 35
4.4.2 Burgers’ equation – implementing the solver 36

5 Stochastic formulation and uncertainty quantification 39
5.1 Probability theory . 39

5.1.1 Basic concepts . 40
5.1.2 How to formulate a stochastic problem 42
5.1.3 Calculating the expectation 44

5.2 Quantification of uncertainty . 45
5.3 Sampling methods . 46

5.3.1 Non-intrusive methods . 46
5.3.2 Intrusive methods . 48

5.4 Examples of uncertainty quantification 49
5.4.1 The test equation – stochastic collocation method 49
5.4.2 The test equation – stochastic Galerkin method 53
5.4.3 Burgers’ equation – the influence of uncertainty 56
5.4.4 The test equation – two dimensional uncertainty 59

6 Numerical experiments 61
6.1 Lid driven cavity . 61

6.1.1 Derivation of the spectral model 62
6.1.2 Implementation of the spectral model 66
6.1.3 Introducing uncertainty on the Reynolds number 71
6.1.4 Numerical experiments with UQ on the Reynolds number 72
6.1.5 Conclusions for the lid driven cavity flow model 80

6.2 A nonlinear 2D wave tank model 80
6.2.1 Derivation of the spectral model 82
6.2.2 Implementation of the spectral model 84
6.2.3 Introducing uncertainty into the amplitude 90
6.2.4 Numerical experiments with uncertainty 91
6.2.5 Conclusions for the wave tank model 94

7 Conclusions 97

CONTENTS xi

A Conventions for notation and plotting 99
A.1 Differential notation . 99
A.2 Uncertainty quantification in plots 99
A.3 Coding notation . 100

B Allan P. Engsig-Karup, notes 101

C Code used in chapter 3 103
C.1 Generating plots . 103

D Code used in chapter 4 109
D.1 Differential Matrices . 109
D.2 Test functions . 110

D.2.1 The test for the two-dimensional differential 113
D.2.2 The test for the sparse matrices speed 115

D.3 Practical implementations . 116

E Code used in chapter 5 121
E.1 Visualization . 121
E.2 Practical examples . 122

E.2.1 Test equation . 122
E.2.2 Burgers’ equation . 133

F Code used in the lid driven cavity problem 141
F.1 Approximating solution . 141
F.2 Visualizing . 156

G Code used in the 2D wave tank problem 161
G.1 Time-integration functions . 161
G.2 Problem implementations . 166

Bibliography 175

xii CONTENTS

Chapter 1

Introduction

Uncertainty quantification is the concept of characterizing the effects of un-
certainty to a useable domain. This allows us to quantify the effects a slight
change in the input will have when applied to an advanced mathematical model.
This characterization is applicable to most areas of science, as it is infeasible to
replicate the exact conditions for the tests which are run.

Through David A. Kopriva’s "Implementing Spectral Methods for Partial Differ-
ential Equations", [Kop09], this thesis will explore the numerical spectral meth-
ods used for solving differential equations. This will allow for rapid convergence
in the error for the numerical solutions to differential equations, enabling us to
sample data with lesser points.

Implementing these numerical methods is essential to the process, as the vast
amounts of calculations needed to be done is insurmountable to anything but
computers. For this we will explore the possibilities for implementing these
methods in an open and easily acceptable form, through the programming lan-
guage of Python. Using the communally developed packages SciPy and NumPy,
we can emulate the easy and optimized interface of MATLAB, without the need for
commercial licenses, allowing everyone to utilize the ideas behind these methods.

Using Dongbin Xiu’s "Numerical Methods for Stochastic Computations", un-
certainty quantification will be introduced, with the main focus on generalized

2 Introduction

polynomial chaos, a method with very fast convergence in the errors of quan-
tifying uncertainty, akin to the spectral methods described in Kopriva’s book.
Generalized polynomial chaos is currently "one of the most widely adopted
methods, and in many cases the only feasible method, for stochastic simulations
of complex systems" as Xiu explains in his preface.

Combining the spectral methods with the generalized polynomial chaos meth-
ods, we will create accurate methods for solving partial differential equations,
while quantifying the uncertainty propagated through the models, by uncer-
tainty on the boundary or initial conditions. This will allow us to effectively
examine the impact of uncertainty on complex differential models.

Chapter 2

Problem statement

The main goal of the thesis is to

1. Be able to describe and understand relevant theory, from spectral methods
to uncertainty quantification.

2. Develop routines and spectral solvers in Python.

3. Exemplify uncertainty quantification techniques through application with
different equation solvers.

4. Formulate and express a clear set of hypotheses and project aims.

5. Conceive, design and execute appropriate experiments, analytical and/or
modeling methods.

6. Communicate knowledge through well written, well presented, concise,
clear and well structured reports and oral presentations. Present project
results using clear tables and figures.

7. Understand the interaction between the different components of a techno-
logical issue.

4 Problem statement

Chapter 3

Spectral methods as
numerical methods

Spectral methods are numerical methods designed for solving ordinary differen-
tial equations (ODEs) or partial differential equations (PDEs) as well as other
related problems. The basic idea behind spectral methods can be compared to
the finite element methods, where the solution is found as a function of the basis
functions representing the spectrum. The key difference is that for finite element
methods, the basis functions are zero on large parts of the domain, while for
spectral methods the basis functions are typically nonzero. This gives the func-
tions excellent error properties for smooth functions, as the error is minimized
across the spectrum, allowing exponential convergence.

3.1 Orthogonal polynomials

Orthogonal polynomials are the basis of the spectral methods. The orthogonal-
ity property allow us to find a unique set of coefficients to describe our function,
and it is central to the concept of spectral methods. The idea of the spec-
tral methods lie in approximating the function using a finite sum of orthogonal
polynomials.

6 Spectral methods as numerical methods

Any function ϕ(x, t) can be represented as a sum of a unique set of coefficients
paired with the appropriate orthogonal basis from the family of basis functions
{Φn(x)}∞n=0 such that

ϕ(x, t) =

∞∑
k=0

ϕ̂k(t)Φk(x)

This assumes that the basis functions are orthogonal on an interval [a, b], with
respect to a weight function w, such that

(Φn,Φm)w =

∫ b

a

Φn(x)Φ∗m(x)w(x) dx = Cnδnm δnm

{
1, n = m

0, n 6= m
(3.1)

Another central aspect of the polynomials we will be using, will be that they
have an associated easy to evaluate quadrature, which is used to approximate
the integral of the functions.

Q[f] =

N∑
j=0

f(xj)wj =

∫ b

a

f(x) dx+E

3.1.1 Generating the polynomials

The main classes of polynomials we will be using are the Lagrange polynomials,
for periodic functions using Fourier interpolation, and the Legendre polynomials,
for use with non-periodic functions.

3.1.1.1 Periodic functions

For periodic functions, we will be using a Fourier series to approximate our func-
tions, since these will have an inherent periodicity – allowing us to exploit this to
automatically ensure periodicity. In essence, any function can be approximated
by a Fourier series, but since we want to truncate the function and not include
the infinite sum, we will only use the Fourier basis for periodic functions. The
function F is approximated by the infinite sum

f(x) =

∞∑
k=−∞

f̂ke
ikx

3.1 Orthogonal polynomials 7

Since the complex exponentials – the Fourier basis functions – are orthogonal,
(3.1) makes it easy to calculate the Fourier coefficients f̂k.

(
FN , e

inx
)

=

(∞∑
k=−∞

f̂ke
ikx, einx

)
=

∞∑
k=−∞

f̂k
(
eikx, einx

)
= Cnf̂n

Where the weights can be calculated to w = 2π, since the basis functions are
2π-periodic

Cn =
(
einx, einx

)
=

∫ 2π

0

ei(n−n)x dx = 2π

This relies on infinite sums, and to be able to compute this, we need to truncate
the function, letting us have a truncated function Pnf(x)

PNf(x) =

N/2∑
k=−N/2

f̂ke
ikx

The error between PNf and f is shown in [Kop09, eq. 1.30] to be directly
related to the size of the remaining coefficients. This allows the spectral methods
to obtain exponential convergence for functions where the coefficients decrease
exponentially – functions periodic on [0, 2π] with all derivatives continuous.

A special case of this exists, called INf the Fourier interpolant, where we com-
pute the coefficients so they fulfill the following

INf(xn) = f(xn), n = 0, . . . , N − 1 ∧ xn
2πn

N

Where the last point is not needed, since INf(0) = INf(2π). The coefficients
and approximation for this expansion is defined in [Kop09, pg. 15] as

f̃k =
1

N

N−1∑
j=0

f(xj)e
−ikxj INf(x) =

N/2∑
k=−N/2

1

ck
f̃ke

ikx

ck =

{
1, k = −N/2 + 1, . . . , N/2− 1

2, k = ±N/2

8 Spectral methods as numerical methods

Which can be rewritten as Lagrange form

f(x) ≈
N/2∑

k=−N/2

1

ck

 1

N

N−1∑
j=0

f(xj)e
−ikxj

eikx ⇔
f(x) ≈

N/2∑
k=−N/2

N−1∑
j=0

1

ck

1

N
f(xj)e

−ikxjeikx ⇔

f(x) ≈
N−1∑
j=0

N/2∑
k=−N/2

1

ck

1

N
f(xj)e

−ikxjeikx ⇔

f(x) ≈
N−1∑
j=0

f(xj)

N/2∑
k=−N/2

1

ck

1

N
e−ikxjeikx

We can then use the trigonometric sum formula for reducing the sum in hj(x)
to a closed form expression, which is can be evaluated easily in Python. The
trigonometric sum formula says

K∑
k=−K

eiks =
sin
((
K + 1

2

)
s
)

sin
(
1
2s
)

Which we can use to rewrite hj(x)

hj(x) =
1

N

N/2∑
k=−N/2

eik(x−xj) ⇔ hj(x) =
1

N

sin
(
N+1
2 (x− xj)

)
sin
(
1
2 (x− xj)

)
We can use Lemma A.1 (See appendix B) to show that

hj(x) =
1

N

sin
(
N+1
2 (x− xj)

)
sin
(
1
2 (x− xj)

) =
1

N
sin

(
N

2
(x− xj)

)
cot

(
1

2
(x− xj)

)

This allows us to calculate the interpolating polynomial for all points, and verify
that these polynomials are mostly non-zero over most of the domain, as shown
in figure 3.1

3.1 Orthogonal polynomials 9

0.0 0.2 0.4 0.6 0.8 1.0
−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Lagrange polynomials for N=6

Figure 3.1: The Lagrange polynomials for N = 6.

For calculating the integrals for the periodic functions, we will be using a com-
posite trapezoidal rule, as [Kop09, pg.13] shows this to be approximating the
integral exactly, giving us the quadrature rule

QF [f] =
2π

N

N−1∑
j=0

f(xj), xj =
2jπ

N

3.1.1.2 Non-periodic functions

For non-periodic functions, we will be using Jacobi polynomials to model our
functions. The Jacobi polynomials which is a family of polynomials that is
defined by 3 variables, α, β and n. The variables α and β define which type of
polynomial, and n is the order. The polynomial is then defined recursively

P
(α,β)
0 (x) = 1

P
(α,β)
1 (x) =

1

2
(α− β + (α+ β + 2)x)

a
(α,β)
n+1,nP

(α,β)
n+1 (x) =

(
a(α,β)n,n + x

)
P (α,β)
n (x)−

(
a
(α,β)
n−1,n + x

)
P

(α,β)
n−1 (x)

10 Spectral methods as numerical methods

Where (
a
(α,β)
n−1,n + x

)
=

2(n+ α)(n+ β)

(2n+ α+ β + 1)(2n+ α+ β)(
a(α,β)n,n + x

)
=

α2 − β2

(2n+ α+ β + 2)(2n+ α+ β)(
a
(α,β)
n+1,n + x

)
=

2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 2)(2n+ α+ β + 1)(
a
(α,β)
−1,0 + x

)
= 0

The Jacobi polynomials form a basis for [−1, 1], and [Kop09, pg. 26] shows that
we can represent any square-integrable function f as an infinite series

f(x) =

∞∑
n=0

f̂kP
α,β
k (x) f̂k =

(
f, Pα,βk

)
w

‖Pα,βk ‖2w
This allows us to calculate the Legendre polynomials, which are defined as P 0,0

n ,
and are the normalized versions are shown in figure 3.2

−1.0 −0.5 0.0 0.5 1.0
−3

−2

−1

0

1

2

3
Legendre polynomials

N = 0
N = 1
N = 2
N = 3
N = 4
N = 5

Figure 3.2: The first six Legendre polynomials.

For the Legendre polynomials, we will be using a Legendre-Gauss quadrature,
or the Legendre-Gauss-Lobatto rules, depending on wether or not we will be
including the boundary points. This uses a simple system, where

QJ [f] =

N∑
j=0

f(xj)wj

3.1 Orthogonal polynomials 11

When appropriate xj and wj are chosen.

For the Legendre-Gauss quadrature, where the end points are not included, are
defined in [Kop09, eq. 1.127] as (3.2). For the Legendre-Gauss-Lobatto case,
the points and weights are defined by (3.3)

xj = zeros of LN+1(x) wj =
2(

1− x2j
)[
L′N+1

]2 (3.2)

xj = +1,−1, zeros of L′N (x) wj =
2

N(N + 1)

1

[LN (xj)]
2 (3.3)

We will be using the Legendre-Gauss-Lobatto nodes exclusively, since these will
allow us points on the boundary which we will need for enforcing boundary
conditions.

3.1.2 Differentiating the polynomials

For the nodal interpolating polynomials, we can devise a matrix that can dif-
ferentiate the nodal values when the matrix product is calculated. This will of
course require a tailored matrix to the problem, but when the problem is scaled
to the spectrum of the basis functions, and the points are chosen according to
the relevant quadrature rule, we can generate a fixed matrix for all systems
using the same number of points.

3.1.2.1 Periodic functions

For periodic functions, we recall from section 3.1.1.1 that we can portray them
as

INf(x) =

N−1∑
j=0

f(xj)hj(x)

Which means that we can calculate the differentiated value as

d

dx
INf(x) =

N−1∑
j=0

f(xj)h
′
j(x) (3.4)

We therefore calculate the differentiate of hj(x). Since we can write hj(x) as

hj(x) =
1

N
sin

(
N

2
(x− xj)

)
cot

(
1

2
(x− xj)

)

12 Spectral methods as numerical methods

We can differentiate it using Maple. If we need to use this on a discrete set
of points with equal spacing, we can calculate an expression that is easier to
comprehend, since we will be using the indices instead of references to the exact
point. Our interval is x ∈ [0; 2π] which is parted in N parts, xj will be defined
as xj = 2π

N j where j = 1, 2, · · · , N − 1, and we can substitute x with a discrete
point as well, giving us x = 2π

N k where k = 1, 2, · · · , N − 1. With this, Maple
evaluates

h′j(xk) =
1

2
(−1)

1+k+j
cot

(
π(j − k)

N

)
Now, since we already now how to calculate the derivative of the function from
(3.4), we can simply multiply design a matrix D of h′j(xk) such that we can
calculate a vector product rather than a sum. Since h′j(xk) is defined in a way,
where h′j(xj) does not exist, we will have to set this manually to zero. This
gives us the following matrix

Djk =

{
1
2 (−1)

1+k+j
cot
(
π(j−k)
N

)
, j 6= k

0 , j = k
(3.5)

This allows us to easily calculate the differential by f ′N = DfN, as long as fN
are the coefficients of the interpolant polynomial – which are identical to the
function value in the nodal points.

3.1.2.2 Non-periodic functions

For non-periodic function, we will need to define the Vandermonde matrix V,
which is is a matrix characterized by being the matrix that can couple the nodal
function values f̃ with the modal function values f̂ in the relationship

f̃ = V f̂ Vij = Φj(xi) (3.6)

Where Φj(x) is the jth basis function, being P (0,0)
j in our case. The Vander-

monde matrix can be used to construct a first order differentiation matrix. This
is due to the representation of the differentiation in a nodal expansion

d

dx

 N∑
j=0

fihj(x)

 =

N∑
j=0

fi
d

dx
hj(x)

And the modal expansion

d

dx

 N∑
j=0

f̂iΦj(x)

 =

N∑
j=0

f̂i
d

dx
Φj(x)

3.1 Orthogonal polynomials 13

If we construct a matrix with the derivatives of h called D and a matrix with
the derivatives of Φ called Vx, we can construct the following relation.

df

dx
= Df = DV f̂ = Vxf̂

From where we can isolate D to get a matrix that can calculate the derivates
akin to the method we used for periodic functions.

D = VxV−1

This requires knowledge of the first derivative of our Legendre polynomials, in
order to calculate Vx, and we use the definition of the first derivative of the
Jacobi Polynomials, as described in [EK11a, Slide 20]

d

dx
P̃ (α,β)
n (x) =

√
n(n+ α+ β + 1)P̃

(α+1,β+1)
n−1 (x)

This allows us to easily differentiate values of the interpolant polynomial for
non-periodic functions as well. The transformation between nodal and modal
coefficients from (3.6), will be useful later, since we can use this to transform
values from one nodal set to another nodal set, using two Vandermonde matrices.

3.1.3 Challenges for discrete modeling

The discrete modeling we will be using will create a couple of problems, since
we are truncating the infinite sums.

3.1.3.1 Gibbs phenomenon

As mentioned in section 3.1.1, the error will decrease in a speed determined
by the speed that the coefficients decrease. Gibbs phenomenon is a problem
that arises when we use only smooth functions to approximate a not-smooth
function. When the approximated function is not smooth, the coefficients will
never go towards zero, as it will need an infinite amount of basis functions to
approximate the discontinuity. We will explore this with the function

f(x) =


1, x > 0

0, x = 0

−1, x < 0

Since this function is not periodic, we will approximate it using the Legendre
polynomials.

14 Spectral methods as numerical methods

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Original
N=5
N=15
N=25
N=35

0 5 10 15 20 25 30 35
10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

N=5
N=15
N=25
N=35

Figure 3.3: An illustration of Gibbs phenomenon by approximating a non-
smooth function using only smooth functions. The approximations
are shown to the left, the coefficients are shown to the right.

Figure 3.3 shows that despite the increase in resolution, we maintain an error of
roughly the same size, it simply moves closer to the discontinuity. We also see
that the coefficients assume a close to constant value for rising n, which explains
that the error will not decrease either.

3.1.3.2 Aliasing

Aliasing is another problem with discrete sampling, where a set of values can
correspond to a multiple basis functions. We will use a Fourier interpolation to
illustrate this, as the two complex exponentials f1(x) = ei2x and f2(x) = e−i6x

are sampled as the same function for a grid where N = 8. [Kop09, pg. 20] shows
that a sinusoid with wavenumber k and points xj = 2πj

N will evaluate to the
same values as a sinusoid with wavenumber k + nN where n ∈ N. Figure 3.4
displays this problem, where the dots mark the sampled values, and f1 and f2
are illustrated as patched lines.

3.2 Constructing spectral solvers 15

0 1 2 3 4 5 6
−1.0

−0.5

0.0

0.5

1.0
k=2
k=-6

Figure 3.4: On a grid with N = 8 points, the functions f1(x) = ei2x and
f2(x) = e−i6x are illustrated.

3.2 Constructing spectral solvers

On the basis of the orthogonal polynomials, we will be constructing spectral
solvers for differential equations. We will be introducing two spectral methods,
the collocation method and the Galerkin method. We will not be implementing
the Galerkin method, but briefly explain what it is, to indicate the different
ways to implement spectral methods.

We will look at both the solution for boundary value problems, as well as the
solution for initial value problems.

3.2.1 Spectral methods

We will explain both the collocation method and the Galerkin method, and
while the methods differ in how they approximate the solution as well as ease
of implementation, they are both spectral methods, and can be used to achieve
spectral convergence for a differential problem.

16 Spectral methods as numerical methods

3.2.1.1 The collocation method

The collocation method is based on the idea of collocation points. The basic gist
of this method is that we will aim to find an interpolating polynomial INf of a
function f , and we then want to enforce the relationship (3.7) at the collocation
points.

INf(xj)− f(xj) = 0 (3.7)

This allows us to fulfill the differential equation at each of the collocation points,
giving us N independent differential equations. Because of (3.7), we can com-
pletely eliminate the need to convert coefficients for the actual implementation,
since we will be using the nodal coefficients, which are identical to the function
values. This allows us to simple use the matrices derived in section 3.1.2 to
generate the values for the differentials in the differential equation.

The collocation method is very easy to implement, as we will show below, since
it relies only on the differential matrices, which can be calculated beforehand
– but it is also sensitive to aliasing errors, since it only concerns itself with
the solution at the collocation points. We have to implement the boundary
conditions as specific alterations to the operators, should we not be using the
Fourier collocation methods – where the boundaries are fulfilled by the basis
functions.

For at problem defined as

ux + uy = 0

We simply construct a linear operator L = Dx + Dy, where the differential-
operators are generated from the methods found in section 3.1.2, and we can
solve the problem by solving the linear equation

Lu = 0

3.2.1.2 The Galerkin method

The Galerkin method takes a different approach than the collocation method.
We will seek a solution that fulfills the differential equation in basis space only,
which means it will be using the weak form – fulfilling the differential equation
only as projected on the basis functions. For the problem

ux + uy = f(x)

3.2 Constructing spectral solvers 17

The Galerkin method will find the approximated solution v, which simply fulfills

(vx, φ) + (vy, φ) = (f(x), φ)

Where φ are the basis functions and (•1, •2) is the inner product, or projection
of •1 unto •2.

The orthogonality of the basis functions gives us N + 1 equations – one for
each basis function including n = 0 – and knowledge of the form the basis
functions take will make us able to calculate an ordinary ODE for each of the
N + 1 equations. This allows us to calculate directly using the modal coef-
ficients, transforming into modal coefficients before we start calculations, and
transforming the coefficients to the solution after the calculations.

Since the Galerkin method operates in the modal basis, aliasing errors will not be
a problem. The Galerkin method requires us to choose basis functions that fulfill
the boundary conditions, and calculating the the derivatives of these according
to the differential equation. This makes it more cumbersome to implement in
general, since it will need to be tailored to each problem individually.

3.2.2 Types of differential equation problems

We have two main categories of partial differential equations, which we will be
solving using our spectral methods, the initial value problems (IVPs) and the
boundary value problems (BVPs).

3.2.2.1 Boundary Value Problems

Boundary values are a classic case of differential equations, specifically PDEs.
They are characterized – as the name suggests – by supplying the values on the
boundaries, and the differential equation then dictates how the interior of the
solution is related.

The primary method we will be using for these solutions, will be to create a lin-
ear system of equations, where the solutions are the unknowns in the equation.
We will be able to approximate the derivative of the function with the differ-
ential operators, allowing us to isolate the function values in a linear system.
The collocation approximation will generally lead to a dense system since their
differential operators are dense, while an application of the Galerkin method
might yield a sparse system.

18 Spectral methods as numerical methods

3.2.2.2 Initial Value Problems

Initial value problems are another set of differential equation problems, where we
will be generating a solution from the initial value. This is typically time-related
problems, where we will be generating the time-derivative from the solution at
the prior time-step and its derivatives. We will be employing the same strategy
as in the BVPs, where we will calculate the derivative values directly from the
function values. This allows us to generate a set of time derivatives, which will
be used to solve a standard ODE problem.

Because the spectrum for the time-dimension is not exactly defined, we will
not be able to properly utilize the whole spectrum for our calculations, limiting
our spectral methods to work on the remaining dimensions. This makes the
method used for solution a pseudo-spectral method, as it will be bounded by
the accuracy of the time-stepping integrator and not by the spectral accuracy
of our methods. It will allow us to make N ordinary ODEs for time-stepping,
which will be spectrally accurate in between time-steps.

3.3 Solving differential equations

We will employ the discussed methods on a selection of problems, where we
will solve a boundary-value problem and an initial-value problem in the form of
Burgers’ equation, which we will use for uncertainty quantification later as well.

3.3.1 Using the spectral collocation method

For this problem, we will be solving the differential equation

−ε d
2

dx2
u− d

dx
u = 1 u(0) = u(1) = 0 (3.8)

Where ε = 0.01. The solution to this problem is found in Maple as

u(x) =
e(1−x)/ε + e1/ε(x− 1)− x

1− e1/ε
(3.9)

We will use a Legendre basis for this calculations, which means that we will
be using points defined from the Legendre-Gauss-Lobatto quadrature defined
in (3.3). These nodes are defined for xGL ∈ [−1, 1], and we will need to scale

3.3 Solving differential equations 19

them to our domain, which is x ∈ [0, 1], which means that we will apply the
transformation

x =
xGL + 1

2
⇔ xGL = 2x− 1

This transformation gives us a scaling factor, which we can calculate as

dxGL
dx

= 2

Using the spectral collocation method, defined in (3.7), we will seek to satisfy
the solution uN the following problem

−εd
2uN
dx2

(xi)−
duN
dx

(xi) = 1 1 ≤ i ≤ N − 1uN (xi) = 0 i = 0, N

Using the differential operator from section 3.1.2.2, we can approximate duN (x)
dx =

2D · u and d2uN (x)
dx2 = 4D2 · u. This allows us to write the problem as

−ε4D2x− 2Dx = 1⇔
(
−εD2 −D

)
x = 1

By creating the linear operator L = −ε4D2−2D, we can impose boundary con-
ditions simply by modifying the first and last rows of L such that it corresponds
to 1 ·x0 + 0 ·xn = 0 and 1 ·xN + 0 ·xm = 0 where n ∈ [1, N] and m ∈ [0, N − 1].
The right-hand-side vector b needs to be changed as well, such that bi = 1 for
1 ≤ i ≤ N − 1 and bi = 0 otherwise.

This allows us to solve the problem defined in (3.8) spectrally by solving the
linear system Lu = 1. The implementation of this problem will be handled in
section 4.4.1.

3.3.2 Burgers’ equation

The viscous Burgers’ equation is a partial differential equation of the form

ut + uux = vuxx x ∈ [−1, 1] (3.10)
u(−1, t) = 1 u(1, t) = −1 ,∀t > 0

v > 0

This equation will assume a steady state after t has become high enough, as-
suming it has an initial condition that satisfies the boundaries. We will be using
the function −tanh(x) 1

|−tanh(−1)| , which will be normalized for the endpoints to
1 and −1.

20 Spectral methods as numerical methods

In order to derive the time-step, we will be using the collocation method as de-
scribed in section 3.3.1 to approximate the solution, which gives us the solution
approximated with the Legendre-Gauss-Lobatto nodes xi

duN
dt

(xi, t) + uN (xi, t)
duN
dx

(xi, t) = v
d2uN
dx2

(xi, t) 1 ≤ i ≤ N − 1

u(x0, t) = 1 u(xN , t) = −1

Since we are using the collocation points xi, we can generate the differential
operator D from section 3.1.2.2 and approximate the differentials, giving us.

duN(t)

dt
+ uN(t)(Du̇N(t)) = v

(
D2 · uN(t)

)
⇔

duN(t)

dt
= v
(
D2 · uN(t)

)
− uN(t)(Du̇N(t)) (3.11)

Since we have an established initial condition, we will simply need to ensure that
du(0)

dt = 0 and du(N)

dt = 0, and we can solve this as a coupled ordinary differential
equation, using this pseudo-spectral method.

The implementation of Burgers’ equation will be handled in section 4.4.2.

Chapter 4
Implementation of spectral

methods

The implementation of the methods is critical to the methods. If the imple-
mentation is wrong, we will not be able to achieve the spectral convergence
we desire. It is important that the method of implementation is chosen wisely,
such that it will be able to support the computations accurately. We will be
using [Big12] for many of the polynomial computations we will be doing, as this
package includes functions to evaluate most polynomials apart from the Fourier.

Python has been chosen as the programming language due to the portability
compared to the licensed MATLAB – Python can run on most platforms, and it
is free to download and install. Python also supports a wide array of libraries
that mimic the functionality of MATLAB, allowing us to use Python with relative
ease.

4.1 How to use Python for numerical computa-
tions

Using Python as a programming language is not that different from using MATLAB
– the code is easy to read, write and understand. Python is unlike a lot of other

22 Implementation of spectral methods

programming languages in that it does not use parentheses to indicate nesting
of functions or conditions, but rather uses indentation – as most other languages
use only as a standard. This gives Python code a guarantee that it will be easy
to read, as the standardization of the code formulation is inherent in the way it
works.

Python is – just like MATLAB – a high-level interpreted programming language,
allowing the user to focus on the coding aspects of the code, and leave handling
memory-management, variable types and other machine-dependent things to
the Python interpreter. This also gives it the quality for effective debugging, as
you literally step your way through the code, seeing the results as you go, which
can be invaluable when trying to discover a calculation error in an implemented
method.

In addition to this, Python is non-commercial and cross platform, allowing
Python scripts to be run on any machine without a license. This, and the
fact that it is designed as a general purpose language, allows for a very versatile
implementation, that can be improved and run anywhere, by anyone. Where
MATLAB requires a commercial license to use or even run already compiled code,
Python is free. Python also allows for easy interfacing with most other lan-
guages, specifically C and C++, further broadening the spectrum of use with
Python.

4.1.1 A comparison to MATLAB

Most MATLAB code can be almost cleanly translated to Python code, thanks to
the Python packages NumPy, SciPy and Matplotlib. There are however some
clear differences that must be accounted for.

