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Abstract

A* with admissible heuristics is the leading approach to optimal planning. Pat-
tern database (PDB) heuristics are admissible heuristics based on abstractions of
the search space and have recently had a breakthrough as general heuristics for
automated planning. The selection of appropriate abstractions is of paramount
importance to the informedness of a PDB heuristic. Based on a combination of
novel and well-known techniques, we show how to efficiently constrain abstrac-
tions which leads to increased informedness of PDB heuristics. State-of-the-
art in PDB heuristics iteratively selects promising abstractions from the search
space of all possible abstractions using modified local search techniques. We in-
troduce an approach called variable pruned mutex constrained extended pattern
database generation that has several theoretical advantages over the state-of-
the-art approach. Some of which lead to more informed PDB heuristics, while
others lead to reduced computation time without affecting informedness. Ex-
perimental evaluations show that our approach also improves state-of-the-art
for PDB heuristics in practice.
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Chapter 1

Introduction

Automated planning (planning) is a major classical branch of Artificial Intel-
ligence (AI), ultimately aiming at approaching human problem-solving ability
and flexibility. Given a high-level description of the world, the planning problem
is to determine how to achieve some desired goal.

Planning is a natural component in most systems comprised by intelligent and
autonomous agents and has important applications in areas such as logistics,
scheduling and space technology. The inherent level of abstraction also allows
planning problems to easily model all kinds of abstract reasoning problems.

The expressivity and generality comes at the cost of high complexity and plan-
ning is intractable in the general case. Thus, making one solver (planner) that
will perform sufficiently well on all planning problems is deemed to fail. Never-
theless, the research field of planning has experienced a major scalability break-
through in the efficiency of general planners in the last decade, largely thanks
to heuristic search.

General heuristics are not easy to design. The most successful approaches all
build on the idea of solving an abstracted or relaxed version of the problem and
using the solution length as the heuristic estimate.

We consider one such general heuristic called the pattern database (PDB) heuris-
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tic. The PDB heuristic is very flexible but relies on a structured way to deter-
mine how to abstract planning problems in a general setting. So far, the most
successful approach to this is called the iPDB-method which puts the PDB
heuristic on par with other state-of-the-art heuristics for optimal planning. We
present, analyse and experimentally evaluate several ideas for improving both
the iPDB-method and the pattern database heuristic in general. Our main
contribution is Variable Pruned Mutex Constrained Extended Pattern Database
Generation which improves the iPDB-method both in theory and practice. The
practical results are obtained by experiments on the benchmark set of plan-
ning problems provided by the latest International Planning Competition (2011
edition).

The International Planning Competition (IPC) is a biennial event where theo-
retical results and ideas for planning are put to the test and compared in practice
on an ever growing benchmark set of well over 1000 diverse planning problems.

As it is customary in the planning community we will relate, compare and eval-
uate the practical efficiency of different approaches to solving planning problems
in the frame of the benchmark set from the latest IPC. See Edelkamp et al.
(2011) for an in-depth description and analysis of the IPC benchmark sets and
how they are constructed.

We consider only fully ground planning in the sequential (single-agent) setting
with full observability, determinism and static and discrete environments. The
reader is expected to be familiar with these concepts as well as the remaining
basic terminology of automated planning as found in Russell & Norvig (2010),
Ghallab et al. (2004) or similar.

In this thesis definitions, theorems and lemmata that stem from elsewhere in the
literature are marked with a reference. Results marked “original” are not found
anywhere in the literature known by the author whereas unmarked definitions,
theorems and lemmata either are variants or generalizations of the work of others
or are expected to be so. All proofs are original by the author unless otherwise
noted.

1.1 Structure of the thesis

Chapter 2 first introduces the relevant planning formalism and the associated
notation. This is followed by a set of known results regarding the computational
complexity of planning and a discussion on how they influence the practical ap-
plications. Chapter 3 examines the role of heuristics in planning and introduces
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abstraction heuristics. In Chapter 4 we introduce the pattern database heuris-
tic, the iPDB-method, present our contributions and consider the theoretical
properties hereof. Chapter 5 moves on to evaluate these effects in practice and
includes a brief discussion of the positive and negative results of the conducted
experiments. Chapter 6 presents ideas for future work on PDB heuristics. Fi-
nally, Chapter 7 examines the broader consequences of the results obtained in
the previous chapters.

Remark The busy reader who is familiar with the complexity of automated
planning may skip Section 2.2, as only already known complexity results are
presented. However, it may help the reader reach a deeper understanding of
the expressive power of automated planning and why it is very hard from a
computational point of view. This is essential to understand both the power and
limitations of automated planning. Furthermore, it serves in combination with
Section 2.3 as a short primer for the following chapters.
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Chapter 2

Planning

This chapter defines the formalism in which we consider automated planning
and presents some of the well known related complexity results. This is followed
by a brief discussion on how these results affect our ability to solve planning
problems in practice.

As a simple example of a planning problem consider the classical Gripper
problem (McDermott, 2000) depicted in Figure 2.1.

Example 2.1 (gripper) The problem consists of a number of balls, a robot
with two grippers and two rooms. The robot can move between the rooms and
pick up and drop balls with each of its grippers. Initially, the robot’s grippers
are empty and it is situated in one of the rooms along with all of the balls. The
objective is to move all the balls to the other room.

To automatically solve and reason about the complexity of solving such prob-
lems, we need a formal way of expressing them.
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Figure 2.1: The initial state of a classical Gripper problem.

2.1 Planning Formalism and Notations

The Stanford Research Institute Problem Solver (STRIPS) is an automated
planner developed at Stanford Research Institute in the early 1970s. STRIPS
was also used to name the formal language accepted as input to the planner
which has come to be defining for what we today know as classical planning
or propositional STRIPS. The Extended Simplified Action Structure (SAS+)
formalism is an alternative to propositional STRIPS. Albeit sharing the repre-
sentational power and computational complexity of propositional planning, the
SAS+ formalism allows a more compact representation and closer resembles how
humans intuitively may think of a planning task. This resemblance is important
when designing heuristics as it makes it easier to discover and exploit structural
patterns in planning problems.

2.1.1 SAS+ planning

The SAS+-formalism is in many respects similar to the STRIPS formalism with
the important difference that state variables may have non-binary (finite) do-
mains. The following definitions differ slightly from those of Bäckström & Nebel
(1995), Ghallab et al. (2004) and Helmert (2006) which we refer to for a more
thorough definition of the formalism of multi-valued planning including exten-
sions such as axioms, derived variables and non-unit-cost operators.

Definition 2.1 (SAS+ planning tasks) A SAS+ planning task Π is a 4-tuple
Π = 〈V, s0, s∗,O〉 where:

• V is a finite set of the state variables v, each with an associated finite
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domain Dv. If d ∈ Dv then v
.
= d denotes an atom of Π that is true iff v

has the value d.

• s0 is a state over V called the initial state. A state is a function s that
maps each state variable v ∈ V into a value s(v) ∈ Dv. As is common
in STRIPS planning, we represent and treat such functions as the set of
atoms that they make true. For an atom x we write var(x) for the variable
associated with x and val(x) for the value, for example if x is the atom
v
.
= d, then var(x) = v and val(x) = d.

• s∗ is a partial state over V called the goal . A partial state s′ is a state
restricted to a subset of the state variables. dom(s′) is the subset of
variables on which s′ is defined and we say that v is a goal variable iff
v ∈ dom(s∗). We will often use the term state when it is clear from the
context or does not matter whether the state is partial or complete. We
say that a state s is a goal state iff s ⊇ s∗.

• O is a finite set of operators over V. An operator o is a triple (name, pre,
eff) where name is the unique name of the operator o separating it from
other operators, pre and eff are partial states called preconditions and
effects respectively.

We may refer to a SAS+ planning task simply as a planning task and to state
variables just as variables.

2.1.2 Semantics

The semantics of planning tasks are defined via labeled transition systems.

Definition 2.2 (labeled transition systems) A labeled transition system is
a 5-tuple T = 〈S,L,A, s0, S∗〉 where:

• S is a finite set of states.

• L is a finite set of transition labels.

• A ⊆ S × L × S is a set of (labeled) transitions. A transition (s, l, s′)
represents the fact that there is a transition from state s to state s′ with
label l.

• s0 ∈ S is the initial state.

• S∗ ⊆ S is the set of goal states.
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We may refer to a labeled transition system as a transition system as we only
consider labeled transition systems throughout this thesis.

Definition 2.3 (reachability) Given a transition system T = 〈S,L,A, s0, S∗〉,
a state s ∈ S is reachable iff there is a path from s0 to s following the transitions
of T . If there is no such path, s is unreachable. The set of reachable states of
T is denoted r(T ).

Definition 2.4 (transition systems for planning tasks) The transition sys-
tem for a planning task Π = 〈V, s0, s∗,O〉 is the labeled transition system
T = 〈S,L,A, s0, S∗〉 denoted T (Π) such that:

• S is the set of states defined by all possible complete assignments of values
to the variables in V.

• L = {name | (name, pre, eff) ∈ O}

• A = {(s, n, s′) | (n, p, e) ∈ O ∧ s ⊇ p ∧ s′ ⊇ e}. We say that o = (n, p, e)
is applicable in state s and the result of applying it is s′ iff there is a
transition (s, n, s′) ∈ A. We say that o achieves the goal from state s iff
s′ is a goal state and s is not and that o achieves an atom x iff x ∈ e.

• S∗ = {s | s ∈ S ∧ s ⊇ s∗}.

A path from s0 to S∗ following the transitions of T (Π) is a plan for Π. A plan
is optimal iff the length of the path is minimal. Π is solvable iff there is a plan
for Π. Searching in the transition graph spanned by S and A is what we know
as state space search.

An example of a Gripper planning task is given below, note that we have
specified a somewhat unusual initial state for the sake of variation:

Example 2.2 (SAS+ gripper) Let Πgripper = 〈V, s0, s∗,O〉 such that:

V = {ball1, ball2, ball3, gripper1, gripper2, robot}
where

Dball1 = Dball2 = Dball3 = {room1, room2, gripper1, gripper2}
Dgripper1 = Dgripper2 = {free, occupied}
Drobot = {room1, room2}

s0 = {ball1
.
= room1, ball2

.
= room2, ball3

.
= gripper2

robot
.
= room2, gripper1

.
= free, gripper2

.
= occupied}
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room2room1

ball1 ball2 ball3

gripper1
gripper2

Figure 2.2: The initial state s0 of the Πgripper task.

s∗ = { ball1
.
= room2, ball2

.
= room2, ball3

.
= room2}

O = {(move1, pre = {robot .= room1}, eff = {robot .= room2}),
(move2, pre = {robot .= room2}eff = {robot .= room1})}∪
∪i,j∈{1,2}∧k∈{1,2,3}
{(picki,j,k, pre = {ballk

.
= roomi, robot

.
= roomi, gripperj

.
= free}

eff = {ballk
.
= gripperj, gripperj

.
= occupied}),

(dropi,j,k, pre = {ballk
.
= gripperj, robot

.
= roomi}

eff = {ballk
.
= roomi, gripperj

.
= free})}

Operators, state variables and the values in their domains need not have mean-
ingful names as in this example.

