
Implementation and Test of
Numerical Optimization
Algorithms in C/C++

Christian Wichmann Moesgaard

Kongens Lyngby 2012
IMM-B.Sc.-2012-36

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-B.Sc.-2012-36

Summary (English)

The goal of this report is to describe the twice continuously differentiable un-
constrained optimization problem. Recognizing that it is impossible to check
every point, it provides the mathematical foundation for the BFGS algorithm,
to solve the problem locally.

Once this is introduced, the report moves on to a practical implementation -
the steps required to begin using scientific computing by including BLAS and
LAPACK. It then provides the documentation for the implementation in C and
an example of how to use it.

Then, it describes how the optimization algorithms can be called from C, C++,
Objective-C++, and FORTRAN.

Finally, it does some performance tests, and it is found that libopti is fast
compared to scripting based solutions, and as much as 7-8 times faster than the
GNU Scientific Library, however it is also not entirely reliable for solving every
problem in its class. In fact, no implementation is tested which could solve every
problem in its class.

ii

Summary (Danish)

Målet for denne afhandling er at beskrive dobbelt-differentiable, ikke begrænse-
de optimeringsproblemer. Det indses, at det er umuligt at gennemsøge ethvert
punkt, så der bruges en metode kaldet BFGS til at løse problemet lokalt.

Når dette er gjort, er det videre mål med afhandlingen at give en praktisk im-
plementering. De trin der er nødvendige for at begynde på Scientific Computing
ved at inkludere både BLAS og LAPACK. Derefter leveres dokumentation for
implementeringen i C og instruktioner på, hvordan det bruges.

Dernæst beskrives hvordan implementeringen kan kaldes fra C, C++, Objective-
C++ og FORTRAN.

Til sidst udføres nogle tests. Målet er at vise, at libopti er en hurtig implemen-
tering i forhold til scripting-baserede metoder, og at den er hurtig nok til at
kunne bruges i stedet for andre, lignende bibilioteker til C.

Desværre viser det sig, at algoritmen ikke altid er helt pålidelig, men det er der
ingen af dem, der er.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

Optimization is an ancient field of mathematics. It all started back in 300 B.C.
when Euclid considered the minimal distance between two points. Since then,
development was slow until the 17th and 18th century. There Newton’s Method
was discovered.[oF12]

A pretty common theme among all the optimization algorithms is that, espe-
cially for large-dimensional problems, their solution time is very large.[JN00]
Because of this, optimization as we know it today did not take off until the
middle of the 20th century with the invention of computers usable for scientific
computing.[oF12] Since then, many algorithms have appeared to solve various
different problems.

The purpose of this project is to create an algorithm designed to solve a specific
type of optimization problem using the C language on Linux systems.

C is a rather old programming language with a very powerful, free software
compiler[Fou12] and long-standing support. The speed with which C code runs
is very high, and so writing the project in C with POSIX subsystems has two
main advantages:

• Fast calculation is achievable.

• The project can be built entirely upon free software, making it relatively

vi Preface

easy to port to many hardware architectures and making sure that users
of the software do not face restrictions.

Optimization is an important tool in all manner of decision-making processes.
It is important in physics, operations research, investments, and many other
fields.[JN00]

An optimization problem consists of an objective function, which depends on
a potentially large amount of variables, but gives a single output, alternatively
with constraints. The goal is to find the minimum or maximum to the objective
function within the constraints of the problem.

A problem with no constraints is called an unconstrained optimization problem.
This software focuses specifically on this type of problem with an additional
property: The objective must be twice continuously differentiable.

In other words, it will solve the problem:[JN00]

min
x
f(x)

Where f(x) ∈ C2 : Rn → R.

Contained within is a description of the algorithm and what it does, and from
which sources it was derived. This is followed by an implementation guide
and a guide to using the software in C. Several test cases of the software will
be demonstrated and the performance will be measured compared to similar
software.

The library will be using the ATLAS Basic Linear Algebra Subroutines[ABB+99]
for it’s heavy-duty computations for performance benefits.

vii

Problem definition

• Provide a guide to using BLAS within GNU/Linux Ubuntu systems.

• Provide a usable implementation of an optimization algorithm for twice
continuously differentiable unconstrained problems.

• Provide documentation for the function, as well as any other function in
use, unless such is already provided elsewhere.

• Provide a guide on how to include and use them in your project.

• Provide a way to use the library functions within other languages.

Lyngby, November 30, 2012-2012

Christian Wichmann Moesgaard

viii

Acknowledgements

I would like to thank my supervisor professor John Bagterp Jørgensen, DTU
IMM, for giving the project ideas and direction to move forward, and for super-
vising the project.

Many of the algorithms and methods explored in the project have been provided
professor Hans Bruun Nielsen at IMM DTU, whom I would like to thank. He
wrote the IMM Optibox library for MATLAB, upon which several of the included
algorithms are based.

Large parts of the algorithms are based upon the work done by NetLib with their
package BLAS, without which most of this work would have taken significantly
longer, and the algorithms would have been significantly slower.

x

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements ix

1 Theory of Unconstrained Optimization 1
1.1 Optimality Conditions . 2
1.2 Finding the minimizer . 4
1.3 Line-search . 6
1.4 Using a trust region with line search 10
1.5 Quasi-Newton BFGS method . 10
1.6 Finite Difference . 14

2 Installing BLAS and LAPACK in Ubuntu 15
2.1 Installing Eclipse, BLAS & LAPACK 15
2.2 Creating a new project . 16
2.3 Importing, using linking BLAS & LAPACK 17
2.4 First Matrix-multiplications . 19

2.4.1 Matrix-Vector . 19
2.4.2 Matrix-Matrix . 20

2.5 Solving your first LA-equations 22

3 Library documentation 25
3.1 Usage example . 35

4 Mixing FORTRAN and C 37

xii CONTENTS

5 Using the library in ... 41
5.1 FORTRAN . 41
5.2 Mac OS X and iOS . 44

6 Performance testing 45
6.1 Himmelblau . 47
6.2 Rosenbrock . 49
6.3 Beale . 51
6.4 Easom . 53
6.5 Ackley . 55
6.6 Zakharov . 58

7 Conclusion 61

A C library 63
A.1 Library Header . 63
A.2 BLAS usage . 67
A.3 Create I matrix . 67
A.4 Forward difference . 68
A.5 Quadratic Interpolation . 69
A.6 Line-search . 70
A.7 Norm calculation . 75
A.8 Print performance to file . 76
A.9 Print performance to folder . 78
A.10 Unconstrained BFGS minimization 80

B Wrappers to external libraries 89
B.1 Use Apple Accelerate . 89
B.2 Use ATLAS . 90

C Test runs 93
C.1 Apple Test . 93
C.2 Himmelblau . 96

C.2.1 MATLAB test . 96
C.2.2 minlbfgs test . 96
C.2.3 libopti test . 98

C.3 Rosenbrock . 99
C.3.1 MATLAB test . 99
C.3.2 minlbfgs test . 99
C.3.3 libopti test . 101

C.4 Beale . 102
C.4.1 MATLAB test . 102
C.4.2 minlbfgs test . 102
C.4.3 libopti test . 104

CONTENTS xiii

C.5 Easom . 106
C.5.1 MATLAB test . 106
C.5.2 minlbfgs test . 106
C.5.3 libopti test . 108

C.6 Ackley . 109
C.6.1 MATLAB test . 109
C.6.2 minlbfgs test . 110
C.6.3 libopti test . 112

C.7 Zakharov . 113
C.7.1 MATLAB test . 113
C.7.2 minlbfgs test . 114
C.7.3 libopti test . 116

C.8 Plot Ackley performance . 117

Bibliography 119

xiv CONTENTS

Chapter 1
Theory of Unconstrained

Optimization

The goal of solving any unconstrained minimization problem is to get the values
of x for which[JN00]:

min
x
f(x)

Where f(x) ∈ C2 : Rn → R.

The goal of any unconstrained maximization problem is to get the values of x
for which

max
x

f(x)⇒ min
x
−f(x)

Where f(x) ∈ C2 : Rn → R.

This simplifies the entire process as we no longer have to consider the maxi-
mization problem.

This value of the vector x at which it obtains the properties needed to fulfil the
objective is denoted x∗.

A point x∗ is a global minimizer if and only if

2 Theory of Unconstrained Optimization

f(x∗) ≤ f(x) ∀x ∈ Rn

The global minimizer can be difficult to find, because the function f(x) may
not be known analytically and can only be sampled. Since f(x) spans over at
least one real line, there is at least one uncountably infinite amount of points to
consider[Han08]. Thus it is impossible to visit every location.

However, because the function is twice continuously differentiable, any one
point, and in particular it’s derivatives, have a lot to say about the surrounding
area on the function.[Sch07]

Thus it is far more feasible, for this type of problem, to consider minimizing
more locally.

A point x∗ is a local minimizer if there is an open set S containing
x∗, such that f(x∗) ≤ f(x) ∀x ∈ S

1.1 Optimality Conditions

An immediate question which arises when asked to find a global or even local
minimizer, is one of how to check whether you are in one. It is, as previously
discussed, infeasible to check every point. In fact, even the open set in an
uncountably infinite set is itself uncountable.[Kre89]

To get started, Taylor’s Theorem must be invoked[JN00].

Suppose that f ∈ C1 : Rn → R, that α ∈ R and that p ∈ Rn. Then:

f(x+ p) = f(x) +∇f(x+ αp)p (1.1)

for some α ∈ [0, 1].

Furthermore, if f is twice continuously differentiable:

∇f(x+ p) = ∇f(x) +

∫ 1

0

∇2f(x+ αp)pdt (1.2)

f(x+ p) = f(x) +∇f(x)p+
1

2
p∇2f(x+ αp)p (1.3)

1.1 Optimality Conditions 3

From this, one can derive the First-Order Optimality Condition[JN00]:

If x∗ is a local minimizer and f ∈ C1 at and near said local minimizer,
then ∇f(x∗) = 0

And the Second-Order Sufficient Optimality Condition[JN00]:

If x∗ is a local minimizer of f and ∇2f exists and is continuous in
an open neighbourhood of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is
positive definite.

The algorithm which will be written does not test for the Second-order opti-
mality condition. It is quite work-intensive to check, because it involves lots
of determinant calculations for use in Sylvester’s Criterion[Mey00]. On top of
that, other conditions can ensure that this condition is fulfilled most of the
time[JN00]. On top of that, the search direction algorithm which will be used
assumes that ∇2f(x) is indeed positive definite for any x visited. More on this
later.

In practice, the imprecision of the data types available on a computer means
that the first order optimality condition is actually very rarely achievable, due
to cumulative rounding errors in the calculations.

So, rather than finding the exact point, the algorithm will stop once it is "close
enough" or have done an unreasonable number of calculations. What "close
enough" and "unreasonable" exactly means can be specified by the user.

4 Theory of Unconstrained Optimization

There are several methods of finding out if the first order optimality condition
is almost fulfilled[JN00]:

• ‖∇f(xk)‖ ≤ ε1

• ‖xk+1 − xk‖ ≤ ε2

• f(xk)− f(xk+1) ≤ ε3

• k > kmax or neval > nevalmax aka. the "give up" condition.

Where neval is the number of function evaluations and k is the number of steps
taken already. Now that we know when we land on a minimizer, it is necessary
to find out how to best arrive to the minimizer.

1.2 Finding the minimizer

As mentioned earlier, an optimization problem on the real numbers has an
infinite number of points to check, but it is only feasible to visit a finite amount
of points. Thus, an algorithm that only visits a finite number of points is needed,
and it needs to start somewhere.

That "somewhere" is defined by the user and is called x0. The goal is to go
through a series of steps whereby an xk, k = 1..N for each iteration is attained
until we reach x∗, the desired minimizer. This process is performed by finding
a step, also known as a descent direction, pk by:

xk+1 = xk + αkpk (1.4)

where αk is the step-length. More on step-lengths later. For now, assume that
αk = 1.

Step pk is an n-dimensional vector which is quite well named: It is the direction
and magnitude which, if one is to take a step towards pk using the current
iterate, there is good reason to believe that the function value will decrease.

1.2 Finding the minimizer 5

Figure 1.1: p0 to p2 on Himmelblau

Perhaps the most important search direction is found using a process called
Newton’s Method, which results in a Newton direction[JN00]. This direction is
derived from the second-order Taylor series approximation:

f(xk + pk) ≈ f + pk∇f(xk + pk) +
1

2
pk∇2f(xk + pk)pk := m(pk) (1.5)

Assuming that ∇2fk is positive definite, you can simply set ∇mk(pk) = 0 and
solve for pk. This gives:

pk = − ∇f
k

∇2fk
(1.6)

Thus each update will result in a step such as this one:

xk+1 = xk − αk ∇f
k

∇2fk
(1.7)

Thus, so far the algorithm looks like this:

1. Begin with a starting guess x0 on the at least locally convex function
f ∈ C2 : Rn → R where n is the number of input dimensions in the
function.

6 Theory of Unconstrained Optimization

2. Sample the function value f(x0), the gradient ∇f(x0) and the Hessian
∇2f(x0)

3. While the first order optimality conditions are not yet met:

(a) Find pk = − ∇f(x
k)

∇2f(xk)

(b) Use some kind of line-search technique, one is described later, to find
a value αk which satisfies the line-search conditions.

(c) Take the step: xk+1 = xk + αkpk

(d) Increment k.

(e) Sample the function value f(xk), the gradient ∇f(xk) and the Hes-
sian ∇2f(xk)

1.3 Line-search

Once a descent direction pk has been found by using, for example, Newton’s
method, it should be decided how far to go in this descent direction, henceforth
referred to as line-search. This is specifically because when the descent direction
was determined we only had local information about the function, and, when
taking the full step, it is actually possible that the cost at the new point is larger
than the one at the old point[JN00].

Defining a new function, where α is the search length given at the iteration k,
which can be put in place of αk we get:

ϕ(α) = f(xk + αpk) (1.8)

The derivation of how to get the Newton step was explained in the previous
chapter, and it assumed that the step-length αk = 1 was used. This is a good
place to start the search[HBN10].

First it is important to look at the slope of ϕ(α). Basic vector calculus[HEJK06]
immediately reveals the following:

The slope of the function ϕ(α) can be found as:

dϕ

dα
=

∂f

∂x1

dx1
dα

+
∂f

∂x2

dx2
dα

+ ...+
∂f

∂xn

dxn
dα

< 0 (1.9)

1.3 Line-search 7

Which is also known as:

dϕ

dα
= pk∇f(xk + αpk) < 0 (1.10)

As a result of this, if α is small, we are almost guaranteed to get a satisfying
point[HBN10]. However, when taking the actual step, the step will also be
small, leading to a slower approach to the minimizer with far more calculations
necessary.

The aim of line-search is to find a value of α such that we get a useful decrease
in the value of the original function. In soft line-search we are satisfied with a
region in which this is true and are willing to pick any point within this region.
The interval in which it does so can be defined by the following conditions,
known as the Wolfe-conditions[JN00]:

ϕ(α) ≤ ϕ(0) + c1
dϕ(0)

dα
(1.11)

dϕ(α)

dα
≥ c2

dϕ(0)

dα
(1.12)

Where 0 < c1 < 0.5 and c1 < c2 < 1. Usually, c1 is chosen small and c2 is
chosen very large. Typical values could be: c1 = 10−4, c2 = 0.9.

The first condition, also known as the Armijo rule, ensures that the function
value has decreased enough for the new choice of α to make the step "worth it".

The second condition, known as the curvature condition, ensures that the slope
at the new point has been reduced sufficiently. This hopes to ensure that the
next iteration does not start from an area with a very steep slope, which could
otherwise cause the iteration sequence to shoot very far off the target.

The following image displays a rough estimate of an example of what acceptable
ranges could be a soft line-search algorithm. The thick black marker indicates
acceptable ranges.

8 Theory of Unconstrained Optimization

Figure 1.2: Example of line-search acceptable ranges

A possible algorithm to do this would be[HBN10]:

1. α := 0, k := 0. If dϕ(0)
dα ≥ 0, stop immediately - 1st order necessary

conditions were already met or the step p was not determined correctly.

2. Define αmax so be a user-specified maximum line-search length, and kmax
to be the largest amount of iterations tolerable.

3. a := 0, b := min(1, αmax).

4. While k < kmax

(a) Increment k.

(b) If ϕ(α) < ϕ(0) + c1
dϕ(0)
dα , set a = b.

i. If dϕ(b)dα < c2
dϕ(0)
dα , set b = min(2b, αmax).

ii. Otherwise, terminate the while lop.

(c) If the above was not true, check if a = 0 and dϕ(b)
dα < 0. If it is, set

b = b/10.

(d) In all other cases, exit the while loop.

5. Set α = b and terminate the algorithm entirely if: (a > 0 and curvature
condition is fulfilled) or (b ≥ αmax and the curvature condition is not
fulfilled).

6. While k < kmax

1.3 Line-search 9

(a) Increment k.
(b) Refine α, a, b using a following method.
(c) Exit this loop immediately if the Wolfe conditions are satisfied.

7. If, in spite of everything, the new location still has a higher function value,
set α = 0.

A possible refinement method is to create a parabola with similar characteristics
and finding the minimum value of it, such as this one:

ψ(t) = ϕ(a) +
dϕ(a)

dα
(t− a) + c(t− a)2

Where c =
ϕ(b)−ϕ(a)−(b−a) dϕ(a)

dα

(b−a)2 . A possible way to do this is with the following
algorithm[HBN10]:

1. D := b− a. c :=
ϕ(b)−ϕ(a)−D dϕ(a)

dα

D2 .

2. If c > 0, set α =
a− dϕ(a)

dα

2c , because the parabola is a "frown".
α = min(max(α, a+ 0.1D), b− 0.1D)) to ensure no divergence.

3. Otherwise, set α = (a+ b)/2.

4. If the armijo-condition is satisfied by this α, set a = α, otherwise set b = α.
Return a and b.

Another method entirely is to use exact line-search, which is designed to result
in a step-length close to a value of α such that ϕ(α) is minimized. The algorithm
to do this is similar to soft line-search, but the main differences are that, in the
first loop, a is only updated when (but before) b is. In addition, the condition
for stopping the final loop in that algorithm is changed to:

(∣∣∣∣dϕ(α)

dα

∣∣∣∣ ≤ τ ∣∣∣∣dϕ(0)

dα

∣∣∣∣) or (b− a ≤ ε)

The good thing about this approach is that, in theory, it should result in the
following relation (on successful runs, it approximately does):

∇f(xk + αpk)⊥pk (1.13)

10 Theory of Unconstrained Optimization

The bad thing about it is that it takes much longer to compute it, and thus it
has fallen out of favour in recent years[HBN10].

1.4 Using a trust region with line search

It is also possible to combine some of the methods of the line search and trust
region methods. A trust region T is defined as such:[HBN10]

T = {h|‖h‖ ≤ ∆}, ∆ > 0 (1.14)

The goal here is to adjust ∆ in such a way that it represents a "trust-worthy"
spherical area with the radius ∆, in order to reduce the computation time of
the line search method.

One way to do this is to first normalize the step if the step is too long. Once
this is done, a normal line search, as described above, is performed. The line
search gives a step length α which tells how far it was deemed beneficial to in
the direction of the normalized step.

• If less than the full step was taken, α < 1, reduce the trust region by ρ1.

• If the slope was too steep at the final point of the line search, the trust
region may be too small. Increase it by a factor of ρ2.

• At the end of each iteration, make sure that the trust region is larger than
the stopping criteria for too small step length.

Where 0 < ρ1 < 1 and ρ2 > 1.

By doing this, the step from each iteration is fitted into a trust region. The
better the steps have been in the past, the larger steps we take, and vice versa,
which can save computation time for each iteration’s line search.

1.5 Quasi-Newton BFGS method

A quasi-newton optimization method is a method which uses iterates to arrive
at a minimal function value in similar vein to the steepest descent method or

1.5 Quasi-Newton BFGS method 11

Newton’s method for optimization[JN00].

The problem with Newton’s method when used for optimization is that it re-
quires the Hessian of the function that is to be optimized. The Hessian of such a
function can be extremely difficult to compute and may consist of unreasonably
long expressions that require a lot of computer operations to calculate explicitly,
let alone find. The idea of a Quasi-Newton method is to approximate the Hes-
sian well enough to be able to use what is essentially Newton’s Method without
requiring the user to explicitly supply the Hessian.[JN00]

One of these is the BFGS method, named after Broyden, Fletcher, Goldfarb,
and Shanno who invented it.

