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Summary

Acceleration of a non-linear water wave model using a GPU

The primary objective of this work is to use a GPU (massively parallel hard-
ware) to accelerate an existing optimized sequential algorithm, solving a poten-
tial flow problem. The potential flow problem poses an initial value problem at
a 2D surface, coupled with a 3D Laplace problem. A low storage Defect Cor-
rection method with a multigrid preconditioner is used to solve a flexible order
approximation of the Laplace problem. The widely used explicit RK4 method
is applied for time integration.
The primary reason for porting this particular solver, is that both Defect Cor-
rection and the preconditioner are expected to be well suited for GPUs, given
that the right discretization is used. The work focuses on both analysis and
implementation of the multigrid method, and understanding how it should be
configured in order to be an efficient preconditioner for the Defect Correction
algorithm. Only little attention is given to the standard 4 stage Runge Kutta
method.
The most significant results of the work is that rethinking the memory layout
both provides a significant increment in problem size and gives a boost to the so-
lution time, even for a naive CUDA implementation. In particular the program
developed can hold a Laplace problem of up to 100,000,000 degrees of freedom
in 4GB RAM. For problems of this size, the iterative solution to the Laplace
problem is improved by a decimal within a matter of seconds. This is up to
10 times faster than the existing CPU implementation. Although the target
platform is the Compute Capability 1.3 Tesla architecture, it is also shown that
moving the program to a Fermi architecture GPU, accelerates the code even
further with a resulting speedup of up to 42 times faster than the existing CPU
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code. Remarkably the speedup on the Fermi-architecture is achieved with the
naive implementation of the program.



Resumé (danish)

Acceleration af en ikke-lineær vandbølgemodel ved brug af en GPU

Hovedmålet med dette arbejde er at bruge en GPU (massivt parallel hard-
ware) til at accelerere en eksisterende optimeret sekventiel algoritme til løsning
af et potentialflowproblem. Problemet er et begyndelsesværdiproblem for en 2D
overflade og koblet med et 3D Laplace-problem. Til at løse Laplace-problemet
til variabel spatial orden, bruges Defect Correction-metoden med en multigrid
preconditioner, som begge har lavt hukommelsesforbrug. Til integration i tid
bruges standard RK4.
Den primære grund til at portere netop denne løser er, at b̊ade Defect Correc-
tion og preconditioneren forventes at være passe godt til GPU’er, givet den rette
diskretiseringsmetode bruges. Arbejdet fokuserer p̊a b̊ade analyse og implemen-
tation af multigridmetoden samt forst̊aelse for hvordan den skal konfigureres for
at være en effektiv preconditioner til Defect Correction-algoritmen. Der arbe-
jdes kun i begrænset omfang med Runge Kutta-metoden.
De vigtigste resultater af dette arbejde er at en revurdering af hukommelses-
layoutet tillader en signifikant forøgelse af problemstørrelsen og et boost af
løsningstiden, selv for en naiv CUDA-implementation. Mere specifikt, kan det
udviklede program arbejde med et Laplaceproblem med op til 100.000.000 fri-
hedsgrader i 4GB RAM. For problemer af denne størrelse, forbedres den iterative
løsning til Laplaceproblemet med et decimal p̊a blot sekunder. Dette er op til 10
gange hurtigere end for en lignende eksisterende CPU-implementation. Selvom
udviklen har været målrettet Tesla-arkitekturen (Compute Capability 1.3), har
det vist sig, at afvikling af programmet p̊a et Fermi-kort er op til 42 gange hur-
tigere end den eksisterende CPU-kode. Forbedringen p̊a Fermi-kortet er opn̊aet
alene med den naive implementation af programmet.
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Resumé (danish) 7

Declarations 9

1 Introduction 1

1.1 Potential flow formulation . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Approximating the Laplace equation 1 . . . . . . . . . . . . . . . 8

1.3 Approximating the Laplace equation 2 . . . . . . . . . . . . . . . 17

1.4 Expectations to speedup . . . . . . . . . . . . . . . . . . . . . . . 18

2 Analysis of the iterative Laplace solver 21

2.1 Coarse Grid Correction . . . . . . . . . . . . . . . . . . . . . . . 22



12 CONTENTS

2.2 Digital Signal Processing tools . . . . . . . . . . . . . . . . . . . 33

2.3 3D Local Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Results of the analysis . . . . . . . . . . . . . . . . . . . . . . . . 49

3 C for CUDA 53

3.1 Tesla and Fermi hardware architecture . . . . . . . . . . . . . . . 54

4 Implementation 63

4.1 Definitions, utility functions and execution safety . . . . . . . . . 64

4.2 Memory Layout and access . . . . . . . . . . . . . . . . . . . . . 66

4.3 Finite difference estimates . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Basic components of Coarse Grid Correction . . . . . . . . . . . 68

4.5 Advanced Coarse Grid Correction components . . . . . . . . . . 71

4.6 Defect Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Surface evolution and model validation . . . . . . . . . . . . . . . 74

5 Code optimization 77

5.1 Optimization strategy . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Low order residual . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Jacobi and RBGS smoother . . . . . . . . . . . . . . . . . . . . . 88

5.5 Line smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 High order residual . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Optimized kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 99



CONTENTS 13

6 Results 103

6.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Convergence of the Defect Correction method . . . . . . . . . . . 106

6.4 Limiting the number of grid levels . . . . . . . . . . . . . . . . . 110

6.5 Scalability, limitations and speedups . . . . . . . . . . . . . . . . 111

7 Future work 119

A σ-transform and derivations 121

B Underline Notation 125

C Platforms 127

D CUDA implementations 129

D.1 Finite difference estimates . . . . . . . . . . . . . . . . . . . . . . 129

D.2 Updating ghost points . . . . . . . . . . . . . . . . . . . . . . . . 132

D.3 Low order residual . . . . . . . . . . . . . . . . . . . . . . . . . . 136

D.4 Damped Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

D.5 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

D.6 µ-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.7 Various order non linear residual . . . . . . . . . . . . . . . . . . 141

D.8 Line smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D.9 Defect Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



14 CONTENTS

D.10 Surface evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

E Optimized code 147

E.1 Low order residual . . . . . . . . . . . . . . . . . . . . . . . . . . 147

E.2 Improved RBGS Line Smoother . . . . . . . . . . . . . . . . . . . 150

F Automated kernel tuning 153

Bibliography 155



Chapter 1

Introduction

During the two last decades, computer graphics hardware has developed from a
fixed pipeline processor with no level of programmability to a flexible high per-
formance hardware platform which can be used for purposes other than com-
puter graphics. Specially the CUDA (Compute Unified Device Architecture)
programming model by NVIDIA has become popular in the high performance
computing community due to its C/C++-like language and that it is easy to de-
ploy even to existing programs. The difference between GPUs and CPUs is that
the GPU is a massively parallel piece of hardware which is highly specialized
for high throughput applications. Although using GPUs for high performance
purposes is a relatively new field, many examples of applications already exist
[7].

The goal of this work is to implement a GPU version of a solver for a potential
flow problem previously described by e.g. [1], formally presented in section 1.1.
The focus is primary on analysis of a multigrid solver as an efficient low memory
preconditioner for a Defect Correction algorithm. The Defect Correction algo-
rithm presented in [12] with a multigrid preconditioner is shown by A. Engsig-
Karup in [5] to be an efficient method for solving a potential flow problem. In
particular, the algorithm is shown to have O(n) scalability properties for both
memory usage and solution time which makes it suitable also for large scale
problems. In chapter 6 it is shown that problem sizes of up to 100 million
degrees of freedom can be processed by a device with 4GB RAM.
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For a discussion of the field of application of the fluid potential flow problem we
will refer to [6, 1].

1.1 Potential flow formulation

A Cartesian coordinate system is used with the xy-plane located at the surface
still water level and the z-axis pointing upwards. The still water depth is given
as h(x, y) where x and y are the 2D spatial coordinates. The position of the
free surface is given as a single-valued function η(x, y, t) with t being the cur-
rent time. Since η is single valued, the model does not allow for overturning
waves. An inviscid fluid with irrational flow can be described by its velocity
potential/potential flow which is here denoted φ̃ at surface level and φ in the
fluid. For u being flow velocity, the velocity potential is given by u = ∇φ. The
governing equations are then given by

∂tη = −∇η · ∇φ̃+ w̃(1 +∇η · ∇η) (1.1)

∂tφ̃ = −gη −
1

2
(∇φ̃ · ∇φ̃− w̃2(1 +∇η · ∇η)) (1.2)

w̃ = ∂zφ̃, φ̃ = φ|z=η (1.3)

φ = φ̃, z = η (1.4)

∇2φ+ ∂zzφ = 0, −h ≤ z < η (1.5)

∂zφ+∇h · ∇φ = 0, z = −h (1.6)

In order to not confuse ∇ of the surface equations (1.1) and (1.2) with a 3D
gradient, it is consistently used as the 2D gradient, also in the Laplace equation.

∇ ≡ [∂x ∂y]
T ⇒ ∇2 ≡ ∂2

x + ∂2
y

In order to evaluate η and surface velocity potential φ̃ over time, the vertical
gradient of the fluid velocity potential w̃ is needed. In order to calculate the
vertical gradient w̃ of the velocity potential, the velocity potential needs to be
available for the entire domain. The velocity potential must conform to the
Laplace equation (1.5) and w̃ can thus be found when the solution to the
Laplace problem is known. The solution to the Laplace equation will depend
on the surface velocity potential φ̃ and the water depth h. The computational
domain of the Laplace equation is ‘where the water is’ as illustrated in fig. 1.1 and
therefore varies over time which is rather inconvenient for a numerical approach
to solve the Laplace problem. By transformation of the vertical variable, a
problem mathematical equivalent to the Laplace equation can be set up such
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φ(x, z, t)

z

x
η(x, t)

−h(x)
x

σ = 1

σ = 0

σ

Φ(x, σ, h(x), η(x, t))

Figure 1.1: The Laplace problem is transformed from the physical domain (left) to a
regular time invariant domain (right). Transformation give a better numeric approach
although transformed problem is rather unintuitive.

that the domain is regular and independent of time. The linear mapping of the
vertical variable is given by

σ ≡
z + η(x, y, t)

d
, d = η(x, y, t) + h(x, y) (1.7)

The cost is that the Laplace equation expands into a large and somewhat un-
intuitive form. The derivations of the transformed Laplace equation primarily
involve use of the chain rule. Even though only one variable is changed, the
calculations are rather lengthy and full length derivations are therefore located
in appendix A. The Laplace problem in the transformed domain becomes1

Φ = φ̃, σ = 1 (1.8)

∇2Φ+∇2σ (∂zΦ) + 2∇σ · ∇ (∂σΦ) +
(
∇σ · ∇σ + (∂zσ)

2
)
∂σσΦ = 0, 0 ≤ σ < 1

(1.9)

(∂zσ +∇h · ∇σ) (∂zΦ) +∇h · ∇Φ = 0, σ = 0 (1.10)

1Later use in figure: By transforming the vertical variable the grid is stretched and squeezed
into a cuboid time invariant domain.
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Here Φ(x, σ, t) = φ(x, z, t). The derivatives of σ are found as well.

∂zσ =
1

d
(1.11)

∇σ = (1− σ)
∇h

d
− σ
∇η

d
(1.12)

∇2σ =
1− σ

d

(
∇2h−

∇h · ∇h

d

)
−

σ

d

(
∇2η −

∇η · ∇η

d

)
(1.13)

−
1− 2σ

d2
∇h · ∇η −

∇σ

d
· (∇h−∇η) (1.14)

The relation from (1.1) and (1.2) to the Laplace equation is through w̃. For
the transformed Laplace equation, the relation is found using the chain rule.

w̃ = ∂zφ|z=η = ∂zΦ|σ=1 = ∂σΦ∂zσ|σ=1 (1.15)

The problem (differential equation and transformed Laplace equation) posed
above is considered as ’the full’ problem.

For small amplitude waves (η ≪ h) and flat bottom, all derivatives in η and h
vanishes from the surface equations (1.1) and (1.2). Since η ≪ h, there is also
almost no difference from water depth to still water depth. In particular d = h
can be assumed. Given that also w̃2 vanishes, the surface equation take linear
form:

∂tη = w̃ (1.16)

∂tφ̃ = −gη (1.17)

And for the transformed Laplace equation

Φ = φ̃, σ = 1 (1.18)

∇2Φ+ (∂zσ)
2∂σσΦ = 0, 0 ≤ σ < 1 (1.19)

(∂σΦ) ∂zσ = 0, σ = 0 (1.20)

∂zσ = d−1, d = h (1.21)

There exist no general analytic solution for the full problem although solutions
to certain cases are available.

1.1.1 Initial value problem

Evolving surface elevation and potential is an initial value problem and evalua-
tion of (1.1) and (1.2) require a solution to the Laplace problem. Given a way
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to evaluate (1.1) and (1.2) at a certain time step, the remaining initial value
problem (IVP) needs to be solved. For the solver to the IVP, two objectives will
be in question: Namely stability requirements and desired order of accuracy.
For now, the stability requirements of the solver will be analyzed.

First an analysis of linearly coupled differential equations. In general linear
differential equations are given by

∂tx = Ax+ b (1.22)

By the introduction of y = Sx, where S = [s1 s2 ... sn], the system can be
rewritten into a system of linearly independent ODEs:

S∂ty = ASy + b (1.23)

∂ty = S−1ASy + S−1b (1.24)

∂ty = Dy + b̃, D = diag(λ1, λ2, ...λn) (1.25)

Here λ1, λ2, ..., λn are the eigenvalues associated with the eigenvectors s1, s2, ..., sn.
All of the differential equations in the ODE presented by (1.22) are independent
since D is a diagonal matrix. The general solution to the system is therefore
given by

yk =

(
ck +

∫
e−λktb̃k dt

)
eλkt

where ck is the kth integration constant. Introducing the matrix exponential2,
the solution can be written in matrix form

y =

(
c+

∫
e−Dtb̃ dt

)
eDt

Substituting y = Sx back into the equation reveal

x = S−1

(
c+

∫
e−Dtb̃ dt

)
eDt (1.26)

For homogeneous systems (b = 0), the integral simply vanishes, leaving

x = S−1
(
c+ eDt

)
(1.27)

What is important to notice here, is that the eigenvalues, represented by D,
determine the solution. Judging from the solution (1.27) to the homogeneous
linear ODE, eigenvalues with positive real parts imply that the magnitude of
the solution will grow over time. For negative real parts, the magnitude will
be dampened over time, and finally for an absent real part, the result will keep

2eX =
∑

∞

k=0
1/k!Xk. For A = diag(a1,1, a2,2, ..., an,n) ⇒ eA = diag(ea1,1 , ea2,2 , ..., ean,n )
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the magnitude of its initial condition. The imaginary part of the eigenvalues
determine whether the system is oscillatory or not; for no imaginary part, the
system will not oscillate. For imaginary parts different from 0, the system will
oscillate with an angular velocity corresponding to the size of the imaginary
part of the eigenvalue.

In [6], A. Engsig-Karup shows that the eigenvalues for the linear case has absent
real parts and that the magnitude of the eigenvalue is determined by the wave
number kd and gravity g. We will not cover the physics of the potential flow
formulation but the energy should generally be conserved due to the lack of vis-
cous forces. It is therefore expected that the solution to the non linear problem
is not damped but oscillatory. The eigenvalues will thus have absent real parts
and the magnitude of the imaginary part will further be time dependent due to
the non linearity of the problem.
A reasonable requirement is therefore that the stability region of the IVP solver
must cover parts of the imaginary axis, which is the case with e.g. the standard
4th order Runge-Kutta scheme. A. Engsig-Karup has further shown that the
full non linear problem is convergent when a 4th order Runge-Kutta scheme is
used. Therefore the standard 4th order Runge-Kutta method is considered as a
sufficient choice of iteration scheme.

k1 = ∆tf(xt, t) (1.28)

k2 = ∆tf(xt +
k1

2
, t+

∆

2
t) (1.29)

k3 = ∆tf(xt +
k2

2
, t+

∆

2
t) (1.30)

k4 = ∆tf(xt + k3, t+∆t) (1.31)

xt+1 = xt +
1

6
(k1 + 2k2 + 2k3 + k4), x = [ η φ̃ ]T

Provided a way to calculate k1, k2, k3 and k4, advancing in time is trivial.
The primary objective is therefore to evaluate (1.1) and (1.2) efficiently, which
again primarily concerns solving the transformed Laplace equation.

1.1.2 Stability region of RK4

Runge-Kutta methods are a set of Taylor series methods; in order to eliminate
the unwanted terms of a Taylor expansion, the Runge-Kutta methods approxi-
mate the solution through multiple stages. According to [10] The standard 4th
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order Runge-Kutta simplifies to

xt+1 = xt +∆tx′

t +
1

2
(∆t)2x′′

t +
1

6
(∆t)3x

(3)
t +

1

24
(∆t)4x

(4)
t +O(h5) (1.32)

where the higher order temporal derivatives are approximated through multiple
stages per times step. In general, the stability region for an IVP solver is
defined to be the region that ensure a linear homogeneous differential equation
converges. For linear homogeneous differential equations, the solution given in
(1.26) can be used to determine the stability region of the Runge Kutta method.
The stability region is found by simple insertion of the higher order derivatives
of (1.22) into (1.32). To obtain the high order derivatives, (1.22) is applied to
itself;

∂tx = Ax⇒ ∂t2x = A2x⇒ ∂t3x = A3x⇒ ∂t4x = A4x (1.33)

By insertion of (1.33) into (1.32), the stability region of the method can be
found.

xt+1 = xt +∆tAxt +
1

2
(∆t)2A2xt +

1

6
(∆t)3A3xt +

1

24
(∆t)4A4xt +O((∆t)5)

To analyze the system, we use (1.25); when the method converges for the equiv-
alent problem, the method will converge for the original problem as well.

yt+1 = yt + zyt +
1

2
z2yt +

1

6
z3yt +

1

24
z4yt +O((∆t)5), z = ∆tD (1.34)

If the standard 4th order Runge Kutta method should converge, it is there-
fore crucial that max |z| < 1. Recall that D is a diagonal matrix holding the
eigenvalues of A. Hence the Runge Kutta method presented is stable for

|λmax∆t| < 1 (1.35)

Since the eigenvalues in general are complex, the stability region is best illus-
trated by a complex plot of (1.34). As seen in fig. 1.2, the stability region of RK4
cover parts of the imaginary axis which as mentioned is a requirement for this
particular problem. For general ODE’s, the temporal step size can be chosen
arbitrary as long as |λmax∆t| < 1 is not violated. In [6], A. Engsig-Karup sug-
gests that it will be reasonable to choose time step from the CFL3 conditions
which is more strict than the actual stability region of the solver. The CFL
conditions are given by

∆ t ≤ C
u

∆x
, C < 1 (1.36)

3Courant-Friedrichs-Lewy
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Figure 1.2: Illustration of |λmax∆t| < 1 for (1.34). The edge of the region represent
the boundary locus.

where u is the fluid velocity L(wave length)
T (wave period) . The CFL conditions relate to the

Courant number, which is given by ν = u·∆ t
∆ x

. In order to ensure convergence
C < 1 should be chosen. The CFL condition arise when explicit time-marching
schemes (as e.g. RK4) are used for the numerical solution of certain PDEs,
including the surface potential flow formulation. The advantage of having an
explicit time scheme is that the time integration is embarrassing parallel which
is a potential advantage to any parallel implementation of a program. The
disadvantage of the CFL-conditions is that they are more strict than (1.35).

1.2 Approximating the Laplace equation 1

To solve the differential equation, a Method of Lines approach (MOL) is used.
MOL separates the evaluation of the differential equation into a spatial and
temporal discretization. For the spatial discretization, the idea is to simply
exchange every term in the transformed Laplace equation with a discrete ap-
proximation. In general some initial surface elevation and surface potential will
be known and only at the discrete positions xi, i = 1, ..., N . Everything else
need to be approximated which is done with finite difference.

Finite difference in general uses a weighted sum based on Taylor expansion to
approximate any order derivatives. Increasing the number of grid points used in
the weighted sum increases accuracy as well as the order of derivative which can
be approximated. Since finite difference is a weighted sum, the approximation
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of some derivative throughout an entire grid can be calculated using a matrix
vector product. For a vector representation Uof some grid, the approximated
second order derivative Uxx in each grid point can be found by

Uxx = AxxU (1.37)

where Axx contains the appropriate weighting for finite difference approxima-
tions in this particular grid.
It is important to emphasize that the intension is to avoid the usage of fully
generated matrices in the implementation of the program although matrices are
used for a formalized presentation of the methods.
For a 1D structured grid with uniform distributed grid nodes, the 2nd order
discretization is given by

U =
[
U1 U2 · · · Un−1 Un

]T
(1.38)

Axx =
1

h2




2 −5 4 −1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −4 5 −2




(1.39)

where h is the grid spacing. Similarly the Laplacian can be approximated using
similar matrices containing weights for derivatives in the remaining directions.

∇2U = AU , A = Axx +Ayy +Azz (1.40)

For the Laplace problem, the value of the Laplacian ∇2U is given rather than
the grid values U . In general, there exist no particular solution to a PDE if
not at least one Dirichlet boundary condition is specified. In order to solve
the discrete approximation to the Laplace equation given by (1.40) boundary
conditions thus have to be specified. For a discrete approximation with absent
Dirichlet conditions, missing boundary conditions is manifested by an under-
determined system. To approximate some solution U to a Laplace problem, the
following system should be solved

AxxU +AyyU +AzzU +AB.CU = 0+ bB.C (1.41)

where AB.C represents the boundary conditions of the system and bB.C the
values of the boundary conditions. For a 1D system with uniform grid spacing
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h, the matrices and boundary values are given by

bB.C =
[
U1 0 · · · 0 φn

]T
(1.42)

Axx =
1

h2




0
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −4 5 −2



, AB.C =




1
0

. . .

0
1
2h − 2

h
3
2h




(1.43)

Here a Dirichlet boundary condition is applied at U0 and a 2nd order accurate
flow condition (Neumann condition) at Un.

Due to the MOL approach, the surface variables (η, h and derivatives hereof)
will be independent from the transformed Laplace problem although some are
time dependent. For this reason, they are static values hence explicit in the
transformed Laplace problem. This is also the case for σ and its derivatives.
Although independent of the Laplace problem, they do vary over the spatial
domain.

∂zσ(∂σΦ)→




σz,1Φσ,1

σz,2Φσ,2

...
σz,NΦσ,N


 (1.44)




σz,1Φσ,1

σz,2Φσ,2

...
σz,NΦσ,N


 =




σz,1

σz,2

. . .

σz,N







Φσ,1

Φσ,2

...
Φσ,N


 = D(σz)Φσ (1.45)

(∂zσ)
2(∂σσΦ)→ D(σ

2
z)Φσ, σ2

z ≡ D(σ)σ (1.46)

where Φσ and Φσσ are first and second derivatives of the discrete valued func-
tion Φ. We can now describe the transformed Laplace problem. The linear
approximation is given by

Φ = φ̃, σ = 1 (1.47)

∇2Φ+ (∂zσ)
2∂σσΦ = 0, 0 ≤ σ < 1 (1.48)

(∂σΦ)∂zσ = 0, σ = 0 (1.49)

↓

AD.CΦ = φ̃, σ = 1 (1.50)
(
Axx +Ayy +D(σz)

2Aσσ

)
Φ = 0, 0 ≤ σ < 1 (1.51)

(AσΦ)D(σz) = 0, σ = 0 (1.52)
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here AD.C describe the Dirichlet condition at surface level.

For the non linear case, (1.51) and (1.52) should be substituted by the non
linear approximations presented by (1.57) and (1.60) respectively.

∇2Φ→ AxxΦ+AyyΦ (1.53)

∇2σ (∂σΦ)→ D(σxx + σyy)AσΦ (1.54)

2∇σ · ∇ (∂σΦ)→ 2D(σx)AxσΦ+ 2D(σy)AyσΦ (1.55)
(
∇σT∇σ + (∂zΦ)

2
)
∂σσΦ→ D

(
σ2

x + σ2
y + σ2

z

)
AσσΦ (1.56)

AxxΦ+AyyΦ+D(σxx + σyy)AσΦ+ 2D(σx)AxσΦ+ 2D(σy)AyσΦ

+D
(
σ2

x + σ2
y + σ2

z

)
AσσΦ = 0, 0 ≤ σ < 1 (1.57)

Even though many more terms have been added, the system is still linear in Φ
so the problem is still to solve a linear system. As for the boundary conditions
to the full problem, they are approximated by

(∂zσ +∇h · ∇σ)(∂σΦ)→ D(σz +D(hx)σx +D(hy)σy)AσΦ (1.58)

∇h · ∇Φ→ D(hx)AxΦ+D(hy)AyΦ (1.59)

D(σz +D(hx)σx +D(hy)σy)AσΦ

+D(hx)AxΦ+D(hy)AyΦ = 0, σ = 0 (1.60)

In order to evaluate the actual differential equation, the velocity potential must
be known throughout the domain. The Laplace equation is solved with the cur-
rent surface potential as boundary condition on the surface prior to evaluation
of the differential equation. Using the previous notation, the approximation to
(1.1) and (1.2) is here presented in matrix form

∂tη = −(D(ηx)φ̃x +D(ηy)φ̃y) +D(w̃)(1 + η2
x + η2

y) (1.61)

∂tφ̃ = −gη −
1

2

(
φ̃

2

x + φ̃
2

y −D(w̃
2)(1 + η2

x + η2
y)
)

(1.62)

As mentioned earlier, the only coupling to the Laplace equation is through w̃
which is approximated from the calculated solution to the transformed Laplace
problem.

w̃ = ∂σΦ∂zσ|σ=1 (1.63)

↓

w̃ = D(σz)AσΦ|σ=1 (1.64)
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Figure 1.3: A number of layers of ghost points (squares) are used both in the hor-
izontal directions and along the bottom in order to imprint boundary values. The
internal domain is represented by the round dots.

1.2.1 Boundary conditions

A typical way to implement boundary conditions is shown in the 1D sample
discretization (1.43) in previous section. In the example, off-centered approxi-
mations are needed near the boundary but this is neither practical from a GPU
parallelization point of view nor good for certain classes of solvers4. [1] suggest
to use one or more layers of ghost points outside the computational domain to
impose boundary conditions (illustrated by fig. 1.3). The ghost points can be
either eliminated from the system or simply added as additional equations in
the system.

We will not eliminate the ghost points since the GPU architecture used for
implementation is slowed down when the program has divergent branches.

Since the ghost points are added as additional equations in the system, they
should be up to date prior to any operation on the grid, be that smoothing,
restriction, prolongation5 or anything else. For a bounded domain, the ghost
update procedure should implement zero-flow at bottom and sides of the domain.

4Particularly the Jacobi method and Gauss-Seidel methods which we will use requires the
system matrix to be positive definite

5Smoothing, restriction and prolongation are components of Coarse Grid Correction. See
section 2.1.
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We will use the ghost points to fulfill following equations

∂xφ = 0, x = 0 ∨ x = Lx (1.65)

∂yφ = 0, y = 0 ∨ y = Ly (1.66)

∂zφ = 0, z = −h (1.67)

Neither (1.65) nor (1.66) alters in the transformed Laplace equation. On the
other hand (1.67) will be given by (1.10):

∂xΦ = 0, x = 0 ∨ x = Lx (1.68)

∂yΦ = 0, y = 0 ∨ y = Ly (1.69)

(∂zσ +∇h · ∇σ) (∂zΦ) +∇h · ∇Φ = 0, σ = 0 (1.70)

For the x and y directions, the number of ghost points added should always be
large enough to allow (1.57) to be evaluated using central approximations only.
The amount of ghost points in the horizontal directions is therefore 1 or more.
The order of accuracy on the border should be the same level as for the internal
points. For a 2nd order accurate approximation to (1.68), a horizontal ghost
point can therefore be isolated from

∂xΦ = 0⇒ (1.71)

1

2∆x
(U−∆x,y,σ + U∆x,y,σ) = 0⇔ (1.72)

U−∆x,y,σ = U∆x,y,σ (1.73)

where U is the discrete approximation to Φ. For higher order approximations,
there will be more approximations available to ∂xΦ = 0. Given a 4th order
approximation scheme, 2 layers6 of ghost points should be used. For the 4th

order approximation, there are two available approximations to ∂xΦ = 0 (a
forward and a central) which touches a ghost point.

