
Persistence in Practice

Sune Keller

Kongens Lyngby 2012
IMM-M.Sc.-2012-142

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2012-142

Summary

The goal of the thesis is to theoretically analyse and compare Node Copying
and Rollback, two approaches to making a data structure partially persistent
(allowing the access of any previous version), and to evaluate in practice which
of them is more suited for use in two different usage scenarios: a sequential
one, where operations are applied in long sequences generating versions with
large data structures; and a randomized one, where operations are executed in
a random order. A doubly linked list is used as the example data structure.

It is found that Node Copying performs significantly better than Rollback in
terms of space complexity regardless of the usage scenario. It also performs
better in accessing a desired version in the randomized scenario independently
of the data set size.

In the sequential scenario, when the data set is large enough, the smaller time
complexity related to navigating the data structure at a given version makes an
optimized implementation of Rollback faster than Node Copying at reaching a
given index inside a desired version.

ii A

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

Lyngby, 30-November-2012

Sune Keller

iv C

Acknowledgements

I would like to thank my supervisers Inge Li Gørtz and Philip Bille of the
Algorithms and Logic section of the department of Informatics and Mathematical
Modelling of the Technical University of Denmark for their guidance and reflec-
tions throughout this project.

vi E

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Scope . 2

2 Method 3
2.1 Background . 3
2.2 The Node Copying method . 4

2.2.1 Node structure expansion 4
2.3 The Rollback method . 6

2.3.1 The näıve approaches . 7
2.3.2 The hybrid approach . 7
2.3.3 Operations sequence optimization 9

2.4 Comparison of Node Copying and Rollback 16

3 Empirical Analysis 19
3.1 Implementation . 19

3.1.1 Execution environment 20
3.1.2 Implemented operations 20
3.1.3 Implemented usage scenarios 21
3.1.4 Program executable arguments 22

3.2 Time measurements . 23
3.2.1 Access . 24
3.2.2 Insert . 26
3.2.3 Other operations . 27

viii CONTENTS

3.3 Space estimates . 30

4 Conclusion 33
4.1 Future work . 34

Bibliography 35

Chapter 1

Introduction

Persistence is the topic dealing with the general availability of previous versions
of a data structure for various purposes. The antonym to “persistent” is in this
context called “ephemeral”, which means that no previous version of a data
structure is available. In the 1989 article by Driscoll et al. [DSST89], it is
described how a data structure may be made persistent.

With partially persistent data structures, any previous version is accessible, but
not modifiable, and as such changes to the data structure can only be made on
the most recent version.

Partially persistent data structures can be compared with “rollback” databases
as defined in [VL87]. “Rollback” databases allow reading from any previous
version of the data structure, but only allow changing the most recent version.
Driscoll et al. describe a method for making any bounded in-degree data struc-
ture partially persistent with O(1) amortized space overhead per version and
O(1) amortized overhead for access of any version and operations on the most
recent version. This method is called Node Copying.

My thesis will analyse and compare Node Copying and Rollback as two different
approaches to obtaining partial persistence, using a doubly linked list as an
example data structure.

2 Introduction

1.1 Scope

In my thesis, only data structures with bounded in-degree will be considered,
and the scope is limited to partially persistent data structures.

The thesis is mainly concerned with making a doubly linked list partially per-
sistent.

When discussing time and space complexity, the RAM model will be used, and
big-O notation is used when deriving and comparing such complexities.

Chapter 2

Method

In this chapter I will describe two approaches to partial persistence. I will
analyse the asymptotic time and space complexities related to creating new
versions to the data structure and to retrieving an element in a desired existing
version.

2.1 Background

Tsotras and Kangelaris [TK95] define as the database state s(t) the collection of
objects that exist at time t in the real-world system modeled by the database.
The ability to access s(t) is here referred to as “temporal access”, and is es-
sentially the same as partial persistence in that it allows read-only access to
all versions and read/write access only to the newest version. I will define the
metric by which the approaches are measured as the cost of producing s(t) and
navigating to an element within it.

I will analyse the following two approaches to obtaining partial persistence:

Node copying which requires structural extensions of the underlying data

4 Method

structure in order to store modification records and other necessary in-
formation within the nodes of the data structure; and

Rollback which requires functional extensions of the underlying data structure
in order to record the necessary information about the context in which
an operation is carried out in order to be able to reproduce or revert it at
a later time.

2.2 The Node Copying method

The purpose of the Node Copying method is to enable partial persistence in
a node-based data structure with bounded in-degree p with an amortized con-
stant factor overhead on space and time complexity and providing transparent
navigation of the data structure.

Node Copying is a method described in [DSST89] by which a data structure
may be made partially persistent through the systematic expansion of the node
structure. An auxillary data structure maintaining entry points into the data
structure, such as which node is the head of a linked list, is also introduced.
These two modifications of the data structure enable queries to be made with
O(1) factor amortized overhead and O(1) factor space per change, given that
the original data structure has a bounded in-degree. In the following, I will
describe in detail the general procedure as well as giving the concrete example
of the linked list.

2.2.1 Node structure expansion

In the Node Copying method, the node structure is expanded by adding two
arrays; one for “modifications” and one for “back pointers”.

Persisting fields. The modifications array records changes made to any of
the fields of the node, including non-pointer fields, since the time when node
was created — the original field values from the time of construction remain
unchanged. A modification record consist of a version number, a field identifier
and a value. When a fields is to be modified, a record is inserted in an empty
slot of the array.