To derive it, we can start with the quadratic model of the objective function at
the current iterate xk[JN00]

mk(pk) = fk +∇fkpk +
1

2
pkBkpk (1.15)

Where Bk is a positive definite approximation that is updated at every iteration
k. The minimizer of the above model can be written as:

pk = −(Bk)−1∇fk (1.16)

Instead of computing Bk at every iteration, Davidson proposed updating it
using the next iterate xk+1 using the following quadratic model[JN00]:

mk+1(pk) = fk+1 +∇fk+1pk +
1

2
pkBk+1pk (1.17)

We require of of Bk+1, based on the Wolfe conditions used for line-searching,
that:

∇mk+1(pk) = ∇fk+1 − αkBk+1pk = ∇fk (1.18)

By rearrangement we get:

αkBk+1αkpk = ∇fk+1 −∇fk (1.19)

12 Theory of Unconstrained Optimization

This is known as the secant equation. At this point, to simply the notation, the
following vectors are defined:

hk = αkpk, yk = ∇fk+1 −∇fk (1.20)

Thus the secant equation becomes, with the second version being particularly
important for BFGS:

Bk+1hk = yk ⇔ Hk+1yk = hk (1.21)

Where Hk = 1
Bk

.

The secant equation requires thatHk+1 maps yk into hk. For this to be possible,
they must satisfy the curvature condition:

hkyk > 0 (1.22)

In order to make sure that this condition is fulfilled, it needs to be enforced. By
imposing the restrictions on the line search mentioned in the previous chapter,
the curvature condition is guaranteed to hold[JN00] becauseof the curvature
condition imposed as part of the Wolfe Conditions:

ykhk ≥ (c2 − 1)αk∇fkpk (1.23)

This admits for a number of different solutions. In order to choose a specific
unique solution, an additional condition of closeness is specified. Denoting the
new iterate simply H, we want the new iterate to be positive definite and sym-
metric, and we want the minimal distince between the two, so the following
optimization problem is solved.

min
H
‖H −Hk‖

subject to H = HT , Hyk = sk

1.5 Quasi-Newton BFGS method 13

This problem has the unique solution which is precisely the BFGS updating
method[JN00]:

Hk+1 = (I − 1

ykhk
hkyk)Hk(I − 1

ykhk
ykhk) +

1

ykhk
hkhk (1.24)

The only remaining problem is figuring out where to start. Since this is only an
update formula - what does it update from the first time?

There appears to be no "magic trick" for this, but starting with an evaluation
of the true H0 would work well. However, there is a useful heuristic which is to
take a steepest descent direction for the first step and, afterwards, set [JN00]:

H0 =
ykhk

ykyk
I (1.25)

Thus, the entire algorithm is now:

1. Begin with a starting guess x0 on the at least locally convex function
f ∈ C2 : Rn → R where n is the number of input dimensions in the
function.

2. Set H0 = I.

3. Sample the function value f(x0), the gradient ∇f(x0).

4. While the first order optimality conditions are not yet met:

(a) Find pk = − ∇f(x
k)

∇2f(xk)

(b) Use the line search technique to find a value αk which satisfies the
line-search conditions.

(c) Take the step: xk+1 = xk + αkpk

(d) Define hk and yk in accordance with (19). Check the secant equation.

(e) Compute Hk+1 in accordance with (24). If this is the first iteration,
use (25).

(f) Increment k.

(g) Sample the function value f(xk), the gradient ∇f(xk).

14 Theory of Unconstrained Optimization

A final thing that is very important to note: As this algorithm updates the
inverse Hessian, that means it is no longer needed to solve a linear system.
Instead, a simple multiplication of a matrix and a vector is all that is needed.
This is huge for computer performance.[Mey00][Net12][ABB+99]

1.6 Finite Difference

In many cases even differentiating a function once, let alone twice, can sometimes
be difficult, even if it can be proven that the function in question is continuously
differentiable. A forward differentiation method is included and can be used.
Forward difference approximation is just the definition of derivative without
taking the limit as h approaches 0. Rather, h is set to a specific, small value,
which causes an error of size O(h)[Sch07].

f ′(x) =
f(x+ h)− f(x)

h
+O(h) (1.26)

It should be noted that setting h to a negative number immediately causes
backwards difference approximation.

f ′(x) =
f(x+ h)− f(x)

h
+O(h) (1.27)

The overall result of using both a Quasi-Newton method as well as finite differ-
ence is that only the function f itself needs to be given explicitly, although it
is still required that f ∈ C2. This can lead to very large reductions in the work
required by the user.

Chapter 2

Installing BLAS and
LAPACK in Ubuntu

Switching gears to the more practical implementation, it will be necessary to
install BLAS in order to use the optimization toolbox, because the optimization
toolbox is written using BLAS libraries for multiplications involving vectors and
matrices.

This guide and software is written for use primarily with Ubuntu 12.04 (but it
should work on many POSIX-complient systems), and will take you step-by-step
to getting the solution running on your system. If you are not using Ubuntu,
the setup steps may differ.

2.1 Installing Eclipse, BLAS & LAPACK

This guide assumes we are using Ubuntu. We are going to be using ATLAS,
which is a mostly hardware-independant and very efficient variety of the BLAS
and (some of the) LAPACK packages. However it does not implement all LA-
PACK functions, so LAPACK is installed separately.[Net12]

We also need a good IDE, like Eclipse. Alternatively, it is possible to use a text

16 Installing BLAS and LAPACK in Ubuntu

editor such as gedit, VIM or emacs. For Eclipse+ATLAS, open a terminal and
execute:

1 apt−get install eclipse−cdt libatlas−dev liblapack−dev build−essential

Figure 2.1: Installing Eclipse, GCC, BLAS, LAPACK

Wait for Ubuntu’s package manager to finish the process. Once it is finished,
you may close the terminal. Eclipse for C, a C compiler, BLAS and LAPACK
are now installed.

2.2 Creating a new project

1. This is only relevant if you use Eclipse.

2. Go into File -> New -> C project.

3. Type in a project name, and select Empty Project. Select the toolchain
Linux GCC. Then press Finish.

2.3 Importing, using linking BLAS & LAPACK 17

Figure 2.2: Creating a new project in Eclipse-cdt

4. Now you should include a new file. Go into File -> New -> Source File

5. Call the file main.c, as the tool-chain will always attempt to compile this
file at first.

2.3 Importing, using linking BLAS & LAPACK

In order to include BLAS, simply type #include <cblas.h> in the preamble of
whichever file you need it in. Then open the project properties.

18 Installing BLAS and LAPACK in Ubuntu

Figure 2.3: Accessing Project Properties

Expand GCC Build, then click on Settings. In the new selection panel under
Tool Settings, go into the GCC linker and select Libraries, and add the libraries
"m", "lapack" and "blas" without the quotes. Do not add any Library Paths.
In order to use the library tests, also include rt.h. On Mac OS X, add Acceler-
ate.framework.

2.4 First Matrix-multiplications 19

Figure 2.4: Linking the compiler to BLAS and LAPACK

The equivalent can be performed by calling "gcc main.c -O3 -o blastest.out -lblas
-llapack -lm" in the terminal without the quotes.

2.4 First Matrix-multiplications

2.4.1 Matrix-Vector

In order to perform a Matrix-Matrix multiplication, I need to use the blas library.
For this purpose, the cblas.h library is used. Column Major order is preferred
since this saves computer resources, given that the functions I are using were
written in FORTRAN, and thus the matrices use FORTRAN order, or Column
Major.

All of the functions have logical names to them: Generally, they take a form
starting with the name of the library, then underscore, ending with the function
name as explained on netlib.[Net12] They are put into 3 categories: vector-
vector operations are level 1, matrix-vector operations are level 2, matrix-matrix
operations are level 3.

20 Installing BLAS and LAPACK in Ubuntu

In order to do a matrix-vector multiplication, which is a level 2 subroutine,
something like this

1 cblas_dgemv(CblasColMajor, CblasNoTrans, A m, A n, alpha, A, A n, x, numcols x
, beta, y, numcols y);

It will perform the following operation:

y = α ·A · x+ β · y

Here is an example of using it:

1 //Some actual BLAS−testing!
2 int M1row = 3;
3 double M1[] = {
4 3, 1, 3,
5 1, 5, 9,
6 2, 6, 5
7 }; //Remember it's transposed!
8
9 double x[] = {−1, −1, 1};

10
11 double y[3] = {0.0};
12
13 cblas_dgemv(CblasColMajor, CblasNoTrans, 3, 3, 1.0, M1, 3, x, 1, 0.0, y,

1); //matrix−vector mult
14 //y = alpha*A*x + beta*y
15
16 int i; //Print result
17 for (i=0; i<3; ++i) printf("%5.3f\n", y[i]);;

It gives the result:

1 −2.000
2 0.000
3 −7.000

2.4.2 Matrix-Matrix

A level 3 function will generally perform the following operation:

y = α ·A ·B + β · y

And so the input format I use for the general case is:

2.4 First Matrix-multiplications 21

1 cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, A[m], A[n], alpha, A,
numcols A, B, numcols B, beta, y, cols of output);

Here is an example:

1 int main()
2 {
3 int M1row = 3;
4 double M1[] = {
5 3, 1, 3,
6 1, 5, 9,
7 2, 6, 5
8 }; //Remember it's transposed!
9

10 int M2col = 3;
11 double M2[] = {
12 1, 2, 3,
13 4, 5, 6,
14 7, 8, 9
15 }; //Remember it's transposed!
16
17 double y[3] = {0.0};
18
19 int M3row = 3;
20 double matrixout[9] = {0.0};
21
22 cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, 3, 3, 3, 1.0, M1,

M1row, M2, M2col, 0.0, matrixout, M3row); //matrix−matrix mult
23
24 int i;
25 for (i=0; i<3; ++i) printf("%5.3f\n", y[i]);;
26
27 printf("\n");

Produces the following output:

1 11.000 29.000 36.000
2 29.000 65.000 87.000
3 47.000 101.000 138.000

Which is as expected.

22 Installing BLAS and LAPACK in Ubuntu

2.5 Solving your first LA-equations

Despite the fact that the BFGS method does not need any LAPACK routines
at all, working with LAPACK is still useful for further functions in the toolbox
in the future.

Since there seems to be no decent, complete C wrapper for LAPACK for Linux,
we’ll just have to do it ourselves! Using the LAPACK documentation[ABB+99].
Before the main method, or in a separate file, you must import the proper
functions into C.

Since I link to LAPACK, I can use the methods directly. There are a few
things to keep in mind. In C, any FORTRAN77 function I import is appended
with an underscore. This happens due to the way a FORTRAN77 library is
compiled.[Lin12] Looking at the documentation I can see that dgtsv can do
what I want. Here is an example of importing such a function into a more
usable C format:

1 static long dgtsv(long N, long NRHS, double *DL, double *D, double *DU, double

*B, long LDB)
2 {
3 extern void dgtsv_(const long *Np, const long *NRHSp, double *DL, double *

D, double *DU, double *B, const long *LDBp, long *INFOp);
4 long info;
5 dgtsv_(&N, &NRHS, DL, D, DU, B, &LDB, &info);
6 return info;
7 }

This function will solve a system of linear equations in which only the diagonal,
upper diagonal and lower diagonal are defined. Everything else is set to 0. Let
us try to solve the system:

3 6 0
6 1 4
0 4 3

x1x2
x3

 =

−1
3
−3

Here is an example of using it:

1 double z[] = { −1, 3, −3 };
2
3 int info, j;
4
5
6 double l[] = {6, 4};
7 double u[] = {6, 4};

2.5 Solving your first LA-equations 23

8 double d[] = {3, 1, 3};
9

10 info = dgtsv(3, 1, l, d, u, z, 3);
11 if (info != 0) printf("Failure with error: %d\n", info);
12
13 for (j=0; j<3; ++j) printf("%5.3f\n", z[j]);

It returns:

1 0.769
2 −0.551
3 −0.265

Next I wish to take a look at Cholesky factorization. Looking at the documen-
tation, there is dpbtrf, which is Cholesky Factorization which takes the matrix
as the first column, then the lower diagonal part of the second column, append
with 0’s to make the column as long as the first one, then the lower diagonal
part of the next column, append with 0’s and so on, which can be imported as
such:

1 static long dpbtrf(char UPLO, long N, long KD, double* AB, long LDAB)
2 {
3 extern void dpbtrf_(char* UPLOp, long* Np, long* KDp, double* AB, long*

LDABp, long* infop);
4 long info;
5 dpbtrf_(&UPLO, &N, &KD, AB, &LDAB, &info);
6 return info;
7 }

24 Installing BLAS and LAPACK in Ubuntu

Let’s say I wish to find the lower matrix such that LTL = A for the positive
definite symmetric matrix

A =

 4 −2 −6
−2 10 9
−6 9 14

Then this is what I would do:

1 double m[] = {4, −2, −6, 10, 9, 0, 14, 0, 0};
2
3 info = dpbtrf('L', 3, 2, m, 3);
4 if (info != 0) printf("Failure with error: %d\n", info);
5
6 for (i=0; i<3; ++i)
7 {
8 for (j=0; j<3; ++j)
9 if (j > i)

10 printf(" %5.3f", 0.0f);
11 else
12 printf(" %5.3f", m[j*3+(i−j)]); //FORTRAN order...
13 printf("\n");
14 }

This will return the correct result:

1 2.000 0.000 0.000
2 −1.000 3.000 0.000
3 −3.000 2.000 1.000

Now that the system is set up, the real work can begin.

Chapter 3

Library documentation

ucminf

Finds the minimizer to an unconstrained optimization problem given by fun()
by using the Quasi-Newton BFGS method. Extra parameters may be sent using
the void structure.

Call:

1 int opti_ucminf(void (*fun)(double *x, double *f, double *g, void *p),
double *x, int n, double *opts, double *D, int *evalused, double *
perfinfo, double *xiter, void *p);

Input:

• fun - A function handle to a function with the structure:

– *x - The address of an array of doubles representing the point to take
the function at.

– *f - The address of the storage of the function evaluation

26 Library documentation

– *g - The address of an array of doubles. Will be filled with the
derivative of f(x).

– *p - A pointer to a void structure that can be anything.

• *x - The starting guess x for the function. On exit, the optimal value for
x.

• n - Number of variables given to the function

• *opts - An array containing:

– delta - Initial value for largest stepsize used by the linesearching.

– tolg - The value which the norm of g is under when the 1st order
KKT conditions are met.

– tolx - If the stepsize is less than tolx*(tolx + norm(x, n, 2)), stop.

– maxeval - The maximum number of tolerable iterations before stop-
ping.

– findiffh - Used in the finite difference approximation for fun(). If set
to 0, g is expected. Warning: Using findiffh = 0 and not supplying g
in fun WILL result in errors.

– Default: 1, 1e-4, 1e-8, 100, 0

• *D - An array containing an initial estimation of the inverse Hessian to
the function. Set to NULL to start with with I. On exit, a pointer to the
Hessian. Warning: Points to unclaimed memory if *D was set to NULL
on exit!

• *evalused - A pointer to an integer which will be filled with the number
of evaluations. Warning: NOT ITERATIONS.

• *perfinfo - A pointer that must point to an array of doubles of size 6*max-
eval. Will contain performance information which can be printed using
printperf.

• *xiter - If null, nothing happens. Otherwise, contains a sequence of x for
each iteration on exit. Must be preallocated to size n*maxiter (default
n*100)

• *p - A void-pointer which can contain anything. Is passed through the
function and all the way over to fun().

Returns:

27

• -1 - memory allocation, error

• 0 - perfect starting guess, success

• 1 - Stepsize H became NaN, inf or -inf, error

• 2 - Stopped due to small derivative g, success

• 3 - Stopped due to small change in x, success

• 4 - Norm of stepsize became 0, success.

• 5 - Too many function evaluations, potential failure

Example usage:

1 //Requires C99 at least
2
3 //Standard ANSI C libraries for I/O
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stddef.h>
7
8 //Include the library itself
9 #include <libopti.h>

10
11 #include <math.h>
12
13 void himmelblau(double* x, double* f, double* df, void *p)
14 {
15 *f = pow(x[0]*x[0] + x[1] − 11,2) + pow(x[0] + x[1]*x[1] − 7,2);
16
17 df[0] = 2*(2*x[0]*(x[0]*x[0] + x[1] − 11) + x[0] + x[1]*x[1] − 7);
18 df[1] = 2*(−11+x[0]*x[0] + x[1] + 2*x[1]*(−7 + x[0] + x[1]*x[1]));
19
20 return;
21 }
22
23 int main()
24 {
25 //Number of inputs to n, number of max iterations
26 const int maxiters = 100;
27 int n = 2;
28 double x[2] = {1, 1};
29
30 double perfinfo[maxiters*6];
31 double xinfo[n*maxiters];
32
33 double opts[] = {1.0, 0.00000001, 0.00000001, maxiters, 0};
34 int ucminfr = opti_ucminf(himmelblau, x, n, opts, NULL, NULL, perfinfo,

xinfo, NULL);
35
36 int folderinfo = opti_printperf_tofolder(perfinfo, xinfo, maxiters, n, "

testhimmelblau");
37
38 printf("%i\n",ucminfr);
39 printf("(%f, %f)\n",x[0], x[1]);
40
41 return 0;
42 }

28 Library documentation

Resulted in:

1 Beale test function:
2 Solve time: 0.000046
3 Save to folder info: 0
4 Solution return: 2

In other words, the program was minimized in 0.000046 seconds, and the algo-
rithm stopped due to small size of derivative.

29

line search

Calculates a step length of a step on a function, and updatex x, f , g. Can save
return performance information about the line search. Also takes options.

Call:

1 int opti_linesearch(void (*fun)(double *x, double *f, double *g, void *p),
double *x, int n, double *f, double *g, double *h, double *opts, double

*perf, void *p);

Input:

• fun - A function handle to a function with the structure:

– *x - The address of an array of doubles representing the point to take
the function at.

– *f - The address of the storage of the function evaluation

– *g - The address of an array of doubles. Will be filled with the
derivative of f(x).

– *p - A pointer to a void structure that can be anything.

• *x - Pointer to the variables given to the function

• n - Number of variables given to the function

• *f - The address of the storage of the function evaluation

• *g - The address of an array of doubles. Will be filled with the derivative
of f(x).

• *h - The search direction, the steplength multiplier,

• *opts- An array with a few options:

– choice: 1 = soft linesearch, 0 = exact linesearch

– cp1: Constant 1 timed onto derivative of f at initial point (not used
if choice = 0)

– cp2: Constant 2 timed onto derivative of f at initial point

– maxeval:Maximum number of evaluation before quitting.

– amax: Maximum tolerable search direction multiplier

30 Library documentation

– Default: 0, 1e-3, 1e-3, 10, 10. Giving NULL to opts will load these
values.

• *perf- Some simple performance information from linesearch. Contains:
search direction multiplier, final slope, number of evaluations

• *p - A pointer to a void structure that can be anything.

Returns:

– 0 - Successful return

– -1 - Dynamic memory allocation failed.

– 1 - h is not downhill or it is so large and, maxeval so small, that a
better point was not found.

Example call: Used internally by ucminf. See appendix A.10.

31

interpolate

Finds the minimizer of a 1D parabola which is given by two points a and b.

1 double opti_interpolate(double *xfd, int n);

Input:

• xfd - An array consisting of xfd = a, b, f(a), f(b), f’(a). The function value
at a and the function value at b. The derivative of the function value at
a.

• n - The dimension of the problem original problem within which the
parabola is to be constructed.

Output: The minimizer of the parabola.

Example call: See appendix A.6. Line search uses it for refining the interval.

32 Library documentation

findiff

Finds f and g directly if h == 0. Otherwise, approximates g with forward differ-
ence approximation using an O(n+1) algorithm. If h is negative, uses backward
difference.

Call:

1 int opti_findiff(void (*fun)(double *x, double *f, double *g, void *p),
double *x, int n, double *f, double *g, double h, void *p);

Input:

• fun - A function handle to a function with the structure:

– *x - The address of an array of doubles representing the point to take
the function at.

– *f - The address of the storage of the function evaluation

– *g - The address of an array of doubles. Will be filled with the
derivative of f(x).

– *p - A pointer to a void structure that can be anything.

• *x - Pointer to the variables given to the function

• n - Number of variables given to the function

• *f - The address of the storage of the function evaluation

• *g - The address of an array of doubles. Will be filled with the derivative
of f(x).

• h - The stepsize of the forward approximation. Can be any real number.
If h is 0, g is expected to be handed directly.

• *p - A pointer to a void structure that can be anything.

Returns:

• 0 - Successfully returned the function and its derivative.

• -1 - Dynamic memory allocation failed.

33

printperf_tofile

Prints performance information to a file in such a way that the file has the
iterations listed among the columns:

• Number of evaluations of f done in the iteration.

• The value of f at the iteration

• The norm of the derivative of the function at the iteration

• The linesearch limit delta at the value of the iteration

• The scaling factor for the step as given by the linesearch

• The slope of the function at the point in the direction of the step

Call:

1 int opti_printperf_tofile(double* perf, int maxiters, char* filename);

Input:

• *perf - The performance array given by ucminf

• maxiters - The maximum allowed iterations. Must be the same number
passed to opts. Set to negative number to defeault to 100.

• filename - A string containing the filename.

Returns:

• 0 - Successfully saved the data to file.

• -2 - Failed to open/write file. Nothing is saved.

printperf_tofolder

Prints performance information to a specified folder at the location the program
is run. Makes 7 subfiles named:

34 Library documentation

• evals.txt - Number of evaluations of f done in the iteration.