1

12∆x

[
−3 −10 18 −6 1

]
(1.74)

↓

1

12∆x
(−3U−∆x,y,σ︸ ︷︷ ︸

Ghost point

−10U0,y,σ + 18U∆x,y,σ − 6U2∆x,y,σ + U3∆x,y,σ) = 0 (1.75)

1

12∆x

[
1 −8 0 8 −1

]
(1.76)

↓

1

12∆x
(U−2∆x,y,σ − 8U−∆x,y,σ︸ ︷︷ ︸

Ghost points

+0U0,y,σ + 8U∆x,y,σ − U2∆x,y,σ) = 0 (1.77)

63 for a 6th order approximation, 4 for a 8th order approximation etc.
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At least (1.77) should be fulfilled since it contains all ghost points. The question
is then whether it is necessary to also fulfill (1.75). Experience shows that it
is enough to fulfill (1.77) by simply letting the ghost points be a mirror of the
domain values:

U−2∆x,y,σ = U2∆x,y,σ (1.78)

U−∆x,y,σ = U∆x,y,σ (1.79)

This should be done in both horizontal directions. For the ghost points at
x = 0 ∧ y = 0, the mirroring is expressed by

U−2∆x,−2∆y,σ = U2∆x,2∆y,σ (1.80)

U−2∆x,−∆y,σ = U2∆x,∆y,σ (1.81)

U−∆x,−2∆y,σ = U∆x,2∆y,σ (1.82)

U−∆x,−∆y,σ = U∆x,∆y,σ (1.83)

The bottom boundary condition should be updated according to (1.60). For the
low order linear transformed Laplace problem, the update reduces to mirroring
in the boundary. For higher order approximations the ghost point value should
be isolated from the finite difference sum Uσ. Ûσ is defined as the part of the
finite difference sum which does not use the ghost point. In particular

Uσ = Ûσ + S(ghost)
σ U (ghost)

where S
(ghost)
σ is the stencil value associated with the ghost point U (ghost). The

resulting ghost update is therefore generally given by

(∂zσ +∇h · ∇σ)Uσ +∇h · ∇U = 0 (1.84)

(∂zσ +∇h · ∇σ)
(
Ûσ + S(ghost)

σ U (ghost)
)
+∇h · ∇U = 0 (1.85)

Ux,y,−∆σ = −
1

S
(ghost)
σ

[
Ûσ + a∇h · ∇U

]
(1.86)

a =
1

(∂zσ +∇h · ∇σ)
(1.87)

To illustrate, a 4th order example in 2D is presented. The finite difference sums
of (1.60) are represented by the stencils

Sσ =
1

12∆σ




−1
6

−18
10
3




(1.88)

Sx =
1

12∆x

[
1 −8 0 8 −1

]
(1.89)
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Figure 1.4: Updating the ghostpoints using a 4th order accurate non linear approx-
imation. First the horizontal layer should be updated by mirroring (left). Then the
bottom layer using (1.91) (center, only one point illustrated), and finally the corners
(right).

where the underlined element of the stencils is a bottom boundary element. The
stencils are applied to the grid

∂zσ + ∂xh ∂xσ

12∆σ
(3Ux,σ−∆σ + 10Ux,σ − 18Ux,σ+∆σ + 6Ux,σ+2∆σ − Ux,σ+3∆σ)

+
∂xh

12∆x
(Ux−2∆x,σ − 8Ux−∆x,σ + 0Ux,σ + 8Ux+∆x,σ − Ux+2∆x,σ) = 0 (1.90)

The value of the ghost point is then obtained by isolation of Ux,σ−∆σ

Ux,σ−∆σ =−
1

3
[(10Ux,σ − 18Ux,σ+∆σ + 6Ux,σ+2∆σ − Ux,z+3∆σ)

+ a (Ux−2∆x,σ − 8Ux−∆x,σ + 0Ux,σ + 8Ux+∆x,σ − Ux+2∆x,σ)]
(1.91)

a =
∂xh(x)

∂zσ(x) + ∂xh(x)∂xσ(x)
(1.92)

Near the sides of the domain, the horizontal derivatives will cover other ghost
points as well. The ghost points on the side of the domain should therefore be
up to date before updating the bottom boundary layer.

Since a central stencil is applied in the horizontal direction, the ghost points
in the bottom corners of the domain will need to be updated subsequently.
Updating the corner ghost points is performed by mirroring in the horizontal
axes. The entire update procedure is illustrated for a 2D case in fig. 1.4
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1.2.2 Periodic boundary conditions

One very fortunate consequence of using ghost points explicitly rather than
eliminating them from the system is that periodic boundary conditions can be
implemented fairly easy. Instead of letting the ghost points be a mirror, they
should hold a copy of the values from the other end of the domain. In particular
for the x-direction, in a domain with dimensions 0 ≤ x ≤ Lx the update is given
by

U−∆x,y,σ = ULx,y,σ (1.93)

U−2∆x,y,σ = ULx−∆x,y,σ (1.94)

ULx+∆x,y,σ = U0,y,σ (1.95)

ULx+2∆x,y,σ = U∆x,y,σ (1.96)

Again the easiest way to update the corners is to update ghost points along first
one direction, synchronize and then update along the second direction.
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Un−1

U0 U2

Figure 1.5: In a structured grid, the grid nodes are numbered by position. Coordi-
nates and connectivity can therefore be calculated rather than looked up in tables.

1.3 Approximating the Laplace equation 2

Knowing what to solve, it is time to decide on how to solve it. The inten-
tion of this project is to increase the problem size while also allowing the order
of approximation to be adjustable. Increasing the problem size requires more
memory. Increasing order of the spatial approximation of the Laplace equation
gives higher stability demands to the numerical solver. Due to the Method of
Lines approach, the Laplace problem and evaluation of temporal derivatives will
be separated. Evaluation of the Laplace problem will be the most computation
and storage consuming part; the Laplace equation is a global problem in a 3D
domain whereas the evaluation of the actual differential equation is an explicit
operation in a 2D domain.

The primary choice about discretization will be whether to use a structured
or unstructured grid. The advantage of the unstructured grid is the possibility
to insert grid elements wherever higher accuracy is needed. On the other hand,
it will also make computations complex and expensive and require for position
and lookup tables to identify grid connectivity. For a structured grid, the storage
requirements are lower since vertex position and connectivity is known before-
hand. The disadvantage of using a structured grid is that it is not as easy to get
more details in local areas of the grid. Because of the low storage requirements
of the structured grid and that GPUs has an advantage for structured memory,
an ordered grid will be used. The structured grid will be with a regular layout
(fig. 1.5). Regardless of grid structure, there is also an option to whether or not
the system matrix should be generated. The system matrix compared to the
grid is large and in other words very memory consuming. Memory is a scarce
resource so creation of the system matrix should be avoided. The cost of not
saving the matrix is that the matrix will need to be generated more than once.
Computational power on the other hands is not as scarce so on the fly matrix
generation is considered the better choice. Also, it is expected that the memory
latency hiding feature of CUDA devices (also described in chapter 3) will render
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the matrix generation a more or less ‘free’ operation: While a thread waits for
a variable to be transfered from memory it is paused, freeing up resources to
perform calculations elsewhere.
Because of the regular layout of the grid, the finite difference stencils are very
much alike. The only difference between them will actually be a scalar deter-
mined by the grid distance in the direction of the approximation. Approximating
the second derivatives on a rectangular grid, the same stencil can be used in all
directions:

Sxx =
1

(∆x)2
[Snn]x, Syy =

1

(∆y)2
[Snn]y, Sσσ =

σz

(∆σ)2
[Snn]σ (1.97)

Snn = [1 −2 1] (1.98)

The benefit of using the same stencil all over the domain is that it can be held
in the cached constant memory of the CUDA device (discussed in chapter 3).
To calculate the finite difference stencils of various order, the stable procedure
developed by Fornberg [8], here implemented as fdcoeffF, will be used.

The equations to be approximated, are partial derivatives of 1st and 2nd or-
der as well as a few mixed derivatives. The partial derivatives are calculated
directly using fdcoeffF and the mixed derivatives as a tensor product of the
partial derivatives. An example of generating mixed derivatives using the 1D
stencils is provided in appendix B.

1.4 Expectations to speedup

Prior to further analysis, the expected of speedup from a CUDA implementation
will be estimated. Two common notions of scalability is strong and weak scaling:

Strong scaling : How does solution time vary with number of available pro-
cessors for fixed problem size?

Weak scaling : How does solution time vary with problem size for a fixed
number of processors?

It has already been shown that the surface potential problem using a trans-
formed Laplace problem for the viscous term has weak scaling properties for
the Defect Correction with a Multigrid preconditioner [5]. What is interesting
is therefore how large a speedup can be obtained for a parallel version of the
algorithm. If the memory bandwidth is not limited, and there is sufficiently
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Figure 1.6: Ahmdahls law for fixed parallel fractions of a code.

work to do, the parallel speedup of a program is determined by Ahmdahl’s law.

max speedup =
1

(1− P ) + P
N

(1.99)

where P is the parallel fraction of a program and N the number of processors
available. If on the other hand, the domain size is small such not all processors
have work to do, the speedup is bound by Gustafsons’ law

max speedup = N − (1− P )(N − 1) (1.100)

where again P is the parallel fraction of the program. When the number of
processors is in surplus, a parallel problem will thus have strong linear scaling.
Regardless of Gustafson’s or Ahmdahl’s law apply to a particular size of the
problem, one must be aware that a sequential overhead is associated with the
launch of a kernel7. For small problems, the GPU implementation is therefore
most likely slower than a CPU implementation since the initialization of the
device simply eats up too much time.

Computing finite difference stencils is not particularly complex, so the algorithm
is expected to be memory bound rather than compute bound.

Besides the computational power, also the bandwidth should be considered; A
Tesla C1060/Quadro FX 5800 GPU has 244 CUDA cores8 which each process
instructions for 32 threads (a warp) at the time. On these GPUs the upper
limit of active threads is thus 7808 at the time, and the bandwidth per thread
is therefore relatively limit. Given full occupancy, the bandwidth per thread
is therefore 102.4

7808
GB/s =0.013GB/s which is very little compared to CPU band-

width. Currently, host RAM bandwidth is up to approximately 17GB/s9 which

7GPU programs are called kernels.
8System specifications available in appendix C.
9DDR3, PC17000. 6-12GB/s is more common though
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in comparison per processor is much more. If the number of computations per
transfered element is low, the speedup will thus depend on the ratio between
host and device bandwidth rather than the increased number of threads. It is
non trivial to calculate the ratio between computations and transfered memory
for a kernel to be memory bound since the hardware is fairly advanced.



Chapter 2

Analysis of the iterative
Laplace solver

The key to perform well in solving the surface potential flow equations is to
solve the transformed Laplace equation efficiently; the Laplace equation pose
a global/implicit problem while evolving surface quantities is a local/explicit
problem due to the choice of an explicit time integration scheme. The target
size of the Laplace equation will be in the scale of several million degrees of
freedom and O(n) scalability is therefore crucial for the Laplace solver. Further
it is requested that the solver should use double precision accuracy.

The ordinary multigrid method (Coarse Grid Correction - CGC) is famous for
its O(n) scaling properties and it is further interesting because it basically is an
embarrassing parallel algorithm. Since the number of concurrent active threads
on GPUs presently is in the scale of thousands, particularly embarrassing par-
allel algorithms are expected to gain from a parallel implementation. Although
interesting, it has during this project come clear that the CGC components are
not sufficiently stable1 to solve high order approximations to neither ordinary
nor transformed Laplace problem.

The Defect Correction scheme (algorithm 1) is recently2 proven to ‘fix’ the

1Investigated further in section 2.2
22010, [5], parallel with this project
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stability problems with CGC; when DC is preconditioned with a low order linear
CGC method, the scheme is stable, efficient and still embarrassing parallel.

Algorithm 1 Defect Correction: Solve Au = b

1: k → 0
2: repeat
3: r ← b−Au[k]

4: d[k] ←M
−1r ⊲ M is a low order approximation to A

5: u[k+1] ← u[k] + d[k] ⊲ Compensate for defect d
6: k → k + 1
7: until ||d[k]|| < ||d[0]||·rel.tol + abs.tol ⊲ Convergence criteria

Also the Generalized Minimal Residual (GMRES) method using a low order,
either a direct solution or iterative multigrid preconditioner is known to be an
efficient solution strategy [1]. [5] shows that GMRES outperform DC for the
Whalin shoal problem3 with up to approximately 20% shorter solution time for
a gridsize of 257× 21× 6. GMRES is a Krylow subspace method and therefore
associated with finding a number of orthogonal vectors. The method is therefore
not embarrassing parallel and also uses more memory than the Defect Correc-
tion algorithm. Defect Correction with a low order multigrid preconditioner is
therefore the choice of algorithm.

2.1 Coarse Grid Correction

Defect Correction is in itself a trivial (and embarrassing parallel) algorithm. The
preconditioner - Coarse Grid Correct - on the other hand is non trivial. CGC
(algorithm 2) belong to a subset of methods called Multigrid Methods. The idea
of multigrid approaches is to remove some modes of the error, re-sample and
handle the remaining error components subsequently. Which modes and which
kind of re-sampling used depends on the chosen multigrid scheme.

CGC deals with high frequency error components first and low frequency com-
ponents in a recursive fashion (illustrated by fig. 2.1). To deal with the high
frequency components, the scheme utilizes the smoothing properties of other
iterative solvers. Both the Jacobi and the Gauss-Seidel method are examples of
solvers with such properties. Although neither of the methods are excessively
good for solving a system alone, they have smoothing properties; information
propagates fast locally for both methods, hence remove high frequency error
components relatively fast (illustrated in fig. 2.2 for the Jacobi method). CGC

3The Whalin shoal problem is also for validation of the mode. Eventually see section 6.2.
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Relax

Restrict

Fine grid

Coarse grid

Figure 2.1: Multigrid removes high frequencies of the Fourier form residual by
smoother relaxations. The remaining residual is transfered to a coarse grid using
direct transfer (red arrows/left) or full weighting (blue arrows/right) which stretches
the frequency form residual.

deals with high frequency error components first and low frequency compo-
nents in a recursive fashion (illustrated by fig. 2.1). To deal with the high
frequency components, the scheme utilizes the smoothing properties of other
iterative solvers. Both the Jacobi and the Gauss-Seidel method are examples of
solvers with such properties. Although neither of the methods are excessively
good for solving a system alone, they have smoothing properties; information
propagates fast locally for both methods, hence remove high frequency error
components relatively fast (illustrated in fig. 2.2 for the Jacobi method).

Algorithm 2 Coarse Grid Correction: Solve Au = f

1: repeat
2: Relax ν1 times on Au = f with initial guess v
3: Compute coarse grid residual: ř ← R(f −Av)
4: Solve coarse grid approximation Ǎě = ř ⊲ Possibly recursive
5: Correct fine grid approximation: v ← v + Iě

6: Relax ν2 times on Au = f with initial guess v
7: until converged ⊲ As preconditioner, do not repeat

The algorithm basically contain 4 components and a bunch of coarse approx-
imations to the original problem. A coarse approximation in this context is
simply a discretization of same order with double distance between grid nodes.
The 4 components of Coarse Grid Correction are smoother, restriction opera-
tor, coarse grid solver and interpolation operator. The tools and ideas used in
CGC resemble operations found in Digital Signal Processing (DSP) and can be
analyzed thoroughly using Local Fourier Analyses (LFA). The components of
this multigrid method is analyzed in section 2.2 and section 2.3. The conver-
gence criteria can be the same as used in DC but is irrelevant when used as a
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Figure 2.2: The Jacobi method applied to a 1D Laplace problem ∂xxx = 0 with
different initial guesses on a 30 element grid. The magnitude of a high frequency error
component (center) is reduced much faster than a low frequency error component
(left).

preconditioner; it should perform only one iteration rather than iterating until
convergence is reached.

In order to fully understand how the multigrid solver works, the core components
are presented in detail in the upcoming sections 2.1.1-2.1.5. Especially the
smoother (2.1.5) is an important component of the algorithm.

2.1.1 Restriction operator

Restriction cover the fine-to-coarse grid transfer and is done such that the inte-
gral sum in the transfered area will not change. The coarse grid transfer should
thus approximate uc:

∫

Ωf

uf dΩf =

∫

Ωf

uc dΩc, ∀i (2.1)

Indices f and c denote fine and coarse grid variables respectively. The simplest
grid transfer is direct transfer which is first order accurate. For a given grid
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node, the integral can be approximated locally by the rectangle method
∫ hf,b

−hf,a

uf dΩf = uf,ihf,a + uf,i(hf,b) +O(h) = uf,i(hf,a + hf,b) +O(h2
f ) (2.2)

where h is a measurement for step length (not the still water depth). Similarly,
the integral for the coarse grid can be approximated locally using the midpoint
rule ∫ hf,b

−hf,a

uc dΩc = uc,i(hf,a + hf,b) +O(h3
c) (2.3)

Combining (2.2) and (2.3) reveals the Direct Transfer method.

uc,j(hf,a + hf,b) =uf,i(hf,a + hf,b)⇒ (2.4)

uc,j =uf,i (2.5)

Here ui and uj are considered ‘on top’ of each other. The order of the direct
transfer correspond to the lowest order of the approximation to the integral. In
other words, the direct transfer is a local 2nd order, global 1st order approxima-
tion scheme. The order of accuracy is increased fairly easy by exchanging the
fine grid integral approximation with the trapezoidal rule.

∫ hf,b

−hf,a

uc dΩc =
uf,i−1 + uf,i

2
hf,a +

uf,i + uf,i+1

2
hf,b +O(h3

f ) (2.6)

= uf,i−1
hf,a

2
+ uf,i

hf,a + hf,b

2
+ uf,i+1

hf,b

2
+O(h3

f ) (2.7)

Combining (2.3) and (2.7) reveal the 2nd order accurate Full Weighting operator

uc,j(hf,a + hf,b) = uf,i−1
hf,a

2
+ uf,i

hf,a + hf,b

2
+ uf,i+1

hf,b

2
(2.8)

uc,j = uf,i−1
1

2

hf,a

hf,a + hf,b

+ uf,i

1

2
+ uf,i+1

1

2

hf,b

hf,a + hf,b

(2.9)

Again ui and uj are considered ‘on top’. The grid values ui−1 and ui+1 on the
other hand do not have ‘on top’ counterparts on the coarse grid (fig. 2.3). For
cuboid grids hf,a = hf,b result in the stencil R:

uc,j =
1

4
[uf,i−1 + 2uf,i + uf,i+1] (2.10)

R =
1

4
[1 2 1] (2.11)

As for the mixed derivatives described in section 1.3, the 2D and 3D restriction
and prolongation operators can be calculated by the 1D tensor product. For
higher order restriction operators, the coarse grid integral in (2.1) can no longer
be approximated with one coarse grid point only. It is therefore not possible
to make an explicit restriction operator with order higher than 2. An implicit
operator is expensive and should therefore be avoided if not crucial to maintain
effectiveness and precision of the algorithm.
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hf,a hf,b

∫ hf,b

−hf,a
uc dΩc

∫ hf,b

−hf,a
uf dΩf

Fine 1D grid

Coarse 1D grid

Figure 2.3: The fine grid integral should match the coarse grid integral. Grid values
uf and uc are given only at the grid nodes.

2.1.1.1 Updating along the edges

With an exception of the surface values, the coarsening can be calculated using
the stencil given by (2.9) anywhere; the ghost points introduced in section 1.2.1
should merely be updated prior to the restriction. For the surface values, the
stencil will be ‘poking out’ of the domain though. There are two solutions to
this: Either make a local first order approximation to (2.1) (ie. copy the values
at the surface) or just ignore that the stencil is too large and insert zeros outside
the domain. In practice ignoring that the stencil is too wide works just fine.

2.1.2 Prolongation operator

Prolongation cover the coarse-to-fine grid transfer. The prolongation operator
is simply interpolation between coarse and fine grid; if the grid nodes are ‘on
top’, the value is transfered directly. If the grid point is in between, the value is
interpolated to some order of accuracy. The sum of the order of restriction and
order of interpolation should exceed the order of differentiation in the approx-
imated system [12]. For the transformed Laplace equation, the highest order
derivatives are 2. order partial derivatives, thus

mr +mi > 2 (2.12)

where mr and mi is the order of the restriction operator and prolongation oper-
ator respectively. Remaining is the question to whether direct injection should
be used rather than full weighting for restriction.

The 1st order accurate prolongation operator is linear interpolation between
the coarse grid points. Increasing the interpolation accuracy by a single order,
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the schemes will be either explicit and use a larger neighborhood (polynomial
interpolation) or implicit (e.g. spline interpolation). Neither method is less
computational expensive than the 2nd order restriction operator. Therefore the
best choice of restriction and prolongation fulfilling (2.12) will be Full Weighting
(mr = 2) and linear interpolation (mi = 1).

Linear interpolation is generally given by

ui =
hauja + hbujb

ha + hb

(2.13)

where ha and hb is the distance to the nearest neighboring grid points, uja and
ujb . For coarse to fine grid transfers, the interpolation generalize to two cases
due to the rectilinear grid:

ui =

{
uj ui over uj
uja+ujb

2 ui between uja and ujb

(2.14)

For 2D and 3D, linear interpolation generalizes to bi- and tri-linear interpolation.

2.1.3 Restriction strategy

The typical grid size for the type of problems we are interested in will have few
points in the vertical direction and lots in the horizontal directions. Restriction
in all directions is therefore not feasible; for a grid of size 65×17×3, restriction
in all directions cannot be done since the vertical grid size cannot be decreased.
Restriction in the horizontal directions on the other hand is possible. Not re-
stricting in all directions at once is called semi-coarsening. Semi-coarsening in
both horizontal directions reveals a coarse grid of size 33× 9× 3. Instead of ap-
plying semi-coarsening along both x- and y-direction, semi-coarsening along just
one direction is possible as well. For semi-coarsening, the restriction operator
should work in the restricted directions only. That is (2.1) should approximate
the integral of the restricted directions only. Semi-coarsening can in general be
applied instead of full coarsening if chosen to. A general coarsening strategy
based on analysis of the smoothers is provided in section 2.4.

2.1.4 Coarse grid solver

The job of the coarse grid operator is to find a solution to the coarse grid ap-
proximation. If the grid is suitable for another division of size, CGC can be used
to solve this problem as well. At some point it will no longer be possible to do a
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restriction operation on the grid. At this point, the coarse grid operator should
solve the system completely such that remaining low frequency components are
removed. This can also be done at an earlier state if CGC proves inefficient for
small grids.

When CGC is used as coarse grid operator, the algorithm is obviously recursive.
Depending on the order in which CGC is invoked, different recursive patterns
called cycles arise. Three particularly wide used strategies are called F-, V-
and W-cycles due to their F-, V- and W-like recursion patterns. The V- and
W-cycle generalize to the µ-cycle (algorithm 3). Using µ = 1 reveal the V-cycle
and µ = 2 the W-cycle.

Algorithm 3 µ-cycle

1: repeat
2: Relax ν1 times on Au = f with initial guess v0

3: Compute coarse grid residual: ř = R(f −Av1)
4: Set initial guess ě = 0
5: if possible then
6: Update ě using CGC on Ǎě = ř µ times
7: else
8: Solve Ǎě = ř

9: end if
10: Correct fine grid approximation: v2 = v1 + Iě

11: Relax ν2 times on Au = f with initial guess v1

12: until converged

2.1.5 Smoothers

In Coarse Grid correction, the objective of the smoother is to eliminate or at
least reduce the high frequency error components of the system. Although all
components are needed in order to make the algorithm work, the effectiveness
of the smoother proves to be the key to make the algorithm efficient. In the
following sections we will introduce a number of smoothers and look into their
pros and cons.

Since the preconditioner is low order and ghost points take care of the boundary,
the approximation to the transformed Laplace equation is everywhere presented
by central approximations. On a uniform ordered grid, the central approxima-
tion to the second derivative of some discrete valued function is given by the
stencil

S =
1

h2

[
1 −2 1

]
(2.15)
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where h is the step length. Applying the above stencil to (1.51), the full 3D
stencil is obtained:

S3D =
1

h2
x

[ 1 −2 1 ]x+
1

h2
y

[ 1 −2 1 ]y+(∂zσ)
2 1

h2
σ

[ 1 −2 1 ]σ (2.16)

All the smoothers presented are derived from some splitting of the original using

either present (u
[k]
i ) or future iterates (u

[k+1]
i ) of the grid points. A neighboring

future iterate can be obtained by e.g. updating on top of the old value. It is
therefore convenient to present the methods using forward and backward stencils
denoted S+ and S− where S = S+ + S−. A forward stencil is a stencil applied
to future iterates of the grid and its backward counterpart applied to present
values of the grid. Performing a relaxation on the system can, regardless of
method presented, be written in matrix form

G+x[k+1] +G−x[k] = b (2.17)

G+x[k+1] = b−G−x[k] = b̃ (2.18)

where G+ and G− represent the matrices generated by applying all of S+ and
S− to the problem.

In general for methods which can be presented in matrix form, it is required
that the spectral radius of the iteration matrix G to be at max 1; the magnitude
of a matrix vector product is limited by the spectral radius, formally described
by (2.20).

ρ(G) = max
i
|λi| (2.19)

||Gkv|| ≤ ρ(G)k||v|| (2.20)

ρ(G) ≤ 1⇒ ||Gkv|| ≤ ||v|| (2.21)

where λi are the eigenvalues of the iteration matrix G. For an iterative method
using forward and backward stencil, G is given by

G = (G+)−1G− (2.22)

2.1.5.1 The Jacobi Method

The Jacobi method is derived from a splitting of the linear system:

Au =b (2.23)

(L+D +U)u =b (2.24)

Du =− (L+U)u+ b (2.25)

u[k+1] =D−1(−(L+U)u[k] + b) (2.26)
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where L,D and U are lower, upper and diagonal elements of A respectively.
Another presentation uses the residual rather than L and U : Continuing from
(2.25) it is found that

Du =− (L−D +D +U)u+ b (2.27)

Du =Du− (L+D +U)u+ b (2.28)

Du[k+1] =Du[k] + (−Au[k] + b) (2.29)

u[k+1] =u[k] +D−1r[k] (2.30)

The forward stencil notation is obtained immediately from (2.29) related to
(2.18) and (2.16):

G+ = D, G− = D −A⇒ (2.31)

S+ =
1

(∆x)2
[ 0 −2 0 ]x +

1

(∆y)2
[ 0 −2 0 ]y + (∂zσ)

2 1

(∆σ)2
[ 0 −2 0 ]σ

(2.32)

S− = −

(
1

(∆x)2
[ 1 0 1 ]x +

1

(∆y)2
[ 1 0 1 ]y + (∂zσ)

2 1

(∆σ)2
[ 1 0 1 ]σ

)

(2.33)

The Jacobi method exists in a slightly modified version, called damped Jacobi.
Damped Jacobi is given by

u[k+1] = u[k] + λD−1r (2.34)

where λ is the dampening factor. The forward stencil notation is thus

G+ = D, G− = D − λA⇒ (2.35)

S+ =
1

(∆x)2
[ 0 −2 0 ]x +

1

(∆y)2
[ 0 −2 0 ]y +

(∂zσ)
2

(∆σ)2
[ 0 −2 0 ]σ

(2.36)

S− = −λ




1

(∆x)2




1
2
λ
− 2

1



T

x

+
1

(∆y)2




1
2
λ
− 2

1



T

y

+
(∂zσ)

2

(∆σ)2




1
2
λ
− 2

1



T

σ




(2.37)

G+ contains only the diagonal elements of A. The Jacobi and damped Jacobi
method is therefore embarrassing parallel; all elements of u[k+1] can be cal-
culated concurrently with no synchronization needed since u[k] and u[k+1] are
distinct vectors.
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2.1.5.2 Gauss-Seidel methods

Gauss-Seidel methods overwrite values of x[k] rather than saving x[k+1] in a
distinct vector. The grid values are thus a mix of future and present values. The
order in which the values are updated determines which Gauss-Seidel method is
being used. The two most widely used Gauss-Seidel methods are Lexicographic
Gauss-Seidel (GSLEX) and Red Black Gauss-Seidel (RBGS). 3D GSLEX is
given by the two stencils

S− =
1

(∆x)2
[ 0 0 1 ]x +

1

(∆y)2
[ 0 0 1 ]y + (∂zσ)

2 1

(∆σ)2
[ 0 0 1 ]σ

(2.38)

S+ =
1

(∆x)2
[ 1 −2 0 ]x +

1

(∆y)2
[ 1 −2 0 ]y + (∂zσ)

2 1

(∆σ)2
[ 1 −2 0 ]σ

(2.39)

Notice that the only difference from the Jacobi method is that some values have
moved from S− to S+. This particular Gauss-Seidel method starts in a corner
of the domain and works from there. Because GSLEX work diagonally across
the domain, it is not embarrassing parallel thus not particularly well suited for
parallel use.