It may not be intuitively obvious why the gripper variables with the domain
{free, occupied} are needed, as their values are implied by the values of the ball
variables. However, they are used to model the state of the grippers and the
fact that a gripper can only carry one ball at a time. The definition above is not
unique as there are other encodings that specify a planning task with the exact
same properties. For example we could have defined the domain of the gripper
state variables as Dgripperx = ∪3i=1{balli} ∪ {free} and modified the effects of
the picki,j,k operators accordingly. This would increase the domain size of the
gripper variables but would still encode the problem as intended.

In general, there is no single way of translating a problem, from natural language
or even from the STRIPS formalism to the SAS+ formalism. It is simply a mat-
ter of modeling. Modeling choices may increase the complexity of the problem,
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sometimes dramatically and often unintended. We will return to this intricacy
in Section 2.2. The STRIPS inspired Planning Domain Definition Language
(PDDL; Edelkamp & Hoffmann, 2004) is currently the de facto language used
in planning but polynomial-time algorithms for automatic translation between
PDDL planning tasks and SAS+ planning tasks exist (Helmert, 2008).

Having introduced the SAS+ formalism we move on to consider the search and
decision problems it gives rise to and their computational complexity; How hard
is it to determine if a plan exists and how hard is it to generate (optimal) plans
in the general case.
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2.2 Computational Problems

When analyzing the computational complexity of planning we must distinguish
the problem of generating a plan from the initial state to a goal state, from the
problem of deciding whether a plan exists.

We consider the following problems:

Definition 2.5 [Plan] is the following search problem: Given a planning task
Π with initial state s0 and goal state s∗, compute a path in T (Π) from s0 to S∗
or prove that none exists.

Definition 2.6 [PlanEx] is the related decision problem: Given a planning
task Π with initial state s0 and goal state s∗, does T (Π) contain a path from s0
to S∗.

Definition 2.7 [PlanOpt] is the following optimization problem: Given a
planning task Π with initial state s0 and goal state s∗ compute an optimal path
in T (Π) from s0 to S∗ or prove that no path exists.

Definition 2.8 [PlanLen,k] is the related decision problem: Given a planning
task Π with initial state s0 and goal state s∗ and a constant k, does T (Π) contain
a path of length at most k from s0 to S∗.

It is well known that planning in general is decidable and intractable (Bylander,
1994) which holds for any of the problems above1.

Decidability is trivial for all problems, as the number of states of a SAS+ plan-
ning task is the set of all possible complete variable assignments. As each vari-
able has a finite domain, the number of states must also be finite. In fact, for
a planning task Π, the number of states is

∏
v∈V |Dv|. In the following we will

consider and prove some of the hardness results and discuss how the problems
are related.

2.2.1 Complexity

The complexity of an algorithm is measured against the size of the input given
to the algorithm. The size of a planning problem is traditionally given in terms

1We consider problems that are not polynomial-time solvable to be intractable and assume
that P 6= NP
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of the variables and the operators in the problem, as an instance can trivially
be encoded in space polynomial in these.

Trivially, search problems are always as hard as their corresponding decision
problems, but the opposite is not always the case. In particular not for the
problems in definitions 2.5-2.8, simply because writing down a plan may take
more time than determining its existence.

Theorem 2.9 For all m > 0 there is some solvable instance Πm of the Plan
problem s.t. Πm is of size O(p(m)) for some polynomial p and all solutions to
Π are of length O(2m).

(Bylander, 1994)

Proof. Let m > 0 and Π = 〈V, s0, s∗,O〉 such that:

• V = {v1, . . . , vm}

• Dv = {0, 1} for all v ∈ V.

• s0 = {v1
.
= 0, . . . , vm

.
= 0}.

• s∗ = {v1
.
= 1, . . . , vm

.
= 1}

• O = {(inc1, pre = ∅, eff = {v1
.
= 1})}∪

∪mi=2{(inci, pre = {v1
.
= 1, . . . , vi−1

.
= 1},

eff = {v1
.
= 0, . . . , vi−1

.
= 0, vi

.
= 1})}

Obviously Πm is of size O(m2). We prove by induction that there is a shortest
plan of length 2m − 1 for the above instance:
For m = 1 the single operator inc1 achieves the goal in 21 − 1 = 1 step.
The hypothesis is that the minimal plan for Πi has length 2i − 1.
For m = i+ 1. Only inci+1 achieves vi+1

.
= 1 thus it must be part of any plan.

But inci+1 is only applicable in states where v1
.
= 1, . . . , vm−1

.
= 1 hold. The

sequence of operators inducing a path to such a state also induces a plan for Πi

which by the induction hypothesis has minimal length 2i − 1. Executing inci+1

leaves us in the state {v1
.
= 0, . . . , vm−1

.
= 0, vm

.
= 1}. But from that state, the

minimal plan to reach the goal state is again a plan for Πi with minimal length
2i − 1. Thus the total length is 2(2i − 1) + 1 = 2i+1 − 1 = 2m − 1. �

(adapted from Bylander, 1994)
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As there are planning tasks where all solutions are of exponential length, any
algorithm for the Plan and PlanOpt problems may require exponential time.
The results for the decision problems are only slightly better.

Theorem 2.10 PlanEx (PlanLen,k) is in PSPACE. (Bylander, 1994)

Proof. We can guess a (length k) plan one operator at a time and verify it
step by step using polynomial space, thus the problem is in NPSPACE. As
NPSPACE = PSPACE by Savitch’s theorem (Savitch, 1970), the problem is
also in PSPACE. �

Theorem 2.11 PlanEx is PSPACE-hard. (Bylander, 1994)

Proof. We refer the reader to Bylander (1994) and Bäckström (1992) for the
straight forward but rather long proof. The proof shows how Turing machines
whose space is polynomially bounded can be reduced to PlanEx in polynomial
time.

Trivially PlanEx can be polynomially time reduced to PlanLen,k by set-
ting k =

∏
v∈V |Dv| for some problem instance with planning task Π. Thus

PlanEx ≤p PlanLen,k which in conjunction with Theorem 2.10 and 2.11
shows that both PlanEx and PlanLen,k are PSPACE-complete.

We realize that the decision problems are only intractable if P 6= PSPACE
whereas the search problems are provably intractable. Furthermore we have
planning problems where plan existence is provably easy while generating plans
remains intractable. Consider for instance the Towers of Hanoi problem for
which the length of the shortest plan can be found in low-order polynomial time
whereas the plan itself is of exponential length and thus requires exponential
time to produce.

The situation is somewhat different if we limit the problem space to the planning
tasks that have plans of polynomial length.

Definition 2.12 (admitting short plans) A set of planning tasks S, admits
short plans if there exists a polynomial p such that for all solvable planning tasks
Π ∈ S, the optimal plan(s) for Π has length at most p(|Π|). The polynomial p
is called the length bounding polynomial for S.

We denote the related computational problems by subscripting them with the
length bounding polynomial p.
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Theorem 2.13 PlanLen,kp is in NP. (Kautz & Selman, 1996)

Proof. We can guess a length k plan one operator at a time and verify it step
by step using polynomial time, thus the problem is in NP. �

Theorem 2.14 PlanLen,kp is NP-hard. (Kautz & Selman, 1996)

Proof. The proof is by polynomial reduction from 3-SAT. Let F = C1 ∧ . . .∧
Cn be a propositional formula belonging to 3-SAT and let X1, . . . , Xm be the
variables used in F . An equivalent PlanLen,kp problem can be constructed as
follows: Let k = m+ n+ 1 and Π = 〈V, s0, s∗,O〉 such that:

• V = {A,X1, . . . , Xm, C1, . . . , Cn}

• Dv = {0, 1} for all v ∈ V

• s0 = ∪v∈V{v
.
= 0}

• s∗ = {C1
.
= 1, . . . , Cn

.
= 0}

• O = {(incA, pre = ∅, eff = {A .
= 1})}∪

∪mi=1{(incXi , pre = {A .
= 0}, eff = {Xi

.
= 1})}∪

∪ni=1{(incCi
1
, pre = αi1, eff = {Ci

.
= 1}), . . . ,

(incCi
j
, pre = {A .

= 1} ∪ αiji , eff = {Ci
.
= 1})}

where αi1, . . . , α
i
ji

are all possible (truth) assignments to the variables in clause

Ci, such that clause Ci is satisfied (each αili is a set of three atoms). There is
a constant number of such possible variable assignments for each clause Ci and
thus the number of operators is linear in n+m and the reduction is polynomial.

Now as long as A
.
= 0 each Xi can change its value from 0 to 1 and no Ci can

change its value. After A is changed to 1 no Xi can change its value (the as-
signment on the formula’s variables is locked) and each Ci can change its value
only if the current assignment to X1, . . . , Xm satisfies clause Ci. But then there
is a plan for T (Π) iff there is a satisfying assignment for F . If there is a plan,
then clearly there is a plan of length no more than k = m+n+1 which is linear
in |Π|. �

(adapted from Brafman & Domshlak, 2003).

Similar results hold for PlanExp and thus PlanExp and PlanLen,kp are
NP-complete. More interesting, we have the following property of PlanOptp
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Theorem 2.15 PlanOptp is NP-equivalent2.

Proof. Let OplanLen be an oracle that solves PlanLen,kp in polynomial time,
let p be the polynomial bounding plan length and let Π be task of the problem
instance. PlanOptp trivially solves the PlanExp problem and is therefore
NP-hard. We now show that it is also NP-easy. First, determine the length of
the optimal path by calling OPlanLen(Π, l) for l ∈ {0, . . . p(|Π|)} until a positive
answer is received. If no such answer is received, we have proved that no optimal
plan of length at most p(|Π|) exists. Otherwise, let m denote the length of the
shortest path. Now, use a greedy search in T (Π) with the heuristic function h
defined as follows: h(s) = 1 if OPlanLen(Π(s),m− g(s))=YES and 0 otherwise,
where Π(s) is like Π except that s0 is replaced by s and g(s) is the distance
from s0 to s. The search will produce a path of length m. The search ends after
k node expansions and each node has a polynomial amount of neighbors. Thus
the search will consider only a polynomial amount of nodes. Also, the oracle is
only invoked a polynomial amount of times. �

Similar can be shown for Planp and we see that the search and decision prob-
lems are more tightly related for problems with polynomially bounded plan
lengths. We may conclude that some of the hardness of especially plan genera-
tion stems from the fact that shortest plans may be exponentially long.