• fun.txt - The value of f at the iteration

• ng.txt - The norm of the derivative of the function at the iteration

• delta.txt - The linesearch limit delta at the value of the iteration

• am.txt - The scaling factor for the step as given by the linesearch

• finalslope.txt - The slope of the function at the point in the direction of
the step

• x.txt - The contents of x at each iteration

Call:

1 int opti_printperf_tofolder(double* perf, double* xiter, int maxiters, int n,
char* foldername);

Input:

• *perf - The performance array given by ucminf

• maxiters - The maximum allowed iterations. Must be the same number
passed to opts. Set to negative number to defeault to 100.

• foldername - A string containing the foldername from the location your
program is run.

Returns:

• 0 - Successfully saved the data to file.

• -2 - Failed to open/write file. Nothing is saved.

• -3 - File existed with name of folder to be created. Nothing saved.

• -4 - Folder could not be created. Check permissions or drive

3.1 Usage example 35

3.1 Usage example

In this example we seek to solve the famous Rosenbrock problem[Ros60].

The Rosenbrock Function is a non-convex function invented by Howard H.
Rosenbrock in 1960. It has a long, narrow parabolic-shaped valley with only a
single minimum. To find the valley is easy, but to find the minimum is quite
difficult.

f(x) = (1− x1)
2

+ 100
(
x2 − x12

)2 (3.1)

In order to do this, the library needs to be added onto the system. The compiled
form of the library is called libopti.so.

If the library is not already compiled, a makefile is provided inside the Release
folder of the project folder which compiles it. It is required that ATLAS and
GCC is installed for this to work. This will build the shared object libopti.so.

To include the object in your own program, GCC must be told to link with it,
and where the object is.

• If the object is in /usr/bin/ or /usr/local/bin then GCC only needs to be
told that the library should be added using the -lopti argument.

• If the object elsewhere, GCC also needs to be told where the library is
located. In addition to the above, use the -L/path/name/to/library argu-
ment.

Next, the header file of the library needs to be included in your project. This is
done by adding the line, assuming libopti.h is in the same folder as your code.

1 #include "libopti.h"

If libopti.h is in /usr/include or /usr/local/include, you can type:

1 #include <libopti.h>

36 Library documentation

in the file. Afterwards, the library can be freely used, such as with this example
minimizing the Rosenbrock function.

1 //Requires C99 at least
2
3 //Standard ANSI C libraries for I/O
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stddef.h>
7
8 //Include the library itself
9 #include <libopti.h>

10
11 #include <math.h>
12
13 void rosenbrock(double* x, double* f, double* df, void *p)
14 {
15 *f = pow(1 − x[0],2) + 100*pow(x[1] − x[0]*x[0],2);
16
17 df[0] = −2 + 2*x[0] − 400*(x[1] − x[0]*x[0])*x[0];
18 df[1] = 200*x[1] − 200*x[0]*x[0];
19
20 return;
21 }
22
23 int main()
24 {
25 //Number of inputs to n, number of max iterations
26 int n = 2;
27 double x[2] = {4, 2};
28
29 double opts[] = {1.0, 0.0001, 0.00000001, 100, 0};
30 int ucminfr = opti_ucminf(rosenbrock, x, n, opts, NULL, NULL, NULL, NULL,

NULL);
31
32 printf("%i\n",ucminfr);
33 printf("(%f, %f)\n",x[0], x[1]);
34
35 return 0;
36 }

Resulting in the following output when run:

1 2
2 (1.000000, 0.999999)

Chapter 4

Mixing FORTRAN and C

It may also be useful to be able to run the library from multiple different pro-
gramming languages. Therefore, it is going to be essential to be able to run this
library from multiple different languages.

Since C++ and Objective C are supersets of C, the ability to call any C function
within them is given for free.

However, FORTRAN needs to implemented explicitly.

On the next page is a comparison between the different datatypes in FORTRAN
and C, respectively.[Lin12]

A subroutine in FORTRAN is basically the same a function call in C, but it
doesn’t have a return type, which in C can be represented as the return type
void. All FORTRAN functions have their input arguments passed by reference.
In other words, we must give it an address which points to the location of our
variable rather than the variable itself.

It is important to remember that arrays already get passed by reference to C
programs, and as a result it is not necessary to use the address-of symbol when
working with arrays.

38 Mixing FORTRAN and C

byte unsigned char
integer*2 short
integer long
integer A(m,n) int A(n,m)
logical int
real float
real*8 double
real*16 real*16
complex z structfloat realnum; float imagnum; z;
double complex z structdouble realnum; double imagnum; z;
character char
character str(m) char* str[m]

Table 4.1: Table of data types in FORTRAN and C

In addition, all subroutine names must be written in lower case letters because
a compiled FORTRAN program contains only lowercase letters as they are all
converted. In addition, it will append an underscore at the end of the function
name.[Lin12]

This means that these two function calls are equivalent:

CALL MMADD(A, B, m, n)

and

mmadd_(A, B, &m, &n);

And finally, C arrays are in row major, FORTRAN arrays are in column major.
This means that for example the following array:[Lin12]

double A[2][3] = {{a, b, c}, {d, e, f}};

Which can be interpreted as a flat array, is read by C programs like this:(
a b c
d e f

)
But writing the basically equivalent statement in FORTRAN sees it like this:a d

b e
c f

39

To call a function from C there are a set of things that need to be done.

Make sure the correct software installed. For this, built-essential and fort77 are
vital. They can be installed in Ubuntu with:

1 sudo apt−get install build−essential fort77.

Write the function. This will assume general knowledge of FORTRAN 77. Per-
haps the function is already written. The function must have the inputs specified
by the relevant optimization procedure. Remember that everything is passed to
FORTRAN subroutines by reference, so normal header declarations will ensure
compliance with the requirement for pointers.

Compile the subroutines(s) into a library using the following command, making
sure you are in the same directory you saved the compiled file(s):

1 f77 −c filename.F

Generate a library file by collecting all the subroutines in a single file. To do
this, type the following command, remaining in the same folder:

1 ar rcv libmylib.a *.o

Generate an overview of the included subroutines with the following command:

1 ranlib libmylib.a

Over in C, add a new library: mylib (The name of the library file created minus
the lib in front and the appended .a) Next, add a library search path which is
exactly the path where you saved the library.

Create a C wrapper for the function and make it return the whichever type you
wish by defining e.g. (Addition of two matrices Am×n and Bm×n):

1 static void mmadd(double* a, double* b, long m, long n)
2 {
3 extern void mmadd_(double* a, double* b, long* mp, long* np);
4 mmadd_(a, b, &m, &n);
5 return;
6 }

40 Mixing FORTRAN and C

Chapter 5

Using the library in ...

This library also comes with bindings for several popular languages. Using the
knowledge given above about how to work with FORTRAN and C together, the
below lists documentation and examples of how to use it.

5.1 FORTRAN

It should be noted that while it is possible to code problems in FORTRAN and
import those into C, and then use libopti to optimize, the reverse is not possible
up until FORTRAN 2003. Since FORTRAN 2003 was not in the discussion
above and very few people use the newer versions of FORTRAN, this problem
is placed outside the scope of this report.

However, it is still possible to perform an optimization as part of a MATLAB
program, and this is how.

Given the project is set up in C as explained in section 5, the following can be
done.

42 Using the library in ...

Make an example of Rosenbrock coded in FORTRAN with the appropriate
header for use with the UCMINF method.

1 SUBROUTINE ROSENBROCKF(X, F, DF)
2 c =============PARAMETERS==============
3 c Scalar arguments:
4 INTEGER N
5 DOUBLE PRECISION X(N), F, DF(N)
6
7 c Written by: Christian Wichmann Moesgaard
8 c This FORTRAN77 program is specifically for demonstration purposes.
9 c This implements the Rosenbrock function and is used for an example

10 c demonstrating how to optimize FORTRAN functions with the optimization
11 c toolbox.
12 N = 2
13 F = (1−X(1))**2 + 100*(x(2)−x(1)**2)**2
14
15 DF(1) = −2 + 2*X(1) − 400*(X(2)−X(1)**2)*X(1)
16 DF(2) = 200*X(2) − 200*(X(1))**2
17
18 RETURN
19 END

Then, compile the subroutine as demonstrated in chapter 6.1 and include it,
then create the following wrapper function in the C program:

1 void rosenbrockf(double* x, double* f, double* df)
2 {
3 extern void rosenbrockf_(double* x, double* f, double* df);
4 rosenbrockf_(x, f, df);
5 }

And finally the minimum may be found using the same method as in section 5,
replacing rosenbrock inside the ucminf call with rosenbrockf.

Doing the above should correctly return the result x ≈ (1, 1).

Furthermore, it is possible to make this function return something back to FOR-
TRAN. The general idea here is to:

1. Program a FORTRAN model

2. Compile it, then load it into C as above.

3. Use it in a C function which takes the inputs as desired and compile it,
remembering to respect the rules for interoperability.

4. Use this function in FORTRAN.

5.1 FORTRAN 43

For example, to optimize the above subroutine, one could do the following:

1 //Requires C99 at least
2
3 //Standard ANSI C libraries for I/O
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <stddef.h>
7
8 //Include the library itself
9 #include <libopti.h>

10
11 #include <math.h>
12
13 void rosenbrockf(double* x, double* f, double* df)
14 {
15 extern void rosenbrockf_(double* x, double* f, double* df);
16 rosenbrockf_(x, f, df);
17 }
18
19 void optirosenbrock_(double *x, double *np)
20 {
21 int n = *np;
22
23 double opts[] = {1.0, 0.0001, 0.00000001, 100, 0};
24 opti_ucminf(rosenbrock, x, n, opts, NULL, NULL, NULL, NULL, NULL);
25 }

Compiling this function, the Rosenbrock function, which was originally written
in FORTRAN, can now be optimized by libopti and the optimized values can
be returned back to FORTRAN again using the following:

1 SUBROUTINE OPTIMBROCK(X, F, DF)
2 c =============PARAMETERS==============
3 c Scalar arguments:
4 INTEGER N
5 DOUBLE PRECISION X(N), F, DF(N)
6
7 N = 2
8 X(1) = 3
9 X(2) = 2

10
11 CALL OPTIROSENBROCK(X, N)
12
13 CALL ROSENBROCKF(X, F, DF)
14
15 RETURN
16 END

44 Using the library in ...

5.2 Mac OS X and iOS

The library is already built with OS X in mind, and will correctly attempt to use
Accelerate instead of ATLAS. The test-cases will use MACH functions instead
of POSIX functions where appropriate.

The library can be fully compiled as part of an Objective C application. This
is because Objective C is an extension of C.[Inc12a]

This also implies that the library works on an iPhone or iPad, since it uses
Apple’s built-in Accelerate framework, which is available since iOS 4.0.[Inc12b]

Here is an image of an iPad Simulator having correctly solved a 20-variable
Ackley optimization problem from psuedo-random numbers between -3 and 3
(more on the Ackley optimization problem in the next chapter):

Figure 5.1: Solution to Ackley problem on iPad

Chapter 6

Performance testing

For the performance testing, 6 different functions have been selected. They were
all found on the the webpage: [Hed12a] Except Himmelblau, which was acquired
through CampusNet. All of these functions are problems of the form:

min
x
f(x)

Where f(x) ∈ C2 : Rn → R.

These 6 functions will be run through 4 different and common optimization
software packages as well as my own. These software packages are:

1. IMM Optibox UCMINF, latest version*

2. Maple 16 Optimization Toolbox using a the function "NLPSolve" internal
to the Optimization Assistant, latest version*

3. MATLAB’s Optimization Toolbox using FMINUNC, latest version*

4. minlbfgs for C++ version 2.6.0

46 Performance testing

*as of this writing.

Each problem will be run 10 times and the average time will be calculated,
except in cases where the computation time is so long that it is inconceivable
that this algorithm will win out.

The performance of these software packages will be compared with the perfor-
mance of the version of UCMINF made alongside this report, and their compu-
tation time will be measured in real time (seconds) on the following set-up:

• Intel Core i7-950 @ 3.07 GHz (4 cores, hyperthreading)

• 8GB PC3-12800 CL9 RAM

• Ubuntu 12.10 64-bit

• Using ATLAS, GCC 4.6.3, Optimize level 3

However, before one even gets to that, there’s an important thing to note about
licensing.

1. IMM Optibox is developed internally at DTU and is, as such, accessible
to projects within DTU. However, it builds upon MATLAB, which is an
expensive piece of proprietary software. The source code is readily visible.
The dependence on MATLAB means that it is using a scripting language
and thus cannot be used in embedded devices due to restrictions. The
software does run on GNU Octave, but issues arise with porting to iOS or
Android or similar.

2. The Maple 16 optimization algorithms are proprietary, and build upon the
proprietary piece of software, Maple. The same problems apply as with
MATLAB.

3. MATLAB’s Optimization Toolbox is proprietary software built for propri-
etary MATLAB. It features DRM and is, like MATLAB, not suitable for
embedded devices.

4. minlbfgs is free software, but it is also copyleft under the GNU GPLv2.
It does offer dual licensing, though, but that is expensive.[ALG12a]

This is worth keeping in mind before even looking at performance comparisons
between libopti and the other solutions.

6.1 Himmelblau 47

6.1 Himmelblau

The first problem that will be looked at is Himmelblau’s function. This problem
is famous for its relative simplicity, making it easy to understand for students.
However, the 1st and especially 2nd hand derivatives become somewhat com-
plicated. It is named after David Mautner Himmelblau who introduced it in
1972.[Him72]

f(x) =
(
x1

2 + x2 − 11
)2

+
(
x1 + x2

2 − 7
)2 (6.1)

Here is a plot of the relevant area of the function:

Figure 6.1: 4 global minima at x ≈ {(3, 2), (−2.8, 3.1), (−3.8,−3.3), (3.6,−1.8)}

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

Figure 6.2: libopti’s path

First, a comparison of the CPU times, where the starting guess is (1, 1) and the
algorithm converges towards the minimum at (3, 2). All times are measured in
seconds.

48 Performance testing

Attempt UCMINF FMINUNC Maple 16 minlbfgs libopti
1 0.0121 0.0114 0.0314 0.000029 0.000072
2 0.0097 0.0126 0.0302 0.000007 0.000010
3 0.0076 0.0138 0.0296 0.000004 0.000009
4 0.0096 0.0135 0.0296 0.000004 0.000009
5 0.0075 0.0116 0.0296 0.000004 0.000009
6 0.0096 0.0135 0.0296 0.000004 0.000009
7 0.0075 0.0131 0.0296 0.000006 0.000009
8 0.0096 0.0132 0.0296 0.000006 0.000009
9 0.0077 0.0112 0.0296 0.000007 0.000009
10 0.0099 0.0144 0.0296 0.000007 0.000009

Average 0.0091 0.0128 0.0304 0.000008 0.000015

Table 6.1: Performance on Himmelblau

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Method

S
e
c
o
n
d
s

Figure 6.3: Average, methods are ordered in the same way as the table

The Maple and MATLAB solutions are completely out of the question. They
are based on scripting languages. minlbfgs takes the lead here, but not partic-
ularly much. In fact, the difference was unnoticeable.

The code used to take these samples can be found in Appendix C.2.

6.2 Rosenbrock 49

6.2 Rosenbrock

The Rosenbrock Function is a non-convex function invented by Howard H.
Rosenbrock in 1960. It has a long, narrow parabolic-shaped valley with only a
single minimum. To find the valley is easy, but to find the minimum is quite
difficult.[Ros60]

f(x) = (1− x1)
2

+ 100
(
x2 − x12

)2 (6.2)

Here is the relevant area of the function:

Figure 6.4: Minimum at x = (1, 1)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

Figure 6.5: libopti’s path

First, a comparison of the CPU times, where the starting guess is (3, 3) and the
algorithm converges towards the minimum at (1, 1). All times are measured in
seconds.

50 Performance testing

Attempt UCMINF FMINUNC Maple 16 minlbfgs libopti
1 0.0550 0.0462 0.004* 0.000046 0.000134
2 0.0318 0.0416 0.000022 0.000020
3 0.0262 0.0436 0.000020 0.000018
4 0.0242 0.0422 0.000026 0.000018
5 0.0263 0.0436 0.000034 0.000018
6 0.0243 0.0439 0.000025 0.000018
7 0.0262 0.0427 0.000020 0.000018
8 0.0244 0.0441 0.000020 0.000018
9 0.0264 0.0418 0.000020 0.000018
10 0.0263 0.0435 0.000020 0.000018

Average 0.0291 0.0370 < 0.004 0.000025 0.000030

Table 6.2: Performance on Rosenbrock, * = Maple could not measure lower
time deltas

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Method

S
e
c
o
n
d
s

Figure 6.6: Average, methods are ordered in the same way as the table

The MATLAB solutions are completely out of the question. They are based on
scripting languages. minlbfgs takes the lead here by quite a vast amount.

Something interesting happened here, however. libopti was faster in most cases,
but in the first optimization it was so significantly slower that the entire aver-
age was shifted in favor of minlbfgs. These results persisted through multiple
test-runs of the same code.

The code used to take these samples can be found in Appendix C.3.

6.3 Beale 51

6.3 Beale

The second problem is Beale’s function. This problem was introduced by E.
Beale in 1958 and is famous for having a minimum in an otherwise almost flat
area surrounded by very steep "hills" all around the sides. This can prove tricky
for functions who do not use line search or trust regions.[Bea58]

f(x) = (1.5− x1 (1− x2))
2

+
(

2.25− x1 (1− x2)
2
)2

+
(

2.625− x1 (1− x2)
3
)2

(6.3)

Here is a plot of the relevant area of the function:

Figure 6.7: Minimum at x = (3, 0.5)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

Figure 6.8: libopti’s path

First, a comparison of the CPU times, where the starting guess is (4, 2) and the
algorithm converges towards the minimum at (3, 0.5). All times are measured
in seconds.

52 Performance testing

Attempt UCMINF FMINUNC Maple 16 minlbfgs libopti
1 0.0199 0.0392 0.012001 0.000060 0.000076
2 0.0206 0.0258 0.004* 0.000024 0.000017
3 0.0230 0.0269 0.000021 0.000017
4 0.0207 0.0250 0.000021 0.000017
5 0.0203 0.0270 0.000021 0.000016
6 0.0205 0.0250 0.000021 0.000017
7 0.0224 0.0271 0.000021 0.000017
8 0.0209 0.0270 0.000021 0.000016
9 0.0270 0.0241 0.000021 0.000017

10 0.0215 0.0271 0.000020 0.000017
Average 0.0217 0.0301 0.004800 0.000025 0.000023

Table 6.3: Performance on Beale, * = Maple could not measure lower time
deltas

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Method

S
e
c
o
n
d
s

Figure 6.9: Average, methods are ordered in the same way as the table

Once again we see the scripting based solutions fall significantly behind. In this
case, interestingly, Maple also does quite well. However, Maple does not give
precise enough time measurements once again. This time, like with Rosenbrock,
libopti was slowest on the first attempt, but in this case it was fast enough for
the other attempts to slightly win out on the average of 10 runs.

All algorithms converged towards the minimum.

The code used to take these samples can be found in Appendix C.4.

6.4 Easom 53

6.4 Easom

The third problem is Easom’s function. This problem was introduced by E.
Easom in 1990 and has a characteristic where it is very flat, except just around
its one and only minimum at (π, π), where it falls very sharply. This problem
is hard to solve with poor computer precision as the algorithm may stop due to
due to its first order conditions.[Eas90]

f(x) = − cos (x1) cos (x2) e−(x1−π)2−(x2−π)2 (6.4)

Here is a plot of the relevant area of the function:

Figure 6.10: Minimum at x = (π, π)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

Figure 6.11: libopti’s path

First, a comparison of the CPU times, where the starting guess is (4, 2) and the
algorithm converges towards the minimum at (3, 0.5). All times are measured
in seconds.

54 Performance testing

Attempt UCMINF FMINUNC Maple 16 minlbfgs libopti
1 0.0160 0.0190 0.000689
2 0.0058 0.0212 0.000595
3 0.0057 0.0196 0.000593
4 0.0077 0.0202 0.000592
5 0.0058 0.0194 0.000613
6 0.0076 0.0251 0.000592
7 0.0058 0.0202 0.001141
8 0.0058 0.0202 0.001536
9 0.0078 0.0195 0.001287

10 0.0057 0.0221 0.001234
Average 0.0074 0.0207 0.000793

Table 6.4: Performance on Easom

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

Method

S
e
c
o
n
d
s

Figure 6.12: Average, methods are ordered in the same way as the table

UCMINF had problems. Both tolx and tolg had to be set to at least 10−8 before
any iterations were performed, but after doing that it converged just fine. This
happened because the first step had had a norm of its gradient of 8.2617 · 10−5.
The exact same happed with libopti. Maple could not solve the problem at all,
stopping immediately.

minlbfgs was also unable to solve the problem, stalling at virtually any start-
ing guess to any of the 4 stopping criteria regardless of what they were set
to. It succeed at the starting guess (3, 3), but this would have been an unfair
comparison.