• Zero index – Python uses a zero-indexing standard, while MATLAB uses
a one-indexing standard, making most algorithms give a one-off error if
directly converted. This is quickly fixed though, but requires some applica-
tion of thought for algorithms where the index is part of the mathematical
calculations.

• Basic array actions – Python is designed as a general purpose language
and does not automatically assume that we are working in matrices. This
gives most common operators an element-wise property, with specialized
functions for matrix products and other matrix operations. While Python
contains classes for simulating the matrix class in MATLAB, it is not broadly
employed as it is limited to 2-dimensional matrices.

4.1 How to use Python for numerical computations 23

• Differencing between arrays and functions – Python does not al-
low accessing arrays by the a(1) standard and instead uses a[1]. This
can cause some confusion as to why a function will not run but can be
quickly eliminated, as it casts an error. Functions are still called with soft
parentheses.

• Implementing sub-functions – Unlike MATLAB, a Python file can contain
several sub-functions that can be accessed from another file, and it is not
restricted to the same name as the function either. This allows for a
cleaner code-hierarchy.

• Slicing arrays – A Python slice of an array is issued with the : operator
like MATLAB, but unlike MATLAB, beginning and end are assumed unless
stated otherwise. This allows the formulation a[3:] if you want the
array from the fourth element onwards. For accessing the elements in the
last part of an array, negative numbers are used, and a[-1] will net the
last value of an array. Unlike MATLAB, slice operations do not copy the
array, but simply provides a view into it. This can cause problems with
iterative algorithm that assumes the array is constant – Python uses the
copy function to copy arrays, where MATLAB copies them as default.

4.1.2 Employed Python packages

Python allows for a vast number of different capabilities, with a wide-ranging
package-portfolio. We will concentrate on the five packages that we will be using
for our spectral methods and uncertainty quantification.

4.1.2.1 NumPy — Numeric calculations in Python

NumPy is a function library that supports large multi-dimensional arrays, as
well as including modified versions of standard mathematical functions, so they
can be employed upon these large arrays. It draws heavy inspiration from
MATLAB, with most of the functions being called the exact same thing as in
MATLAB, like linspace and ones. It also supplies functions for matrix multipli-
cation and linear solving through the linalg module. It will most commonly be
imported simply as np in this code, allowing calling of functions by np.linspace.

A complete description and list of features can be found on http://docs.
scipy.org/doc/numpy/contents.html

http://docs.scipy.org/doc/numpy/contents.html
http://docs.scipy.org/doc/numpy/contents.html

24 Implementation of spectral methods

4.1.2.2 SciPy — Scientific methods for Python

SciPy is a function library that employs a lot of scientific functions, such as fast
Fourier transform, ODE integrators, data input and output, statistical functions
and much more. It is intimately tied to NumPy, as many of these functions use
the NumPy array as standard input and output type.

A complete list of features and can be found on http://docs.scipy.org/doc/
scipy/reference/

4.1.2.3 Spyder — A MATLAB imitating development environment

Spyder imitates the development environment provided in MATLAB, to a lot of
features. It supplies easy step-by-step debugging, variable editing while running,
and multiple Python consoles. The layout is easily recognizable as the MATLAB
interface, and even supports an automatic object inspector, which provides the
help documentation for any functions imported properly.

The homepage of the Spyder development interface is found at http://code.
google.com/p/spyderlib/

4.1.2.4 Matplotlib — The Python plotting tool

Matplotlib supplies many visualization options to Python, but most notable is
the pyplotmodule, which mimics MATLABs plotting features. The pyplot module
contains functions nearly impersonating MATLAB functions, where the names of
the functions are called the same as in MATLAB, allowing for very easy conversion
between these two development interfaces. It only supports 2D plotting, needing
support in order to achieve 3D plotting, and is also limited by the fact that a
plot needs to be closed before data can be manipulated again. These are minor
annoyances, and we will be using this library to visualize most of our functions.
We will mostly be importing this library as plt, allowing us to plot with the
command plt.plot(x,y)

Matplotlib is a comprehensive library, with all the documentation found at
http://matplotlib.org/

http://docs.scipy.org/doc/scipy/reference/
http://docs.scipy.org/doc/scipy/reference/
http://code.google.com/p/spyderlib/
http://code.google.com/p/spyderlib/
http://matplotlib.org/

4.2 Challenges using Python instead of MATLAB 25

4.1.2.5 DABISpectral1D

DABISpectral1D is a module developed by Daniele Bigoni, PhD student at DTU
Compute. It is used for generating the needed values for orthogonal polynomials
used in spectral methods. We will be using this to calculate most transforma-
tions and quadratures with the Legendre polynomials as well as the Hermite
polynomials needed later. It works by first initializing a polynomial as a vari-
able, and this polynomial will then contain the functions needed for quadratures
and transformations as sub-functions. We will typically be importing it as DB,
allowing us to call functions as DB.Poly1D()

4.2 Challenges using Python instead of MATLAB

Using Python instead of MATLAB does prove somewhat difficult regarding some
pitfalls one may encounter. We will document here how they might affect the
process, and how to overcome them.

4.2.1 Integer division

Python is not used exclusively as a numeric language, and because of this it does
not automatically cast integer division as a floating point number, should the
division not have an integer solution. Python automatically casts integer division
to another integer, rounding the result down. This can prove problematic if
any of the mathematical expressions include a fraction like 1

2 . It can be easily
overcome though, with two easy solutions.

• Adding a punctuation mark after the integer, to indicate it should be
treated as a floating point value. In the above example we would then
write 1./2. instead of 1/2.

• Importing the built-in function to convert integer division to floating point
numbers automatically. This will require the very first line of code in the
relevant file to be "from __future__ import division".

Both of these fixes are very easy to implement, although it can easily ruin a
code if not remembered, as it will not throw any error, despite reducing the
product it is a part of to zero. We will mainly be employing the second method
to ensure that we will not have any fractions we have forgotten.

26 Implementation of spectral methods

4.2.2 Interfacing with MATLAB

One of the biggest challenges is interfacing with the many MATLAB scripts which
are available. Many results are approximated using MATLAB scripts, which will
be useful for verifying implementations. There are a few ways that we can solve
this problem

• Convert the scripts – If we convert the scripts manually, they will run
natively with Python. This is fairly straightforward for smaller programs,
but can be a daunting task for longer scripts. For most longer scripts
we would have to keep track of which variables are matrices/vectors and
which are simply constants, in order to update the script correctly, as
well as finding Python replacements for build-in functions that are not
standard.

• Saving the data – MATLAB can save the data as a .mat file, which is fairly
easy data-format to read, which SciPy can easily read. It requires that
the problem can be replicated exactly in order to compare with the data,
something which is not always possible.

• Actual interface – Many Python libraries exist that can directly interface
with MATLAB. This requires the running computer to also have a MATLAB
installation, which eliminates the absolute portability of the scripts. This
can easily be used for verification purposes, and be disabled in the fi-
nal scripts, allowing seasoned MATLAB coders to test their Python scripts
against old experiences before shipping Python code.

We will not be dependent on MATLAB scripts that are big enough to not be
converted properly. Most of the data we will be using for confirmation is also
of the size to simply write into our files. This means that we will at no time be
using the options of loading MATLAB data or interfacing with MATLAB.

4.2.3 Python overhead

Python is a general purpose programming language, and is thus not optimized
to do the advanced mathematical computations, as MATLAB is. While Python
has many features, they come with the price of an overhead time-cost MATLAB
does not have. Unlike MATLAB, effort must be made if Python has to become as
effective as MATLAB, but it is unlikely that it is possible, due to the de-centralized
development of Python. While this overhead in general is not pronounced, it
becomes quite pronounced when dealing with big systems as the ones we will

4.3 Implementation for spectral methods 27

handle in chapter 6. While this is unfortunate for aspiring numerical users of
Python, it is not crippling to the process. This issue is magnified the more
different packages are used for the calculations, so it is always a good idea to
only import the packages you need and use when doing numerical computations
in Python.

4.3 Implementation for spectral methods

Before we will be able to solve our problems with spectral methods, we will
need to construct some of the parts that we will be using for our spectral solvers.
These implementations or scripts will be used in the development of our spectral
methods.

4.3.1 Generating the differential operators

The differential operators will be central to the collocation method, as these will
find the numerical differentials of the nodal values by a simple matrix product.
We will split this into the definition of the Lagrange Fourier matrix DF and
the Legendre matrix DP, which will both be included in a Python script called
Diff.py, from where we will import them when needed. We will not be utilizing
the Fourier differential operator, but implementing it is necessary to be able to
handle periodic boundaries in problems.

4.3.1.1 The Fourier differential operator

We recall the definition of the Fourier differential operator from (3.5), and note
that it is only defined for a grid of even points. Using this, we will implement

28 Implementation of spectral methods

the matrix by the following algorithm.

Data: N - Positive integer designating the size of the array containing the
equally spaced points.

Result: A Fourier differentiation matrix D
D = Zero NxN Matrix
for i← 0 to N − 1 do

for j ← 0 to N − 1 do
if j 6= k then

D[i][j] = 1
2 (−1)

1+k+j
cot
(
π(j−k)
N

)
else

D[i][j] = 0
end

end
end

Algorithm 1: Generating the Fourier differential matrix

The reason that we are excluding the last point, is that it is automatically
assumed that the last point be equal to the first one by periodicity. The code
for this implementation can be found in appendix D.1.

We will test this implementation by creating a function v(x) = esinπx defined
on the grid x ∈ [0, 2]. This will have the true solution v′(x) = π cos (πx)esinπx,
which we will be able to test up against. Using algorithm 1, we will calculate
the derivatives, and the convergence with regards to the number of points N

0.0 0.5 1.0 1.5 2.0
x

−6

−4

−2

0

2

4

6

v
'(
x
)

Analytic
Approximation

100 101 102

N

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Error
N^(-3)

Figure 4.1: The numeric differential (by Fourier operator) of v(x) to the left,
and the convergence to the right.

Figure 4.1 shows that the differentials are quite precise at even relatively small

4.3 Implementation for spectral methods 29

numbers of N , and that the error converges faster than polynomial speed, satis-
fying the condition to be used in a spectral solver by having spectral accuracy.

4.3.1.2 The Legendre differential operator

The definition for the differential operator we will need for non-periodic func-
tions is explained in section 3.1.2.2. Since we know that the differential operator
is calculated as

D = VxV−1

Where V is the Vandermonde matrix, and Vx is the Vandermonde matrix of the
differentiated basis polynomials, when we have calculated them, we will be able
to construct the differential matrix. The package DABISpectral1D contains a
routine to compute the Vandermonde matrix of derivative order n on a set of
points x, which we will be using. This allows us to generate the differential
operator as

Data: N - Positive integer designating the size of the array containing
Legendre-Gauss-Lobatto quadrature points.

Result: A Legendre differentiation matrix D
D = Zero NxN Matrix
Create the Legendre-Gauss-Lobatto nodes xGL from N with
GaussLobattoQuadrature from DABISpectral1D
Create V from N and xGL with GradVandermonde from DABISpectral1D
Create Vx from N and xGL with GradVandermonde from DABISpectral1D
Solve the system VD = Vx for D with numpy.linalg.solve

Algorithm 2: Generating the Fourier differential matrix

This implementation can be found in appendix D.1.

We will test the algorithm 2 implementation on the same function as the test
for algorithm 1.

30 Implementation of spectral methods

0.0 0.5 1.0 1.5 2.0
x

−6

−4

−2

0

2

4

6

v
'(
x
)

Analytic
Approximation

100 101 102

N

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Error
N^(-2)

Figure 4.2: The numeric differential (by Legendre operator) of v(x) to the left,
and the convergence to the right.

As we can see in figure 4.2 the nodal points are not located with the same equal
spacing as in figure 4.1. The nodal values are centered more towards the ends of
the spectrum. We also see that the Legendre differential operator also achieves
spectral convergence, qualifying it for use with spectral methods.

4.3.2 Employing the time-stepping method

For the time-dependent problems, we will need an established time-stepping al-
gorithm in order to get dependable results. For this we will use the function
scipy.integrate.odeint in most cases. This method is based on the LSODA
algorithm from the FORTRAN ordinary differential equation solver pack, ODEPACK.
It automatically adjusts the time-steps, adjusting to the problem stiffness, mak-
ing it a good choice for us, since we will not have to calculate a stable solver for
each problem.

The function is called as odeint(func, y0, t, (args)), where the inputs are

func A right-hand-side function which returns the time-derivatives

y0 A vector of the initial states

t A vector containing the time-values we would like to have output the
function values for. The first element should be the initial time, and the
last should be the last time.

args A Python tuple, containing all the extra arguments to pass to func.

4.3 Implementation for spectral methods 31

The function then returns a RNy×Nt matrix, where each column represents a
time-step.

Using this function will force us to define the right-hand-side function explicitly,
and ordering all our values into a single vector. This will force us to gather all
input values into a vector before using this, and including a splitting procedure
in func. With this in mind, we can employ this as part of the solution for initial
value problems.

An example of such a right hand side function can be found in the implemen-
tation of Burgers’ equation from section 4.4.2.

def dudt(u,t,v,Dx,BoundaryFixer):
#Calculate the linear operator

unew= -u*np.dot(Dx,u)+v*np.dot(Dx,np.dot(Dx,u))

#Adjust for boundaries
unew = unew*BoundaryFixer
return unew

4.3.3 Handling multi-dimensional problems

One problem that will arise will be how to handle multi-dimensional problems.
The problem with multi-dimensional problems, is that not only will the problem
likely need to be passed as a vector for some functions, but our differential
operators are also only defined in the 1D spectrum.

4.3.3.1 Multiple dimensions in a single vector

To define a grid of values, we will use a vector of values along each dimension, x
and y, and we will create the needed grid by the command X,Y=numpy.meshgrid(x,y),
which will net us the grids

X =


x0 x1 · · · xNx

x0
. . .

...
...

. . .
x0 · · · · · · xNx

 Y =


y0 x0 · · · y0

y1
. . .

...
...

. . .
yNy · · · · · · yNy



32 Implementation of spectral methods

We will need to be able to order an entire multi-dimensional array into one
vector for the time-integration scheme we have developed. We will do this by
utilizing some of the built-in functions of Python, flatten and reshape.

In order to vectorize our multi-dimensional array, we will use the build in
flatten function, where we will specify we want to flatten it using the for-
tran standard, which is column-major – the first column will be the first part
of the new vector, followed by the second column and so on (same result as the
MATLAB notation a(:)). Now, we can reform the vector to its previous state
using reshape, where we will need to specify the number of elements in each
dimension, and the order with which we flattened it.

To avoid continuously flattening and reshaping, we will create a multi-dimensional
array of indexes, which will include the index of each point in the vector, located
at the point it should be in the matrix. We will accomplish this by creating an
array of indexes, and reshaping this as we would have our vector. This allows
us to use the notation A[index[x,y]] instead of reshaping A to use A[x,y].

An example for the functions mentioned used in included below

x,wx = LegPol.GaussLobattoQuadrature(Nx)
y,wy = LegPol.GaussLobattoQuadrature(Ny)

X,Y = np.meshgrid(x,y)

u = u.flatten("F")

index = np.arange((Nx+1)*(Ny+1)).reshape(Ny+1,Nx+1,order=’F’).copy()

4.3.3.2 Differentiation of multiple dimensional array

Since our differential operators are only defined on the single dimensional space,
we will need to find a way to differentiate the multi-dimensional arrays as if
they were in a single dimension. We will use the vectorized version of the multi-
dimensional array. If we recall that the first column would be ordered at the
top, followed by the next column. If we individually used the differentiation
operator on each column, we could differentiate those values along the first axis.
To do this, we can generate a new matrix DX 6= Dx, which would be defined
as DX = Dx ⊗ INy , where INy is the identity matrix of size Ny × Ny, and ⊗
is the kronecker product. This would allow us to use the dot product between
DX and our vector of values v to generate dv

dx = DX · v. Using the same logic,

4.3 Implementation for spectral methods 33

we can differentiate along the other axis using DY = Dy ⊗ INx . For N > 2
dimensional problems, we would add a kronecker product for each dimension.

In order to verify this, we create a mesh from x ∈ [−1, 1] and y ∈ [−1, 1], where
we will generate the function cos (xy) over. Differentiating this along both axis
will give

d

dx

d

dy
cos (xy) = −xy cos (xy)− sin (xy)

Which we can use to test the derivative qualities of the functions. We will
be employing the Legendre derivative operators for this problem, and in both
directions. The test algorithm in algoritm 3, which produces figure 4.3.

Data: None
Result: Plots detailing the error of our differentiation.
Generate x and y using GaussLobattoQuadrature from DABISpectral1D
Create a mesh X,Y using numpy.meshgrid(x,y)
Create Dx and Dy using Algorithm 2
Calculate the C = cos (xy) and the correct derivative C ′
Flatten C
Create DX and DY using numpy.kron and numpy.identity
Calculate the approximated derivative using Cd = DX ·DY · C
Calculate and plot the error |Cd − C ′|

Algorithm 3: Testing multi-dimensional differentiation.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
1e−12

Figure 4.3: The error after differentiating cos (xy) along both axis numerically.

34 Implementation of spectral methods

As figure 4.3 shows, the error is in the order of machine accuracy, showing that
this differentiation scheme works as intended.

The full code for the test can be found in appendix D.2.

4.3.4 Sparse matrices

The multi-dimensional differential-operator matrices – as a kronecker product
with the identity matrix – consist largely of zeroes. NumPy does not natively
support sparse matrices, but SciPy includes a library that supports sparse ma-
trices. This means that we will need to monitor which of our matrices are sparse,
and modify the expressions where they are a part.

Since we will mainly be using this on the differential operators – from which all
we need is the dot product – we can utilize the inherent function of the sparse
matrices A.dot(b) to get the dot product A · b in a standard vector format.

SciPy offers many different formats for sparse matrices, each suited for different
application, and we will be using a form classified as compact-sparse-row matrix,
as this will be most efficient for the dot-product according to [JOP+].

In order to verify that this is indeed faster, and as correct, we will construct
a test-case for this sparse matrix, where we will generate a random 1000x1000
matrix A, with non-zero elements in 100 places in the first two rows, and nonzero
elements along the diagonal, and generate a random nonzero 1000x1 array b.
We time both the sparse version of the dot product and the full version, and
repeat this procedure 1000 times. This gives us an average of 2.778 · 10−3

seconds for the full dot product, and only 1.289 ·10−4 seconds in average for the
sparse dot product, giving us a significant upgrade in speed. The average error
‖x2sparse − x2full‖2 was 5.4 · 10−13, which is within acceptable bounds, as we can
attribute that to machine accuracy.

The full code for this test can be found in appendix D.2.

4.4 Practical implementation

We have outlined how to implement the different parts of the code, and now we
will implement the actual solutions to the problems from section 3.3, in order
to verify the implementation works, and the convergence behaves as expected.

4.4 Practical implementation 35

4.4.1 Implementing the spectral collocation method

We will use the problem from section 3.3.1, which is defined as

−ε d
2

dx2
u− d

dx
u = 1 u(0) = u(1) = 0

And has the solution (3.9).

Since the derivation was handled in the previous chapter, we will simply imple-
ment the method here, using the routines described in this chapter. We choose
the Legendre polynomials to model the equations, which means that we will gen-
erate the differential matrices using algorithm 2. Since this algorithm already
uses the untransformed points, we will use these as well for our problem.

The construction and modification of our linear operator to adhere to boundary
points is done as follows

#Construct L
L = -epsilon*4*np.dot(D,D) + b*2*D

#Implement boundary conditions
L[0,:] = 0
L[-1,:] = 0
L[0,0] = 1
L[-1,-1] = 1

#Generate right-side function with boundary conditions
f = np.ones((n,1))
f[0] = 0
f[-1] = 0

After having constructed our linear operator, we will use the function solve
from the numpy.linalg pack to find the solution. We will continuously increase
the amount of points between 10 ≤ N ≤ 80 in order to generate an error
convergence plot.

36 Implementation of spectral methods

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
N=80 and epsilon=0.01

Approximation
Exact

101 102

N

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Error \epsilon{}=0.01

Figure 4.4: To the left: The calculated solution using N = 80 to the problem
given in (3.8), compared to the correct solution as given in (3.9).
To the right: The error for the approximation as a function of N

Figure 4.4 shows us that the solution is indeed spectral in convergence, and
that the spectral collocation method can be implemented with the previously
described methods.

The full code for the test case can be found in appendix D.3.

4.4.2 Burgers’ equation – implementing the solver

We will be implementing the solution we found in section 3.3.2, which is the
viscous Burgers’ equation described as

ut + uux = vuxx x ∈ [−1, 1]

u(−1, t) = 1 u(1, t) = −1 ,∀t > 0

Since the problem has Dirichlet boundary conditions, we will be using the Leg-
endre polynomials to, and thus the differential operator from algorithm 2. Using
the derived form from (3.11), we construct a separate right-hand-side function,
in which we include the condition that the time-derivative will be zero on the
boundaries.

The right hand side and the "boundary fixer" are constructed as such

#Create boundary fixer to cancel the time derivatives
at the boundaries.

4.4 Practical implementation 37

BDFix = np.ones(x.shape)
BDFix[0] = 0
BDFix[-1] = 0

def dudt(u,t,v,Dx,BoundaryFixer):
#Calculating linear operator
unew= -u*np.dot(Dx,u)+v*np.dot(Dx,np.dot(Dx,u))
#Adjust for boundaries
unew = unew*BoundaryFixer
return unew

By multiplying the time-derivative with BDFix, all values will remain the same,
except at the boundaries, where the boundary values time-derivative is equal to
zero.

We use the time-stepping function described in section 4.3.2, where we generate
the initial condition from the function u0(x) = −tanh(x) 1

|−tanh(x0)| .

In order to generate a numerical solution, we will need to define v > 0, which
we choose to be v = 0.1.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

Solution to Burgers' equation

Initial Value
t=0.40
t=0.80
t=1.20
t=1.60
t=2.00
t= 4

Figure 4.5: The solution to Burgers’ viscous equation with v = 0.1.

We see in figure 4.5 that the equation quickly achieves a steady state.

The full code for the test case can be found in appendix D.3.

38 Implementation of spectral methods

Chapter 5

Stochastic formulation and
uncertainty quantification

The influence of measuring errors or other uncertain quantities in a differential
equation can sometimes change the solution drastically. To enable us to to
correctly gauge the effect of uncertainties, this chapter describes how to quantify
and implement these factors into our differential equation models.

This will an effective aid in assessing the impact uncertainty can have on com-
plicated systems where it can often be very hard or impossible to predict. We
will mainly be using the method called generalized polynomial chaos, which al-
lows us to drastically reduce the time needed to do calculations with acceptable
errors – making the effort worthwhile even under a certain time-constraint.

5.1 Probability theory

In this section, we will explore the probability theory needed to utilize and
understand uncertainty quantification. We will start by introducing the basic
concepts for probability and stochastic computations, and move on to how we
will formulate and solve stochastic problems numerically. We will draw heavily
on [Xiu10, Chp. 2], which presents and defines these concepts.

40 Stochastic formulation and uncertainty quantification

5.1.1 Basic concepts

In order to include stochastic variables in our models, we need to classify these
and the concepts associated with them.

5.1.1.1 Random variables

The concept of random variables is essential to the formulation of our problems.
A random variable is, in essence, what allows us to represent the random nature
of our system. We assign a possible outcome the designation ω, wether it be a
physical outcome, such as heads or tails in a coin-flip, or a numerical outcome.
This allows us to create the random variable concept as a real-valued function
dependent on ω, such as the random variable X = X(ω). The random variable
can now always be represented in a mathematical model, despite the outcomes
not always being mathematical in nature.

This allows us to represent information about a given mechanic, where we can
define how the outcome might work, but might not be sure how the exact
mechanics work.

The random variables in this thesis will have outcomes already defined on the
numerical scale, and but will retain the notation X(ω) as it is still a function of
the random outcome.

5.1.1.2 Distributions

Random variables are all associated with a given probability, which measures
the likelihood that each outcome will be the realization of ω. The probability
of each outcome is a number 0 ≤ p ≤ 1, where 1 signifies that the outcome
always happens, and 0 that it never happens. Associated with the probability
is the distribution function FX , which is the accumulated probabilities FX(x) =
P (X ≤ x).

The distribution is often used to characterize the variable for continuous distri-
butions, which are a large part of what we will be working with. Most continuous
distributions also have a density fX which is used to characterize the probability
for a given range of outcomes. Since the distribution is continuous it follows
that there is exactly P (X = x) = 0 chance for a given outcome to occur. We

5.1 Probability theory 41

therefore define the density as

FX(x) =

∫ x

−∞
fX(y) dy

Where fX(x) ≥ 0 and the sum of all outcomes is exactly 1,
∫∞
−∞ fX(y) dy = 1.

The two distributions we will be working with will be the gaussian distribution
and the uniform distribution. The density of the gaussian distribution N

(
µ, σ2

)
where x ∈ R is defined as

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (5.1)

And the uniform distribution U(a, b) is constant for x ∈ [a, b]

fX(x) =

{
1
b−a x ∈ [a, b]

0 otherwise

5.1.1.3 Moments and expectation

Moments are a very useful way of describing a random variable X, since we can
characterize the behavior of a random variables using a few concepts. The mth
moment is defined as

E[Xm] =

∫ ∞
−∞

xmfX(x) dx

The most commonly used moment is probably the first moment, which is also
called the expectation or the mean value. This characterizes the most likely
value to be assumed by the variable, hence the name expectation. It is typically
denoted as µ, and is used as this to characterize the gaussian distribution, as
seen in (5.1).

With the expectation defined, we can define another widely-used concept derived
from moments, which are the centered moments. They are defined as

E[(X − µX)
m

] =

∫ ∞
−∞

(x− µX)
m
fX(x) dx

The first centered moment will always evaluate to zero. The second centered
moment is called the variance, denoted σ2, and is the square of the standard
deviation σ. The standard deviation is used to describe how far the variation

42 Stochastic formulation and uncertainty quantification

is around the mean, for example 95% of values are within µ ± 2σ for a gaus-
sian distribution. It is worth noting that a gaussian distribution is completely
characterized by the mean and standard deviation.

We will operate with functions of random variables rather than random variables
themselves. Many of the concepts can be directly applied to functions as well,
although the mathematical calculation differs a bit. For any real valued function
g the expectation is calculated by

E[g(X)] =

∫ ∞
−∞

g(x)fX(x) dx

5.1.2 How to formulate a stochastic problem

To investigate the effects of having stochastic variables in the formulation of our
system, we will need to formulate the problems differently. Given a differential
system with stochastic variables, we will need to identify and parameterize the
stochastic inputs, allowing us to do computations based on these.

Parametrization is generally uncomplicated if the stochastic variables are al-
ready operating in RN , and are independent. Since this thesis is generally
concerned with already parameterized domains, we can typically model our
stochastic variables to this domain – making further parameterization unneces-
sary.

5.1.2.1 Generalized polynomial chaos

Generalized polynomial chaos (gPC) is a technique used for parametrization of
a stochastic variable. It involves modeling a stochastic variable by an appro-
priately chosen polynomial, allowing easing of the calculations for expectations.
By modeling the stochastic variables as a polynomial, we can choose the values
of our stochastic variables with a deterministic routine instead of allowing these
values to be "random".

In general the basis functions of gPC are the polynomials satisfying

E[Φm(Z)Φn(Z)] = γnδmn m,n ∈ N (5.2)

It is clear from the delta-function, that these polynomials must be orthogonal,
and that

γn = E
[
Φ2
n(Z)

]
n ∈ N

5.1 Probability theory 43

For the probability density function ρ(z), we can calculate the expectation from

E[Φm(Z)Φn(Z)] =

∫
Φm(z)Φn(z)ρ(z) dz = γnδmn (5.3)

[Xiu10, Table 5.1] suggest that for gaussian distributions, Hermite polynomials
are chosen for the basis, and for uniform distributions Legendre polynomials are
chosen.