However, if P6=NP, as is widely believed, both generating plans and deciding
their existence remains intractable even for problems admitting short plans.

2.3 Coping with Complexity

The complexity results presented above are somewhat discouraging for prac-
tical applications of planning. We cannot hope to solve arbitrary instances of
intractable problems within reasonable time. However, the results give an upper
bound on the worst case complexity of the formalism, namely the hardest prob-
lems encodable in SAS+. Trivially, all problems of lower complexity are also
encodable in this formalism and many of the real world problems that occur in
practical applications are in fact tractable (Bäckström, 1995). Still, we cannot
guarantee that an automated planner for an intractable formalism, can solve

2The NP-complete term only applies to decision problems. A search problem is NP-easy
if it is polynomial time solvable with an oracle for some decision problem in NP, NP-hard if
some NP-complete problem can be reduced to it and NP-equivalent if it is both NP-easy and
NP-hard.
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a tractable problem in polynomial time. To this end, many researchers (Bäck-
ström, 1995; Bäckström & Nebel, 1995; Bylander, 1994; Brafman & Domshlak,
2003) have investigated how to restrict planning formalisms, both syntactically
and structurally, to subclasses where planning becomes easier. Common to their
results is, that the identified tractable subclasses all restrict the formalisms to
such extent that even simple real world problems, that are provably tractable,
are not easily expressible.

Example 2.3 (modeling “easy” tasks) Consider the class of problems given
by a generalization of the Gripper task from Example 2.2 with any even num-
ber of balls. These problems are completely characterized by the number of balls
so there is no difference between worst-case and average case problems. The
problem is in P (Helmert, 2003) and we immediately identify the problem of
generating an optimal plan as intuitively “easy”: Move to room1, pick up any
two balls, move to room2, drop both balls, repeat until all balls are in room2.
However, this class of problems is far from trivial, if even possible, to model
within any of the restricted subclasses of SAS+ guaranteeing polynomial time
planning (Bäckström, 1995; Bäckström & Nebel, 1995).

As long as no P-complete subclass of a planning formalism has been identified,
the identification of tractable subclasses is really only of theoretical use, as we
have no reason to believe that any non-trivial polynomial-time solvable planning
problems can be expressed within the required restrictions. Thus, it will neither
help us identify nor solve such problems in practice.

So far, the most successful approach to solving planning problems in practice
is heuristic forward state-space search which we will consider in the following
chapters.



Chapter 3

Heuristics

This chapter gives a short introduction to heuristic functions and a discussion
on what we can expect from this approach in terms of complexity. Hereafter we
introduce abstraction heuristics which lie the ground for what we will consider
in the remaining chapters.

Heuristic forward state-space search is so far the most successful approach to
automated planning judging from the results of the latest IPC where all partic-
ipating planners relied on heuristic search techniques.

3.1 Heuristics

Heuristic functions, sometimes called heuristic estimators or just heuristics are
the most important part of heuristic search planners and the only thing separat-
ing them from blind search. A heuristic for a transition system T is a function
h : r(T )→ R+

0 ∪{∞} where h(s) is an estimate of the length of a shortest path
from s ∈ r(T ) to S∗. The perfect heuristic h∗ maps every state s ∈ r(T ) to the
length of the shortest path from s to S∗ or infinite if no such path exists. A
heuristic h is admissible when h(s) ≤ h∗(s) for all states s ∈ r(T ). It is consis-
tent when, for every two states s, s′ ∈ r(T ), h(s) ≤ h(s′) + c(s, s′) where c(s, s′)
is the length of the shortest path from s to s′. Consistency implies admissibility
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but the converse is not true. All heuristic search algorithms for optimal plan-
ning require admissible heuristics and can avoid re-expanding nodes when using
a consistent heuristic.

If h and h′ are admissible heuristics and h(s) ≥ h′(s) for all s ∈ r(T ), we say
that h dominates h′. Clearly, h is superior or equal to h′ in terms of heuristic
quality which has provable consequences for the number of nodes expanded by
an optimal heuristic search algorithm. However, using h instead of h′ will not
necessarily provide better performance when measuring the performance of a
planning system. h might be more complex to compute so that the gain in
information is outweighed by the computational overhead resulting in worse
overall performance of h than of h′. It is not uncommon for blind search to
outperform many heuristics on complex planning tasks. Therefore, the general
approach is to use a combination of two measures when comparing different
heuristics.

Comparing the number of node expansions done by the search algorithm gives a
correct measure of the informedness of the heuristics. Comparing computation
time for the heuristic provides a measure of the computational complexity of the
heuristic. Comparing the total CPU time used to solve a planning task provides
a measure of the practically important relationship between informedness and
computation time of the heuristic.

The rest of this thesis will consider only admissible heuristics and thus we will
limit our focus to optimal planning.

3.1.1 Heuristic Search for Optimal Planning

For optimal planning, A* and variants hereof are the de facto search algorithms.
With a consistent heuristic, A* has been proven to be admissible, complete, and
optimally effective (Dechter & Pearl, 1985) in the sense that it never expands
a node that can be skipped by an algorithm with access to the same heuristic
information and that it always finds the optimal solution (if a solution exists).

Korf et al. (2001) has shown that A* will do a linear number of node expansions
given a heuristic h with constant absolute error, i.e. h(s) = max(h∗(s) − c, 0)
for some c ∈ N1 only under the following conditions:

• The branching factor of the search space is constant across inputs.

• There is only a single goal state
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• The search space contains no transpositions.

All of these conditions are violated in all common benchmark tasks in planning
(Helmert, 2003). Furthermore, we are not very likely to obtain polynomially-
time computable heuristics with constant absolute error for any NP-equivalent
class of planning problems, as this would imply P=NP (Helmert et al. , 2006).

Even if we accomplished to do so, Helmert & Röger (2008) show that for an
APX-equivalent subset of the common benchmark tasks and a heuristic with a
constant absolute error of 1, A* expands an exponential number of nodes, both
in theory and practice.

So why do we study heuristic functions, when they seem to be deemed un-
successful? The answer to this question is dependant on what perspective we
choose to answer it from. If we are concerned with general problem solving in
its most genuine form, then blind search will do as good as any other approach.
To this end, planning has the advantage of the flexible formalisms making it
easy to quickly model any problem. Heuristic search will not do us any good.

If we are concerned with problem solving for some predefined set of problems
that are tractable or just tractable in the average case, it is likely that well de-
signed heuristics will outperform blind search. According to Bäckström (1995),
many application problems in structured environments like the industry are in-
herently tractable. But finding and exploiting the underlying structure causing
tractability may be non-trivial. In some cases, the tractability may only hold for
certain values of parameters which are not easily bounded, but can be assumed
to have reasonable values.

In these cases, heuristic search has the potential to perform better than blind
search by an arbitrary amount when measuring the time taken to solve a problem
instance. Thus, the intention of studying and designing heuristic functions is
to provide a general solver that is practically effective for a set of problems of
interest.

One such is the ever growing set of benchmark problems from IPC ranging more
than 1000 problem instances developed by the automated planning research
community. For this set of problems, the research in heuristic search methods
has succeeded in increasing the effectiveness of planning systems year after year.
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3.2 Abstraction Heuristics

Abstraction heuristics map the transition system of a planning task into an
abstract transition system where some information is ignored so that the task
becomes less complex and typically smaller. The distance from the current state
to a goal state in the abstract task is then used as an estimate for the cost of
reaching a goal state from the current state in the original task. The abstraction
preserves paths in the graph spanned by the transition system, intuitively by
merging states, which makes it suitable for defining admissible heuristics.

3.3 A General Abstraction Scheme

Definition 3.1 (abstraction mapping) Given a transition system T =
〈S,L,A, s0, S∗〉, an abstraction mapping for T is a function α : S → 2S such
that s ∈ α(s) for all s ∈ S.

Definition 3.2 (α-abstraction) Let α be an abstraction mapping for T =
〈S,L,A, s0, S∗〉. Then the α-abstraction of T is the transition system T α =
〈Sα, L,Aα, α(s0), Sα∗ 〉 such that:

• Sα = {α(s) | s ∈ S}

• Aα = {〈α(s), l, α(s′)〉 | 〈s, l, s′〉 ∈ A}

• Sα∗ = {α(s) | s ∈ S∗}

The size of an abstraction is the number of states in the transition system it
induces and thus |T α| = |Sα|. The abstraction mapping α is a homomorphism
from T to its α-abstraction T α. Furthermore, if α is injective, then T and T α
are isomorphic.

Lemma 3.3 Let T be a transition system and let α be an abstraction mapping
for T . For every two states s, s′ in the state space of T , if there is a path from
s to s′ of length n following the transitions of T , then there is a path of length
n from α(s) to α(s′) following the transitions of T α.

Proof. Follows directly from Definition 3.2. �
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Definition 3.4 (abstraction heuristic) Let T = 〈S,L,A, s0, S∗〉 be a tran-
sition system and let α be abstraction mapping for T , the abstraction heuristic
hα for T is the function which assigns to each state s ∈ r(T ) the length of the
shortest path in T α from α(s) to a goal state of T α or∞ if no such path exists.

(Helmert et al. , 2007)

Theorem 3.5 hα is admissible and consistent.

Proof. Admissibility follows directly from Lemma 3.3. Assume to reach a
contradiction, that hα is not consistent. Then there must exist a transition
system T with abstraction mapping α and states s, s′ ∈ r(T ) such that hα(s) >
hα(s′) + c(s, s′) where c(s, s′) is the length of the shortest path from s to s′ in
T . By Lemma 3.3 there is a path of length c(s, s′) in T α from α(s) to α(s′) and
thus by Definition 3.4 it must be the case that hα(s) ≤ hα(s′) + c(s, s′) which
is a contradiction. �

To illustrate how we can use abstractions to solve planning tasks, we consider a
simplified version of the Gripper task from Example 2.2 with only one gripper
and two balls below:

Example 3.1 (abstractions) Consider a simplified Gripper planning task
with the 4 variables robot, ball1, ball2, gripper and the usual variable domains,
where operators initial state and goal states are simplified accordingly.