Among the optimizers that could solve it, of which there were only 3, libopti
was by far the fastest because it isn’t based on scripting.

The code used to take these samples can be found in Appendix C.5.

6.5 Ackley 55

6.5 Ackley

Ackley’s problem was defined by D. H. Ackley in 1987 in his paper about evolu-
tionary algorithms and genetics.[Ack87] Originally, it was a 2-dimensional prob-
lem, pictured below, but was generalized by T. Bäck in 1996 to an n-dimensional
problem.[Bäc96] This problem is difficult to solve due to its single global mini-
mum but also cosine-periodic structure giving it an infinity of local minima in
all directions. It is very easy for an algorithm to get "trapped" in one of these
local minima.

This report deals with the relatively large problem where n = 5000.

f(x) = 20 + e− 20 e
−1/5

√∑n
i=1

xi
2

n − e
∑n
i=1 cos(2π xi)

n (6.5)

Here is a plot of the relevant area of the function when n = 2:

Figure 6.13: Minimum at xi = 0

First, a comparison of the CPU times, where the starting guess is is a sequence
of 5000 random numbers between -3 and 3, and the algorithm converges towards
the minimum at all zeros. All times are measured in seconds.

56 Performance testing

Attempt UCMINF FMINUNC Maple 16 minlbfgs libopti
1 3691.6 37.891406
2 37.551338
3 37.103554
4 38.802811
5 39.229581
6 38.581886
7 38.993073
8 38.768691
9 37.615502

10 36.913864
Average 38.145171

Table 6.5: Performance on Easom

The only algorithm that seemed able to converge correctly was libopti. UCMINF
stopped itself in various valleys, but libopti did not. This happens because of
the line search in UCMINF for MATLAB, which stops the algorithm because a
potential precision error is detected. libopti does not check for this and carries
on.

Maple took a very long time to solve the problem and converged to the wrong
point, namely xi ≈ 0.9685. Even if it did converge correctly with a better start-
ing guess, it would still take a very long time. Minlbfgs performs the same check
that UCMINF does and stops, and FMINUNC does likewise.

The code used to take these samples can be found in Appendix C.6.

6.5 Ackley 57

0 50 100 150 200 250 300
0

0.5

1

1.5

2

iteration

a
lp

h
a

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

iteration

d
e

lt
a

0 50 100 150 200 250 300
1

1.5

2

2.5

3

iteration

e
v
a
ls

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

iteration

fi
n
a
l
s
lo

p
e

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

iteration

f

0 50 100 150 200 250 300
3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

−3

iteration

n
o
rm

(g
)

Figure 6.14: Solution of Ackley

As can be seen from these graphs (generated for the problem with n = 1000
as n = 5000 segfaulted due to too large memory requirements!), the solver
constantly kept converging to lower values of x. The tolerance for the norm of
∇f(x) had to be set to a low number as it was often quite low.

58 Performance testing

6.6 Zakharov

Zakharov’s function is of unknown origin to me, but I chose to feature it because
it has an interesting phenomenon of a very flat valley along every second direc-
tion and power growth in the other directions, meaning that converging into
this valley is trivial, but finding the actual minimum is very difficult, especially
for higher dimensional problems and, unlike Beale’s function, it is generalized to
n dimensions. The function was found at the University of Kyoto’s web-page,
and proper referencing was not provided.[Hed12b]

f(x) =

n∑
i=1

xi
2 +

(
n∑
i=1

1/2 ixi

)2

+

(
n∑
i=1

1/2 ixi

)4

(6.6)

Here is a plot of the relevant area of the function when n = 2:

Figure 6.15: Minimum at xi = 0

First, a comparison of the CPU times, where the starting guess is is a sequence
of 1000 ones, and the algorithm converges towards the minimum at all zeros.
All times are measured in seconds.

6.6 Zakharov 59

Attempt UCMINF FMINUNC Maple 16 minlbfgs libopti
1 0.1927 1.1757 11384s*
2 0.1886 1.1584
3 0.1890 1.1485
4 0.1895 1.1479
5 0.1879 1.1708
6 0.1899 1.1527
7 0.1880 1.1523
8 0.1880 1.1600
9 0.1988 1.2187
10 0.2144 1.2022

Average 0.1927 1.1687

Table 6.6: Performance on Zakharov

Only the MATLAB algorithms were capable of finishing this, most likely due to
a special implementation, which is proprietary, of the norm function not present
anywhere else. In the case of the MATLAB algorithms, they both solved the
problem. UCMINF was fastest by far, roughly a factor of 10. Maple 16 was
able to start, but took so long I gave up.

The reason why libopti failed was because of the norm function. On the first
iteration, ∆ is 1, and so the step should get normalized. However, we had no
initial approximation of H, so we take the steepest descent direction. It scaled so
badly that the step became so large, that when their powers of two were summed
up, the sum wrapped around itself, going up through the negatives again, and
the total result was about 1.5·100. Thus the step was not normalized at all. This
could have been avoided with an initial approximation of the inverse Hessian,
but for a 1000-dimensional problem it is virtually impossible to find accurately
on a computer due to other scaling issues.

This problem gets passed on to the line search, which sees the massive step and
ends up giving up because α becomes too small and takes no step at all. This
means that the step length became 0, and the algorithm terminates. Setting ∆0

to a large number didn’t help due to rounding errors.

The reason why minlbfgs failed is unknown - however the results it returned
were all NaN, Inf, or -Inf.

The code used to take these samples can be found in Appendix C.7.

60 Performance testing

Chapter 7

Conclusion

It is quite clear that libopti is a fast library. On the performance tests for
small problems it stood up to an optimization library which claims to be 7-8
times faster than the GNU Scientific Library[ALG12b]. In addition, for all test
problems but Zakharov it was much faster than the scripting based solutions.
It could not solve Zakharov due to scaling problems, which mysteriously disap-
pear in MATLAB. "Mysteriously" because it is a built-in non-viewable function.

One of the things I learned from this project is that C is fast. The reason why
this library is so fast is precisely because it was written in C. C is one of the
most efficient languages available and is a leading industry standard along with
C++. The other reason is that it is based upon the MATLAB implementa-
tions from Hans Bruun Nielsen, which are supposedly also very fast compared
to similar software available in MATLAB, according to John Bagterp Jørgensen.

But the implementation carries other benefits as well. It is portable and can
be used on embedded devices, depending only on BLAS and standard UNIX
functions to run correctly. I also learned that, in some cases, separating system
specific calls with generic calls that can be replaced depending on OS is quite
important and very useful.

62 Conclusion

However, the implementation has a big problem: It uses function pointers. One
of the things I’ve learned from this project is that function pointers is a very C-
specific feature that does not have direct counterparts in most other languages.
This made running the algorithm from other languages impossible in most cases,
possible in some cases with a bit of hacking.

Therefore one of the primary goals with this project were lost. This project is
not older versions of FORTRAN, but it is possible to create a library that uses
a routine from either of these two languages and calls it, then returns the result
back to the language. It is directly callable from languages which have C as a
subset of their own feature set, like C, Objective-C and Objective-C++, which
was a nice little free feature.

Overall, I feel the project is a success. Despite its shortcomings in terms of port-
ing to other languages it is still possible to do so and the speed and portability
alone are enough to justify its use. The simple structure lays a strong founda-
tion for the project to grow to include other types of optimization algorithms.

However, it can still be improved. Future ideas could be vectorization for more
performance on multi-core processors, as well as enhancements to the algorithm
in general and, of course, more optimization algorithms to use.

Appendix A

C library

A.1 Library Header

1 /*
2 * libopti.h
3 *
4 * Created on: Aug 15, 2012
5 * Author: christian
6 */
7
8 #ifndef LIBOPTI_H_
9 #define LIBOPTI_H_

10
11 #ifdef __cplusplus //Ensure compatibility with C++.
12 extern "C" {
13 #endif /* cplusplus */
14
15 //Written by: Christian Wichmann Moesgaard, Sep. 2012
16 //Finds the minimizer to an unconstrained optimization problem given by fun()

by using
17 //the Quasi−Newton BFGS method. Extra parameters may be sent using the void

structure.
18 //Input: fun − A function handle to a function with the structure:
19 // *x − The address of an array of doubles representing the
20 // point to take the function at.
21 // *f − The address of the storage of the function

evaluation
22 // *g − The address of an array of doubles. Will be filled

with
23 // the derivative of f(x).

64 C library

24 // *p − A pointer to a void structure that can be anything.
25 // *x − The starting guess x for the function. On exit, the optimal

value for x.
26 // n − Number of variables given to the function
27 // *opts − An array containing:
28 // ∆ − Initial value for largest stepsize used by the

linesearching.
29 // tolg − The value which the norm of g is under when the 1st

order KKT conditions are met.
30 // tolx − If the stepsize is less than tolx*(tolx + opti_norm

(x, n, 2)), stop.
31 // maxeval − The maximum number of tolerable iterations before

stopping.
32 // findiffh − Used in the finite difference approximation for fun

(). If set to 0, g is expected.
33 // Warning: Using findiffh = 0 and not supplying g in

fun WILL result in errors.
34 // Default: 1, 1e−4, 1e−8, 100, 0
35 // *D − An array containing an initial estimation of the
36 // inverse Hessian to the function. Set to NULL to start with
37 // with I. On exit, a pointer to the Hessian.
38 // Warning: Points to unclaimed memory if *D was set to NULL!
39 // *evalused − A pointer to an integer which will be filled with the number

of evaluations.
40 // Warning: NOT ITERATIONS.
41 // *perfinfo − A pointer that must point to an array of doubles of size 6*

maxeval.
42 // Will contain performance information which can be printed

using opti_printperf.
43 // *xiter − If null, nothing happens. Otherwise, contains a sequence of x

for each iteration on exit.
44 // Must be preallocated to size n*maxiter (default n*100)
45 // *p − A void−pointer which can contain anything. Is passed through

the function and
46 // all the way over to fun().
47 //Returns: −2 − BLAS failed to initialize. Error.
48 // −1 − memory allocation, error
49 // 0 − perfect starting guess, success
50 // 1 − Stepsize H became NaN, inf or −inf, error
51 // 2 − Stopped due to small derivative g, success
52 // 3 − Stopped due to small change in x, success
53 // 4 − Norm of stepsize became 0, success.
54 // 5 − Too many function evaluations, potential failure
55 int opti_ucminf(void (*fun)(double *x, double *f, double *g, void *p),
56 double *x,
57 int n,
58 double *opts,
59 double *D,
60 int *evalused,
61 double *perfinfo,
62 double *xiter,
63 void *p);
64
65
66 //Written by: Christian Wichmann Moesgaard, Sep. 2012
67 //Calculates a steplength of a step on a function, and puts the new point
68 //one ends in x.
69 //Input: fun − A function handle to a function with the structure:
70 // *x − The address of an array of doubles representing the
71 // point to take the function at.
72 // *f − The address of the storage of the function

evaluation
73 // *g − The address of an array of doubles. Will be filled

with
74 // the derivative of f(x).

A.1 Library Header 65

75 // *p − A pointer to a void structure that can be anything.
76 // *x − Pointer to the variables given to the function
77 // n − Number of variables given to the function
78 // *f − The address of the storage of the function evaluation
79 // *g − The address of an array of doubles. Will be filled with
80 // the derivative of f(x).
81 // *h − The search direction, the steplength multiplier,
82 // *opts− An array with a few options:
83 // choice: 1 = soft linesearch, 0 = exact linesearch
84 // cp1: Constant 1 timed onto derivative of f at initial point

(not used if choice = 0)
85 // cp2: Constant 2 timed onto derivative of f at initial point
86 // maxeval:Maximum number of evaluation before quitting.
87 // amax: Maximum tolerable search direction multiplier
88 // Default: 0, 1e−3, 1e−3, 10, 10
89 // *perf− Some simple performance information from linesearch.
90 // Contains: search direction multiplier, final slope, number of

evaluations
91 // *p − A pointer to a void structure that can be anything.
92 //Returns: 0 − Successful return
93 // −1 − Dynamic memory allocation failed.
94 // 1 − h is not downhill or it is so large and maxeval
95 // so small, that a better point was not found.
96 int opti_linesearch(void (*fun)(double *x, double *f, double *g, void *p),
97 double *x,
98 int n,
99 double *f,

100 double *g,
101 double *h,
102 double *opts,
103 double *perf,
104 void *p);
105
106
107 //Written by: Christian Wichmann Moesgaard, Aug. 2012
108 //Finds the minimizer of a 1D parabola which is given by:
109 //A point a, and a point b.
110 //The function value at a and the function value at b.
111 //The derivative of the function value at a
112 //Input: xfd − An array consisting of xfd = {a, b, f(a), f(b), f'(a)}
113 // n − The dimension of the problem original problem within
114 // which the parabola is to be constructed.
115 //Output: The minimizer of the parabola.
116 double opti_interpolate(double *xfd,
117 int n);
118
119 //Written by: Christian Wichmann Moesgaard, Sep. 2012
120 //Finds f and g directly if h == 0. Otherwise, approximates g with forward
121 //difference approximation using an O(n+1) algorithm. If h is negative, uses
122 //backward difference.
123 //Input: fun − A function handle to a function with the structure:
124 // *x − The address of an array of doubles representing the
125 // point to take the function at.
126 // *f − The address of the storage of the function

evaluation
127 // *g − The address of an array of doubles. Will be filled

with
128 // the derivative of f(x).
129 // *p − A pointer to a void structure that can be anything.
130 // *x − Pointer to the variables given to the function
131 // n − Number of variables given to the function
132 // *f − The address of the storage of the function evaluation
133 // *g − The address of an array of doubles. Will be filled with
134 // the derivative of f(x).

66 C library

135 // h − The stepsize of the forward approximation. Can be any
real number.

136 // If h is 0, g is expected to be handed directly.
137 // *p − A pointer to a void structure that can be anything.
138 //Returns: 0 − Successfully returned the function and its derivative.
139 // −1 − Dynamic memory allocation failed.
140 int opti_findiff(void (*fun)(double *x, double *f, double *g, void *p),
141 double *x,
142 int n,
143 double *f,
144 double *g,
145 double h,
146 void *p);
147
148
149 //Written by: Christian W. Moesgaard, Sep. 2012
150 //Prints performance information to a file in such a way that the file
151 //has the iterations listed among the columns.
152 //
153 //Number of evaluations of f done in the iteration.
154 //The value of f at the iteration
155 //The norm of the derivative of the function at the iteration
156 //The linesearch limit ∆ at the value of the iteration
157 //The scaling factor for the step as given by the linesearch
158 //The slope of the function at the point in the direction of the step
159 //
160 //Input:*perf − The performance array given by ucminf
161 // maxiters − The maximum allowed iterations.
162 // Must be the same number passed to opts.
163 // Set to negative number to defeault to 100.
164 // filename − A string containing the filename.
165 //Returns: 0 − Successfully saved the data to file.
166 // −2 − Failed to open/write file. Nothing is saved.
167 int opti_printperf_tofile(double* perf,
168 int maxiters,
169 char* filename);
170
171 //Written by: Christian W. Moesgaard, Sep. 2012
172 //Prints performance information to a specified folder at the location the
173 //the program is run. Makes 7 subfiles named:
174 //
175 //evals.txt − Number of evaluations of f done in the iteration.
176 //fun.txt − The value of f at the iteration
177 //ng.txt − The norm of the derivative of the function at the iteration
178 //∆.txt − The linesearch limit ∆ at the value of the iteration
179 //am.txt − The scaling factor for the step as given by the linesearch
180 //finalslope.txt − The slope of the function at the point in the direction of

the step
181 //x.txt − The contents of x at each iteration
182 //
183 //Input:*perf − The performance array given by ucminf
184 // maxiters − The maximum allowed iterations.
185 // Must be the same number passed to opts.
186 // Set to negative number to defeault to 100.
187 // foldername − A string containing the foldername from the location your

program is run.
188 //Returns: 0 − Successfully saved the data to file.
189 // −2 − Failed to open/write file. Nothing is saved.
190 // −3 − File existed with name of folder to be created. Nothing saved.
191 // −4 − Folder could not be created. Check permissions or drive
192 int opti_printperf_tofolder(double* perf,
193 double* xiter,
194 int maxiters,
195 int n,
196 char* foldername);

A.2 BLAS usage 67

197
198 //==
199 //INTERNAL FUNCTIONS. NOT INTENDED FOR USAGE
200 //==
201 //Takes a pointer to preallocated n*n array M and puts sets values such that
202 //it contains I.
203 void opti_deye(double *M, int n);
204 //Calculates the R^n−norm of the n−dimensional array x.
205 //Type can be 0 for inf−norm, or p ≥ 1 for p−norm.
206 double opti_norm(double *x, int n, int type);
207
208
209 #ifdef __cplusplus
210 }
211 #endif /* cplusplus */
212
213
214 #endif /* LIBOPTI_H_ */

A.2 BLAS usage

1 /*
2 * use_blas.h
3 *
4 * Created on: Sep 23, 2012
5 * Author: christian
6 */
7
8 #ifndef USE_BLAS_H_
9 #define USE_BLAS_H_

10
11 int opti_initblas();
12
13 int opti_exitblas();
14
15 void opti_multmv(int dim, double scalar, double *A, double *x, double *y);
16
17 void opti_multmm(int rowA, int colA, double scalar, double *A, double *B,

double *C);
18
19 double opti_multvv(int dim, double *x, double *y);
20
21 #endif /* USE_BLAS_H_ */

A.3 Create I matrix

1 /*
2 * opti_deye.c
3 *
4 * Created on: Nov 2, 2012

68 C library

5 * Author: christian
6 */
7
8 #ifdef __cplusplus
9 extern "C" {

10 #endif
11
12 //Written by: Christian W. Moesgaard, Sep. 2012
13 //Takes a pointer to an n−by−n array M and fills it with
14 //contents such that M is the identity matrix.
15 //Returns M by reference.
16 //
17 //Input: M − The performance array given by ucminf
18 // n − The size of n
19 //Output: void
20 void opti_deye(double *M, int n)
21 {
22 int i;
23 for (i = 0; i < n*n; ++i)
24 if (i%n == i/n)
25 M[i] = 1;
26 else
27 M[i] = 0;
28 return;
29 }
30
31 #ifdef __cplusplus
32 }
33 #endif

A.4 Forward difference

1 /*
2 * opti_findiff.c
3 *
4 * Created on: Nov 2, 2012
5 * Author: christian
6 */
7
8
9 #ifdef __cplusplus

10 extern "C" {
11 #endif
12
13 #include <stdlib.h>
14
15 //Written by: Christian Wichmann Moesgaard, Sep. 2012
16 //Finds f and g directly if h == 0. Otherwise, approximates g with forward
17 //difference approximation using an O(n+1) algorithm. If h is negative, uses
18 //backward difference.
19 //Input: fun − A function handle to a function with the structure:
20 // *x − The address of an array of doubles representing the
21 // point to take the function at.
22 // *f − The address of the storage of the function

evaluation
23 // *g − The address of an array of doubles. Will be filled

with
24 // the derivative of f(x).