To find the value of a field at a given version v, the modifications array is

2.2 The Node Copying method 5

looked through, and the most recent change before or at v is returned. If no
modification is found, the original field value is returned.

In the Fat Node method described in [DSST89], there is no upper bound on the
size of the modifications array. Therefore, the worst-case time to retrieve a field
value is linearly proportional with the number of modifications.

Limited node size. To get constant factor amortized overhead for field ac-
cess, the size of the modifications array is bounded to the in-degree bound p.
The time to retrieve the field value is then at most c ·p+k = O(1) where c is the
time it takes to read each modification record and field identifiers and version
numbers, and k is the time it takes to read the original field if neccessary.

If the modifications array is already occupied with previous changes when a new
change is required, a copy n′ of the original node n is made. The fields of n′ are
set to the most recent versions of the fields in n, except that the field which was
to be changed is instead set to the required value. Note that the modifications
array of n′ is empty.

But if any nodes were – in the most recent version – pointing to n prior to the
change, they will need to be updated to point to n′. To be able to know which
nodes were pointing to n, a “back pointers” array is maintained. Its size must
of course be equal to the in-degree bound p to be able to contain pointers to all
nodes pointing to n. Whenever a pointer field in a node y is updated to point
to another node x (either when y is constructed or when the field is modified as
described above), the corresponding back pointer in x is updated to point to y.

Cascading effects. When n′ is created, the back pointers of n are followed,
and each of the nodes which pointed to n will have a modification added referring
to the relevant field, and pointing to n′. But if the modifications array is already
full in one of these nodes, a copy of that node will need to be made as described
above. This cascading effect can repeat.

For example, when an element y is inserted at the head of a singly linked list,
its next pointer will point to the element x which used to be the head of the
list. The “next-back” pointer in x is then set to point to y. If the modifications
array of x gets full and a copy x′ needs to be made to allow a new modification,
the “next-back” pointer is followed to make a modification record in y that in
the new version, it should point to x′ instead of x. But if a modification was
already made to y, e.g. its data field was updated, it will itself need to be copied
according to the same scheme — i.e. there may be a cascading effect. In this

6 Method

example, where y was the head of the list, its copy y′ should be indicated as the
new head in the new version in the auxillary data structure.

Amortized constant factor overhead. To prove that – even with cascading
effects – there is still a constant factor amortized overhead per field change, we
shall employ the potential technique.

The intuition is that for every time we copy a node n, the copy n′ will have
an empty modifications array, and thus it will take p modifications to n′ before
a new copy must be made. A node of which a copy has already been made
cannot be the target of yet another modification, and thus the available cheap
modifications to n′ account for the time spent on creating n′.

The following proof outline is based on the proof made in the original paper
[DSST89], but a notable difference here is the absence of a copy pointer, and
the specification that the modifications are stored in a fixed-size array.

We define a live node as a node which can be reached in the most recent version
of the data structure, and a full live node as a live node with a full modifications
array. Let the potential function Φ(v) be the number of full live nodes at version
v. Then the potential at the initial version Φ(0) is zero, and since there cannot
be a negative number of full live nodes, the potential is always greater than or
equal to zero.

The actual cost of an update to a full live node which causes a total of k copies
to be made (both due to the node itself being copied and due to any cascading
effects) is O(k) + O(1) since each copy costs O(1) both in space and time, and
modifying a field costs O(1). For each of the copies created, the original node
is no longer live (since nodes pointing to it are updated to point to the copy),
and the modifications array of the copy is empty. Thus, each copy decreases
the potential by 1, and the total change in potential ∆Φ is O(−k) plus O(1)
in case the last update made via a back pointer fills the modifications array of
that node. Therefore, the amortized time and space cost for the entire update
operation is O(k) + O(1) + (O(−k) + O(1)) = O(1).

2.3 The Rollback method

Rollback is an approach to partial persistence based on the techniques described
in [TK95], namely the combination of the näıve “copy” and “log” methods.

2.3 The Rollback method 7

2.3.1 The näıve approaches

The “copy” approach makes a full copy of every version of the data structure
and makes it available by direct indexing to achieve O(1) access overhead fac-
tor. Creating each copy becomes more expensive in time and space the more
elements are inserted. In the worst case, when only insertions and no deletions
or modifications are made, the cost of creating n versions is O

(
n2
)
.

The “log” approach conserves space by recording for each change made to the
data structure just enough information necessary to undo or redo it, thus giving
a space overhead factor per operation of O(1). A “current” version vcurrent of the
data structure is maintained. Given vcurrent, the version vx can be produced by
undoing or redoing all the changes between vcurrent and vx depending on which
is the oldest. As the number of versions n increases, accessing a specific version
becomes potentially more costly. In the worst case, the overhead factor is O(n)
when vcurrent is v0 and vx is vn, or opposite.

2.3.2 The hybrid approach

An obvious hybrid of the two näıve approaches is to keep the records of each
operation like in the “log” approach, and storing a full copy like in the “copy”
approach only once every d versions. To access version vx, the nearest version
to vx of which there exists a full copy, vs, is retrieved and a mutable copy of the
data structure at that version is made. Then, using the log of the versions from
vs to vx, the data structure corresponding to vx is produced and returned.

In the rest of this document, the term Rollback refers to the hybrid approach.

To reach the full copy nearest to version number v, the following expression is
used: ⌊

v + d
2

d

⌋
With this indexing expression, full copies will be selected for all operations which
are within ±d

2 versions.