Figure 3.1 shows the transition system of this task. The abstraction aggregates
states by assigning them to the same abstract state iff they agree on the status
of the robot and on the number of balls in each room. Thus the abstraction does
not distinguish the upper solution path (transporting ball1 first) from the lower
one (transporting ball2 first). This does not affect solution length and therefore
hα is perfect. The same can be done for Gripper tasks with two grippers and
any number of balls yielding perfect heuristics and polynomial sized abstractions.

(adapted from Nissim et al. , 2011)

The question is how to choose and represent an abstraction mapping that in-
duces a good abstraction heuristic in general? The following chapters consider
an approach for this based on pattern databases.
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r1r1r1

r2r1r1

r1gr1 r2gr1 r2r2r1 r1r2r1 r1r2g r2r2g

r2r2r2

r1r1g r2r1g r2r1r2 r1r1r2 r1gr2 r2gr2

r1r2r2

Figure 3.1: An abstraction of a simplified Gripper task. States are shown as
a triple giving the abbreviated values of the robot, ball1, ball2 variables in this
order (omitting transition labels, unreachable states and the value of gripper
which is implied in all reachable states). For example, in the state marked
r2gr1, the robot is in room2, ball1 is in the gripper and ball2 is in room1. The
abstraction is indicated by the (blue) dashed boxes.



Chapter 4

Pattern Databases

This chapter presents pattern database (PDB) heuristics and the state-of-the-
art approach for using PDBs as general heuristics for automated planning. We
consider constrained abstractions and present and discuss the implications of a
series of original results related to state-of-the-art of PDB heuristics.

Pattern databases (Culberson & Schaeffer, 1998) is the most effective heuristic
currently known for solving big instances of combinatorial problems optimally,
including Rubik’s Cube, the Sliding Puzzle (Felner et al. , 2004) and Towers of
Hanoi (Korf & Felner, 2007). It is also one of the most promising approaches
to general admissible heuristics for planning.

Pattern databases are based on a particular type of abstractions called projec-
tions defined as follows differing slightly from the definition of Helmert et al.
(2007):

Definition 4.1 (projections) The projection of an equivalence relation ∼ on
a set X is the function π : X → X/ ∼ defined by π(x) = [x]∼ where the
equivalence class [x]∼ = {y ∈ X | x ∼ y}.

For a transition system T = 〈S,L,A, s0, S∗〉 the projection of an equivalence
relation on S is by Definition 3.1 an abstraction mapping for T .
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Definition 4.2 (pattern) Any subset of the variables of a planning task Π is
called a pattern for Π.

Definition 4.3 (π-abstraction) Let Π be a planning task with transition sys-
tem T = 〈S,L,A, s0, S∗〉 and let V be a pattern for Π. The abstraction map-
ping given by the projection of the equivalence relation ∼ on S defined such
that s ∼ s′ iff s(v) = s′(v) for all v ∈ V is denoted πV . We say that the
πV -abstraction of T denoted T V is a projection of T onto V .

Definition 4.4 (pattern database heuristic) Let Π be a planning task with
transition system T and let V be a pattern for Π. V induces the abstraction
heuristic hπV called a pattern database heuristic for T . We use hV as shorthand
for hπV .

Definition 4.5 (pattern database) Let Π be a planning task with transition
system T and let T V with abstract state set SV be the abstraction of T induced
by the pattern V . The database for pattern V denoted DB(V ) is a precomputed
table storing the length of the shortest path for every state s ∈ SV to a goal
state of T V . The number of states in SV is the number of different complete
assignments to the variables in V thus |DB(V )| = O(

∏
v∈V Dv) = |T V |.

When discussing the size of a PDB we always refer to the size of the database.

A database for a pattern is build by exhaustive breadth-first regression search
in a preprocessing of the task. Given a transition system T and a pattern V
for a planning task Π and a state s ∈ r(T ), hV (s) is computed by determining
the image of s under πV followed by a constant-time lookup in the precomputed
table DB(V ). The general approach is to store such tables in memory allowing
very fast lookups.

Including all state variables of a planning task Π with transition system T in a
pattern P , would make T P isomorphic to T . It would yield the perfect heuristic
hP = h∗, but computing it would be equivalent to solving the original planning
task. Instead we may construct a collection of PDBs, each for a different small
subset of the variables in Π, and then use the maximum or in some cases the
sum of the heuristic estimates in the collection as a heuristic estimate.

4.1 Pattern Database Collections

This section presents and discusses the theoretical background of the state-of-
the-art implementation of the general PDB heuristic in short. We will refer to



4.1 Pattern Database Collections 25

this as the iPDB-method . The implementation is a simplification of the approach
described in detail in Haslum et al. (2007) which builds on the work and ideas
of Edelkamp (2001), Haslum et al. (2005), and Edelkamp (2006) whereas details
of the implementation and simplifications can be found in Sievers et al. (2012).

Given two PDB heuristics hA and hB for a planning task Π with transition
system T , such that A and B are subsets of its variable set, clearly hA dominates
hB if A ⊇ B. As both hA and hB are admissible, the heuristic h = max(hA, hB)
is also admissible and dominates both hA and hB . If the set of operators that
affects some variable in A is disjoint from the set of operators that affect some
variable in B, the heuristic h = hA + hB is also admissible.

Proposition 4.6 Given a planning task Π = 〈V, s0, s∗,O〉, h = hA + hB is an
admissible heuristic for T (Π) if:

{o = (name, pre, eff) ∈ O | dom(eff) ∩A 6= ∅}∩
{o = (name, pre, eff) ∈ O | dom(eff) ∩B 6= ∅} = ∅

in which case we say that hA and hB are additive.

Proof. See Edelkamp (2001).

Note that the condition is sufficient and not necessary but has the advantage of
being easy to check. A set of PDB heuristics is additive iff all PDB heuristics
in the set are pairwise additive. Clearly, hA + hB dominates max(hA, hB) and
hA∪B dominates both the sum and the maximum.

For some collection of pattern C = {P1, . . . , Pk} where the additivity condition
holds only between some of the induced PDB heuristics, there is a unique way
of combining these into an admissible and consistent heuristic function that
dominates all others. Haslum et al. (2007) calls this the canonical heuristic
function for the pattern collection and denotes it hC :

Theorem 4.7 Let C = {P1, . . . , Pk} be a collection of patterns for a planning
task Π and let A be a collection of all maximal (w.r.t. set inclusion) additive
subsets of C: The canonical heuristic function of C is:

hC(s) = max
S∈A

∑
P∈S

hP (s)

where s is a reachable state in T (Π).
(Haslum et al. , 2007)
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Proof. It follows directly from the definition that hC dominates all other
admissible combinations of the heuristics induced by the patterns in C. �

The sum over additive sets S ∈ A can be removed from hC if there is S′ ∈ A
such that for every pattern Pi ∈ S, Pi ⊆ Pj for some Pj ∈ S′ as the sum over S
will always be dominated by the sum over S′. Yet, in the worst case, the number
of non-dominated additive subsets may be exponential. The problem is similar
to finding all maximal (w.r.t. set inclusion) cliques in a graph, for which there
are algorithms that run in time polynomial in the number of maximal cliques
(e.g. Tomita et al. , 2006). This has proven to be efficient enough for computing
the canonical heuristic function in practice (Haslum et al. , 2007).

Even though hA dominates hB iff A ⊇ B, it might still be meaningful to include
B in the collection for the canonical heuristic function since it may be additive
with some patterns that A is not. In a collection C, a pattern P is redundant
if hC = hC−{P}. This is the case whenever P does not appear in any of the
non-dominated sums in the canonical heuristic function. A pattern containing
no variable mentioned in the goal state is always redundant.

Below we give an example of a PDBs and a PDB collections over the simplified
version of the Gripper task from Example 3.1 with a single gripper and two
balls.

Example 4.1 (pattern databases and collections) Consider the simplified
Gripper planning task Π with the 4 variables: robot, ball1, ball2, gripper and
the usual variable domains, operators, initial state and goal states

Figure 4.1 shows the abstract transition system induced by the pattern P =
{robot, ball1}.

We represent states in T (Π) using the same abbreviated notation as in Figure 3.1
where the order of the variables is robot, ball1, ball2, gripper. Projected states
are represented similarly where “free” variables are represented by ?, e.g. the
abstract state t = {r2r1gf, r2r1go, r2r1r2f, r2r1r2o} is represented by the 4-tuple
r2r1 ? ?. Multiple transitions between the same projected states are merged and
self loops and transition labels are omitted. Goal states are subscripted with *
and the initial state with 0.

As an example, for the state s = r2r1r2f the projection is πP (s) = r2r1 ? ?
and hP (s) = h∗(s) = 4 as the heuristic recognizes that the robot must move to
room1, pick up ball1, move to room2 and drop ball1.

To see how PDB collections can increase the estimates we realize that for the
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r2r1 ? ? r1r1 ? ?0 r1g ? ? r2g ? ? r2r2 ? ?∗ r1r2 ? ?∗

Figure 4.1: The abstract transition system of a simplified Gripper task induced
by the pattern {robot, ball1}.

state s′ = r2r2r1f, hP (s′) = 0 while h∗(s′) = 4 (move to room1, pick up ball2,
move to room2 and drop ball2). For the initial state s0 = r1r1r1f, hP (s0) = 3
while h∗(s0) = 7 (e.g. pick up ball1, move to room2, drop ball1, move to room1,
pick up ball2, move to room2 and drop ball2). These estimates are rather bad
and occur because the heuristic does not distinguish states that differ on the
value of ball2.

Figure 4.2 shows the abstract transition system induced by the pattern P ′ =
{ball2}. If we consider the collection C = {P, P ′} which is additive, we obtain
a better estimate of both of these states: hC(s′) = hP (s′) + hP

′
(s′) = 0 + 2 and

hC(s0) = hP (s0) + hP
′
(s0) = 3 + 2. Thus hC underestimates s0 and s′′ by 2

whereas hP underestimates them by 4.

Furthermore the time taken to precompute the databases for the patterns in C
is linear in the time taken to precompute DB(P ). Thus we obtain a noticeable
increase of heuristic informedness with a linear increase in computation time.

? ? r1?0 ? ? g? ? ? r2?∗

Figure 4.2: The abstract transition system of simplified Gripper task induced
by the pattern {ball2}.

The main problem with using PDB heuristics as a general heuristic for plan-
ning, is how to select which variables to include in the patterns such that the
informedness of the heuristic high, while the resources needed to precompute
and store the databases remain effectively tractable.