A.5 Quadratic Interpolation 69

25 // *p − A pointer to a void structure that can be anything.
26 // *x − Pointer to the variables given to the function
27 // n − Number of variables given to the function
28 // *f − The address of the storage of the function evaluation
29 // *g − The address of an array of doubles. Will be filled with
30 // the derivative of f(x).
31 // h − The stepsize of the forward approximation. Can be any real

number.
32 // If h is 0, g is expected to be handed directly.
33 // *p − A pointer to a void structure that can be anything.
34 //Returns: 0 − Successfully returned the function and its derivative.
35 // −1 − Dynamic memory allocation failed.
36 int opti_findiff(void (*fun)(double *x, double *f, double *g, void *p), double

*x, int n, double *f, double *g, double h, void *p)
37 {
38 int i; //Iterator
39 double fplush; //Returned value for f
40 double *gfplush = malloc(n*sizeof(double)); //g (unused)
41
42 if (gfplush == NULL) //Memory allocation failure
43 {
44 free(gfplush);
45 return −1;
46 }
47
48 fun(x, f, g, p);
49 if (h == 0) //If h is set to 0 we expect useful value from g.
50 {
51 free(gfplush);
52 return 0;
53 }
54
55 for (i = 0; i < n; ++i) //For each direction
56 {
57 x[i] += h; //Changing x in a new direction
58
59 fun(x, &fplush, gfplush, p); //fplush has useful value!
60
61 g[i] = (fplush − *f)/h; //Calculating finite difference
62
63 x[i] −= h; //Going back from that direction again.
64
65 } //x should now be exactly what it was, and g has been approximated!
66
67 fun(x, f, gfplush, p); //Get proper value of f.
68
69 return 0;
70 }
71
72 #ifdef __cplusplus
73 }
74 #endif

A.5 Quadratic Interpolation

1 /*
2 * opti_interpolate.c
3 *

70 C library

4 * Created on: Nov 2, 2012
5 * Author: christian
6 */
7
8 #ifdef __cplusplus
9 extern "C" {

10 #endif
11
12 #include <math.h>
13
14 //Written by: Christian Wichmann Moesgaard, Aug. 2012
15 //Finds the minimizer of a 1D parabola which is given by:
16 //A point a, and a point b.
17 //The function value at a and the function value at b.
18 //The derivative of the function value at a
19 //Input: xfd − An array consisting of xfd = {a, b, f(a), f(b), f'(a)}
20 // n − The dimension of the problem original problem within
21 // which the parabola is to be constructed.
22 //Output: The minimizer of the parabola.
23 double opti_interpolate(double *xfd, int n)
24 {
25 //Minimizer of parabola given by xfd.
26 double a = xfd[0], b = xfd[1], d = b − a, df = xfd[4];
27 double C = (xfd[3] − xfd[2]) − (d*df);
28 if (C ≥ 5*n*pow(2.220446049250313,−16)*b) //Minimizer exists
29 {
30 double A = a − 0.5*df*((d*d)/C); d = 0.1*d;
31 double t = a + d > A ? a + d : A;
32 return t < b − d ? t : b − d; //Ensure significant resuction
33 }
34 else
35 {
36 return (a+b)/2;
37 }
38 }
39
40 #ifdef __cplusplus
41 }
42 #endif

A.6 Line-search

1 /*
2 * opti_linesearch.c
3 *
4 * Created on: Nov 2, 2012
5 * Author: christian
6 */
7 #ifdef __cplusplus
8 extern "C" {
9 #endif

10
11 #include "../headers/libopti.h"
12
13 #include <math.h>
14 #include <string.h>
15 #include <stddef.h>
16 #include <stdlib.h>

A.6 Line-search 71

17
18 #include "../headers/use_blas.h"
19
20 //Written by: Christian Wichmann Moesgaard, Sep. 2012
21 //Calculates a steplength of a step on a function, and puts the new point
22 //(scaled) point in x.
23 //Input: fun − A function handle to a function with the structure:
24 // *x − The address of an array of doubles representing the
25 // point to take the function at.
26 // *f − The address of the storage of the function

evaluation
27 // *g − The address of an array of doubles. Will be filled

with
28 // the derivative of f(x).
29 // *p − A pointer to a void structure that can be anything.
30 // *x − Pointer to the variables given to the function
31 // n − Number of variables given to the function
32 // *f − The address of the storage of the function evaluation
33 // *g − The address of an array of doubles. Will be filled with
34 // the derivative of f(x).
35 // *h − The search direction, the steplength multiplier,
36 // *opts− An array with a few options:
37 // choice: 1 = soft linesearch, 0 = exact linesearch
38 // cp1: Constant 1 timed onto derivative of f at initial point

(not used if choice = 0)
39 // cp2: Constant 2 timed onto derivative of f at initial point
40 // maxeval:Maximum number of evaluation before quitting.
41 // amax: Maximum tolerable search direction multiplier
42 // Default: 0, 1e−3, 1e−3, 10, 10
43 // *perf− Some simple performance information from linesearch.
44 // Contains: search direction multiplier, final slope, number of

evaluations
45 // *p − A pointer to a void structure that can be anything.
46 //Returns: 0 − Successful return
47 // −1 − Dynamic memory allocation failed.
48 // 1 − h is not downhill or it is so large and maxeval
49 // so small, that a better point was not found.
50 int opti_linesearch(void (*fun)(double *x, double *f, double *g, void *p),
51 double *x,
52 int n,
53 double *f,
54 double *g,
55 double *h,
56 double *opts,
57 double *perf,
58 void *p)
59 {
60 //Define all data structures
61
62 int i;

//Iterator for simple for−loops
63
64 //Initialization
65 double f0 = *f;

//Starting point function value
66 double df0 = opti_multvv(n, h, g); //

Starting point derivative function value in LS direction
67 double slope0, slopethr;

//Linesearch stopping criteria information
68 int info = 0; //Number of

iterations and final slope value
69 double eps = pow(2.220446049250313,−16);

//Epsilon value for type double
70 double *xn, *gn; //

Allocation for new x and new g

72 C library

71
72 //Opts variables
73 double choice = 0, cp1 = 1e−3, cp2 = 1e−3, maxeval = 10, amax = 10,

findiffh = 0.01; //Default options for
stopping criteria

74
75 //Get an initial interval for am
76 double a = 0, fa = f0, dfa = df0;

//am starts at 0, here f(a) = f0, df(a) = df0
77 double b = amax < 1 ? amax : 1; //Picking min value //b is

either amax or 1, depending on which is smaller
78 int stop = 0;

//Used to mark stopping criteria found
79
80 //Declaring variables outside first while scope.
81 double fb, *xplusbtimesh, dfb;
82
83 //Declare variables outside second (refinement) while scope.
84 double c, fc, *xplusctimesh;
85
86 //Declare variables
87 xn = malloc(n*sizeof(double));
88 gn = malloc(n*sizeof(double));
89 xplusbtimesh = malloc(n*sizeof(double));
90 xplusctimesh = malloc(n*sizeof(double));
91
92 if (xn == NULL || gn == NULL ||
93 xplusbtimesh == NULL || xplusctimesh == NULL)
94 { //If yes, deallocate memory and exit
95 free(xn);
96 free(gn);
97 free(xplusbtimesh);
98 free(xplusctimesh);
99

100 return −1; //Allocation failed, not enough space for allocation
101 }
102
103 memcpy(xn,x,n*sizeof(double));
104 memcpy(gn,g,n*sizeof(double));
105
106 if (opts != NULL)
107 {
108 choice = opts[0];
109 cp1 = opts[1];
110 cp2 = opts[2];
111 maxeval = opts[3];
112 amax = opts[4];
113 findiffh = opts[5];
114 }
115
116 perf[0] = 0;
117 perf[1] = 1;
118 perf[2] = 0;
119
120 //Simple checks for descent condition
121 if (df0 ≥ −10*eps*opti_norm(h, n, 2)*opti_norm(g, n, 2))
122 {
123 free(xn);
124 free(gn);
125 free(xplusbtimesh);
126 free(xplusctimesh);
127
128 perf[2] = 0;
129 return 1;
130

A.6 Line-search 73

131 }
132
133 if (choice == 1) //Soft linesearch
134 {
135 slope0 = cp1*df0;
136 slopethr = cp2*df0;
137 }
138 else //Exact linesearch
139 {
140 slope0 = 0;
141 slopethr = cp1*fabs(df0);
142 }
143
144 while (!stop)
145 {
146 info++;
147
148 for (i = 0; i < n; ++i) xplusbtimesh[i] = x[i] + b*h[i];
149
150 int findinfo = opti_findiff(fun, xplusbtimesh, n, &fb, g, findiffh, p)

;
151 perf[2]++;
152
153 if (findinfo == −1)
154 {
155 free(xn);
156 free(gn);
157 free(xplusbtimesh);
158 free(xplusctimesh);
159
160 return −1; //Allocation failed.
161 }
162
163
164 dfb = opti_multvv(n, g, h);
165
166 if (fb < f0 + slope0*b) //New lower bound
167 {
168 perf[0] = b;
169 perf[1] = dfb/df0;
170
171 if (choice)
172 {
173 a = b;
174 fa = fb;
175 dfa = dfb;
176 }
177 for (i = 0; i < n; ++i) xn[i] = x[i] + b*h[i];
178 memcpy(gn,g,n*sizeof(double));
179
180 if (dfb < ((slopethr ≤ 0)*slopethr) && (info < maxeval) && (b <

amax))
181 {
182 //Augment right hand end
183 if (!choice)
184 {
185 a = b;
186 fa = fb;
187 dfa = dfb;
188 }
189 if (2.5*b ≥ amax) b = amax;
190 else b = 2*b;
191 }
192 else stop = 1;
193 }

74 C library

194 else stop = 1;
195
196
197
198 } //phase 1: expand interval
199
200 if (stop ≥ 0) //Everything OK so far. Check stopping criteria
201 stop = ((info ≥ maxeval) || ((b ≥ amax) && (dfb < slopethr)) //Cannot

improve
202 || (choice && ((a > 0) && (dfb ≥ slopethr)))); //OK
203
204 //If the above determines we must stop...
205 if (stop)
206 {
207 memcpy(x,xn,n*sizeof(double));
208 memcpy(g,gn,n*sizeof(double));
209 *f = fb;
210
211 free(xn);
212 free(gn);
213 free(xplusbtimesh);
214 free(xplusctimesh);
215
216 return info;
217 }
218
219
220 //Refine interval. Use auxiliary array xfd
221
222 double xfd[9] = {a, b, b, fa, fb, fb, dfa, dfb, dfb};
223
224 while (!stop)
225 {
226 info++;
227 double xfd_temp[5] = {xfd[0], xfd[1], xfd[3], xfd[4], xfd[6]};
228 c = opti_interpolate(xfd_temp, n);
229 for (i = 0; i < n; ++i) xplusctimesh[i] = x[i] + c*h[i];
230
231 int findinfo = opti_findiff(fun, xplusctimesh, n, &fc, g, findiffh, p)

;
232 perf[2]++;
233
234 if (findinfo == −1)
235 {
236 free(xn);
237 free(gn);
238 free(xplusbtimesh);
239 free(xplusctimesh);
240
241 return −1; //Allocation failed.
242 }
243
244
245 xfd[2] = c;
246 xfd[5] = fc;
247 xfd[8] = opti_multvv(n, g, h);
248 if (choice) //soft linesearch
249 if (fc < f0 + slope0*c) //New lower bound
250 {
251 perf[0] = c;
252 perf[1] = xfd[8]/df0;
253 for (i = 0; i < n; ++i) xn[i] += c*h[i];
254 memcpy(gn,g,n*sizeof(double));
255
256 for (i = 0; i < 3; ++i) xfd[3*i] = xfd[3*i+2];

A.7 Norm calculation 75

257 stop = (xfd[8] > slopethr);
258 }
259 else //New upper bound
260 for (i = 0; i < 3; ++i) xfd[3*i+1] = xfd[3*i+2];
261 else //Exact line search
262 {
263 if (fc < (*f))
264 {
265 perf[0] = c;
266 perf[1] = xfd[8]/df0;
267 for (i = 0; i < n; ++i) xn[i] += c*h[i];
268 memcpy(gn,g,n*sizeof(double));
269 *f = fc;
270
271 }
272 if (xfd[8] < 0) for (i = 0; i < 3; ++i) xfd[3*i] = xfd[3*i+2];
273 else for (i = 0; i < 3; ++i) xfd[3*i+1] = xfd[3*i

+2];
274 stop = ((fabs(xfd[8]) ≤ slopethr) || (fabs(xfd[0] − xfd[1]) <

(cp2*xfd[1])));
275 }
276 stop = (stop || info ≥ maxeval);
277 } //End refinement
278
279 memcpy(x,xn,n*sizeof(double));
280 memcpy(g,gn,n*sizeof(double));
281
282 *f = fc;
283
284 free(xn);
285 free(gn);
286 free(xplusbtimesh);
287 free(xplusctimesh);
288
289 return 0;
290
291 }
292
293
294
295
296
297
298
299
300
301 #ifdef __cplusplus
302 }
303 #endif

A.7 Norm calculation

1 /*
2 * opti_norm.c
3 *
4 * Created on: Nov 2, 2012
5 * Author: christian
6 */

76 C library

7
8 #ifdef __cplusplus
9 extern "C" {

10 #endif
11
12 #include <math.h>
13
14 //Written by: Christian W. Moesgaard, Sep. 2012
15 //Finds the norm of an n−length array x of double values.
16 //The third argument is the type of the norm, 0 is infinity norm.
17 //
18 //Input: x − The input array
19 // n − The length of x.
20 // type −
21 //Returns: A double with the result, should be positive.
22 double opti_norm(double *x, int n, int type)
23 {
24 int i;
25 double result = 0;
26 if (type == 0) //Infinity norm
27 {
28 for (i = 0; i < n; ++i)
29 if (result < fabs(x[i]))
30 result = fabs(x[i]);
31 }
32 else
33 {
34 for (i = 0; i < n; ++i)
35 result += pow(fabs(x[i]), type);
36 result = pow(result, 1.0/(double) n);
37 }
38
39 return result;
40 }
41
42
43
44 #ifdef __cplusplus
45 }
46 #endif

A.8 Print performance to file

1 /*
2 * opti_printperf_tofile.c
3 *
4 * Created on: Nov 2, 2012
5 * Author: christian
6 */
7
8 #ifdef __cplusplus //Ensure compatibility with C++.
9 extern "C" {

10 #endif /* cplusplus */
11
12 #include <stdio.h>
13 #include <stddef.h>
14 #include <stdlib.h>
15 #include <unistd.h>

A.8 Print performance to file 77

16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <errno.h>
19 #include <stddef.h>
20 #include <string.h>
21
22 //Written by: Christian W. Moesgaard, Sep. 2012
23 //Prints performance information to a file in such a way that the file
24 //has the iterations listed among the columns.
25 //
26 //Number of evaluations of f done in the iteration.
27 //The value of f at the iteration
28 //The norm of the derivative of the function at the iteration
29 //The linesearch limit ∆ at the value of the iteration
30 //The scaling factor for the step as given by the linesearch
31 //The slope of the function at the point in the direction of the step
32 //
33 //Input:*perf − The performance array given by ucminf
34 // maxiters − The maximum allowed iterations.
35 // Must be the same number passed to opts.
36 // Set to negative number to defeault to 100.
37 // filename − A string containing the filename.
38 //Returns: 0 − Successfully saved the data to file.
39 // −2 − Failed to open/write file. Nothing is saved.
40 int opti_printperf_tofile(double* perf,
41 int maxiters,
42 char* filename)
43 {
44 int iters = (int) perf[0];
45
46 if (maxiters < 0) maxiters = 100;
47
48 FILE *perffile;
49 perffile = fopen(filename,"w+");
50 if (perffile == NULL)
51 return −2;
52
53 fprintf(perffile, "Contents of rows: Evaluations, function value, norm of

g, Delta, steplength multiplier, slope towards step at new x\n");
54
55 int perftype, iter;
56
57 for (perftype = 0; perftype < 6; ++perftype)
58 {
59 for (iter = 0; iter < iters−2; ++iter)
60 {
61 if (perftype == 0 && iter == 0)
62 fprintf(perffile, "%f, ", 1.0);
63 else
64 fprintf(perffile,"%f, ",perf[maxiters*perftype + iter]);
65 }
66 fprintf(perffile,"%f.\n",perf[maxiters*perftype + iter]);
67 }
68
69 fclose(perffile);
70
71
72 return 0;
73 }
74
75 #ifdef __cplusplus
76 }
77 #endif /* cplusplus */

78 C library

A.9 Print performance to folder

1 /*
2 * opti_printperf_tofolder.c
3 *
4 * Created on: Nov 2, 2012
5 * Author: christian
6 */
7
8 #ifdef __cplusplus //Ensure compatibility with C++.
9 extern "C" {

10 #endif /* cplusplus */
11
12 #include <stdio.h>
13 #include <stddef.h>
14 #include <stdlib.h>
15 #include <unistd.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <errno.h>
19 #include <stddef.h>
20 #include <string.h>
21
22 //Written by: Christian W. Moesgaard, Sep. 2012
23 //Prints performance information to a specified folder at the location the
24 //program is run. Makes 7 subfiles named:
25 //
26 //evals.txt − Number of evaluations of f done in the iteration.
27 //fun.txt − The value of f at the iteration
28 //ng.txt − The norm of the derivative of the function at the iteration
29 //∆.txt − The linesearch limit ∆ at the value of the iteration
30 //am.txt − The scaling factor for the step as given by the linesearch
31 //finalslope.txt − The slope of the function at the point in the direction of

the step
32 //x.txt − The contents of x at each iteration
33 //
34 //Input:*perf − The performance array given by ucminf
35 // maxiters − The maximum allowed iterations.
36 // Must be the same number passed to opts.
37 // Set to negative number to defeault to 100.
38 // foldername − A string containing the foldername from the location your

program is run.
39 //Returns: 0 − Successfully saved the data to file.
40 // −2 − Failed to open/write file. Nothing is saved.
41 // −3 − File existed with name of folder to be created. Nothing saved.
42 // −4 − Folder could not be created. Check permissions or drive
43 int opti_printperf_tofolder(double* perf,
44 double* xiter,
45 int maxiters,
46 int n,
47 char* foldername)
48 {
49 struct stat sb;
50 int e;
51 extern int errno;
52
53 //Get info on the folder/file
54 e = stat(foldername, &sb);
55
56 //If something with this name already exists...
57 if (e == 0)
58 {

A.9 Print performance to folder 79

59 if (sb.st_mode & 0100000) //If it's a file
60 return −3; //File exists with foldername. Abort.
61 }
62 else
63 {
64 if (errno == ENOENT)
65 {
66 e = mkdir(foldername, S_IRWXU);
67 if (e != 0)
68 return −4; //Folder could not be created. Check permissions or

drive
69 }
70 }
71
72 //Before we can use strcpy and strcat, we need the length of the string
73 size_t pathlen = strlen(foldername);
74
75 //Setting up iterations sequence
76 int iters = (int) perf[0];
77 if (maxiters < 0) maxiters = 100;
78
79 //Contents of rows:
80 //Evaluations,
81 //function value,
82 //norm of g,
83 //Delta,
84 //steplength multiplier,
85 //slope towards step at new x
86 //x as horizontal array
87 int perftype, iter;
88 char path[7][pathlen + 20];
89
90 for (perftype = 0; perftype < 7; ++perftype)
91 strcpy(path[perftype],foldername);
92
93 //Names of files in new folder
94 strcat(path[0],"/evals.txt");
95 strcat(path[1],"/fun.txt");
96 strcat(path[2],"/ng.txt");
97 strcat(path[3],"/∆.txt");
98 strcat(path[4],"/am.txt");
99 strcat(path[5],"/finalslope.txt");

100 strcat(path[6],"/x.txt");
101
102
103
104
105 for (perftype = 0; perftype < 6; ++perftype)
106 {
107 FILE *perffile;
108 perffile = fopen(path[perftype], "w+");
109 if (perffile == NULL)
110 return −2; //Failed to open subfile
111
112 for (iter = 0; iter < iters−2; ++iter)
113 {
114 if (perftype == 0 && iter == 0)
115 fprintf(perffile, "%f ", 1.0);
116 else
117 fprintf(perffile,"%f ",perf[maxiters*perftype + iter]);
118 }
119 fprintf(perffile,"%f",perf[maxiters*perftype + iter]);
120
121 fclose(perffile);
122 }

80 C library

123
124 if (xiter != NULL)
125 {
126 FILE *perffile;
127 perffile = fopen(path[6], "w+");
128 if (perffile == NULL)
129 return −2; //Failed to open subfile
130
131 int i;
132
133 for (iter = 0; iter < iters−1; ++iter)
134 {
135 for (i = 0; i < n; ++i)
136 {
137 fprintf(perffile,"%f ",xiter[iter*n + i]);
138 }
139 fprintf(perffile,"\n");
140 }
141
142 fclose(perffile);
143 }
144
145
146 return 0;
147 }
148
149 #ifdef __cplusplus
150 }
151 #endif /* cplusplus */

A.10 Unconstrained BFGS minimization

1 //
2 // opti_ucminf.c
3 // Optiboxmac
4 //
5 // Created by Christian on 09/10/12.
6 //
7
8 #ifdef __cplusplus
9 extern "C" {

10 #endif
11
12 #include "../headers/libopti.h"
13
14 #include <math.h>
15 #include <float.h>
16 #include <stdio.h>
17 #include <string.h>
18 #include <stddef.h>
19 #include <stdlib.h>
20
21 #include "../headers/use_blas.h"
22
23
24 // Get machine−dependent NAN and INFINITY values.
25 # include <bits/nan.h>
26 # include <bits/inf.h>

A.10 Unconstrained BFGS minimization 81

27
28 //Written by: Christian Wichmann Moesgaard, Sep. 2012
29 //Finds the minimizer to an unconstrained optimization problem given by fun()

by using
30 //the Quasi−Newton BFGS method. Extra parameters may be sent using the void

structure.
31 //Input: fun − A function handle to a function with the structure:
32 // *x − The address of an array of doubles representing the
33 // point to take the function at.
34 // *f − The address of the storage of the function

evaluation
35 // *g − The address of an array of doubles. Will be filled

with
36 // the derivative of f(x).
37 // *p − A pointer to a void structure that can be anything.
38 // *x − The starting guess x for the function. On exit, the optimal

value for x.
39 // n − Number of variables given to the function
40 // *opts − An array containing:
41 // ∆ − Initial value for largest stepsize used by the

linesearching.
42 // tolg − The value which the norm of g is under when the 1st

order KKT conditions are met.
43 // tolx − If the stepsize is less than tolx*(tolx + opti_norm