Naturally, d is a user parameter. If there are n versions, there will be
⌊
n
d

⌋
full

copies, and the maximum number of operations to reach a specific version is
then O(k + d

2), where k is the time required to retrieve the full copy. It is now
easy to see that the greater d is, the fewer full copies will be made, and thus
the space cost is reduced accordingly. Likewise, the distance to the version in

8 Method

the middle between two full copies increases with d, inducing a higher cost for
producing that version.

As an alternative to making a mutable copy of a full copy when a nearby version
is requested, one could instead allow the full copies to be mutable and moved
within ±d

2 of their original location. This will increase the maximum number
of operations between a full copy and the desired version to d, but will reduce
greatly the time cost of making a working copy of the full copy. If the full
copies are originially uniformly distributed, direct lookup is still possible, but it
is then needed for each full copy to annotate which version it represents. If d is
constant, this approach allows constant time access to any version of the data
structure.

For large enough data sets, physical memory limits may restrict the ability to
make new full copies. A way to defer this is to increase d by a factor c when
near the limit and discard all but every c full copy that exists. This will free
some memory for creating new full copies, but will increase the distance between
them to d′ = c · d. Therefore, the claim no longer holds that the time to access
any version of the data structure is constant. Also, the time spent previously
on creating the full copies which are now discarded is no longer valuable.

The time required to make a changing operation to the latest version equals the
time required to produce vlatest, plus the time required to carry it out using the
underlying data structure, plus the time required to adding an operation record
to the log. Carrying out the operation depends on the operation in question,
but recording the operation in the log potentially requires extra information,
e.g. a remove operation needs to store information in the log allowing the
reproduction of the removed element. Thus, the time complexity depends both
on the operation in question and on the inverse operation, which may have
different time complexity bounds.

It is obvious that with a doubly linked list, the overhead factor for making a
change to the latest version is O(1).

On the other hand, creating the full copy becomes more expensive the more
elements are inserted in the preceeding versions. Thus it is intuitively not pos-
sible to show O(1) factor amortized time overhead for a sequence of insert
operations long enough to cause a full copy to be made.

2.3 The Rollback method 9

2.3.3 Operations sequence optimization

For certain underlying data structures, it may prove feasible to pre-process the
sequence of operations between a full copy vs and the requested version vx in
order to reduce the actual work necessary to reach vx.

Two different types of pre-processing to reduce work when dealing with a linked
list are presented here: Eliminating superfluous operations and reordering oper-
ations. It is worth noting that both of these require knowledge of the underlying
data structure, and thus require more programming time to implement.

2.3.3.1 Eliminating operations

The sequence of operations between vs and vx may contain some operations
which will not need to be explicitly applied. The cases are, in the context of a
linked list:

1. An insert operation followed by a remove operation at the same effective
index — both can be removed from the sequence since they cancel each
other out.

2. An insert or a modify operation followed by a modify operation at
the same effective index — the former can have its associated data value
changed to that of the latter, and the latter can be removed from the
sequence.

3. A modify operation followed by zero or more modify operations and
a remove operation at the same effective index — the former can be
removed from the sequence.

Cases 1 and 2 may of course be combined in the sequence of one insert opera-
tion, one or more modify operations and finally a remove operataion.

Algorithm. Pseudo code for an algorithm handling those cases is found in
Algorithm 2.1.

The general idea is to identify cases 1, 2 and 3 and make the necessary mainte-
nance before removing the relevant operations.

10 Method

Algorithm 2.1 An algorithm for eliminating superfluous operations

procedure EliminateSuperfluousOps(sequence of operations S)
for each operation oi ∈ S, from last to first do

if type(oi) ∈ {insert,modify} then
c← index(oi)

5: for each operation oj ∈ {S|j > i} do
switch type(oj) do

case insert
if index(oj) ≤ c then

c← c + 1

10: case modify
if index(oj) = c then

data(oi)← data(oj)
remove oj from S

case remove
15: if index(oj) < c then

c← c− 1
else if index(oj) = c then

switch type(oi) do
case insert

20: c← index(oi)
for each operation ok ∈ {S|i < k < j} do

if index(ok) > c then
index(ok)← index(ok)− 1

else
25: switch type(ok) do

case insert
if index(ok) ≤ c then

c← c + 1

case remove
30: if index(ok) < c then

c← c− 1

remove oj from S
remove oi from S

case modify
35: remove oi from S

2.3 The Rollback method 11

It iterates through the sequence backwards, i.e. from the last operation to the
first. If an insert or a modify operation oi is found, it starts looking forwards
for a matching modify or remove operation. This is done by iterating through
the proceeding operations while keeping track of which index c of the inserted
or modified element would have after each of the proceeding operations; if a
proceeding operation oj inserts or removes an element to the left of the originally
inserted or modified element, then the index would be shifted to the right or to
the left, respectively.

If oj removes or modifies the element at index c, the type of oi determines what
happens next. Table 2.1 shows which action is taken depending on the types of
oi and oj .

oi

oj modify remove

insert update oi data, remove oj compensate between oi and oj ,
then remove both

modify update oi data, remove oj remove oi

Table 2.1: The table shows which action is taken depending on the types of oi
and oj .

The compensation referred to in the case when oi is an insert operation and
oj is a remove operation works as follows:

• Like in the iteration of the operations proceeding oi, the index c of the
inserted element is maintained while the operations between oi and oj
(both exclusive) are iterated first to last.

• Since no operation prior to oj matches oi, it is safe to assume that all
operations between them have either greater or smaller indices than c.
If an operation ok between oi and oj works on a smaller index, it will
compensate the maintained index c by -1 or +1. If ok works on a greater
index, ok will itself have the index it works on reduced by 1, since its
original index depended on the element of oi being inserted before it.