4.1.1 Automated Variable Selection

The iPDB-method is concerned with pattern selection and considers the opti-
mization problem of finding the best collection of patterns within some given
memory limit in an iterative manner. Finding the true optimum within the
memory limit would require an exhaustive search through the search space of
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pattern collections. The method instead finds a local optimum using simple
hill climbing. The starting point is a collection consisting of one pattern for
each goal variable for a planning task Π. From a given collection of patterns
C = {P1, . . . , Pk} an expanded collection can be constructed by selecting a pat-
tern Pi ∈ C, a variable v /∈ Pi and adding the new pattern Pk+1 = P ∪ {v}
to the collection, which defines the search neighborhood of C. Note that the
heuristic quality is non-decreasing as every neighbor of C contains C. Starting
from the initial collection of patterns with a single goal variable in each, the
search repeatedly evaluates the neighbourhood of expanded pattern collections
and selects the best neighbor to be the current collection in the next iteration
ending either when no significant improvement can be obtained or when the
memory limit has been reached.

4.1.1.1 Evaluating the Neighborhood

Haslum et al. (2007) consider different approaches to evaluating the neighbor-
hood of a collection. They all build on a simplification of the following formula
developed by Korf et al. (2001) which predicts the number of nodes expanded
by a tree search (IDA*) with a given cost bound c, using an admissible and
consistent heuristic h for pruning:∑

k=0,...,c

Nc−kP (k) (4.1)

where Ni is the number of nodes whose accumulated cost (distance from the
starting node) equals i and P is the equilibrium distribution of h: P (k) is the
probability that h(n) ≤ k, where n is a node drawn uniformly at random from
the search tree up to cost bound c. Ni, P and c can be estimated where P
is influenced by the pattern collection under consideration. In case of graph
search the node n is drawn uniformly at random from the search space, i.e. all
states reachable from the initial state. Their experimental results show the most
promising results for the coarsest simplification of Equation 4.1 which they call
the counting approximation.

Definition 4.8 (counting approximation) Given a sample n̄ containing m
nodes uniformly drawn at random from the search space within cost bound of
the solution length, a pattern collection C and a pattern collection C ′ in the
neighborhood of C, the counting approximation is a relative estimate of how
much hC

′
improves upon hC obtained by:

1

m

∣∣∣{ni | hC(ni) < hC
′
(ni)}

∣∣∣ (4.2)

As the sample n̄ is not easily obtainable, an efficiently obtainable approxima-
tion is used instead. The solution length is estimated by the current heuristic
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multiplied by two because the heuristic is underestimating. The sample n̄ is
then constructed by m random walks of binomially distributed length with a
mean value of the estimated solution length. Each walk starts from the initial
state and restarts if a state identified as a deadlock by hC

′
is reached.

(Haslum et al. , 2007)

4.1.1.2 Limiting Collection Search Space

Recall that a neighbor of a pattern collection C is constructed by extending
some pattern P ∈ C with a new variable v /∈ P .

Definition 4.9 (irrelevance) Given a planning task Π = 〈V, s0, s∗,O〉, a vari-
able v ∈ V and a pattern P for Π, v is irrelevant to P if we can prove that it
will not increase the informedness of the induced heuristic, i.e. hP = hP∪{v}. If
we have no such proof, then we consider v to be possibly relevant to P .

It follows from Definition 4.9 that hC = hC
′

for collections C and C ′, whenever
C ′ is a neighbor of C constructed by adding an irrelevant variable to a pattern
in C and thus C ′ does not improve upon C according to Equation 4.2. The
causal graph is a common tool for analyzing causality between variables in a
planning task and can help identify irrelevant and possibly relevant variables
for a pattern.

Definition 4.10 (causal graph) The causal graph for a planning task Π =
〈V, s0, s∗,O〉 denoted CG(Π) is a directed graph with vertex set V where (v′, v)
is an edge in CG(Π) iff v 6= v′ and there is an operator (name, pre, eff) ∈ O
such that the following condition is true:

v ∈ dom(eff) ∧ v′ ∈ dom(pre)

If P is a pattern for Π then the set of direct ancestors for all variables in P is
denoted da(P ) = {v ∈ V | (v, v′) ∈ CG(Π) ∧ v′ ∈ P}.

(Helmert, 2006)

The iPDB-method considers all variables v′ /∈ P irrelevant to P iff v′ /∈ da(P ).
Neighbors constructed by adding irrelevant variables to a pattern in a collection
C are therefore not considered when evaluating the neighborhood.

There is an immediate weakness of the notion of irrelevance considered by the
iPDB-method which we identify by the following proposition.
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Proposition 4.11 Let Π = 〈V, s0, s∗,O〉 be a planning task, let P be a pattern
for Π and let v ∈ V\P and v /∈ pd(P ). If v is a goal variable, then v is possibly
relevant for P .

(original)

Proof. Consider the planning task Π = 〈V, s0, s∗,O〉 with transition system
T where V = {a, b}, Da = Db = {0, 1}, s0 = {a .

= 0, b
.
= 0}, s∗ = {a .

=
1, b

.
= 1},O = {(inca, pre = ∅, eff = {a .

= 1}), (incb, pre = ∅, eff = {b .
= 1})}.

Now let P be the pattern {a}. Clearly CG(Π) contains no edges and thus
b /∈ dp(a). Now h(s0)P = 1 as a goal state can be reached in one step in T P .
Yet h(s0)P∪{b} = 2 as every path to a goal state contains at least two transitions
in T P∪{b}. Therefore v is possibly relevant to P according to Definition 4.9.�

Proposition 4.11 shows that the iPDB-method ignores neighbor collections that
are constructed by adding possibly relevant variables to the current collection.

Observation 4.12 Adapting the iPDB-method to Proposition 4.11 is not guar-
anteed to effectively improve it. Recall that the iPDB-method starts from a col-
lection with a pattern for each goal variable and iteratively extends this collection.
If there is and remains additivity between all pairs of patterns in the collection,
then extending a pattern with a goal variable will not improve the heuristic in-
duced by the collection, as the variable is already part of another pattern and
thus the possible positive effect is totally captured by additivity. However, such
strong additivity is only guaranteed for planning tasks that are completely de-
composable, which is seldom the case (Helmert, 2004). Therefore, under the as-
sumption that iteratively choosing the neighborhood collection that offers the best
improvement according to the counting approximation, we expect that adaption
to Proposition 4.11 will improve upon the iPDB-method. As this assumption is
the basis for the iPDB-method which is state-of-the-art for PDB heuristics, it
seems unlikely that it should not be the case.

We denote the adapted iPDB-method given by refining the notion of irrele-
vance so that goal variables considered possibly relevant by extended pattern
database generation (EPDBG). We evaluate the performance experimentally in
Chapter 5.

Below is an example of how the iPDB-method would proceed on the simplified
version of the Gripper task from Example 3.1 with a single gripper and two
balls.

Example 4.2 (iterative variable selection) Consider again a simplified Grip-
per planning task with the 4 variables robot, ball1, ball2, gripper and the usual
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variable domains, operators, initial state and goal states.

The iPDB-method constructs the initial collection C = {{ball1}, {ball2}} with a
pattern for each goal variable. The neighborhood collections are

• C1 = {{ball1}, {ball1, gripper}, {ball2}}

• C2 = {{ball1}, {ball1, robot}, {ball2}}

• C3 = {{ball1}, {ball2}, {ball2, gripper}}

• C4 = {{ball1}, {ball2}, {ball2, robot}}

The induced heuristics hC1 , . . . , hC4 are evaluated on the states resulting from
a series of random walks from the initial state and the best one is determined
according to Equation 4.2. If the size of the database for pattern in a collection
exceeds some given limit, the collection is not considered. Say for instance C2

is chosen as the best collection. The procedure then repeats by constructing and
evaluating the neighborhood collections of C2. The repetition stops when the
improvement in the neighborhood collections is estimated to be below some given
limit or when the total size of the databases in the current collection exceeds
some given limit.
The above description also holds for the EPDBG-method with the only difference
that the collection {{ball1}, {ball2}, {ball1, ball2}} would also be in the neighbor-
hood of C1.

4.2 Mutex Constrained Pattern Databases

In many cases, the variables of a planning task cannot take any values within
their respective domains independent of each other. Consider for example the
variables of the balls in the Gripper task from Example 2.2. Clearly, no two
ball variables can take the value gripper1 at the same time as a gripper can only
hold a single ball at a time. We know that this is the intended semantics of
the Gripper problem and we can verify it by observing that it holds in any
reachable state of the transition system for the task. Properties that are true
in all reachable states of a planning task are called invariants of the planning
task.

Definition 4.13 (mutually exclusive atoms) Let Π be a planning task with
transition system T . Any two atoms v = d, v′ = d′ of Π are mutually exclusive
iff {v = d, v′ = d′} 6⊆ s for all states s ∈ r(T ).
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Definition 4.14 (mutex set) Let Π be a planning task with transition system
T . A set M of atoms of Π is a mutex set for Π iff it contains at least two atoms
and any two atoms in the set are mutually exclusive, i.e. |M | > 1 and |M∩s| ≤ 1
for all states s ∈ r(T ). M is a maximal mutex set iff there is no other mutex set
M ′ for Π, such that M ⊂M ′. We say that a mutex set is an “at-most-one-atom”
invariant for Π.

Definition 4.15 (mutex collection) The mutex collection for a planning task
Π denoted M(Π) = {M1, . . .Mn} is the set of all maximal mutex sets for Π.

Abstraction heuristics may underestimate the perfect heuristic by an arbitrary
amount as they aggregate states which may result in “shortcuts” in the abstract
transition systems. First we note by the following observation that abstractions
preserve reachability:

Observation 4.16 Let T = 〈S,L,A, s0, S∗〉 be a transition system and let α
be an abstraction mapping for T . If s ∈ r(T ) is reachable in T then α(s) is
reachable in its α-abstraction T α.

Proof. Follows directly from Lemma 3.3. �

However, the converse does not hold, as shown by the following observation:

Observation 4.17 There exists a transition system T = 〈S,L,A, s0, S∗〉 with
abstraction mapping α and a state s ∈ S such that α(s) is reachable in T α but
s is unreachable in T .

Proof. Let s, s′ and s′′ be states in S such that s ∈ r(T ) and s′, s′′ /∈ r(T ) and
〈s′, l, s′′〉 ∈ A and let α be defined such that α(s) = α(s′) and α(s′′) = {s′′}. But
then 〈α(s), l, α(s′′)〉 ∈ A′ by definition. As s ∈ r(T ) it follows from Lemma 4.16
that α(s) is reachable in T α and therefore α(s′′) must also be. �

As shown by Observation 4.17, abstractions may aggregate unreachable and
reachable into a reachable abstract state. From such a state, we may be able
to reach an abstract states that is an aggregation of only unreachable states
through a transition between two unreachable states in the original task. Clearly,
this can lead to shorter paths, and we intuitively say that the abstraction violates
invariants of the original task.
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Definition 4.18 (abstract mutex state) Let Π be a planning task with tran-
sition system T and let α be an abstraction mapping for T . If t is an abstract
state in the state set of T α and |s∩M | > 1 for all s ∈ t where M ∈M(Π) then
t is an abstract mutex state.