The Red Black Gauss-Seidel method update every second value concurrently:
A Jacobi relaxation is performed, first on the red marked grid points and then
black marked grid points afterwards. Red and Black points are interleaved.
RBGS applied to the 1D Laplace equation is given by

U
[k+1]
i =





1
2

(
U

[k]
i−1 + U

[k]
i+1

)
red grid points

1
2

(
U

[k+1]
i−1 + U

[k+1]
i+1

)
black grid points

(2.40)

The method is therefore better suited for parallel use even when there are many
processing units available; half the domain can be processed at the time. RBGS
is a so called 2 grid operator which does not allow for the method to be written
directly in forward and backward notation.

2.1.5.3 Line smoothing

Jacobi and Gauss-Seidel are point smoothers which generally have the drawback
that they are inefficient for systems with anisotropic stencils4. A line solver on
the other hand suffer less from anisotropic stencils5. Line smoothers update

4Investigated further in section 2.3
52D or 3D stencils: Anisotropy occurs if the elements in one direction generally are larger

than in the remaining directions.
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an entire line in the physical domain at the time rather than a point at the
time. The remaining directions are updated using a point smoothing strategy.
In forward stencil notation, the 2nd order accurate σ-line smoother applied to
the transformed Laplace equation is given by

S− = S−

x + S−

y + (∂zσ)
2 1

(∆σ)2
[ 0 0 0 ]σ (2.41)

S+ = S+
x + S+

y + (∂zσ)
2 1

(∆σ)2
[ 1 −2 1 ]σ (2.42)

Since the line smoother work in one direction only, S−

x , S+
x , S−

y and S+
y are

determined by the strategy (Jacobi, GSLEX, RBGS, ...) used in the other
directions. For a domain of size6 Nx × Ny × Nσ, a σ-line Jacobi smoother
consists of Nx ·Ny decoupled linear systems which can be solved independently.
G+ is in that case given by the S+ stencils alone; when xσ define the elements
of a line in the σ-direction in the domain, (2.18) can be written as

Ĝ
+
uσ = b̂ (2.43)

Ĝ
+
= −

2

(∆x)2

[
I

0

]
−

2

(∆y)2

[
I

0

]
+

(∂zσ)
2

(∆σ)2




1
1 −2 1

. . .

1 −2 1
1 −2 1
−1 1




(2.44)

where 0 is a row of 0’s and I an Nσ×Nσ identity matrix. Further Ĝ is only part
of G and b̂, the corresponding elements of b̃. The first row specifies the Dirichlet
boundary conditions at the top. The last row apply the 2nd order Neumann
condition at the bottom through a ghost point as specified in section 1.2.1.

Because of the ghost point, Ĝ
+
is a (Nσ+1)×(Nσ+1) matrix. For Gauss-Seidel

type smoothers in the x, y-directions, the line relaxation will be determined by
the same system as well; when the smoother has reached the line in question, it
locally performs a Jacobi relaxation.

Ĝ
+
is tri-diagonal matrix with a single out-lier for the boundary element. When

the diagonal elements are determined by a−1,a0 and a1 and the out-liner e, Ĝ
+

6Ghost point not included
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is given by

Ĝ+ =




a0,1 a1,1
a−1,2 a0,2 a1,2

. . .
. . .

. . .

a−1,Nσ
a0,Nσ

a1,Nσ

e a−1,Nσ+1 a0,Nσ+1 a1,Nσ+1




(2.45)

e = −1 (2.46)

a−1 =
1

(∆σ)2




0
1
...
1
0



, a0 =




1

−2( 1
(∆x)2 + 1

(∆y)2 + (∂zσ)
2

(∆σ)2 )
...

−2( 1
(∆x)2 + 1

(∆y)2 + (∂zσ)
2

(∆σ)2 )

1



, a1 =

1

(∆σ)2




0
1
...
1
0




(2.47)

The system can be solved efficiently using Gaussian elimination. For tridiag-
onal matrices, Gaussian elimination is also known as the Thomas Algorithm.
Algorithm 4 present the Thomas Algorithm modified to include the out-lier e.

Replacing the point smoother with a line smoother does not change the scal-
ability of the algorithm; updating with a point smoother is an O(1) operation
performed Nσ times resulting in O(Nσ) operations to update a row. For the
line smoother, the cost is O(c · (Nσ + 1)) = O(Nσ) operations (c is a constant).
Although the cost of a relaxation is higher, the algorithm therefore still has the
same scaling properties as a point smoother.

2.2 Digital Signal Processing tools

Tools from Digital Signal Processing (DSP) will be used for an in depth analysis
of Coarse Grid Correction; DSP is concerned with the representation of signals
by a sequence of numbers and processing these signals. If the grid values are
thought of as a signal, smoothing, restriction and prolongation can be thought
of as processing the signal. The processes correspond to convolve with a filter
and/or change sample rate. Exactly due to the similarity to convolution, DSP
gets interesting as a tool for analysis of the smoother: Convolution in the spatial
domain corresponds to multiplication in the frequency domain and the Fourier
form of the coarse grid correction operation can therefore be used to analyze
its convergence properties. When the magnitude of the Fourier form is known,
it can be used to provide an upper limit to how fast some particular error



34 Analysis of the iterative Laplace solver

Algorithm 4 Thomas Algorithm

1: a ≡ a−1, b ≡ a0, c ≡ a1 ⊲ in place variables for improved readability
2: d ≡ b̃

3: for i← 2, Nσ do ⊲ Forward elimination
4: scale← ai

bi−1

5: ai ← ai − bi−1 · scale
6: bi ← bi − ci−1 · scale
7: di ← di − di−1 · scale
8: end for

9: i← Nσ + 1 ⊲ Apply boundary condition
10: scale← e

bi−2

11: ai ← ai − ci−2 · scale
12: di ← di − di−2 · scale

13: scale← ai

bi−1

⊲ Forward elimination - last row

14: ai ← ai − bi−1 · scale
15: bi ← bi − ci−1 · scale
16: di ← di − di−1 · scale

17: di ←
di

bi
⊲ Backward elimination

18: for i← Nσ, 1 do
19: di ← di − di+1

ci
bi

20: di ←
di

bi
21: end for

22: b̃← d
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component decay. Further it will also be easily seen if the method is divergent
for some particular approximation: If the Fourier form for any frequency has
a magnitude greater than 1, the smoother will be divergent! First a short
introduction to DSP (for details, see [9]).

Convolution is an operation defined for both continuous and discrete domains.

(f ∗ g) (t) ≡

∫
∞

−∞

f (τ) g (t− τ) dτ =

∫
∞

−∞

g (τ) f (t− τ) dτ (2.48)

(f ∗ g) (n) ≡

∞∑

m=−∞

f (m) g (n−m) =

∞∑

m=−∞

g (m) f (n−m) (2.49)

The discrete version relates to CGC since it is a formalized way of calculating
a weighted neighborhood sum using the same weight allover the domain. Fi-
nite difference uses a weighted neighborhood sum with a weight which might
change over the domain. Notice that the operation is symmetric; (f ∗ g) (n) ≡
(g ∗ f) (n). In other words it does not matter which of f or g is signal or filter.
Mathematically this means that the convolution satisfies the commutative law.
Convolution is also an associative and distributive operation.

Commutativity
f(n) ∗ g(n) = g(n) ∗ f(n) (2.50)

Associativity

[f(n) ∗ g1(n)] ∗ g2(n) = f(n) ∗ [g1(n) ∗ g2(n)] (2.51)

Distributivity

f(n) ∗ [g1(n) + g2(n)] = f(n) ∗ g1(n) + f(n) ∗ g2(n) (2.52)

For analysis of the smoother, the Fourier transform7 of an infinite finite-energy
discrete valued function will be needed

1D :F (ω) =

∞∑

k=−∞

f(n)e−iπkω, ω ∈]− 1; 1] (2.53)

For a finite discrete valued function x0, ..., xn−1, the Fourier form is given by a
set of Fourier coefficients X0, ..., Xn−1

Xk =

N−1∑

n=0

xne
−i2π k

N
n (2.54)

7Alternatively Z-transform can be used: F =
∑

∞

k=−∞
f(n)zk
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Be aware that both F (ω) and Xk are complex valued. For real valued functions
on large grids, Xk → F (± k

N
) and it will for analytic purposes therefore suffice

to use (2.53). For the analysis tools to be valid, the system must further be
Linear Time-Invariant (LTI). That is signal and filter does not change during
the convolution; if a value of the signal or filter has been processed, it must not
change before the entire signal has been processed. This is not always the case
for the smoother of CGC since the discretization/the filter might change near
the borders. This is the case for a high order approximation to the non-linear
transformed Laplace problem since the discretization changes for every grid
node due to the non-linear terms. Further, the finite difference stencils might
change near the edge of the domain. Although convolution and smoothing is
not totally equivalent, it is still possible to analyze what happens to the signal
locally. One is called Fourier Analysis and the other Local Fourier Analysis
(LFA). The strategy in either case is to find the frequency response of the filter.

2.2.1 1D Local Fourier Analysis

Since the smoother depends on both problem and discretization, both should
be chosen prior to the analysis. For the ordinary Laplace equation in 1D, a
symmetric 2nd order stencil is given by

h−2 (Ui−1 − 2Ui + Ui+1) = U ′′

i (2.55)

A single Jacobi update on a Poisson equation corresponds to update the element
Ui by a weighted sum of a neighborhood around Ui. In case of the 2nd order
stencil presented here, the update is reduced to

U
[k+1]
i =

1

2

(
U

[k]
i−1 + U

[k]
i+1 + bi

)
(2.56)

In order to analyze the method using LFA, b is set to 0. In underline notation8,
the filter to analyze is given by

f(n) =
[

1
2 0 1

2

]
(2.57)

The frequency response of the filter is found using the Fourier transform for

8If unknown to the reader, this is elaborated in Appendix B
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discrete time signals.

F (ω) =

∞∑

n=−∞

f(n)einωπ, ω ∈]− 1; 1] (2.58)

F (ω) = f(−1)e−iωπ + f(0)e0 + f(1)eiωπ (2.59)

F (ω) =
1

2
(cos(−ωπ) + i sin(−ωπ)) +

1

2
(cos(ωπ) + i sin(ωπ)) (2.60)

F (ω) = cos(ωπ) (2.61)

Damped Jacobi is very similar to the Jacobi method. Given the Jacobi iterate

Ũ
[k+1]
i , damped Jacobi is given by

U
[k+1]
i = (1− λ)U

[k]
i + λŨ

[k+1]
i (2.62)

where λ > 0. Insertion of (2.56) gives the damped Jacobi iteration for a 2nd

order ordinary Laplace equation

U
[k+1]
i = (1− λ)U

[k]
i + λ

1

2

(
U

[k]
i−1 + U

[k]
i+1

)
(2.63)

Since convolution is distributive, the frequency response Fλ for damped Jacobi
is easily computed using the frequency response F for the corresponding Jacobi
method.

Fλ(ω) = (1− λ)ei0ωπ + λF (ω) (2.64)

= 1− λ(1− cos(ωπ)) (2.65)

Varying λ thus change the magnitude response of the frequencies. Figure 2.4
shows frequency responses for the analyzed situation for various choices of λ.
What is interesting to notice is that for any 0 < λ < 1, the magnitude of the
response of the high frequencies (the dyed area of fig. 2.4) are less than 1 thus
damped.

Normally the goal for a solver is to find a solution to some system using that
solver over and over. In CG, the main purpose for the smoother is to reduce
the error of the high frequency components rather than solving the system.
Altering the weight in damped Jacobi changes the frequency response, so a
straight forward idea will be to find an optimal value of λ. Most often the grid
will be re-sampled by doubling the step length which is nearly the same as using
half the number of grid points. Halving the sample rate cause the frequency
spectrum of the grid values to be stretched to double length which is elaborated
in section 2.2.2. Frequencies in the range 0.5 to 1 will thus need to be cut off 9;

1/2 ≤ ωhigh ≤ 1

9The cut frequency can be narrowed a bit further down due to the grid is of finite size; the
grid can only contain resolution up to ω = 1− L

h
. 1/2 ≤ ωhigh ≤ 1 is asymptotic behavior
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Figure 2.4: Damped Jacobi frequency response for 2nd order approximation to the
Laplace equation. Largest magnitude frequency response in ( 1

2
≤ ω ≤ 1) for given λ

marked with × or o (also see fig. 2.5)

The objective will therefore be to minimize the maximal value of the frequency
response in this area.

min sup{|Fλ(ω)| | ω ∈ ωhigh, 0 ≤ λ} (2.66)

For this particular frequency response, the maximum absolute value in the given
interval is found in the end of the interval (ie. ω = 1

2 or ω = 1). Hence the
optimization problem reduces to

min max(|Fλ(
1

2
)|, |Fλ(1)|) (2.67)

Fλ(
1

2
) = 1− λ(1− cos(

π

2
)) = 1− λ (2.68)

Fλ(1) = 1− λ(1− cos(π)) = 1− 2λ (2.69)

Above equations are visualized in fig. 2.5. The minimal maximum frequency
response in the domain is 1/3 and is obtained with λ = 2/3. λ = 2/3 is also the
suggested weight of A Multigrid Tutorial [2].

In order to determine if the algorithm is convergent also for high order approxi-
mations, the local Fourier analysis generalized for approximations to the Laplace
equation. The weighted neighborhood sum and corresponding filter used in the
Jacobi update will in general be given by

U
[k+1]
i =

1

c0

[
−1∑

k=−∞

U
[k]
i+kck +

∞∑

k=1

U
[k]
i+kck

]
(2.70)

f(n) =
1

c0

[
· · · c−2 c−1 0 c1 c2 · · ·

]
(2.71)
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sup{|Fλ(ω)| |
1
2 ≤ ω ≤ 1}
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Figure 2.5: Maximum value of frequency response in high frequency interval ( 1
2
≤

ω ≤ 1) depends on λ. Laplace equation 2nd order approximation. Samples shown in
fig. 2.4 marked with +.

with corresponding frequency response

F (ω) =
...+ c−2e

−2i + c−1e
−i + 0 + c1e

i + c2e
2i + ...

c0

The particular values of ck can be calculated using the previously mentioned
procedure fdcoeffF by Fornberg. The frequency response for damped Jacobi
is found by insertion of (2.70) into (2.62). Figure 2.6 shows frequency responses
for various central approximations with various values of λ. For the 3D problem,
off-centered approximation are needed near the surface. The central element of
the stencil will always be element no. 2 regardless of order. For the very same
reason the 2nd order approximation will never be ‘too wide’. Figure 2.7 shows
frequency responses for off-center stencils. The frequency response for some of
the high order off-center approximations have values larger than 1 regardless of
λ. The interpretation is that damped Jacobi will be divergent for those stencils.
When the smoother is divergent, CGC will also be divergent. The conclusion is
that damped Jacobi is an insufficient smoother for the linear Laplace problem
if the spatial approximation order is greater than 4.

2.2.2 Restriction and prolongation

In the previous Section it was illustrated how the Jacobi method acts as a
smoothening filter. As pointed out in section 2.1.1, CGC seek to eliminate
the high frequency error components and deal with low frequency components.
In order to form high frequency components from low frequency components,
the grid values are transfered to a coarse grid. A grid transfer corresponds for
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Figure 2.6: Frequency response magnitude of damped Jacobi using different weights
and with various central approximations to the ordinary Laplace equation. From left
approximation orders are 2, 4, 6 and 8.
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and with various asymmetric approximations to the ordinary Laplace equation. From
left approximation orders are 4, 6 and 8.
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Figure 2.8: Frequency response magnitude for full weight restriction - high frequen-
cies are removed although not very effectively.

DSP to re-sample the signal. Throughout this project, only matching grids are
considered. The re-sampling rate for restriction is therefore given by

ncoarse

nfine

=
n−1
2

n
→

1

2
for n→∞

When a signal is re-sampled, the Fourier form of the signal is either stretched
or compacted. For down-sampling (restriction), the signal is stretched by the
down-sampling factor. The down-sampling factor is here always 2 since the
number of grid points is always halved. If the signal carriers high frequencies,
they will result in aliasing components which is a potential problem: The aliasing
components might result in a frequency response which is larger than 1 which
imply that the scheme is divergent. Fortunately, full weighting help limiting
the aliasing components since it serve as a pre re-sampling filtering. In the FW
used, the weighting of the grid points is the tensor product of

1

4
[1 2 1] (2.72)

In 1D, the response is given by

1

4
z−1 +

1

2
+

1

4
z1 =

1

2
+

1

2
cos ωπ (2.73)

The frequency response is illustrated in fig. 2.8 and seem to approximate a high
cut filter thus reduce aliasing components.

When the signal is up-sampled (prolongated), the frequency response is com-
pacted by the up-sampling factor. For up-sampling a number of zeros are in-
jected into the signal; if the up-sampling factor is the integer I, I − 1 zeros
are injected between every signal value. Resulting, a lot of aliasing components
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are introduced to the signal and the signal power is reduced by a factor of I.
FW corresponds to add a post filtering process to the re-sampling. For the FW
procedure used in this project, the filter and corresponding response is the same
as the pre down-sampling filtering ((2.72) and (2.73)).

2.2.3 Combining smoother and grid transfer procedures

We have now analyzed the basic components of Coarse Grid Correction indi-
vidually. The remaining question is how they perform when used together. For
that purpose we will use the convolution theorem: Convolution in the spatial
domain corresponds to multiplication in the frequency domain. In particular
for a signal f(n), convolved with two filters h1 and h2 with frequency response
H1 and H2 respectively,

f̂(n) = (f ∗ h1 ∗ h2)(n) = (f ∗ h2 ∗ h1)(n)⇔ (2.74)

F̂ (ω) = (F ·H1 ·H2)(ω) = (F ·H2 ·H1)(ω) (2.75)

The frequency response of the entire system is thus calculated by simple mul-
tiplication of the Fourier form of the individual operators. A 1 grid correction
scheme will have total system frequency response R

R = Sν1 ·RFW · S · IFW · S
ν2 (2.76)

(2.77)

Here S represent the response of the coarse grid solver. S, R, and I are the
frequency responses of the smoother, restriction and prolongation procedures.
More important, the magnitude of R is bounded by the magnitude of the com-
ponents:

|R| ≤ |S|ν1 · |RFW | · |S| · |IFW | · |S|
ν2 (2.78)

The coarse grid solver ideally drive the error to zero for the coarse grid. For
practical purposes, it is sufficient to perform just a number of additional smooth-
ings.

2.3 3D Local Fourier Analysis

The goal of the project is to create an efficient solver for a 3D non linear problem.
Up until now it is shown how Local Fourier Analysis can be used to analyze how
the solver works and how it performs in a 1D case. This will now be generalized
to 3D. In the upcoming sections LFA will be used to analyze both the simple
Jacobi smoother and some of the better smoothers presented in section 2.1.5.
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The important tool is still the Fourier transform. For short notation, the Z-
transform will be used rather than the complex exponential

2D :F (z) =
∞∑

k=−∞

∞∑

l=−∞

f(k, l)zkxz
l
y (2.79)

3D :F (z) =

∞∑

k=−∞

∞∑

l=−∞

∞∑

m=−∞

f(k, l,m)zkxz
l
yz

m
σ (2.80)

The Z-transform is a generalization of the Fourier transform; insertion of z =
eiωπ reveal the Fourier transform. The Z-transform applied to some 2D filter is
shown below




f−1,−1 f−1,0 f−1,1

f0,−1 f0,0 f0,1
f1,−1 f1,0 f1,−1


 (2.81)

↓

F = sum






z−lz−kf−1,−1 z−lf−1,0 z−lzkf−1,1

z−kf0,−1 f0,0 zkf0,1
zlz−kf1,−1 zlf1,0 zlzkf1,1




 (2.82)

F = z−k
x z−l

y f−1,−1 + z−l
y f0,−1 + zkxz

−l
x f1,−1 + z−k

x f−1,0

+ f0,0 + zkxf1,0 + z−k
x zlyf−1,1 + zlyf0,1 + zkxz

l
yf1,1 (2.83)

For the analysis we will use the forward and backward stencils introduced in
section 2.1.5.

Given the frequency responses F+ and F− for S+ and S−, the frequency re-
sponse associated with the method is then found by

F = −
F−

F+
(2.84)

The frequency responses in the different directions are important; if the high
cut effect is little in a direction which will be restricted, aliasing components
will ruin the signal informations and result in overall poor convergence of the
algorithm. In order to investigate the effectiveness of a smoother, the partial
frequency response magnitude is introduced. The partial frequency response
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magnitudes are given by

|Fx(ωx)| = sup
Tx

|F (ω)| = sup |F (ω)| , 0 ≤ ωy < 1, 0 ≤ ωσ < 1 (2.85)

|Fy(ωy)| = sup
Ty

|F (ω)| = sup |F (ω)| , 0 ≤ ωx < 1, 0 ≤ ωσ < 1 (2.86)

|Fσ(ωσ)| = sup
Tσ

|F (ω)| = sup |F (ω)| , 0 ≤ ωx ≤ 1, 0 ≤ ωy ≤ 1 (2.87)

2.3.1 Damped Jacobi method

We will now look at the response for the damped Jacobi method applied to
the transformed Laplace equation. Using the stencil from the ordinary Jacobi
method ((2.16)) and the distributive properties of the Fourier transform demon-
strated for (2.62), the response of the damped Jacobi is found to

FJ = 1− λ+ λ

1
(∆x)2 (z

−k + zk) + 1
(∆y)2 (z

−l + zl) + (∂zσ)
2

(∆σ)2 (z
−m + zm)

−
(
−2

(
1

(∆x)2 + 1
(∆y)2 + (∂zσ)2

(∆σ)2

)) (2.88)

FJ = 1− λ+ λ

1
(∆x)2 cosωxπ + 1

(∆y)2 cosωyπ + (∂zσ)
2

(∆σ)2 cosωzπ

1
(∆x)2 + 1

(∆y)2 + (∂zσ)2

(∆σ)2

(2.89)

In the 1D case we saw that the optimal smoothing factor was given at λ = 2/3.
This is not the case for 3D since the oscillatory modes for the other direction
mixes has an influence. The problem can be reduced by insertion of ∆σ

∂zσ
= ǫ∆y =

ǫ∆x where ǫ controls the anisotropy of the stencil. Notice that ∆σ
∂zσ

correspond

to the physical step-length in the vertical direction; ∆σ
∂zσ

= ∆σ
d

= ∆z.

FJ = 1− λ+ λ

1
(∆x)2 cosωxπ + 1

(∆x)2 cosωyπ + 1
ǫ2(∆x)2 cosωσπ

1
(∆x)2 + 1

(∆x)2 + 1
ǫ2(∆x)2

(2.90)

= 1− λ+ λ
(cosωxπ + cosωyπ)ǫ

2 + cosωσπ

2ǫ2 + 1
(2.91)

ǫ→0
−→ 1− λ+ λcosωσ (2.92)

ǫ→∞

−→ 1− λ+ λ
cosωxπ + cosωyπ

2
(2.93)

(2.94)
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The frequency response presented here shows the response of the full filter. The
partial frequency response magnitude in the σ-direction is given by

|FJ,σ| = sup
Tσ

|1− λ+ λ
(cosωxπ + cosωyπ)ǫ

2 + cosωσπ

2ǫ2 + 1
| (2.95)

= max |1− λ+ λ
±2ǫ2 + cosωσπ

2ǫ2 + 1
| (2.96)

ǫ→0
−→ |1− λ+ λcosωσ| (2.97)
ǫ→∞

−→= 1 (2.98)

The same can be done for the other directions as well. The important conclusion
to draw here is that if the step length in one direction is much larger than the
others (ǫ → ∞), damped Jacobi will be highly ineffective in smoothing in that
direction regardless of λ. From (2.96) we get that the dampening factor for the
high frequency range of the partial response is found to

|FJ,σ| = max |1− λ+ λ
2ǫ2 + 0

2ǫ2 + 1
|, |1− λ+ λ

−2ǫ2 − 1

2ǫ2 + 1
| (2.99)

= max |1− λ

(
1−

2ǫ2

2ǫ2 + 1

)
|, |1− 2λ| (2.100)

This points out that λ < 1 should be chosen in order to ensure convergence
since λ < 1 ⇒ |FJ,σ| < 1. As in the 1D case, we can find a value of λ which
maximizes the damping of the high frequency range. This time it will obviously

depend on ǫ. Since 0 < 2ǫ2

2ǫ2+1 < 1 ∀ǫ, the optimal value of λ is found in the

interval 1
2 ≤ λ ≤ 1. Hence the maximal smoothing is found at

1− λ

(
1−

2ǫ2

2ǫ2 + 1

)
= 2λ− 1 (2.101)

λ

(
3−

2ǫ2

2ǫ2 + 1

)
= 2 (2.102)

λ =
2

3− 2ǫ2

2ǫ2+1

(2.103)

Although this is the optimal λ for damping the partial frequency response, the
problem is coupled to the remaining partial frequency responses as well: Altering
ǫ affects how the remaining directions are smoothed. Since λ depends on ǫ, it
is non-trivial to choose the optimal damping. For isotropic stencils (ǫ = 1), the
optimal value of λ is given by (2.103) though:

λǫ=1 =
2

3− 2
2+1

=
6

7
(2.104)
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By insertion into (2.100), the partial frequency response magnitude is found to

FJ,ǫ=1 = 2λǫ=1 − 1 = 2
6

7
− 1 =

5

7
(2.105)

2.3.2 Lexicographic Gauss-Seidel

Using a forward and backward stencil notation, the 1D GSLEX applied to the
Laplace problem takes form

S+U t+1 + S−U t = 0 (2.106)

S+ = [ 1 −2 0 ], S = [ 0 0 1 ] (2.107)

The corresponding frequency response of the 1D GSLEX is then given by

F− = 0z−1 + 0 + 1z1 (2.108)

F+ = 1z−1 − 2 + 0z1 (2.109)

FGSLEX = −
z

z−1 − 2
(2.110)

The 3D stencil is given by (2.39). The corresponding frequency response is
found to

F− =
1

(∆x)2
zx +

1

(∆y)2
zy + (∂zσ)

2 1

(∆σ)2
zσ (2.111)

F+ =
1

(∆x)2
(z−1

x − 2) +
1

(∆y)2
(z−1

y − 2) + (∂zσ)
2 1

(∆σ)2
(z−1

σ − 2) (2.112)

FGSLEX = −

1
(∆x)2 zx + 1

(∆y)2 zy + (∂zσ)
2 1
(∆σ)2 zσ

1
(∆x)2 (z

−1
x − 2) + 1

(∆y)2 (z
−1
y − 2) + (∂zσ)2

1
(∆σ)2 (z

−1
σ − 2)

(2.113)

Inserting ∆σ
∂zσ

= ǫ∆y = ǫ∆x we can analyze the smoothing properties for
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Finding the GSLEX partial response for the σ-direction
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Figure 2.9: The partial response is found numerically by evaluation of |Fσ|
at various ω (left). The maximum partial high frequency response is given by
max supTy

|F (ω)|, 0.5 ≤ ωσ < 1, (right, marked with a circle).

anisotropic stencils.