• When all operations between oi and oj have been examined thusly, oj and
oi are removed from the sequence and the backwards iteration is resumed.

When the backwards iteration is finished examining the first operation in the
sequence, the algorithm terminates and the sequence now contains no operations
matching cases 1, 2 or 3.

12 Method

The space cost of the algorithm is in the order of the sequence size, i.e. O(1),
since it works directly on the sequence. In the worst case, when all n operations
are insert or modify operations, the time cost is O

(
n2
)
, since with every

insert operation, all the proceeding operations are examined when a matching
remove operation is not found.

2.3.3.2 Reordering operations

Applying each operation in the sequence separately is potentially a time expen-
sive approach. Consider the case when each operation inserts an element at the
end of a linked list; the total cost for n insertions on a list of length l would be

O
(

(l + n)
2
)

if every operation application begins by iterating from the head of

the list to the index of insertion.

It would indeed be more efficient to make the insertions in one straight iteration
of the linked list, which would cost O(l+n); l for reaching the end of the list, n
for all the insertions. But this is only possible if the the operations are ordered
by non-decreasing index of application. If they are not, they will have to first
be reordered.

Reordering the sequence of operations by index of application requires some
maintenance. Consider the case when an insert operation oi, which has a
small index of application, is moved to an earlier position in the sequence than
it had originally. Any operations which formerly preceeded oi, and which after
the move will instead proceed it, should take into account the additional element
being inserted; if their index of application is greater than that of oi, it should
be incremented by 1. If oi is a remove operation, the index of application
should instead be decreased by 1 on those operations.

Algorithm. Pseudocode for an algorithm implementing the above approach
is found in Algorithm 2.2.

In each iteration of the algorithm, the minimum operation is identified and
moved to the left in the sequence such that eventually the sequence will be
non-decreasingly ordered by index of application.

The space cost is linear in the number of operations being reordered. Consider
the worst case, when the operations are ordered with strictly decreasing indices
of application; the time cost is then O

(
n2
)
, since the entire remaining sequence

would have to be searched for the minimum index of application prior to the

2.3 The Rollback method 13

Algorithm 2.2 Algorithm for reordering a sequence of operations

function ReorderOperations(sequence of operations S)
R← empty set
while S 6= ∅ do

// Find left-most operation with minimum index of application
5: omin ← op. with minimum index of application

indexmin ← index in S of omin

remove omin from S
append omin to R

// Compensate op.s which will now proceed rather than preceed omin

10: if omin is an insert op. then
for each op. oi ∈ {S|0 ≤ i < indexmin} do

index(oi) ← index(oi) + 1

else if omin is a remove op. then
for each op. oi ∈ {S|0 ≤ i < indexmin} do

15: index(oi) ← index(oi) - 1

return R

removal of that element.

If the operations are already ordered by non-decreasing index of application,
the algorithm only adds to the time cost, and so it may be worth checking that
the sequence requires reordering prior to running the algorithm. That can be
achieved in O(n) time by testing whether each operation works on an index
equal to or greater than the previous one.

The algorithm does not require superfluous operations to be eliminated with
Algorithm 2.1 in order to yield a correct result, but I shall suffice with proving its
correctness under the assumption that no operation works on the same effective
element of the underlying linked list.

If the sequences are reordered as described, the total time cost of reaching
version vx is:

CheckIfUnordered +ReorderOperations +ApplyOperations =

O(n) +O(n2) +O(l + n) =

O(l + n2)

An example of the reordering of 10 operations by the algorithm is found in figure
2.1.

14 Method

Figure 2.1: Example of the reorder algorithm applied to a sequence of 10 operations.
In each iteration, the minimum operation in S is colored cyan. When
an insert operation is removed from S, the operations to the left are
colored green to indicate the incrementation of their label. Similarly,
when a remove operation is removed from S, the operations to the left
are colored red to indicate the decrementation of their label.

2.3 The Rollback method 15

Proof of reorder algorithm. The purpose of the algorithm is to reorder the
operations in the given sequence S0 such that they are ordered non-decreasingly
by index of application, while yielding the same result as S0, allowing the ap-
plication of the entire sequence of operations in a single iteration through the
underlying list.

Definition 2.1 Let S0 be the original sequence given as input to the algorithm,
and let O0 be an empty sequence at the beginning of the first iteration. Let
the operation A||B signify the the unified sequence of A followed by B. The
sequence O0||S0 corresponds to (yields the same result as) S0. At the beginning
of iteration i, let lmini

be the minimum index of any operation in Si, and let
omini

be the left-most operation in Si with such index. Let Li be the operations
to the left of omini

in Si, and Ri those to the right, i.e. Si = Li||omini
||Ri.

Lemma 2.2 At the beginning of iteration i, all operations in Li have greater
indices than omini

, and no operations in Ri have smaller indices than omini
.

Since we intend to change the order of operations, consider the case of swapping
two operations. Let operation ob directly follow oa in a sequence. If ob works
on a smaller index than oa, letting ob be applied before oa will potentially shift
the elements in the list on which the operations work, and oa will subsequently
work on the wrong element unless compensation is made.

Specifically, if ob is an insert operation, oa should be compensated by incre-
menting by 1 the index on which it works, and by decrementing it by 1 if ob
is a remove operation. Let the compensated oa be denoted oa1. If ob is a
modify operation, it does not shift the elements in the list, and as such nothing
additional needs to be done after swapping the operations.

As a result, applying oa||ob corresponds to applying ob||oa1.