Lemma 4.19 Let T be a transition system and let α be an abstraction mapping
for T . If s, . . . , sn are states on a path from s to sn in T such that s, . . . , sn ∈
r(T ), then α(s), . . . , α(sn) is a path in T α where none of α(s), . . . , α(sn) are
abstract mutex states.

(original)

Proof. s ∈ α(s), . . . , sn ∈ α(sn) and as all of s, . . . , sn are reachable, it follows
by Definition 4.18 that none of α(s), . . . , α(sn) are abstract mutex states. �

Definition 4.20 (constrained abstraction) Let Π be a planning task with
transition system T and let α be an abstraction for T . The constrained α-
abstraction for Π is a restriction of T α where all transitions (if any) to and from
abstract mutex states are removed from T α. We denote the heuristic induced
by the constrained α-abstraction by hαc .

Theorem 4.21 Let Π be a planning task with transition system T and let α be
an abstraction for T . hα(s) ≤ hαc (s) ≤ h∗(s) for all s ∈ r(T ).

(adapted from Haslum et al. , 2005)

Proof. hα(s) ≤ hαc (s) for all s ∈ r(T ) follows by definitions 3.4 and 4.20 as no
shorter paths are introduced by constraining T α which only removes transitions.
To see why hαc (s) ≤ h∗(s), recall that h∗(s) is the length of the shortest path
from s to a goal state of T . By Lemma 4.19 there is a path of the same length
from α(s) to a goal state of T α consisting of states that are not abstract mutex
states. Thus by Definition 4.20, this path is preserved in the constrained α-
abstraction and therefore it must be the case that hαc (s) ≤ h∗(s). �

Recall that, given a planning task Π with transition system T and a pattern
V for Π, DB(V ) is constructed by exhaustive breadth-first regression search
in the transition system T V . Constrained abstractions may therefore not only
increase the accuracy of the heuristic estimates as of Theorem 4.21 but may also
decrease the construction time as removing transitions from T V may reduce the
search space by an arbitrary amount. A PDB is mutex constrained when it is
build from a constrained abstraction.
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Below we give an example of a constrained abstraction on the well known sim-
plified Gripper task from Example 3.1 with a single gripper and two balls.

Example 4.3 (constrained abstraction) Consider again a simplified Grip-
per planning task Π with the 4 variables robot, ball1, ball2, gripper and the usual
variable domains, operators, initial state and goal states and transition system
T . M = {ball1

.
= gripper, ball2

.
= gripper, gripper

.
= free} is a mutex set for Π.

Now consider the pattern P = {robot, ball1, ball2} that induces an abstract tran-
sition system T P depicted in Figure 4.3 using the same notation as Example 4.1.
Clearly, for the initial state of Π, s0 = r1r1r1f , hP (s0) = 5 as there is a path to
a goal state of length 5 along the thick lines in Figure 4.3. However, hPc (s0) = 7
as the red lines are removed in the constrained abstraction leaving us with two
shortest path to a goal state of length 7. Thus, we see a significant increase of
informedness as the result of mutex constraining.

r1r1r1?0

r1r1g?

r2r1r1?

r1gr1?

r1gg?

r2r1g?

r2r1r2?

r1r1r2? r1gr2?

r2gr1?

r2r2r1?

r1r2r1? r1r2g?

r2gg?

r2gr2?

r2r2g?

r2r2r2?∗

r1r2r2?∗

Figure 4.3: The abstract transition system of simplified Gripper induced by
the pattern {ball1, robot}.

The idea of mutex constraining PDBs is by no means new; Haslum et al. (2005)
were the first to consider the idea. Their experiments are very sparsely analysed
but are generally negative and their heuristic performs poorly compared to state-
of-the-art heuristics at that time. Haslum et al. (2007) use mutex constrained
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PDBs with an iterative variable selection procedure comparable to the iPDB-
method but provide no evaluation of the improvement achieved with mutex
constrained PDBs.

The above sources also make no mention of implementation details which can be
of critical importance when measuring the practical effectiveness of a heuristic.

4.2.1 Efficient Mutex Constraining

Given a planning task Π, a sound approximation of M(Π) can be computed in
time polynomial in the size of Π (Bonet & Geffner, 1999). This approximation
can be used to detect abstract mutex states “on-the-fly” when building the
database for a pattern for Π. To make the approach feasible in practice, we
use a novel idea based on a successor generator data structure very similar to
decision trees.

Note that the transition graphs spanned by the transition systems defining the
semantics of planning tasks are implicitly defined by the operators, variables
and variable domains of a planning task. In practice, transitions and states are
generated on-the-fly during search by considering which operators are applicable
to the current state and what the resulting states are. For this reason, the
successor generator is defined on the planning task and not on its transition
system. To this end, a pattern for a planning task is in practice, a simplified
version of the same planning task where only the variables in the pattern appear
and the remaining variables are removed from the preconditions and effects of
all operators. Abstract states are aggregations of states that agree on the value
of the projected variables and are thus efficiently represented by a single atom
for each of these variables.

Definition 4.22 (successor generators) A successor generator for a plan-
ning task Π = 〈V, s0, s∗,O〉 is a rooted tree consisting of selector nodes and
generator nodes. A selector node is an internal node of the tree and has an
associated variable v ∈ V called the selection variable. Moreover, it has |Dv|+1
children accessed via labeled edges, one edge labeled v

.
= d for each value d ∈ Dv

and one edge labeled >. The latter edge is called the don’t care edge of the se-
lector. A generator node is a leaf node of the tree and has an associated set of
operators from O called the set of generated operators. Each operator o ∈ O
occurs in exactly one generator node, and the set of edge labels leading from
the root to this node (excluding don’t care edges) equals the precondition of o.
Given the successor generator for Π and a state s we can compute the set of ap-
plicable operators in s by traversing the successor generator as follows, starting
from the root:
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• At a selector node with selection variable v, follow the edge v
.
= s(v) and

the don’t care edge.

• At a generator node, report the generated operators as applicable.

We refer to Helmert (2006) for further details along with the algorithm for
initializing such data structures.

When building the database for a pattern, we obtain what corresponds to a
constrained abstraction by slightly modifying the successor generator such that
no operators are reported when evaluating an abstract mutex state. This is
achieved by inserting one special operator in the successor generator for each
pair of mutex atoms that are relevant to the pattern. The preconditions of the
operator is the pair of mutex atoms it represents. Whenever such a special
operator is encountered, the recursion is stopped and an empty set of operators
is reported.

To efficiently represent successor generators and speed up the retrieval of appli-
cable operators, only nodes and edges that lead to non-empty sets of operators
are inserted upon construction. Thus we might have to insert new nodes and
edges when inserting our special operators.

The space used by the successor generator for a PDB is in practice negligible
compared to the space used by the PDB itself. The same holds for the time
taken to modify the successor generator compared to the time taken to build
the PDB. More interesting is the possible overhead incurred in traversing the
new edges of the successor generator for each node during exhaustive search.
Our hope is that this is accounted for by the possible decrease in the number of
states to consider. Note that the newly inserted special operators has exactly
two preconditions in all cases. Thus we will at most consider O(1) new edges
and nodes for each mutex pair. This follows as all selector nodes that does not
lead to any generated operators can be removed from the tree (Helmert, 2006).

4.2.2 Mutex Constrained Pattern Database Generation

Mutex constraining the abstract transition system induced by some pattern
affects what variables are relevant to the pattern. To this end we need to
extend what we consider to be possibly relevant variables if we are to use the
iPDB-method or EPDBG-method with mutex constrained PDBs
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Observation 4.23 There exists a planning task Π = 〈V, s0, s∗,O〉 and a pat-
tern P for Π, a variable v ∈ V, v /∈ P ∪ da(P ) and a mutex set M ∈ M(Π)
with atoms x, x′ ∈ M such that var(x) = v, var(x′) ∈ da(P ) and v is possibly
relevant for P if we consider only constrained abstractions.

Proof. Consider the planning task Π = 〈V, s0, s∗,O〉 with transition system
T where:

• V = {a, b, c} where Da = {0, 1, 2}, Db = Dc = {0, 1}

• s0 = {a .
= 0, b

.
= 1, c

.
= 1}

• s∗ = {a .
= 2}

• O = {

(inc0a, pre = {a .
= 0, b

.
= 0}, eff = {a .

= 1, b
.
= 1}),

(inc1a, pre = {a .
= 1}, eff = {a .

= 2}),
(incc, pre = {b .= 0, c

.
= 0}, eff = {b .= 1, c

.
= 1}),

(decc, pre = {b .= 1, c
.
= 1}, eff = {b .= 0, c

.
= 0})}.

Now let P be the pattern {a}. Clearly da(P ) = {b} and {a .
= 1, b

.
= 0, c

.
= 1}

is a mutex set for Π. Figures 4.4 and 4.5 show the abstract transition systems
induced by the patterns P and P ∪ {c} respectively. The abstract states are
represented by their equivalence classes where an element is a state in T rep-
resented by a triple giving the value for the variables a, b and c. (transitions
labels are omitted). The initial state is subscripted with 0 and goal states with
∗. Clearly, hp(s0) = 2 and we see that there is a path along the thick red lines
in Figure 4.5 of length two, thus hP∪{c}(s0) = 2. But the state marked in red
is an abstract mutex state by Definition 4.18 and thus all edges marked in red
are removed in the constrained abstraction. But then, the shortest path is of

length three and thus h
P∪{c}
c (s0) > hP (s0) and v is possibly relevant to P . �

000, 010, 001, 0110 100, 110, 101, 111 200, 210, 201, 211∗

Figure 4.4: The abstract transition system induced by the pattern P

However, mutex constraining the abstract transition system induced by some
pattern actually allows us to limit the collection search space. Binary state
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001, 0110

000, 010

111, 101

110, 100

201, 211∗

210, 200∗

Figure 4.5: The abstract transition system induced by the pattern P ∪ {c}

variables in a planning task may have the sole purpose of enforcing, that “at-
most-one invariants” of a planning task are not violated. Such state variables
become redundant when mutex constraining the abstraction ensures that the
invariant is not violated.