Hermite polynomials Hermite polynomials are a family of orthogonal poly-
nomials defined as

Hn(x) = (−1)
n
ex

2/2 d
n

dxn
e−x

2/2

And satisfying∫ ∞
−∞

Hm(x)Hn(x)w(x) dx = n!δmn w(x) =
1√
2π
e−x

2/2 (5.4)

The similarity between the weight function and the actual density for a gaus-
sian variable suggests that Hermite polynomials are easy to use when modeling
gaussian variables. The density of gaussian variables is

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (5.5)

Which means that the Hermite weight function is exactly the density of the
gaussian variable X N (0, 1). The first six Hermite polynomials are visualized
in figure 5.1

−3 −2 −1 0 1 2 3
−30

−20

−10

0

10

20

30

HP0
HP1
HP2
HP3
HP4
HP5

Figure 5.1: The first six Hermite polynomials visualized

44 Stochastic formulation and uncertainty quantification

5.1.3 Calculating the expectation

The expectation of a stochastic variable X is defined as

E[X] =

∫ ∞
−∞

xfX(x) dx

For our calculations, we will not always have the analytic solution to the dis-
tribution of our values we will not be able to use this integral, but rather a
quadrature. For a set of N points chosen at random, we will assign each point
the same weight, giving us

E[X] =

N∑
n=0

1

N
xn for large N

This is a a result of the law of large numbers, which states that

lim
N→∞

N∑
n=0

1

N
xn = µx

5.1.3.1 Gaussian distribution

For a gaussian distribution, we use the Hermite polynomials to approximate the
variable, we will instead use the Gauss-Hermite quadrature, which is defined as∫ ∞

−∞
f(x)e−

x2

2 dx ≈
n∑
i=1

wif(xi) (5.6)

If we want to calculate the expectation of the modeled variable, we use the
definition from section 5.1.1.3

E[g(X)] =

∫ ∞
−∞

g(x)fX(x) dx

Since we will only be modeling gaussian variables by Hermite polynomials, we
can calculate these expectations as

E[H(X)] =

∫ ∞
−∞

1

σ
√

2π
H(x)e−

(x−µ)2

2σ2 dx

Since we would like to use (5.6), we will need to employ a transformation to

x→ y, such that e−
(x−µ)2

2σ2 = e−
y2

2

y =
x− µ
σ
⇔ x = σy + µ

5.2 Quantification of uncertainty 45

This would allow us to calculate the expectation by (5.6)

E[H(X)] =

∫ ∞
−∞

1√
π
H(σy + µ)e−

y2

2 dx ≈ 1√
π

n∑
i=1

wiHi(σyi + µ) (5.7)

5.1.3.2 Uniform distribution

If we want to use the uniform distribution instead of the gaussian, we will be
using the Legendre-Gauss quadrature instead. We assume a random variable Y
is following the uniform distribtion Y ∼ U(a, b)

E[L(Y)] =

∫ b

a

L(y)fY (y) dy =

∫ b

a

L(y)
1

b− a
dy

Since the Legendre-Gauss quadrature only works on the interval [−1, 1], so we
transform y

x =
b− a

2
y +

a+ b

2

dx

dy
=
b− a

2

This allows us to calculate the expectancy by the Legendre-Gauss quadrature

E[L(Y)] =
b− a

2

∫ 1

−1
L(x)

1

b− a
dx =

1

2

∫ 1

−1
L(x)⇔

E[L(Y)] ≈ 1

2

N∑
i=1

wiLi(xi) (5.8)

5.2 Quantification of uncertainty

Uncertainty is differentiated between the two causes of uncertainty in a model,
the statistic uncertainty, called aleatoric uncertainty, and systematic uncer-
tainty, called epistemic uncertainty. Aleatoric uncertainty is the inherent uncer-
tainty in many problems, such as measuring errors and errors due to fabrication
differences of the products used. This uncertainty is hard to suppress in many
cases, as it is increasingly difficult to increase measuring accuracy. Based on the
understanding of the model, most aleatoric uncertainty can be quantified, since
we are aware of the sources of uncertainty, we can bound them to a quantifiable
domain.

Epistemic uncertainty is the uncertainty inherent in our model, if our model
neglects certain effects either due to inferior knowledge of the system, or due to

46 Stochastic formulation and uncertainty quantification

simplification of the model – for example the exclusion of air-friction. Epistemic
uncertainty is hard to quantify by design, as it is often not measurable. We will
be concerning ourselves with aleatoric uncertainty, exploring the effects errors
on the input might have on the result.

While we already posses the knowledge to quantify the uncertainty of a variable,
what we really need to establish is how uncertainty propagates through a model.
The simplest way to do this would be to simply run the model multiple times
with different input, but as we will discuss in the next chapter, it is not optimal.
The general way we will be showing how the uncertainty propagates is also by
the use of mean and standard derivation. This will simplify most of the points
through plots, as we will characterize each function value in a certain point as
its own random variable, we will easily be able to calculate the expectation and
variance of the function using the methods from section 5.1.1.3 and quadrature
rules.

For our models we will start by constructing a model solution for a problem with
fixed constants, allowing us to verify the correctness of our solution. We will
then introduce the uncertainty in variables after the model has been established,
and use the complete model to calculate how the uncertainty propagates. This
puts some limits on our models, as we cannot account for random variables
that change according to a random pattern - at least not without modifying the
solution model. This generally limits us to allowing stochastic input and not
stochastic processes.

5.3 Sampling methods

Sampling methods are the different way we will choose the values of our random
variables. For our problems we will stick to non-intrusive methods, though we
will quickly touch on what an intrusive method is.

5.3.1 Non-intrusive methods

In this section we will explore some of the non-intrusive methods for calculating
propagating uncertainty through a model. That the methods are not intrusive
means that we will simply vary the input to the model, and not the actual
solution process. This allows us to reuse our deterministic model for an uncertain
problem, easing the derivation and implementation of our methods, and the
verification of our models.

5.3 Sampling methods 47

5.3.1.1 Monte Carlo method

The Monte Carlo method is derived from the name of a big casino in Monaco.
The name is descriptive for the method, which essentially is about randomly
generating input by the distribution of the variable. For each input generated,
the model is run, and the output collected for calculation of expectation and
moments. This makes it extremely simple to implement, as it will typically
reduce to a simple iteration over the solution of the problem. This does not
provide a very efficient way of solving our problems however, since the conver-
gence rate, according to [Xiu10, p. 54] is O

(
M−1/2

)
, which means that we will

need a hundred times more calculation for a precision increase in one digit. This
is very inefficient, since most problems does not allow for quick computation,
and it will require a large amount of samples to generate a stable basic solution
for most problems. The Monte Carlo method relies on the law of large num-
bers, which states that for an infinite set of random points x, we will be able to
calculate the exact mean by

lim
N→∞

1

N

N∑
i=0

xi = µx

5.3.1.2 Stochastic collocation method

The stochastic collocation method derives its name from the numerical colloca-
tion method – since they both require the residual of the approximation to be
zero in the collocation points. A stochastic collocation method requires that the
solution to the model is formed from the results of the model being run on dif-
ferent sets of nodes from the random space. This essentially qualifies the Monte
Carlo method as a collocation method as well, but the sense we will be using
it in employs the use of general polynomial chaos. The method will depend on
choosing a set of points to accurately represent the polynomial as detailed in
section 5.1.2.1, solving the model with these inputs, and then calculating the
results based on the chosen polynomial type. This requires some more calcula-
tions than the Monte Carlo method, but is still fairly easy to implement. Once
the nodes for the random space has been chosen, and their weights calculated,
the method is calculated as normal. This makes it a preferable method, since
it is easy to implement on most systems, and vastly improves the convergence
over the Monte Carlo method.

48 Stochastic formulation and uncertainty quantification

In summation, the collocation method can be described as an algorithm.

Data: A deterministic solver for a differential equation, the stochastic
definition of a variable - α

Result: The mean and variance of the stochastic function
(xN , wN)← Generate points and weights according to gPC polynomial.
Generate α based on x.
E = 0
for a0 to aN do

ui ←Solution to system for ai
end
E =

∑N
i=0 uiwi

Evar =
∑N
i=0 (ui − E)

2
wi

Algorithm 4: The Stochastic Collocation Method

5.3.2 Intrusive methods

Intrusive methods are characterized by their need to modify the deterministic
solver. The reason for this need is, with the Stochastic Galerkin method, that
the different differential equations we need to solve can be coupled, and as such
need to be solved as a system of equations rather than as a single equation.

5.3.2.1 Stochastic Galerkin method

The stochastic Galerkin method is a method that uses expectations to guarantee
that a correct solution is found. When the appropriate gPC basis functions are
chosen, we will formulate the system as just the expectancies and using the
polynomial approximations. For a system ut = L(u) which is modeled using
Hermite polynomials, the equations that need to be satisfied are

E[(vN)tHk(Z)] = E[L(vN)Hk(Z)] for k ≤ N (5.9)

Where vN =
∑N
i=0 v̂iHi(Z) is our solution.

This procedure allows us to construct a system of coupled differential equations
based on the appropriate quadrature for the basis polynomial. The exact form
of the system will differ from problem to problem, as the problem is defined
from (5.9), however for linear problems, they can be reduced to a simple matrix
system of the form dv

dt (t) = ATv.

5.4 Examples of uncertainty quantification 49

5.4 Examples of uncertainty quantification

In this section, we will be going through the derivation of the methods we can
use for uncertainty quantification. We will be starting with the derivation of the
test-equation, where u′ = −αu, which will make the derivations easy. We will
use this equation to show some of the different methods we can use to solve an
uncertain system. We will then be expanding into Burgers’ equation, where we
will show the impact small uncertainties can have on the solution to a model.

5.4.1 The test equation – stochastic collocation method

The test equation is characterized as

du(t)

dt
= −αu, u(0) = β (5.10)

5.4.1.1 Gaussian distributed variable

In order to test our stochastic system, we assume that the the α parameter is
a Gaussian random variable with mean µ and standard deviation σ, such that
α(ω) ∼ N

(
µ, σ2

)
. The full solution to the problem is given in

u(t, ω) = βe−α(ω)t

Since we possess the analytical solution to the problem, we can calculate the
expectation. We will be using the definitions of expectations of functions from
section 5.1.1.3.

E[u(t, ω)] = E
[
βe−α(ω)t

]
= E[β]E

[
e−α(ω)t

]
⇔

E[u(t, ω)] = E[β]

∫ ∞
−∞

e−xtfα(x) dx

Since we know that the distribution of α(ω) is a gaussian random variable, we

know from (5.1) that the density is fα(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 . This leads us to

E[u(t, ω)] = E[β]

∫ ∞
−∞

e−xt
1√

2πσ2
e−

(x−µ)2

2σ2 dx⇔

E[u(t, ω)] = E[β]
1√

2πσ2

∫ ∞
−∞

e−xte−
(x−µ)2

2σ2 dx

50 Stochastic formulation and uncertainty quantification

Where we will solve the infinite integral using Maple

E[u(t, ω)] = E[β]
1√

2πσ2
e−

1
2 t(−tσ

2+2µ)
√

2σ2π ⇔

E[u(t, ω)] = E[β]e−
1
2 t(−tσ

2+2µ) (5.11)

We will want to calculate the variance as well, which is done by the same
procedure as the expectation, but with the second centered moment

E
[(
βe−α(ω)t − E

[(
βe−α(ω)t

)])2]
= E

[(
βe−α(ω)t − βe−

1
2 t(−tσ

2+2µ)
)2]
⇔

E
[(
βe−α(ω)t − E

[(
βe−α(ω)t

)])2]
=

1√
2πσ2

∫ ∞
−∞

(
βe−xt − βe−

1
2 t(−tσ

2+2µ)
)2
e−

(x−µ)2

2σ2 dx

This is solveable in Maple, which gives us the solution

E
[(
βe−α(ω)t − E

[(
βe−α(ω)t

)])2]
= β2

(
et

2σ2

− 1
)
e−2tµ+t

2σ2

(5.12)

(5.11) and (5.12) allows us to properly calculate the expectancy and variance,
and evaluate the correctness of our solution. We will set β = 1.

As u is simply a point in time, we will not need a spectral solver for this problem.
We will start by using a Monte Carlo approximation to the problem, where we
will be generating a new α(ω) for each iteration of the problem. We will be
calculating the running mean for each step in the approximation, as to show
convergence. We will be generating the random parameter with the Python
function numpy.random.normal

0 20000 40000 60000 80000 100000
N

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

Running Mean
Expectation

100 101 102 103 104 105

N

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Error

Figure 5.2: The mean calculated by the Monte Carlo method. The running
mean is seen compared to the analytic mean in the left picture,
and the running error is seen in the right picture.

5.4 Examples of uncertainty quantification 51

We see in figure 5.2 that we need about 105 realizations of the model to get an
accuracy of about 10−3. The full code to this calculation is in appendix E.2.1.

To try and improve this, we implement the stochastic collocation method in-
stead, as described in algorithm 4. We elect to use Hermite polynomials, as
we have a gaussian distribution, and will use the Gauss-Hermite quadrature
detailed in (5.7).

0 5 10 15 20 25
N

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Approximated exp
True exp
Approximated variance
True variance

0 5 10 15 20 25
N

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2 Absolute error

Error mean
Error Variance

Figure 5.3: The mean calculated by the stochastic collocation method. The
mean is seen compared to the analytic mean in the left picture,
and the error is seen in the right picture.

We see in figure 5.3 that the collocation methods nets us a machine-error at
N = 15 – for both mean and variance – which is a vast improvement based only
on choosing the αi based on a quadrature rule, to approximate the integrals
with a gaussian quadrature instead of the Riemann integral. The full code used
in this calculation is in appendix E.2.1.

5.4.1.2 Uniformly distributed variable

For a uniformly distributed variable we will of course be needed to recalculate
the analytic expectation with regard to the new distribution. Since we have a
uniform distribution, where α ∼ U(a, b), we have a density function fα(x) = 1

b−a
for x ∈ [a, b] and fα(x) = 0 otherwise. We will now calculate the correct

52 Stochastic formulation and uncertainty quantification

expectation.

E[u(t)] = E[β]

∫ ∞
−∞

e−xtfα(x) dx⇔

E[u(t)] = E[β]

∫ b

a

e−xt
1

b− a
dx⇔

E[u(t)] = E[β]
1

b− a

∫ b

a

e−xt dx⇔

E[u(t)] = E[β]
1

b− a
e−at − e−bt

t

Using this, we will repeat the above exercise using Monte Carlo method in
figure 5.4, for α ∼ U(−7, 2)

0 20000 40000 60000 80000 100000
N

1

2

3

4

5

6

7

8

9

10

Running Mean
Expectation

100 101 102 103 104 105

N

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Error

Figure 5.4: The mean calculated by the Monte Carlo method on a uniform
distribution. The running mean is seen compared to the analytic
mean in the left picture, and the running error is seen in the right
picture.

The full code for the calculation can be found in appendix E.2.1.

For the stochastic collocation method, we will be using Legendre polynomials,
and the Legendre-Gauss quadrature detailed in (5.8).

5.4 Examples of uncertainty quantification 53

0 5 10 15 20 25
N

6.9

7.0

7.1

7.2

7.3

Approximated exp
True exp

0 5 10 15 20 25
N

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 Absolute error

Figure 5.5: The mean calculated by the stochastic collocation method for a
uniformly distributed variable. The mean is seen compared to the
analytic mean in the left picture, and the error is seen in the right
picture.

We see the result in figure 5.5, which shows us the same spectral convergence
as was achieved in figure 5.3. The full code for the calculation can be found in
appendix E.2.1.

5.4.1.3 A comparison between the Monte Carlo method and the
stochastic collocation method

In both the uniformly and gaussian distribution cases, we see a more rapid
convergence with the stochastic collocation method than with the Monte Carlo
method. Combined with the minimal effort (after the derivation) to shift to a
stochastic collocation method suggests we will be using this method from this
step forward. The Monte Carlo method keeps one key aspect, as it guarantees√
N convergence, and is almost impossible to implement incorrectly, allowing us

to use it to verify our models for models where we do not have an exact solution.

5.4.2 The test equation – stochastic Galerkin method

We will briefly showcase the stochastic Galerkin method, which is another way
to achieve spectral convergence towards the mean. We will be modeling the
differential equation (5.10) with the Galerkin method. We will assume α is a
gaussian distributed value, allowing us to calculate the expectation by (5.11).
In accordance to the method described in section 5.3.2.1, since u(0) = β we will

54 Stochastic formulation and uncertainty quantification

be seeking a solution

vN =

N∑
i=0

v̂iHi(Z)

where

αN =

N∑
i=0

aiHi(Z) βN =

N∑
i=0

biHi(Z)

We can truncate the last two sums, as only the two first ais are defined as not
zero - as a0 = µ and a1 = σ - as well as the first bi - b0 = β. Using the Galerkin
method, we acquire the formulation of the system

E
[
dvn
dt

Hk(Z)

]
= E[−αNvNHk(Z)] for k = 0, . . . , N

If we substitute our gPC approximations into this system, we get

E

 d
dt

N∑
j=0

v̂jHj(Z)Hk(Z)

 = E

− N∑
i=0

aiHi(Z)

N∑
j=0

v̂jHj(Z)Hk(Z)

 for k = 0, . . . , N

Where we can draw the coefficients out, since they are not affecting the calcu-
lation of the expectancy.

d

dt

N∑
j=0

v̂jE[Hj(Z)Hk(Z)] = −
N∑
i=0

N∑
j=0

aiv̂jE[Hi(Z)Hj(Z)Hk(Z)] for k = 0, . . . , N

Since we know our basis functions have the orthogonality quality described in
(5.2), we can reduce the right-hand side of the equation

d

dt
v̂kγk = −

N∑
i=0

N∑
j=0

aiv̂jE[Hi(Z)Hj(Z)Hk(Z)] for k = 0, . . . , N ⇔

d

dt
v̂k =

−1

γk

N∑
i=0

N∑
j=0

aiv̂jE[Hi(Z)Hj(Z)Hk(Z)] for k = 0, . . . , N

We know that γk = E
[
H2
k(Z)

]
, but we will use the analytical version shown in

[Xiu10, Eq. 6.8], as γk = k! for Hermite polynomials. We can use Gauss-Hermite
quadrature to calculate the expectancy from the right-hands side, as

eijk = E[Hi(Z)Hj(Z)Hk(Z)] =

∫ ∞
−∞

Hi(Z)Hj(Z)Hk(Z)dFZ(z)⇔

eijk =

M∑
m=0

Hi(zm)Hj(zm)Hk(zm)wm

5.4 Examples of uncertainty quantification 55

Using this gives us the system

dv̂k
dt

=
−1

k!

N∑
i=0

N∑
j=0

aiv̂jeijk

Which can be formulated as the matrix system

dv̂

dt
= ATv Ajk =

−1

k!

N∑
i=0

aieijk

Now the only thing we need is the definition of v0, which is equal to bn. We will
implement this with µ = 9 and σ = 3, for easy comparison to the Month Carlo
method calculated in section 5.4.1.1. The method we have derived produces
the coefficients for the Hermite transformation, and we need to transform these
back to get our proper values.

0 5 10 15 20 25 30
N

0.026

0.027

0.028

0.029

0.030

0.031

0.032

0.033

0.034

0.035

Approximated exp
True exp

0 5 10 15 20 25 30
N

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2 Absolute error

Figure 5.6: The mean calculated by the stochastic Galerkin method. The
mean is seen compared to the analytic mean in the left picture,
and the error is seen in the right picture.

We see in figure 5.6, that Galerkin method converges faster than the colloca-
tion method for the same problem, described in figure 5.3. This is due to the
fact that the collocation method introduces aliasing errors by working with an
interpolation approach, whereas the Galerkin method is not prone to these er-
rors, as the formulation (5.9) ensures that the residue is orthogonal to the linear
space spanned by the gPC polynomials, as described in [Xiu10, pg. 68]. This
comes at the cost of a more complicated derivation, that needs to be redone for
each problem, and a coupled system of equations, which necessitate designing a
solver which can handle this. The full code for the stochastic Galerkin method
is located in appendix E.2.1.

56 Stochastic formulation and uncertainty quantification

5.4.3 Burgers’ equation – the influence of uncertainty

We recall the viscous Burgers’ equation from section 3.3.2

ut + uux = vuxx x ∈ [−1, 1]

u(−1, t) = 1 u(1, t) = −1 ,∀t > 0

v > 0

With the initial condition u(x, 0) = −tanh(x) 1
|−tanh(−1)|

We saw in figure 4.5 that the solution assumes a steady state which features a
steady curve with a rapid shift in the middle of the spectrum.

5.4.3.1 Introducing uncertainty

To introduce uncertainty, we will make the value of v uncertain, as it will allow
us to model the problem the same way we modeled it for the test equation,
and we will use the stochastic collocation method to approximate the stochastic
variable. We will let v attain a uniform distribution, since we know that v
must always be greater than zero, disallowing us to model it with a gaussian
variable. This gives us v U(0.05, 0.2), which allows us to model the uncertainty
over v. We will implement the uncertainty dimension much as we would with a
2-dimensional spectral method, using one vector to represent all the solutions,
and reforming the solution afterwards. This will require some code-wise tricks
described in section 4.3.3.1.

5.4 Examples of uncertainty quantification 57

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Upper
Exp
Low

Figure 5.7: The solution to Burgers’ equation for N = 60 and v U(0.05, 0.2)
modeled by 10 iterations of the Legendre polynomial. The yellow
band represents the mean µ ± the standard derivation σ, and the
purple lines define µ± 2σ. 95% of the solutions will be inside the
purple lines.

Figure 5.7 shows that variation over v affects neither the approach towards the
boundaries or the point at which u = 0, but rather the slope around u = 0.
This means that a variation over v changes the slope of the rapid shift. Since
we can compare to figure 4.5, where we know what the solution looks like for
v = 0.05, we can say that the greater v is, the less rapid the shift is. The full
code for this problem is in appendix E.2.2

5.4.3.2 Uncertainty on the boundary

Since the v parameter did not influence the Burgers’ equation, we will introduce
an extra parameter on the left boundary, ε, making the boundary condition
u(−1) = 1 + ε. Since our model already keeps the boundaries as their initial
values, all we need to to is modify the initial condition in order to accommodate
our new boundary condition. We will adjust the current initial condition, by
multiplying all values above zero with (1 + ε), allowing for a smooth transition.
We will reuse the construction from the previous part, setting v = 0.05, and
simply letting ε be the dimension of uncertainty. We will assume that epsilon is
a gaussian distributed variable ε ∼ N

(
0.1, 0.052

)
.

58 Stochastic formulation and uncertainty quantification

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Highest, e=0.48
Upper
Expectation
Lower
Lowest, e=-0.28

Figure 5.8: The solution to Burgers’ equation with a modified boundary of
ε ∼ N

(
0.1, 0.052

)
and v = 0.05, where ε is modeled using 20

iterations of the Hermite polynomials.

Figure 5.8 shows that the variation over ε can have a drastic effect on the location
of the shift, as seen on the highest and lowest parts. Since ε ∼ N

(
0.1, 0.052

)
,

the shift of the expectation is located to the right of where we would expect it
to for ε = 0 from figure 4.5. The expectation and standard deviation is greater
in the spectrum where the shift is most likely to occur, indicating that the shift
is mostly happening for x ∈ (0.25, 0.75). The full code for this problem is in
appendix E.2.2

We solve this system again, but this time for a uniform distribution ε ∼ U(0, 0.1),
since we want to limit the shift to moving right from the center. This gives us
the results shown in figure 5.9, and show the same tendency to move the shift
to the right, and it shows a steady move towards the right from the lowest ε to
the highest, indicating a linear relationship between ε and the location of the
shift.

5.4 Examples of uncertainty quantification 59

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Highest, e=0.10
Upper
Expectation
Lower
Lowest, e=0.00

Figure 5.9: The solution to Burgers’ equation with a modified boundary of
ε ∼ U(0, 0.1) and v = 0.05, where ε is modeled using 20 iterations
of the Legendre polynomials.

The full code for this problem is in appendix E.2.2

5.4.4 The test equation – two dimensional uncertainty

We revisit the test equation, introducing multidimensional uncertainty. We will
now both let α and β in (5.10) be stochastic variables that follow gaussian
distributions α ∼ N

(
4, 1.52

)
and β ∼ N

(
3, 0.152

)
. This requires us to calculate

the expectation for the solution with both of these as stochastic variables. We
can reuse the expression found in (5.11), since we know that E[β] = µβ , allowing
us to calculate the expectation analytically.

For the implementation, depending on the amount of nodes we use for αN
and βM , the stochastic part of the system will become of size NM , since all
values of α will be paired with all values of β. We model this in the same way
that we would the 2D spectral problems, we create a mesh of α and β and
use these to generate the beginning solutions. We also create a mesh of the
nodes associated weights, and find the product of these weights as the weight
for that particular instance of the solution. Using this method, we can reuse
the Python algorithms for calculating multi-dimensional spectral problems for
multidimensional stochastic problems.

60 Stochastic formulation and uncertainty quantification

0.0 0.1 0.2 0.3 0.4 0.5
t

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Upper
Mean
Lower

Figure 5.10: The solution to 2-dimensional uncertainty applied to the test
equation.

0 5 10 15 20 25
N

0.524

0.526

0.528

0.530

0.532

0.534

0.536

0.538

Approximated exp
True exp

0 5 10 15 20 25
N

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1 Absolute error

Figure 5.11: The approximated expectation and the error of the expectation
as a function of the size of our samples.

We see from figure 5.11 that we conserve the fast spectral convergence for mul-
tiple dimensions of uncertainty, and we can see in figure 5.10 that in the start
the variation seems to be controlled by the β uncertainty, but as t gets bigger,
the variation rises due to the great effect of negative values of α.

The entire code for this problem can be found in appendix E.2.1.

While we will not be using this method from this point on, it is worth noting
that the stochastic collocation method is easily expanded to increase the number
of random parameters.

Chapter 6

Numerical experiments

In this chapter we will focus on pseudo-practical applications of the uncertainty
quantification and spectral methods developed in this book. We will concern
ourselves with two problems, a lid driven cavity problem, and a wave model
simulator.

6.1 Lid driven cavity

The lid driven cavity problem aims to describe the flow in a container, where
the lid is driving the flow in a certain direction, as if to simulate the flow
within a cavity where a steady stream is passing over. The lid driven cavity
problem comes from the non-dimensional steady-state Navier-Stokes equations
for incompressible flow as described in [WZ10], which we will be employing on
a physical domain Ω = [0, 1]× [0, 1]..

∇ · u = 0 (6.1)

(u · ∇)u = −∇p+Re−1∇2u (6.2)

Here each point is represented by the velocity u = (u, v), where u and v are
the velocity components in the respectively x- and y-direction. Each point also

62 Numerical experiments

has a value of the pressure p associated with it, but only on the interior nodes,
in order to eliminate the need for boundary conditions and the possibility of
pollution from nonphysical modes [WZ10]. Re is the Reynolds number, which
is defined as Vchd/ν, which is found by choosing the characteristic velocity Vch
– or the speed of the lid – and length d, with ν being the kinematic viscosity.

The problem will be formulated with Dirichlet boundaries, where (u, v) = (0, 0)
on all boundaries for the top boundary, where u = 1.

In order to achieve the steady state, we will introduce pseudo-time variables τ ,
which will detail the initial-value-problem we will ned to step through.

1

β2

∂p

∂τ
+∇ · u = 0 (6.3)

∂u

∂τ
+ (u · ∇)u = −∇p+Re−1∇2u (6.4)

Where β2 = 5 is chosen in [WZ10], and since this will not affect the final result,
we will choose this as well.

With the model we will seek to examine the influence of uncertainty in the lid-
speed, represented through the Reynolds number, and how the stream in the
cavity is effected by this.

6.1.1 Derivation of the spectral model

We will be employing the Legendre spectral collocation method to solve this
initial-value problem. Since we are employing Dirichlet boundaries, we will be
using Legendre polynomials to model both dimensions, both for the full (u, v)
grid, as with the inner p grid.

6.1.1.1 Scaling the working grid

This means that with the original Legendre grid xL, yL ∈ [−1, 1] we will need
to employ the transformation to xN , yN ∈ [0, 1].

xN =
xL + 1

2
yN =

yL + 1

2

Which gives us the scaling factors of

dxL
dxN

= 2
dyL
dyN

= 2 (6.5)

6.1 Lid driven cavity 63

Since the pressure p is also modeled by Legendre polynomials, but is connected
to the inner grid of points xi, yi for 1 ≤ i ≤ N − 1, we will need to scale these
points as well to x̃N−2, ỹN−2 ∈ [−1, 1]. This is easily done with

x̃i =
xi
xc

ỹi =
yi
yc

for 1 ≤ i ≤ N − 1 ∧ c = N − 1 (6.6)

Which will give us the secondary1 scaling factor of
dxi
dx̃i

= xc
dyi
dỹi

= yc for 1 ≤ i ≤ N − 1 ∧ c = N − 1 (6.7)

6.1.1.2 Using the collocation approximation

Now all we need to do is define the equations (6.3) and (6.4) in the collocation
approximation. Since u = (u, v), we can write the divergence as

∇ · u =

(d
dx
d
dy

)
·

(
u

v

)
=
du

dx
+
dv

dx

Which means that we can approximate this using the collocation differentiation
operator

∇ · uN = DxuN +DyvN

This will allow us to formulate the continuity equation (6.3) from the system as

1

β2

∂pN
∂τ

+∇ · uN = 0⇔

∂pN
∂τ

= −β2(∇ · uN)⇔

∂pN
∂τ

= −β2(DxuN +DyvN) (6.8)

In order to approximate the momentum equation (6.4), we will need to calculate
the Laplacian ∇2u and the convection (u · ∇)u. The Laplacian will be

∇2u =

((
d
dx
d
dy

)
·

(
d
dx
d
dy

))(
u

v

)
⇔

∇2u =

(
d2

dx2
+

d2

dy2

)(
u

v

)
⇔

∇2u =

(
d2u
dx2 + d2u

dv2

d2v
dx2 + d2v

dv2

)
(6.9)

1Since we will also need to apply the scaling factor from (6.5)

64 Numerical experiments

And the convection

(u · ∇)u =

((
u

v

)
·

(
d
dx
d
dy

))(
u

v

)
⇔

(u · ∇)u =

(
u
d

dx
+ v

d

dy

)(
u

v

)
⇔

(u · ∇)u =

(
ududx + v dudy
u dvdx + v dvdy

)
(6.10)

(6.9) and (6.10) allows us to formulate the momentum equation for our model

∂u

∂τ
+ (u · ∇)u = −∇p+Re−1∇2u⇔

∂u

∂τ
= −(u · ∇)u−∇p+Re−1∇2u⇔

∂u

∂τ
= −

(
ududx + v dudy
u dvdx + v dvdy

)
−

(
dp
dx
dp
dy

)
+

(
d2u
dx2 + d2u

dy2

d2v
dx2 + d2v

dy2

)

Which we can also approximate using the collocation approximation

du

dτ
= −(uDxu+ vDyu)− dpN−2

dx
+D2

xu+D2
yu (6.11)

dv

dτ
= −(uDxv + vDyv)− dpN−2

dy
+D2

xv +D2
yv (6.12)

The reason why we have not used a differential operator to approximate ∇p is
that p is only defined on the inner grid, and thus approximated by pN−2. We
will need to differentiate this on the inner grid, and then interpolate the values
to the full grid.