F = −

1
(∆x)2 zx + 1

(∆x)2 zx + 1
ǫ2(∆x)2 zσ

1
(∆x)2 (z

−1
x − 2) + 1

(∆x)2 (z
−1
y − 2) + 1

ǫ2(∆x)2 (z
−1
σ − 2)

(2.114)

= −
(zx + zy)ǫ

2 + zσ

(z−1
x + z−1

y − 4)ǫ2 + z−1
σ − 2

(2.115)

ǫ→1
−→

zx + zy + zσ

6− z−1
x − z−1

y − z−1
σ

(2.116)

ǫ→0
−→

zσ

2− z−1
σ

(2.117)

ǫ→∞

−→
zx + zy

4− z−1
x − z−1

y

(2.118)

GSLEX also prove inefficient for highly anisotropic stencils; the dampening
in the σ-direction here vanishes for ǫ → ∞. For equally sized step lengths,
the smoother is better than damped Jacobi though; using a simple numerical
method (illustrated by fig. 2.9, the damping factor at ǫ = 1 is found at zx =

zy ≈ ei
1

10
π, zσ = ei

1

2
π.

DGSLEX,ǫ=1(e
i 1

10
π, ei

1

10
π, ei

1

2
π) ≈ 0.57 (2.119)

This is ( 1−0.57
1−0.71 ) 62% better than the damped Jacobi method.

2.3.3 Line smoother

A line smoother is applied in one direction with a point smoothing strategy in
the others. Using damped Jacobi in the horizontal directions, the method can
be presented in forward stencil notation:
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S− =
1

h2
x

[ 1 0 1 ]x +
1

h2
y

[ 1 0 1 ]y + (∂zσ)
2 1

h2
σ

[ 0 0 0 ]σ (2.120)

S+ =
1

h2
x

[ 0 −2 0 ]x +
1

h2
y

[ 0 −2 0 ]y + (∂zσ)
2 1

h2
σ

[ 1 −2 1 ]σ

(2.121)

The frequency response of the σ-line Jacobi smoother is then given by

F− =
1

h2
x

(zx + z−1
x ) +

1

h2
y

(zy + z−1
y ) (2.122)

F+ =
1

h2
x

(−2) +
1

h2
y

(−2) + (∂zσ)
2 1

h2
σ

(zσ − 2 + z−1
σ ) (2.123)

F = −

1
h2
x
(zx + z−1

x ) + 1
h2
y
(zy + z−1

y )

− 1
h2
x
2− 1

h2
y
2 + (∂zσ)2

1
h2
σ
(zσ − 2 + z−1

σ )
(2.124)

We again use hσ

∂zσ
= ǫhy = ǫhx to analyze the smoothing properties of the

algorithm

F =

1
h2
x
2 cosωxπ + 1

h2
x
2 cosωyπ

1
h2
x
2 + 1

h2
x
2 + 1

ǫ2h2
x
(2− 2 cosωσπ)

(2.125)

=
(cosωxπ + cosωyπ)ǫ

2

2ǫ2 + 1− cosωσπ
(2.126)

ǫ→0
−→

{
0 ωσ 6= 0
cosωxπ+cosωyπ

2 ωσ = 0
(2.127)

ǫ→∞

−→
cosωxπ + cosωyπ

2
(2.128)

The partial response in the direction of the line smoothing differs from the other
directions.

|Fσ| = sup
Tσ

∣∣∣∣
(cosωxπ + cosωyπ)ǫ

2

2ǫ2 + 1− cosωσπ

∣∣∣∣ (2.129)

=
2ǫ2

2ǫ2 + 1− cosωσπ
(2.130)

ǫ→0
−→

{
0 ωσ 6= 0
1 ωσ = 0

(2.131)

ǫ→∞

−→ 1 (2.132)
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Partial response magnitude in the direction of the line smoother depend on ǫ
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Figure 2.10: The partial frequency response (left) depend on ǫ. The maximum
partial high frequency response therefore also depend on ǫ (right).

Decreasing the step size in the direction of the line smoother increases the
smoothing effect of the line smoother. If the step size on the other hand is
larger than in the other directions, the smoothing factor is very limited which
is illustrated for large ǫ in fig. 2.10.

The smoothing in the other directions is not very different from the point
smoother used.

|Fxy| = sup

∣∣∣∣∣

1
h2
x
2 cosωxπ + 1

h2
x
2 cosωyπ

1
h2
x
2 + 1

h2
x
2 + 1

ǫ2h2
x
(2− 2 cosωσπ)

∣∣∣∣∣ , 0 ≤ ωσ < 1 (2.133)

=
| cosωxπ + cosωyπ|ǫ

2

2ǫ2
(2.134)

=
| cosωxπ + cosωyπ|

2
(2.135)

It is immediately noticed that this is also the size of the frequency repose magni-
tude of the 2D Jacobi point smoother. It is therefore reasonable that applying a
line smoother in some direction generally improves the partial smoothing in all
directions. For the Jacobi method in particular we already know that damping
the iterate will improve the smoothing properties. Although a damping factor
will improve the smoothing effect of max |Fxy|, it will reduce the smoothing
effect of |Fσ|.

2.4 Results of the analysis

Regardless of smoother, the grid should never be restricted in a given direction
if the error is not sufficiently smooth; the signal will be disturbed by aliasing
effects otherwise. It is therefore crucial that the error is sufficiently smooth in
a given direction prior restriction. The smoothness of the error is unknown but
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knowing the smoothing properties of the smoother, it is possible to estimate
when it will be save to restrict in a certain direction.

We have seen that stencil anisotropy has big influence on the high cut effect of
both line and point smoothers. Generally for point smoothers, the smoothing is
best in the directions with the largest value of 1/(∆x)2, 1/(∆y)2 and σ2

z/(∆σ)2, cor-
responding to the direction with the smallest physical step length. For a vertical
line smoother, the vertical stencil asymmetry has no influence on smoothing in
the horizontal directions although the horizontal anisotropy has influence on the
smoothing in the vertical direction.

The smoothness of the error in a particular direction is not known directly but
knowing how the smoother performs, a reasonable guess can be made to which
direction is save to restrict.

Since the horizontal effectiveness of the smoother rely on the step lengths, it
is a logical choice to let the coarsening strategy depend on the step lengths as
well. Algorithm 5 was developed to provide an all purpose coarsening strategy
for xy-rectangular grids when a vertical line smoother is used. The algorithm
take the effectiveness of a point smoother into regard when choosing if restriction
along a particular direction should be allowed. A single parameter α determines
how large a difference in step-length is allowed for the algorithm to perform
coarsening in a particular direction. Setting α = 0, the algorithm provides an
always semi-coarsening strategy. Setting α = ∞, the algorithm will restrict
all directions whenever possible. During this project, α = 1 (max(∆x,∆y) ≤
2min(∆x,∆y)) has proven to be a general good choice; the method is not seen
to be divergent and the memory usage is lower than for α = 0. The overall
algorithm efficiency with respect to α as not investigated further.

Algorithm 5 All purpose coarsening strategy

1: assert(Nx, Ny, Nz all odd)
2: β ← α+ 1
3: limit← βmin(∆x,∆y);
4: if ∆x ≤ limit ∧

(
Nx−1

2 mod 2
)
== 0 then

5: N̂x ←
Nx−1

2 + 1
6: end if
7: if ∆y ≤ limit ∧

(
Ny−1

2 mod 2
)
== 0 then

8: N̂x ←
Ny−1

2 + 1
9: end if

10: if ∆σ
σz
≤ limit ∧

(
Nz−1

2 mod 2
)
== 0 then

11: N̂x ←
Nz−1

2 + 1
12: end if
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Regardless of coarsening strategy, the physical step size ∆z = ∆σ/σz will most
often be the smallest at the coarse grid levels; the solver is expected to be applied
on physical domains which are large in the x and y directions and small in the z
direction. It is therefore vital to use a line smoother at the coarse grid levels in
order to obtain an efficient smoothing in the horizontal directions. It is on the
other hand an open question whether it will be better to use a line smoother
when the step size in x and y directions are smaller than in z.

One thing, the analysis has not given direct answers to is the loss of informa-
tion in grid transfers: Whenever the grid values are transfered from a fine to a
coarse grid, some information might be lost due to aliasing effects and trunca-
tion errors. If a particular residual has a very low frequency and therefore not
propagated into the high frequencies until after a series of grid-transfers, much
of the information might get lost in the process. The resulting error correction
will then try and correct something which might not be the original residual
and introduce even more error to the problem. This is discussed further in
section 6.3.
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Chapter 3

C for CUDA

There is no big difference from a device program or kernel to an ordinary C
program. One is written in C and the other in C for CUDA which resembles
C. When an ordinary C-program is compiled, it is translated into low-level and
somewhat more complex (and architecture dependent) Assembler code which is
a low-level programming language. The Assembler code will be translated to
machine code/object code subsequently and finally object code is linked with
the rest of the program to a binary file (runtime library or executable). When
a device program is compiled, it is translated into PTX (Parallel Thread eXe-
cution) code which is much alike Assembler code. The PTX code is compiled
into a binary file (often postfixed cubin for CUDA binary) which is then loaded
and executed by the device on demand. It is possible to write programs directly
in PTX which is ‘as easy’ as writing programs in Assembler or manual perform
post parsing optimizations to the code. In order to load the CUDA binary onto
the device, nVidia supplies the CUDA Driver API. The CUDA driver API is a
lower-level C API which provides functions to load kernels as modules of CUDA
binary or assembly code, to inspect their parameters, and to launch them [4].

The CUDA Driver API might for some be a bit cumbersome since it requires a
great deal of code in order to execute even simple kernels. To ease things up,
nVidia developed the CUDA Runtime API which works on top of the CUDA
Driver API. For the Runtime API, initialization, context, and module man-
agement are all implicit and resulting code is more concise [4]. As for the
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compilation procedure, the PTX and CUDA binary is by default embedded in
the compiled object files and later on also in the executable. If needed, the com-
piler can be told to instead generate separate PTX and/or cubin files which will
then be loaded into the program at runtime [3]. For this particular compilation
configuration, it is possible to take advantage of the conciseness of the runtime
API and in the same time perform manual tuning of the PTX files.

Regardless of either CUDA Driver API or CUDA Runtime API is used, the
kernel execution is asynchronous to the CPU. After invoking a kernel call, the
CPU process immediately returns to the remainder of the program. CPU and
GPU synchronization done explicitly1 and presently the units are synchronized
using busy-wait (spinning if one wants). It is possible through events to reduce
the busy-wait to polling.

There is no doubt that C for CUDA and in general HPC on GPUs is still
being developed as it has not yet come to a state of maturity; although the
runtime API is built on top of the driver API, it was not possible to have
interoperability between driver and runtime API until the recent release of
CUDA 3.0. C for CUDA is also extended to include bindings to other lan-
guages than C/C++ which at present count .Net Framework (CUDA.NET)
and Java (Jacuzzi Project). Fortran is also able to use CUDA although through
C; linking CUDA code with Fortran is basically the same as calling C/C++
from Fortran.

3.1 Tesla and Fermi hardware architecture

In order to develop efficient parallel programs on a GPU it is important to
understand the hardware; solid knowledge about the hardware often point out
the parts of a program which will gain performance from a GPU implementation.
In this section a brief explanation of the physical hardware layout is presented.
A graphical overview of the connectivity is presented in fig. 3.1

In the NVIDIA GPU devices, there are two types of computational components:
The stream processor and the special functions unit. The stream processor han-
dles simple operations such as multiplication, addition subtraction and compar-
ison. Advanced operations as reciprocal, reciprocal square root, log2x, 2x, sin
and cos are sent to the special functions unit. In contrast to most CPUs, the
registers are shared among a number of processors (usually 8) and assigned to
the processor by a controlling unit upon execution. The controlling unit is called

1E.g. cudaMemcpy(...) has built in barrier synchronization.
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Figure 3.1: Graphical overview of GPU/CPU connectivity.
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a multiprocessor and further contains caches for read-only memory and a spe-
cial shared memory. In general, there is no latency for memory transfers within
the controller although the actual transfer takes 4 clock cycles. Transfers to or
from the device memory also takes 4 clock cycles but has a high latency on top
of that (400-600 clock cycles). The shared memory (often referred to as being
‘on chip’) is as fast to access as registers but is only in use if the programmer
explicitly asks for it. Shared memory can be thought of as manually controlled
cache. Further, the multiprocessor is controlled by a thread processor cluster.
The number of multiprocessors per thread processor cluster ranges from 2 to 4
within existing devices but is of no significant importance to code optimization.
Although the number of multiprocessors can be ignored, the number of active
threads should exceed the number of stream processors. [4]

Cache sizes, number of registers and the amount of shared memory, constant
memory and cache of a computer graphics device is summarized by the compute
capability (CC) of the device. The compute capabilities existing today are
versions 1.0, 1.1, 1.2, 1.3 (Tesla hardware architecture) and 2.0 (Fermi hardware
architecture). In general it is important to know the compute capability of the
target device since some optimizations will rely on the capability of the device. A
full description of the compute capabilities is available in the Cuda Programming
Guide [4]. The specifications of installed devices are easily obtained with the
program deviceQuery.exe found in the CUDA SDK.

3.1.1 Device and host memory

Memory transfer between host and device(s) is a basic step in GPU-programming.
Allocating the correct type of memory on the host means a lot to the bandwidth
obtained in host/device communication.

Ordinary memory allocation

– Normal access behavior for CPU

– Slowest data transfer rates to/from device

– Synchronous data transfers only

Pinned (page locked) memory

– Always resides in system memory (i.e. cannot be paged)

– Bandwidth between device and host thread allocating memory is
higher

– Supports asynchronous data transfer (streaming) between host and
device

– cudaAllocHost allocates pinned memory
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Portable memory

– Extension to pinned memory

– Higher bandwidth available from all host threads to device

Write-combined memory (in extension to pinned)

– Extension to pinned memory

– Not cache-able at host (reading is ‘prohibitively slow’ [CUP231])

– Fastest data transfer rate between host and device (up to 40% faster
than pinned memory)

Mapped memory

– Extension to pinned memory. On some devices, host memory can fur-
ther be mapped directly onto the device. This means that streaming
is unnecessary as memory transfer is implicitly performed as the ker-
nel needs it. As device reads and writes memory asynchronous, the
programmer has to be aware of data hazards2.

The intension of the project is to work with problems which can reside in the
GPU memory all at once. The relatively slow host/device communication is
therefore omitted if the outputs does not need to be stored very often.

3.1.2 Special device memory and cache

A GPU is a mixed SIMD3, SPMD4 processor and has a far more advanced cache
layout than on a regular CPU. On the GPU, threads are clustered in execution
groups called blocks. The number of threads in a single block as well as the
total number of blocks associated with a kernel invocation or grid is assigned
dynamically by the programmer at runtime. On the GPU, the smallest active
group at the time is a block; a block counts in the scale of hundreds of threads
which proceed in lock step groups when scheduled. Although not all lock step
groups will be active at the same time, all threads of the entire block will need
to have registers assigned.

The number of registers available to a shared multiprocessor is constant but the
number of registers used by a single thread depend on the kernel. Hence the
number of active blocks will be dependent on the number of registers needed
for a single block and the total number of registers available per multiprocessor.
For compute capability 1.3, the number of registers per shared multiprocessor is

2Write immediately followed by write or read might not be considered safe
3Single Instruction, Multiple Data
4Single Program, Multiple Data
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8192 Bytes. If a kernel requires 32 registers and there are 64 threads in a block,
the maximum number of active blocks is 8192

32·64 = 4.

Each block also has access to a cache shared among the threads in a block. This
is referred to as shared memory. As for the registers, the amount of shared
memory in use depend on the program. But where the number of registers is
given implicitly by program size, the shared memory is dynamically allocated
upon invocation of a kernel. The shared memory is also a limited resource and
the available amount is specified by the compute capability. For CC 1.3, the
amount of shared memory per multiprocessor is 16384 Bytes. As with registers,
this can also be a limiting factor to the number of active blocks on the GPU:
For a kernel which uses 5400B shared memory, the maximum number of active
blocks is limited to 16384

5400 = 3.

For the Fermi architecture, the size of shared memory and L2 cache5 can be
adjusted by the programmer. Current configurations allow for 48/16 (default),
32/32 or 16/48 division of the 64KB in the combined memory.

3.1.3 Execution order and synchronization

Each kernel is associated with a grid which has in the scale up to billions of
blocks. The blocks are executed in no particular order but each block is asso-
ciated with a block index. The block indices are either 1D or 2D depending on
the launch configuration. The same applies to threads; there is no particular
order in which the lock step groups proceed and each thread is also associated
with an id within the block. The thread indices are either 1D, 2D or 3D, again
depending on launch configuration.

As mentioned, the threads proceed in lock step groups. Such groups are called
warps and are currently of size 32 regardless of compute capability. The max-
imum number of active warps is determined by the compute capability of the
device. For compute capability 1.3 the maximum is 32 active warps and for
compute capability 2.0, 48 warps. The total number of ready6 warps depends
on block size and the number of active blocks; if 3 blocks are active and they
have 64 threads each, the number of ready warps must then be (64 · 3) 192.

Section 3.1 describe how local memory access is associated with high latency.
The GPU tries to hide that latency by simply putting the warp on hold until the
global memory is ready. While the warp is paused, the multiprocessor switches

5L2 cache is not available in Tesla devices
6A ready process will be either active, paused or waiting for the processor to work on the

process
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context to another warp waiting to be scheduled. Contrary to CPUs, a GPU has
a low cost of switching thread context. If enough warps are ready, it is possible
for the GPU to hide the latency enough to not suffer too much from the global
memory latency. Global memory access is not the only operation associated
with high latency. Latency is also introduced when a warp is waiting for other
warps (thread barriers, atomic operations) or for some advanced computation
to complete (cos, sin etc.). Whenever possible, the GPU automatically tries to
hide the latency so having enough ready warps is generally important to obtain
fast code. Preferably, the block size should be chosen such that the number of
warps exceed the maximum number of active warps supported by hardware.

The global memory latency is associated with the transfer of memory - not
the size of the transfer. In other words, one large transfer is to prefer rather
than a bunch of small transfers. The number of transfers needed to transfer
all requested memory to the warp depend on the match of memory alignment
which is 128B. When neighbor threads request memory which is ‘near by’, the
transfer is coalesced (see fig. 3.3).

Every 32 consecutive threads belong to the same warp. For any possible block
layout, the thread number is found following way: A block layout of size Tx ×
Ty × Tz is chosen as launch configuration. For a given thread, the id (tx, ty, tz)
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Figure 3.3: Examples of global memory accesses by a warp, 4-Byte word per
thread, and associated memory transactions based on compute capability. Courtesy
of NVIDIA Corporation
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is given. The thread number is then given by

tn = tx + (ty + tzTy)Tx (3.1)

0 ≤ tx < Tx, 0 ≤ ty < Ty, 0 ≤ ty < Ty

Thread number 0-31 belong to warp 0, thread 32-63 to warp 1 etc.

Many algorithms has a certain overlap of memory requirement for neighboring
elements. As explained in section 3.1.2, the GPU features a shared memory
which is basically a set of shared registers. When neighboring elements need
the same pieces of memory, the use of shared memory is very often beneficial
to reduce the number of global memory transfers required. Although faster, the
shared memory is aligned to and accessed through 16 banks/gates. One bank
can serve only one thread at the time. Although threads in a warp proceed
as one lock step group, the shared memory is accessed by a half-warp7 at the
time. If several threads access memory from the same bank, the hardware splits
the request into as many separate conflict-free requests as necessary. A bank
conflict can occur only within a half-warp.

7First half-warp consist of threads 0-14 and the second, threads 15-31
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Chapter 4

Implementation

The intension of the project is to work with problems which can reside in the
GPU memory all at once. Disregarding the need for storing data at certain time
steps, the essential data transfers are therefore only kernel parameters (which
is asynchronous) and transfer of the calculated defect norm ||d|| which is only
a few bytes. The host is thus reduced to being a GPU task scheduler which
for large problems will spend most of the time waiting for the GPU. A kernel
cannot be a particularly large program, so the number of kernels will be in the
scale of 10-20.

In order to solve the problem, there are two parts which must be dealt with: The
transformed Laplace problem and the IVP. It is not possible to solve the IVP
without solving the Laplace problem and it is therefore logical to begin with
the implementation of Defect Correction and its preconditioner (Coarse Grid
Correction). Coarse Grid Correction again depend on other components as a
smoother, restriction and prolongation. The prioritized order of implementation
will thus be

1. Choose a memory layout

2. Implement and validate the components of Coarse Grid Correction

3. Implement and validate Coarse Grid Correction
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4. Implement and validate Defect Correction

5. Implement and validate RK4 method

6. Implement and validate advanced CGC components

7. Optimize bottle neck components

Validation of the procedures is important due to the complexity of the algorithm;
even simple bugs will take an unreasonable amount of time to fix if they can
not be isolated to a certain part of the code. To reduce the debugging time,
the initial implementation should also address only basic requirements for the
algorithm; it is far easier to improve a working implementation rather than try
to construct the optimized program from the beginning. Optimizations will be
addressed in chapter 5.

In order to validate the procedures, it is a good idea to implement the same al-
gorithms in a mathematical inspired environment such as Matlab or Octave. Al-
though time consuming to implement the algorithm more than once, the benefit
of having a mathematically correct version is not to underestimate. Debugging
a parallel program is in itself non trivial and adding additional layer of complex
mathematical algorithms will not make it any easier. With a few exceptions, the
entire program was therefore implemented in Matlab prior to implementation
in C for CUDA. The implementation in Matlab will not be discussed further.

In order to ensure correctness, the resulting system matrix was compared to
previous works of A. Engsig-Karup . Further, the result of a few time steps
were compared to the previously verified program to ensure that the algorithms
produce similar results. In section 6.3 the Laplace solver is verified and 6.2 and
the total algorithm validated.

4.1 Definitions, utility functions and execution

safety

The CUDA programming model encourage to use thread indices to determine
which element should be processed. In chapter 3 it is described how threads
are launched in blocks. The threads index and current block index is given by
the hardware. Often the global thread index will be needed rather than the
local block thread index. Throughout the program we will therefore use the
preprocessor definitions



4.1 Definitions, utility functions and execution safety 65

1 #define tx threadIdx.x

2 #define ty threadIdx.y

3 #define Tx threadIdx.x + blockIdx.x*blockDim.x

4 #define Ty threadIdx.y + blockIdx.y*blockDim.y

For the most cases, a 2D launch configuration is chosen. It is therefore con-
venient to have a general way to calculate the number of blocks needed as a
function of the block configuration; the block configuration is an optimization
parameter. When the total number of threads should be Nx ×Ny, the minimal
number of blocks required is calculated by

1 inline dim3 fitblock(dim3 threads , int Nx , int Ny){

2 ASSERT(threads.z == 1);

3 dim3 blocks;

4 blocks.x = Nx/threads.x + (Nx % threads.x > 0 ? 1:0);

5 blocks.y = Ny/threads.y + (Ny % threads.y > 0 ? 1:0);

6 blocks.z = 1;

7 return blocks;

8 }

Since threads are launced in blocks of a fixed size Bx×By, the maximum global
thread id will thus be

maxTx = tx +Bx · bx

where tx and bx are local thread and block indicies. Since Nx/Bx will not very
often be an integer, there will be excess threads. The very first thing to do for
all procedures presented in the remainder of the chapter is therefore a safety
check.

Listing 4.1: Safety check; is current thread inside the physical domain Nx ×Ny?

1 if(!(Tx < N.x && Ty < N.y)){

2 return; //Stop! Outside physical domain

3 }

There should be a safety check for EVERY kernel implemented. The condition
may vary but there should be a safety check never the less. E.g. the ghost
update, the limits will be determined by the total grid size M including ghost
points rather than N (grid size without ghost points).
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Figure 4.1: Grid size is given by its physical/inner Nx × Ny × Nz grid points and
the number of ghost layers in the horizontal directions. There is always only 1 layer
of ghost points in the vertical direction.

4.2 Memory Layout and access

In section 1.3 we conclude that only the vector of the matrix vector product
should be stored. Since the vector and the grid of the physical domain represent
the same, we will from here think of the vector as the underlying 3D grid. The
grid sizes will generally be given by

Mx ×My ×Mz (4.1)

Mx = Nx + 2H, My = Ny + 2H, Mz = Nz + 1 (4.2)

H =

⌊
stencilwidth

2

⌋
(4.3)

H will also be referred to as the halo width or the number of ghost layers in the
horizontal direction. When a particular grid size is mentioned, only the number
of inner grid points are specified. E.g. 257 × 21 × 6 reffers to the a grid with
total size (257 + 2H)× (21 + 2H)× (6 + 1). A grid is illustrated in fig. 4.1.

Although convenient working only with the 3D grid, storage is 1D. In order to
access the grid in an intuitive (x, y, z)-kind of manner, a 3D ↔ 1D mapping
is therefore needed. The Laplace problem is defined by its velocity potential
at the surface and will thus be needed when evolving the IVP. Since storage is
linear, the easiest (and for CUDA also the fastest) way to access the velocity
potential at the surface is to let the surface be defined as Mx ×My consecutive
grid values. The z-coordinate will thus have to be the slowest varying in the
mapping of (x, y, z) → n where n is the linear memory index. Whether x or y
coordinate should be the fast index is not important since the Laplace problem
is rotation invariant. The x coordinate is chosen to vary faster than y such a
C/C++ array access style is adopted. For practical reasons, the surface values
should be allocated in the beginning of the array such that no offset is needed
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to get the surface values. The 3D → 1D mapping is thus given by

(x, y, z)→ n : n = x+ yMx + zMxMy (4.4)

In a CUDA program, elements benefit from being accessed according to the
thread id. Typical 2D access could be (x + ox, y + oy, z) where x and y relate
to the thread id. It is therefore convenient to introduce offset indexing denoted
(ox, oy, z)x,y. The conversion from offset indexing to regular indexing will de-
pend on how the threads are associated with the grid. For a 2D block layout
with one thread per surface grid point (including ghost points), offset indexing
is given by

(ox, oy, z)x,y → n : n = (Tx + ox) + (Ty + oy)Mx + zMxMy (4.5)

Listing 4.2: Implementation of (4.5)

1 __device__ inline

2 int memoryIdxXY(int ox , int oy , int z, int3 M){

3 return (Tx + ox) + (Ty + oy)*M.x + (Tz + z)*M.x*M.y;

4 }

For a 2D block layout with one thread per surface grid point in the physical
domain (ie. ghost points excluded), offset indexing is given by

(x, y, z)→ n : n = (x+Gx) + (y +Gy)Mx + zMxMy (4.6)

Rather than H, Gx and Gy are used as the number of ghost points in the
horizontal directions.