Definition 4.24 (redundant variables) Let Π = 〈V, s0, s∗,O〉 be a planning
task. A variable v ∈ V is redundant to Π if we can choose a variable v′ ∈ V and
v′ 6= v such that hP∪{v}(s) ≤ hP∪{v

′}(s) for all reachable states s in T (Π) and
all possible patterns P for Π.

Lemma 4.25 Let Π = 〈V, s0, s∗,O〉 be a planning task with transition system
T and let P be a pattern for Π. Every transition on every shortest path in T P
is induced by an operator o = (n, p, e) ∈ O such that dom(e) ∩ P 6= ∅.

Proof. See Helmert (2006)

Definition 4.26 (invariant securing variables) Let Π = 〈V, s0, s∗,O〉 be a
planning task. A variable w ∈ V is invariant securing to Π if |Dw| = 2 and the
following conditions hold assume without loss of generality that Dw = {0, 1}:

1 w
.
= 1 is an atom in some mutex set M for Π.

2 w is not a goal variable.

3 Exactly one atom in M is true in every reachable state of T (Π).

4 For every operator (n, p, e) ∈ O, w
.
= 0 /∈ p.

5 For (n, p, e) ∈ O, if v
.
= d ∈ e for some atom v

.
= d ∈M then v′

.
= d′ ∈ p for

some atom v′
.
= d′ ∈M where v′ 6= v, d ∈ Dv, d

′ ∈ Dv and if v 6= w there is
an operator (n′, p′, e′) ∈ O such that p = p′ and e′ = e\{v .

= d}∪ {w .
= 1}
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i.e. an operator that adds an atom x to M has a precondition on another
atom x′ in M (that is therefore removed from M) Also, if the atom added
is not w

.
= 1 then there is an equivalent operator with the only difference

that it adds w
.
= 1 to M insteaad of x

6 For every operator o = (n, p, e) ∈ O, w
.
= 1 ∈ p iff e = {w .

= 0, x} for some
x ∈M .

Theorem 4.27 Let Π = 〈V, s0, s∗,O〉 be a planning task and w ∈ V be an
invariant securing variable for Π then w is redundant to Π if we consider only
constrained abstractions.

(original)

Proof. (all references to conditions are to the conditions of Definition 4.26)
Trivially w is redundant to all patterns P for Π that satisfies w ∈ P . Let P
be an arbitrary pattern for Π such that w /∈ P , let P ′ = P ∪ {w}. Recall
that abstractions preserve transitions and that every transition is induced by an
operator. Let s1 be an arbitrary reachable state in T and let t1, . . . , tn denote
the sequence of states on a shortest path from πP (s1) = t1 to a goal state of T P .
Let o1, . . . , on−1 ∈ O denote a sequence of operators that induces the transitions
between these states.

Claim 4.28 By condition 5 and Lemma 4.25, we may assume for any oj =
(pj , nj , ej) in this sequence that if x ∈ ej for some atom x ∈M then var(x) ∈ P
and either x′ ∈ p for some x′ ∈M and var(x′) ∈ P or w

.
= 0 ∈ ej.

Observation 4.29 For every state tj we have exactly two states in T P ′
which

we denote u1j and u0j such that s ∈ u1j iff s(w) = 1 and s ∈ u0j iff s(w) = 0 for

every s ∈ tj. Also, as w is not a goal variable by condition 2, u1n and u0n are

goal states of T P ′
.

The transition from tj to tj+1 induced by the operator oj = (nj , pj , ej) exists
because there is some s ∈ tj such that pj ⊆ s and some s′ ∈ tj+1 such that
ej ⊆ s′. Also, for both of these states, there is another state that only differs
on the value of w. Therefore one of the following three cases must hold for oj :

1 w /∈ dom(ej) and therefore oj induces transition from u1j to u1j+1 and from

u0j to u0j+1. In this case we say that oj is a type 1 operator.

2 w
.
= 0 ∈ ej and thus w

.
= 1 ∈ pj by condition 6. Then oj induces a

transition from u1j to u0j . In this case we say that oj is a type 2 operator.
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3 w
.
= 1 ∈ ej and by condition 4 oj a transition from u0j to u1j+1 and from

u1j to u1j+1. In this case we say that oj is a type 3 operator.

By condition 3 one of the following must be the case:

• case 1 w
.
= 1 ∈ s1

• case 2 x ∈ s1 for some atom x ∈M and var(x) ∈ P

• case 3 x ∈ s1 for some atom x ∈M where var(x) 6= w and var(x) /∈ P

If the path induced by the operators o1, . . . on−1 in T P is also a path from
πP ′(s1) to a goal state of T P ′

then clearly hP (s1) = hP
′
(s1).

Consider case 1 and assume to reach a contradiction that the sequence of op-
erators does not induce a path in T P ′

: The only way to achieve this is if the
(sub)sequence of operators ok, . . . , om for 0 < k < m ≤ n exists such that ok
is a type 2 operator and the first of such in the sequence o1, . . . , on−1, oi for
k < i < m are type 1 operators and om is a type 2 operator.

By condition 6 and because ok = (nk, pk, ek) is of type 2 it must be the case
that x ∈ pk and x ∈ M and by Lemma 4.25, var(x) ∈ P . Thus x ∈ s for all
s ∈ tk+1. Now, by Claim 4.28 and condition 3, there must be some atom x ∈M
and x ∈ P and x ∈ s for all s ∈ tm and because oi for j < i < m are of type 1,
x 6= w

.
= 1. By condition 6, we also have for om = (nm, pm, em) that x′ ∈ em

for some x′ ∈ M and by Lemma 4.25 var(x) ∈ P . If x = x′ then tm−1 = tm
which contradicts that the sequence t1, . . . , tn is a shortest path. If x 6= x′ then
{x, x′} ⊆ s for all s ∈ tm and thus tm is an abstract mutex set which contradicts
that it is part of a shortest path. In any case we reach a contradiction and thus
hP (s1) = hP

′
(s1) in case 1.

case 2 is completely analogous to case 1.

Consider case 3 where x ∈ s1 for some atom x ∈ M where var(x) 6= v and
var(x) /∈ P : Now let P ′′ = P ∪ {var(x)}. By case 2, we know that hQ(s) =
hQ∪{v}(s) for a patternQ and any reachable state s if x ∈ s, x ∈M and var(x) ∈
Q. But then we can take Q = P ′′ and s = s1 and thus hP

′′
(s1) = hP

′′∪{v}(s1).
But trivially hP

′′∪{v}(s1) ≥ hP ′
(s1) because P ′ = P ∪ {v} ⊂ P ′′ ∪ {v} and thus

it must also be the case that hP
′′
(s1) ≥ hP∪{v}(s1).
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But as P ⊂ P ′′ we have hP
′′
(s1) ≥ hP∪{v}(s1) in all three cases and as P and

s1 were chosen arbitrarily, with the only assumption that s1 is reachable, w is
redundant to Π also if w /∈ P which concludes the proof. �

Observation 4.30 Observe that Theorem 4.27 does not only apply to a projec-
tion induced by a pattern but readily generalizes to all kinds of mutex constrained
abstractions that distinguishes states that differ on the value of redundant vari-
ables. The consequence is that we never have to consider a variable that is
redundant by Theorem 4.27 when constructing an abstraction mapping because
we are guaranteed an unchanged level of informedness.

Redundant variables are clearly irrelevant to every pattern for a planning task
if we consider constrained abstractions. Invariant securing redundant variables
are easily identifiable by the conditions in Definition 4.26 and can be removed
from the iterative variable selection procedures described in Section 4.1.1. This
reduces the neighborhood collection search space and does not decrease the
quality of the final heuristic by Theorem 4.27.

We again consider an example over the Gripper task.

Example 4.4 (redundant variables) Consider a Gripper task with n balls
and two grippers. The gripper variables are redundant by Theorem 4.27 when
we consider mutex constrained abstractions. For any collection C considered
by variable selection procedure of the iPDB-method we can avoid considering
neighborhood collections that are constructed by adding a gripper variable to a
pattern in C. If C is the initial collection, then C contains a pattern for each
ball and thus the size of the neighborhood is reduced by 2n by ignoring the gripper
variables. Assume that the neighbor C ′ constructed by adding the robot variable
to some pattern in C gets chosen in the first iteration. Thus, C ′ has n + 1
patterns all without gripper variables, and the size of the neighborhood of C ′ is
reduced by 2n+ 2 if we ignore the gripper variables, etc.

In many planning tasks modeling transportation problems of real world environ-
ments, binary state variables are used to encode the state of locations that can
be either free or occupied. Under the right conditions all such variables can be
ignored which can result in a dramatic speedup of the variable selection procedure
of the iPDB-method.

Using mutex constrained abstractions and adapting the notion of possibly rele-
vant to Observation 4.23 we arrive at what we call mutex constrained iPDB and
mutex constrained EPDBG . If we on top of that apply Theorem 4.27 we obtain
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the approaches variable pruned mutex constrained iPDB and variable pruned
mutex constrained EPDBG . We evaluate the performance of the different ap-
proaches in Chapter 5.

4.2.3 Limitations of Pattern Databases

As seen in Example 3.1 we can represent the perfect heuristic for the Gripper
tasks using a sophisticated abstraction mapping.

However, projections are too coarse to mimic the required level of sophistication
and thus we cannot compute and represent the perfect heuristic for the class
of gripper tasks with a varying number of balls in polynomial time and space
using PDB heuristics (Helmert et al. , 2007).

To this end, the Merge & Shrink heuristic (M&S; Nissim et al. , 2011) strictly
generalizes the PDB heuristic by allowing more fine grained abstraction map-
pings than projections. This enables the computation of the perfect heuristic in
polynomial time for some tractable benchmarks tasks where the PDB heuris-
tic provably cannot (Helmert et al. , 2007). However, the theoretical power of
M&S relies on the ability to make perfect decisions about how to design ab-
stractions and in practice, the PDB heuristic is competitive with M&S. M&S
is the currently leading heuristic for optimal planning and we will include it
for comparison when evaluating the modified PDB heuristics in the following
chapter.

We note that the huge number of permutations in the Gripper tasks is the main
reason for the exponential sized search spaces. There is complete symmetry
between the balls, i.e. the length of the optimal plan is uninfluenced by which
order we choose to move the balls in (also it does not matter in which order we
use the grippers). State-of-the-art methods for symmetry breaking in planning
(Domshlak et al. , 2012) reduce the search space of such problem to polynomial
size in polynomial time. Thus we need not be too concerned with the limitation
of PDB heuristics when it comes to highly symmetrical planning tasks.



Chapter 5

Experiments

This chapter discusses the implementation details of our results and gives an
experimental evaluation of their practical application.