6.1.1.3 Interpolating the pressure

The pressure will be modeled by the inner grid with pN−2. Since we calculate
the τ differential in (6.8), we will simply only apply the inner-grid values of
this differential, and disregard the outer grid completely. For the equations
(6.11) and (6.12) however, we will need the space derivative of the pressure for
application on the full grid – and we will need to interpolate the values from
the inner grid to the outer grid for this.

We will be using the Vandermonde matrix as defined in (3.6), since it can trans-
form the nodal values to the modal values. Once we have the modal values, we

6.1 Lid driven cavity 65

can interpolate these to the outer grid nodal values using another Vandermonde
matrix. The second Vandermonde matrix will need to be defined on the inner
grid extrapolated to the outer values, which means that we will have to reverse
the scaling, giving us

x̃N = xNxc ỹN = yNyc c = N − 1 (6.13)

This allows us to interpolate the pressure using the functions

pN−2 = V1p̂N−2 ⇔ p̂N−2 = V −11 pN−2

p̃N = V2p̂N−2

This requires the p values to be allocated into a vector, with the Vandermonde
matrix V1 being of size (N − 2)

2 × (N − 2)
2, while V2 will be of size N2 ×

(N − 2)
2.

In order to calculate these Vandermonde matrices, we will use the same method
as we used for the differential operators in section 4.3.3.2, and create the Van-
dermonde for the x-direction and the y-direction independently using the points
xN−2 and yN−2, then creating V1 = VxN−2

⊗ VyN−2
. For the second Vander-

monde matrix, we will be creating the Vandermonde matrices using the points
x̃N and ỹN , and then creating V2 = Vx̃N ⊗ VỹN .

This allows us to define the interpolation as

∇p̃N = V2V
−1
1 ∇pN−2

Where ∇pN−2 is found with the differential operator defined on the inner grid.

6.1.1.4 Applying the boundary conditions

Since we are working with nodal points and a collocation approximation, we will
simply ensure that the points on the boundary fulfill the boundary conditions,
this being that (u, v) = (0, 0) on all boundaries, except where y = 1, where the
boundary is (u, v) = (1, 0). The pressure has no boundary conditions as it is
only defined on the inner grid.

6.1.1.5 The τ-steps

For the time stepping procedure we will be using the explicit four-stage Runge-
Kutta method, as it is used in [WZ10], where the time step to guarantee con-
vergence is supplied. This means that we will be using the following method

66 Numerical experiments

φ(1) = φn +
1

4
∆τR(φn)

φ(2) = φn +
1

3
∆τR

(
φ(1)

)
φ(3) = φn +

1

2
∆τR

(
φ(2)

)
φ(n+1) = φn + ∆τR

(
φ(3)

)
(6.14)

Where the R(•) is the right-hand-side function, which is defined independently
for u, v and p from (6.11), (6.11) and (6.8).

The pseudo-time steps are defined by

∆τ =
CFL

λx + λy
(6.15)

Where CFL is the Courant-Friedrichs-Lewy’s number, which we will set to 0.5,
and the λs are the limits contributed by the Navier-Stokes equations, which are
calculated as

λx =
|umax|+

√
u2max + β2

∆x
+

1

Re ·∆x2

λy =
|vmax|+

√
v2max + β2

∆y
+

1

Re ·∆y2

Where ∆x and ∆y are the minimum collocation spacing on their respective
grids.

6.1.2 Implementation of the spectral model

The implementation of the spectral model is necessary to examine the influence
of the Reynolds-number, and we will develop a model for Re = 100, where we
have results to compare against from [WZ10].

6.1.2.1 Generation of points and differential matrices

Since we will be using Legendre polynomials to model the data, we will be gener-
ating the points for the outer grid with the function GaussLobattoQuadrature
from DABISpectral1D. One these points are generated, we will calculate the

6.1 Lid driven cavity 67

scaling factor to the inner grid, and create the points for the inner grid us-
ing (6.6). We create meshes for both grids, and order them into vectors while
calculating an index grid as detailed in section 4.3.3.1.

Generating the differential operators is done with algoritm 2, but when creating
the operators for the inner grid, we use the modified inner points for the Van-
dermonde matrices instead of newly generated Legendre-Gauss-Lobatto points.
We will also apply the scaling factors from (6.5) and (6.7) to the differentiation
operators directly

The generation of the inner-grid differentiation matrices is done for xp and yp
being the inner points

Vxp = LegPol.GradVandermonde1D(xp,Nx-2,0)
Vyp = LegPol.GradVandermonde1D(yp,Ny-2,0)

V = np.kron(Vxp,Vyp)

VxpD = LegPol.GradVandermonde1D(xp,Nx-2,1)
VypD = LegPol.GradVandermonde1D(yp,Ny-2,1)

Dxp = np.linalg.solve(Vxp.T,VxpD.T).T
Dyp = np.linalg.solve(Vyp.T,VypD.T).T

Dxp = 1/cx*2*Dxp
Dyp = 1/cy*2*Dyp

We will test these differential matrices while simultaneously testing the index
matrices, where we will generate the ftest(x, y) = cos (x) sin (y) for both the
inner and outer grid, and approximate d

dx
d
dyftest(x, y) for which the solution

is dftest(x,y)
dxy = − sin (x) cos (y). We will use the differential operators to obtain

the solution from the original solution, and use the index matrix to reshape the
solution to a matrix.

68 Numerical experiments

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Differentiation test, error for full grid

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

1e−11

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Differentiation test, error for inner grid

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1e−10

Figure 6.1: The errors of our differential approximation test, the full grid to
the left, and the inner grid to the right

As we can see from figure 6.1, the errors for both test cases are acceptable, and
we can consider these methods implemented correctly. The full script for testing
the errors is featured in the approximation script in appendix F.1.

6.1.2.2 Interpolation of points from the inner grid

The generation of the matrices to interpolate from the inner grid to the outer grid
will rely on Vandermonde matrices generated by the function GradVandermonde
from DABISpectral1D. The matrix V1 is calculated as a standard Vandermonde
matrix for the points on the inner grid, while the matrix V2 is generated as a
standard Vandermonde matrix for the inner grid, but with the scaled points
from (6.13).

In order to test the interpolation, we create the grid of a function exy, which
we interpolate from the inner grid to the outer grid, and compare to the correct
values on the outer grid.

6.1 Lid driven cavity 69

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Interpolation test, error

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

1e−12

Figure 6.2: The error of the interpolation to the full grid.

As we see from figure 6.2, the error is largest along the boundary, as would
be expected, but the error is still very small, which affirms that the method is
implemented correctly. The full script for testing the errors is featured in the
approximation script in appendix F.1.

6.1.2.3 Pseudo-time step integrator

Even though we will not be using scipy.integrate.odeint to do the time-
stepping, we will use the same structure as this solution, as it will simplify the
implementation of the Runge-Kutta method to a single right-hand-side function.

Right-hand-side The right-hand-side function is constructed such that it
calculates all the derivative values, and interpolates the inner derivatives of
the pressure to the outer grid first. Afterwards it assembles the different τ -
derivatives, and applies the boundary conditions for u and v, and removes the
boundary completely for p. Since the function is build up around the same
principle as for the input function to scipy.integrate.odeint, the right-hand-
side function features both assembly and disassembly routines, to split and join
all the values into one vector.

The implementation of the time stepping method is exactly as described in
(6.14), where the Runge-Kutta steps are simply performed on a single vector

70 Numerical experiments

with all the collected data. We recalculate the size of the time-steps according to
(6.15). Since we are seeking a steady-state, we will be setting a high end-time
τend = 200, we will include a test, to see if the difference between the newly
computed solution and the previous solution – in the measuring data u – is
within a certain tolerance of e−6.

6.1.2.4 Testing the model

We will initially test the model with a end-point of τ = 2, which will give us a
notion if the model is working correctly.

We will make a stream plot, where we unfortunately required to conform our
data to an equidistant grid, which we do by transformation to modal values and
back to new nodal values by Vandermonde matrix.

y

x

Figure 6.3: The stream plot of (u, v) for our test run to τ = 2.

Figure 6.3 shows that a flow develops in our model, as expected. Since this is
not the steady-state, we cannot say anything about the actual flow, but we can
clearly see that a proper flow develops, which confirms that our model is correct.

While the code that calculates the values is located in appendix F.1, the code
that shows these values, and computes the transformation to an equidistant grid
is shown in appendix F.2.

6.1 Lid driven cavity 71

6.1.3 Introducing uncertainty on the Reynolds number

We wish to introduce uncertainty in the surface speed, which will effectively
change the Reynolds number, and investigate how the values affects our compu-
tations. This is done by the stochastic collocation method, where we can simply
run the model several times, for the calculated values of our new Reynolds num-
bers, where we will compare the results to the velocity profile of u along the
middle of the cavity in the y-axis direction. Since the problem is normalized to
a speed of u = 1 along the upper boundary, this will not change.

We will use a modified solver, which simply runs the problem several times
with different Reynolds numbers, and saves each output. Each run is assigned
a weight according to the GPC polynomial, and mean and variance are found
using the different weighted values.

We do a test run for Re ∼ N
(
100, 102

)
, and let it run to τ = 1, just to see if we

are able to quantify the change in the values.

u

y

Figure 6.4: The test for our uncertainty quantification run of the lid driven
cavity problem

Figure 6.4 shows us that while the uncertainty in not very pronounced, that
there is a difference between the highest and lowest values of Re, but that in
general the solution will not change much for Re ∼ N

(
100, 102

)
. The code for

this run can be found in appendix F.1.

72 Numerical experiments

6.1.4 Numerical experiments with UQ on the Reynolds
number

We have results from [UG82], for the velocity profile of u down the middle of
the cavity at certain points for Re = [100, 400, 1000], which we will take as a
measure for the correctness of our model.

We will start by running from the initial condition (u, v, p) = (0, 0, 1) on the
inner grid, and approximating the results from [UG82] with the same Reynolds
numbers. This will serve as an initial condition for our uncertainty calculations,
since it will likely be closer to the solution, saving computational time.

For our tests, since we are measuring against the velocity u, we will stop at
iteration j, once our metric Mj =

‖uj−uj−1‖2
‖uj−1‖2 becomes less than 10−6, which we

deem as a steady-state.

The uncertainty we will introduce will be that we have up to 5% uncertainty
in the speed of the lid for our problems – and thus a 5% uncertainty in our
Reynolds number – allowing our model to quantify this uncertainty. Since we
will not be allowing more or less uncertainty, we will assume that Re is uniformly
distributed, and modeled using Legendre polynomials.

We will repeat the tests for uncertainty up to 10%, allowing us to study in which
degree the increase in uncertainty has an impact on the propagating uncertainty.

All the scripts used in these simulations are either in appendix F.1 or ap-
pendix F.2.

6.1.4.1 Uncertainty at Re = 100

The initial results for the approximation of the results from [UG82], we get the
solution shown in figure 6.5.

6.1 Lid driven cavity 73

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Velocity profile of u along middle axis for Re=100

Approx
Ghia et al

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

y

Stream plot for Re=100

Figure 6.5: The steady state results compared to the results of [UG82], for
Re = 100 to the left. The stream-plot for the steady state solution
is shown to the right.

Figure 6.5 shows us that Re = 100 gives us a rather smooth curve for the
velocity profile, with the stream-plot suggests that the case of Re = 100 is a
steady stream where a lot of the liquid is not moving very fast.

To allow for a 5% uncertainty, we will model Re ∼ U(95, 105). We will be
modeling it with NUQ = 10.

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(95,105), x=0.48

Lowest: Re=95
Lowest: Re=105
Upper
Mean
Lower

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(95,105), x=0.90

Lowest: Re=95
Lowest: Re=105
Upper
Mean
Lower

Figure 6.6: The uncertainty on the velocity profile for the Lid Driven Cavity
problem with Re ∼ U(95, 105). The profile is shown in the middle
of the cavity (left picture) and near the right boundary of the
cavity (right picture).

The uncertainty of the velocity profile shown in figure 6.6 shows us that a 5%
uncertainty does not change the velocity profile significantly for Re = 100. It
does not change the profile of the sides of the cavity either, which are relatively
uneventful for Re = 100, as expected from figure 6.5.

74 Numerical experiments

We repeat the computations for Re ∼ U(90, 110), which gives the results in
figure 6.7.

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(90,110), x=0.48

Lowest: Re=90
Lowest: Re=110
Upper
Mean
Lower

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(90,110), x=0.90

Lowest: Re=90
Lowest: Re=110
Upper
Mean
Lower

Figure 6.7: The uncertainty on the velocity profile for the Lid Driven Cavity
problem with Re ∼ U(90, 110). The profile is shown in the middle
of the cavity and near the right boundary of the cavity.

Figure 6.7 shows still a very small amount of uncertainty, however it can be
seen on the velocity profile for the middle of the cavity. This suggests where in
the flow the water will change if Re is changed, but the flow is still fairly stable
with 10% uncertainty in the Reynolds number.

6.1.4.2 Uncertainty at Re = 400

The initial results for this system is calculated and compared to the results from
[UG82] again.

6.1 Lid driven cavity 75

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Velocity profile of u along middle axis for Re=400

Approx
Ghia et al

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Stream plot for Re=400

Figure 6.8: The steady state results compared to the results of [UG82], for
Re = 400 to the left. The stream-plot for the steady state solution
is shown to the right.

We see in figure 6.8 that our approximation matches the results from [UG82],
and that the velocity profile is significantly changed from figure 6.5. We see
in the stream-plot that recirculation is starting in the corner where the water
comes down from the lid.

We allow for 5% uncertainty, giving us Re ∼ U(380, 420).

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(380,420), x=0.48

Lowest: Re=380
Lowest: Re=420
Upper
Mean
Lower

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(380,420), x=0.90

Lowest: Re=380
Lowest: Re=420
Upper
Mean
Lower

Figure 6.9: The uncertainty on the velocity profile for the Lid Driven Cavity
problem with Re ∼ U(380, 420). The profile is shown in the middle
of the cavity and near the right boundary of the cavity.

Figure 6.9 shows us that even with a faster flow, the model is still robust towards
uncertainty. We see minor variations in the area where velocity changes from
rising to falling in both plots. We also see that recirculation towards the bottom
of the right plot is relatively robust towards the variations, as the speed in the
recirculation is not that great.

76 Numerical experiments

We model this case with 10% uncertainty as well, giving us Re ∼ U(360, 440).

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(360,440), x=0.48

Lowest: Re=360
Lowest: Re=440
Upper
Mean
Lower

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(360,440), x=0.90

Lowest: Re=360
Lowest: Re=440
Upper
Mean
Lower

Figure 6.10: The uncertainty on the velocity profile for the Lid Driven Cavity
problem with Re ∼ U(360, 440). The profile is shown in the
middle of the cavity and near the right boundary of the cavity.

Figure 6.10 shows us that the variations are not at all situated where the velocity
changes sign, but rather around the axis where the velocity is zero – the speed
at which the water is moving around the point where horizontal movement is
null, near the "swirl" shown in figure 6.8. The recirculation is still very stable
towards the uncertainty, while the uncertainty seems to change the speed at
which the values in the right part of the cavity approach the largest negative
value of u, while not affecting the size of the the largest negative value.

6.1.4.3 Uncertainty at Re = 1000

The initial results of this simulation is compared to the results from [UG82] as
the two cases before have been.

6.1 Lid driven cavity 77

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Velocity profile of u along middle axis for Re=1000

Approx
Ghia et al

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Stream plot for Re=1000

Figure 6.11: The steady state results compared to the results of [UG82], for
Re = 1000 to the left. The stream-plot for the steady state
solution is shown to the right.

We see in figure 6.11 that the system is now having a very well established flow.
We also notice that recirculation has developed in both lower corners of the
cavity. We can also verify that we have achieved the same results as [UG82]

We introduce 5% uncertainty, giving us Re ∼ U(950, 1050).

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(950,1050), x=0.48

Lowest: Re=950
Lowest: Re=1050
Upper
Mean
Lower

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(950,1050), x=0.90

Lowest: Re=950
Lowest: Re=1050
Upper
Mean
Lower

Figure 6.12: The uncertainty on the velocity profile for the Lid Driven Cavity
problem with Re ∼ U(950, 1050). The profile is shown in the
middle of the cavity and near the right boundary of the cavity.

Figure 6.12 shows us that with this well established flow, the model is very
robust towards uncertainty, both along the center of the cavity, and along the
edges and in the recirculation zone.

We increase the uncertainty to 10%, giving us Re ∼ U(900, 1100).

78 Numerical experiments

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(900,1100), x=0.48

Lowest: Re=900
Lowest: Re=1100
Upper
Mean
Lower

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(900,1100), x=0.90

Lowest: Re=900
Lowest: Re=1100
Upper
Mean
Lower

Figure 6.13: The uncertainty on the velocity profile for the Lid Driven Cavity
problem with Re ∼ U(900, 1100). The profile is shown in the
middle of the cavity and near the right boundary of the cavity.

Figure 6.13 shows that the uncertainty mainly focuses around the areas with
the greatest flow towards the left of the cavity, particularly the parts lower than
these points. This indicates that the uncertainty at Re = 1000 will affect how
deep the flow manages to manifest, towards the unmoving bottom of the cavity.
We again notice that even though the recirculation zone is more pronounced
that for Re = 400, it is still very stable towards uncertainty, indicating that this
zone is not affected by the uncertainty, but driven by the overall unchanging
flow.

6.1.4.4 Uncertainty at Re = 1

For Re = 1 we have no results to compare with, but run the test-case under the
same conditions that applied for the other test-cases.

6.1 Lid driven cavity 79

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Velocity profile of u along middle axis for Re=1

Approx

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Stream plot for Re=1

Figure 6.14: The steady state results for Re = 1 to the left. The stream-plot
for the steady state solution is shown to the right.

Figure 6.14 shows us that for Re = 1, the stream is very uniform, which is to be
expected for a very slow moving lid. We introduce the 5% uncertainty to this
domain as well, giving us Re ∼ U(0.95, 1.05).

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(0.95,1.05), x=0.48

Lowest: Re=0
Lowest: Re=1
Upper
Mean
Lower

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(0.95,1.05), x=0.90

Lowest: Re=0
Lowest: Re=1
Upper
Mean
Lower

Figure 6.15: The uncertainty on the velocity profile for the Lid Driven Cavity
problem with Re ∼ U(0.95, 1.05). The profile is shown in the
middle of the cavity and near the right boundary of the cavity.

We see from figure 6.15 that this model is significantly more sensitive to small
changes that the previous models. As it is a stable system captured from a very
slow lid, the small changes in the lid speed will change the entire composition
of the flow, as indicated by figure 6.15 – the uncertainty is centralized around
where the flow changes direction rapidly, and is evenly distributed over these
areas.

We introduce 10% uncertainty on this problem as well, giving usRe ∼ U(0.90, 1.10).

80 Numerical experiments

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(0.90,1.10), x=0.48

Lowest: Re=0
Lowest: Re=1
Upper
Mean
Lower

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Re=U(0.90,1.10), x=0.90

Lowest: Re=0
Lowest: Re=1
Upper
Mean
Lower

Figure 6.16: The uncertainty on the velocity profile for the Lid Driven Cavity
problem with Re ∼ U(0.90, 1.10). The profile is shown in the
middle of the cavity and near the right boundary of the cavity.

Figure 6.16 confirms what we saw in figure 6.15, but simply expanding the areas
where we have uncertainty. There are no significant changes otherwise.

6.1.5 Conclusions for the lid driven cavity flow model

The numerical experiments from the lid driven cavity problem shows us that
uncertainty in the input parameter can have drastically different manifestations
dependent on which state the problem is in. This means that in order to effec-
tively quantify the uncertainty of a system, we will have to do active uncertainty
quantification on that system, and not simply relate to another similar prob-
lem. This enhances the strength of the generalized polynomial chaos approach,
as this enables us to effectively calculate the mean and standard deviation. With
a Monte-Carlo approach to this problem would we not only be unable to utilize
the last computed solution as a start in order to save computational time – the
amount of times we would need to run the model would likely be unfeasibly
high. This would discourage the need to recompute the mean and variance for
a new state of the system, and might lead to inconclusive results drawn from a
similar problem instead of computed correctly.

6.2 A nonlinear 2D wave tank model

This problem is inspired by [EK11b], and we wish to model the movement of
the free surface, as defined by the free surface elevation η, and the surface

6.2 A nonlinear 2D wave tank model 81

scalar velocity potential φ̃. The model we use is a two-dimensional wave tank,
illustrated in figure 6.17, and

z

(0, 0)

(−h, L) x

h

η

x1

d(x1)

x2

d(x2)

Figure 6.17: The 2D wave tank

[EK11b] describes the free surface to be governed by kinematic boundary (6.16)
and dynamic boundary (6.17)

∂tη = −∂xη∂xφ̃+ w̃
(

1 + (∂xη)
2
)

(6.16)

∂tφ̃ = −gη − 1

2

((
∂xφ̃

)2
− w̃2

(
1 + (∂xη)

2
))

(6.17)

Where g is the gravitational acceleration, and w̃ is the vertical velocity at the
surface.

Potential flow theory represents the velocity field as

(
u

w

)
=

(
∂x

∂w

)
φ, which we

can find by solving the two-dimensional Laplace problem

∂xxφ+ ∂zzφ = 0 − h ≤ z < η (6.18)

φ = φ̃ z = η (6.19)(
nx

nz

)
·

(
∂x

∂z

)
φ = 0 (x, z) ∈ δΩ (6.20)

82 Numerical experiments

The Dirichlet boundary (6.19) ensures that our Laplacian problem is persistent
with the free surface, and the Neumann boundaries (6.20) are ensuring that the
walls of the tank are are modeled as solid.

We want to examine the effects the size of a wave have in relation to how much
force the walls at the boundary are affected by. This can be used in gauging the
amount of force a structure is required to withstand, which can help optimizing
the design and development process of such a structure.

6.2.1 Derivation of the spectral model

For the computational problem, we will seek to transform the domain to a square
domain, which we can approximate by Legendre polynomials. We will seek to
do this by transforming the uneven vertical dimension to a fixed computational
domain

σ =
z + h

d(x, t)
d(x, t) = η(x, t) + h (6.21)

(6.21) enables [EK11b] to rewrite the Laplace problem (6.18) - (6.20) to the
time-independent system for Φ(x, σ) = φ(x, z, t)

∂xxΦ + ∂xxσ(∂σΦ) + 2∂xσ∂xσΦ +
(

(∂xσ)
2

+ (∂zσ)
2
)
∂σσΦ = 0 0 ≤ σ < 1

(6.22)

Φ = φ̃ σ = 1 (6.23)(
nx

nz

)
·

(
∂x

∂zσ∂σ

)
Φ = 0 (x, σ) ∈ δΩ

(6.24)

Where the time-dependent coefficients can be calculated for a specific time at

∂xσ = −σ
d
∂xη

∂xxσ = −σ
d

(
∂xxη −

(∂xη)
2

d

)
− ∂xσ

d
(∂xη)

∂zσ =
1

d

(6.25)

This enables us for a initial condition of
(
η, φ̃
)
, we can calculate the velocity

field, which allows us to calculate the time-derivatives of
(
η, φ̃
)
. This allows us

to build a complete initial value problem for the free surface movement of the
water in our two-dimensional tank.

6.2 A nonlinear 2D wave tank model 83

6.2.1.1 Deriving the collocation approximation

We will be using the collocation approximation with the Legendre polynomials
in both directions, allowing us to utilize the differential operators calculated
in section 3.1.2. We will be using these as single-dimensional operators in the
calculation of the time-dependent coefficients (6.25), which are calculated indi-
vidually for each point in our domain.

∂xσ(x, σ) = − σ

d(x)
Dxη(x)

∂xxσ(x, σ) = − σ

d(x)

(
D2
xη(x)− (Dxη(x))

2

2

)
− Dxσ

d(x)
(Dxη(x))

∂zσ(x, σ) =
1

d(x)

(6.26)

Using the differential operators, we can calculate differential operators for use
on the whole domain as explained in section 4.3.3.2 – where we will refer to
the differential operator in the horizontal direction as DX and in the vertical
direction as Dσ – which leads us to formulate a linear operator for solving (6.22)

L = D2
X + ∂xxσDσ + 2∂xσDXDσ +

(
(∂xσ)

2
+ (∂zσ)

2
)
D2
σ (6.27)

LΦ = 0 (x, σ) 6∈ ∂Ω (6.28)

In order to enforce the Dirichlet boundary condition, we change the rows of L
corresponding to the top of the grid, such that the points on the upper boundary
are exactly equal to the right-side, for which we introduce a right-hand-side
function

fx,σ =

{
φ̃x , for σ = 1

0 , otherwise

For the Neumann boundary conditions, we modify linear operator, such that
differential at the outer points in the respective direction is always zero, which
is done by assigning

L = −DX for the horizontal boundaries
L = −∂zσDσ for the bottom boundary

(6.29)

This allows us to calculate the velocity potential for the domain, which we can
use to calculate the time-derivatives for the free surface described in (6.16) and

84 Numerical experiments

(6.17).

∂tη = −DxηDxΦ̃ + w̃
(

1 + (Dxη)
2
)

∂tΦ̃ = −gη − 1

2

((
DxΦ̃

)2
− w̃2

(
1 + (Dxη)

2
))

Where ∼ denotes the values at the top of the grid, and w = DσΦ.

6.2.1.2 Calculating the force on the wall

The force on the side of the domain can be calculated by an integral along the
vertical axis of the pressure, according to [EK06, Eq. 2.84].

F =

∫ η

−d
p(z) dz

In order to compute this, we will need to calculate the pressure on the right
boundary. This is defined in [EK06, Eq. 2.83] as

p(z)

ρ
= g(η − z) +

∫ η

z

∂tw dz+
1

2
+
(
ũ2 − u(z)

2
+ w̃2 − w(z)

2
)

Where ρ is the density of the water, which is ρ = 0.998 and u = DXΦ. The
integral

∫ η
z
∂tw dz requires us to transform w to z points where we can utilize

the Legendre-Gauss-Lobatto quadrature, which we do by the method described
in section 6.1.1.3, by converting to modal values first, and then transforming to
the new nodal values. Since we are modelling the vertical axis by a Legendre
polynomial, we can use the Legendre-Gauss-Lobatto quadrature to calculate
the force integral, allowing us to compute F . These calculations will require a
transformation of the Legendre polynomials from zL ∈ (−1, 1) to z ∈ [−h, η],
which is

z =
zL + 1

2
(h+ η)− h

For the time-derivative of w, we will be using a simple first order approximation
for the time-derivative.

6.2.2 Implementation of the spectral model

The implementation of the spectral model will consist of three parts, a solver
for our Laplace problem, the integrator for the time-dependent problem, and a
calculation of the pressure.

6.2 A nonlinear 2D wave tank model 85

6.2.2.1 The solver for the Laplace problem

The implementation to our Laplace problem is largely based on (6.28) and the
boundary-modifications to the linear operator and right hand side function. We
will construct a grid of Legendre points for both dimensions (with Nx and Nz
points) and generate the differential operators from algorithm 2. We will handle
the two dimensions by the methods outlined in section 4.3.3, by ordering our
mesh into vectors, and creating differential operators based on this transforma-
tion.

We calculate the time-dependent coefficients (6.26) from the input, and form
these into diagonal matrices, allowing us to assign the correct value to each
point, while being able to use the matrix product when constructing L.

We employ the boundary conditions as described in section 6.2.1.1 by simply
changing the values of L for the rows which correspond to boundary points.
For the Neumann boundaries, we substitute the linear operator row by the
corresponding row to the differential operator as specified in (6.29). For the
Dirichlet boundary, we simply set the whole row to zero for all the points but
place in the row corresponding to the point itself, where we will place a 1. We
then modify the right-hand-side function, which previously contained all zeroes,
to contain the desired value for each point.

The boundaries are calculated in the code

LBCsigma = np.dot(DSIGMADZ,DSIGMA)
Lopperator = Lopperator.todense()
LBCsigma = LBCsigma.todense()

DX = DX.todense()
for i in range(Ny):

Lopperator[index[i,0],:] = -DX[index[i,0],:]
Lopperator[index[i,-1],:] = -DX[index[i,-1],:]

for i in range(Nx):
Lopperator[index[0,i],:] = -LBCsigma[index[0,i] , :]
Lopperator[index[-1,i],:] = 0
Lopperator[index[-1,i],index[-1,i]] = 1

f[index[-1,:]] = u0

The todense() operation is to allow us to access the elements by using our
index array, which SciPys sparse functionality does not allow.

86 Numerical experiments

With the linear operator constructed, we can solve for Φ, which is allows us to
calculate the time-derivatives (6.26) and output these.