Once ob has been swapped with oa and oa compensated, ob may again be
swapped with any operation to its left in a similar fashion, if that operation
also works on a greater index than ob.

Lemma 2.3 Any operation ob may be swapped with the immediately preceeding
operation oa if oa has a greater index of application. When oa is replaced by
oa1

, which has been compensated as described above, the result will be the same.

If omini
is swapped with each operation in Li – which is possible by taking into

account lemma 2.2 and lemma 2.3 – it eventually ends up to the left of the
operations of Li. Each of those operations would need compensation due to
working on greater indices than omini

.

16 Method

Let

ti =

1, if type(omini

) = insert.

0, if type(omini) = modify.

−1, if type(omini) = remove.

If we define Lci as the same as Li, except adding ti to the index of each operation,
then applying Li||omini corresponds to applying omini ||Lci.

Since the result of applying omini
||Lci corresponds to applying Li||omini

, no
operations in Ri need adjustment.

Lemma 2.4 If, at the end of iteration i, Oi+1 is set to Oi||omini and Si+1 is
set to Si \ {omini

}, it follows that applying Oi+1||Si+1 corresponds to applying
Oi||Si.

Proof.

Since at the end of each operation, the operation with the minimum index is
transferred from Si−1 to the back of Oi, the operations in Oi are ordered by
non-decreasing index. At the end of the last iteration, where i = |S0| and lemma
2.4 has been applied |S0| times, Si is empty and Oi contains as many operations
as S0, but in non-decreasing order of index of application, yet yielding the same
result. �

When compared to the worst-case cost of applying the operations individually

— which is O
(

(l + n)
2
)

for n operations on an existing list of length l — it

is worth noting that only in the case of an empty list and a long sequence of
operations, the reordering algorithm is asymptotically as slow. In all other cases,
it is asymptotically faster with its O

(
l + n2

)
time complexity.

It is shown in Section 3.2 that it is practically slower than applying operations
indvidually for short enough lists.

2.4 Comparison of Node Copying and Rollback

As shown in the previous sections, the Node Copying and Rollback have different
asymptotic time and space bounds.

2.4 Comparison of Node Copying and Rollback 17

The following general findings and expectations are derived from the preceeding
analyses:

• Node Copying should have constant factor overhead per operation.

• Recalling that Node Copying spends O(1) at retrieving the head node of a
version, and Rollback spends O(d), Node Copying is expected to be faster
when d is large enough.

• Once the head node has been retrieved, Node Copying has a more time
consuming way of navigating to a given index, because it must look through
the modifications array of each node along the way, whereas Rollback just
needs to follow the next pointer field. Therefore, the farther Node Copying
has to navigate within a single version, the smaller becomes the advantage
of fast retrieval of the head node of that version, when compared to the
Rollback approach.

• Rollback should have constant factor overhead per access operation until
a large enough number of versions are created. The factor will eventually
increase when limit is reached, and as such it is not constant.

18 Method

Chapter 3

Empirical Analysis

In this chapter I will analyse and discuss the experiments I have implemented
and run to examine the performance of the different approaches in practice. The
purpose of the empirical analysis is to make qualified recommendations as to
which of the approaches to use in different usage scenarios.

3.1 Implementation

The implementations are programmed in C++ and conform to the C++11
standard. For compiling the program, the CMake 2.8.9 system has been used
together with the GNU C++ compiler.

The source code of the experiment program should be available together with
this document. It should also be obtainable from the following URL:

https://github.com/sirlatrom/persistent-ds-cplusplus/archive/master.zip

In the abstract class defined in “AbstractDoublyLinkedList.h” are declared
the common functions that the different implementations should provide to the
main experiment program, which is defined in “main.cpp”.

https://github.com/sirlatrom/persistent-ds-cplusplus/archive/master.zip

20 Empirical Analysis

Compiling is done by changing into the “build” directory, running “cmake ..”
and then “make”.

3.1.1 Execution environment

The empirical analysis is based on the output of executing different implemen-
tations on a machine with the following specifications:

CPU Intel R©CoreTMi5-2400 CPU @ 3.10GHz × 4
Memory Hynix/Hyundai 2048 MB DDR3 RAM @ 1333 MHz × 2
Operating System Ubuntu 12.10 64-bit

The machine has been put into single-user mode prior to execution, and no
other non-operating system processes have run at the same time apart from the
login shell.

3.1.2 Implemented operations

I have implemented Node Copying and Rollback for a doubly linked list. The
Rollback implementation exists in two variants:

Blackbox Uses a simple, ephemeral doubly linked list for applying each oper-
ation between full copy and destination version separately.

Eliminate-Reorder Eliminates superfluous operations using Algorithm 2.1
and then reorders the remaining ones using Algorithm 2.2 before applying
them in a single iteration through the underlying ephemeral doubly linked
list.

Both variants default to a maximum of 4000 full copies and an initial distance
of 65 operations between them. Whenever 4000 full copies have been made,
every second one of them is deleted (i.e. the number of full copies then becomes
2000), and the distance is doubled. These figures have been chosen by bisecting
within the two-dimensional between them to find the most efficient values for
the execution environment. Both variants employ the technique described in
Section 2.3.2 for moving the full copies within ±d

2 of their original position.

All implementations support the following operations:

3.1 Implementation 21

insert(i, d) Inserts an element with data d at index i.

modify(i, d) Modifies the data of the element at index i to d.

remove(i) Removes the element at index i.