Listing 4.3: Implementation of (4.6)

1 __device__ inline

2 int memoryIdxXY(int ox , int oy , int oz , int3 M){

3 return (Tx + Gx + ox) + (Ty + oy)*M.x + oz*M.x*M.y;

4 }

Having decided on the memory layout it is time to move on to implementation
of the methods.

4.3 Finite difference estimates

To estimate derivatives we use the finite difference sums calculated by fdcoeffF.
The stencils will be pre-calculated by the CPU since they do not change. Since
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the GPU processes the data by a SPMD approach, all stencils will need to be
available to all threads at all times. We will therefore store the stencils in the
same chunk of memory since the number of arguments must be static. The
stencil used will assume a step-length of size 1; the same stencil can therefore
be used for both x, y and z-direction as long as it is scaled with the appropriate
step length.

For a size n stencil, we will create all n possible stencils and store them consecu-
tively in memory. In particular, for the stencil approximating the first derivative,
we get

S[1] = [ c1 c2 · · · cn ] = fdcoeffF(1,1,1:n) (4.7)

S[2] = [ c1 c2 · · · cn ] = fdcoeffF(1,2,1:n) (4.8)

...

S[n] = [ c1 c2 · · · cn ] = fdcoeffF(1,n,0:n) (4.9)

stored : [ S[1] S[2] · · · S[n] ] (4.10)

A brief summary of the CUDA implementation of the finite difference estimates
is available in section D.1. The stencils are stored in global device memory and
the a pointer is passed as a function argument.

4.4 Basic components of Coarse Grid Correc-

tion

4.4.1 Updating ghost points

In section 1.2.1 we introduce ghost points. The purpose of ghost points is
to ensure that the Neumann boundary conditions are fulfilled. Most of the
finite difference operators will be preceded by making sure that the ghost points
actually do fulfill the boundary conditions for the current values. Since the
ghost points will need to be updated for many grid operators, it makes good
sense to treat the ghost updates separately and call the procedure when needed.

There are two general cases of grids which will have ghost points. One is the
3D transformed Laplace equation. The other is the 2D surface elevation prior
to approximation of spatial derivatives. For the 3D non linear case, the bottom
corners of the domain will need special attention as described in section 1.2.1. A
sample code for the 2D and 3D ghost update method is presented in section D.2.
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4.4.2 Low order residual

The low order residual is a required component of the Coarse Grid Correction
algorithm. Implementing the low order residual serve a second purpose as well:
The difference between the residual calculation and the damped Jacobi is very
little. The low order residual method should calculate

r = b−AΦ, b = [φ̃ 0]T

where A is the 2nd order approximation of the linear transformed Laplace equa-
tion. Recall that the vectors Φ, b and r are represented as 3D variables and A

is generated when needed using the stencil methods presented in section 4.3.

In the residual calculation, the still water depth h is needed. It varies over
the domain but is the same for all elements in the a vertical column. From
[4] it is experienced that global memory transfers are relatively slow and it is
therefore considered the only option to let a thread process an entire column at
the time; h cannot be reused otherwise. We will therefore adopt a 2D launch
configuration. The initial kernel is presented in section D.3.

4.4.2.1 Validation

The best way to evaluate the residual is to ensure that A is correct. This is a
bit tricky since A is not given directly. It can be calculated though; the residual
is given by

r = b−Ax

where A is a 2nd order linear approximation to the transformed Laplace equa-
tion. Calculating the residual when b = 0 and a single element in x is -1 and
the remaining 0 will extract a single column of A:

r2 =




0
0
0


−




a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3






0
−1
0


 =




a1,2
a2,2
a3,2


 (4.11)

A =
[
r1 r2 r3

]
(4.12)

The resulting matrix can then be inspected manually or compared to the result
of another validated matrix generation procedure.
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4.4.3 Damped Jacobi method

Damped Jacobi is a component of the Coarse Grid Correction algorithm. The
damped Jacobi procedure should implement either of

xk+1 = xk + λD−1r, x ≡ Φ (4.13)

xk+1 = (1− λ)xk + λD−1(−(L+U)xk + b) (4.14)

The easiest way to implement the Jacobi method is by reusing the low order
residual procedure. The obvious choice is therefore to implement (4.13).

Although the damped Jacobi is convergent regardless of the initial guess to x,
we see no point in not to use that the value of x at the surface simply is the value
of b. The implementation of the damped Jacobi method is therefore modified a
bit:

xk+1 =

{
b for surface values

xk + λD−1r elsewhere
(4.15)

4.4.3.1 Validation

Given that the residual computation procedure is correct, it is very difficult to
get the damped Jacobi method wrong. To validate the procedure, convergence
must be established:

e = x− x̂ (4.16)

|e| → 0 for increased iteration count (4.17)

where x is the analytic solution to Ax = b and x̂, the Jacobi iterate. The
convergence should have asymptotic O(n−1) behavior where n is the number of
iterations.

4.4.4 Restriction

The restriction procedure should implement the method introduced in sec-
tion 2.1.1. Restriction is done by calculation of an average in a neighborhood
of every second fine grid element in the direction(s) of the coarsening and store
the result in a coarse grid. [4] recommend to make several small programs
rather than one big. The coarsening procedure will therefore consist of a series
of kernels which will be invoked for the particular coarsening strategy. This
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gives totally 7 coarsening strategies; 3 for coarsening in one direction, 3 for
coarsening in 2 directions and finally the one for coarsening in all directions. A
simple way to construct the kernel is by a gather scheme. A brief overview of
the implementation of the 2D and 3D coarsening implementation is available in
section D.5.

4.4.4.1 Validation

It should be checked if the numeric integral of the coarse grid variable approxi-
mate the integral of the fine grid variable; (2.1) must be true. A good debugging
tool for the restriction procedure is to simply just visualize the restricted grid.

4.4.5 Coarse Grid Correction

Coarse Grid Correction is a method using alot of different components. This
component implement the invocation strategy of coarse grid correction; the µ-
cycle procedure should implement algorithm 3. Implementation provided in
section D.6.

4.5 Advanced Coarse Grid Correction compo-

nents

4.5.1 Red Black Gauss Seidel

RBGS is no doubt a method worth including; the method is a very efficient
smoother. RBGS can be implemented by replacing of all x0 and x1 with just
x. For the red/black part, lines 2-8 of the code below should be merged into
the Jacobi method as well.

1 for(int Z = 1; Z<N.z;Z++){

2 bool colored = (Tx % 2 == 0) ^ (Ty % 2 == 0) ^ (Z % 2 == ←֓
0);

3

4 if(mode == ISRED){

5 if(colored) continue;

6 }else{
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7 if(! colored) continue;

8 }

9

10 //...

11 // remaining Jacobi algorithm

12 //...

13 }

In order to perform both ‘red’ and ‘black’ update, the method should be invoked
twice;

1 rbgs(x, ISRED , ...);

2 ghostupdate(x, ...);

3 rbgs(x, ISBLACK , ...);

4.5.2 Line smoother

A line smoother is basically an extension to a point smoother. The line smoother
should implement algorithm 4 presented in section 2.1.5.3. We will implement
the algorithm in two steps: In step one we will collect the contents of a−1, a0,
a1 and b̃ and in step two we will solve the system. In order to solve the local

system Ĝ
+
uσ = b̃ on the GPU, we will have to allocate memory for the a-arrays.

We will do so with local arrays. Unfortunately this has the disadvantage that
(slow) local memory will be used; only if the arrays are accessed in a monotonic
increasing fashion, the arrays can be stored in (fast) registers. On the other
hand, of the arrays are stored in registers, the register use will then increase
with 8Nσ since we need 4 arrays (one double use 2 registers). For single point
precision only half the number of registers will be needed though. The largest
discomfort of using local arrays is that they must be allocated compile time thus
exceed the largest number of vertical grid elements ever used. By experiment
it was found that the array size could be set to 128 double precision elements
with no drop in performance so this is not considered a problem.

Implementation notes on the σ-line xy-Jacobi smoother is available in sec-
tion D.8. An xy-RBGS variant can be created subsequently in the same way as
the ordinary RBGS smoother described in section 4.5.1.
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4.5.2.1 Validation

A line smoother can be validated in the same way as any other smoother; see
section 4.4.3.1. The convergence properties of the line smoother is expected to
be the same as for the underlying point smoother although the error is expected
to decrease faster for the first few iterations, even if the vertical step length is
smaller than the horizontal.

4.6 Defect Correction

The defect correction algorithm in itself is not very complex. It uses basi-
cally four components: Calculation of the high order residual, invocation of the
preconditioner, calculating a sum and finally the norm of the defect. The prob-
lematic component here, is calculation of the norm; the norm is a (transformed)
reduction1 of the data and therefore not necessarily embarrassing parallel. In-
troduction of a non embarrassingly parallel algorithm can potentially ruin the
O(n) scaling properties. This is not a problem in practice though: Given Nt

threads, Ne total elements, the execution time is determined by

reduction time = max(0, Ne −Nt)O(1) +O(logNt) (4.18)

In general Ne will be much (at least hundreds of times) larger than Nt and the
algorithm is therefore expected to be O(Ne) thus still scale. The parallel reduc-
tion sum was implemented using Thrust which is a library containing various
efficient algorithms implemented in CUDA.

It has come clear that the Thrust method has Rendezvous invocation style; the
methods do not return until the kernel has done its work due to the call of
synchronous methods somewhere down the line. It is of no importance for this
program since the CPU is not intended to do work concurrent with the GPU
but for general usage of the Thrust library, this is a rather important detail.

4.6.1 Various order residual

The various order residual is a required component of the Coarse Grid Correction
algorithm and should calculate

r = b−AΦ, b = [φ̃ 0]T

1Many elements are reduced to just one.
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where A is the nnd order approximation of the transformed Laplace equation.
Recall that the vectors Φ, b and r are represented as 3D variables and A is
generated when needed.

Calculating the non linear various order residual is much more complicated than
the linear low order residual; various stencil lengths are needed to be taken into
account and surface variables considered as well. Since the surface variables (η,
h and derivatives hereof) for an entire vertical column at the time, it make sense
to process the high order residual column by column..

The validation procedure for the non linear high order residual procedure is the
same as for the linear low order residual procedure; see section 4.4.2.1.

4.7 Surface evolution and model validation

In section 1.1.1 it was argued that a 4 stage Runge Kutta solver is sufficiently
stable. Prior to the evaluation of (1.1) and (1.2) the transformed Laplace
equation will need to be solved for the current surface velocity potential such ω̃
can be estimated. Since the derivatives of the surface variables are needed but
only surface elevation is known, they should be estimated first. The procedure
is sketched in algorithm 6. The initial guess for the Laplace solver (Defect
Correction) should be the last available solution to the problem, here denoted
Φ∗. A brief summary of the implementation is given in section D.10.

Algorithm 6 Evaluation of temporal derivatives ∂tη and ∂tφ̃

1: Estimate spatial derivatives of h and η
2: Solve transformed Laplace equation → Φ (initial guess Φ∗)
3: Estimate ω̃ ← ∂zσΦσ|σ=1

4: Estimate spatial derivatives of φ̃
5: Use estimations to evaluate (1.1) and (1.2)

Implementing the RK4 method is from here trivial; letting k being a tensor
with ηt and φt, the standard 4 step procedure presented in section 1.1.1 can be
used.

4.7.1 Validation

We are in the fortunate situation to have a complete code to compare to and
supportive solid knowledge about the topic; a good but informal way to validate
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not just the Runge Kutta method but the entire program is to reconstruct results
from physical results. One such test is the Whalin shoal problem where waves
are generated in one end of a bounded domain and absorbed in the other using
relaxation zones as described in [6]. Halfway through the domain, the bottom
rises such the water depth is lowered with a resulting amplification of the wave
magnitude closely behind the underwater hill. The Runge Kutta method thus
include a relaxation step after each estimate of the next surface elevation and
velocity potential. The altered RK4 method is described by algorithm 7.

Algorithm 7 RK4 with relaxation zone update

1: x ≡ {η, φ̃}
2: Φ∗ = 0
3: repeat
4: k1 ← ∆tf(x, t)

5: x← x+ k1

2

6: Update relaxation zones of η, and φ̃.
7: k2 ← ∆tf(x, t+ ∆t

2 )

8: x← x+ k2

2

9: Update relaxation zones of η, and φ̃.
10: k3 ← ∆tf(x, t+ ∆t

2 )

11: x← x+ k3

12: Update relaxation zones of η, and φ̃.
13: k4 ← ∆tf(x, t+∆t)

14: x← x+ 1
6 (k1 + 2k2 + 2k3 + k4)

15: Update relaxation zones of η, and φ̃.
16: until end of time
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Chapter 5

Code optimization

After the initial version of a program is established, bottleneck procedures
should be optimized in order to utilize the hardware platform better. The
difference between a naive GPU implementation and a fully optimized program
can be several factors. Since the program is quite complex (there are approxi-
mately 20 different individual components) it will be out of scope of this project
to take all aspects of the program into consideration. For optimization, we will
target Compute Capability 1.3 devices and more specifically a Quadro FX 5800
GPU will be used for benchmarking. The device differs from Tesla C1060 by
having a graphical output unit and a different price but basically it has the same
specifications.

Optimizing kernel code should be done in a series of steps. A prioritized list of
general optimization strategies is presented below

(i) Reduce algorithmic complexity; i.e. check if expensive operations can be
removed by altering the algorithm

(ii) Minimize the use of global memory. Prefer reusing and shared the variable
through shared memory where possible

(iii) Ensure global memory accesses are coalesced whenever possible

(iv) Avoid different execution paths within the same warp
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Figure 5.1: Initial profiling of the CUDA implementation. 10 time steps for the
Whalin shoal (gridsize 257× 21× 6) are benchmarked using the CUDA profiler. The
smoother is called 3700 times and the high order residual only 89 times

(v) Accesses to shared memory should be designed to avoid serializing requests
due to bank conflicts

(vi) To hide latency arising from register dependencies, maintain sufficient
numbers of active threads per multiprocessor (i.e., sufficient occupancy).

(vii) Optimize the launch configuration

(viii) Prefer faster, more specialized kernels over slower, more general ones when
possible.

Item (iv) in particular has been taken into account from an early stage of the
project: Avoiding to eliminate the ghost points from the equations, all low order
finite difference sums can be calculated without branching.

Prior to optimization, we will use the CUDA Profiling tool to get a quick
overview of the current bottlenecks. The CUDA Profiler provide an easy and
precise measuring of the kernel execution time. Kernel executions are not slowed
down by the profiler although the hosting program is. A profiling of the initial
program using a point smoother or a line smoother is provided in fig. 5.1. The
average execution time for the line smoother is low compared to the high order
residual procedure. The line smoother is called totally 3700 times on various
sized grids and the high order residual is called 89 times and only on the fine
grid.
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5.1 Optimization strategy

Obviously, the smoothers and the high order residual are bottleneck problems
of the algorithm. Although not directly a bottleneck, we will start with the low
order residual; the high order residual and the line smoother are much more
costly, but they are unfortunately also very much more complex. In order to
understand how the shared memory can be used, we will therefore begin with
optimization of the low order residual. The optimizations done and conclusions
on this procedure can further be directly applied to the smoothers with only
little additional effort.

In order to increase the effective bandwidth of any algorithm the global memory
transfers should be minimized (item (ii) on the prioritized list). This might
involve use of the shared memory which can be rather tricky to get right for
complex problems. It is therefore a good idea to make an estimate of the scale
of an eventual speedup of the method prior to implementation rather than head
straight on to implementation. The listings below gives an example of such
practice.

Listing 5.1: Some unoptimized code

1 _ftype sum = 0;

2 for(int i = 0; i<somenumber;i++){

3 sum += global[n+i];

4 }

5 sum = some_other_global[n]* lengthy_calculation (sum);

Listing 5.2: Optimal read redundancy

1 _ftype sum = 0;

2 _ftype g = global[n];

3 shared_memory [0] = g;

4 __syncthreads ();

5 for(int i = 0; i<somenumber;i++){

6 sum += shared_memory [0];

7 }

8 sum = some_other_global[n]* lengthy_calculation (sum);

Using a fixed element of the shared memory bank conflicts are always avoided
(list item (v)). Generally, the memory access should reflect how the optimized
version is expected to be. For this particular code it is relevant to use the
shared memory only for one of the two global memory transfers, which the
dummy code reflects. It is important that the shared memory is used rather
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than a register whenever relevant; although NVIDIA claims shared memory to
be as fast as registers, it is in practice slower in cases when the access latency
cannot be hidden well. The number of times some element in global memory is
accessed redundantly we will refer to as the read or write redundancy. For the
above code, the read redundancy of the global variable is somenumber for the
unoptimized code.

Regardless of the code, the kernel launch configuration should be optimized as
well (list item (i)). Even bad code gain from using an optimized launch con-
figuration. The maximum number of threads in a launch configuration cannot
exceed 512 threads1 and the block dimension can vary freely2 within this scope.
The 2D and 3D grid variables have C/C++ access style and neighboring threads
will thus benefit from coalesced memory transfers when accessing global mem-
ory collectively in this direction. To reduce the search space we will therefore
seek an optimized solution in the domain

(Bx ×By) = (8 ·m× n), BxBy ≤ 512 (5.1)

(m,n) : N+ × N
+ (5.2)

In appendix F we present a generalized procedure to benchmark any kernel
regardless of parameters and thus be used to find an optimized kernel launch
configuration. The best and worst launch configurations for the non linear
various order residual, linear low order residual and RBGS line smoother on 3
different grid sizes are specified in tables 5.1, 5.3 and 5.4 for double precision
and also for the various order residual also in single precision in 5.2.

The general trend is that when the grid size goes up, the configurations gets
less important. As an example, the top 18 configurations for the 257 × 17 × 6
grid are less than 5% from the best configuration. For the 3073× 257× 17 grid,
the top 68 configurations are within the 5% limit. Some configurations appear
more often than others within the 5% level, but there is no general best choice
although a total number of 32 threads is not too bad in general. Due the to the
coalesced memory transfers, blocks elongated in the y-direction never appear
among the best configurations. Optimally, the solver should be configured prior
to launch when the grid sizes are known. Particularly important is it to get the
fine grid operations configured correctly since a suboptimal configuration at that
level will be expensive, particularly for large scale problems. As an example,
fig. 5.7 shows that a (16,4) configuration is an okay general choice but for e.g. a
3073× 257× 17 grid, the configuration ranks no. 75 and is 5% slower than the
optimal configuration.

1For Compute Capability 2.0, 1024 (Fermi architecture)
2Threads in the z-direction cannot exceed 64
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Kernel table - 6. order residual
Double precision

257× 17× 6 1537× 129× 9 3073× 257× 17
1 (88,2) 100.0% (32,2) 100.0% (32,2) 100%
2 (96,2) +2.9% (16,4) +0.3% (64,1) +0.27%
3 (32,2) +3.0% (64,1) +0.8% (16,4) +0.76%
4 (32,6) +3.1% (16,12) +1.6% (32,6) +2.0%
5 (64,3) +3.2% (32,6) +1.7% (64,3) +2.5%

Bottom 5
5 (8,15) +145.7% (8,3) +105.1% (16,5) +83.0%
4 (8,16) +149.0% (8,9) +108.0% (8,10) +88.0%
3 (16,1) +168.1% (16,1) +161.2% (72,1) +100.4%
2 (8,2) +172.9% (8,2) +163.6% (24,3) +102.4%
1 (8,1) +367.8% (8,1) +413.2% (8,9) +108.7%

Table 5.1

Kernel table - 6. order residual
Single precision

257× 17× 6 1537× 129× 9 3073× 257× 17
1 (32,3) 100.0% (64,1) 100.0% (64,1) 100.0%
2 (88,1) +0.2% (312,1) +0.5% (32,2) +0.4%
3 (96,1) +0.3% (320,1) +0.6% (320,1) +1.1%
4 (16,6) +0.5% (32,2) +1.0% (312,1) +1.5%
5 (40,1) +0.6% (160,2) +1.1% (160,2) +2.0%

Bottom 5
5 (224,1) +105.6% (8,17) +111.7% (8,17) +116.3%
4 (232,1) +106.0% (8,3) +119.5% (8,3) +122.2%
3 (256,1) +108.5% (16,1) +204.6% (16,1) +208.5%
2 (248,1) +108.8% (8,2) +213.3% (8,2) +214.3%
1 (8,1) +277.4% (8,1) +499.2% (8,1) +510.7%

Table 5.2
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Kernel table - Low order residual
Double precision

257× 17× 6 1537× 129× 9 3073× 257× 17
1 (16,3) 100.0% (32,1) 100.0% (160,1) 100.0%
2 (88,2) +0.2% (16,3) +1.2% (32,1) +0.1%
3 (48,2) +1.0% (144,1) +2.1% (144,1) +0.5%
4 (48,1) +1.5% (32,7) +2.1% (192,1) +0.9%
5 (16,5) +1.9% (16,2) +2.2% (80,1) +1.0%

Bottom 5
5 (200,1) +80.5% (8,41) +42.5% (8,62) +44.1%
4 (168,3) +80.9% (8,42) +43.5% (8,63) +44.7%
3 (56,9) +82.3% (8,63) +45.5% (8,51) +45.1%
2 (256,2) +82.7% (8,64) +46.3% (8,64) +45.8%
1 (64,8) +174.0% (8,1) +105.2% (8,1) +99.5%

Table 5.3

Kernel table - RBGS line smoother
Double precision

257× 17× 6 1537× 129× 9 3073× 257× 17
1 (24,2) 100.0% (64,1) 100.0% (32,2) 100.0%
2 (16,3) +0.1% (32,2) +1.5% (64,1) +1.9%
3 (8,6) +2.5% (16,4) +3.0% (16,4) +2.5%
4 (16,2) +4.0% (64,2) +3.7% (16,8) +2.7%
5 (48,2) +4.1% (112,1) +4.1% (224,2) +2.8%

Bottom 5
5 (72,6) +147.4% (376,1) +44.1% (24,1) +42.4%
4 (88,5) +149.7% (24,1) +44.5% (8,3) +43.3%
3 (112,4) +153.3% (8,3) +44.8% (8,2) +47.2%
2 (24,18) +160.3% (8,2) +45.9% (16,1) +48.0%
1 (40,11) +161.7% (8,1) +169.7% (8,1) +174.6%

Table 5.4
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5.2 Benchmarking

A kernel is either memory bound or compute bound; a memory bound kernel
is limited by the memory bandwidth and a compute bound kernel, by the in-
struction throughput of the GPU. The expectation to at least smoothing and
low order residual procedures is that they are memory bound since the number
of instructions per global memory transfer is relatively low for those kernels. In
order to measure the effectiveness of a kernel, it is therefore relevant to consider
how effective the memory bandwidth is used. The memory bandwidth depend
on the device and for the Tesla C1060/Quadro FX 5800, it is 102.4 GB/s. In
the world of computers, GB (106) is often mistaken for GiB (10243) and it is
therefore emphasized that whenever GB is used, it is in the sense of 106 and
not 10243.

Although the bandwidth is fixed, full utilization can be obtained only when
global memory transfers are coalesced as described by fig. 3.3. The number
to measure is therefore the effective memory bandwidth utilization. The effec-
tive bandwidth will depend on the problem and should be calculated from the
number of elements processed compared to execution time.

eff. bandwidth =
memory read + memory written

execution time
(5.3)

For the initial implementations of the finite difference sums, the number of
elements read from global memory will depend on the stencil sizes. Instead
of counting elements read, we will count the number of elements touched by a
stencil during the calculation of the finite difference sum. The total transfer size
also depends on the number of elements written. The number of transfers for
calculation of a finite difference sum and storing in an output variable is thus
given by

Nread = Nphysical +Nbottom +Nsides (5.4)

Nphysical = NxNyNz (5.5)

Nbottom = NxNy (5.6)

Nsides = 2HNz(Nx +Ny) (5.7)

Nwrite = Nphysical (5.8)

(5.9)

The effective memory transfer is thus given by

Meff.tr. = (Nread +Nwrite) · sizeof( ftype) (5.10)

where ftype is either double (8B) or float (4B).
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Figure 5.2: The 3D non linear various order stencil (left) touches points in the σx-
and σy-planes. The 2nd order linear stencil (right) touches only the nearest neighbors.

Grid size Surface elm.s Domain elm.s Degrees of freedom
257× 17× 6 4,369 26,214 42,343

1537× 129× 9 198,273 1,784,457 2,083,050
3073× 257× 17 789,761 14,215,698 14,575,986

Table 5.5: Some numbers regarding grid sizes. The degrees of freedom is the total
number of points, including ghost points (Nx + 2 · 3×Ny + 2 · 3×Nx + 1).

In section 5.1 it is seen that the execution time depends on selection of ker-
nel launch configuration. The benchmark should represent the throughput of
the algorithm given optimal conditions. Any benchmark provided is therefore
measured using optimal kernel launch configuration found using the method
presented in (5.1).

It is relevant to investigate whether the performance of a method depend on
the elongation of the domain and benchmarks on the best method developed is
therefore tested with grid sizes specified by

Nz = 6Nx = a ·Ny, a ∈ 1, 2, 4, 8, 16NyNx ≤ Nmax (5.11)

The halo size depend on the method in question.

5.3 Low order residual

Before considering shared memory, we will improve the procedure by reduction
of register usage and also remove unnecessary operations; the low order residual
always use the same stencil and it is therefore most likely wasted clock cycles to
perform the computation using a loop. Fixing the kernel to just one particular
order, the dynamic stencils which are in global memory are stripped from the
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Low order residual
Double precision

257× 17× 6 1537× 129× 9 3073× 257× 17 Relative
Conf. Time Conf. Time Conf. Time to Naive

Naive (48,1) 98 ns (64,1) 5.4 ms (32,1) 43 ms x1
Est. limit (16,3) 48 ns (16,3) 1.9 ms (16,4) 14 ms x2-3
A (16,3) 49 ns (32,6) 1.9 ms (32,1) 12 ms x2-3.5
B (32,8) 110 ns (32,6) 2.8 ms (32,6) 17 ms x0.9-2.5

Table 5.6: Est. limit: What can be done with shared memory? A: Reduced kernel
size, reuse of vertical grid components and removal of stencils. B: Shared memory

procedure. To increase occupancy on the GPU, the calculation of the total
grid size (ghost points has to be accounted for) was moved to the CPU. Since
the calculation has to be done for all threads, this is a sequential part of the
algorithm no matter what. The improved kernel is presented in section E.1.

For the improved kernel, an upper limit for the shared memory optimizations
should be estimated using the method described in section 5.1. The bench-
marking shows that the expected upper limit for kernel speedup through code
optimizations is times 2 for double precision (table 5.6) and times 11 for single
(table 5.6).

Contrary to the expectation, the improved procedure is at least as fast as the
estimated upper limit even though shared memory is not used to reduce the
read redundancy. If the kernel is executed using single precision (5.7) rather
than double precision, there is a significant speedup. Shared memory can thus
be used to improve the efficiency of the kernel.

For the shared memory optimization, the grid element central to the stencil is
copied to shared memory to reduce redundant data transfers. In order to also
copy into shared memory also from the halos, the entire border of the block
will only copy into shared memory and do no residual computations such each
Bx × By sized block will process the central Bx − 2 × By − 2 elements of the
block (fig. 5.3, dots without cups). Generally the method resembles that of [11]
although their method is for high order finite difference computations.