The full Laplacian calculator can be found in appendix G.1

6.2.2.2 The time-integrator

The time integrator is composed of two steps, calculating the initial condition
and the time-stepping part. The initial condition is easy to calculate, as we
only need to define a surface elevation η and the surface velocity potential φ̃.
For the time-integration part, we will be using the Runge-Kutta 4-step method
outlined in (6.14).

For testing this, we introduce the a standing wave in our system, as [YA96, pg.
145], which is defined as

ηS(x) =
1

2

8∑
J=1

J
1
4 aJ cos (Jπx)

There the coefficients aJ are defined as

J aJ
1 0.8867 · 10−1

2 0.5243 · 10−2

3 0.4978 · 10−3

4 0.6542 · 10−4

5 0.1007 · 10−4

6 0.1653 · 10−5

7 0.2753 · 10−6

8 0.4522 · 10−1

This allows us to test our model, and we use this as initial conditions, with the
zero vector being the scalar velocity potential φ̃.

6.2 A nonlinear 2D wave tank model 87

−1.0 −0.5 0.0 0.5 1.0
x

−0.04

−0.02

0.00

0.02

0.04

η

Initial condition

Figure 6.18: The initial value of the standing wave for the wave model.

Figure 6.18 shows us the initial condition for our standing wave, which we use
to test our model. [YA96, pg. 145] tells us that the period of the standing wave
is T = 1.13409, which allows us to check exactly one period of movement.

−1.0 −0.5 0.0 0.5 1.0
x

−0.04

−0.02

0.00

0.02

0.04

η

Period of the standing wave with 20 steps

Initial
End

Figure 6.19: The period of movement for the standing wave.

Figure 6.19 shows us that the wave is indeed a standing wave, and the period
is as expected, confirming our model.

88 Numerical experiments

6.2.2.3 Calculating the force on the right boundary

The calculation of the right boundary is done according to the procedure ex-
plained in section 6.2.1.2. We can calculate all parts of the pressure easily from
the values we already posses, as we can find U = DXΦ andW = ∂zσDσΦ. Since
we will only be concerning ourselves with the right boundary, the calculation of
p apart from the integral become simple vector operations. For the calculation
of the integral, we will need to transform the interval between the surface and
the point to a new Legendre-Gauss-Lobatto grid, where we can approximate the
integral using this quadrature. This is done for each point, where the values
of W are transformed. Since we will be needing the time-derivative of W , we
will need to transform the previous value of W as well, approximating the time
derivative by a simple difference quotient dependent on our time-step size.

This calculation is done by the following code-snippet – where the analytic
expressions of the pressure are already stored in t

for i in range(Ny):
Z,WZ = LegPol.GaussLobattoQuadrature(Ny-1)

V = LegPol.GradVandermonde1D(Z[Ny-1-i:],i,0)
V2 = LegPol.GradVandermonde1D(Z,i,0)
VInv = np.linalg.inv(V)
TRANS = np.dot(V2,VInv)
W2Z = np.dot(TRANS,W2[Ny-1-i:])
WLASTZ = np.dot(TRANS,WLAST[Ny-1-i:])
WDT = (W2Z-WLASTZ)/tstep
integral = 0
for j in range(Ny):

integral = integral + WZ[Ny-1-j]/2*WDT[Ny-1-j]

p[Ny-1-i] = p[Ny-1-i] + (zeta[-1]-ZREAL[Ny-1-i])/2*integral

p = p*dens
Force = 0
for j in range(Ny):

Force = Force + p[j]*WZ[j]
Force = Force*2/(d)

The scaling factors are calculated according to the change in variable from real

6.2 A nonlinear 2D wave tank model 89

basis to Legendre-Gauss-Lobatto basis, as calculated here

zL = 2
z + h

η + h
− 1

dzL
dz

=
2

η + h
=

2

d

z ∈ [−h, η]

zL ∈ [−1, 1]

z̃L = 2
z̃ − z0
η − z0

− 1
dz̃L
dz̃

=
2

η − z0
z̃ ∈ [z0, η]

z̃L ∈ [−1, 1]

In order to test this, we will calculate the force from the standing wave, as well
as the force from the completely steady water.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

19.45

19.50

19.55

19.60

19.65

19.70

19.75

F

Force on the right boundary

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

18.5

19.0

19.5

20.0

20.5

21.0

F

Force on the right boundary

Figure 6.20: The force on the right boundary for the standing wave to the
left, and the steady water to the right

Figure 6.20 shows us that the force of the steady water is steady, as expected,
and that when there is movement in the water, the force will vary around this
steady force. We can also compare the static force of the steady water, with the
definition of the static force from [EK06, Eq. 2.86]

Fstatic = ρ(η + h)gη − 1

2
ρg
(
η2 − h2

)
Since the water is steady, η = 0 and h = 2, which leads us to the following

Fstatic =
1

2
ρgh2 = 2ρg

Since ρ = 0.998 and g = 9.82, we get that Fstatic = 19.6, which excactly the
same as we got for our steady water solution shown in figure 6.20.

90 Numerical experiments

6.2.3 Introducing uncertainty into the amplitude

We want to introduce uncertainty into the amplitude, to see how it effects the
size of the force against the boundary. We want to test it initially, and stick
with our standing wave start-condition, where we let the amplitude be modified
by a constant K ∼ U(0.9, 1.1).

We will be using the stochastic collocation method, and since we want to model
the constant by the uniform distribution, we want to model the stochastic vari-
able using the Legendre polynomials. We will use the stochastic collocation
method, simply by running the standard model NUQ = 10 times for different it-
erations of the stochastic variables, and we will calculate the mean and variance
after all these realizations of the problem.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

F

+1.958e1

Mean
Upper
Lower

Figure 6.21: The quantification of uncertainty on the force affecting the right
side of the boundary in our wave model.

As we can see in figure 6.21, as the amplitude of the standing wave initial
condition is uncertain, so is the amount of force the right side is affected with,
in amplitude. The points where the the amplitude shifts, there is very little
uncertainty, signifying that the amplitude of the wave is not affecting the speed
at which the force of the wave hits the boundary – at least not at this scale.

6.2 A nonlinear 2D wave tank model 91

6.2.4 Numerical experiments with uncertainty

For the numerical experiments, we will be using a simple gaussian curve, very
much like the density function for the gaussian distribution, to emulate a starting
wave in our domain.

For this purpose we will be using the function

η0(x) =
e

(x−0.01)2

2∗0.082

100
(6.30)

Where we will be truncating all values less that e−6, as to simulate a singular
wave. We will use this since it confines to our space nicely, and is smooth enough
to approximate correctly.

−1.0 −0.5 0.0 0.5 1.0
x

−0.005

0.000

0.005

η

t=0.00

Figure 6.22: The initial condition for our gaussian wave on a grid with Nx =
70 and Nz = 25

We will first calculate the solution for this, as to analyze it before introducing
the uncertainty. We simply solve it until t = 1, to briefly evaluate the evolution
of the solution.

92 Numerical experiments

−1.0 −0.5 0.0 0.5 1.0
x

−0.005

0.000

0.005

η

t=0.20

−1.0 −0.5 0.0 0.5 1.0
x

−0.005

0.000

0.005

η

t=0.60

−1.0 −0.5 0.0 0.5 1.0
x

−0.005

0.000

0.005

η

t=0.80

−1.0 −0.5 0.0 0.5 1.0
x

−0.005

0.000

0.005

η

t=1.00

Figure 6.23: The evolution of the wave model for the initial condition (6.30)
at certain points in time

We see in figure 6.23 that the initial wave collapses into the wave-tank and splits
into two separate waves, which move towards their respective boundaries.

0.0 0.2 0.4 0.6 0.8 1.0
t

9.794

9.796

9.798

9.800

9.802

9.804

9.806

9.808

9.810

F

Force on the right boundary

Nx=70, Ny=25

Figure 6.24: The force on the right boundary wall, exerted by the water.

Figure 6.24 shows us that the force varies as the water moves internally. We
will be expecting a peak somewhat when the wave we see forming hits the wall.

6.2 A nonlinear 2D wave tank model 93

6.2.4.1 Variation in the amplitude

We will start by varying the amplitude of our gauss pulse initial condition.
We allow the gaussian pulse to have 10% uncertainty in the amplitude, by
introducing the new initial value function

η̂0(x) = Kη0(x) K ∼ U(0.9, 1.1)

We will be implementing the stochastic collocation method for this, using Leg-
endre polynomials as we have done before. The code for this implementation is
located in appendix G.2.

0.0 0.5 1.0 1.5 2.0 2.5
t

19.50

19.52

19.54

19.56

19.58

19.60

19.62

19.64

19.66

19.68

F

Figure 6.25: The 10% uncertainty on the initial amplitude propagated
through the force on the right-hand side boundary.

We see in figure 6.25 that the changes in the force, albeit growing, are relatively
small compared to the static force. The uncertainty does however do quite a
lot of change at the local minima and maxima, where the value of the force
can change quite a deal from the mean. We notice that there are certain knots
where the force is always the same value, regardless of the initial amplitude.

6.2.4.2 Variation in the starting point of the wave

In order to shed some light on the constant knots we saw in figure 6.25, we want
to keep the initial amplitude constant, and instead introduce a uncertainty on

94 Numerical experiments

the midpoint of the wave. We create a new initial value function, from (6.30)

η̃0(x) =
e

(x−ω)2

2∗0.082

100
ω ∼ U(−0.02, 0.02)

We use the exact same framework as when we introduced uncertainty to the
amplitude, and compute the result

0.0 0.5 1.0 1.5 2.0 2.5
t

19.40

19.45

19.50

19.55

19.60

19.65

19.70

19.75

F

Mean
Upper
Lower

Figure 6.26: The uncertainty in the mid-point of our initial pulse ω ∼
U(−0.02, 0.02) propagated to the force on the right hand wall.

We see from figure 6.26 that as long as the the starting amplitude is unchanged,
the value of the force hitting the wall is close to equal, just either delayed or
hurried according to mean. But that is only when the waves are more aligned,
which they seem to become at around t = 1.75. Until that, it seems that where
ever the pulse starts creates different waves, that hit the wall at different times,
allowing those "bubbles" to form on our force plot.

6.2.5 Conclusions for the wave tank model

The wave tank experiment has shown us that the nonlinear systems can pack
quite a surprise for us, as we have seen in figure 6.26, a small change in the initial
condition can affect the solution in different ways at different times – something
not readily apparent from the model itself. This proves that uncertainty quan-
tification is a massively useful tool, as it allows us to quantify the effects of
uncertainty we would not be able to understand without this technique. While

6.2 A nonlinear 2D wave tank model 95

this was a relatively heavy model, since each time-step required four solutions
to a Laplace problem on a 70 × 25 grid, it would have been impossible to use
the simple Monte Carlo method to acquire these results.

96 Numerical experiments

Chapter 7

Conclusions

The spectral methods and generalized polynomial chaos methods make for a
great combination when used for quantifying uncertainty through differential
equations. The combination of fast convergence for both types of methods
grant enormous opportunity for implementation on relatively complex models,
as the burden of giant matrix operations become somewhat lessened by having
fewer points.

While the methods are smart, they require a good understanding of the problem
to implement properly, and because they work on the whole spectra, it can be
hard to locate a single error if the methods are not very well understood. While
being more complicated than some easier models, the collocation methods, both
spectral and stochastic merge some good of both worlds, allowing for relatively
straightforward implementation, while retaining the spectral convergence. With
these two methods, we will be able to do uncertainty quantification on most dif-
ferential equation problems relatively easy, while the Galerkin methods require
somewhat more work per problem.

These methods can of course be paired with other numerical methods or tech-
nologies, to increase the speed further, allowing even more applications of these
methods. One such choice could be to parallelize the processes. With the uncou-
pled nature of the stochastic collocation method, many of the processes would
easily run in parallel, allowing for fast and efficient calculations, without fear of

98 Conclusions

interdependencies slowing the gain of parallelization.

The applications of uncertainty quantification are everywhere, as it is often
hard to both measure correctly, and replicate exactly. For some applications
this might change the outcome a whole lot, as we saw in burgers equation, or
generate unanticipated results as we saw in the wave tank model. It might also
just highlight the inner workings of a model that are not readily apparent from
the way things work, as we saw in the lid driven cavity model.

Appendix A

Conventions for notation
and plotting

A.1 Differential notation

We will be using the following notation for differential notation interchangeably

du(x, t)

dt
= ∂tu(x, t) = ut(x, t)

A.2 Uncertainty quantification in plots

We will use two-dimensional plots as a way to visualize the uncertainty quan-
tification. We will be using a plot from figure 5.7 to illustrate the point.

100 Conventions for notation and plotting

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Upper
Exp
Low

Figure A.1: The solution to Burgers equation for N = 60 and v U(0.05, 0.2)
modeled by 10 iterations of the Legendre polynomial. The yellow
band represents the mean µ ± the standard derivation σ, and the
purple lines define µ± 2σ. 95% of the solutions will be inside the
purple lines.

We see here the mean of the of the function, as well as a yellow colored area
which is within the standard deviation of the mean. The lines tagged "Upper"
and "Lower" refer to the upper and lower bound for begin within the mean and
two standard deviations. Optionally the highest and lowest value calculated
might be plotted as well.

A.3 Coding notation

When reading Python code, one should be aware that indentation is a nesting
of the functions, and as soon as there is a piece of code not indented, the nested
part has ended.

The # sign signifies comments in Python, while three concurrent quotation
marks either initialize or end a block comment. The character \ signifies that
the current line is broken for ease of view only, continuing on the next line –
akin to the MATLAB operator

Appendix B

Allan P. Engsig-Karup,
notes

102 Allan P. Engsig-Karup, notes

Figure B.1: Origin of Lambda A.1

Appendix C

Code used in chapter 3

C.1 Generating plots

Lagrange polynomials

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Jan 22 15:20:30 2013
4

5 @author: cbrams
6

7 This function is simply showing the lagrance polynomials for N=6
8 """
9 import numpy as np

10 import matplotlib.pyplot as plt
11

12 N = 6
13 i = np.array(range(N+1))
14 xj = np.zeros((len(i)))
15

16 #Calculate the points

104 Code used in chapter 3

17 for j in i:
18 xj[j] = 2.*np.pi/float(N)*j
19

20 #Create a fine grid to plot on
21 x = np.linspace(xj[0]-1e-12,xj[N]+1e-12,100)
22

23 #Plot the Lagrange polynomials
24 for j in i:
25 hj = 1./float(N) * np.sin(N/2. *(x-xj[j])) * np.cos(1./2.*(x-xj[j])) / np.sin(1./2.*(x-xj[j]))
26 hj[np.isnan(hj)] = 0.
27 plt.plot(x/(2.*np.pi),hj)
28 plt.grid()
29 plt.xlim(0.,1)
30 plt.title("Lagrange polynomials for N=%d"%N)
31 plt.savefig("../../Latex/Billeder/Chapter3/LagrangePolynomials.eps")

Legendre polynomials

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Jan 22 15:20:30 2013
4

5 @author: cbrams
6

7 This script is intended to show the Legendre polynomials
8 """
9

10 #Initilization
11 import numpy as np
12 import DABISpectral1D
13 import matplotlib.pyplot as plt
14

15 #Generate x-points
16 x = np.linspace(-1,1,100)
17 for N in range(6):
18

19 #Initialize Legendre polynomial, and calculate values
20 # (0.0,0.0) is (alpha, beta)
21 polyLeg = DABISpectral1D.Poly1D(DABISpectral1D.JACOBI,(0.0,0.0))
22 p5Leg = polyLeg.GradEvaluate(x, N, 0); # N is N
23

24 #Plot polynomials

C.1 Generating plots 105

25 plt.plot(x,p5Leg,label=’N = ’+str(N))
26 plt.legend()
27 plt.title(’Legendre polynomials’)
28 plt.savefig("../../Latex/Billeder/Chapter3/LegendrePolynomials.eps")

Gibbs phenomenon

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun Jan 20 11:38:19 2013
4

5 @author: cbrams
6

7 This script is intended to show Gibbs phenomenon
8 """
9 import numpy as np

10 import DABISpectral1D as DB
11 import matplotlib.pyplot as plt
12

13 #Define the step-function
14 def f(x):
15 F = np.zeros(x.shape)
16 F[x>0] = 1
17 F[x<0] = -1
18 return F
19

20 #Plot the step-function
21 plt.figure(1)
22 xi = np.linspace(-1,1,num=1000)
23 plt.plot(xi,f(xi),label="Original")
24

25 #Initialize polynomial
26 LegPol = DB.Poly1D(DB.JACOBI,(0.0,0.0))
27

28 #Increasing N and room for error
29 N = np.array([5,15,25,35])
30 Err = np.zeros(N.shape)
31 for i in range(N.size):
32 #Approximate the step function using nodal values
33 n = N[i]
34 x,w = LegPol.GaussLobattoQuadrature(n)
35 F = f(x)

106 Code used in chapter 3

36

37 #Calculate modal coefficients and interpolation
38 fhat = LegPol.DiscretePolynomialTransform(x,F,n)
39 fi = LegPol.LagrangeInterpolate(x,F,xi)
40

41 #Plot the coefficients
42 plt.figure(1)
43 plt.plot(xi,fi,label="N=%d"%n)
44 plt.figure(2)
45 plt.semilogy(range(n+1),fhat,’o’,label="N=%d"%n)
46 Err[i] = max(abs(fi-f(xi)))
47

48 #Plot the results
49 plt.figure(1)
50 plt.legend(loc=4)
51 plt.savefig("../../Latex/Billeder/Chapter3/GibbsPhenomenon.eps")
52 plt.figure(2)
53 plt.legend(loc=6)
54 plt.savefig("../../Latex/Billeder/Chapter3/GibbsCoefficients.eps")
55 plt.figure(3)
56 plt.semilogy(range(N.size),Err)
57 plt.title("Error")
58 plt.show()

Aliasing

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun Jan 20 13:03:12 2013
4

5 @author: cbrams
6

7 This script is intended to illustrate the aliasing problem
8 """
9 import numpy as np

10 import matplotlib.pyplot as plt
11

12 #Calculate the arrays
13 x = np.linspace(0,2*np.pi,1000)
14 X = np.linspace(0,2*np.pi,9,endpoint=True)
15

16 #Calculate the complex exponentials

C.1 Generating plots 107

17 z2 = 1j*2*x
18 z6 = 1j*-6*x
19 Z = 1j*2*X
20 E2 = np.exp(z2)
21 E6 = np.exp(z6)
22 E = np.exp(Z)
23

24 #Plot it all together
25 plt.figure()
26 plt.plot(x,np.real(E2),label="k=2",linestyle="--")
27 plt.plot(x,np.real(E6),label="k=-6",linestyle="--")
28 plt.plot(X,np.real(E),’o’)
29 plt.xlim(0-0.02,2*np.pi+0.02)
30 plt.ylim(-1.02,1.02)
31 plt.legend()
32 plt.savefig("../../Latex/Billeder/Chapter3/Aliasing.eps")

108 Code used in chapter 3

Appendix D

Code used in chapter 4

D.1 Differential Matrices

The Diff function

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 2 19:52:09 2013
4

5 @author: cbrams
6

7 This script is intended to calculate the differential operators
8 """
9

10 #Initilization
11 import numpy as np
12 import DABISpectral1D as DB
13

14 #Function generating differentiative matrix
15 def DF(N):
16 D = np.zeros((N,N))

110 Code used in chapter 4

17 #Generate for even N
18 if (N%2)==0:
19 for l in range(N):
20 for k in range(N):
21 if l==k:
22 D[k][l] = 0
23 else:
24 D[k][l] = (1/2.)*(-1)**(1+k+l)\
25 *np.cos(np.pi*(-k+l)/N)/np.sin(np.pi*(-k+l)/N)
26 else:
27 D = 0
28 return D
29

30 def DP(N):
31 #Initialize Polynomial
32 P = DB.Poly1D(DB.JACOBI, (0.0,0.0))
33

34 #Generate grid
35 (xGL,w) = P.GaussLobattoQuadrature(N-1)
36

37 #Generate Vandermonde Matrices
38 V = P.GradVandermonde1D(xGL,N-1,0)
39 Vx = P.GradVandermonde1D(xGL,N-1,1)
40

41 #Solve for D
42 D = np.linalg.solve(V.T,Vx.T).T
43 return [D,xGL]

D.2 Test functions

The test for the Fourier differential operator

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 2 19:54:08 2013
4

5 @author: cbrams
6

7 This script is intended to test the fourier differentiation
8 operator

D.2 Test functions 111

9 """
10

11 #Initilization
12 from __future__ import division
13 from Diff import DF
14 import numpy as np
15

16 #Setting number of N values evaluated
17 Niter = 15
18 error = np.zeros(Niter)
19

20 for i in range(Niter):
21 #Initiliza loop
22 N = 4*i+5
23 x = np.linspace(0,2,N)
24

25 #Generating true values
26 dv = np.cos(np.pi*x)*np.pi*np.exp(np.sin(np.pi*x))
27 v = np.exp(np.sin(np.pi*x))
28

29 #Differentiating using D
30 Dv = np.zeros(v.shape)
31 Dv[0:N-1] = np.dot(DF(N-1),v[0:N-1])*np.pi
32 Dv[N-1] = Dv[0]
33 error[i] = max(abs(dv-Dv))
34

35

36 #Plotting approximation
37 import matplotlib.pyplot as plt
38 plt.figure()
39 plt.plot(x,dv,label=’Analytic’,color=’b’)
40 plt.plot(x,Dv,linestyle=’ ’,marker=’x’,color = ’r’,\
41 label=’Approximation’)
42 plt.xlabel("x")
43 plt.ylabel("v’(x)")
44 plt.legend()
45 plt.savefig("../../Latex/Billeder/Chapter4/FourierDTestResult.eps")
46

47

48 #Plotting error
49 plt.figure()
50 NN = 4*np.array(range(Niter))+5
51 plt.loglog(NN,error,’r’,label=’Error’)
52 plt.loglog(NN,1/NN**(3),’b’,label=’N^(-3)’)

112 Code used in chapter 4

53 plt.xlabel("N")
54 plt.legend()
55 plt.savefig("../../Latex/Billeder/Chapter4/FourierDTestConvergence.eps")
56

57 #Show plots
58 #plt.show()

The test for the Legendre differential operator

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jan 3 14:01:08 2013
4

5 @author: cbrams
6

7 This script is intended to test the LEgendre differential operator
8 """
9 #Initialization

10 from numpy import pi,sin,exp,cos
11 import numpy as np
12 import DABISpectral1D as DB
13 from numpy.linalg import norm
14 import matplotlib.pyplot as plt
15 from Diff import DP
16

17 #Correct value functions
18 v = lambda x: exp(sin(pi*x))
19 dv = lambda x: pi*cos(pi*x)*exp(sin(pi*x))
20

21 #Initialize polynomials
22 P = DB.Poly1D(DB.JACOBI, (0.0,0.0))
23

24 #Initialize loop over N
25 nn = 5
26 error = np.zeros(nn)
27 for i in range(nn):
28 N = 2**(i+2)
29

30 #Generate D and x
31 [D,xGL] = DP(N)
32 x = xGL + 1
33

D.2 Test functions 113

34 #Calculate function values
35 f = v(x)
36

37 #Calculate approximated and analytic function values
38 df = np.dot(D,f)
39 Df = dv(x)
40

41 #Record error
42 error[i] = norm(df-Df,2)
43

44 plt.figure()
45 plt.plot(x,Df,label=’Analytic’,color=’b’)
46 plt.plot(x,df,linestyle=’ ’,marker=’x’,color = ’r’,\
47 label=’Approximation’)
48 plt.xlabel("x")
49 plt.ylabel("v’(x)")
50 plt.legend()
51 plt.savefig("../../Latex/Billeder/Chapter4/LegendreDTestResult.eps")
52

53

54 #Print error
55 plt.figure()
56 NN = (np.ones(nn)*2)**(np.array(range(nn))+1)
57 plt.loglog(NN,error,label="Error")
58 plt.loglog(NN,NN**(-2),label="N^(-2)")
59 plt.xlabel("N")
60 plt.legend()
61 plt.savefig("../../Latex/Billeder/Chapter4/LegendreDTestConvergence.eps")

D.2.1 The test for the two-dimensional differential

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 23 16:42:52 2013
4

5 @author: cbrams
6

7 This is intended for creating a plot showing the effectiveness
8 of the differential operators.
9 """

10

11 from __future__ import division

114 Code used in chapter 4

12 import numpy as np
13 import DABISpectral1D as DB
14 from Diff import DP
15 import matplotlib.pyplot as plt
16

17 N = 20
18

19 LegPol = DB.Poly1D(DB.JACOBI,(0.0,0.0))
20

21 #Generate the mesh
22 x,wx = LegPol.GaussLobattoQuadrature(N)
23 y,wy = LegPol.GaussLobattoQuadrature(N)
24

25 X,Y = np.meshgrid(x,y)
26

27 #Calculate the initial and true value
28 C = np.cos(X*Y)
29 Cprime = -np.cos(X*Y)*X*Y-np.sin(X*Y)
30

31 #Generate the matrices
32 [Dx,_] = DP(N+1)
33 [Dy,_] = DP(N+1)
34

35 #Creating the matrices for multidimensional use
36 DX = np.kron(Dx,np.identity(N+1))
37 DY = np.kron(np.identity(N+1),Dy)
38

39 #Flattening the initial condition
40 C = C.flatten("F")
41

42 #Calculating the derivative and reshaping
43 Cd = np.dot(DX,np.dot(DY,C))
44 Cd = Cd.reshape([N+1,N+1],order="F")
45

46 #Plotting
47 plt.figure()
48 plt.imshow(np.abs(Cd-Cprime),origin="lower",extent=[-1,1,-1,1])
49 plt.colorbar()
50 plt.xlabel(’x’)
51 plt.ylabel(’y’)
52 plt.axis(’normal’)
53 plt.savefig("../../Latex/Billeder/Chapter4/MultiDimDiffTest.eps")

D.2 Test functions 115

D.2.2 The test for the sparse matrices speed

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jan 24 12:29:22 2013
4

5 @author: cbrams
6

7 This is intended to test the sparse matrix dot product speed
8 """
9

10 import time
11 import numpy as np
12 from scipy.sparse import lil_matrix
13 from numpy.random import rand
14

15 #We’re running the scheme 1000 times
16 tN = 1000
17 timeSparse = np.zeros(tN)
18 timeFull = np.zeros(tN)
19 errors = np.zeros(tN)
20 for i in range(tN):
21 #Creating and populating the matrix
22 A = lil_matrix((1000, 1000))
23 A[0, :100] = rand(100)
24 A[1, 100:200] = A[0, :100]
25 A.setdiag(rand(1000))
26

27 #Transforming the matrix
28 A = A.tocsr()
29 b = rand(1000)
30

31 #Time the Dense product as well
32 AA = A.todense()
33 T1 = time.clock()
34 x = A.dot(b)
35 T2 = time.clock()
36 y = np.dot(AA,b)
37 T3 = time.clock()
38

39 #Calculate the error between the two solutions
40 errors[i] = np.linalg.norm(x**2-np.array(y)**2,ord=2)
41

116 Code used in chapter 4

42 #Storing the time
43 timeSparse[i] = T2-T1
44 timeFull[i] = T3-T2
45

46 #Calculate and print the averages
47 TS = np.average(timeSparse)
48 TF = np.average(timeFull)
49 E = np.average(errors)
50

51 print TS
52 print TF
53 print E

D.3 Practical implementations

The test script for the boundary value problem

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jan 24 15:48:05 2013
4

5 @author: cbrams
6

7 This script is intended to solve the problem with BVP presented
8 in the spectral chapter
9 """

10 #Initialization
11 import numpy as np
12 from numpy.linalg import norm
13 import DABISpectral1D
14 import matplotlib.pyplot as plt
15 from Diff import DP
16 plt.close(’all’)
17

18 #Generate iteration parameters
19 N = np.linspace(10,80,num=71)
20

21 epsilon = 0.01
22 error = np.zeros([len(N)])
23 for i in range(len(N)):

D.3 Practical implementations 117

24 n = int(N[i])
25 b = -1
26

27 #Initialize polynomial
28 polyLeg = DABISpectral1D.Poly1D(DABISpectral1D.JACOBI, (0.0,0.0))
29

30 #Generate Quadrature and transformation
31 [D,y] = DP(n)
32 x = (y+1)/2
33

34 #Construct L
35 L = -epsilon*4*np.dot(D,D) + b*2*D
36

37 #Implement boundary conditions
38 L[0,:] = 0
39 L[-1,:] = 0
40 L[0,0] = 1
41 L[-1,-1] = 1
42

43 #Generate right-side function with boundary conditions
44 f = np.ones((n,1))
45 f[0] = 0
46 f[-1] = 0
47

48 #Solve system and calculate exact solution
49 u = np.linalg.solve(L,f)
50 uExact = (np.exp((1-x)/epsilon)+np.exp(1/epsilon)*\
51 (x-1)-x)/(1-np.exp(1/epsilon))
52

53 #Calculate error
54 error[i] = norm(u[:,0]-uExact,np.inf)
55

56 #Plot function
57 plt.figure()
58 plt.plot(x,u,’ro’,label="Approximation")
59 plt.plot(x,uExact,label="Exact")
60 plt.xlabel("x")
61 plt.title("N=" + str(n) + " and epsilon="+str(epsilon))
62 plt.legend()
63 plt.savefig("../../Latex/Billeder/Chapter4/EpsilonSolution.eps")
64