These first three represent the usual operations available on a linked list, with
bulk operation friendly parameters (conventional linked list implementations
take a pointer to a node instead of an index). The difference is that they create
a new version of the data structure.

head(v) Returns the head node of the list at version v.

size(v) Returns the size of the list at version v.

These next two are also usually available in a linked list implementation, but
these variants take a version number v from which to return the information.

access(v, i) Returns the value of the element at index i in version v.

num versions() Returns the total number of versions.

These last two are implemented for the convenience of testing bulk usage of the
data structure.

Let the operations insert(i, d), modify(i, d), remove(i) and access(v, i) be
the ones benchmarked and henceforth be referred to as “the operations”.

3.1.3 Implemented usage scenarios

In benchmarking the performance of the approaches in practice, we will look
at how they perform under various usage scenarios. We cosider only scenarios
concerning at least a sizeable total number of operations (i.e. N ≥ 1000).

When either of the approaches are to be used in practice, one can imagine
different usage scenarios:

Random The operations are executed in random order with no particular pat-
tern, except that if an operation is illegal (such as removing when the list

22 Empirical Analysis

is empty), an insert operation is chosen. They may be weighted such
that there is different probability for choosing different operations.

In my experiments, the probability is equal (25%) for insert, modify,
remove and access operations. Thus, the number of operations of each
type will be close to 1

4 of the total number of operations.

Sequential The different types of operations are executed in sequences.

In my experiments, equally many insert, modify, remove and access
operations are made, and in that order. Thus, the number of operations
of each type will be exactly a quarter of the total number of operations.
The index on which the operations operate on are still randomly chosen
unless otherwise specified.

Other usage scenarios could be imagined, including specially tailored worst-case
scenarios designed to stress the implementations to their fullest, and scenarios
simulating how specific algorithms solving well-known problems, such as planar
point location, would behave. However, due to time constraints, such scenarios
have been left out.

3.1.4 Program executable arguments

The above scenarios have been implemented in the program msc, which accepts
the following arguments:

--count/-c {num} Total number of operations to carry out (default: 1000).

--randomize-operations If passed, applies the operations as described in the
Random scenario above – otherwise as in the Sequential secenario (default:
off).

--rollback-eliminate-reorder/-l Will use the Eliminate-Reorder Rollback
implementation (default).

--rollback-blackbox/-r Will use the Blackbox Rollback implementation.

--node-copying/-p Will use the Node Copying implementation.

--max-snapshot-dist/-d {num} Maximum number of operations between full
copies (default: 65, applies only to the Rollback implementations).

--max-num-snapshots/-m {num} Maximum number of full copies before adap-
tive fallback is carried out (default: 4000, applies only to the Rollback
implementations).

3.2 Time measurements 23

--head-only/-h If set, access operations will work on index 0, i.e. the head
of the list, instead of a randomly chosen index.

--store-results/-s If set, will store results in an SQLite database file “sqlite.db”.

Only the last one specified of the arguments -p, -l and -r is used.

3.2 Time measurements

I have run a series of experiments with various combinations of program argu-
ments in order to determine the time-related performance of each implemen-
tation. The same arguments are used 10 times for each of the following total
operation counts, which are exponentially spaced between 1000 and 2000000:

1000 2327 5415 12599 29317 68219 158740 369375 859506 2000000

Experiments simulating the Sequential scenario are not run for the last three
counts, since with the Rollback implementations they would exceed the available
memory of the execution environment, and with the Node Copying implemen-
tation they would take exceedingly long to complete.

If the --head-only argument is given, the index passed to the access opera-
tions is 0. Otherwise, the index is randomly selected from the range [0..N [where
N is the number of elements in the list at the version in question. Effectively,
the Eliminate-Reorder implementation should perform worse than the Blackbox
when this argument is given, since there is no reordering to be done when all
operations work on index 0.

In the following graphs, all data points are averages over 10 runs with iden-
tical parameters, each representing the duration spent on the respective oper-
ations. For the Rollback variants, it includes fetching the relevant full copy,
pre-processing the sequence of operations, and producing and navigating the
resulting list. For Node Copying, it includes looking up which persistent node
is the head at the version in question as well as navigating to the desired index.
The Y error bars indicate ±1.96 times the standard deviation, i.e. a 95% con-
fidence interval. Data points for the Sequential scenario are marked by boxes,
while those for the Random scenario are marked by diamonds. Please note that,
unless otherwise stated, the count axis indicates the count of the operation type
being discussed, and not the total operation count.

24 Empirical Analysis

3.2.1 Access

For this operation, the time measured is that which it takes to get the head
of the list of a random version and then iterating to a randomly chosen index
within that list.

3.2.1.1 Random scenario

The following conclusions regarding the Random scenario are evident when ex-
amining the diamond-shaped data points plotted in Figure 3.1:

Node Copying is faster than either of the Rollback implementations regardless
of count. This is most likely due to the constants being lower for Node Copying
than for Rollback when accessing the head of a version, and the cost eventually
increasing for the Rollback variants.

The Blackbox variant of the Rollback implementation shows to be faster than the
Eliminate-Reorder variant. This is most likely due to the list never growing very
large, owing to the remove operations occurring with 25% probability mixed
between other operations, shrinking the list. When the list is not very long, it
is cheaper to iterate the list from the head to carry out the operations rather
than running O(n2) time algorithms on the operation sequences.

The Rollback implementations both show an trend to increase toward the higher
end of the count axis, which can be explained by the fact that the distance
between full copies will double after operation no. 4000 × 65 = 2.6 × 105 and
again after operation no. 2.6×105+130×2000 = 5.2×105 changing operations.