The procedure is described by algorithm 8. Safety checks are added to avoid
segmentation errors (out of bounds memory access - line 6 and 15) and to
prevent threads, which are intended to only update the halo in performing
other computations (line 14). Another important detail is that all threads of
the blocks must reach the barriers; system behavior is undefined otherwise. For
a more in depth code, we will refer to section E.1.
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Low order residual
Single precision

257× 17× 6 1537× 129× 9 3073× 257× 17 Relative
Conf. Time Conf. Time Conf. Time to Naive

Naive (88,2) 72 ns (272,1) 4.60 ms (272,1) 37.0 ms x1
Est. limit (16,2) 22 ns (176,1) 0.49 ms (64,1) 3.4 ms x3-11
Method 1 (16,9) 25 ns (96,1) 0.99 ms (32,1) 7.5 ms x2.9-4.9
Method 2 (8,23) 71 ns (32,12) 0.80 ms (32,12) 4.9 ms x1-7.5

Table 5.7: Low order residual. Est. limit: What can be done with shared memory?
A: Reduced kernel size, reuse of vertical grid components and removal of stencils. B:
Shared memory

σ

x

y

Figure 5.3: Each dot represent a thread in a thread block. For the shared memory
approach chosen, only the internal threads (dots without cups) can perform work.
The vertical element should be reused through registers (illustrated for one thread -
triangles)
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Algorithm 8 Computation of low order residual

1: Block size: Bx×By. Local thread indicies: tx = 0, Bx−1 and ty = 0, By−1.
2: Halo size: H. Shared memory variable: Si,j . Registers: xu, xc and xd
3: xc ← Utx,ty,0

4: xd ← Utx,ty,1

5: for z ← 1, Nz do
6: if tx < Mx ∧ ty < My then
7: xu ← xc
8: xc ← xd
9: xd ← Utx,ty,z+1

10: end if
11: syncthreads()

12: Stx,ty ← xc
13: syncthreads()

14: if tx ≥ H ∧ tx < Bx −H ∧ ty ≥ H ∧ ty < By −H then
15: if tx < Mx ∧ ty < My then
16: Calculate Uxx and Uyy using S
17: Calculate Uss using xu, xd and xc
18: r = b− (Uxx + Uyy + σzUss)
19: end if
20: end if
21: end for
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According to the benchmarks in table 5.6 and fig. 5.5, the improved kernel is
without shared memory is the superior method for the double precision imple-
mentation. For single precision (table 5.7), the method using shared memory
is the better choice when the grid size is large: For grid size 257 × 17 × 6, the
method is not competitive although it is for grids of size 1537 × 129 × 9 and
3073× 257× 17.

5.3.1 Launch configuration and benchmarking

A larger set of benchmarks for the improved version without shared memory
are presented in fig. 5.4. For systems with less than some 10,000 internal grid
points, the initialization overhead dominate the solution time. The benchmarks
also point out that for optimal launch configurations, the scalability does not
depend on the anisotropy the grid: Recall that the grid anisotropy vary from
Nx = Ny to Nx = 16Ny.
Performing the benchmarking with a fixed 16×4 launch configuration show only
little difference from the benchmarking using optimal launch configurations.
8×8 on the other hand does not give steady performance for small grids. 16×4
is hence an okay general choice for the low order residual launch configuration.
For the shared memory version it is seen that the method has a break even
with the method without shared memory at approximately grid sizes of 10,000
internal grid points (fig. 5.5).

5.4 Jacobi and RBGS smoother

The optimization from the low order residual can be applied directly to the
Jacobi smoother. Since the methods are practically identical, the Jacobi method
will not be discussed further. The RBGS smoother can contrary to the Jacobi
smoother be optimized further; for the initial kernel, every other thread is idle.
Instead of letting every other thread idle, the threads will process the elements
using an offset. Therefore the (ox, oy, z)xy-utility function is altered to access
every second element:

Listing 5.3: Altered memory access function

1 inline int RBmemoryIdxXY(int ox , int oy , int oz , int3 M, ←֓
int isRed){

2 return z*M.x*M.y

3 + (Ty + Gy + offsety)*M.x

4 + Tx*2 + isRed + Gx + ox;
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Figure 5.5: Benchmarks for the linear 2. order residual procedure with shared
memory (only optimized launch configurations used). Effective bandwidth calculated
using (5.10) with H = 1
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5 }

Listing 5.4: Optimized RBGS with and without line smoothing

1 __global__

2 void RBGSsmoother (...)

3 //...

4 for(Z = 1; Z < N.z; Z++){

5 if(mode == ISBLACK && Z % 1 == 0){

6 if(Y%2 == 1) isRed = 1;

7 }else{

8 if(Y%2 == 0) isRed = 1;

9 }

10 //...

11 Ucenter = RBmemoryIdxXY (0,0,0, M,isRed);

12 //...

13 }

14 }

15

16 __global__

17 void RBGSLinesmoother (...)

18 //...

19 for(Z = 1; Z < N.z; Z++){

20 if(mode == ISBLACK){

21 if(Y%2 == 1) isRed = 1;

22 }else{

23 if(Y%2 == 0) isRed = 1;

24 }

25 //...

26 Ucenter = RBmemoryIdxXY (0,0,0, M,isRed);
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Red Black Gauss Seidel
Double precision

257× 17× 6 1537× 129× 9 3073× 257× 17 Relative
Conf. Time Conf. Time Conf. Time to Naive

Naive (24,2) 146 ns (16,11) 5.47 ms (32,2) 39.8 ms x1
A (24,2) 124 ns (16,12) 3.12 ms (16,4) 21.8 ms x1.2-1.8

Table 5.8: Naive: Starting point, improved low order residual. A: Idle time reduced
by 50%

Red Black Gauss Seidel
Single precision

257× 17× 6 1537× 129× 9 3073× 257× 17 Relative
Conf. Time Conf. Time Conf. Time to Naive

Naive (32,2) 73.63 ns (32,1) 2.02 ms (32,1) 15.16 ms 1x
A (16,1) 71.97 ns (80,3) 1.60 ms (32,1) 11.58 ms x1-1.3

Table 5.9: Naive: Starting point, improved low order residual. A: Idle time reduced
by 50%

27 //...

28 }

29 }

where the mode is set to ISBLACK every other time the kernel is called. One
important detail about this setting is that the block dimension should be even
for both dimension. Otherwise, the Gauss-Seidel method will not be a Red
Black-variant. This rather simple optimization renders an almost double as fast
algorithm for large double precision grids (table 5.8). In depth code of the line
smoother variant is presented in section E.2. The shared memory variant is not
implemented since it is found that the strategy is suboptimal for the similar low
order residual procedure procedure.

Execution time and algorithm bandwidths for the best kernel (reduced idle time,
no shared memory, optimized launch configuration) are presented in fig. 5.8.
The bandwidth of the single and double precision program are the same. The
execution time for the single precision kernel is therefore 50% of the double
precision kernel since only half the amount of memory needs to be transfered.
Notice that the effective bandwidth is approximately 50% of that of the low order
residual method. The cause is that RBGS reads all global memory variables
twice - once for red, once for black.
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Figure 5.8: Benchmark of the optimized Red Black Gauss Seidel method (only
optimized launch configurations used). The effective bandwidth is calculated using
(5.10) with H = 1
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5.5 Line smoother

The optimizations presented in section 5.3 and 5.4 can be applied directly to
the line smoothers as well. Details about evaluation of the finite difference sum
are therefore omitted.

The line smoothers have a large usage of local memory which is as slow as global
memory. The local memory usage occur due to kernel array allocation which
can only be held in registers if they (1) are sufficiently small and (2) always are
accessed by monotonic increasing indexing. Since the Thomas Algorithm access
elements in both directions (forward and backward elimination), the arrays will
regardless of size exist in local memory. In order to reduce the array usage,
the kernel complexity is reduced by altering the algorithm such the forward
elimination is included in the calculation of the off center x- and y-direction

contributions to (1.57) (denoted Ĝ
−

xσ). The vectors a−1 and a0 are thus
reduced to 0 and 1 respectively and therefore superfluous to store (algorithm 9).
a1 and b still need to be stored. The resulting local system matrix is therefore
given by

Ĝ+ =




1 â1,1
0 1 â1,2

. . .
. . .

. . .

0 1 â1,Nσ

−1 0 1 0̂




(5.12)

In order to save memory, the values of a1 can be calculated recursively as well.
Although possible to do, it should not be done since the computation looses
accuracy. It might be possible to store only every second or third value but it
has not been investigated further. a1 must therefore also be saved.

As an alternative to store â1, it can be recomputed when needed since it does
not need any global memory elements. The strategy is not investigated fully
but initial tests with Nz = 6 have shown an improvement of 5-10% in compu-
tation time. It has already been shown that using shared memory for the finite
difference sum is sub-optimal in double precision.

As for the ordinary Gauss-Seidel method, the shared memory variant of the
finite difference sum was not implemented since it was seen for the low order
residual to be a good strategy only for large problems in single precision. Since
the shared memory is free anyways, it might be beneficial to substitute the
local memory arrays with an array in shared memory. It is done fairly easy by
dereferencing the shared memory at an appropriate offset.
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Algorithm 9 Modified forward elimination

1: d← b ⊲ Right hand side of (1.57)
2: a ≡ a−1, b ≡ a0, c ≡ a1 ⊲ in place variables for improved readability

3: ci ← 0
4: c1 ←

c1
b1

⊲ For this case, c1 = 0

5: b1 ←
bi
bi

⊲ Effectively bi ← 1
6: for i← 2, Nσ do

⊲ Assemble small equation system and rhs
7: ai ← S+

(up)

8: bi ← S+
(center)

9: ci ← S+
(down)

10: di ← di −G−

σ xσ

⊲ Combine with forward elimination
11: ai ← ai − bi−1 ·

ai

bi−1

⊲ No need to store; effectively ai ← 0

12: bi ← bi − ci−1 ·
ai

bi−1

13: di ← di − di−1 ·
ai

bi−1

⊲ Scale row such bi ← 1
14: bi ←

bi
bi

⊲ No need to store; effectively bi ← 1
15: ci ←

ci
bi

16: di ←
di

bi
17: end for
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RBGS Line smoother
Single precision

257× 17× 6 1537× 129× 9 3073× 257× 17 Relative
Conf. Time Conf. Time Conf. Time to Naive

Naive (32,6) 147 ns (160,3) 6.03 ms (128,4) 45.0 ms x1
A (16,3) 88 ns (128,3) 2.65 ms (512,1) 20.2 ms x1.7-2.3
B (48,2) 84 ns (320,1) 1.88 ms (256,2) 14.2 ms x1.8-3.2
C (24,2) 79 ns (16,2) 1.41 ms (120,1) 13.19 ms x1.9-3.4

Table 5.10: Naive: Starting point, naive RBGS. A: Algorithm complexity reduced.
B: Idle time reduced by 50%. C: Substitute local array with smem array.

RBGS Line smoother
Double precision

257× 17× 6 1537× 129× 9 3073× 257× 17 Relative
Conf. Time Conf. Time Conf. Time to Naive

Naive (32,2) 263 ns (32,2) 10.10 ms (64,2) 74.06 ms x1
A (24,2) 206 ns (32,2) 7.28 ms (64,1) 51.83 ms x1.3-1.4
B (24,2) 173 ns (64,1) 4.38 ms (32,2) 29.67 ms x1.5-2.4
C (8,6) 167 ns (16,1) 5.92 ms (56,1) 68.83 ms x1.1-1.6

Table 5.11: Naive: Starting point, naive RBGS. A: Algorithm complexity reduced.
B: Idle time reduced by 50%. C: Substitute local array with smem array.

Listing 5.5: Substitution of array with shared memory

1 // _ftype a3[MEMSIZE ];

2 _ftype *a3 = &smem[ (tx + ty*blockDim.x)*2*N.z];

3 // _ftype d[MEMSIZE ];

4 _ftype *d = &smem [2*(tx + ty*blockDim.x)*2*N.z];

The remainder of the algorithm is unchanged! Unfortunately, there is no benefit
in using the shared memory for double precision and only little benefit for single
precision. The optimal implementation of the RBGS line smoother is thus the
kernel with reduced complexity and reduced idle time.

Benchmarks for the optimal version shows that the difference between single pre-
cision and double precision is a factor of two (fig. 5.9). The maximum measured
effective bandwidth for the current implementation is 10-12 GB/s regardless of
single or double precision is used.
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Figure 5.9: Benchmarks for the optimized RBGS line smoother (only optimized
launch configurations used). The effective bandwidth is calculated using (5.10) with
H = 1
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5.6 High order residual

In the previous section, it is seen that calculation of the high order residual is
an expensive procedure of the program and unfortunately it is also the most
complex method. The first and easiest improvement is to move the various or-
der stencils to constant memory rather than placing them in global memory.
Constant memory also reside in global memory but is cached; if the same el-
ements are read only and accessed over and over, it is therefore beneficial to
store the variables in global memory. The kernel size for the naive version uses
78 registers for a double precision kernel and the block size is therefore limited
to a total of ( 1638478 ) 210 threads per multiprocessor3. By trial and error, it was
possible to reduce the number of registers to 70 which allows for 234 threads
totally.

The high order residual method uses mixed derivatives which increase the de-
mands to the amount of shared memory compared to that of the low order
residual. Instead of sharing only a single plane, a number of planes should be
shared in order to hold all elements touched by all stencils. Processing a plane
of size Px × Py, the total number of shared memory elements is

minNshared =
[
NxNy + 2H(Nx +Ny) +H

2
]
W (5.13)

minNshared =
[
NxNy + 2H(Nx +Ny) +H

2
]
(2H+ 1) (5.14)

Mshared = Nshared · sizeof( ftype) (5.15)

where W is the stencil width.

For the low order residual procedure it was possible to instantiate threads also
over halo points which decreased the complexity of the algorithm. This is not
possible for the high order residual; there are neither enough registers or shared
memory to do that. Using a kernel with no ‘wasted’ threads to load a variable
number of halo points into shared memory was not implemented due to a very
high complexity of such a method. Allocating threads over halo points is possible
if the method is split into two passes where pass 1 calculate the Uxx, Uxσ, Uσ

and Uσσ-contribution and pass 2 the Uyy and Uyσ contributions. The problem
of splitting the method into two passes is that the read redundancy goes up for
both 3D grid and 2D surface variables. It was found that the method is not
efficient (see table 5.13 and 5.12). The best version is thus the procedure with
reduced kernel size and stencils moved to constant memory.

The benchmarks for the best 6. order residual method shows a big difference in
bandwidth for the single and double precision program. It is therefore likely that

3CC 1.1, 1.2: Max 768 threads. CC 1.3: Max 1024 threads. CC 2.0: 1536 threads per
multiprocessor
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High order residual
Single precision

257× 17× 6 1537× 129× 9 3073× 257× 17 Relative
Conf. Time Conf. Time Conf. Time to Naive

Naive (64,5) 0.88 ms (64,3) 57.7 ms (96,2) 461 ms x1
Limit (16,3) 0.14 ms (16,4) 6.3 ms (64,1) 48 ms x6.3-9.6
A (32,3) 0.45 ms (64,1) 18.4 ms (64,1) 142 ms x2.0-3.3
B, pass1 (64,1) 0.22 ms (320,1) 11.1 ms (288,1) 85 ms -
B, pass2 (32,12) 0.15 ms (16,25) 6.8 ms (8,51) 52 ms -
B, total - 0.37 ms - 17,97 ms - 227 ms x2-2.4

Table 5.12: Naive: Stencils are in global memory. Est. limit: What can be done
with shared memory? A: Stencils moved to constant memory, kernel size reduced. B:
Two pass method using shared memory.

High order residual
Double precision

257× 17× 6 1537× 129× 9 3073× 257× 17 Relative
Conf. Time Conf. Time Conf. Time to Naive

Naive (16,4) 1.05 ms (192,1) 64.41 ms (96,2) 518 ms x1
Est. limit (88,2) 0.56 ms (16,4) 31.00 ms (32,2) 242 ms x1.9-2.1
A (88,2) 0.79 ms (32,2) 45.09 ms (32,2) 348 ms x1.3-1.5
B, pass1 (64,3) 0.57 ms (64,1) 33.55 ms (192,1) 252 ms -
B, pass2 (32,9) 0.42 ms (8,35) 15.93 ms (8,35) 120 ms -
B, total - 0.99 ms - 49.48 ms - 372 ms x1-1.4

Table 5.13: Naive: Stencils are in global memory. Est. limit: What can be done
with shared memory? A: Stencils moved to constant memory, kernel size reduced. B:
Two pass method using shared memory.

there are not enough threads active to occupy the bandwidth fully; transferring
is 102.4GB/s but there is a large latency prior to the transfer. If there are not
enough active threads, too few memory requests are active at the time thus
leaving a gap between single and double precision bandwidths.

5.7 Optimized kernels

Performance improvement plots for the optimizations to the high order residual
and line smoother are presented in fig. 5.11.
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Figure 5.10: Benchmarks for the best implementation of the 6. order non linear
residual procedure (only optimized launch configurations used). The effective band-
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Figure 5.11: Profiling of the optimized CUDA implementation. 10 time steps for
the Whalin shoal (gridsize 257 × 21 × 6) are benchmarked using the CUDA profiler.
The smoother is called 3700 times and the high order residual only 89 times



102 Code optimization



Chapter 6

Results

There are two aspects of this project which are interesting. One is the numeric
point of view, and the other is parallelization and optimizations.

6.1 Verification

In order for the algorithm to be convergent, the accuracy must be increased for
decreased step size. In particular, the error should be described by

||ǫ||2 ≤ O(hp) (6.1)

where ǫ is the error of the estimate, p is the spatial discretization order and h
the smallest step size in the domain. In order to verify the iterative solver, a
non linear periodic shallow water wave is used. The special about the wave is
that there exist an analytic solution and that the solution can be used to verify
the method. The verification cannot cover the entire model since the analytic
solution assumes flat bottom. The wave is controlled by the factors k · h (the
wave number) and H · L (wave height relative to wave length).

For verification a wave with H/L = 0.0088 = 30% of breaking and wave number
kh = 0.5 is used. Regarding the convergence. The actual order of convergence
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Convergence tests
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Figure 6.1: Left: The Laplace solver is convergent only when ∆x > 10−1.9 (160
points per wave). The actual order in the convergent region is approximately one
lower than the intended order (see legend).

is approximately one lower than the intended order. The reason for the ‘lacking
order’ and missing convergence for hx ≪ hz was not found at the end of the
project.

6.2 Validation

For validation, the Whalin shoal experiment has been used for which the still
water depth is given by

h(x, y) =





0.4572, 0 ≤ x < 10.67− Σ(y)
0.4572 + 1/25(10.67− Σ(y)− x), 10.67− Σ(y) ≤ x < 18.29− Σ(y)
0.1524, 18.29 ≤ x ≤ 35

(6.2)

The still water depth is thus described by a flat bottom in two levels with
a semicircular transition. One of the original experiments has wave period
T = 2 and wave height H = 0.0150. For the numerical experiment, the waves
are generated in the zone 0 ≤ x < 5 and absorbed in 30 < x ≤ 35. The
domain discretization is set to 257× 21× 6 in order for the waves to be resolved
sufficiently. The experiments were carried out using a formally O(∆x6,∆t4)
discretization scheme, an absolute tolerance of 10−4 and a relative tolerance
of 10−6. For analysis, a temporal Fourier transfer is done over the three wave
periods in the time domain t = 44s − 50s along the center of the shoal. The
computed results are in good agreement with that of [1] (fig. 6.2, 6.3).
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Figure 6.2: Fourier analysis of Whalin shoal case (T = 2, H = 0.039) in the interval
t = 44s− 50s showing first (blue), second (green) and third (red) wave harmonics

Figure 6.3: Snap shot of Whalin shoal case (T = 2, H = 0.039, t = 50s)
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Figure 6.4: The plot shows the convergence curves for various (intended) orders of
discretization using a V(5,5) configuration for the preconditioner to ensure effective-
ness. The wave resolution is 26 points with h = 0.077 = 10−1.11

6.3 Convergence of the Defect Correction method

Defect Correction basically is a very simple algorithm. The effectiveness of the
algorithm depends only on

(i) How close M
−1 is to A−1

(ii) The effectiveness of the preconditioner

The convergence of the solver will be analyzed using the 2-norm of the defect
d. The dependency on order will be examined first. For analysis, a snapshot
of a single shallow water wave will be used. The wave parameters are chosen
to kh = 0.5, H/L = 0.0088 = 30% of breaking with an intended 6th order
non linear spatial discretization on grid resolutions Ny = 7, Nz = 6 and Nx

varying from 13 to 1537. The number of ghost points in the horizontal direction
is H = 3. The total domain length is set to L = 2 and the step length thus
varies from ∆x = 0.0013 = 10−2.8 to ∆x = 0.25 = 10−0.6. In order to limit the
analysis, only the RBGS line smoother which is also the most effective smoother
implemented is applied.

The convergence curve for various orders is provided in fig. 6.4. After the first
few iterations, the convergence rate (steepness of the curve) is the same regard-
less of discretization. The convergence rate for the 2nd order approximation is
one digit per iteration.
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Fundamental parameters
Smoothings (ν1, ν2) ∈ (N+,N+)
Smoother type Jacobi, Gauss Seidel, Line smoother, ...
Cycle type F, µ (primarily V or W)

Table 6.1: Basic parameters of the Coarse Grid Correction method.

Non fundamental parameters
Precision Single, double
Digressiveness of coarsening 0 ≤ α ≤ ∞; see section 2.4.
Number of grids in use 1 to as many possible
Improved initial guess Potential flow from earlier time steps

Table 6.2: Non fundamental parameters of the Coarse Grid Correction method. Note
that the the current implementation does not allow the precision of the preconditioner
to differ from that of the DC method.

6.3.1 Effectiveness of the preconditioner

The preconditioner has various parameters which can be adjusted in order to
tune it for some particular problem. The basic parameters of the algorithm are
listed in table 6.1 and more advanced but non-essential parameters in table 6.2.
One important parameter is the number of pre- or post-relaxations. The most
commonly used combinations are given by

(ν1, ν2), ν2 ∈ {ν1, ν1 − 1} (6.3)

where ν1 and ν2 are the number of pre- and post-smoothings respectively.
Changing the number of pre- and post-smoothings proves to be vital in order
to ensure convergence of the algorithm. The figures 6.5, 6.6 and 6.7 show iter-
ation plots for various resolutions of the problem using V-, F- and W- cycling
strategies respectively. For the V- and F-cycle, a (1,1)-configuration ensures
convergence only for ∆x ≥ 10−2.6. Increasing the number of smoothings en-
sures convergence also for more fine resolutions. It has not been investigated in
detail how many pre- or post-smoothings which will be needed to ensure con-
vergence for particular problem and it is therefore a user controlled parameter
of the algorithm.

Increasing the number of smoothing not only ensures convergence. It also control
the effectiveness in term of number of outer correction iterations. It is advisable
to experiment with the number of smoothings: If the number of outer iterations
in the Defect Correction method is high, it might be efficient, especially for large
grids to increase the number of smoothings to improve convergence.
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Figure 6.5: Convergence of Defect Correction depend on its configuration. For a
V(1,1)-configuration, the smallest step size which ensures convergence for this partic-
ular problem is h ≥ 10−2.6. The setup uses k · h = 0.5, H/L = 0.0088 = 30% of
breaking with and intended 6th order discretization.

Requiring an absolute tolerance of e.g. 10−7 with a V(1,1)-configuration in a
domain with step length h = 0.0052 (corresponding to a wave resolution of 385
points) will require approximately 35 outer iterations (fig. 6.5, upper left). If
a V(5,5) configuration is chosen instead, only 10 outer iterations are required.
By increment of the number of smoothings, the computational effort goes up
and it is therefore not given which configuration is the most effective. Although
the W(1,1) configuration is convergent already for one iteration, the strategy is
very time consuming.

In section 2.4 it was hypothesized that aliasing components might cause problem
when a large number of grids are used and the apparent conclusion from fig. 6.5,
6.6 is that the hypothesis is correct: If there residual is not smooth enough, the
solver is divergent which is most likely caused by aliasing components.
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Figure 6.6: Convergence of Defect Correction depend on its configuration. There is
practically no difference between the F- and V-cycle for this particular problem. The
setup uses kh = 0.5, H/L = 0.0088 = 30% of breaking with and intended 6th order
discretization.
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Figure 6.7: Convergence of Defect Correction depend on its configuration. Although
it shows good convergence, the W-cycle in this implementation is very slow and it is
therefore recommended not to be used. The setup uses kh = 0.5, H/L = 0.0088 = 30%
of breaking with and intended 6th order discretization.
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6.4 Limiting the number of grid levels

Since the multigrid implementation seem to have problems with aliasing com-
ponents, it might very well be an idea not to use many grids. If the correcting
term is transfered to a coarse grid without being properly damped, aliasing com-
ponents will add noise to the signal. At some point, the signal to noise (SNR)
ratio will be so poor that none of the original signal is left. The result is that
the algorithm tries to correct something wrong which in worst case may lead to
divergence which was experienced in fig. 6.5 and 6.6.

In the section 6.3 it was found that there is practically no difference between
using an F- or a V-cycle. Therefore only the V-cycle is considered. Again a non
linear wave with kh = 0.5, H/L = 0.0088 = 30% of breaking with and intended
6th order discretization is used.

In fig. 6.8, Nx = 1537. For a V(1,1)-configuration, using 1, 2 or 3 levels of grids,
the algorithm is convergent although the convergence is very slow. The reason
for the very slow convergence is most likely that too much of the error exist in
frequencies which will never propagate into the high frequency area on any of
the used grids. Unfortunately, a V(1,1) configuration is not strong enough to
remove enough high frequency components to include a 4th level of restriction
with a resulting divergent behavior.

Increasing the number of smoothings to a V(2,2) configuration the high fre-
quency components are dampened enough to also use the 4th and the 5th level
of grids. Since a number of smoothings is applied rather than a direct solver,
only error components in the frequency range 1/32− 1/1 can be removed (eventu-
ally see table 6.3). When 5 grids are used, the convergence makes a sudden snap
after approximately 10 iterations after which the convergence is poor due to ei-
ther aliasing components or even lower frequency error components existing in
the grid. Increasing the number of smoothings even further, it can be seen that
the error is caused primarily by aliasing effects rather than very low frequency
error components: The error when using 5 grids is now as low as when 6-9 grids
are used. Even though alot of smoothings are applied, there are still problems
with aliasing and perhaps also even lower frequencies: The algorithm still has a
sharp bend which an ideal solver should not have. At this point a direct solver
ought to be applied since the smoother apparently is not effective enough to
remove the remaining aliasing components, even for a V(5,5) configuration.

What is relevant to notice is for a sufficiently resolved error at a certain level,
it does not help to increase the number of smoothings. In particular the con-
vergence curves of using 1-3 grids does not change dramatically from V(1,1) to
either V(2,2) or V(5,5). A straight forward thought is therefore to investigate
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Fine grid frequency domains
Low High

Grid level From To From To
1 0 1/2 1/2 1
2 0 1/4 1/4 1/2
3 0 1/8 1/8 1/4
4 0 1/16 1/16 1/8
5 0 1/32 1/32 1/16
n 0 1/2n 1/2n 1/2n−1

Table 6.3: Each of the various grids are associated with a frequency range. In an
optimal multigrid solver, all high frequency components will be removed from the
associated high frequency part of the signal. Using 4 grids and no direct solver on the
4th grid, the multigrid method should thus be able to remove components in the range
1/16− 1/1.

whether it will suffice to use a V(1,1) smoother for grids 1-3, V(2,2) for level 4
etc. while not increasing the number of outer iterations.

6.5 Scalability, limitations and speedups

One of the key properties of program, is that it should scale; a problem with
n degrees of freedom should take O(n) time to solve, and have O(n) memory
usage. The most expensive variables are the fine 3D grids. A piece of consecutive
memory large enough to hold all levels of fine and coarse grids used for CGC
will be referred to as a multigrid.