65

66 #Errorplot
67 plt.figure()

118 Code used in chapter 4

68 plt.loglog(N,error[:],’r’,label="Error \epsilon{}="+str(epsilon))
69 plt.legend()
70 plt.xlabel("N")
71 plt.savefig("../../Latex/Billeder/Chapter4/EpsilonError.eps")

The test script for Burgers’ equation

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Jan 21 20:05:23 2013
4

5 @author: cbrams
6

7 This script is intended to solve Burger’s problem with a
8 pseudo-spectral method
9 """

10

11 from __future__ import division
12 import numpy as np
13 import matplotlib.pyplot as plt
14 from Diff import DP
15 from scipy.integrate import odeint
16

17

18 def initialValue(x):
19 #Calculate initial value
20 res = -np.tanh((x))
21 #Adjust boundaries
22 res = res/np.abs(res[0])
23 return res
24

25 def dudt(u,t,v,Dx,BoundaryFixer):
26 #Calculating linear operator
27 unew= -u*np.dot(Dx,u)+v*np.dot(Dx,np.dot(Dx,u))
28 #Adjust for boundaries
29 unew = unew*BoundaryFixer
30 return unew
31

32

33 #Initialization
34 xN = 80
35 v = 0.1

D.3 Practical implementations 119

36

37

38 #Generating Dx and u0
39 Dx,x = DP(xN)
40 u0 = initialValue(x)
41

42 #Configuring time needed
43 tEnd = 4
44 tNum = 1000
45 #We create the time-array we want values for
46 t = np.linspace(0,tEnd,tNum)
47

48 #Create boundary fixer to cancel the time derivatives
49 # at the boundaries.
50 BDFix = np.ones(x.shape)
51 BDFix[0] = 0
52 BDFix[-1] = 0
53

54 #Start the time-integrator
55 v0 = v
56 usol = odeint(dudt,u0,t,tuple([v0,Dx,BDFix]))
57

58 #Plot the solutions
59 plt.figure()
60 plt.title("Solution to Burgers’ equation")
61 plt.plot(x,initialValue(x),’r--’,linewidth=2,label="Initial Value")
62 for i in range(1,6):
63 plt.plot(x,usol[i*100,:],label="t=%.2f"%t[i*100])
64 plt.plot(x,usol[-1,:],label="t=%2d"%t[-1])
65 plt.xlabel("x")
66 plt.ylim(-1.1,1.1)
67 plt.legend()
68

69 plt.savefig("../../Latex/Billeder/Chapter4/BurgersEQSpectral.eps")

120 Code used in chapter 4

Appendix E

Code used in chapter 5

E.1 Visualization

Visualising the first six Hermite polynomials

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sat Jan 12 10:39:12 2013
4

5 @author: cbrams
6

7 This script is intended for showing the hermite polynomials
8 """
9

10 import DABISpectral1D as DB
11 import numpy as np
12 import matplotlib.pyplot as plt
13

14 #Initialize Polynomial
15 HPol = DB.Poly1D(’HermitePprob’,())
16

122 Code used in chapter 5

17 #Generate grid
18 xlim = 3
19 N = 100
20 x = np.linspace(-xlim,xlim,N)
21

22 plt.figure()
23 for i in range(6):
24 #Evaluate and plot polynomials
25 polyval = HPol.GradEvaluate(x,i,0)
26 plt.plot(x,polyval,label="HP"+str(i))
27

28 plt.legend(loc=9)
29 plt.savefig("../../Latex/Billeder/Chapter5/HermitePolynomials.eps")

E.2 Practical examples

E.2.1 Test equation

Monte Carlo mean approximation

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jan 10 12:52:18 2013
4

5 @author: cbrams
6

7 This script is designed for calculating the mean by the
8 Monte Carlo methods
9 """

10 #Imports
11 from __future__ import division
12 import numpy as np
13 from scipy.integrate import odeint
14 from numpy.random import normal as alpha
15 from math import e
16 import matplotlib.pyplot as plt
17

18

19 #Define time-derivative for one random parameter
20 def dudt(u,t,args):

E.2 Practical examples 123

21 return -args*u
22

23 #True solution
24 def u(t,mean,std):
25 a = alpha(mean,std)
26 return e**(-a*t),a
27

28 #Define mean, standard deviation and expectation
29 mean = 9.
30 std = 3.
31 tTrue = 0.5
32 TrueExp = e**(1/2*tTrue**2*std**2-tTrue*mean)
33

34 tN = 100
35 t = np.linspace(0,tTrue,tN)
36

37

38 #Number of realizations
39 M = 100000
40

41 NSol = np.zeros(M)
42 NRunningMean = np.zeros(M)
43 NRunningVar = np.zeros(M)
44 for N in range(M):
45 #Calculate a random starting point
46 y0,a = u(0,mean,std)
47

48 #Integrate over time
49 sol = odeint(dudt,y0,t,tuple([a]))
50

51 #Calculate the running mean
52 NSol[N] = sol[-1]
53 NRunningMean[N] = np.mean(NSol[:N])
54

55 plt.figure()
56 plt.plot(range(M),NRunningMean,label="Running Mean");
57 plt.plot(range(M),np.ones(M)*TrueExp,label="Expectation")
58 plt.xlabel("N")
59 plt.legend()
60 plt.savefig("../../Latex/Billeder/Chapter5/TestEQMonteCarloRunningMean.eps")
61

62 plt.figure()
63 plt.loglog(range(M),abs(NRunningMean-TrueExp),label="Error");
64 plt.xlabel("N")

124 Code used in chapter 5

65 plt.legend()
66 plt.savefig("../../Latex/Billeder/Chapter5/TestEQMonteCarloRunningError.eps")

Collocation mean and variance approximation

1 # -*- coding: utf-8 -*-
2 """
3 Created on Fri Jan 11 12:46:31 2013
4

5 @author: cbrams
6

7 This script is intended to calculate the mean and variance
8 for the test equation by the spectral collocation method
9 """

10 from __future__ import division
11 import DABISpectral1D as DB
12 import numpy as np
13 from math import e
14 from scipy.integrate import odeint
15 import matplotlib.pyplot as plt
16

17 #True solution
18 def u(t,a):
19 return e**(-a*t)
20

21 def dudt(u,t,a):
22 return -a*u
23 #Initialize Polynomial
24 HPol = DB.Poly1D(’HermitePprob’,())
25

26 #Set number of time steps, as well as calculating the real values
27 tN = 1000
28 mean = 9
29 std = 3
30 tTrue = 0.5
31 TrueExp = e**(1/2*tTrue**2*std**2-tTrue*mean)
32 TrueVar = (e**(tTrue**2*std**2)-1)*\
33 e**(-2*tTrue*mean+tTrue**2*std**2)
34

35 t = np.linspace(0,tTrue,tN)
36

37 NMax = 25

E.2 Practical examples 125

38 Exp = np.zeros(NMax-1)
39 ExpVar = np.zeros(NMax-1)
40 for N in range(1,NMax):
41 #Generate points
42 x,w = HPol.GaussQuadrature(N)
43

44 #Generate the random variable representation
45 a = mean + (std)*x;
46

47 #Fint initial value
48 u0 = u(0,a)
49

50 #Integrate over time
51 sol = odeint(dudt,u0,t,tuple([a]))
52 ufinal = sol[-1]
53

54 #Calculate Expectation and variance
55 Exp[N-1] = sum(w[:,0]*ufinal)
56 ExpVar[N-1] = sum(w[:,0]*((ufinal-Exp[N-1]))**2)
57

58 plt.figure
59 NN = np.array(range(1,NMax))
60 plt.plot(NN,Exp,label="Approximated exp")
61 plt.plot(NN,np.ones(NMax-1)*TrueExp,label="True exp")
62 plt.xlabel("N")
63 plt.legend()
64

65 NN = np.array(range(1,NMax))
66 plt.plot(NN,ExpVar,label="Approximated variance")
67 plt.plot(NN,np.ones(NMax-1)*TrueVar,label="True variance")
68 plt.xlabel("N")
69 plt.legend()
70 plt.savefig("../../Latex/Billeder/Chapter5/TestEQCollocationMean.eps")
71

72 plt.figure()
73 plt.semilogy(NN,abs(Exp-TrueExp),label="Error mean")
74 plt.semilogy(NN,abs(ExpVar-TrueVar),label="Error Variance")
75 plt.xlabel("N")
76 plt.title("Absolute error")
77 plt.legend()
78 plt.savefig("../../Latex/Billeder/Chapter5/TestEQCollocationError.eps")
79 plt.show()
80

81 np.savez("test",Exp=Exp,ufinal=ufinal)

126 Code used in chapter 5

Monte Carlo mean approximation for the uniform case

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Jan 21 10:45:51 2013
4

5 @author: cbrams
6

7 This script is intended to calculate the Monte Carlo mean
8 for a uniform distribution
9 """

10

11 #Imports
12 from __future__ import division
13 import numpy as np
14 from scipy.integrate import odeint
15 from numpy.random import uniform as alpha
16 from math import e
17 import matplotlib.pyplot as plt
18

19

20 #Define time-derivative for once random parameter
21 def dudt(u,t,args):
22 return -args*u
23

24 #True solution
25 def u(t,start,end):
26 a = alpha(low=start,high=end)
27 return e**(-a*t),a
28

29 #Define mean, standard deviation and expectation
30 start = -7
31 end = 2
32 tTrue = 0.5
33 TrueExp = (-e**(-start*tTrue)+e**(-end*tTrue))/(tTrue*(start-end))
34

35 tN = 100
36 t = np.linspace(0,tTrue,tN)
37

38

39 #Number of realizations
40 M = 100000
41

E.2 Practical examples 127

42 NSol = np.zeros(M)
43 NRunningMean = np.zeros(M)
44 for N in range(M):
45 #Generate random start
46 y0,a = u(0,start,end)
47

48 #Integrate over time
49 sol = odeint(dudt,y0,t,tuple([a]))
50

51 #Calculate running mean
52 NSol[N] = sol[-1]
53 NRunningMean[N] = np.mean(NSol[:N])
54

55 plt.figure()
56 plt.plot(range(M),NRunningMean,label="Running Mean");
57 plt.plot(range(M),np.ones(M)*TrueExp,label="Expectation")
58 plt.xlabel("N")
59 plt.legend()
60 plt.savefig("../../Latex/Billeder/Chapter5/TestEQMonteCarloRunningMeanUniform.eps")
61

62 plt.figure()
63 plt.loglog(range(M),abs(NRunningMean-TrueExp),label="Error");
64 plt.xlabel("N")
65 plt.legend()
66 plt.savefig("../../Latex/Billeder/Chapter5/TestEQMonteCarloRunningErrorUniform.eps")

Collocation mean approximation for the uniform case

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sat Jan 12 10:58:40 2013
4

5 @author: cbrams
6 """
7 from __future__ import division
8 import DABISpectral1D as DB
9 import numpy as np

10 from math import e
11 from scipy.integrate import odeint
12 import matplotlib.pyplot as plt
13

14 #True solution

128 Code used in chapter 5

15 def u(t,a):
16 return e**(-a*t)
17

18 def dudt(u,t,a):
19 return -a*u
20 #Initialize Polynomial
21 JPol = DB.Poly1D(’Jacobi’,(0.0,0.0))
22

23

24 start = -7
25 end = 2
26 tTrue = 0.5
27 TrueExp = (-e**(-start*tTrue)+e**(-end*tTrue))/(tTrue*(start-end))
28

29 t = np.linspace(0,tTrue,2)
30

31 NMax = 25
32 Exp = np.zeros(NMax-1)
33 ExpVar = np.zeros(NMax-1)
34 for N in range(1,NMax):
35 #Generate points
36 x,w = JPol.GaussQuadrature(N)
37

38 #Generate random representation
39 x = (x+1)/2*(end-start)+start
40

41 a = x
42 a[x>end] = 0
43 a[x<start] = 0
44

45

46 #Solve for time
47 u0 = u(0,a)
48 sol = odeint(dudt,u0,t,tuple([a]))
49

50 #Employ correct weights
51 w = w/2
52 Exp[N-1] = sum(w[:,0]*sol[-1])
53 ExpVar[N-1] = sum(w[:,0]*sol[-1]**2)
54

55 plt.figure
56 NN = np.array(range(1,NMax))
57 plt.plot(NN,Exp,label="Approximated exp")
58 plt.plot(NN,np.ones(NMax-1)*TrueExp,label="True exp")

E.2 Practical examples 129

59 plt.xlabel("N")
60 plt.legend()
61 plt.savefig("../../Latex/Billeder/Chapter5/TestEQCollocationMeanUniform.eps")
62

63 plt.figure()
64 plt.semilogy(NN,abs(Exp-TrueExp),label="Error")
65 plt.xlabel("N")
66 plt.title("Absolute error")
67 plt.savefig("../../Latex/Billeder/Chapter5/TestEQCollocationMeanErrorUniform.eps")

Stochastic Galerkin method for the mean approximation

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Jan 21 10:33:56 2013
4

5 @author: cbrams
6 """
7 from __future__ import division
8 import DABISpectral1D as DB
9 import numpy as np

10 from math import e
11 from scipy.integrate import odeint
12 import matplotlib.pyplot as plt
13 from scipy.misc import factorial
14

15 #True solution
16 def u(t,a):
17 return e**(-a*t)
18

19 def dudt(u,t,A):
20 return np.dot(A.T,u)
21

22 #Calculate eijk
23 def ef(i,j,k,N):
24 M = int(np.ceil(3/2*N))
25 ePol = DB.Poly1D(’HermitePprob’,())
26 z,wz = ePol.GaussQuadrature(M)
27

28 Hi = ePol.GradEvaluate(z,i,0)
29 Hj = ePol.GradEvaluate(z,j,0)
30 Hk = ePol.GradEvaluate(z,k,0)

130 Code used in chapter 5

31

32 E = sum(Hi*Hj*Hk*wz)
33

34 return E
35 #Initialize Polynomial
36 HPol = DB.Poly1D(’HermitePprob’,())
37

38 #Initialize computational parameters
39 tN = 1000
40 mean = 9
41 std = 3
42 tTrue = 0.5
43 TrueExp = e**(1/2*tTrue**2*std**2-tTrue*mean)
44 t = np.linspace(0,tTrue,tN)
45

46 NMax = 30
47 Exp = np.zeros(NMax-1)
48 for N in range(NMax):
49 #Generate points
50 x,w = HPol.GaussQuadrature(N)
51

52 #Generate representation
53 a = mean + (std)*x;
54

55 #Transforming
56 u0 = u(0,a)
57 v0 = HPol.DiscretePolynomialTransform(x,u0,N)
58

59 #Generating the A matrix
60 A = np.zeros([N+1,N+1])
61 for j in range(N+1):
62 for k in range(N+1):
63 A[j,k] = -1/factorial(k)*(mean*ef(0,j,k,N)+std*ef(1,j,k,N))
64

65 #Solve for time
66 sol = odeint(dudt,v0,t,tuple([A]))
67

68 #Inversely transform
69 ufinal = HPol.InverseDiscretePolynomialTransform(x,sol[-1],N)
70

71

72 #Calculating expectancy
73 Exp[N-1] = sum(w[:,0]*ufinal)
74

E.2 Practical examples 131

75 plt.figure
76 NN = np.array(range(1,NMax))
77 plt.plot(NN,Exp,label="Approximated exp")
78 plt.plot(NN,np.ones(NMax-1)*TrueExp,label="True exp")
79 plt.xlabel("N")
80 plt.legend()
81 plt.savefig("../../Latex/Billeder/Chapter5/TestEQGalerkinMean.eps")
82

83

84 plt.figure()
85 plt.semilogy(NN,abs(Exp-TrueExp),label="Error")
86 plt.xlabel("N")
87 plt.title("Absolute error")
88 plt.savefig("../../Latex/Billeder/Chapter5/TestEQGalerkinError.eps")

Two dimensional stochastic collocation method for the mean approx-
imation

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun Jan 20 16:52:00 2013
4

5 @author: cbrams
6 """
7

8 from __future__ import division
9 import DABISpectral1D as DB

10 import numpy as np
11 from math import e
12 from scipy.integrate import odeint
13 import matplotlib.pyplot as plt
14

15 #True solution
16 def u(t,a,b):
17 return b*e**(-a*t)
18

19 def dudt(u,t,a):
20 return -a*u
21 #Initialize Polynomial
22 HPol = DB.Poly1D(’HermitePprob’,())
23

24

132 Code used in chapter 5

25 #Generate both gaussian distribution coefficients
26 tN = 1000
27 mean = 4
28 std = 1.5
29

30 meanB = 3
31 stdB = 0.15
32

33 #Calculate true expectancy
34 tTrue = 0.5
35 TrueExp = meanB*e**(1/2*tTrue**2*std**2-tTrue*mean)
36

37 t = np.linspace(0,tTrue,tN)
38

39 NMax = 25
40 Exp = np.zeros(NMax-1)
41 ExpVar = np.zeros(NMax-1)
42 for N in range(1,NMax):
43 #Generate points
44 x,xw = HPol.GaussQuadrature(N)
45 y,yw = HPol.GaussQuadrature(N)
46

47 #Calculate both stochastic representations
48 a = mean + (std)*x;
49 b = meanB+stdB*y
50

51 #Create a mesh of both stochastic variables and weights
52 A,B = np.meshgrid(a,b)
53 XW,YW = np.meshgrid(xw,yw)
54 W = XW*YW
55 W = W.reshape([(N+1)*(N+1)])
56

57 #Calculate starting conditions
58 V = HPol.GradVandermonde1D(x,N,0)
59 u0 = u(0,A,B)
60

61 #Reshape solution
62 u0 = u0.reshape([(N+1)*(N+1)])
63 A = A.reshape([(N+1)*(N+1)])
64

65 #Integrate over time
66 sol = odeint(dudt,u0,t,tuple([A]))
67 ufinal = sol[-1]
68

E.2 Practical examples 133

69 #Calculate mean and expectancy
70 Exp[N-1] = sum(W*ufinal)
71 ExpVar[N-1] = sum(W*ufinal**2)
72

73 ExpRunning = np.sum(np.tile(W,[tN,1])*sol,1)
74 test = np.tile(ExpRunning,[(N+1)*(N+1),1]).T
75

76 VarRunning = np.sum(np.tile(W,[tN,1])*(sol-test)**2,1)
77 plt.figure
78 NN = np.array(range(1,NMax))
79 plt.plot(NN,Exp,label="Approximated exp")
80 plt.plot(NN,np.ones(NMax-1)*TrueExp,label="True exp")
81 plt.xlabel("N")
82 plt.legend()
83 plt.savefig("../../Latex/Billeder/Chapter5/TestEq2DGPCApproxExp.eps")
84

85 plt.figure()
86 plt.semilogy(NN,abs(Exp-TrueExp),label="Error")
87 plt.xlabel("N")
88 plt.title("Absolute error")
89 plt.savefig("../../Latex/Billeder/Chapter5/TestEq2DGPCError.eps")
90

91 plt.figure()
92 plt.fill_between(t,ExpRunning-np.sqrt(VarRunning),ExpRunning+np.sqrt(VarRunning),color="yellow")
93 plt.plot(t,ExpRunning+2*np.sqrt(VarRunning),’r’,label="Upper")
94 plt.plot(t,ExpRunning,label="Mean")
95 plt.plot(t,ExpRunning-2*np.sqrt(VarRunning),’r’,label="Lower")
96 plt.xlabel("t")
97 plt.legend()
98 plt.savefig("../../Latex/Billeder/Chapter5/TestEq2DGPCSolution.eps")
99 plt.show()

E.2.2 Burgers’ equation

Solution to Burgers’ with uncertainty on v

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sat Jan 12 17:44:27 2013
4

5 @author: cbrams

134 Code used in chapter 5

6 """
7

8 from __future__ import division
9 import numpy as np

10 import DABISpectral1D as DB
11 import matplotlib.pyplot as plt
12 from Diff import DP
13 from scipy.integrate import odeint
14

15

16 def initialValue(x):
17 return -np.tanh(x*10)
18

19 def dudt(u,t,v,Dx,BoundaryFixer):
20

21 unew= -u*np.dot(Dx,u)+v*np.dot(Dx,np.dot(Dx,u))
22 unew = unew*BoundaryFixer
23 return unew
24

25

26 LPol = DB.Poly1D("Jacobi",(0.0,0.0))
27

28 #Define constants
29 start = 0.05
30 end = 0.2
31

32 #Represent the random variable
33 zN = 10
34 z,Zw = LPol.GaussQuadrature(zN-1)
35 Zw = Zw/2
36 xN = 60
37 v =(z+1)/2*(end-start)+start
38

39 #Calculate spectral differential operators
40 Dx,x,Lw = DP(xN)
41 u0 = initialValue(x)
42

43 tEnd = 50
44 tNum = 1000
45

46 t = np.linspace(0,tEnd,tNum)
47

48 #Prepare system for solution by dudt
49 #Instead of running multiple times, we tile the system

E.2 Practical examples 135

50 Dx = np.kron(np.identity(zN),Dx)
51 u0 = np.tile(u0,zN)
52 xlol = np.tile(x,zN)
53

54 #We modify the boundary, so the correct points get zeroed
55 BDFix = np.ones(x.shape)
56 BDFix[0] = 0
57 BDFix[-1] = 0
58 BDFix = np.tile(BDFix,zN)
59 v0 = v.repeat(xN)
60

61 #Solve and reshape
62 usol = odeint(dudt,u0,t,tuple([v0,Dx,BDFix]))
63 usol = np.reshape(usol,(tNum,xN,zN),order=’F’)
64

65 #Calculate Exp, Var and Std
66 Exp = np.sum(usol[-1,:,:]*np.tile(Zw,[1,xN]).T,axis=1)
67 Var = np.sum((usol[-1,:,:]-np.tile(Exp,[zN,1]).T)**2*np.tile(Zw,[1,xN]).T,axis=1)
68 Std = np.sqrt(Var)
69

70 plt.figure()
71 plt.fill_between(x,Exp-np.sqrt(Var),Exp+np.sqrt(Var),color="yellow")
72 plt.plot(x,Exp+2*Std,marker="^",label="Upper",color="purple")
73 plt.plot(x,Exp,linewidth=3,label="Exp",color="red")
74 plt.plot(x,Exp-2*Std,marker="v",label="Low",color="purple")
75 plt.legend()
76 plt.savefig("../../Latex/Billeder/Chapter5/BurgersEQStochV.eps")

Solution to Burgers’ with gaussian uncertainty on the boundary

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sun Jan 13 14:10:46 2013
4

5 @author: cbrams
6 """
7 import numpy as np
8 import DABISpectral1D as DB
9 import matplotlib.pyplot as plt

10 from Diff import DP
11 from scipy.integrate import odeint
12

136 Code used in chapter 5

13

14 def initialValue(x):
15 return -np.tanh(x*10)
16

17 def dudt(u,t,v,Dx,BoundaryFixer):
18 unew= -u*np.dot(Dx,u)+v*np.dot(Dx,np.dot(Dx,u))
19 unew = unew*BoundaryFixer
20 return unew
21

22

23

24 LPol = DB.Poly1D("Jacobi",(0.0,0.0))
25 HPol = DB.Poly1D("HermitePprob",())
26

27 #Preparing Gaussian variable
28 mean = 0.1
29 std = 0.05
30

31

32 #Preparing physical and stochastic grid
33 zN = 20
34 z,Hw = HPol.GaussQuadrature(zN-1)
35 xN = 50
36

37 delta = mean + z*std
38

39

40

41 Dx,x,Lw = DP(xN)
42

43 u0i = initialValue(x)
44

45 tEnd = 50
46 tNum = 1000
47

48 t = np.linspace(0,tEnd,tNum)
49

50 #Prepare system for solution by dudt
51 Dx = np.kron(np.identity(zN),Dx)
52 u0 = u0i.copy()
53 u0[u0>0] = u0[u0>0]*(1+delta[0])
54

55 #Generate different starting conditions
56 for i in range(1,zN):

E.2 Practical examples 137

57 u0temp = u0i.copy()
58 u0temp[u0temp>0] = u0temp[u0temp>0]*(1+delta[i])
59 u0 = np.concatenate((u0,u0temp))
60

61 #Boundary conditions
62 v0 = 0.05
63 BDFix = np.ones(x.shape)
64 BDFix[0] = 0
65 BDFix[-1] = 0
66 BDFix = np.tile(BDFix,zN)
67 #v0 = v.repeat(xN)
68

69 #Solve and reshape
70 usol = odeint(dudt,u0,t,tuple([v0,Dx,BDFix]))
71 usol = np.reshape(usol,(tNum,xN,zN),order=’F’)
72

73 ufin = usol[-1]
74

75 #Preparing to calculate exp
76 Hw = np.tile(Hw,(1,xN))
77 Hw = Hw.T
78

79

80 #Calculate exp, var and std
81 Exp = np.sum(Hw*ufin,axis=1)
82 ExpTile = np.tile(Exp,(zN,1))
83 ExpTile = ExpTile.T
84

85 VarCalc = ufin-ExpTile
86

87 Var = np.sum(Hw*(VarCalc)**2,axis=1)
88 Std = np.sqrt(Var)
89

90 plt.figure()
91 plt.fill_between(x,Exp-Std,Exp+Std,color="yellow")
92 plt.plot(x,ufin[:,-1],’b:’,label="Highest, e=%.2f"%delta[-1])
93 plt.plot(x,Exp+2*Std,’^-’,color="purple",label="Upper",linewidth=2)
94 plt.plot(x,Exp,’r-’,label="Expectation",linewidth=2)
95 plt.plot(x,Exp-2*Std,’v-’,color="purple",label="Lower",linewidth=2)
96 plt.plot(x,ufin[:,0],’g:’,label="Lowest, e=%.2f"%delta[0])
97 plt.legend(loc=3)
98 plt.savefig("../../Latex/Billeder/Chapter5/BurgersEQStochEGauss.eps")

138 Code used in chapter 5

Solution to Burgers’ with uniform uncertainty on the boundary

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Jan 21 13:34:35 2013
4

5 @author: cbrams
6 """
7 from __future__ import division
8 import numpy as np
9 import DABISpectral1D as DB

10 import matplotlib.pyplot as plt
11 from Diff import DP
12 from scipy.integrate import odeint
13

14

15 def initialValue(x):
16 return -np.tanh(x*10)
17

18 def dudt(u,t,v,Dx,BoundaryFixer):
19 unew= -u*np.dot(Dx,u)+v*np.dot(Dx,np.dot(Dx,u))
20 unew = unew*BoundaryFixer
21 return unew
22

23

24 #Preparing for modelling of random coefficients
25 LPol = DB.Poly1D("Jacobi",(0.0,0.0))
26

27 start = 0.
28 end = 0.1
29

30 zN = 20
31 z,Zw = LPol.GaussQuadrature(zN-1)
32 Zw = Zw/2
33 xN = 50
34

35 delta = (z+1)/2*(end-start)+start
36

37

38 #Calculate for the physical domain as well
39 Dx,x,Lw = DP(xN)
40

41 u0i = initialValue(x)

E.2 Practical examples 139

42

43 tEnd = 50
44 tNum = 1000
45

46 t = np.linspace(0,tEnd,tNum)
47

48 #Prepare system for solution by dudt
49 Dx = np.kron(np.identity(zN),Dx)
50 u0 = u0i.copy()
51 u0[u0>0] = u0[u0>0]*(1+delta[0])
52

53 for i in range(1,zN):
54 u0temp = u0i.copy()
55 u0temp[u0temp>0] = u0temp[u0temp>0]*(1+delta[i])
56 u0 = np.concatenate((u0,u0temp))
57

58

59 v0 = 0.05
60

61 BDFix = np.ones(x.shape)
62 BDFix[0] = 0
63 BDFix[-1] = 0
64 BDFix = np.tile(BDFix,zN)
65 #v0 = v.repeat(xN)
66 usol = odeint(dudt,u0,t,tuple([v0,Dx,BDFix]))
67 usol = np.reshape(usol,(tNum,xN,zN),order=’F’)
68

69 ufin = usol[-1]
70

71

72

73 #Adjusting weigts for quadrature
74 Zw = np.tile(Zw,(1,xN))
75 Zw = Zw.T
76

77 Exp = np.sum(Zw*ufin,axis=1)
78 ExpTile = np.tile(Exp,(zN,1))
79 ExpTile = ExpTile.T
80

81 VarCalc = ufin-ExpTile
82

83 Var = np.sum((Zw*VarCalc)**2,axis=1)
84 Std = np.sqrt(Var)
85

140 Code used in chapter 5

86 plt.figure()
87 plt.fill_between(x,Exp-Std,Exp+Std,color="yellow")
88 plt.plot(x,ufin[:,-1],’b:’,label="Highest, e=%.2f"%delta[-1])
89 plt.plot(x,Exp+2*Std,’^-’,color="purple",label="Upper",linewidth=2)
90 plt.plot(x,Exp,’r-’,label="Expectation",linewidth=2)
91 plt.plot(x,Exp-2*Std,’v-’,color="purple",label="Lower",linewidth=2)
92 plt.plot(x,ufin[:,0],’g:’,label="Lowest, e=%.2f"%delta[0])
93 plt.legend(loc=3)
94 plt.savefig("../../Latex/Billeder/Chapter5/BurgersEQStochEUniform.eps")