When these events occur, some time is spent on discarding full copies, and
afterwards it will take twice as long in expectation to reach a uniformly randomly
chosen version.

3.2.1.2 Sequential scenario

The following conclusions regarding the Sequential scenario are evident when
examining the box-shaped data points plotted in Figure 3.1:

Up to total operation counts of about 5415 corresponding to approx. 3
45415 ≈

4061 versions, Node Copying is faster than Rollback. But since longer sequences

3.2 Time measurements 25

10
2

10
3

10
4

10
5

10
6

count

10
−4

10
−3

10
−2

10
−1

10
0

d
u
ra

ti
o
n
 p

e
r

o
p
 (

m
s)

node_copying/sequential node_copying/randomized
blackbox/sequential blackbox/randomized
eliminate_reorder/sequential eliminate_reorder/randomized

access: duration per op (ms) vs count

Figure 3.1: Results for access operations.

of insert operations are carried out with higher total operation counts, the
average length of the list at a randomly chosen version increases.

Once the head of a given version has been obtained, Node Copying is slower at
iterating through the list than Rollback. With large enough data sets, the list
will be so long that the cost of iterating the list becomes greater, when compared
to Rollback, than the benefit of being faster at getting the head node.

If the Blackbox variant of Rollback could allocate enough memory to complete
a greater number of operations, it would likely surpass Node Copying in speed
per access operation around the 105 mark.

The time spent on optimizing the operations sequence in the Eliminate-Reorder
variant makes it perform worse at access operations than the Blackbox vari-
ant with low operation counts. Once enough elements are inserted, it pays off
to reorder the operations for a single iteration through the list instead of n
potentially full iterations for n operations.

This is the case already at a total operations count of 2327, which corresponds
to a list length of at least 582 elements, where Eliminate-Reorder becomes faster
than Blackbox. With slightly more than 5415 total operations, corresponding

26 Empirical Analysis

to a list length of at least 1354, it is also faster than Node Copying.

3.2.2 Insert

For this operation, the time measured is that which it takes to insert an element
at a randomly chosen index of the list in its most recent version.

3.2.2.1 Random scenario

The following conclusions regarding the Random scenario are evident when ex-
amining the diamond-shaped data points plotted in Figure 3.2:

The Blackbox variant of Rollback dominates the other implementations with any
operation count. Eliminate-Reorder starts out the slowest, but after 5415 to-
tal operations, corresponding to at least 1354 insert operations, it becomes
faster than Node Copying. Eventually, Eliminate-Reorder and Blackbox are
very nearly equally fast.

The simple explanation to this result is that Node Copying is slower than the
Rollback implementations at iterating through the list to find the point of in-
sertion. Once enough versions exist with long enough lists, this deficiency will
cost Node Copying more than it gains from its fast retrieval of the head node.

3.2.2.2 Sequential scenario

The following conclusions regarding the Sequential scenario are evident when
examining the box-shaped data points plotted in Figure 3.2. Note that prior
to the count access operations, equally many insert, modify and remove
operations have been executed, and thus a total of 1 + 3

4count versions exist.

The Rollback variants are virtually equally fast.

This is because, in contrast to the Random scenario, the most recent version
is already available when the insert operation is to be applied, and thus that
version does not need to be retrieved before the operation can be applied.

Node Copying is slower than both Rollback variants, and increasingly more so
as more insert operations are carried out. This result shows most clearly how,

3.2 Time measurements 27

10
2

10
3

10
4

10
5

10
6

count

10
−4

10
−3

10
−2

10
−1

10
0

d
u
ra

ti
o
n
 p

e
r

o
p
 (

m
s)

node_copying/sequential node_copying/randomized
blackbox/sequential blackbox/randomized
eliminate_reorder/sequential eliminate_reorder/randomized

insert: duration per op (ms) vs count

Figure 3.2: Results for insert operations.

as pointed out before, Node Copying is slower at iterating through the list to
the point where the changing operation is supposed to take place.

3.2.3 Other operations

The modify and remove operations show virtually the same results as the
insert operation, since the outcomes mostly depend on how long the list gets
in the versions created — a figure which depends primarily on the number of
insert operations.

The graphs are nevertheless included in Figure 3.3 for comparison.

3.2.3.1 Total duration

When looking at the total duration, i.e. the time from start to finish of the
entire scenario, it turns out that Node Copying is the fastest — see Figure 3.4
— but this depends largely on the chosen probabilities/ratios of each operation.

28 Empirical Analysis

10
2

10
3

10
4

10
5

10
6

count

10
−4

10
−3

10
−2

10
−1

10
0

d
u
ra

ti
o
n
 p

e
r

o
p
 (

m
s)

node_copying/sequential node_copying/randomized
blackbox/sequential blackbox/randomized
eliminate_reorder/sequential eliminate_reorder/randomized

modify: duration per op (ms) vs count

10
2

10
3

10
4

10
5

10
6

count

10
−4

10
−3

10
−2

10
−1

10
0

d
u
ra

ti
o
n
 p

e
r

o
p
 (

m
s)

node_copying/sequential node_copying/randomized
blackbox/sequential blackbox/randomized
eliminate_reorder/sequential eliminate_reorder/randomized

remove: duration per op (ms) vs count

Figure 3.3: Results for modify and remove operations.