Due to the multigrid preconditioner, the memory usage depend on the coars-
ening strategy. It is possible to provide an upper and a lower bound for the
memory usage for multigrids: Every time the grid size is halved along an axis,
the problem size is halved. Reducing problem size in 2 direction at the same
time, the grid size is reduced to 1/4 of the original size, and reducing in all 3
directions, the grid size is reduced to 1/8 of the fine grid. The memory usage of
a multigrid will thus have an upper bound determined by1

Multigrid allocation <
∞∑

k=0

N

2k
= 2N (6.4)

(6.5)

1Ghost points neglected.
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Non linear periodic wave using 1-9 grid levels
One period, L = 2 on 1537 points ⇒ h = 0.0013 = 10−2.8
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Figure 6.8: Given a convergent setup, it is seldom a bad choice to stop after a 4-5
levels. The setup uses kh = 0.5, H/L = 0.0088 = 30% of breaking with and intended
6th order discretization.
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Non linear periodic wave using 1-7 grid levels
One period, L = 2 on 385 points ⇒ h = 0.0052 = 10−2.3
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Figure 6.9: Given a convergent setup, it is seldom a bad choice to stop after a 4-5
levels. The setup uses k ·h = 0.5, H/L = 0.0088 = 30% of breaking with and intended
6th order discretization.
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Figure 6.10: Altering the physical domain size does not change convergence dramat-
ically when the physics are note altered.
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Figure 6.11: Scaling of device RAM use with (left) and without (right) ghost points
included.

where N = NxNyNz. The grid usage of the program is listed in table D.1,
appendix D, and the program memory usage is found to be determined by

max elements = (4 · 2 + 2)NxNyNz + (13 · 2 + 8)NxNy (6.6)

= (10Nz + 44)NxNy (6.7)

max memory = max elements · sizeof( ftype) (6.8)

If a Gauss-Seidel type smoother is used, the 3D multigrid usage is reduced with
1 grid, reducing the memory allocation to

max elements = (8Nz + 42)NxNy (6.9)

The largest systems which could be in memory on a Tesla device (4GB) has
approximately 51 million degrees of freedom for double precision and 101 million
degrees of freedom for single precision (10 and 11 levels of grids respectively).
In fig. 6.11 it can be seen the memory usage of the algorithm has O(n) scaling,
even for small grids.

For the benchmarking of time integration, a non linear periodic wave with kh =
0.5, H/L = 0.088 = 30% of breaking is solved using a V(1,1)-configuration for
the Laplace problem. In order to ensure that the Laplace solver is stable, the
wave resolution is held approximately constant at 32 points per wave. Thus
for the maximum test size, Nx = 671, 745, Ny = 7, Nz = 6 (3.72 GB) there are
totally 20,995 waves in the x-direction of the domain. In order to be independent
of the problem, the benchmark provided is created taking 10 time steps and
dividing with the total number of Defect Correction applied. The unit is thus
time per outer iteration. The algorithm scales nicely for large problems on both
the Tesla (fig. 6.12) and Fermi (fig. 6.13) architecture.

The optimizations applied to the low order residual, smoother and high order
residual procedures give a V-cycle speedup of approximately times 1.5 in double
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Figure 6.12: Scaling of iteration time on a Tesla (CC 1.3) device for naive imple-
mentation (left) optimized implementation (right).
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Figure 6.13: Scaling of iteration time on a Fermi (CC 2.0) device for naive imple-
mentation (left) Tesla optimized implementation (right).
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Figure 6.14: Demoting from double to single precision, speeds up the computation.
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Figure 6.15: Changing from a high end CC 1.3 to a high end CC 2.0, the program
is sped up by a factor of 2-3

precision and times 2 in single precision (fig. 6.12). Moving the program to the
Fermi architecture speeds the program up by a factor of 2-3 times (fig. 6.15).
This is somewhat more than expected since the algorithm is memory bound and
the bandwidth is increased ‘only’ by approximately 70% (102.4GB/s→177.4GB/s).
Rather interestingly, the applied optimizations seem to be suboptimal on the
Fermi; the naive implementation of the program is in fact faster than the pro-
gram optimized for the Tesla.

The final and very important result is the performance gain from migrating the
sequential CPU code to parallel GPU code. The CPU code was executed on
a system contemporary to the GPUs. In particular, the CPU is an Intel Core
i7 920 processor @2.67GHz, and the CPU-to-RAM-bandwidth is estimated to
11.5GB/s.
In fig. 6.16 it can be seen that the speedup for small problems is in the scale
of 2 for the Quadro FX 5800, and 9 for the GeForce GTX 480. For larger
systems, the speedup on the Quadro FX 5800 saturates at about 11 times, and
for the GeForce GTX 480, the saturation level is apparently not met within
the scale of problems, which can be solved with the current CPU code. The
maximum obtained speedup is 42 times faster than the CPU version of the
program, which is in the high end of the expectations: In section 1.4 the limiting
factor was found to be the bandwidth, rather than the parallel fraction of the
code since the problem is memory bound, rather than compute bound. The
speedup is a combination of the higher device bandwidth and the decreased
memory usage obtained by storing only the necessary vectors and generating
matrices on demand.
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Figure 6.16: GPU program compared to sequential (non OpenMP) CPU program.
Iteration time is normalized to be virtually problem independent by dividing the timing
of a given program by the number of outer Defect Correction iterations performed.
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Chapter 7

Future work

There are two primary aspects of the work with the Defect Correction method
with a multigrid preconditioner: One is the algorithmic, and the other is hard-
ware optimizations. It is during this work found that there is reason to inves-
tigate certain part of the program further. In section 6.3 it was found that the
effectiveness of the multigrid preconditioner depend on the effectiveness of the
smoother. In particular, if the step length is small, it was found that it might be
beneficial to vary the number of smoothings according grid level. If it is possible
to reduce the number of smoothings at the fine level, the computation time will
definitely be reduced. The problem is mostly of mathematical interest since the
normal usage of this kind of solver would not need that kind of resolution. If a
fine grid resolution is to be used, it should also be determined what the cause
is to the divergent behavior for small step lengths.

Regarding the CUDA implementation, the bottleneck problems remain the high
order residual and line smoother. For the high order residual table 5.13 suggests
that it is possible to gain another 40% over the current implementation1 if a
good shared memory approach is found. Prior to this optimization it should be
determined whether there is a benefit from applying shared memory on a Fermi
GPU. Another 5-10% can be found in detecting the optimal kernel configurations
for the particular problem solved: The effectiveness of the bottleneck kernels
depend on the combination of grid layout and launch configuration. Since a

1Assumed the code is executed on a Quadro FX 5800 device or similar
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simulation is in the scale of thousands of time steps, there is a potential speedup
by using the correct launch configuration.



Appendix A

σ-transform and derivations

Given is the potential flow formulation.

∂tη = −∇η · ∇φ̃+ w̃(1 +∇η · ∇η) (A.1)

∂tφ̃ = −gη −
1

2
(∇φ̃ · ∇φ̃− w̃2(1 +∇η · ∇η)) (A.2)

The σ-transform will affect only the calculation of the velocity potential in the
fluid.

φ = φ̃, z = η (A.3)

∇2φ+ ∂zzφ = 0, −h ≤ z < η (A.4)

∂zφ+∇h · ∇φ = 0, z = −h (A.5)

As stated, the intention of performing the σ-transform is to create a cuboid time
invariant domain. The change of variable should therefore be some mapping in
the vertical which scales the horizontal domain accordingly. In order to do so,
a linear mapping of the coordinate is introduced.

σ ≡
z + h(x)

η(x, t) + h(x)
≡

z + h(x)

d(x, t)
, d (x, t) = η (x, t) + h (x) (A.6)
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Hence the computational domain is located in 0 ≤ σ ≤ 1. Changing variable
will affect the derivatives:

Φ ≡ φ(σ) (A.7)

∂xφ = ∂xΦ∂xx+ ∂yΦ∂xy + ∂σΦ∂xσ = ∂xΦ+ ∂σΦ∂xσ (A.8)

∂yφ = ∂yΦ∂xy + ∂yΦ∂yy + ∂σΦ∂yσ = ∂yΦ+ ∂σΦ∂yσ (A.9)

∂zφ = ∂zΦ∂xz + ∂zΦ∂yz + ∂σΦ∂zσ = ∂σΦ∂zσ (A.10)

The second derivative

∇2φ =
[
∂x ∂y

] [ ∂xφ
∂yφ

]
= ∂xxφ+ ∂yyφ (A.11)

∂xxφ = ∂x (∂xφ) (A.12)

= ∂x (∂xΦ+ ∂σΦ∂xσ) (A.13)

= ∂x (∂xΦ) + ∂x (∂σΦ∂xσ) (A.14)

The latter term is transformed using the product rule:

∂x (∂σΦ∂xσ) = ∂x (∂σΦ) ∂xσ + ∂σΦ∂x (∂xσ) (A.15)

∂xxφ = ∂x (∂xΦ) + ∂x (∂σΦ) ∂xσ + ∂σΦ∂xxσ (A.16)

The chain rule is applied to ∂x (∂σΦ) and ∂x (∂xΦ).

∂x (∂xΦ) = ∂xxΦ+ ∂xσΦ∂xσ (A.17)

∂x (∂σΦ) = ∂xσΦ+ ∂σσΦ∂xσ (A.18)

∂xxφ = (∂xxΦ+ ∂xσΦ∂xσ) (A.19)

+ (∂xσΦ+ ∂σσΦ∂xσ) ∂xσ + ∂σΦ∂xxσ (A.20)

∂xxφ = ∂xxΦ+ 2∂xσΦ∂xσ + ∂σσΦ∂xσ∂xσ + ∂σΦ∂xxσ (A.21)

The second partial derivative in the y-direction will thus be

∂yyφ = ∂yyΦ+ 2∂yσΦ∂yσ + ∂σσΦ∂yσ∂yσ + ∂σΦ∂yyσ (A.22)

And finally for the Laplacian, we get

∇2φ =
[
∂x ∂y

] [ ∂xφ
∂yφ

]
= ∂xxφ+ ∂yyφ (A.23)

∇2φ = ∇2Φ+ 2∇ (∂σΦ)∇σ + ∂σσΦ∇σ · ∇σ + ∂σΦ∇
2σ (A.24)

As seen, spatial derivatives of sigma are needed as well.

∂zσ = ∂z

(
z + h(x)

d(x, t)

)
=

1

d(x, t)
(A.25)
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∇σ =

[
∂x
∂y

]
σ =

[
∂x
∂y

](
z + h (x, t)

d (x, t)

)
(A.26)

∂xσ = ∂x

(
z + h

d

)
(A.27)

=
d∂x (z + h)− (z + h) ∂xd

d2
(A.28)

=
d

d

∂xh

d
−

z + h

d

∂xd

d
(A.29)

=
∂xh

d
− σ

∂xd

d
, ∂xd = ∂xη + ∂xh (A.30)

= (1− σ)
∂xh

d
− σ

∂xη

d
(A.31)

The partial derivative in the y-direction is similar due to the symmetry of the
problem. Finally, the gradient is given as a vector of partial derivatives.

[
∂xσ
∂yσ

]
= (1− σ)

[
∂xh
d

∂yh

d

]
− σ

[ ∂xη
d

∂yη

d

]
(A.32)

∇σ = (1− σ)
∇h

d
− σ
∇η

d
(A.33)

To find the Laplacian of σ, we will need to find the second partial derivatives
since ∇2σ = ∂xxσ + ∂yyσ.

∂xxσ = ∂x

(
(1− σ)

∂xh

d

)
− ∂x

(
σ
∂xη

d

)
(A.34)

For the first term

∂x

(
(1− σ)

∂xh

d

)
= −∂xσ

∂xh

d
+ (1− σ)∂x

(
∂xh

d

)
(A.35)

∂x

(
∂xh

d

)
=

d∂xxh− ∂xh∂xd

d2
(A.36)

∂x

(
(1− σ)

∂xh

d

)
= −

∂xσ

d
∂xh+

(1− σ)

d

(
∂xxh−

∂xh∂xd

d

)
(A.37)

For the second term

∂x

(
σ
∂xη

d

)
= ∂xσ

∂xη

d
+ σ∂x

(
∂xη

d

)
(A.38)

∂x

(
∂xη

d

)
=

d∂xxη − ∂xη∂xd

d2
(A.39)

∂x

(
σ
∂xη

d

)
=

∂xσ

d
∂xη +

(1− σ)

d

(
∂xxη −

∂xη∂xd

d

)
(A.40)
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Gathering terms and inserting ∂xd = ∂xη + ∂xh reveals

∂xxσ =−
∂xσ

d
∂xh (A.41)

+
(1− σ)

d

(
∂xxh−

∂xh∂xh

d
+

∂xh∂xη

d

)
(A.42)

−
∂xσ

d
∂xη (A.43)

−
σ

d

(
∂xxη −

∂xη∂xη

d
+

∂xh∂xη

d

)
(A.44)

Rearranging a bit, a usable result is finally obtained

∂xxσ =
(1− σ)

d

(
∂xxh−

∂xh∂xh

d

)
−

σ

d

(
∂xxη −

∂xη∂xη

d

)

−
∂xσ

d
(∂xh+ ∂xη) +

(1− 2σ)

d

(
∂xh∂xη

d

)
(A.45)

Since the operation is symmetric in terms of dimensions, ∂yyσ is similar to ∂xxσ.
∂yyσ can therefore be concluded to be given by

∂yyσ =
(1− σ)

d

(
∂yyh−

∂yh∂yh

d

)
−

σ

d

(
∂yyη −

∂yη∂yη

d

)
(A.46)

−
∂yσ

d
(∂yh+ ∂yη) +

(1− 2σ)

d

(
∂yh∂yη

d

)
(A.47)

Finally, the Laplacian of σ can also be given in vectorized form which will be

∂xxσ + ∂yyσ =
(1− σ)

d

(
∂xxh+ ∂yyh−

∂xh∂xh+ ∂yh∂yh

d

)
(A.48)

−
σ

d

(
∂xxη + ∂yyη −

∂xη∂xη + ∂yη∂yη

d

)
(A.49)

−
∂xσ

d
(∂xh+ ∂xη)−

∂yσ

d
(∂yh+ ∂yη) (A.50)

+
(1− 2σ)

d2
(∂xh∂xη + ∂yh∂yη) (A.51)

∇2σ =
(1− σ)

d

(
∇2h−

∇h · ∇h

d

)
(A.52)

−
σ

d

(
∇2η −

∇η · ∇η

d

)
(A.53)

−
∇σ

d
· (∇h+∇η) (A.54)

+
(1− 2σ)

d2
∇h∇η (A.55)



Appendix B

Underline Notation

Underline notation is a notation relating to a graphical representation of a dis-
crete function. The notation is often used in DSP to represent discrete filters
and has nothing to do with vectors although looking like one. The underlined
element shows the center element of the filter/weighted sum.

f(n) =
[
− 1

2 0 1
2

]
(B.1)

Since the center element is underlined, the indexing for this particular function
is

n =
[
−1 0 1

]
(B.2)

The correct interpretation of (B.1) is therefore

f(−1) = 1
2 f(0) = 0 f(1) = 1

2 (B.3)

and zero elsewhere. For discrete functions of higher dimension, the underlined
element again shows the center element

f(n,m) =




3
4 0 − 3

4
−1 0 1
1
4 0 − 1

4


 (B.4)

The corresponding implicit numbering of elements is then

(n,m) =




(0,−1) (0, 0) (1, 1)
(1,−1) (1, 0) (2, 1)
(2,−1) (2, 0) (3, 1)


 (B.5)



126 Underline Notation

The correct interpretation of (B.1) is therefore

f(0,−1) = 3
4 f(0, 0) = 0 f(0, 1) = − 3

4
f(1,−1) = −1 f(1, 0) = 0 f(1, 1) = 1
f(2,−1) = 1

4 f(2, 0) = 0 f(2, 1) = − 1
4

(B.6)

and zero elsewhere. In order to make the notation flexible, the stencil is also
bound to a direction. The stencil Sx is thus applied in the x-direction of the
domain and Sy in the y-direction of the domain:

Sx = [2 1 3]x , Sy = [3 1 2]y (B.7)

The notation benefits from being compact and allows for 3D stencils to be
properly represented on a (2D) piece of paper.

B.0.1 Mixed derivatives

The grid is regular with grid spacing ∆x and ∆y in the x- and y-dimension
respectively. To illustrate the versatility, a centered approximation is applied
in the horizontal x-direction and an off-centered approximation is used in the
vertical z-direction. The mixed derivative is found by the tensor product of Sx

and Sz which in underline notation is simplified to a vector-vector product:

Sx =
1

∆x

[
− 1

2 0 1
2

]
x
, Sy =

1

∆z

[
− 3

2 2 − 1
2

]
z

(B.8)

Sxz = ST
z Sx (B.9)

Sxz =
1

∆x∆z




3
4 0 − 3

4
−1 0 1
1
4 0 − 1

4



xz

(B.10)

The primary advantage of calculating the mixed derivatives using tensor prod-
ucts is that the method is robust and reduce the risk of programming errors. In
depth code of implementation of the mixed derivative is available in listing D.4,
appendix D.



Appendix C

Platforms

The platforms used are specified by the tables below

HP Z800 workstation:
Operating system Windows 7 (64-bit)
CPU Intel Xeon W5590, 3.33GHz
RAM 12GB (PC-10700)
GPU NVIDIA Quadro FX 5800
Display driver version 257.21
CUDA Runtime Version 2.3

NVIDIA Quadro FX 5800
Compute Capability 1.3
RAM 4.0 GB
Multiprocessors 30
Number of cores 240
Memory bandwidth 102.4GB/s
Clock rate 1.30 GHz
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ProConsole workstation:
Operating system Windows 7 (64-bit)
CPU Intel Core i7 Extreme 9065, 3.20GHz
RAM 3GB (PC-10700)
GPU NVIDIA GeForce 480 GTX
Display driver version 260.99
CUDA Runtime Version 2.3

NVIDIA GeForce 480 GTX
Compute Capability 2.0
RAM 1.5 GB
Multiprocessors 60
Number of cores 480
Memory bandwidth 177.4GB/s
Clock rate 1.40 GHz



Appendix D

CUDA implementations

For the sake of completeness this chapter presents either full or pseudo imple-
mentation of most of the components used. The total grid/memory usage of
the program is specified by table D.1.

D.1 Finite difference estimates

Calculating the finite difference estimate at some given point is then done in
three steps: Calculate which stencil to use, then apply stencil and finally, scale
according to step length in the given direction. For the x-direction we will
calculate the stencil number snx by

Listing D.1: Calculate stencil number

1 int maxdist = (stencilwidth -1) /2; //NB! stencilwidth is ←֓
always odd

2 int snx = maxdist; // stencil number (x-direction)

3 if(Tx < maxdist){

4 //left asymmetric stencil

5 snx -= maxdist -Tx;

6 }



130 CUDA implementations

Table D.1: Overview of memory consuming variables

Variable Type Memory consumpsion usage
dc x 3D Multigrid NxNyNz Iterate of DC
dc b 3D Multigrid NxNyNz Rhs of DC
mg x0 3D Multigrid NxNyNz + recursions Iterate of CGC
mg x1 3D Multigrid NxNyNz + recursions Iterate of CGC
mg r 3D Multigrid NxNyNz + recursions Iterate of CGC
mg b 3D Multigrid NxNyNz + recursions Iterate of CGC
E 2D Multigrid 2(NxNy + recursions) Surface variable
P 2D Multigrid 2(NxNy + recursions) Surface variable
Ex 2D Multigrid NxNy + recursions Surface derivative
Exx 2D Multigrid NxNy + recursions Surface derivative
Ey 2D Multigrid NxNy + recursions Surface derivative
Eyy 2D Multigrid NxNy + recursions Surface derivative
h 2D Multigrid NxNy + recursions Bottom variable
hx 2D Multigrid NxNy + recursions Bottom derivative
hxx 2D Multigrid NxNy + recursions Bottom derivative
hy 2D Multigrid NxNy + recursions Bottom derivative
hyy 2D Multigrid NxNy + recursions Bottom derivative
k Edt 2D grid 4NxNy Runge Kutta stages 1-4
k Pdt 2D grid 4NxNy Runge Kutta stages 1-4

7 else if(M.x-1 < Tx + maxdist){

8 //right asymmetric stencil

9 snx += (maxdist+Tx) -(M.x-1);

10 }

Knowing the stencil number we can now apply the stencil

Listing D.2: Apply stencil

1 for(int i = 0; i<stencilwidth; i++){

2 int offsetx = i+snx*stencilwidth;

3 _ftype sv = stencil1D[i];

4 Ux = sv*x[memoryIdxXY(offsetx ,0,Z, M)];

5 }

Finally the stencil should be scaled according to the (uniform) step length in
the given direction

Listing D.3: Scale finite difference sum
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1 Ux *= (Lx/(N.x-1)) // 1/hx

For mixed derivatives, we will simply expand listing D.1 with a nested loop and
apply appropriate scaling for both directions

Listing D.4: Apply stencils

1 for(int k = 0; k<stencilwidth; k++){ // inner loop z

2 int sz = k + snz*stencilwidth;

3 int oz = -(k - snz); // stencil is reversed compared to x-←֓
and y-direction

4

5 for(int i = 0; i<stencilwidth; i++){ //inner loop x

6 int sx = i + snx*stencilwidth;

7 int ox = i - snx;

8

9 // combined stencil value

10 _ftype sv = stencil1[sx]

11 *stencil1[sz];

12

13 Ax_Uxs += sv*igrid[memoryIdxXY(ox ,0,Z + oz , memsize)];

14 }

15 }

16 Ax_Uxs *= Lx/(N.x-1)*Ls/(N.z-1); // 1/(hx hsigma)

Notice that the offsetting in the vertical direction is reversed (line 3) compared
to the horizontal direction. This is due to an increment in z imply decrement
in σ (remember that surface values are stored at z=0 and bottom values at z =

Nz-1).

D.1.1 Low order linear approximations

The entire Coarse Grid Correction part of the program will be using low order
linear approximations. Since the approximation order will therefore be fixed
to 2 and there will be no mixed derivatives, complexity of the program can be
decreased by fixing the loop presented in listing D.2. As a small benifit, the
performance will most likely also be a bit better since there will be less register
use and one loop overhead less to process. For the x-direction, the fixed function
derivatives will be given by

Listing D.5: Fixed 2nd-order derivatives

1 Ux = (0.5*U[memoryIdxXY (-1,...)]



132 CUDA implementations

2 // 0*U[memoryIdxXY( 0 ,...)]

3 -0.5*U[memoryIdxXY( 1 ,...)])/hx;

4 Uxx = ( U[memoryIdxXY (-1,...)]

5 -2*U[memoryIdxXY( 0 ,...)]

6 + U[memoryIdxXY( 1 ,...)])/(hx*hx)

D.2 Updating ghost points

For the 2D case, we will update opposing sides concurrently.

A simple way to implement the procedure in CUDA is to allocate threads ac-
cording to the length of the side being updated; updating the ghost points
ηx,−h = ηx,h can be done in with Mx threads.

Listing D.6: Update ghost points along x-axis

1 if(!(Tx < M.x))

2 return;

3 int t = total_ghost_points;

4

5 for(int i = 1; i <= t;i++){

6 //gp: ghost point (index)

7 //vp: value to copy - value point (index)

8 int gp = memoryIdxXY( 0, t-i,0, M);

9 int vp = memoryIdxXY( 0, t+i,0, M);

10

11 grid[gp] = grid[vp];

12

13 gp = memoryIdxXY( 0, M.y-1-t+i,0, M);

14 vp = memoryIdxXY( 0, M.y-1-t-i,0, M);

15

16 grid[gp] = grid[vp];

17 }

For periodic boundary conditions, lines 9 and 14 are swapped and modified
slightly:

Listing D.7: Update ghost points along x-axis (periodic domain)

1 int gp = memoryIdxXY( 0, t-i, 0, M);

2 int vp = memoryIdxXY( 0, M.y-1-t-(i-1) ,0, M);

3 //...
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4 gp = memoryIdxXY( 0, M.y-1-t+i,0, M);

5 vp = memoryIdxXY( 0, t+(i-1) ,0, M);

The ghost update along the y-axis is quite similar since nearly everything is the
same. Only the indexing and initial safety check will need to be changed;

Listing D.8: Update ghost points along y-axis (bounded domain)

1 if(!(Ty < M.y))

2 return;

3 int t = total_ghost_points;

4

5 for(int i = 1; i <= t;i++){

6 //gp: ghost point (index)

7 //vp: value to copy - value point (index)

8 int gp = memoryIdxXY( t-i,0,0, M);

9 int vp = memoryIdxXY( t+i,0,0, M);

10

11 grid2D[gp] = grid2D[vp];

12

13 gp = memoryIdxXY( M.x-1-t+i,0,0, M);

14 vp = memoryIdxXY( M.x-1-t-i,0,0, M);

15

16 grid2D[gp] = grid2D[vp];

17 }

Listing D.9: Update ghost points along y-axis (periodic domain)

1 int gp = memoryIdxXY( t-i,0,0, M);

2 int vp = memoryIdxXY( M.x-1-t-(i-1) ,0,0, M);

3 //...

4 gp = memoryIdxXY( M.x-1-t+i,0,0, M);

5 vp = memoryIdxXY( t+(i-1) ,0,0, M);

Launch configuration should then be 1D with enough threads to cover the entire
domain, ghost points included. The block size is set to 32 elements which is the
size of a warp. The block size is subject to optimization which is addressed in
section 5.1.

1 int nt = 32; // number of threads

2

3 //sides

4 if(N.x > 1){

5 dim3 threads(1,nt ,1); // update along y-axis
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6 dim3 blocks = fitblock(threads , 1, M.y);

7 if(periodic_x)

8 kernel :: ghostupdateX2Dp <<<blocks , threads >>>(grid2D , M)←֓
;

9 else

10 kernel :: ghostupdateX2D <<<blocks , threads >>>(grid2D , M);

11 }

12

13 if(N.y > 1){

14 dim3 threads(nt ,1,1); // update along x-axis

15 dim3 blocks = fitblock(threads , M.x, 0);

16 if(periodic_y)

17 kernel :: ghostupdateY2Dp <<<blocks , threads >>>(grid2D , M)←֓
;

18 else

19 kernel :: ghostupdateY2D <<<blocks , threads >>>(grid2D , M);

20 }

D.2.1 3D ghost update - bottom boundary 1

Updating ghost points in 3D is not so different from updating in 2D. Rather than
updating with 1D launch configuration, it should be a 2D configuration. For
starters, the ghostupdate at the border for a low order linear problem is given
by mirroring. There is always only one layer of ghost points so the program is
very small.

Listing D.10: Update bottom ghost points for 2nd order linear approximation

1 if(!(Tx < M.x && Ty < M.y))

2 return;

3

4 int gp = memoryIdxXY (0,0,M.z-1-1+1, M);

5 int vp = memoryIdxXY (0,0,M.z-1-1-1, M);

6 grid3D[gp] = grid3D[vp];

The initial launch configuration is set to 8× 8.

1 if(linear && order == 2){

2 dim3 threads (8,8,1);

3 blocks = fitblock(threads , nx ,ny);

4 kernel :: ghostXY_linear <<<blocks , threads >>>(grid3D , M);

5 }
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D.2.2 3D ghost update - bottom boundary 2

Updating the bottom boundary in the various order non linear case is somewhat
more complex; all surface variables are needed, and larger stencils must be
applied to the grid. The non linear bottom ghost layer update should be isolated
similarly to the example given by (1.91).

1 int stencilNumberZ = (stencilwidth -1) -1; //not last but ←֓
second last

2 #define snz stencilNumberZ

3

4 // calculate Us_hat , Ux , Uy , sigmax , sigmay

5 //...