(x, n, 2)), stop.
44 // maxeval − The maximum number of tolerable iterations before

stopping.
45 // findiffh − Used in the finite difference approximation for fun

(). If set to 0, g is expected.
46 // Warning: Using findiffh = 0 and not supplying g in

fun WILL result in errors.
47 // Default: 1, 1e−4, 1e−8, 100, 0
48 // *D − An array containing an initial estimation of the
49 // inverse Hessian to the function. Set to NULL to start with
50 // with I. On exit, a pointer to the Hessian.
51 // Warning: Points to unclaimed memory if *D was set to NULL!
52 // *evalused − A pointer to an integer which will be filled with the number

of evaluations.
53 // Warning: NOT ITERATIONS.
54 // *perfinfo − A pointer that must point to an array of doubles of size 6*

maxeval.
55 // Will contain performance information which can be printed

using opti_printperf.
56 // *xiter − If null, nothing happens. Otherwise, contains a sequence of x

for each iteration on exit.
57 // Must be preallocated to size n*maxiter (default n*100)
58 // *p − A void−pointer which can contain anything. Is passed through

the function and
59 // all the way over to fun().
60 //Returns: −2 − BLAS failed to initialize. Error.
61 // −1 − memory allocation, error
62 // 0 − perfect starting guess, success
63 // 1 − Stepsize H became NaN, inf or −inf, error
64 // 2 − Stopped due to small derivative g, success
65 // 3 − Stopped due to small change in x, success
66 // 4 − Norm of stepsize became 0, success.
67 // 5 − Too many function evaluations, potential failure
68 int opti_ucminf(void (*fun)(double *x, double *f, double *g, void *p),
69 double *x,
70 int n,
71 double *opts,
72 double *D,
73 int *evalused,
74 double *perfinfo,
75 double *xiter,

82 C library

76 void *p)
77 {
78 //Define all data structures
79 int i, j;

//Iterator for simple for−loops
80 int neval = 0, iter = 0;

//Number of
evaluations and iterations done

81 double eps = pow(2.220446049250313,−16);
//Definition of epsilon,

smallest difference in doubles
82
83 double Delta = 1, tolg = 1e−4, tolx = 1e−8; int maxeval = 100;

//Options
84 double f;

//Function values
85 double *g = malloc(n*sizeof(double)), *h = malloc(n*sizeof(double));

//Values of derivative and steplength
86 double *xp = malloc(n*sizeof(double)), *gp = malloc(n*sizeof(double));

//Data for the internal parts of the loop
87 double nx;

//Norm of x
88
89 double *tempD = NULL;

//
Potentially necessary inverse hessian workspace

90 int fst = 0;

//Checking first iteration, 1 = yes, BOOL
91
92 double ng;

//Infinity norm of g
93 double nh = 0;

//Infinity norm of h
94 int stop = 0, red = 0, more = 1;

//Stopping criteria
measurement

95 double ngs[3];

//Norm of gs_k, gs_k−1, gs_k−2
96
97 double lsopts[6] = {1, 0.05, 0.99, 5, 2, 0.01};

//Linesearch options
98 double perf[3] = {0, 0, 0};

//Linesearch
performance

99 int linfo = 0;

//Info about number of iterations in the linesearch
100
101 double *y = malloc(n*sizeof(double));

//y = x − xp
102 double yh;

//norm of y
103 double *v = malloc(n*sizeof(double)), *w = malloc(n*sizeof(double));

//Part of the BFGS update
104 double a, yv;

//ddot(y,v)

A.10 Unconstrained BFGS minimization 83

105
106 double thrx;

//Used for 1st order KKT measurements
107
108 double findiffh = 0;

//h in
finite difference approximation

109
110 //Initialize BLAS
111 int blasinfo = opti_initblas();
112 if (blasinfo) //Check if BLAS init failed
113 {
114 free(g);
115 free(h);
116 free(xp);
117 free(gp);
118 free(y);
119 free(v);
120 free(w);
121
122 return −2; //BLAS init fail
123 }
124
125
126 //Test allocation
127 if (g == NULL || h == NULL || xp == NULL ||
128 gp == NULL || y == NULL || v == NULL || w == NULL)
129 { //If yes, deallocate memory and exit
130 free(g);
131 free(h);
132 free(xp);
133 free(gp);
134 free(y);
135 free(v);
136 free(w);
137
138 return −1; //Allocation failed, not enough space for allocation
139 }
140
141
142 //Check options parameters and set them if necessary
143 if (opts != NULL)
144 {
145 Delta = opts[0];
146 tolg = opts[1];
147 tolx = opts[2];
148 maxeval = opts[3];
149 findiffh = opts[4];
150 lsopts[5] = findiffh;
151 }
152
153 linfo = opti_findiff(fun, x, n, &f, g, findiffh, p);
154 neval++;
155
156 if (xiter != NULL)
157 {
158 for (i = 0; i < n; ++i)
159 xiter[i + n*iter] = x[i];
160 }
161
162 if (linfo == −1)
163 {
164 free(g);
165 free(h);

84 C library

166 free(xp);
167 free(gp);
168 free(y);
169 free(v);
170 free(w);
171 return −1; //Allocation failed.
172 }
173
174
175
176 //Finish initialization of g
177 ng = opti_norm(g, n, 0);
178
179 //Setup approximate inverse Hessian if missing.
180 if (D == NULL)
181 {
182 tempD = malloc(n*n*sizeof(double));
183 if (tempD == NULL)
184 {
185 free(g);
186 free(h);
187 free(xp);
188 free(gp);
189 free(y);
190 free(v);
191 free(w);
192 return −1; //Allocation failed
193 }
194
195 opti_deye(tempD,n);
196 D = tempD;
197 fst = 1;
198 }
199
200 //Update performance log
201 if (perfinfo != NULL)
202 {
203 perfinfo[iter] = 0;
204 perfinfo[iter + maxeval*1] = f;
205 perfinfo[iter + maxeval*2] = ng;
206 perfinfo[iter + maxeval*3] = Delta;
207 perfinfo[iter + maxeval*4] = 0;
208 perfinfo[iter + maxeval*5] = 0;
209 }
210
211
212 if (ng ≤ tolg) //Check optimality condition
213 {
214 free(g);
215 free(h);
216 free(xp);
217 free(gp);
218 free(y);
219 free(v);
220 free(w);
221 free(tempD);
222 return 0; //Started optimal
223 }
224 else
225 {
226 memset(h,0,n*sizeof(double));
227 for (i = 0; i < 3; ++i) ngs[i] = ng;
228 }
229
230 //Start main loop

A.10 Unconstrained BFGS minimization 85

231 while (!(stop) && more)
232 {
233 iter++;
234
235 //Set previous values
236 memcpy(xp,x,n*sizeof(double));
237 memcpy(gp,g,n*sizeof(double));
238 nx = opti_norm(x, n, 2);
239
240 //Keep ngs up−to−date
241 ngs[0] = ngs[1]; ngs[1] = ngs[2]; ngs[2] = ng;
242
243 //Get step.
244 opti_multmv(n, −1.0, D, g, h);
245 //Check h for NAN's or other oddities.
246 for (i = 0; i < n; ++i)
247 {
248 if (h[i] != h[i] || h[i] == INFINITY || h[i] == −INFINITY) //Check

if inf, or if NaN.
249 {
250 free(g);
251 free(h);
252 free(xp);
253 free(gp);
254 free(y);
255 free(v);
256 free(w);
257 free(tempD);
258 return 1;
259 }
260 }
261
262 nh = opti_norm(h, n, 2);
263 red = 0;
264
265 //Check optimality
266 if (nh ≤ tolx*(tolx + nx)) stop = 2;
267 else
268 {
269 if (fst || nh > Delta)
270 {
271 for (i = 0; i < n; ++i) h[i] *= Delta/nh;
272 nh = Delta;
273 fst = 0; red = 1;
274 }
275
276 //Linesearch
277 linfo = opti_linesearch(fun, x, n, &f, g, h, lsopts, perf, p);
278 if (xiter != NULL)
279 {
280 for (i = 0; i < n; ++i)
281 xiter[i + n*iter] = x[i];
282 }
283 neval += perf[2]; //Counting evals
284
285 if (perf[0] < 1) //Reduce Delta
286 Delta *= 0.35;
287 else if (red && (fabs(perf[1]) > 0.7)) //Expand ∆

288 Delta *= 3;
289
290 //Update ||g||
291 ng = opti_norm(g, n, 0);
292 //Update h
293 for (i = 0; i < n; ++i) h[i] = x[i] − xp[i];
294 nh = opti_norm(h, n, 2);

86 C library

295 if (nh == 0)
296 stop = 3;
297 else
298 {
299 for (i = 0; i < n; ++i) y[i] = g[i] − gp[i];
300 yh = opti_multvv(n, y, h);
301 if (yh > sqrt(eps) * nh * opti_norm(y, n, 2))
302 {
303 //Update D using BFGS
304 opti_multmv(n, 1.0, D, y, v);
305 yv = opti_multvv(n, y, v);
306 a = (1 + yv/yh)/yh;
307 for (i = 0; i < n; ++i) w[i] = (a/2)*h[i] − v[i]/yh;
308
309 //Calculating wh and hw and adding it to D, BFGS update
310 for (i = 0; i < n; ++i)
311 for (j = 0; j < n; ++j)
312 {
313 D[i*n + j] += w[i]*h[j] + h[i]*w[j];
314 }
315
316 }
317
318 //Update performance benchmark
319 if (perfinfo != NULL)
320 {
321 perfinfo[iter] = perf[2];
322 perfinfo[iter + maxeval*1] = f;
323 perfinfo[iter + maxeval*2] = ng;
324 perfinfo[iter + maxeval*3] = Delta;
325 perfinfo[iter + maxeval*4] = perf[0];
326 perfinfo[iter + maxeval*5] = perf[1];
327 }
328
329 //Check stopping criteria
330 thrx = tolx*(tolx + opti_norm(x, n, 2));
331 if (ng ≤ tolg) stop = 1;
332 else if (nh ≤ thrx) stop = 2;
333 else if (neval ≥ maxeval) stop = 4;
334 else Delta = Delta > 2*thrx ? Delta : 2*thrx;
335 }
336 }
337 }
338
339 //De−allocate variables
340 free(g);
341 free(h);
342 free(xp);
343 free(gp);
344 free(y);
345 free(v);
346 free(w);
347
348 iter++; //Fix off−of−one error
349
350 //State number of iterations
351 if (evalused != NULL)
352 *evalused = neval;
353
354 //Insert number of iterations into perfinfo.
355 if (perfinfo != NULL)
356 perfinfo[0] = iter;
357
358 //Initialize BLAS
359 blasinfo = opti_exitblas();

A.10 Unconstrained BFGS minimization 87

360 if (blasinfo) //Check if BLAS exit failed
361 {
362 free(g);
363 free(h);
364 free(xp);
365 free(gp);
366 free(y);
367 free(v);
368 free(w);
369
370 return −2; //BLAS exit fail
371 }
372
373 //Succesful run
374 return (stop + 1);
375
376 }
377
378
379
380
381
382
383
384
385
386 #ifdef __cplusplus
387 }
388 #endif

88 C library

Appendix B
Wrappers to external

libraries

B.1 Use Apple Accelerate

1 /*
2 * use_accelerate.c
3 *
4 * Created on: Nov 2, 2012
5 * Author: christian
6 */
7
8 #ifdef __MACH__
9 #include <Accelerate/Accelerate.h>

10
11 int opti_initblas()
12 {
13 return 0;
14 }
15
16 int opti_exitblas()
17 {
18 return 0;
19 }
20
21 void opti_multmv(int dim, double scalar, double *A, double *x, double *y)
22 {
23 cblas_dgemv(CblasColMajor, CblasNoTrans, dim, dim, scalar, A, dim, x, 1,

0.0, y, 1);
24 return;
25 }

90 Wrappers to external libraries

26
27 void opti_multmm(int rowA, int colA, double scalar, double *A, double *B,

double *C)
28 {
29 cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, rowA, rowA, colA,

scalar, A, rowA, B, colA, 0.0, C, rowA);
30 return;
31 }
32
33 double opti_multvv(int dim, double *x, double *y)
34 {
35 return cblas_ddot(dim, x, 1, y, 1);
36 }
37 #endif /*__MACH__*/

B.2 Use ATLAS

1 /*
2 * use_atlas.c
3 *
4 * Created on: Nov 2, 2012
5 * Author: christian
6 */
7
8 #ifndef __MACH__
9 #ifndef USE_CUDA_OPTI

10 #include <cblas.h>
11
12 int opti_initblas()
13 {
14 return 0;
15 }
16
17 int opti_exitblas()
18 {
19 return 0;
20 }
21
22 void opti_multmv(int dim, double scalar, double *A, double *x, double *y)
23 {
24 cblas_dgemv(CblasColMajor, CblasNoTrans, dim, dim, scalar, A, dim, x, 1,

0.0, y, 1);
25 return;
26 }
27
28 void opti_multmm(int rowA, int colA, double scalar, double *A, double *B,

double *C)
29 {
30 cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, rowA, rowA, colA,

scalar, A, rowA, B, colA, 0.0, C, rowA);
31 return;
32 }
33
34 double opti_multvv(int dim, double *x, double *y)
35 {
36 return cblas_ddot(dim, x, 1, y, 1);
37 }
38 #endif /*USE_CUDA_OPTI*/

B.2 Use ATLAS 91

39 #endif /*__MACH__*/

92 Wrappers to external libraries

Appendix C

Test runs

C.1 Apple Test

1 //
2 // FirstViewController.m
3 // Optiboxios
4 //
5 // Created by Christian on 23/10/12.
6 // Copyright (c) 2012 Christian. All rights reserved.
7 //
8
9 #import "FirstViewController.h"

10 #import "liboptibox.h"
11 #import <math.h>
12
13 //Ackley function that must be called.
14 void ackley(double* x, double* f, double* df, void *p)
15 {
16
17 double a, b, c; //Constants
18 int i, n; //Iterator and dimensions
19
20 a = *((double*) p);
21 b = *((double*) p+1);
22 c = *((double*) p+2);
23 n = *((double*) p+3);
24
25
26 //Calculating function value
27 double sum1 = 0, sum2 = 0; //Defining sums
28

94 Test runs

29 for (i = 0; i < (int) n; ++i)
30 {
31 sum1 += x[i]*x[i];
32 sum2 += cos(c*x[i]);
33 }
34
35 *f = −a*exp(−b*sqrt((1.0/n)*sum1)) − exp((1.0/n)*sum2) + a + exp(1.0);
36
37 //Calculating derivatives
38 int j;
39
40 for (j = 0; j < (int) n; ++j)
41 {
42 df[j] = 0; //Initializing to 0.
43
44 df[j] += a*b*x[j]*exp(−(1.0/n)*b*sqrt(n*sum1))/sqrt(n*sum1);
45
46 df[j] += −1.0/n*sin(c*x[j])*exp(1.0/n*sum2);
47 }
48
49
50
51 return;
52 }
53
54 //=====================
55 //Needs to be put into alltests!
56 #include <time.h>
57 #include <sys/time.h>
58 #ifdef __MACH__ //If on a Mac, use Mach libraries
59 #include <mach/clock.h>
60 #include <mach/mach.h>
61 #endif //__MACH__
62
63 double opti_get_time()
64 {
65 struct timespec ts;
66 #ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
67 clock_serv_t cclock;
68 mach_timespec_t mts;
69 host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
70 clock_get_time(cclock, &mts);
71 mach_port_deallocate(mach_task_self(), cclock);
72 ts.tv_sec = mts.tv_sec;
73 ts.tv_nsec = mts.tv_nsec;
74 #else
75 clock_gettime(CLOCK_REALTIME, &ts);
76 #endif
77 return (double) ts.tv_sec + (double) ts.tv_nsec * 1e−9;
78 }
79 //=====================
80
81 @interface FirstViewController ()
82
83 @end
84
85 @implementation FirstViewController
86
87 @synthesize UIMainText;
88 − (void)viewDidLoad
89 {
90 [super viewDidLoad];
91 // Do any additional setup after loading the view, typically from a nib.
92
93 //Generate random starting guess

C.1 Apple Test 95

94 unsigned int iseed = (unsigned int)time(NULL);
95 srand (iseed);
96
97 //Number of inputs to n, number of max iterations
98 int n = 20;
99 int maxiters = 1000;

100 double x[n];
101 int i;
102
103 //Randomly generate numbers
104 for (i = 0; i < n; ++i)
105 {
106 x[i] = (rand()%600 − 300)/100.0;
107 }
108
109 //Define array with params
110 double pi = 3.141592654;
111
112 double p[] = {20, 0.2, 2*pi, (double) n};
113
114
115 double perfinfo[maxiters*6];
116
117 //Setting options
118 double opts[] = {1.0, 0.0001, 0.00000001, maxiters, 0};
119
120 //The function shall be called on the function, using x as starting guess,
121 //with n values, opts shall be used for options, no initial approximation

of inverse Hessian,
122 //want number of iterations used (not printed), want the performance info,
123 //we want all x iterations, and parameters p shall be passed.
124 double xinfo[n*maxiters];
125 double t1 = opti_get_time();
126 int ucminfr = opti_ucminf(ackley, x, n, opts, NULL, NULL, perfinfo, xinfo,

(void*) p);
127 double t2 = opti_get_time();
128
129 //Results printed to folder
130 //int folderinfo = opti_printperf_tofolder(perfinfo, xinfo, maxiters, n, "

testsackley");
131 int folderinfo = 1;
132
133 NSString * printthisfoo = [NSString stringWithFormat:
134 @"Solve time: %f\nSave to folder info: %i\

nSolution return: %i\n",
135 t2 − t1, folderinfo, ucminfr];
136
137
138 for (i = 0; i < n; ++i)
139 {
140 printthisfoo = [printthisfoo stringByAppendingString:[NSString

stringWithFormat:@"%5.3f, ", x[i]]];
141 }
142
143 UIMainText.text = printthisfoo;
144 }
145
146 − (void)didReceiveMemoryWarning
147 {
148 [super didReceiveMemoryWarning];
149 // Dispose of any resources that can be recreated.
150 }
151
152 @end

96 Test runs

C.2 Himmelblau

C.2.1 MATLAB test

1 for i = 1:10
2 tic,
3 y(i,:) = ucminf(@himmelblau2,[1, 1]');
4 t1(i) = toc;
5 end
6 time1 = sum(t1)/10;
7
8 for i = 1:10
9 tic,

10 x(i,:) = fminunc(@himmelblau,[1, 1]');
11 t2(i) = toc;
12 end
13 time2 = sum(t2)/10;
14
15 t1, time1, t2, time2

C.2.2 minlbfgs test

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <time.h>
4 #include <cmath>
5 #include "ap.h"
6 #include "minlbfgs.h"
7
8 using namespace std;
9

10 //Needs to be put into alltests!
11 #include <time.h>
12 #include <sys/time.h>
13 #ifdef __MACH__ //If on a Mac, use Mach libraries
14 #include <mach/clock.h>
15 #include <mach/mach.h>
16 #endif //__MACH__
17
18 double get_time()
19 {
20 struct timespec ts;
21 #ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
22 clock_serv_t cclock;
23 mach_timespec_t mts;
24 host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
25 clock_get_time(cclock, &mts);
26 mach_port_deallocate(mach_task_self(), cclock);
27 ts.tv_sec = mts.tv_sec;
28 ts.tv_nsec = mts.tv_nsec;
29 #else
30 #ifdef CLOCK_MONOTONIC
31 clock_gettime(CLOCK_MONOTONIC, &ts);
32 #else

C.2 Himmelblau 97

33 clock_gettime(CLOCK_REALTIME, &ts);
34 #endif
35 #endif
36 return (double) ts.tv_sec + (double) ts.tv_nsec * 1e−9;
37 }
38
39 void himmelblau(double* x, double* f, double* df, void *p)
40 {
41 *f = pow(x[0]*x[0] + x[1] − 11,2) + pow(x[0] + x[1]*x[1] − 7,2);
42
43 df[0] = 2*(2*x[0]*(x[0]*x[0] + x[1] − 11) + x[0] + x[1]*x[1] − 7);
44 df[1] = 2*(−11+x[0]*x[0] + x[1] + 2*x[1]*(−7 + x[0] + x[1]*x[1]));
45
46 return;
47 }
48
49 //=====================
50
51 int main(int argc, char **argv)
52 {
53 int n = 2;
54 int m = 1;
55 minlbfgsstate state;
56 minlbfgsreport rep;
57 ap::real_1d_array s;
58 double x[n];
59
60 double time = 0;
61
62 n = 2;
63 m = 1;
64 s.setlength(n);
65
66
67 //f and g
68 double f;
69 double g[n];
70
71 for (int i = 0; i < 10; ++i)
72 {
73 s(0) = 1;
74 s(1) = 1;
75 double t1 = get_time();
76 minlbfgscreate(n, m, s, state);
77 minlbfgssetcond(state, 0.0, 0.0, 0.0001, 0);
78 while(minlbfgsiteration(state))
79 {
80 if(state.needfg)
81 {
82 for (int k = 0; k < n; ++k)
83 x[k] = state.x(k);
84
85 himmelblau(x, &f, g, NULL);
86
87 state.f = f;
88
89 for (int k = 0; k < n; ++k)
90 state.g(k) = g[k];
91 }
92 }
93 minlbfgsresults(state, s, rep);
94
95 double t2 = get_time();
96
97 time += t2 − t1;