3.2 Time measurements 29

10
3

10
4

10
5

10
6

10
7

count

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

d
u
ra

ti
o
n
 (

m
s)

node_copying/sequential node_copying/randomized
blackbox/sequential blackbox/randomized
eliminate_reorder/sequential eliminate_reorder/randomized

total: duration (ms) vs count

10
3

10
4

10
5

10
6

10
7

count

10
−4

10
−3

10
−2

10
−1

10
0

d
u
ra

ti
o
n
 p

e
r

o
p
 (

m
s)

node_copying/sequential node_copying/randomized
blackbox/sequential blackbox/randomized
eliminate_reorder/sequential eliminate_reorder/randomized

total: duration per op (ms) vs count

Figure 3.4: Total duration and duration per operation across all the operations
of one experiment for each batch size.

30 Empirical Analysis

3.3 Space estimates

In order to estimate the memory usage of the different implementations, pre-
processor directives have been introduced which control whether time or mea-
surements are made. If the MEASURE SPACE symbol is defined, no lines of code
which measure the time of operations are compiled or executed. Instead, code
lines are introduced which estimate the memory usage.

The memory usage for an instance of the Rollback implementation with F full
copies and N total operations is estimated according to the following formula:

total space = size of(ephemeral node)×
F∑
i=1

size(full copyi)

+N × size of(operation record)

+F × size of(full copy record)

+size of(auxillary DS)

The total memory reserved by the program when using Eliminate-Reorder for
large data sets is measurably smaller when observed with OS utilites, than
when using Blackbox. This is because fewer nodes are allocated which would
be deleted again as part of getting form version vcurrent to version vx.

For Node Copying, the estimation is more accurate, given that every time a new
persistent node is created, either due to an insert operation or due to a copy
being made as described in Section 2.2.1, a counter is incremented by the size
of a persistent node. The size of the auxillary data structure indicating which
node is the head in each version is also estimated.

In Figure 3.5 it is clearly visible that, as expected, Rollback uses significantly
more space than Node Copying in the Sequential scenario — and consistently
more so in the Random scenario.

3.3 Space estimates 31

10
3

10
4

10
5

10
6

10
7

count

10
4

10
5

10
6

10
7

10
8

10
9

10
10

e
st

im
a
te

d
 s

iz
e
 i
n
 b

y
te

s

node_copying/sequential node_copying/randomized
eliminate_reorder/randomized eliminate_reorder/sequential

estimated memory usage

Figure 3.5: Estimated memory usage.

32 Empirical Analysis

Chapter 4

Conclusion

I have analysed and compared two approaches to making a data structure par-
tially persistent.

The two approaches have their strengths and weaknesses. As identified in the
Method chapter and shown in the Empirical Analysis chapter, they yield differ-
ent results under different usage scenarios.

If sufficient programming time is available for implementing an optimized Roll-
back approach, it is the recommended option when dealing with large numbers
of operations in a manner similar to the Sequential scenario — provided that
sufficient system memory is available. This is especially the case if many access
operations are expected to be made which are followed by navigation far into
the produced version.

On the other hand, a data structure which is not suitable for optimizations
such as those which went into Eliminate-Reorder, could still be made partially
persistent with reasonable effort using Node Copying, and the results would be
better than when using Blackbox Rollback.

If the effective sizes of the data structure in the various versions do not become
too large, it is recommended to apply the Node Copying approach, unless very
few access operations are expected.

34 Conclusion

4.1 Future work

It could be investigated whether compression techinques could be applied when
storing the full copies and/or the operations log in the Rollback implementa-
tions. If the benefit in terms of lower memory usage is great enough, it would
allow working with larger data sets than with the implementations used in this
thesis.

More advanced data structures, such as binary search trees, could be imple-
mented to see whether the same general conclusions apply, or if they are specific
to a doubly linked list. Notably, it would be interesting to see if eliminating su-
perfluous operations or optimizing the order of the operations sequence or other
such optimizations are possible and/or feasible for more advanced data struc-
tures.

Caching techniques or other optimizations could be employed to secure faster
navigation of the underlying data structure with Node Copying.

More elaborate usage scenarios could be implemented and tested using the exist-
ing framework. E.g. version access patterns showing how well-known algorithms
would perform, such as planar point location. Different probabilities in the Ran-
dom and Sequential scenarios could also simulate different usage patterns.

It could be investigated whether approaches from different paradigms could
effectively provide partial persistence and be compared to the existing imple-
mentations.

It might also be worthwhile to find efficient ways of converting between the two
approaches such that if conditions change, the one which is most efficient can
be used.

Bibliography

[DSST89] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E.
Tarjan. Making data structures persistent. Journal of Computer and
System Sciences, 38(1):86 – 124, 1989.

[TK95] Vassilis J. Tsotras and Nickolas Kangelaris. The snapshot index: An
i/o-optimal access method for timeslice queries. Information Systems,
20(3):237 – 260, 1995.

[VL87] Vinit Verma and Huizhu Lu. A new approach to version manage-
ment for databases. Managing Requirements Knowledge, Interna-
tional Workshop on, 0:645, 1987.

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Scope

	2 Method
	2.1 Background
	2.2 The Node Copying method
	2.2.1 Node structure expansion

	2.3 The Rollback method
	2.3.1 The naïve approaches
	2.3.2 The hybrid approach
	2.3.3 Operations sequence optimization

	2.4 Comparison of Node Copying and Rollback

	3 Empirical Analysis
	3.1 Implementation
	3.1.1 Execution environment
	3.1.2 Implemented operations
	3.1.3 Implemented usage scenarios
	3.1.4 Program executable arguments

	3.2 Time measurements
	3.2.1 Access
	3.2.2 Insert
	3.2.3 Other operations

	3.3 Space estimates

	4 Conclusion
	4.1 Future work

	Bibliography