6 // isolate ghost point

7

8 int sz = k+snz*stencilwidth; // index to pull from stencil

9 _ftype sv = stencil1[sz];// stencil value

10 sv /= hz;

11

12 int n = memoryIdxXY( 0, 0,M.z-1-1+1, M);

13 U[n] = -(Us_hat +

14 (hx_*Ux + hy_*Uy)/( sigmaz + (hx_*sigmax + hy_*←֓
sigmay))

15 )/sv;

where the values Us hat, Ux and Uy are the finite difference sums approximating
Ûσ, Ux and Uy.

Depending on the previous code, the value of the ghost point prior to the update
might be undefined. It is therefore advisable to avoid including the ghost point
value in the computation (line 5 of the code below).

1 _ftype Us_hat = 0;

2 for(int k = 0; k<stencilwidth; k++){

3 int oz = -(k-snz); //z-offset in stencil

4

5 if(oz == 1) // ghostlayer! Do not include in computation

6 continue;

7

8 int sz = k + snz*stencilwidth; //index to pull from ←֓
stencil

9 _ftype sv = stencil1[sz];

10

11 Us_hat += sv*U[memoryIdxXY (0,0,Z + oz , memsize)];
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12 }

13 Us_hat *= Ls/(N.z-1);

D.3 Low order residual

Recall that x and b all are 3D grid variables.

Listing D.11: Calculation of residual

1 _ftype d = h[n]; // linear Laplace; eta = 0

2 _ftype sigmaz = 1/d;

3

4 // calculate residual

5 int n = memoryIdxXY (0,0,0, M);

6 r[n] = b[n]-x[n]; // surface residual

7

8 for(int Z = 1; Z<Nz;Z++){

9 n = memoryIdxXY (0,0,Z, M);

10 //...

11 // calculate Uxx , Uyy , Uss , sigmaz

12 //...

13 _ftype Ax = Uxx + Uyy + (sigmaz*sigmaz)*Uss;

14 r[n] = b[n]-Ax;

15 }

The finite difference sums Uxx, Uyy and Uss are calculated using the procedures
introduced in section 4.3 (code: section D.1).

D.4 Damped Jacobi

The vectors x[t] and x[t+1] are represented by the 3D grid variables x0 and x1

respectively. With an exception of a few lines of code in listing D.11, the kernels
are identical.

Listing D.12: Implementation of damped Jacobi relaxation

1 _ftype d = h; // linear Laplace: eta = 0

2 _ftype sigmaz = 1/d;

3
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4 // Surface element

5 int n = memoryIdxXY (0,0,0, M);

6 x1[n] = b[n]; // surface residual

7

8 for(int Z = 1; Z<Nz;Z++){

9 n = memoryIdxXY (0,0,Z, M);

10 //...

11 // calculate Uxx , Uyy , Uss

12 //...

13 _ftype Ax = Uxx + Uyy + (sigmaz*sigmaz)*Uss;

14 _ftype r = b[n]-Ax;

15 x1[n] = x0[n] + lambda*r;

16 }

The launch will be the same as for the residual:

1 updateghostpoints(x0 , ...);

2

3 dim3 threads;

4 threads.x = 8; threads.y = 8;

5 blocks = fitblock(threads , domainsize.x, domainsize.y);

6 dampedJacobi <<<blocks , threads >>>(x1 , x0 , b, ...)

D.5 Restriction

A simple way to construct the kernel is by a gather scheme; let there be one
thread per coarse grid surface element (without ghost points) and let each thread
process all elements in a single vertical grid row. The update is then given by
looping through the entire domain of the stencil. Since we use C++ array access
style, grid elements yi,j,k and x2i,2j,2k will be on top of each other when y and x

are coarse and fine grid variables respectively. We can therefore use the utility
function memoryIdxXY, also to access the fine grid elements by just adding the
thread index as an offset to the lookup function (lines 2 and 10 of the code
below).

D.5.1 3D coarsening - initial kernel

1 _ftype s1D [3] = {0.25 , 0.5, 0.25};

2 int n = memoryIdxXY(X, Y, 2*K+(k-1), Mf);
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3 cgrid[memoryIdxXY (0,0,K, Mc)] = fgrid[n];

4

5 for(K = 1; K != cgridsize.z; K++){

6 sum = 0;

7 for(int k = 0; k < 3; k++){

8 for(int j = 0; j < 3; j++){

9 for(int i = 0; i < 3; i++){

10 memoryIdxXY(X+(i-1), Y+(j-1), 2*K+(k-1), Mf):

11 // multiply with stencil tensor product.

12 sum += s1D[i]*s1D[j]*s1D[k]* fgrid[n];

13 }

14 }

15 }

16 cgrid[memoryIdxXY (0,0,K, Mc)] = sum;

17 }

Here Mc and Mf are domain sizes of the fine and coarse grid respectively (ghost
points included). Recall that the thread indicies are used to identify which grid
element to process and load.

D.5.2 2D coarsening - initial kernel

The strategy is the same as for the 3D case although the kernel alters a bit. For
xz-coarsening, we get

1 _ftype s1D [3] = {0.25 , 0.5, 0.25};

2 int n = memoryIdxXY(X, 0, 2*K, Mf);

3 cgrid[memoryIdxXY (0,0,K, Mc)] = fgrid[n];

4

5 for(K = 1; K != cgridsize.z; K++){

6 sum = 0;

7 for(int k = 0; k < 3; k++){

8 for(int i = 0; i < 3; i++){

9 memoryIdxXY(X+(i-1), 0, 2*K+(k-1), Mf);

10 // multiply with stencil tensor product.

11 sum += s1D[i]*s1D[k]* fgrid[n];

12 }

13 }

14 cgrid[memoryIdxXY (0,0,K, Mc)] = sum;

15 }

Notice here everything regarding the y-direction is simply omitted.
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D.5.3 1D coarsening - initial kernel

Once again, we just ommit the directions of the irrelevant directions. For x-
coarsening we get

1 int n = memoryIdxXY(X, 0, K, Mf);

2 cgrid[memoryIdxXY (0,0,K, Mc)] = fgrid[n];

3

4 for(K = 1; K != cgridsize.z; K++){

5 sum = 0;

6 for(int i = 0; i < 3; i++){

7 memoryIdxXY(X+(i-1), 0, K, Mf);

8 // multiply with stencil tensor product.

9 sum += s1D[i]*fgrid[n];

10 }

11 cgrid[memoryIdxXY (0,0,K, Mc)] = sum;

12 }

D.5.4 Launch configuration

Since the coarsening strategy depend on which coarsening strategy is applied,
the correct kernel should be executed. Prior to excecution, the ghost points
should be up to date.

1 ASSERT(ghost points up to date); // pseudo assert ...

2

3 bool cx = Nc.x < Nf.x, cy = Nc.y < Nf.y, cz = Nc.z < Nf.z;

4 bool cxy = cx & cy & !cz , cxz = cx & !cy & cz;

5 bool cyz = !cx & cy & cz , cxyz = cx & cy & cz;

6

7 cx = !(Nc.y < Nf.y) & !(Nc.z < Nf.z);

8 cy = !(Nc.x < Nf.x) & !(Nc.z < Nf.z);

9 cz = !(Nc.x < Nf.x) & !(Nc.y < Nf.y);

10

11 blocks = fitblock(threads , Mc.x, Mc.y);

12 if(cx){

13 kernel :: coarseX <<<blocks ,threads >>>(cgrid ,Nc , fgrid ,Nf);

14 }else if(cy)

15 ...
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D.6 µ-cycle

By convesion, x1 is an output pointer; it should always point to the updated
grid variable. Upon invokation, x1 might, might not be an instance. This will
be known to the smoother only. Notice that the ghost update are inserted here
although most sample code suggest to update the ghost points as part of the
given procedure. The reason to not put the ghost update inside the procedure
is that performance measurement will be easier if only one kernel is associated
to each of the components.

1 void vcycle(_ftype *&x1 , _ftype *&x0 , _ftype *b, int3 N, ←֓
...){

2 ASSERT(order == 2 && linear);

3

4 int3 cN = coarsen(options , N);

5 if( cN == N ){

6 //...

7 // Coarse Grid Solver

8 //...

9

10 return;

11 }

12 for(int i = 0; i < options.v1 ;i++){

13 device :: smooth(x1 , x0 , b, N, ...);

14 std::swap(x0 , x1); //swap data

15 }

16 std::swap(x0 , x1); // unswap data

17

18 device :: ghostupdate(x1 , N, ...);

19 device :: loworderresidual (r, x1 , b, N, ...);

20

21 device :: ghostupdate(r, N, ...);

22 device :: coarsen3D(cb , cN , r, N);

23

24 // initial guess for coarse grid

25 device ::fill(cx0 , cx0 + grid3Dmem(cN), (_ftype)0);

26

27 // proceed recursively ...

28 for(int u = 0; u < options.ucycle; u++){

29 vcycle(cx1 , cx0 , cb , ...);

30 std::swap(cx1 , cx0);

31 }

32 std::swap(cx1 , cx0);

33

34 device :: ghostupdate(cx1 , cN , ...);
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35 device :: interpolateAndAdd(x1 , N, cx1 , cN);

36

37 for(int v2 = 0; v2<options.v2;v2++){

38 std::swap(x0 , x1);

39 device :: smooth(x1 , x0 , b, N, ...);

40 }

41 }

D.7 Various order non linear residual

Most of the elements of the various order residual is described by other com-
ponents. The surface variables (E, Ex, Exx, Ey, Eyy, h, hx, hxx, hy, hyy) are
precalculated, thus loaded from global memory when prior to calculation of the
derivatives in σ.

Listing D.13: Various order non linear residual

1 int n = memoryIdxXY (0,0,0, memsize);

2 r[n] = b[n]-U[n];

3 for(int Z = 1; Z<nz;Z++){ // outer loop z

4 _ftype sigmax , sigmaxx , sigmay , sigmayy;

5

6 //...

7 // Calculate

8 //sigmax , sigmaxx , sigmay and sigmayy

9 //Uxx , Uyy , Uss , Uxs , Uys , Us

10 //...

11

12 int n = memoryIdxXY (0,0,Z, memsize);

13 _ftype Ax =

14 Uxx + Uyy

15 +( sigmax*sigmax + sigmay*sigmay + sigmaz*sigmaz)*Uss

16 +(2* sigmax)*Uxs + (2* sigmay)*Uys

17 +( sigmaxx + sigmayy)*Us;

18

19 r[n] = b[n]-Ax;

20 }

The mentioned two pass algorithm will need shared memory. Both pass 1 and
pass 2 shared memory is overwritten when the stencil does not touch an element
any more. A very easy way to do that is by using the modulus operator.
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Listing D.14: Shared memory access

1 __device__

2 inline int smemoryIdxXY(int ox , int oy , int z){

3 return (z % stencilwidth)*blockDim.x*blockDim.y

4 + (threadIdx.y + oy)*blockDim.x

5 + threadIdx.x + ox;

6 }

Global memory on the other hand a bit more complex.

Listing D.15: Global memory access when using shared memory

1 #define Xh (-halo + (int)threadIdx.x + (int)blockIdx.x*(-2*←֓
halo+(int)blockDim.x))

2

3 __device__

4 inline int memoryIdxXY(int ox , int oy , int z, int3 M){

5 int t = z*M.x*M.y

6 + (Ty + Gy + oy)*M.x

7 + Xh + Gx + ox;

8 return t;

9 }

Do notice that the thread indicies are explicitly casted to int. If not added,
depending on the declaration of halo, the definition Xh might suffer from under-
flow.

Listing D.16: Safety checks

1 if(Xh < M.x && Y < N.y){

2 //safe to read , also from halo zones

3 }

4 if(threadIdx.x >= halo && threadIdx.x < blockDim.x-halo){

5 if(Xh < N.x && Y < N.y){

6 //safe to write (i.e. avoid writes in halo zones)

7 }

8 }

Finally, for the launch configuration there must be accounted for that only a part
of the threads are performing any calculations. Also the configuration should
cover the entire domain, including ghost points.

1 ASSERT(threads.x > 2*halo);

2 effectivethreads .x = threads.x-2* halo;
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3 effectivethreads .y = threads.y;

4 blocks = fitblock(effectivethreads , M.x,N.y);

5 smemsize = sizeof(_ftype)*threads.x*threads.y*stencilwidth;

6 hres_pass1 <<< blocks , threads , smemsize >>>(r,x,b, ...);

D.8 Line smoother

We will use the aliases a0, a1 and a2 for the code rather than a−1, a0, a1

respectively.

Listing D.17: Step 1: Collect a0, a1, a2 and b̃

1 for(int Z = 1; Z<N.z;Z++){

2 //...

3 // calculate off -center contributions of Uxx , Uyy//

4 //...

5

6 b[Z] = bgrid[memoryIdxXY (0,0,Z, memsize)];

7 b[Z] -= offcenter_contrib; //now b tilde

8

9 // calculate matrix values

10 a1[Z] = 1* sigmaz*sigmaz /(hs*hs);

11 a2[Z] = -2*( sigmaz*sigmaz /(hs*hs)

12 + 1/(hx*hx) + 1/(hy*hy));

13 a3[Z] = 1* sigmaz*sigmaz /(hs*hs);

14 }//Z-loop

Listing D.18: Step 2: Solve Ĝ
+
xσ = b̃

1 int Z = 1;

2 _ftype scale;

3 for( ;Z < N.z; Z++){

4 scale = a1[Z]/a2[Z-1];

5 a1[Z] = a1[Z]-a2[Z-1]* scale;

6 a2[Z] = a2[Z]-a3[Z-1]* scale;

7 b[Z] = b[Z] - b[Z-1]* scale;

8 }

9

10 a1[Z] = a3[Z-2]/a2[Z-2];

11 a2[Z] = 1;

12 b[Z] = b[Z-2]/a2[Z-2];

13

14 scale = a1[Z]/a2[Z-1];
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15 a1[Z] = a1[Z]-a2[Z-1]* scale;

16 a2[Z] = a2[Z]-a3[Z-1]* scale;

17 b[Z] = b[Z] - b[Z-1]* scale;

18

19 // backward substitution

20 b[Z] = b[Z]/a2[Z];

21

22 for(Z = N.z-1; Z >= 0; Z--){

23 b[Z] = (b[Z] - b[Z+1]*a3[Z])/a2[Z];

24 x[memoryIdxXY (0,0,Z, memsize)] = b[Z];

25 }

D.9 Defect Correction

Notice that no initial guess is set here; using the previous solution as initial
guess is better than 0. The RK4 integration algorithm sets the initial guess of
the Defect Correction method to 0 for the at the very first time step.

1 do{

2 k++;

3

4 //set initial guess for preconditioner

5 device ::fill(d0 , d0 + grid3Dmem(gridsize), 0.0);

6 device ::fill(d1 , d1 + grid3Dmem(gridsize), 0.0);

7

8 // update bouding conditions

9 device :: highorderresidual(r, x, b, N, ...);

10

11 // preconditioning problem/ low order error estimate

12 vcycle(d1 , d0 , r, N, ...);

13

14 // defect correction/update

15 device :: plusequals(grid , grid + grid3Dmem(gridsize), d1);

16

17 // convergence test

18 norm = calc2norm(d1 , gridsize);

19 std::swap(d0 , d1); //for gauss -seidel type smoothers ...

20

21 //test for convergence

22 if(k == 1){//first iteration

23 normfirst = norm;

24 }

25
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26 converged = norm <= options.rtol*normfirst + options.atol←֓
;

27 }while (! converged && k < options.maxdciter);

D.10 Surface evolution

Evaluating the governing equations of the fluid motion problem can be split into
a series of steps as described in section 1.1.1

1 device :: ghostupdate2D(E, N);

2 device :: ghostupdate2D(Phi_tilde , N);

3

4 // Update derivatives

5 calcderivatives(E, ...);

6

7 //Solve transformed Laplace equation

8 device ::fill(b, b + grid3Dmem(N), (_ftype)0); //rhs

9 cudaMemcpy(b, Phi_tilde , grid2Dmem(gridsize)*sizeof(_ftype)←֓
, D2D);

10

11 //Solve Laplace equation

12 defectcorrection (Phi , b, ...);

13

14 //2) evaluate eta and phi

15 kernel :: calcEdtPdt <<<blocks , threads >>>(Edt , Pdt ,

16 E, dmem.Ex , dmem.Ey ,

17 dmem.h, dmem.dcgrid ,

18 gridsize.x, gridsize.y, gridsize.z,

19 dmem.constants.stencils1_on , dmem.constants.←֓
stencilWidth_on ,

20 Lx , Ly , options.linear);

The standard 4 step Runge Kutta method is presented below with a few mod-
ifications; in order to be able to apply tests of various kinds, a relaxation zone
system is introduced. Inside a relaxation zone, the surface variables are set to
follow some well known behaviour with typically one zone generating waves and
another absorbing waves.

1 //...

2 //set initial guess of Defect Correction = 0

3 //...

4
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5 while(t < tend){

6

7 //k1 = [Edt1 , Pdt1]

8 evalDiffEq(Edt1 , Pdt1 , E0 , P0 , ...);

9

10 //k2 = [Edt2 , Pdt2]

11 advanceEP(E1 , P1 , E0 , P0 , Edt1 , Pdt1 , 0.5*dt , ...);

12 update_relaxationzones(E1 , P1 , t + 0.5*dt , ...);

13 evalDiffEq(Edt3 , Pdt3 , E1 , P1 , ...);

14

15 //k3 = [Edt3 , Pdt3]

16 advanceEP(E1 , P1 , E0 , P0 , Edt2 , Pdt2 , 0.5*dt , ...);

17 update_relaxationzones(E1 , P1 , ...)

18 evalDiffEq(Edt3 , Pdt3 , E1 , P1 , ...);

19

20 //k4 = [Edt4 , Pdt4]

21 advanceEP(E1 , P1 , E0 , P0 , Edt3 , Pdt3 , 1.0*dt , ...);

22 update_relaxationzones(E1 , P1 ,...);

23 evalDiffEq(Edt4 , Pdt4 , E1 , P1 , ...);

24

25 // gather [E P] = 1/6*( k1+2*k2+2*k3+k4)

26 advanceEP4(E1 , P1 , E0 , P0 ,

27 Edt1 , Pdt1 , Edt2 , Pdt2 ,

28 Edt3 , Pdt3 , Edt4 , Pdt4 ,

29 dt , ...);

30 update_relaxationzones(E1 , P1 , t + 1.0*dt , ...);

31

32 t += dt;

33 }
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Optimized code

In this chapter we present bits and pieces used for optimizing some of the pro-
cedures of appendix D. Be carefull not to confuse the original memory access
function memoryIdxXY used for the optimized code; optimization once in a while
introduce additional threads update the halo.

E.1 Low order residual

For the low order residual xy-slices are processed one at the time as descrived in
section 5.3. In order to reduce the global memory access, the dynamic stencils
are swapped with fixed estimates and registers r0, r1 and r2 reuses the global
memory along the vertical direction. The number of registers in the kernel could
for example be reduced by precalculating M on the CPU. The essential parts of
the low order residual method is presented below

Listing E.1: Improved kernel

1 if(X < N.x && Y < N.y)

2 return;

3 sigmaz = 1/h[memoryIdxXY (0,0,0, M)];

4 r1 = U[memoryIdxXY (0,0,0, M)];
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5 r2 = U[memoryIdxXY (0,0,1, M)];

6 for(int Z = 1; Z<N.z;Z++){

7 r0 = r1; r1 = r2;

8 r2 = U[memoryIdxXY (0,0,Z+1, M)];

9 Uxx = U[memoryIdxXY(-1, 0,Z, M)] - 2*r1

10 + U[memoryIdxXY( 1, 0,Z, M)];

11 Uyy = U[memoryIdxXY( 0,-1,Z, M)] - 2*r1

12 + U[memoryIdxXY( 0, 1,Z, M)];

13 Uss = r0 - 2*r1 + r2;

14 Ax = Uxx/(hx*hx) + Uyy/(hy*hy) + Uss*sigmaz /(hs*hs);

15

16 int n = memoryIdxXY (0,0,Z, M);

17 r[n] = b[n]-Ax;

18 }

For the shared memory optimization, the central grid element is copied to shared
memory (smem) to completly avoid redundant data transfers. In order to also
copy into shared memory also from the halos, the entire border of the block will
only copy into shared memory and do no residual computations.

Remember a barrier both before and after smem access; we have a race condition
otherwise. The method primarily differ from the original residual method by
the barriers which are also the reason to the additional safety checks; all threads
must process the loop rather than just exit.

Listing E.2: Improved kernel using shared memory

1 if(Xh < N.x && Yh < N.y){

2 sigmaz = 1/h[memoryIdxXY (0,0,0, M)];

3 }

4 r1 = U[memoryIdxXY (0,0,0, M)];

5 r2 = U[memoryIdxXY (0,0,1, M)];

6 for(int Z = 1; Z<N.z;Z++){

7 if(Xh < M.x && Yh < M.y)

8 {

9 r0 = r1;

10 r1 = r2;

11 r2 = U[memoryIdxXY (0,0,Z+1, M)];

12 }

13 __syncthreads (); //all threads must reach the barrier!

14 smem[smemoryIdxXY (0,0)] = r1;

15 __syncthreads ();

16 //only threads which are not used for halo updates

17 if(tx >= halo && tx < blockDim.x-halo &&

18 ty >= halo && ty < blockDim.y-halo){

19 //and only threads
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20 if(Xh < N.x && Yh < N.y){

21 Uxx = smem[smemoryIdxXY(-1, 0)] - 2*r1

22 + smem[smemoryIdxXY (1,0)];

23 Uyy = smem[smemoryIdxXY( 0,-1)] - 2*r1

24 + smem[smemoryIdxXY (0,1)];

25 Uss = r0 - 2*r1 + r2;

26 Ax = Uxx/(hx*hx) + Uyy/(hy*hy) + Uss*sigmaz /(hs*hs);

27

28 int n = memoryIdxXY (0,0,Z, M);

29 r[n] = b[n]-Ax;

30 }

31 }

32 }

The utility functions for the shared memory version of the low order residual
differ from the general memory access function. Gx and Gy are the number of
ghost points in the horizontal direction in case the number of ghost layers is
greater than the halo needed. Yh and Xh are used rather than Y and X:

Listing E.3: Memory access for low order residual

1 __constant__ int halo; //set to 1

2 #define Xh (-halo + tx + blockIdx.x*(-2* halo + blockDim.x))

3 #define Yh (-halo + ty + blockIdx.y*(-2* halo + blockDim.y))

4 //Xh ranges from -halo to (Nx -1)-halo (+ nearest block end)

5

6 __device__

7 inline int memoryIdxXY(int ox , int oy , int z, int3 M){

8 return (Xh + Gx + ox) + (Yh + Gy + oy)*M.x + z*M.x*M.y;

9 }

10

11 int smemoryIdxXY(int ox , int oy){

12 return (tx + ox) + (ty + oy)*blockDim.x;

13 }

And finally, the kernel launch configuration should fit the entire domain (size
M), including ghost points:

1 dim3 threads(8, 8, 1);

2 int2 effective;

3 effective.x = threads.x-2* halo;

4 effective.y = threads.y-2* halo;

5 dim3 blocks = fitblock(effective , M.x, M.y);

6 int smemlem = threads.x*threads.y;
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7 kernel :: loworderresidual <<< blocks , threads , smemelm*←֓
sizeof(_ftype) >>>(r, x, b, ...);

E.2 Improved RBGS Line Smoother

The difference from the original RBGS line smoother is that the x-index of the
thread is multiplied by two and shifted by one for every other thread. The initial
security check is therefore a bit different and the launch configuration must thus
be even numbers in both x- and y-direction.

Listing E.4: The altered RBGS line smoother

1 __device__

2 inline int RBmemoryIdxXY(int ox , int oy , int z, int3 M, int←֓
isRed){

3 return z*M.x*M.y

4 + (Y + Gy + oy)*memsize.x

5 + X*2 + isRed + Gx + ox;

6 }

7

8 __global__

9 void rbgslinesmoother (_ftype *U, _ftype *b, ...){

10

11 if(!(2* Tx+isRed < N.x && Ty < N.y)) // Altered!

12 return;

13

14 //...

15

16 // central stencil element

17 _ftype a2x = -2*(1 + (ch1x*ch1x + ch1y*ch1y)/(( sigmaz*←֓
sigmaz)*ch1z*ch1z));

18

19 for(int Z = 1; Z<N.z;Z++){

20 // ////////////////////////////////////

21 // calculate off -center contributions //

22 // ////////////////////////////////////

23 a = grid[RBmemoryIdxXY (-1,0,Z, M,isRed)];

24 b = grid[RBmemoryIdxXY( 1,0,Z, M,isRed)];

25 offcenter_contrib += (a+b)/(hx*hx);

26

27 a = grid[RBmemoryIdxXY (0,-1,Z, M,isRed)];

28 b = grid[RBmemoryIdxXY (0, 1,Z, M,isRed)];

29 offcenter_contrib += (a+b)/(hy*hy);
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30

31 // Forward elimination //

32 //...

33 }

34

35 // Backward elimination //

36 //...

37 }

Listing E.5: Calculating launch configuration

1 ASSERT(threadsx % 2 == 0 && threadsy % 2 == 0);

2 dim3 threads(threadsx , threadsy , 1);

3 nx = N.x/2;

4 if(N.x % 2 == 1)

5 nx += 1;

6 dim3 blocks = fitblock(threads , nx ,ny);
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Appendix F

Automated kernel tuning

A poor kernel configuration can be much slower than a correctly configured
kernel. In order to easily interface with any kernel regardless of paramerters
an autotuning method is developed with the purpose of benchmarking a kernel.
The basic idea is to decouple the benchmarking procedure from the executed
kernel through a user defined wrapper which take a (kernel) function pointer
and a paramter structure. The basic layers of abstraction needed perform a
single timing is given in listing F.1-F.3.

Listing F.1: General template timing method

1 template <typename Kernel , typename Params >

2 _timing getTiming(int2 threads ,

3 void(* wrapper)(Kernel , Params , int2),

4 Kernel method , Params params){

5

6 cudaRecordEvent(start);

7

8 wrapper(method , params , config);

9

10 cudaRecordEvent(stop);

11 cudaEventSynchronize(stop);

12 cudaError_t e = cudaGetLastError ();

13
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14 if(e != cudaSuccess){

15 return _timing :: badconfig;

16 }else{

17 _timing t(threads);

18 cudaEventElapsedTime(&t.time , start , stop);

19 return t;

20 }

21 }

The method wrapper is a function pointer given to getTiming as a parameter.

Listing F.2: Kernel wrapper

1 struct _pstruct{

2 int nx; int a;

3 int ny; bool b;

4 };

5

6 typedef __device__ void(_funcdef *)(int , bool);

7

8 void myWrapper(_funcdef method , _pstruct p, int2 config){

9 dim3 threads(config.x, config.y);

10 dim3 blocks = fitblock(threads , p.nx , p.ny);

11 method <<<blocks , threads >>>(p.a, p.b);

12 }

13

14 __device__ void some_kernel(int parameterA , bool parameterB←֓
){

15 //...

16 }

17

18 __device__ void some_other_kernel(int parameterA , bool ←֓
parameterB){

19 //...

20 }

Notice that the header of funcdef and somekernel are the same.

Listing F.3: Benchmarking two similar kernels

1

2 int2 threads;

3 threads.x = nx; threads.y = ny;

4

5 _pstruct p;

6 p.nx = N.x; p.a = my_important_parameter;
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7 p.ny = N.y; p.b = my_other_important_parameter;

8 _timing bestConfigA = getTiming(threads , myWrapper , ←֓
some_kernel , p);

9 _timing bestConfigB = getTiming(threads , myWrapper , ←֓
some_other_kernel , p);

The template parameter list of getTiming are automatically derived from its the
paramters. The amount of coding to get the performance timings of a method
with another header, now reduce to write a new parameter structure and kernel
wrapper.
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