98 Test runs

98
99 printf("Solve time: %f\n", t2 − t1);

100 }
101
102 printf("Result: (%f, %f)\n", state.x(0), state.x(1));
103 printf("Average solve time: %f\n", time /= 10);
104
105 return 0;
106 }

C.2.3 libopti test

1 /*
2 * himmbelblau.h
3 *
4 * Created on: Nov 3, 2012
5 * Author: christian
6 */
7
8 #ifndef HIMMELBLAU_H_
9 #define HIMMELBLAU_H_

10
11 #include <math.h>
12 #include <stddef.h>
13
14 void himmelblau(double* x, double* f, double* df, void *p)
15 {
16 *f = pow(x[0]*x[0] + x[1] − 11,2) + pow(x[0] + x[1]*x[1] − 7,2);
17
18 df[0] = 2*(2*x[0]*(x[0]*x[0] + x[1] − 11) + x[0] + x[1]*x[1] − 7);
19 df[1] = 2*(−11+x[0]*x[0] + x[1] + 2*x[1]*(−7 + x[0] + x[1]*x[1]));
20
21 return;
22 }
23
24 //Example of using the algorithm.
25 double TestHimmelblau()
26 {
27
28 //Number of inputs, number of max iterations
29 int n = 2, maxiters = 100;
30
31 //Setting options.
32 // ∆ − Initial value for largest stepsize used by the

linesearching.
33 // tolg − The value which the norm of g is under when the

1st order KKT conditions are met.
34 // tolx − If the stepsize is less than tolx*(tolx +

opti_norm(x, n, 2)), stop.
35 // maxeval − The maximum number of tolerable iterations

before stopping.
36 // findiffh − Used in the finite difference approximation for

fun(). If set to 0, df is expected.
37 // Warning: Using findiffh = 0 and not supplying g

in fun WILL result in errors.
38 // Default: 1, 1e−4, 1e−8, 100, 0
39 double opts[] = {1.0, 1e−4, 1e−8, maxiters, 0};
40
41 //The function shall be called on the function, using x as starting guess,

C.3 Rosenbrock 99

42 //with n values, opts shall be used for options, no initial approximation
of inverse Hessian,

43 //want number of iterations used (not printed), want the performance info,
44 //we want all x iterations, no parameters.
45
46 //Starting guess 1
47 double x1[2] = {1, 1};
48 double t1 = opti_get_time();
49 int ucminfr = opti_ucminf(himmelblau, x1, n, opts, NULL, NULL, NULL, NULL,

NULL);
50 double t2 = opti_get_time();
51
52 return t2 − t1;
53 }
54
55 #endif /* HIMMELBLAU_H_ */

C.3 Rosenbrock

C.3.1 MATLAB test

1 for i = 1:10
2 tic,
3 y(i,:) = ucminf(@rosenbrock2,[4, 2]');
4 t1(i) = toc;
5 end
6 time1 = sum(t1)/10;
7
8 for i = 1:10
9 tic,

10 x(i,:) = fminunc(@rosenbrock,[4, 2]');
11 t2(i) = toc;
12 end
13 time2 = sum(t2)/10;
14
15
16 t1, time1, t2, time2

C.3.2 minlbfgs test

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <time.h>
4 #include <cmath>
5 #include "ap.h"
6 #include "minlbfgs.h"
7
8 using namespace std;
9

100 Test runs

10 //Needs to be put into alltests!
11 #include <time.h>
12 #include <sys/time.h>
13 #ifdef __MACH__ //If on a Mac, use Mach libraries
14 #include <mach/clock.h>
15 #include <mach/mach.h>
16 #endif //__MACH__
17
18 double get_time()
19 {
20 struct timespec ts;
21 #ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
22 clock_serv_t cclock;
23 mach_timespec_t mts;
24 host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
25 clock_get_time(cclock, &mts);
26 mach_port_deallocate(mach_task_self(), cclock);
27 ts.tv_sec = mts.tv_sec;
28 ts.tv_nsec = mts.tv_nsec;
29 #else
30 #ifdef CLOCK_MONOTONIC
31 clock_gettime(CLOCK_MONOTONIC, &ts);
32 #else
33 clock_gettime(CLOCK_REALTIME, &ts);
34 #endif
35 #endif
36 return (double) ts.tv_sec + (double) ts.tv_nsec * 1e−9;
37 }
38
39 void rosenbrock(double* x, double* f, double* df, void *p)
40 {
41 *f = pow((double) (1 − x[0]), (double) 2) + 100 * pow((double) (x[1] − pow

((double) x[0], (double) 2)), (double) 2);
42
43 df[0] = −2 + 2 * x[0] − 400 * (x[1] − pow((double) x[0], (double) 2)) * x

[0];
44 df[1] = 200 * x[1] − 200 * pow((double) x[0], (double) 2);
45
46 return;
47 }
48
49 //=====================
50
51 int main(int argc, char **argv)
52 {
53 int n = 2;
54 int m = 1;
55 minlbfgsstate state;
56 minlbfgsreport rep;
57 ap::real_1d_array s;
58 double x[n];
59
60 double time = 0;
61
62 n = 2;
63 m = 1;
64 s.setlength(n);
65
66
67 //f and g
68 double f;
69 double g[n];
70
71 for (int i = 0; i < 10; ++i)
72 {

C.3 Rosenbrock 101

73 s(0) = 4;
74 s(1) = 2;
75 double t1 = get_time();
76 minlbfgscreate(n, m, s, state);
77 minlbfgssetcond(state, 0.0, 0.0, 0.0001, 0);
78 while(minlbfgsiteration(state))
79 {
80 if(state.needfg)
81 {
82 for (int k = 0; k < n; ++k)
83 x[k] = state.x(k);
84
85 rosenbrock(x, &f, g, NULL);
86
87 state.f = f;
88
89 for (int k = 0; k < n; ++k)
90 state.g(k) = g[k];
91 }
92 }
93 minlbfgsresults(state, s, rep);
94
95 double t2 = get_time();
96
97 time += t2 − t1;
98
99 printf("Solve time: %f\n", t2 − t1);

100 }
101
102 printf("Result: (%f, %f)\n", state.x(0), state.x(1));
103 printf("Average solve time: %f\n", time /= 10);
104
105 return 0;
106 }

C.3.3 libopti test

1 /*
2 * rosenbrock.h
3 *
4 * Created on: Aug 18, 2012
5 * Author: christian
6 */
7
8 #ifndef ROSENBROCK_H_
9 #define ROSENBROCK_H_

10
11 #include <math.h>
12 #include <stddef.h>
13
14 void rosenbrock(double* x, double* f, double* df, void *p)
15 {
16 *f = pow((double) (1 − x[0]), (double) 2) + 100 * pow((double) (x[1] − pow

((double) x[0], (double) 2)), (double) 2);
17
18 df[0] = −2 + 2 * x[0] − 400 * (x[1] − pow((double) x[0], (double) 2)) * x

[0];
19 df[1] = 200 * x[1] − 200 * pow((double) x[0], (double) 2);
20

102 Test runs

21 return;
22 }
23
24 //Example of using the algorithm.
25 double TestRosenbrock()
26 {
27
28 //Number of inputs to n, number of max iterations
29 int maxiters = 100;
30 int n = 2;
31 double x[2] = {4, 2};
32
33 //Setting options
34 double opts[] = {1.0, 0.0001, 0.00000001, maxiters, 0};
35
36 //The function shall be called on the function, using x as starting guess,
37 //with n values, opts shall be used for options, no initial approximation

of inverse Hessian,
38 double t1 = opti_get_time();
39 int ucminfr = opti_ucminf(beale, x, n, opts, NULL, NULL, NULL, NULL, NULL)

;
40 double t2 = opti_get_time();
41
42 return t2 − t1;
43 }
44
45 #endif /* ROSENBROCK_H_ */

C.4 Beale

C.4.1 MATLAB test

1 for i = 1:10
2 tic,
3 y(i,:) = ucminf(@beale2,[4, 2]');
4 t1(i) = toc;
5 end
6 time1 = sum(t1)/10;
7
8 for i = 1:10
9 tic,

10 x(i,:) = fminunc(@beale,[4, 2]');
11 t2(i) = toc;
12 end
13 time2 = sum(t2)/10;
14
15
16 t1, time1, t2, time2

C.4.2 minlbfgs test

C.4 Beale 103

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <time.h>
4 #include <cmath>
5 #include "ap.h"
6 #include "minlbfgs.h"
7
8 using namespace std;
9

10 //Needs to be put into alltests!
11 #include <time.h>
12 #include <sys/time.h>
13 #ifdef __MACH__ //If on a Mac, use Mach libraries
14 #include <mach/clock.h>
15 #include <mach/mach.h>
16 #endif //__MACH__
17
18 double get_time()
19 {
20 struct timespec ts;
21 #ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
22 clock_serv_t cclock;
23 mach_timespec_t mts;
24 host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
25 clock_get_time(cclock, &mts);
26 mach_port_deallocate(mach_task_self(), cclock);
27 ts.tv_sec = mts.tv_sec;
28 ts.tv_nsec = mts.tv_nsec;
29 #else
30 #ifdef CLOCK_MONOTONIC
31 clock_gettime(CLOCK_MONOTONIC, &ts);
32 #else
33 clock_gettime(CLOCK_REALTIME, &ts);
34 #endif
35 #endif
36 return (double) ts.tv_sec + (double) ts.tv_nsec * 1e−9;
37 }
38
39 void beale(double* x, double* f, double* df, void *p)
40 {
41 *f = pow(0.15e1 − x[0] + x[0] * x[1], 0.2e1) + pow(0.225e1 − x[0] + x[0] *

pow(x[1], 0.2e1), 0.2e1) + pow(0.2625e1 − x[0] + x[0] * pow(x[1],
0.3e1), 0.2e1);

42
43 df[0] = 0.2e1 * (0.15e1 − x[0] + x[0] * x[1]) * (−0.1e1 + x[1]) + 0.2e1 *

(0.225e1 − x[0] + x[0] * pow(x[1], 0.2e1)) * (−0.1e1 + pow(x[1], 0.2
e1)) + 0.2e1 * (0.2625e1 − x[0] + x[0] * pow(x[1], 0.3e1)) * (−0.1e1
+ pow(x[1], 0.3e1));

44 df[1] = 0.2e1 * (0.15e1 − x[0] + x[0] * x[1]) * x[0] + 0.4e1 * (0.225e1 −
x[0] + x[0] * pow(x[1], 0.2e1)) * x[0] * x[1] + 0.6e1 * (0.2625e1 − x
[0] + x[0] * pow(x[1], 0.3e1)) * x[0] * pow(x[1], 0.2e1);

45
46 return;
47 }
48
49 //=====================
50
51 int main(int argc, char **argv)
52 {
53 int n = 2;
54 int m = 1;
55 minlbfgsstate state;
56 minlbfgsreport rep;
57 ap::real_1d_array s;

104 Test runs

58 double x[n];
59
60 double time = 0;
61
62 n = 2;
63 m = 1;
64 s.setlength(n);
65
66
67 //f and g
68 double f;
69 double g[n];
70
71 for (int i = 0; i < 10; ++i)
72 {
73 s(0) = 4;
74 s(1) = 2;
75 double t1 = get_time();
76 minlbfgscreate(n, m, s, state);
77 minlbfgssetcond(state, 0.0, 0.0, 0.0001, 0);
78 while(minlbfgsiteration(state))
79 {
80 if(state.needfg)
81 {
82 for (int k = 0; k < n; ++k)
83 x[k] = state.x(k);
84
85 beale(x, &f, g, NULL);
86
87 state.f = f;
88
89 for (int k = 0; k < n; ++k)
90 state.g(k) = g[k];
91 }
92 }
93 minlbfgsresults(state, s, rep);
94
95 double t2 = get_time();
96
97 time += t2 − t1;
98
99 printf("Solve time: %f\n", t2 − t1);

100 }
101
102 printf("Result: (%f, %f)\n", state.x(0), state.x(1));
103 printf("Average solve time: %f\n", time /= 10);
104
105 return 0;
106 }

C.4.3 libopti test

1 /*
2 * beale.h
3 *
4 * Created on: Aug 18, 2012
5 * Author: christian
6 */
7

C.4 Beale 105

8 #ifndef BEALE_H_
9 #define BEALE_H_

10
11 #include <math.h>
12
13 void beale(double* x, double* f, double* df, void *p)
14 {
15 *f = pow(0.15e1 − x[0] + x[0] * x[1], 0.2e1) + pow(0.225e1 − x[0] + x[0] *

pow(x[1], 0.2e1), 0.2e1) + pow(0.2625e1 − x[0] + x[0] * pow(x[1],
0.3e1), 0.2e1);

16
17 df[0] = 0.2e1 * (0.15e1 − x[0] + x[0] * x[1]) * (−0.1e1 + x[1]) + 0.2e1 *

(0.225e1 − x[0] + x[0] * pow(x[1], 0.2e1)) * (−0.1e1 + pow(x[1], 0.2
e1)) + 0.2e1 * (0.2625e1 − x[0] + x[0] * pow(x[1], 0.3e1)) * (−0.1e1
+ pow(x[1], 0.3e1));

18 df[1] = 0.2e1 * (0.15e1 − x[0] + x[0] * x[1]) * x[0] + 0.4e1 * (0.225e1 −
x[0] + x[0] * pow(x[1], 0.2e1)) * x[0] * x[1] + 0.6e1 * (0.2625e1 − x
[0] + x[0] * pow(x[1], 0.3e1)) * x[0] * pow(x[1], 0.2e1);

19
20 return;
21 }
22
23 //Example of using the algorithm.
24 double TestBeale()
25 {
26
27 //Number of inputs, number of max iterations
28 int n = 2, maxiters = 100;
29
30 //Setting options.
31 // ∆ − Initial value for largest stepsize used by the

linesearching.
32 // tolg − The value which the norm of g is under when the

1st order KKT conditions are met.
33 // tolx − If the stepsize is less than tolx*(tolx +

opti_norm(x, n, 2)), stop.
34 // maxeval − The maximum number of tolerable iterations

before stopping.
35 // findiffh − Used in the finite difference approximation for

fun(). If set to 0, df is expected.
36 // Warning: Using findiffh = 0 and not supplying g

in fun WILL result in errors.
37 // Default: 1, 1e−4, 1e−8, 100, 0
38 double opts[] = {1.0, 1e−4, 1e−8, maxiters, 0};
39
40 //The function shall be called on the function, using x as starting guess,
41 //with n values, opts shall be used for options, no initial approximation

of inverse Hessian,
42
43 //Starting guess 1
44 double x1[2] = {4, 2};
45 double t1 = opti_get_time();
46 int ucminfr = opti_ucminf(beale, x1, n, opts, NULL, NULL, NULL, NULL, NULL

);
47 double t2 = opti_get_time();
48
49 return t2 − t1;
50 }
51
52 #endif /* BEALE_H_ */

106 Test runs

C.5 Easom

C.5.1 MATLAB test

1 for i = 1:10
2 tic,
3 [y, info, perf] = ucminf(@easom2,[1, 1]', [1 1e−4 1e−8 100]);
4 t1(i) = toc;
5 end
6 time1 = sum(t1)/10;
7
8 for i = 1:10
9 tic,

10 x(i,:) = fminunc(@easom,[1, 1]');
11 t2(i) = toc;
12 end
13 time2 = sum(t2)/10;
14
15
16 t1, time1, t2, time2

C.5.2 minlbfgs test

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <time.h>
4 #include <cmath>
5 #include "ap.h"
6 #include "minlbfgs.h"
7
8 using namespace std;
9

10 //Needs to be put into alltests!
11 #include <time.h>
12 #include <sys/time.h>
13 #ifdef __MACH__ //If on a Mac, use Mach libraries
14 #include <mach/clock.h>
15 #include <mach/mach.h>
16 #endif //__MACH__
17
18 double get_time()
19 {
20 struct timespec ts;
21 #ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
22 clock_serv_t cclock;
23 mach_timespec_t mts;
24 host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
25 clock_get_time(cclock, &mts);
26 mach_port_deallocate(mach_task_self(), cclock);
27 ts.tv_sec = mts.tv_sec;
28 ts.tv_nsec = mts.tv_nsec;
29 #else
30 #ifdef CLOCK_MONOTONIC
31 clock_gettime(CLOCK_MONOTONIC, &ts);

C.5 Easom 107

32 #else
33 clock_gettime(CLOCK_REALTIME, &ts);
34 #endif
35 #endif
36 return (double) ts.tv_sec + (double) ts.tv_nsec * 1e−9;
37 }
38
39 void easom(double* x, double* f, double* df, void *p)
40 {
41 double pi = 3.14159265358979323846;
42 *f = −cos(x[0])*cos(x[1])*exp(−pow((x[0]−pi),2) − pow((x[1] − pi),2));
43 df[0] = sin(x[0])*cos(x[1])*exp(−pow((x[0]−pi),2) − pow((x[1] − pi),2))
44 + −cos(x[0])*cos(x[1])*(−2*x[0] + 2*pi)*exp(−pow((x[0]−pi),2) − pow

((x[1] − pi),2));
45 df[1] = cos(x[0])*sin(x[1])*exp(−pow((x[0]−pi),2) − pow((x[1] − pi),2))
46 + −cos(x[0])*cos(x[1])*(−2*x[1] + 2*pi)*exp(−pow((x[0]−pi),2) − pow

((x[1] − pi),2));
47 }
48
49 //=====================
50
51 int main(int argc, char **argv)
52 {
53 int n = 2;
54 int m = 1;
55 minlbfgsstate state;
56 minlbfgsreport rep;
57 ap::real_1d_array s;
58 double x[n];
59
60 double time = 0;
61
62 n = 2;
63 m = 1;
64 s.setlength(n);
65
66
67 //f and g
68 double f;
69 double g[n];
70
71 for (int i = 0; i < 10; ++i)
72 {
73 s(0) = 1;
74 s(1) = 1;
75 double t1 = get_time();
76 minlbfgscreate(n, m, s, state);
77 minlbfgssetcond(state, 1e−10, 1e−10, 1e−10, 100);
78 while(minlbfgsiteration(state))
79 {
80 if(state.needfg)
81 {
82 for (int k = 0; k < n; ++k)
83 x[k] = state.x(k);
84
85 easom(x, &f, g, NULL);
86
87 state.f = f;
88
89 for (int k = 0; k < n; ++k)
90 state.g(k) = g[k];
91 }
92 }
93 minlbfgsresults(state, s, rep);
94

108 Test runs

95 double t2 = get_time();
96
97 time += t2 − t1;
98
99 printf("Solve time: %f\n", t2 − t1);

100 }
101
102 printf("Result: (%f, %f)\n", state.x(0), state.x(1));
103 printf("Result: (%f, %f)\n", state.g(0), state.g(1));
104 printf("Result: %f\n", state.f);
105 printf("Average solve time: %f\n", time /= 10);
106
107 return 0;
108 }

C.5.3 libopti test

1 /*
2 * easom.h
3 *
4 * Created on: Aug 18, 2012
5 * Author: christian
6 */
7
8 #ifndef EASOM_H_
9 #define EASOM_H_

10
11 #include <math.h>
12 #include <stddef.h>
13 #include <stdio.h>
14
15 void easom(double* x, double* f, double* df, void *p)
16 {
17 double pi = 3.14159265358979323846;
18 *f = −cos(x[0])*cos(x[1])*exp(−pow((x[0]−pi),2) − pow((x[1] − pi),2));
19 df[0] = sin(x[0])*cos(x[1])*exp(−pow((x[0]−pi),2) − pow((x[1] − pi),2))
20 + −cos(x[0])*cos(x[1])*(−2*x[0] + 2*pi)*exp(−pow((x[0]−pi),2) − pow

((x[1] − pi),2));
21 df[1] = cos(x[0])*sin(x[1])*exp(−pow((x[0]−pi),2) − pow((x[1] − pi),2))
22 + −cos(x[0])*cos(x[1])*(−2*x[1] + 2*pi)*exp(−pow((x[0]−pi),2) − pow

((x[1] − pi),2));
23 }
24
25 //Example of using the algorithm.
26 double TestEasom()
27 {
28
29 //Number of inputs, number of max iterations
30 int n = 2, maxiters = 100;
31
32 //Setting options.
33 // ∆ − Initial value for largest stepsize used by the

linesearching.
34 // tolg − The value which the norm of g is under when the

1st order KKT conditions are met.
35 // tolx − If the stepsize is less than tolx*(tolx +

opti_norm(x, n, 2)), stop.
36 // maxeval − The maximum number of tolerable iterations

before stopping.

C.6 Ackley 109

37 // findiffh − Used in the finite difference approximation for
fun(). If set to 0, df is expected.

38 // Warning: Using findiffh = 0 and not supplying g
in fun WILL result in errors.