Appendix F
Code used in the lid driven

cavity problem

F.1 Approximating solution

Approximating Ghia et al

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sat Jan 26 11:04:08 2013
4

5 @author: cbrams
6

7 This script is intended to approximate a steady state from
8 scratch for the lid driven cavity problem.
9 """

10

11 from __future__ import division
12 import numpy as np
13 import DABISpectral1D as DB
14 from Diff import DP
15 import scipy.sparse as sp

142 Code used in the lid driven cavity problem

16

17

18 def dTime(inputVec,t,beta2,Re,Nx,Ny,DX,DY,V1,VInv,DXP,DYP,index):
19 #Split the input
20 u = inputVec[:(Nx+1)*(Ny+1)]
21 v = inputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2]
22 p = inputVec[(Nx+1)*(Ny+1)*2:]
23

24 #Generate inner differentials
25 pxd = DXP.dot(p)
26 pyd = DYP.dot(p)
27

28 #Transform inner differentials
29 pxd = V1.dot(VInv.dot(pxd))
30 pyd = V1.dot(VInv.dot(pyd))
31

32 #Calculate outer differentials
33 ux = DX.dot(u)
34 uy = DY.dot(u)
35 vx = DX.dot(v)
36 vy = DY.dot(v)
37

38 #Calculate outer double differentials
39 uxx = DX.dot(ux)
40 vyy = DY.dot(vy)
41 uyy = DY.dot(uy)
42 vxx = DX.dot(vx)
43

44 #Calculate the change en pressure
45 dpdt = -beta2*(ux+vy)
46 dpdt = dpdt[index[1:-1,1:-1]].flatten("F")
47

48 #Calculate the change in velocities
49 dudt = -(u*ux+v*uy)-pxd+Re**(-1)*(uxx+uyy)
50 dvdt = -(u*vx+v*vy)-pyd+Re**(-1)*(vxx+vyy)
51

52

53 outputVec = np.zeros((Nx+1)*(Ny+1)*2+(Nx-1)*(Ny-1))
54

55 #Impose boundary conditions
56 dudt[index[0,:]] = 0
57 dudt[index[-1,:]] = 0
58 dudt[index[:,0]] = 0
59 dudt[index[:,-1]] = 0

F.1 Approximating solution 143

60

61 dvdt[index[0,:]] = 0
62 dvdt[index[-1,:]] = 0
63 dvdt[index[:,0]] = 0
64 dvdt[index[:,-1]] = 0
65

66 #Collocting output
67 outputVec[:(Nx+1)*(Ny+1)] = dudt
68 outputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2] = dvdt
69 outputVec[(Nx+1)*(Ny+1)*2:] = dpdt
70

71

72 return outputVec
73

74 #Creating mesh
75 LegPol = DB.Poly1D(DB.JACOBI,(0.0,0.0))
76 Nx = 35
77 Ny = Nx
78 x,wx = LegPol.GaussLobattoQuadrature(Nx)
79 y,wy = LegPol.GaussLobattoQuadrature(Ny)
80 X,Y = np.meshgrid(x,y)
81

82 #Creating mesh of real values
83 xreal = (x+1)/2
84 yreal = (y+1)/2
85 XREAL,YREAL = np.meshgrid(xreal,yreal)
86

87 #Creater inner meshes
88 xp = x[1:-1]
89 yp = y[1:-1]
90 xpreal = xreal[1:-1]
91 ypreal = yreal[1:-1]
92

93 XPREAL,YPREAL = np.meshgrid(xpreal,ypreal)
94

95 #Create index functions
96 index = np.arange((Nx+1)*(Ny+1)).reshape(Ny+1,Nx+1,\
97 order=’F’).copy()
98 indexP = np.arange((Nx-1)*(Ny-1)).reshape(Ny-1,Nx-1,\
99 order=’F’).copy()

100

101 #Initial conditions
102 u = np.zeros(X.shape)
103 v = np.zeros(X.shape)

144 Code used in the lid driven cavity problem

104 p = np.ones(XPREAL.shape)
105

106

107 #Flatten the matrices
108 u = u.flatten("F")
109 v = v.flatten("F")
110 p = p.flatten("F")
111

112 #Initial condition
113 u[index[-1,:]] = 1
114

115 #Generate and scale differential operators
116 [Dx,_,_] = DP(Nx+1)
117 [Dy,_,_] = DP(Ny+1)
118 Dx = 2*Dx
119 Dy = 2*Dy
120

121 DY = np.kron(np.identity(Nx+1),Dy)
122 DX = np.kron(Dx,np.identity(Ny+1))
123

124 #Sparsifying matrices
125 DY = sp.csr_matrix(DY)
126 DX = sp.csr_matrix(DX)
127

128 #Scale inner grid
129 cx = xp[-1]
130 cy = yp[-1]
131

132 xp = xp/cx
133 yp = yp/cy
134

135 XP,YP = np.meshgrid(xp,yp)
136

137 #Calculate Vandermondes for transformation and
138 #differentiation
139 Vxp = LegPol.GradVandermonde1D(xp,Nx-2,0)
140 Vyp = LegPol.GradVandermonde1D(yp,Ny-2,0)
141

142 V = np.kron(Vxp,Vyp)
143

144 VxpD = LegPol.GradVandermonde1D(xp,Nx-2,1)
145 VypD = LegPol.GradVandermonde1D(yp,Ny-2,1)
146

147 #Calculate and scale inner differential matrices

F.1 Approximating solution 145

148 Dxp = np.linalg.solve(Vxp.T,VxpD.T).T
149 Dyp = np.linalg.solve(Vyp.T,VypD.T).T
150 Dxp = 1/cx*2*Dxp
151 Dyp = 1/cy*2*Dyp
152

153 DXP = np.kron(Dxp,np.identity(Ny-1))
154 DYP = np.kron(np.identity(Nx-1),Dyp)
155

156 #Sparsify
157 DXP = sp.csr_matrix(DXP)
158 DYP = sp.csr_matrix(DYP)
159

160

161 #Creating final transformation matrices
162 Vx1 = LegPol.GradVandermonde1D(x*1/cx,Nx-2,0)
163 Vy1 = LegPol.GradVandermonde1D(y*1/cy,Ny-2,0)
164 V1 = np.kron(Vx1,Vy1)
165 V1 = sp.csr_matrix(V1)
166

167 VInv= np.linalg.inv(V)
168 VInv = sp.csr_matrix(VInv)
169

170

171 """
172 TEST FOR DIFFERENTIATION
173

174 T1_FULLF = np.cos(XREAL)*np.sin(YREAL)
175 T1_FULLSOL = -np.sin(XREAL)*np.cos(YREAL)
176

177 T1_INNERF = np.cos(XPREAL)*np.sin(YPREAL)
178 T1_INNERSOL = -np.sin(XPREAL)*np.cos(YPREAL)
179

180 T1_FULLAPPROX = DX.dot(DY.dot(T1_FULLF.flatten("F")))
181 T1_INNERAPPROX = DXP.dot(DYP.dot(T1_INNERF.flatten("F")))
182

183 T1_FULLERROR = np.abs(T1_FULLSOL - \
184 T1_FULLAPPROX[index[:,:]])
185 T1_INNERERROR = np.abs(T1_INNERSOL - \
186 T1_INNERAPPROX[indexP[:,:]])
187

188 plt.figure()
189 plt.title("Differentiation test, error for full grid")
190 plt.imshow(T1_FULLERROR,origin="lower",extent=[0,1,0,1])
191 plt.colorbar()

146 Code used in the lid driven cavity problem

192 plt.xlabel(’x’)
193 plt.ylabel(’y’)
194 plt.axis(’normal’)
195 plt.savefig("../../Latex/Billeder/LidDrivenCavity/\
196 DiffTestFullError.eps")
197

198 plt.figure()
199 plt.title("Differentiation test, error for inner grid")
200 plt.imshow(T1_INNERERROR,origin="lower",extent=[0,1,0,1])
201 plt.colorbar()
202 plt.xlabel(’x’)
203 plt.ylabel(’y’)
204 plt.axis(’normal’)
205 plt.savefig("../../Latex/Billeder/LidDrivenCavity/\
206 DiffTestInnerError.eps")
207

208 END OF TEST FOR DIFFERENTIATION
209 """
210

211 """
212 TEST FOR INTERPOLATION
213

214 T2_INNER = np.exp(XPREAL*YPREAL)
215 T2_OUTERTRUE = np.exp(XREAL*YREAL)
216 T2_OUTERAPPROX = V1.dot(VInv.dot(T2_INNER.flatten("F")))
217

218 plt.figure()
219 plt.title("Interpolation test, error")
220 plt.imshow(T2_OUTERAPPROX[index[:,:]]-T2_OUTERTRUE,\
221 origin="lower",extent=[0,1,0,1])
222 plt.colorbar()
223 plt.xlabel(’x’)
224 plt.ylabel(’y’)
225 plt.axis(’normal’)
226 plt.savefig("../../Latex/Billeder/\
227 LidDrivenCavity/IntTestError.eps")
228

229 END OF TEST FOR INTERPOLATION
230 """
231

232 #Gatherring input
233 inputVec = np.zeros((Nx+1)*(Ny+1)*2+(Nx-1)*(Ny-1))
234 inputVec[:(Nx+1)*(Ny+1)] = u
235 inputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2] = v

F.1 Approximating solution 147

236 inputVec[(Nx+1)*(Ny+1)*2:] = p
237

238

239 """
240 Start Reproducing Ghia et Al results
241 """
242

243 #Iterate over different values of Re
244 nG = 3
245 R = np.array([100,400,1000])
246

247 totalU = np.zeros([u.size,nG])
248 totalV = np.zeros([v.size,nG])
249 totalP = np.zeros([p.size,nG])
250

251 initialVec = inputVec.copy()
252 for iG in range(nG):
253 Re = R[iG]
254 """
255 Start time-derivative calculation
256 """
257 beta2 = 5
258 tend = 200
259 t = 0
260 t0 = 0
261

262 #Calculating time-steps
263 CFL = 0.5
264 deltax = np.min(np.abs(x[1:]-x[:-1]))
265 deltay = np.min(np.abs(y[1:]-y[:-1]))
266 lambdax = (np.abs(np.max(u))+np.sqrt(np.max(u)**2+beta2))/deltax \
267 + 1/(Re*deltax**2)
268 lambday = (np.abs(np.max(v))+np.sqrt(np.max(v)**2+beta2))/deltay \
269 + 1/(Re*deltay**2)
270

271 inputVec = initialVec.copy()
272 tstep = CFL/(lambdax+lambday)
273

274 #Time each iteration for comparison
275 import time
276 T = time.clock()
277 while t<=tend:
278 #Initiate Runge-Kutta
279 sol1 = inputVec + 1/4*tstep*dTime(inputVec,t,beta2,Re,Nx,Ny\

148 Code used in the lid driven cavity problem

280 ,DX,DY,V1,VInv,DXP,DYP,index)
281 sol2 = inputVec + 1/3*tstep*dTime(sol1,t,beta2,Re,Nx,Ny,DX,\
282 DY,V1,VInv,DXP,DYP,index)
283 sol3 = inputVec + 1/2*tstep*dTime(sol2,t,beta2,Re,Nx,Ny,DX,\
284 DY,V1,VInv,DXP,DYP,index)
285

286 #Calculate new vector
287 inputVec = inputVec + tstep*dTime(sol3,t,beta2,Re,Nx,Ny,DX,\
288 DY,V1,VInv,DXP,DYP,index)
289 #Save old result
290 uold = u.copy()
291 vold = v.copy()
292 pold = p.copy()
293

294 u = inputVec[:(Nx+1)*(Ny+1)]
295 v = inputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2]
296 p = inputVec[(Nx+1)*(Ny+1)*2:]
297

298 #Calculate test-values
299 testValu = np.linalg.norm(u-uold,ord=2)\
300 /np.linalg.norm(uold,ord=2)
301 #testValv = np.linalg.norm(v-vold,ord=2)\
302 #/np.linalg.norm(vold,ord=2)
303 #testValp = np.linalg.norm(p-pold,ord=2)\
304 #/np.linalg.norm(pold,ord=2)
305

306 #Break if satisfyingly stable
307 if testValu<1e-6:
308 print t
309 break
310

311 #Recalculate time-steps
312 lambdax = (np.abs(np.max(u))+np.sqrt(np.max(u)**2\
313 +beta2))/deltax + 1/(Re*deltax**2)
314 lambday = (np.abs(np.max(v))+np.sqrt(np.max(v)**2\
315 +beta2))/deltay + 1/(Re*deltay**2)
316 tstep = CFL/(lambdax+lambday)
317

318 #Break if time-step becomes too small
319 if tstep < 1e-15 or np.isnan(tstep):
320 print t
321 print tstep
322 break
323

F.1 Approximating solution 149

324 #Time step forward
325 t = t + tstep
326 t0 = t0 + 1
327

328 #Print elapsed time
329 T2 = time.clock()
330

331 print T2-T
332

333 #Save results
334 totalU[:,iG] = inputVec[:(Nx+1)*(Ny+1)]
335 totalV[:,iG] = inputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2]
336 totalP[:,iG] = inputVec[(Nx+1)*(Ny+1)*2:]
337

338

339 #Save results for another script to plot
340 np.savez("GhiaEtAlApprox",totalU=totalU,totalV=totalV,\
341 totalP=totalP,R=R,Nx=Nx,Ny=Ny,index=index,indexP=indexP,\
342 XREAL=XREAL,YREAL=YREAL,XPREAL=XPREAL,YPREAL=YPREAL)

Example of stochastic collocation

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Jan 28 14:43:36 2013
4

5 @author: cbrams
6

7 This script is using a stochastic collocation method to
8 calculate the mean and spread for uncertainty on Re
9

10 It will be the only of the 8 used scripts present in the appendix
11 since the others are simply duplicates of this with the
12 uniform distribution and the initial condition changed.
13 """
14 from __future__ import division
15 import numpy as np
16 import DABISpectral1D as DB
17 from Diff import DP
18 import scipy.sparse as sp
19

20

150 Code used in the lid driven cavity problem

21 def dTime(inputVec,t,beta2,Re,Nx,Ny,DX,DY,V1,VInv,DXP,DYP,index):
22 #Split the input
23 u = inputVec[:(Nx+1)*(Ny+1)]
24 v = inputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2]
25 p = inputVec[(Nx+1)*(Ny+1)*2:]
26

27 #Generate inner differentials
28 pxd = DXP.dot(p)
29 pyd = DYP.dot(p)
30

31 #Transform inner differentials
32 pxd = V1.dot(VInv.dot(pxd))
33 pyd = V1.dot(VInv.dot(pyd))
34

35 #Calculate outer differentials
36 ux = DX.dot(u)
37 uy = DY.dot(u)
38 vx = DX.dot(v)
39 vy = DY.dot(v)
40

41 #Calculate outer double differentials
42 uxx = DX.dot(ux)
43 vyy = DY.dot(vy)
44 uyy = DY.dot(uy)
45 vxx = DX.dot(vx)
46

47 #Calculate the change en pressure
48 dpdt = -beta2*(ux+vy)
49 dpdt = dpdt[index[1:-1,1:-1]].flatten("F")
50

51 #Calculate the change in velocities
52 dudt = -(u*ux+v*uy)-pxd+Re**(-1)*(uxx+uyy)
53 dvdt = -(u*vx+v*vy)-pyd+Re**(-1)*(vxx+vyy)
54

55

56 outputVec = np.zeros((Nx+1)*(Ny+1)*2+(Nx-1)*(Ny-1))
57

58 #Impose boundary conditions
59 dudt[index[0,:]] = 0
60 dudt[index[-1,:]] = 0
61 dudt[index[:,0]] = 0
62 dudt[index[:,-1]] = 0
63

64 dvdt[index[0,:]] = 0

F.1 Approximating solution 151

65 dvdt[index[-1,:]] = 0
66 dvdt[index[:,0]] = 0
67 dvdt[index[:,-1]] = 0
68

69 #Collocting output
70 outputVec[:(Nx+1)*(Ny+1)] = dudt
71 outputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2] = dvdt
72 outputVec[(Nx+1)*(Ny+1)*2:] = dpdt
73

74

75 return outputVec
76

77 #Creating mesh
78 LegPol = DB.Poly1D(DB.JACOBI,(0.0,0.0))
79 Nx = 35
80 Ny = Nx
81 x,wx = LegPol.GaussLobattoQuadrature(Nx)
82 y,wy = LegPol.GaussLobattoQuadrature(Ny)
83 X,Y = np.meshgrid(x,y)
84

85 #Creating mesh of real values
86 xreal = (x+1)/2
87 yreal = (y+1)/2
88 XREAL,YREAL = np.meshgrid(xreal,yreal)
89

90 #Creater inner meshes
91 xp = x[1:-1]
92 yp = y[1:-1]
93 xpreal = xreal[1:-1]
94 ypreal = yreal[1:-1]
95

96 XPREAL,YPREAL = np.meshgrid(xpreal,ypreal)
97

98 #Create index functions
99 index = np.arange((Nx+1)*(Ny+1)).reshape(Ny+1,Nx+1,\

100 order=’F’).copy()
101 indexP = np.arange((Nx-1)*(Ny-1)).reshape(Ny-1,Nx-1,\
102 order=’F’).copy()
103

104 #Initial conditions
105 u = np.zeros(X.shape)
106 v = np.zeros(X.shape)
107 p = np.ones(XPREAL.shape)
108

152 Code used in the lid driven cavity problem

109

110 #Flatten the matrices
111 u = u.flatten("F")
112 v = v.flatten("F")
113 p = p.flatten("F")
114

115 #Initial condition
116 u[index[-1,:]] = 1
117

118 #Generate and scale differential operators
119 [Dx,_,_] = DP(Nx+1)
120 [Dy,_,_] = DP(Ny+1)
121 Dx = 2*Dx
122 Dy = 2*Dy
123

124 DY = np.kron(np.identity(Nx+1),Dy)
125 DX = np.kron(Dx,np.identity(Ny+1))
126

127 #Sparsifying matrices
128 DY = sp.csr_matrix(DY)
129 DX = sp.csr_matrix(DX)
130

131 #Scale inner grid
132 cx = xp[-1]
133 cy = yp[-1]
134

135 xp = xp/cx
136 yp = yp/cy
137

138 XP,YP = np.meshgrid(xp,yp)
139

140 #Calculate Vandermondes for transformation and
141 #differentiation
142 Vxp = LegPol.GradVandermonde1D(xp,Nx-2,0)
143 Vyp = LegPol.GradVandermonde1D(yp,Ny-2,0)
144

145 V = np.kron(Vxp,Vyp)
146

147 VxpD = LegPol.GradVandermonde1D(xp,Nx-2,1)
148 VypD = LegPol.GradVandermonde1D(yp,Ny-2,1)
149

150 #Calculate and scale inner differential matrices
151 Dxp = np.linalg.solve(Vxp.T,VxpD.T).T
152 Dyp = np.linalg.solve(Vyp.T,VypD.T).T

F.1 Approximating solution 153

153 Dxp = 1/cx*2*Dxp
154 Dyp = 1/cy*2*Dyp
155

156 DXP = np.kron(Dxp,np.identity(Ny-1))
157 DYP = np.kron(np.identity(Nx-1),Dyp)
158

159 #Sparsify
160 DXP = sp.csr_matrix(DXP)
161 DYP = sp.csr_matrix(DYP)
162

163

164 #Creating final transformation matrices
165 Vx1 = LegPol.GradVandermonde1D(x*1/cx,Nx-2,0)
166 Vy1 = LegPol.GradVandermonde1D(y*1/cy,Ny-2,0)
167 V1 = np.kron(Vx1,Vy1)
168 V1 = sp.csr_matrix(V1)
169

170 VInv= np.linalg.inv(V)
171 VInv = sp.csr_matrix(VInv)
172

173

174

175 #Loading values from Ghia et al approximation
176 CalcValues = np.load("GhiaEtAlApprox.npz")
177 u = CalcValues[’totalU’][:,0]
178 v = CalcValues[’totalV’][:,0]
179 p = CalcValues[’totalP’][:,0]
180

181 #Gatherring input
182 inputVec = np.zeros((Nx+1)*(Ny+1)*2+(Nx-1)*(Ny-1))
183 inputVec[:(Nx+1)*(Ny+1)] = u
184 inputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2] = v
185 inputVec[(Nx+1)*(Ny+1)*2:] = p
186

187

188 """
189 Start Uncertainty Quantification
190 """
191

192 #Defining the rangeof uncertainty
193 JPol = DB.Poly1D(DB.JACOBI,(0.0,0.0))
194 start = 95
195 end = 105
196

154 Code used in the lid driven cavity problem

197 #Number of iterations
198 nUQ = 10
199

200 #Calculate grid and weights
201 R,Rw = JPol.GaussLobattoQuadrature(nUQ-1)
202 Rw = Rw/2
203

204 #Tile weights for later use
205 oW = np.tile(Rw,[u.size,1])
206 iW = np.tile(Rw,[p.size,1])
207

208 #Generate space for each iteration
209 totalU = np.zeros([u.size,nUQ])
210 totalV = np.zeros([v.size,nUQ])
211 totalP = np.zeros([p.size,nUQ])
212

213 #Iterate over deterministic solver
214 for iUQ in range(nUQ):
215 Re = (R[iUQ]+1)/2*(end-start)+start
216 """
217 Start time-derivative calculation
218 """
219 beta2 = 5
220 tend = 100
221 t = 0
222 t0 = 0
223

224 #Calculate time-steps
225 CFL = 0.5
226 deltax = np.min(np.abs(x[1:]-x[:-1]))
227 deltay = np.min(np.abs(y[1:]-y[:-1]))
228 lambdax = (np.abs(np.max(u))+np.sqrt(np.max(u)\
229 **2+beta2))/deltax + 1/(Re*deltax**2)
230

231 lambday = (np.abs(np.max(v))+np.sqrt(np.max(v)\
232 **2+beta2))/deltay + 1/(Re*deltay**2)
233

234 tstep = CFL/(lambdax+lambday)
235 #Start clock
236 import time
237 T = time.clock()
238 while t<=tend:
239

240 #Runge-Kutta iteration

F.1 Approximating solution 155

241 sol1 = inputVec + 1/4*tstep*dTime(inputVec,t,beta2,Re\
242 ,Nx,Ny,DX,DY,V1,VInv,DXP,DYP,index)
243

244 sol2 = inputVec + 1/3*tstep*dTime(sol1,t,beta2,Re,Nx,\
245 Ny,DX,DY,V1,VInv,DXP,DYP,index)
246

247 sol3 = inputVec + 1/2*tstep*dTime(sol2,t,beta2,Re,Nx,Ny,\
248 DX,DY,V1,VInv,DXP,DYP,index)
249

250 inputVec = inputVec + tstep*dTime(sol3,t,beta2,Re,Nx,Ny,\
251 DX,DY,V1,VInv,DXP,DYP,index)
252

253

254 u_old = u.copy()
255

256 u = inputVec[:(Nx+1)*(Ny+1)]
257 v = inputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2]
258 p = inputVec[(Nx+1)*(Ny+1)*2:]
259

260

261 #Test for satisfaction
262 testVal = np.linalg.norm(u-u_old,ord=2)/\
263 np.linalg.norm(u_old,ord=2)
264

265 if testVal<1e-6:
266 print t
267 break
268

269

270 #Recalculate time-steps
271 lambdax = (np.abs(np.max(u))+np.sqrt(np.max(u)**2+beta2))\
272 /deltax + 1/(Re*deltax**2)
273

274 lambday = (np.abs(np.max(v))+np.sqrt(np.max(v)**2+beta2))\
275 /deltay + 1/(Re*deltay**2)
276

277 tstep = CFL/(lambdax+lambday)
278 if tstep < 1e-16 or np.isnan(tstep):
279 print t
280 print tstep
281 break
282

283 t = t + tstep
284 t0 = t0 + 1

156 Code used in the lid driven cavity problem

285

286 T2 = time.clock()
287

288 print T2-T
289

290

291 #Save the output for each iteration
292 totalU[:,iUQ] = inputVec[:(Nx+1)*(Ny+1)]
293 totalV[:,iUQ] = inputVec[(Nx+1)*(Ny+1):(Nx+1)*(Ny+1)*2]
294 totalP[:,iUQ] = inputVec[(Nx+1)*(Ny+1)*2:]
295

296

297 #Calculate mean
298 meanU = np.sum(totalU*oW,axis=1)
299 meanV = np.sum(totalV*oW,axis=1)
300 meanP = np.sum(totalP*iW,axis=1)
301

302 #Tile mean for calculation of variance
303 meanUT = np.tile(meanU,[nUQ,1]).T
304 meanVT = np.tile(meanV,[nUQ,1]).T
305 meanPT = np.tile(meanP,[nUQ,1]).T
306

307 #Calculate variance
308 varU = np.sum(((totalU-meanUT))**2*oW,axis=1)
309 varV = np.sum(((totalV-meanVT))**2*oW,axis=1)
310 varP = np.sum(((totalP-meanPT))**2*iW,axis=1)
311

312 stdU = np.sqrt(varU)
313 stdV = np.sqrt(varV)
314 stdP = np.sqrt(varP)
315

316 #Save data for display
317 np.savez("UQRe100",start = start,end = end,meanU = meanU,meanV = meanV,meanP = meanP, varU = varU,varV = varV,varP = varP,oW=oW,iW=iW,totalU=totalU,totalV=totalV,totalP=totalP,R=R,Nx=Nx,Ny=Ny,index=index,indexP=indexP,XREAL=XREAL,YREAL=YREAL,XPREAL=XPREAL,YPREAL=YPREAL)

F.2 Visualizing

Visualizig Ghia et al

1 # -*- coding: utf-8 -*-
2 """

F.2 Visualizing 157

3 Created on Sat Jan 26 11:57:08 2013
4

5 @author: cbrams
6

7 This script is intended to simply plot the values calculated when
8 approximating the results of Ghia Et al.
9 """

10

11 import numpy as np
12 import matplotlib.pyplot as plt
13 import DABISpectral1D as DB
14 import scipy.sparse as sp
15

16 """
17 GHIA ET AL VALUES
18 """
19

20 TESTY = np.array([0.0000, 0.0547, 0.0625, 0.0703,\
21 0.1016, 0.1719, 0.2813,\
22 0.4531, 0.500,0.6172, 0.7344, 0.8516, 0.9531, 0.9609,\
23 0.9688, 0.9766, 1.0000])
24

25 TESTU100 = np.array([0.0000, -0.03717, -0.04192,\
26 -0.04775, -0.06434, -0.10150,\
27 -0.15662, -0.21090,-0.20581, -0.13641, 0.00332, \
28 0.23151, 0.68717, 0.73722,\
29 0.78871, 0.84123, 1.00000])
30

31 TESTU400 = np.array([0,-0.08186,-0.09266,-0.10338,\
32 -0.14612,-0.24299,-0.32726,\
33 -0.17119,-0.11477,0.02135,0.16256,0.29093,0.55892,\
34 0.61756,0.68439,0.75837,1])
35

36 TESTU1000 = np.array([0,-0.18109,-0.20196,-0.22220,\
37 -0.29730,-0.38289,-0.27805,\
38 -0.10648,-0.06080,0.05702,0.18719,0.33304,0.46604,\
39 0.51117,0.57492,0.65928,1])
40

41

42 """
43 END GHIA ET AL VALUES
44 """
45

46 #Load previously calculated values

158 Code used in the lid driven cavity problem

47 CalcValues = np.load("GhiaEtAlApprox.npz")
48

49 u100 = CalcValues[’totalU’][:,0]
50 u400 = CalcValues[’totalU’][:,1]
51 u1000 = CalcValues[’totalU’][:,2]
52 index = CalcValues[’index’]
53 YREAL = CalcValues[’YREAL’]
54 Nx = CalcValues[’Nx’]
55

56 """
57 START COMPARING VELOCITY PROFILES
58 """
59

60

61 plt.figure()
62 plt.plot(u100[index[:,int(Nx/2)]],YREAL[:,int(Nx/2)],label="Approx")
63 plt.plot(TESTU100,TESTY,’ro’,label="Ghia et al")
64 plt.legend()
65 plt.xlabel("u")
66 plt.ylabel("y")
67 plt.title("Velocity profile of u along middle axis for Re=100")
68 plt.savefig("../../Latex/Billeder/LidDrivenCavity/Ghia100.eps")
69

70

71 plt.figure()
72 plt.plot(u400[index[:,int(Nx/2)]],YREAL[:,int(Nx/2)],label="Approx")
73 plt.plot(TESTU400,TESTY,’ro’,label="Ghia et al")
74 plt.legend()
75 plt.xlabel("u")
76 plt.ylabel("y")
77 plt.title("Velocity profile of u along middle axis for Re=400")
78 plt.savefig("../../Latex/Billeder/LidDrivenCavity/Ghia400.eps")
79

80 plt.figure()
81 plt.plot(u1000[index[:,int(Nx/2)]],YREAL[:,int(Nx/2)],label="Approx")
82 plt.plot(TESTU1000,TESTY,’ro’,label="Ghia et al")
83 plt.legend()
84 plt.xlabel("u")
85 plt.ylabel("y")
86 plt.title("Velocity profile of u along middle axis for Re=1000")
87 plt.savefig("../../Latex/Billeder/LidDrivenCavity/Ghia1000.eps")
88

89

90 """

