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Abstract
We consider learning and prediction of pairwise comparisons between instances. The problem is motivated from a perceptual view point, where pairwise comparisons
serve as an effective and extensively used paradigm. A state-of-the-art method for modeling pairwise data in high dimensional domains is based on a classical
pairwise probit likelihood imposed with a Gaussian process prior. While extremely flexible, this non-parametric method struggles with an inconvenient O

(
n3
)

scaling in terms of the n input instances which limits the method only to smaller problems. To overcome this, we derive a specific sparse extension of the classical
pairwise likelihood using the pseudo-input formulation. The behavior of the proposed extension is demonstrated on a toy example and on two real-world data sets
which outlines the potential gain and pitfalls of the approach. Finally, we discuss the relation to other similar approximations that have been applied in standard
Gaussian process regression and classification problems such as fully independent (training) conditional and partially independent (training) conditional.

Methods
Introduction

We focus on pairwise comparisons modeled by the likelihood function
considered in [1, 2], extended with Gaussian processes (GP) priors in [3]. GP
based models struggle with an inconvenientO

(
n3
)

scaling. Different suggestions
have been proposed to remedy this issue for standard GP regression [4, 5, 6, 7, 8,
9, 10] with the most well-known methods being the FI(T)C or PI(T)C, resulting in
a (sparse) conditional GP prior. These methods can probably be adapted to the
pairwise model, however,

Our contribution is to introduce sparsity in the pairwise model [3] starting
from the original pseudo-input formulation [6] using a set of l inducing
points, where l << n, resulting in an O

(
min

{
mn2, l3

})
scaling.

Sparse Pairwise GP Setup
• Inputs: X = {xi|i = 1, . . . , n}, where xi ∈ Rd

• Data: Y = {yk;uk, vk|k = 1, ...,m}, where uk 6= vk and xuk
,xvk ∈ X

• Latent function: f(xi) ∼ GP (0, k(xi, ·))

• Likelihood: p (yk|fk,θL) = Φ

(
yk

f(xuk)−f(xvk)√
2σ

)
, fk = [f (xuk

) , f (xvk)]
>

Pairwise likelihood function transformation using the l pseudo inputs, X̄
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0

]
,

[
Kxkxk

[kuk
,kvk ]>

[kuk
,kvk ] KX̄X̄

])

p
(
yk|xuk

,xvk , X̄, f̄
)

=

∫
p (yk|fk) p

(
fk |̄f , X̄

)
dfk = Φ

(
yk
(
k>uk
− k>vk

)
K−1

X̄X̄
f̄

σ∗k

)

Model

Fig. 1: Graphical chain model illustration of the sparse, pairwise GP model. Grey
solid: observed variables. White solid: unknown variables to be inferred. White dashed:

unknown variables not to be inferred directly. Square solid: inputs

Inference
As for the standard pairwise likelihood model, exact inference is intractable.
Instead, the Laplace approximation is used for posterior approximation and
predictions. The hyperparameters ({θ, X̄}) are optimized using gradient based
MAP-II maximization using a BFGS method with k-means initialization.

Simulation Results
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(a): Toy: d = 1, n = 31, m = 465, l = 9
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(b): Boston Housing: d = 10, n = 506, m = 127765
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(c): Wine Quality: d = 11, n = 600, m = 179700

Fig. 2: In general, blue graphs indicate the full model (GP) and red indicate the sparse model (SPGP). In Fig. (a) thick graphs indicate means and thin graphs indicate one
standard deviation. The black graph indicates the real (deterministic) function used to generate the full pairwise data set between the instances marked with black crosses in the

bottom. The two other colors sketch the predictive distribution of the GP and SPGP models using the (pseudo) inputs at the locations marked with the corresponding color in the
bottom. Fig. (b)-(c) display the performance of the SPGP model evaluated on two real-world data sets as a function of the number of pseudo inputs for the sparse model (red). The
performance of the standard model is included as a baseline. The solid and dashed red graphs show the average test error rate for the optimized and non-optimized SPGP model,
respectively. The two rows of markers indicate whether the optimized (triangle) and non-optimized (diamond) SPGP models are significant different from the GP model using the

McNemar test. The markers are solid if the null hypothesis that they are equal can be rejected at the 5% significance level.
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Summary
•We derived a pairwise pseudo-input formulation of the pairwise likelihood model with GPs.
• Toy example: Predictive mean is well modeled with l = 9 pseudo inputs, but—as expected—the predictive

variance differs between the full and sparse model.
• Real-world examples:

- Few (optimized) pseudo inputs perform only slightly worse than the full model suggesting that the two
real-world data sets do not constitute complex pairwise relations. The performance do, however,
depend highly on the optimization of the pseudo inputs as seen from the non-optimized models.

- Further adding pseudo inputs to the sparse model can result in better performance than the full model
(Boston Housing). Thus, by using a less complex—but optimized—approximate prior provides better
regularization leading to lower generalization error.

• Future work includes comparison with other approximations like FI(T)C and PI(T)C, and other inference
methods such as expectation propagation.