39 // Default: 1, 1e−4, 1e−8, 100, 0
40 double opts[] = {1.0, 1e−8, 1e−8, maxiters, 0};
41
42 //The function shall be called on the function, using x as starting guess,
43 //with n values, opts shall be used for options, no initial approximation

of inverse Hessian,
44
45 //Starting guess 1
46 double x1[2] = {1, 1};
47 double t1 = opti_get_time();
48 int ucminfr = opti_ucminf(easom, x1, n, opts, NULL, NULL, NULL, NULL, NULL

);
49 double t2 = opti_get_time();
50
51 double df[2], f;
52 easom(x1, &f, df, NULL);
53 printf("(%f, %f)\n", x1[0],x1[1]);
54 return t2 − t1;
55 }
56
57 #endif /* EASOm_H_ */

C.6 Ackley

C.6.1 MATLAB test

1 for i = 1:10
2 tic,
3 yin = (rand([5000,1])−0.5)*6;
4 [y, info, perf] = ucminf(@ackley2,yin, [1 1e−8 1e−8 1000]);
5 [f g] = ackley2(y);
6 f, h = norm(g),
7 t1(i) = toc;
8 end
9 time1 = sum(t1)/10;

10
11 for i = 1:10
12 tic,
13 xin = (rand([5000,1])−0.5)*6;
14 x = fminunc(@ackley,xin);
15 t2(i) = toc;
16 end
17 time2 = sum(t2)/10;
18
19
20 t1, time1, t2, time2

110 Test runs

C.6.2 minlbfgs test

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <cmath>
4 #include "ap.h"
5 #include "minlbfgs.h"
6
7 using namespace std;
8
9 //Needs to be put into alltests!

10 #include <time.h>
11 #include <sys/time.h>
12 #ifdef __MACH__ //If on a Mac, use Mach libraries
13 #include <mach/clock.h>
14 #include <mach/mach.h>
15 #endif //__MACH__
16
17 double get_time()
18 {
19 struct timespec ts;
20 #ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
21 clock_serv_t cclock;
22 mach_timespec_t mts;
23 host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
24 clock_get_time(cclock, &mts);
25 mach_port_deallocate(mach_task_self(), cclock);
26 ts.tv_sec = mts.tv_sec;
27 ts.tv_nsec = mts.tv_nsec;
28 #else
29 #ifdef CLOCK_MONOTONIC
30 clock_gettime(CLOCK_MONOTONIC, &ts);
31 #else
32 clock_gettime(CLOCK_REALTIME, &ts);
33 #endif
34 #endif
35 return (double) ts.tv_sec + (double) ts.tv_nsec * 1e−9;
36 }
37
38 void ackley(double* x, double* f, double* df, void *p)
39 {
40 double a, b, c; //Constants
41 int i, n; //Iterator and dimensions
42
43 c = 2*M_PI;
44 n = 5000;
45
46
47 //Calculating function value
48 double sum1 = 0, sum2 = 0; //Defining sums
49
50 for (i = 0; i < (int) n; ++i)
51 {
52 sum1 += x[i]*x[i];
53 sum2 += cos(c*x[i]);
54 }
55
56 *f = −a*exp(−b*sqrt((1.0/n)*sum1)) − exp((1.0/n)*sum2) + a + exp(1.0);
57
58 //Calculating derivatives
59 int j;
60
61 for (j = 0; j < (int) n; ++j)

C.6 Ackley 111

62 {
63 df[j] = 0; //Initializing to 0.
64
65 df[j] += a*b*x[j]*exp(−(1.0/n)*b*sqrt(n*sum1))/sqrt(n*sum1);
66
67 df[j] += −1.0/n*sin(c*x[j])*exp(1.0/n*sum2);
68 }
69
70
71
72 return;
73 }
74
75 //=====================
76
77 int main(int argc, char **argv)
78 {
79 int n = 5000;
80 int m = 1;
81 minlbfgsstate state;
82 minlbfgsreport rep;
83 ap::real_1d_array s;
84 double x[n];
85
86 double timet = 0;
87
88 s.setlength(n);
89
90
91 //f and g
92 double f;
93 double g[n];
94
95 for (int i = 0; i < 10; ++i)
96 {
97 //Generate random starting guess
98 unsigned int iseed = (unsigned int) time(NULL);
99 srand (iseed);

100 //Randomly generate numbers
101 for (int k = 0; k < n; ++k) s(k) = (rand()%600 − 300)/100.0;
102
103 double t1 = get_time();
104 minlbfgscreate(n, m, s, state);
105 minlbfgssetcond(state, 1e−10, 1e−10, 1e−10, 1000);
106 while(minlbfgsiteration(state))
107 {
108 if(state.needfg)
109 {
110 for (int k = 0; k < n; ++k)
111 x[k] = state.x(k);
112
113 ackley(x, &f, g, NULL);
114
115 state.f = f;
116
117 for (int k = 0; k < n; ++k)
118 state.g(k) = g[k];
119 }
120 }
121 minlbfgsresults(state, s, rep);
122
123 double t2 = get_time();
124
125 timet += t2 − t1;
126

112 Test runs

127 printf("Solve time: %f\n", t2 − t1);
128 }
129
130 printf("Result: (%f, %f)\n", state.x(0), state.x(1));
131 printf("Result: (%f, %f)\n", state.g(0), state.g(1));
132 printf("Result: %f\n", state.f);
133 printf("Average solve time: %f\n", timet /= 10);
134
135 return 0;
136 }

C.6.3 libopti test

1 /*
2 * Ackley.h
3 *
4 * Created on: Aug 17, 2012
5 * Author: christian
6 */
7
8 #ifndef ACKLEY_H_
9 #define ACKLEY_H_

10
11 #include <math.h>
12
13 void ackley(double* x, double* f, double* df, void *p)
14 {
15
16 double a, b, c; //Constants
17 int i, n; //Iterator and dimensions
18
19 a = *((double*) p);
20 b = *((double*) p+1);
21 c = *((double*) p+2);
22 n = *((double*) p+3);
23
24
25 //Calculating function value
26 double sum1 = 0, sum2 = 0; //Defining sums
27
28 for (i = 0; i < (int) n; ++i)
29 {
30 sum1 += x[i]*x[i];
31 sum2 += cos(c*x[i]);
32 }
33
34 *f = −a*exp(−b*sqrt((1.0/n)*sum1)) − exp((1.0/n)*sum2) + a + exp(1.0);
35
36 //Calculating derivatives
37 int j;
38
39 for (j = 0; j < (int) n; ++j)
40 {
41 df[j] = 0; //Initializing to 0.
42
43 df[j] += a*b*x[j]*exp(−(1.0/n)*b*sqrt(n*sum1))/sqrt(n*sum1);
44
45 df[j] += −1.0/n*sin(c*x[j])*exp(1.0/n*sum2);
46 }

C.7 Zakharov 113

47
48
49
50 return;
51 }
52
53 //Example of using the algorithm.
54 double TestAckley()
55 {
56 //Generate random starting guess
57 unsigned int iseed = (unsigned int) time(NULL);
58 srand (iseed);
59
60 //Number of inputs to n, number of max iterations
61 int n = 5000;
62 int maxiters = 10000;
63 double x[n];
64 int i;
65
66 //Randomly generate numbers
67 for (i = 0; i < n; ++i) x[i] = (rand()%600 − 300)/100.0;
68
69 //Define array with params
70 double pi = 3.141592654;
71
72 double p[] = {20, 0.2, 2*pi, (double) n};
73
74
75 //Setting options
76 double opts[] = {1.0, 1e−4, 1e−8, maxiters, 0};
77
78 //The function shall be called on the function, using x as starting guess,
79 //with n values, opts shall be used for options, no initial approximation of

inverse Hessian,
80 double xinfo[n*maxiters];
81 double t1 = opti_get_time();
82 int ucminfr = opti_ucminf(ackley, x, n, opts, NULL, NULL, NULL, NULL, (void

*) p);
83 double t2 = opti_get_time();
84
85 double f, df[n];
86
87 ackley(x, &f, df, (void*) p);
88
89 printf("%f\n",f);
90
91 return t2 − t1;
92 }
93
94 #endif /* ACKLEY_H_ */

C.7 Zakharov

C.7.1 MATLAB test

1 for i = 1:10

114 Test runs

2 tic,
3 yin = ones(1000,1);
4 y = ucminf(@zakh2,yin, [1 1e−10, 1e−10, 1000]);
5 [f g] = zakh2(y);
6 f, h = norm(g),
7 t1(i) = toc;
8 end
9 time1 = sum(t1)/10;

10
11 for i = 1:10
12 tic,
13 xin = ones(1000,1);
14 x = fminunc(@zakh,xin);
15 t2(i) = toc;
16 end
17 time2 = sum(t2)/10;
18
19
20 t1, time1, t2, time2

C.7.2 minlbfgs test

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <cmath>
4 #include "ap.h"
5 #include "minlbfgs.h"
6
7 using namespace std;
8
9 //Needs to be put into alltests!

10 #include <time.h>
11 #include <sys/time.h>
12 #ifdef __MACH__ //If on a Mac, use Mach libraries
13 #include <mach/clock.h>
14 #include <mach/mach.h>
15 #endif //__MACH__
16
17 double get_time()
18 {
19 struct timespec ts;
20 #ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
21 clock_serv_t cclock;
22 mach_timespec_t mts;
23 host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
24 clock_get_time(cclock, &mts);
25 mach_port_deallocate(mach_task_self(), cclock);
26 ts.tv_sec = mts.tv_sec;
27 ts.tv_nsec = mts.tv_nsec;
28 #else
29 #ifdef CLOCK_MONOTONIC
30 clock_gettime(CLOCK_MONOTONIC, &ts);
31 #else
32 clock_gettime(CLOCK_REALTIME, &ts);
33 #endif
34 #endif
35 return (double) ts.tv_sec + (double) ts.tv_nsec * 1e−9;
36 }
37

C.7 Zakharov 115

38 void zakharov(double* x, double* f, double* df)
39 {
40
41 int n, i;
42
43 n = 1000;
44
45 *f = 0;
46
47 double fpart23 = 0;
48
49 for (i = 0; i < n; ++i)
50 {
51 *f += x[i]*x[i];
52 fpart23 += 0.5*i*x[i];
53 }
54
55 *f += pow((fpart23),2) + pow((fpart23),4);
56
57
58 }
59
60 //=====================
61
62 int main(int argc, char **argv)
63 {
64 int n = 1000;
65 int m = 1;
66 minlbfgsstate state;
67 minlbfgsreport rep;
68 ap::real_1d_array s;
69 double x[n];
70
71 double timet = 0;
72
73 s.setlength(n);
74
75
76 //f and g
77 double f;
78 double g[n];
79
80 for (int i = 0; i < 10; ++i)
81 {
82 for (int k = 0; k < n; ++k) s(k) = 1;
83
84 double t1 = get_time();
85 minlbfgscreate(n, m, s, state);
86 minlbfgssetcond(state, 1e−10, 1e−10, 1e−10, 1000);
87 while(minlbfgsiteration(state))
88 {
89 if(state.needfg)
90 {
91 for (int k = 0; k < n; ++k)
92 x[k] = state.x(k);
93
94 zakharov(x, &f, g);
95
96 state.f = f;
97
98 for (int k = 0; k < n; ++k)
99 state.g(k) = g[k];

100 }
101 }
102 minlbfgsresults(state, s, rep);

116 Test runs

103
104 double t2 = get_time();
105
106 timet += t2 − t1;
107
108 printf("Solve time: %f\n", t2 − t1);
109 }
110
111 printf("Average solve time: %f\n", timet /= 10);
112
113 return 0;
114 }

C.7.3 libopti test

1 /*
2 * zakharov.h
3 *
4 * Created on: Aug 18, 2012
5 * Author: christian
6 */
7
8 #ifndef ZAKHAROV_H_
9 #define ZAKHAROV_H_

10
11 #include <math.h>
12 #include <stddef.h>
13 #include <stdio.h>
14
15 void zakharov(double* x, double* f, double* df, void *p)
16 {
17
18 int n, i;
19
20 n = *((int*) p);
21
22 *f = 0;
23
24 double fpart23 = 0;
25
26 for (i = 0; i < n; ++i)
27 {
28 *f += x[i]*x[i];
29 fpart23 += 0.5*i*x[i];
30 }
31
32 *f += pow((fpart23),2) + pow((fpart23),4);
33
34
35 }
36
37 //Example of using the algorithm.
38 double TestZakharov()
39 {
40
41 //Number of inputs, number of max iterations
42 int n = 10, maxiters = 1000;
43
44 //Setting options.

C.8 Plot Ackley performance 117

45 // ∆ − Initial value for largest stepsize used by the
linesearching.

46 // tolg − The value which the norm of g is under when the
1st order KKT conditions are met.

47 // tolx − If the stepsize is less than tolx*(tolx +
opti_norm(x, n, 2)), stop.

48 // maxeval − The maximum number of tolerable iterations
before stopping.

49 // findiffh − Used in the finite difference approximation for
fun(). If set to 0, df is expected.

50 // Warning: Using findiffh = 0 and not supplying g
in fun WILL result in errors.

51 // Default: 1, 1e−4, 1e−8, 100, 0
52 double opts[] = {1.0, 1e−8, 1e−8, maxiters, 0.0001};
53
54 //The function shall be called on the function, using x as starting guess,
55 //with n values, opts shall be used for options, no initial approximation

of inverse Hessian,
56
57 double perfinfo[maxiters*6];
58 double xinfo[n*maxiters];
59
60 //Starting guess 1
61 double x[n];
62 int i; for (i = 0; i < n; ++i) x[i] = 1;
63 double t1 = opti_get_time();
64 int ucminfr = opti_ucminf(zakharov, x, n, opts, NULL, NULL, perfinfo,

xinfo, (void*) &n);
65 double t2 = opti_get_time();
66
67 double df[2], f;
68 zakharov(x, &f, df, (void*) &n);
69 printf("sizex = %f\n", x[5]);
70 return t2 − t1;
71 }
72
73 #endif /* ZAKHAROV_H_ */

C.8 Plot Ackley performance

1 clear all
2 load testackley/am.txt
3 load testackley/∆.txt
4 load testackley/evals.txt
5 load testackley/finalslope.txt
6 load testackley/fun.txt
7 load testackley/ng.txt
8
9

10 subplot(3,2,1);
11 plot(1:length(am),am);
12 xlabel iteration, ylabel alpha
13
14 subplot(3,2,2);
15 plot(1:length(am),∆);
16 xlabel iteration, ylabel ∆,
17
18 subplot(3,2,3);

118 Test runs

19 plot(1:length(am),evals);
20 xlabel iteration, ylabel evals,
21
22 subplot(3,2,4);
23 plot(1:length(am),finalslope);
24 xlabel iteration, ylabel 'final slope',
25
26 subplot(3,2,5);
27 plot(1:length(am),fun);
28 xlabel iteration, ylabel f,
29
30 subplot(3,2,6);
31 plot(1:length(am),ng);
32 xlabel iteration, ylabel norm(g),

Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999.

[Ack87] D. H. Ackley. A connectionist machine for genetic hillclimbing.
Kluwer, Boston, 1987.

[ALG12a] ALGLIB. Commercial support for alglib. http://www.alglib.net/
commercial.php, 2012.

[ALG12b] ALGLIB. Unconstrained optimization: L-bfgs and cg. http://www.
alglib.net/optimization/lbfgsandcg.php, 2012.

[Bäc96] T. Bäck. Evolutionary algorithms in theory and practice. Oxford
University Press, 1996.

[Bea58] E. Beale. On an iterative method for finding a local minimum of
a function of more than one variable. Technical report, Statistical
Techniques Research Group, Princeton University, 1958.

[Eas90] E. Easom. A survey of global optimization techniques. Technical
report, University of Louisville, 1990.

[Fou12] Free Software Foundation. Gnu compiler collection. http://gcc.
gnu.org/, 2012.

[Han08] Vagn Lundsgaard Hansen. Entrance to Advanced Mathematics: The
metric foundations of modern analysis. Institut for Matematik,
DTU, 2008.

http://www.alglib.net/commercial.php
http://www.alglib.net/commercial.php
http://www.alglib.net/optimization/lbfgsandcg.php
http://www.alglib.net/optimization/lbfgsandcg.php
http://gcc.gnu.org/
http://gcc.gnu.org/

120 BIBLIOGRAPHY

[HBN10] K. Madsen H. B. Nielsen. Introduction to Optimization and Data
Fitting. DTU Informatics, IMM, 2010.

[Hed12a] Abdel-Rehman Hedar. Global optimization test problems.
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/
hedar/Hedar_files/TestGO.htm, 2012.

[Hed12b] Dr. Abdel-Rahman Hedar. Zakharov function. http:
//www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/
Hedar_files/TestGO_files/Page3088.htm, 2012.

[HEJK06] P. Hjorth H. E. Jensen, S. Markvorsen and W. Kliem. Matematisk
Analyse 1. Institut for Matematik, DTU, third edition, 2006.

[Him72] D. Himmelblau. Applied nonlinear programming. McGraw-Hill, 1972.

[Inc12a] Apple Inc. The objective-c programming language. https:
//developer.apple.com/library/mac/#documentation/Cocoa/
Conceptual/ObjectiveC/Introduction/introObjectiveC.html,
2012.

[Inc12b] Apple Inc. What’s new in ios4.0. http://developer.apple.com/
library/ios/#releasenotes/General/WhatsNewIniPhoneOS/
Articles/iPhoneOS4.html, 2012.

[JN00] Steven Wright Jorge Nocedal. Numerical Optimization. Springer,
second edition, 2000.

[Kre89] Erwin Kreyszig. Introductory Functional Analysis with Applications.
Wiley, 1989.

[Lin12] Yo Linux. Tutorial - using c/c++ and fortran together. http://www.
yolinux.com/TUTORIALS/LinuxTutorialMixingFortranAndC.
html, 2012.

[Mey00] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM,
2000.

[Net12] Netlib. Blas (basic linear algebra subprograms). http://www.
netlib.org/blas/index.html, 2012.

[oF12] Aalto University of Finland. History of optimization. http://www.
mitrikitti.fi/opthist.html, 2012.

[Ros60] H. H. Rosenbrock. An automatic method for finding the greatest or
least value of a function. The Computer Journal, 1960.

[Sch07] Gert Schomacker. Gyldendals Gymnasiematematik A. Gyldendal,
2007.

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page3088.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page3088.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page3088.htm
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/library/ios/#releasenotes/General/WhatsNewIniPhoneOS/Articles/iPhoneOS4.html
http://developer.apple.com/library/ios/#releasenotes/General/WhatsNewIniPhoneOS/Articles/iPhoneOS4.html
http://developer.apple.com/library/ios/#releasenotes/General/WhatsNewIniPhoneOS/Articles/iPhoneOS4.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialMixingFortranAndC.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialMixingFortranAndC.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialMixingFortranAndC.html
http://www.netlib.org/blas/index.html
http://www.netlib.org/blas/index.html
http://www.mitrikitti.fi/opthist.html
http://www.mitrikitti.fi/opthist.html

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Theory of Unconstrained Optimization
	1.1 Optimality Conditions
	1.2 Finding the minimizer
	1.3 Line-search
	1.4 Using a trust region with line search
	1.5 Quasi-Newton BFGS method
	1.6 Finite Difference

	2 Installing BLAS and LAPACK in Ubuntu
	2.1 Installing Eclipse, BLAS & LAPACK
	2.2 Creating a new project
	2.3 Importing, using linking BLAS & LAPACK
	2.4 First Matrix-multiplications
	2.4.1 Matrix-Vector
	2.4.2 Matrix-Matrix

	2.5 Solving your first LA-equations

	3 Library documentation
	3.1 Usage example

	4 Mixing FORTRAN and C
	5 Using the library in ...
	5.1 FORTRAN
	5.2 Mac OS X and iOS

	6 Performance testing
	6.1 Himmelblau
	6.2 Rosenbrock
	6.3 Beale
	6.4 Easom
	6.5 Ackley
	6.6 Zakharov

	7 Conclusion
	A C library
	A.1 Library Header
	A.2 BLAS usage
	A.3 Create I matrix
	A.4 Forward difference
	A.5 Quadratic Interpolation
	A.6 Line-search
	A.7 Norm calculation
	A.8 Print performance to file
	A.9 Print performance to folder
	A.10 Unconstrained BFGS minimization

	B Wrappers to external libraries
	B.1 Use Apple Accelerate
	B.2 Use ATLAS

	C Test runs
	C.1 Apple Test
	C.2 Himmelblau
	C.2.1 MATLAB test
	C.2.2 minlbfgs test
	C.2.3 libopti test

	C.3 Rosenbrock
	C.3.1 MATLAB test
	C.3.2 minlbfgs test
	C.3.3 libopti test

	C.4 Beale
	C.4.1 MATLAB test
	C.4.2 minlbfgs test
	C.4.3 libopti test

	C.5 Easom
	C.5.1 MATLAB test
	C.5.2 minlbfgs test
	C.5.3 libopti test

	C.6 Ackley
	C.6.1 MATLAB test
	C.6.2 minlbfgs test
	C.6.3 libopti test

	C.7 Zakharov
	C.7.1 MATLAB test
	C.7.2 minlbfgs test
	C.7.3 libopti test

	C.8 Plot Ackley performance

	Bibliography