F.2 Visualizing 159

91 END COMPARING VELOCITY PROFILES
92 """
93

94

95 """
96 Plot streamplots
97 """
98 v100 = CalcValues[’totalV’][:,0]
99 v400 = CalcValues[’totalV’][:,1]

100 v1000 = CalcValues[’totalV’][:,2]
101

102

103 #Calculate transformation matrices
104 EQUI = np.linspace(-1,1,Nx+1)
105 EQUIREAL = np.linspace(0,1,Nx+1)
106 LegPol = DB.Poly1D(DB.JACOBI,(0.0,0.0))
107 Ny = CalcValues[’Ny’]
108 x,wx = LegPol.GaussLobattoQuadrature(Nx)
109 y,wy = LegPol.GaussLobattoQuadrature(Ny)
110 SVx = LegPol.GradVandermonde1D(x,Nx,0)
111 SVy = LegPol.GradVandermonde1D(y,Ny,0)
112

113 SV = np.kron(SVx,SVy)
114 SVInv = np.linalg.inv(SV)
115 SVInv = sp.csr_matrix(SVInv)
116

117 SV2x = LegPol.GradVandermonde1D(EQUI,Nx,0)
118 SV2y = LegPol.GradVandermonde1D(EQUI,Ny,0)
119 SV2 = np.kron(SV2x,SV2y)
120 SV2 = sp.csr_matrix(SV2)
121

122

123 #Transform the data
124 SU100 = SV2.dot(SVInv.dot(u100))
125 SV100 = SV2.dot(SVInv.dot(v100))
126

127 SU400 = SV2.dot(SVInv.dot(u400))
128 SV400 = SV2.dot(SVInv.dot(v400))
129

130 SU1000 = SV2.dot(SVInv.dot(u1000))
131 SV1000 = SV2.dot(SVInv.dot(v1000))
132

133

134 #Plot the streamplots

160 Code used in the lid driven cavity problem

135 plt.figure()
136 plt.streamplot(EQUIREAL,EQUIREAL,SU100[index[:,:]],SV100[index[:,:]])
137 plt.title("Stream plot for Re=100")
138 plt.xlabel("x")
139 plt.ylabel("y")
140 plt.savefig("../../Latex/Billeder/LidDrivenCavity/GhiaStream100.eps")
141

142 plt.figure()
143 plt.streamplot(EQUIREAL,EQUIREAL,SU400[index[:,:]],SV400[index[:,:]])
144 plt.title("Stream plot for Re=400")
145 plt.xlabel("x")
146 plt.ylabel("y")
147 plt.savefig("../../Latex/Billeder/LidDrivenCavity/GhiaStream400.eps")
148

149 plt.figure()
150 plt.streamplot(EQUIREAL,EQUIREAL,SU1000[index[:,:]],SV1000[index[:,:]])
151 plt.title("Stream plot for Re=1000")
152 plt.xlabel("x")
153 plt.ylabel("y")
154 plt.savefig("../../Latex/Billeder/LidDrivenCavity/GhiaStream1000.eps")
155

156

157 plt.show()

Example of visualizing uncertainty from stochastic colloca-
tion

Appendix G
Code used in the 2D wave

tank problem

G.1 Time-integration functions

The RHS function

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 30 12:52:54 2013
4

5 @author: cbrams
6

7 This script is merely here to make it easier to comprehend what the
8 time-stepping function does
9 """

10

11 #Initialization
12 from __future__ import division
13 import numpy as np
14 from laplacefinitediffFunSparse import laplace_finite_diffFun
15

162 Code used in the 2D wave tank problem

16 #Function
17 def dTime_finite(tmp,t,WLAST,tstep,CalcPressure,Nx,Ny,Dx,Dsigma,\
18 DX,DSIGMA):
19

20 #Calculate N
21 N = int(tmp.shape[0]/2)
22

23 #Split array
24 phi = tmp[:N]
25 eta = tmp[N:]
26

27 #Calculate dfuns
28 dphi,deta,W2Z,p,Force= laplace_finite_diffFun(phi,eta,WLAST,\
29 tstep,CalcPressure,Nx,Ny,Dx,Dsigma,DX,DSIGMA)
30

31 #Join array
32 res = np.zeros(N*2)
33 res[:N] = dphi
34 res[N:] = deta
35 return res,W2Z,p,Force

The Laplacian solver

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Jan 29 17:54:35 2013
4

5 @author: cbrams
6

7 This is a script for computing the Laplacian for the Wave model
8 and the associated values (Force, time-derivatives)
9 """

10 #Initialization
11 from __future__ import division
12 import numpy as np
13 import DABISpectral1D
14 import DABISpectral1D as DB
15 import scipy.sparse as sp
16 import scipy.sparse.linalg as spl
17

18 def laplace_finite_diffFun(phi,zeta,WLAST,tstep,CalcPressure,\
19 Nx,Ny,Dx,Dsigma,DX,DSIGMA):

G.1 Time-integration functions 163

20 h = 2
21 g = 9.82 #Gravitational acceleration
22

23 #Storing phi as u0
24 u0 = phi
25

26 #Initializing quadratures
27 polyLeg = DABISpectral1D.Poly1D(DABISpectral1D.JACOBI, (0.0,0.0))
28 (y,w) = polyLeg.GaussLobattoQuadrature(Ny-1)
29 (x,wx) = polyLeg.GaussLobattoQuadrature(Nx-1)
30 X , SIGMA = np.meshgrid((x+1)/2,(y+1)/2)
31

32 sigma = (y+1)/2
33 #Calculating and diagonalising constants
34 dZeta = np.dot(Dx,zeta)
35 ddZeta = np.dot(Dx,dZeta)
36 d = zeta + h
37

38 Dsigmadx = np.zeros((Ny,Nx))
39 DDsigmadxx = np.zeros((Ny,Nx))
40 DsigmadZ = np.zeros((Ny,Nx))
41 for i in range(Nx):
42 d = zeta[i]+h
43 for j in range(Ny):
44 Dsigmadx[j,i] = -SIGMA[j,i] * dZeta[i]/d
45

46 DDsigmadxx[j,i] = -SIGMA[j,i]/d *(ddZeta[i]-\
47 (dZeta[i])**2/d)-Dsigmadx[j,i]/d*dZeta[i]
48

49 DsigmadZ[j,i] = 1/d
50 DSIGMADX = np.diag(Dsigmadx.flatten(1))
51 DDSIGMADXX = np.diag(DDsigmadxx.flatten(1))
52 DSIGMADZ = np.diag(DsigmadZ.flatten(1))
53

54 DSIGMADX = sp.csr_matrix(DSIGMADX)
55 DDSIGMADXX = sp.csr_matrix(DDSIGMADXX)
56 DSIGMADZ = sp.csr_matrix(DSIGMADZ)
57

58 #Calculating L
59 DTEMP = DSIGMADX**2 + DSIGMADZ**2
60 Lopperator = np.dot(DX,DX) + np.dot(DDSIGMADXX,DSIGMA) \
61 + 2*np.dot(DSIGMADX,np.dot(DX,DSIGMA)) + np.dot(DTEMP,np.dot(DSIGMA,DSIGMA))
62

63 #Constructing f

164 Code used in the 2D wave tank problem

64 f = np.zeros(Nx*Ny)
65

66 #Imposing boundary conditions
67 index = np.arange(Nx*Ny).reshape(Ny,Nx,order=’F’).copy()
68 LBCsigma = np.dot(DSIGMADZ,DSIGMA)
69 Lopperator = Lopperator.todense()
70 LBCsigma = LBCsigma.todense()
71

72 DX = DX.todense()
73 for i in range(Ny):
74 Lopperator[index[i,0],:] = -DX[index[i,0],:]
75 Lopperator[index[i,-1],:] = -DX[index[i,-1],:]
76 for i in range(Nx):
77 Lopperator[index[0,i],:] = - LBCsigma[index[0,i] , :]
78 Lopperator[index[-1,i],:] = 0
79 Lopperator[index[-1,i],index[-1,i]] = 1
80 f[index[-1,:]] = u0
81 Lopperator = sp.csr_matrix(Lopperator)
82

83 #Solve for u
84 u = spl.spsolve(Lopperator,f)
85

86 #Calculating d
87 d = np.zeros(Nx)
88 for i in range(Nx):
89 d[i] = zeta[i]+h
90

91

92 #Generating W
93 W=DSIGMA.dot(u)[index[-1,:]]
94 W = 1/d*W
95

96 #Calculating deta and dphi
97 on = np.ones(Nx)
98 deta = -dZeta*np.dot(Dx,phi) + W *(on+(dZeta)**2)
99 dphi = -g*zeta - (np.dot(Dx,phi)**2)/2 + (W**2)/2 + (W**2 * (dZeta**2))/2

100

101 #Calculating pressure and Force
102 if CalcPressure:
103 U = DX.dot(u)
104 U = np.array(U).flatten("F")
105

106 W2 = DSIGMADZ.dot(DSIGMA.dot(u))
107

G.1 Time-integration functions 165

108 U = U[index[:,-1]]
109 W2 = W2[index[:,-1]]
110 dens = .9982071
111 #Initializing pressure calculations
112 LegPol = DB.Poly1D(DB.JACOBI,(0.0,0.0))
113 Z = np.zeros([Ny])
114 WZ = np.zeros([Ny])
115 p = np.zeros([Ny])
116 d = h+zeta[-1]
117 ZREAL = sigma*(h+zeta[-1])-h
118 p = g*(zeta[-1]-ZREAL)
119 p = p + 1/2*(U[-1]**2-U**2+W2[-1]**2-W2**2)
120 for i in range(Ny):
121 Z,WZ = LegPol.GaussLobattoQuadrature(Ny-1)
122

123 #Transoforming for each iteration
124 V = LegPol.GradVandermonde1D(Z[Ny-1-i:],i,0)
125 V2 = LegPol.GradVandermonde1D(Z,i,0)
126 VInv = np.linalg.inv(V)
127 TRANS = np.dot(V2,VInv)
128 W2Z = np.dot(TRANS,W2[Ny-1-i:])
129 WLASTZ = np.dot(TRANS,WLAST[Ny-1-i:])
130 WDT = (W2Z-WLASTZ)/tstep
131 integral = 0
132 for j in range(Ny):
133 integral = integral + WZ[Ny-1-j]/2*WDT[Ny-1-j]
134

135 #Scaled integral
136 p[Ny-1-i] = p[Ny-1-i] + (zeta[-1]-ZREAL[Ny-1-i])/2*integral
137

138 p = p*dens
139 Force = 0
140 #Scaled integral
141 for j in range(Ny):
142 Force = Force + p[j]*WZ[j]
143 Force = Force*2/(d)
144

145 else:
146 W2 = np.zeros([Ny])
147 p = np.zeros([Ny])
148 Force = 0
149

150 return dphi,deta,W2,p,Force
151

166 Code used in the 2D wave tank problem

G.2 Problem implementations

The standing wave

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jan 31 09:58:43 2013
4

5 @author: cbrams
6

7 Script intended to create a standing wave. Will also serve as
8 script for zero-movement wave by uncommenting the #Nu = Nu*0 after
9 initial condition calculation

10 """
11

12 from __future__ import division
13 #import scipy.io as io
14 import numpy as np
15 import DABISpectral1D
16 import matplotlib.pyplot as plt
17 from dTimefinite import dTime_finite
18 import matplotlib.animation as animation
19 import scipy.sparse as sp
20 plt.close(’all’)
21

22 L = 2
23 Nx = 45
24 Ny = 20
25

26 polyLeg = DABISpectral1D.Poly1D(DABISpectral1D.JACOBI, (0.0,0.0))
27 #Generate x
28 x,xw = polyLeg.GaussLobattoQuadrature(Nx-1)
29 xreal = (x+1)/2*L
30

31

32 #Generate standing wave
33 a = np.array([0.8867*10**(-1),0.5243*10**(-2),0.4978*10**(-3),0.6542*10**(-4),\
34 0.1007*10**(-4),0.1653*10**(-5),0.2753*10**(-6),0.4522*10**(-7)])
35 Nu = 0;
36 for i in range(8):
37 Nu = Nu + (i+1)**(1/4)*a[i]*np.cos((i+1)*np.pi*x)
38 Nu = Nu*1/2

G.2 Problem implementations 167

39

40 #Nu = Nu*0
41

42

43

44 """
45 CALCULATING DIFFERENTIAL OPERATORS
46 """
47 L = 2.
48 cx = (L)/(2.)
49

50 h = 2
51 csigma = h/2
52 polyLeg = DABISpectral1D.Poly1D(DABISpectral1D.JACOBI, (0.0,0.0))
53 (y,w) = polyLeg.GaussLobattoQuadrature(Ny-1)
54 V = polyLeg.GradVandermonde1D(y,Ny-1,0,norm=True)
55

56

57 Vx =polyLeg.GradVandermonde1D(y,Ny-1,1,norm=True)
58

59 (x,wx) = polyLeg.GaussLobattoQuadrature(Nx-1)
60 xV = polyLeg.GradVandermonde1D(x,Nx-1,0,norm=True)
61 xVx =polyLeg.GradVandermonde1D(x,Nx-1,1,norm=True)
62

63 #Generating Ds
64 Dsigma = np.linalg.solve(V.T,Vx.T).T/csigma
65 Dx = np.linalg.solve(xV.T,xVx.T).T/cx
66 X , SIGMA = np.meshgrid((x+1)/2,(y+1)/2)
67

68 #Calculating kronecker Ds
69 DX = np.kron(Dx,np.identity(Ny))
70 DSIGMA = np.kron(np.identity(Nx),Dsigma)
71

72 DX = sp.csr_matrix(DX)
73 DSIGMA = sp.csr_matrix(DSIGMA)
74

75

76 #Prepare time-integrator
77 tmp = np.zeros(Nx*2)
78

79 nT = 20
80 t = np.linspace(0,1,nT)
81 tmp[:Nx] = np.zeros(Nu.shape)
82 tmp[Nx:] = Nu

168 Code used in the 2D wave tank problem

83 t = 0
84 tEnd = 1.13409
85 tstep = 0.01
86 tN = int(tEnd/tstep)
87

88 #Initialize room for results
89 yt = np.zeros([tN+1,tmp.size])
90 p = np.zeros([tN+1,Ny])
91 ForceArr = np.zeros([tN+1])
92 yt[0,:] = tmp
93 t0 = 0
94 WLAST = np.zeros(Ny)
95 for t0 in range(tN+1):
96 #Runge kutta where only the last step computes force and pressure
97 set1,_,_,_ = dTime_finite(tmp,t,WLAST,tstep,False,Nx,Ny\
98 ,Dx,Dsigma,DX,DSIGMA)
99 sol1 = tmp + 1/4*tstep*set1

100 set2,_,_,_ = dTime_finite(sol1,t,WLAST,tstep,False,Nx,Ny\
101 ,Dx,Dsigma,DX,DSIGMA)
102 sol2 = tmp + 1/3*tstep*set2
103 set3,_,_,_ = dTime_finite(sol2,t,WLAST,tstep,False,Nx,Ny\
104 ,Dx,Dsigma,DX,DSIGMA)
105 sol3 = tmp + 1/2*tstep*set3
106 set4,WNEW,press,Force = dTime_finite(sol3,t,WLAST,tstep\
107 ,True,Nx,Ny,Dx,Dsigma,DX,DSIGMA)
108

109 #Storing values
110 sol4 = tmp + tstep*set4
111 yt[t0,:] = sol4
112 p[t0,:] = press
113 ForceArr[t0] = Force
114 WLAST = WNEW
115 tmp = sol4
116 t = t + tstep
117

118 #Create grid
119 (y,w) = polyLeg.GaussLobattoQuadrature(Ny-1)
120 Xs , SIGMA = np.meshgrid(x,(y+1)/2)
121

122 #Find phi1 and eta1
123 phi1 = yt[:,:Nx]
124 eta1 = yt[:,Nx:]
125

126

G.2 Problem implementations 169

127 #Plot eta (animation)
128 fig = plt.figure()
129 ax = fig.add_subplot(111)
130 plt.ylim(-np.max(np.abs(eta1)),np.max(np.abs(eta1)))
131 def animate(i):
132 line.set_ydata(eta1[i,:]) # update the data
133 return line,
134

135 ##Init only required for blitting to give a clean slate.
136 def init():
137 line.set_ydata(np.ma.array(x, mask=True))
138 return line,
139

140 line, = ax.plot(x,eta1[0,:])
141

142 ani = animation.FuncAnimation(fig, animate, np.arange(1, tN+1), init_func=init, interval=25, blit=True)
143 #End animation
144

145 #Plot initial condition
146 plt.figure()
147 plt.plot(x,Nu)
148 plt.title("Initial condition")
149 plt.xlabel("x")
150 plt.ylabel("η")
151 TT = np.linspace(0+tstep,tEnd,tN)
152 plt.savefig("../../Latex/Billeder/WaveModel/TestStandingInitial.eps")
153

154

155 #Plot the period plot
156 plt.figure()
157 plt.plot(x,eta1[0,:],color="blue",label="Initial")
158 for i in range(1,tN-1,int(tN/20)):
159 plt.plot(x,eta1[i,:],color="gray")
160

161 plt.plot(x,eta1[i,:],color="red",label="End")
162 plt.title("Period of the standing wave with 20 steps")
163 plt.xlabel("x")
164 plt.ylabel("η")
165 plt.legend()
166

167 plt.savefig("../../Latex/Billeder/WaveModel/TestStandingPeriod.eps")
168

169 #Plot the Force
170 plt.figure()

170 Code used in the 2D wave tank problem

171 plt.plot(TT,ForceArr[1:])
172 plt.xlabel("t")
173 plt.ylabel("F")
174 plt.title("Force on the right boundary")
175 plt.savefig("../../Latex/Billeder/WaveModel/TestStandingForce.eps")
176

177

178 ##Needed for export of PNGs in order to create .gif
179 #for i in range(1,tN):
180 # plt.figure()
181 # plt.plot(x,eta1[i,:])
182 # plt.ylim(-0.01,0.01)
183 # plt.savefig("fig%03d.png"%i)
184 plt.show()

The Gauss pulse

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jan 31 00:45:13 2013
4

5 @author: cbrams
6

7 Script for calculating uncertainty quantification in our wave problem
8 """
9

10 from __future__ import division
11 import numpy as np
12 import DABISpectral1D
13 import DABISpectral1D as DB
14 import matplotlib.pyplot as plt
15 from dTimefinite import dTime_finite
16 import scipy.sparse as sp
17 plt.close(’all’)
18

19 L = 2
20 Nx = 70
21 Ny = 25
22

23 polyLeg = DABISpectral1D.Poly1D(DABISpectral1D.JACOBI, (0.0,0.0))
24 #Generate x
25 x,xw = polyLeg.GaussLobattoQuadrature(Nx-1)

G.2 Problem implementations 171

26 xreal = (x+1)/2*L
27 Nu = np.exp(-((x-0.01)**2)/(2*(0.08)**2))/100
28 Nu[Nu<1e-06] = 0
29

30

31

32

33 """
34 CALCULATING DIFFERENTIAL OPERATORS
35 """
36 L = 2.
37 cx = (L)/(2.)
38

39 h = 2
40 csigma = h/2
41 polyLeg = DABISpectral1D.Poly1D(DABISpectral1D.JACOBI, (0.0,0.0))
42 (y,w) = polyLeg.GaussLobattoQuadrature(Ny-1)
43 V = polyLeg.GradVandermonde1D(y,Ny-1,0,norm=True)
44

45

46 Vx =polyLeg.GradVandermonde1D(y,Ny-1,1,norm=True)
47

48 (x,wx) = polyLeg.GaussLobattoQuadrature(Nx-1)
49 xV = polyLeg.GradVandermonde1D(x,Nx-1,0,norm=True)
50 xVx =polyLeg.GradVandermonde1D(x,Nx-1,1,norm=True)
51

52 #Generating Ds
53 Dsigma = np.linalg.solve(V.T,Vx.T).T/csigma
54 Dx = np.linalg.solve(xV.T,xVx.T).T/cx
55 X , SIGMA = np.meshgrid((x+1)/2,(y+1)/2)
56

57 #Calculating kronecker Ds
58 DX = np.kron(Dx,np.identity(Ny))
59 DSIGMA = np.kron(np.identity(Nx),Dsigma)
60

61 DX = sp.csr_matrix(DX)
62 DSIGMA = sp.csr_matrix(DSIGMA)
63

64 """
65 Start Uncertainty Quantification
66 """
67 #Initiate limits for stochastic variable
68 JPol = DB.Poly1D(DB.JACOBI,(0.0,0.0))
69 start = 0.9

172 Code used in the 2D wave tank problem

70 end = 1.1
71

72 #Number of iterations
73 nUQ = 10
74

75 #Generate grid and weights
76 R,Rw = JPol.GaussLobattoQuadrature(nUQ-1)
77 Rw = Rw/2
78 nT = 20
79

80 #Setting tEnd
81 tEnd = 2.5
82 tstep = 0.01
83

84 #Making room for all results
85 tN = int(tEnd/tstep)
86 ytTOTAL = np.zeros([tN+1,Nx*2,nUQ])
87 ForceArrTOTAL = np.zeros([tN+1,nUQ])
88 Weights = np.tile(Rw,[tN+1,1])
89 for iUQ in range(nUQ):
90 #Prepare time-integrator
91 tmp = np.zeros(Nx*2)
92

93 #Modify initial condition
94 t = np.linspace(0,1,nT)
95 tmp[:Nx] = np.zeros(Nu.shape)
96 tmp[Nx:] = Nu*(R[iUQ]+1)/2*(end-start)+start
97 t = 0
98

99

100 #Prepare for time integration
101 yt = np.zeros([tN+1,tmp.size])
102 p = np.zeros([tN+1,Ny])
103 ForceArr = np.zeros([tN+1])
104 yt[0,:] = tmp
105 t0 = 0
106 WLAST = np.zeros(Ny)
107

108 for t0 in range(tN+1):
109 set1,_,_,_ = dTime_finite(tmp,t,WLAST,tstep,False,Nx\
110 ,Ny,Dx,Dsigma,DX,DSIGMA)
111

112 sol1 = tmp + 1/4*tstep*set1
113 set2,_,_,_ = dTime_finite(sol1,t,WLAST,tstep,False,Nx\

G.2 Problem implementations 173

114 ,Ny,Dx,Dsigma,DX,DSIGMA)
115

116 sol2 = tmp + 1/3*tstep*set2
117 set3,_,_,_ = dTime_finite(sol2,t,WLAST,tstep,False,Nx,\
118 Ny,Dx,Dsigma,DX,DSIGMA)
119

120 sol3 = tmp + 1/2*tstep*set3
121 set4,WNEW,press,Force = dTime_finite(sol3,t,WLAST,tstep\
122 ,True,Nx,Ny,Dx,Dsigma,DX,DSIGMA)
123

124 sol4 = tmp + tstep*set4
125

126 #Save data
127 yt[t0,:] = sol4
128 p[t0,:] = press
129 ForceArr[t0] = Force
130 WLAST = WNEW
131 tmp = sol4
132 t = t + tstep
133

134 #Save data for UQ iteration
135 ytTOTAL[:,:,iUQ] = yt
136 ForceArrTOTAL[:,iUQ] = ForceArr
137

138 #Calculate mean
139 ForceMean = np.sum(Weights*ForceArrTOTAL,axis=1)
140

141 ForceMeanTiled = np.tile(ForceMean,[nUQ,1]).T
142

143 #Calculate variance
144 ForceVar = np.sum(((ForceArrTOTAL-ForceMeanTiled))**2*Weights,axis=1)
145

146 ForceStd = np.sqrt(ForceVar)
147

148 #Save data
149 np.savez("ForceU10Nx70",Weights = Weights,ForceMean = ForceMean,ForceMeanTiled = ForceMeanTiled,ForceVar = ForceVar,ForceStd = ForceStd,tEnd = tEnd,tstep = tstep,tN=tN,ytTOTAL=ytTOTAL,ForceArrTOTAL=ForceArrTOTAL)
150

151

152 #Visualize
153 plt.figure()
154 TT = np.linspace(0+tstep,tEnd,tN)
155 plt.fill_between(TT,ForceMean[1:]-ForceStd[1:],ForceMean[1:]+ForceStd[1:],color="yellow")
156 plt.plot(TT,ForceMean[1:],’r’)
157 plt.plot(TT,ForceMean[1:]+2*ForceStd[1:],’b’)

174 Code used in the 2D wave tank problem

158 plt.plot(TT,ForceMean[1:]-2*ForceStd[1:],’g’)
159 plt.xlabel("t")
160 plt.ylabel("F")
161 plt.savefig("../../Latex/Billeder/WaveModel/GaussianUQU10.eps")
162

163 plt.show()

Bibliography

[Big12] Daniele Bigoni. Implementation of spectral methods in 1 dimension in
python., 2012.

[EK06] Allan Peter Engsig-Karup. Unstructured nodal dg-fem solution of high-
order boussinesq-type equations, 2006.

[EK11a] Allan P. Engsig-Karup. Slides for 02689 – polynomial methods. 2011.

[EK11b] Allan Peter Engsig-Karup. Advanced numerical methods for differen-
tial equations, assignment 3, Autumn 2011.

[Hun07] John D. Hunter. Matplotlib: A 2d graphics environment. Computing
In Science & Engineering, 9(3):90–95, May-Jun 2007.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–.

[Kop09] David A. Kopriva. Implementing Spectral Methods for Partial Differ-
ential Equations. Springer, 2009.

[UG82] C. T. Shin U. Ghia, K. N. Ghia. High-re solutions for incompressible
flow using the navier-stokes equations and a multigrid method. Journal
of Computational Physics, 1982.

[WZ10] G.Xi W. Zhang, C.H. Zhang. An explicit chebyshev pseudospectral
multigrid method for incompressible navier-stokes equations. Comput-
ers & Fluids 39, 2010.

[Xiu10] Dongbin Xiu. Numerical Methods for Stochastic Computations – A
Spectral Method Approach. Princeton University Press, 41 William
Street, Princeton, New Jersey, USA, 2010.

176 BIBLIOGRAPHY

[YA96] M. Glozman Y. Agnon. Periodic solutions for a complex hamiltonian
system: New standing water-waves. Wave Motion, 1996.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Problem statement
	3 Spectral methods as numerical methods
	3.1 Orthogonal polynomials
	3.1.1 Generating the polynomials
	3.1.2 Differentiating the polynomials
	3.1.3 Challenges for discrete modeling

	3.2 Constructing spectral solvers
	3.2.1 Spectral methods
	3.2.2 Types of differential equation problems

	3.3 Solving differential equations
	3.3.1 Using the spectral collocation method
	3.3.2 Burgers' equation

	4 Implementation of spectral methods
	4.1 How to use Python for numerical computations
	4.1.1 A comparison to MATLAB
	4.1.2 Employed Python packages

	4.2 Challenges using Python instead of MATLAB
	4.2.1 Integer division
	4.2.2 Interfacing with MATLAB
	4.2.3 Python overhead

	4.3 Implementation for spectral methods
	4.3.1 Generating the differential operators
	4.3.2 Employing the time-stepping method
	4.3.3 Handling multi-dimensional problems
	4.3.4 Sparse matrices

	4.4 Practical implementation
	4.4.1 Implementing the spectral collocation method
	4.4.2 Burgers' equation – implementing the solver

	5 Stochastic formulation and uncertainty quantification
	5.1 Probability theory
	5.1.1 Basic concepts
	5.1.2 How to formulate a stochastic problem
	5.1.3 Calculating the expectation

	5.2 Quantification of uncertainty
	5.3 Sampling methods
	5.3.1 Non-intrusive methods
	5.3.2 Intrusive methods

	5.4 Examples of uncertainty quantification
	5.4.1 The test equation – stochastic collocation method
	5.4.2 The test equation – stochastic Galerkin method
	5.4.3 Burgers' equation – the influence of uncertainty
	5.4.4 The test equation – two dimensional uncertainty

	6 Numerical experiments
	6.1 Lid driven cavity
	6.1.1 Derivation of the spectral model
	6.1.2 Implementation of the spectral model
	6.1.3 Introducing uncertainty on the Reynolds number
	6.1.4 Numerical experiments with UQ on the Reynolds number
	6.1.5 Conclusions for the lid driven cavity flow model

	6.2 A nonlinear 2D wave tank model
	6.2.1 Derivation of the spectral model
	6.2.2 Implementation of the spectral model
	6.2.3 Introducing uncertainty into the amplitude
	6.2.4 Numerical experiments with uncertainty
	6.2.5 Conclusions for the wave tank model

	7 Conclusions
	A Conventions for notation and plotting
	A.1 Differential notation
	A.2 Uncertainty quantification in plots
	A.3 Coding notation

	B Allan P. Engsig-Karup, notes
	C Code used in chapter 3
	C.1 Generating plots

	D Code used in chapter 4
	D.1 Differential Matrices
	D.2 Test functions
	D.2.1 The test for the two-dimensional differential
	D.2.2 The test for the sparse matrices speed

	D.3 Practical implementations

	E Code used in chapter 5
	E.1 Visualization
	E.2 Practical examples
	E.2.1 Test equation
	E.2.2 Burgers' equation

	F Code used in the lid driven cavity problem
	F.1 Approximating solution
	F.2 Visualizing

	G Code used in the 2D wave tank problem
	G.1 Time-integration functions
	G.2 Problem implementations

	Bibliography