Encouraging theoretical results do not necessarily imply similar results in prac-
tice, in particular not for heuristics as we have already indicated in earlier chap-
ters. To evaluate the practical usefulness of our heuristics, we have conducted
an experimental study on the benchmark set of the latest IPC consisting of 280
planning tasks which are known to be hard for optimal planners. The bench-
mark set is composed of problems from 14 different categories with 20 tasks
in each category. Tasks in the same category are usually tightly related. For
instance, Gripper tasks with a varying number of balls comprised a category
in one of the earlier IPC editions.

5.1 Implementation

Our implementation is built on top of the FastDownward planning system (FD;
Helmert, 2006). Many state-of-the-art heuristics are implemented within FD
which took the first, second, fourth, and fifth place in different configurations
at the latest edition (2011) of IPC. To this end, FD is a great framework
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for testing new heuristics as it facilitates an unbiased comparison where both
implementation details of search algorithms and translation between formalisms
is abstracted away, leaving only the heuristic estimates and their computation
time as the reason for varying performance.

FD is a complex planning system comprised by more than 500 source files with
more than 100.000 lines of C++ and Python code. The documentation is sparse,
but the implementation is very modular allowing new heuristic methods to be
implemented and added to the system with ease. Thus, our implementation
is mostly limited to modifications and extensions to the already implemented
iPDB-method as well as the successor generator data structure. But also the
causal graph implementation has been modified and redundant variable identi-
fication has been implemented.

All planning tasks in the IPC benchmark set are specified in (first-order) PDDL.
Internally, FD works with fully instantiated SAS+ tasks and thus, it has a
translator part that translates planning tasks from PDDL to SAS+ (Helmert,
2008). As part of the translation, a sound approximation of the mutex collection
for the SAS+ task is also computed. We have chosen to let this serve as the
basis for mutex constraining our PDBs as it was readily available.

5.2 Configurations

We have experimented with all relevant combinations of the approaches dis-
cussed in the previous chapter as well as blind search and the M&S heuristic, to
relate the results to other approaches. The configurations and the abbreviations
we will refer to them by are:

“i” The iPDB-method which is the best known general PDB heuristic known
by the author, see Section 4.1.

“mc-i” Mutex constrained iPDB, see Section 4.2.

“mc-i-p” Variable pruned mutex constrained iPDB, see Section 4.2.2.

“E” The extended version of the iPDB-method called EPDBG, see Section 4.1.

“mc-E” Mutex constrained EPDBG, see Section 4.2.

“mc-E-p” Variable pruned mutex constrained EPDBG, see Section 4.2.2.

“M&S” The currently leading heuristic for optimal planning which is also based
on abstractions, see Nissim et al. (2011).



5.3 Results 45

“blind” Blind search, i.e. A* with a heuristic function that is zero for goal states
and one for all other states.

The configuration space is rather big for all of the above approaches except
for blind search. To this end, we have performed several experiments with
each approach and different configuration values. However, the variation in the
results was very little and for brevity and to facilitate an unbiased comparison
we only present the results using the configuration performing best with the
iPDB-method for all PDB heuristics and the best performing configuration for
the M&S heuristic.

All PDB heuristics use 1000 samples and requires a minimum improvement
of 1% when evaluating collection neighborhoods. Each PDB is limited to a
maximum of 2.000.000 states and the PDB collection is limited such that the
total number of states is no more than 20.000.000 states. Due to the efficient
implementation (Sievers et al. , 2012), this can be stored in approximately 80
megabytes of ram. The M&S heuristic use the DFP-bop configuration described
in Nissim et al. (2011) with an abstraction size limit of 200.000 states.

All experiments where performed on quad-core ProLiant SL2x120z G6 machines
with each planner instance running on a single core with a time limit of 30
minutes and a memory limit of 2 GB for each task.

5.3 Results

Table 5.1 shows the coverage data for each configuration, i.e. the number of
solved instances in each problem category of the benchmark set within the
time and memory limit. Coverage is a function of the trade-off between the
informedness of a heuristic and the effort needed to compute it and has so far
been used to determine the winner of IPC. It gives a measure of how many
tasks a heuristic can solve with limited CPU time, which is preferable as we do
not have resources to compare CPU time on all tasks as some optimal plans
simply take to much time to find.

All heuristics improve performance compared to blind search. Furthermore, the
iPDB-method is on par with the M&S with only a single task less solved in
total. Comparing the three iPDB configurations, we see that constrained ab-
stractions and variable pruning does neither increase nor decrease performance.
However, we see a significant improvement when moving to EPDBG. Here, con-
strained abstraction gives a little bump in performance on the parking category
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coverage i mc-i mc-i-p E mc-E mc-E-p M&S blind

barman 4 4 4 4 4 4 4 4

elevators 16 16 16 18 18 18 10 9

floortile 2 2 2 2 2 2 7 2

nomystery 16 16 16 20 20 20 18 8

openstacks 13 13 13 13 13 13 13 13

parcprint. 7 7 7 7 7 7 13 6

parking 5 5 5 5 7 7 0 0

pegsol 0 0 0 0 0 0 19 17

scanalyzer 10 10 10 10 10 10 9 9

sokoban 20 20 20 20 20 20 19 16

tidybot 14 14 14 14 14 14 0 8

transport 6 6 6 11 11 11 7 6

visitall 16 16 16 16 16 16 9 9

woodwork. 2 2 2 0 0 0 4 2

sum (280) 131 131 131 140 142 142 132 109

Table 5.1: Comparison of solved task over 14 IPC benchmark problem categories
with 280 tasks in total. Best results are highlighted in bold.

suggesting that mutex relations occur between goal variables for tasks in this
category.

Note the difference in performance between all PDB heuristics and M&S in
the pegsol and tidybot categories. For all pegsol tasks, the variable selection
procedure for the PDB heuristics does not end before the 30 minutes time limit
because all tasks contains unusually many goal variables causing an excessive
amount of pattern collections to be considered. There are many solutions to this
and a simple one is to put a time limit on the variable selection procedure. If we
set this limit to 15 minutes, the PDB heuristics solve from eighteen to twenty
pegsol tasks. This is also what causes the difference between the iPDB and
EPDBG configurations on the woodwork tasks and we expect that something
similar occurs with M&S for the tidybot tasks.

Table 5.2 shows the number of abstract mutex states encountered in the tasks
solved by all mutex constrained configurations (variable pruning does not change
the numbers, thus we leave out mc-i-p and mc-E-p). The first row indicates that
the same abstractions are used by both configurations for tasks in the barman
category.

For categories where the entries are zero, we can conclude that constrained
abstractions cannot lead to increased informedness and that variable pruning
has no effect. Unfortunately, this is the case in 7 of the 13 problem categories
with solved tasks. The reason is either that mutex constraints do not occur
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mutex states mc-i mc-E
barman 336060 336060
elevators 0 0
floortile 0 0
nomystery 0 0
openstacks 0 0
parcprinter 0 0
parking 0 1772538
scanalyzer 40430408 104681469
sokoban 165925 240909
tidybot 0 0
transport 0 0
visitall 0 0
woodworking 87 0
SUM 40932480 107030976

Table 5.2: Comparison of the number of abstract mutex states encountered in
the solved tasks of the benchmark sets grouped by problem categories. Best
results are highlighted in bold.

between the variables we consider to be important in the remaining tasks or
more likely, because our approximation of the mutex collections is to weak to
capture them.

For categories with entries greater than zero, we might see increased informed-
ness as a result of using constrained abstractions. Furthermore we may see
either a decrease or an increase in computation time due to the fact that it
introduces some overhead in the successor generator data structure, but also
has a chance of decreasing the size of the search space. Note that the only place
we see a correspondence between Table 5.2 and 5.1 is for the parking category
tasks where we have more solved tasks as an effect of mutex constraining.

Table 5.3 shows the total time spent in the variable selection procedure for
tasks solved by all configurations. Recall that this is the only computation time
needed for a PDB heuristic. We see how mutex constraining incurs an overhead
of 10-14% and variable pruning incurs a reduction of 6-16% on computation
time. Note how much more time the EPDBG configurations spend on variable
selection than what is spend by the iPDB configuration.

Table 5.4 shows the total number of states evaluated by A* for tasks solved
by all configurations (variable pruning does not affect this measure so we leave
out mc-E-p and mc-i-p). We have left out configuration i-mc because it agrees
with configuration “i” on all numbers. This means that we observe no positive
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computation time i mc-i mc-i-p E mc-E mc-E-p
SUM (203) 9425 10348 9678 15824 17820 15006

Table 5.3: Comparison of the total computation time for the tasks that are
solved by all PDB configurations. Best results are highlighted in bold.

evaluations i E mc-E
barman 17454343 17454343 17454343
elevators 47129902 18975485 18975485
floortile 787060 787060 787060
nomystery 10124698 292071 292071
openstacks 41761969 41761969 41761969
parcprinter 594624 505 505
parking 11798851 11798851 10628797
scanalyzer 31338699 23647995 23627228
sokoban 5698964 5698964 5685169
tidybot 3247287 3247287 3247287
transport 3231779 807045 807045
visitall 2059400 2018761 2018761
SUM 175227576 126490336 125285720

Table 5.4: Comparison of the number of nodes evaluated by A* during search
for the tasks that are solved by all PDB configurations, grouped by problem
categories. Best results are highlighted in bold.

effect of using constrained abstractions with the iPDB-method, not even in the
categories where we detect mutex states.

However, we see that the EPDBG heuristic is more informed than iPDB in five
out of twelve categories, three of which has better coverage results in Table 5.1.
Furthermore, mutex constraining leads to an even more informed heuristic for
the parking and scanalyzer problems. For parking we see a reduction of approx.
10% in the number of expanded nodes. The EPDBG configuration expands
approx. 30% fewer nodes than iPDB in total. We have not included the M&S
heuristic in Table 5.4 as this would require us to exclude the tasks that are
not solved by all configurations to maintain sensible numbers. However, M&S
has fever evaluations in four out of ten categories where all configurations have
solved tasks. Yet, it still evaluates approx 60% more states than the iPDB-
method in total.
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5.3.1 Summary of Results

The analysis of the data obtained by our experiments supports our claims and
expectations based on our theoretical derivation and analysis of constrained
abstractions, redundant variable pruning, and extended pattern database gen-
eration. Below we summarize the most important points of the experimental
results:

• Mutex constraining does not decrease informedness of PDB heuristics. In
some cases it increases the informedness of PDB heuristics significantly as
it affects coverage positively.

• Mutex constraining PDBs incurs an overhead in computation time.

• Modifying the successor generator is a viable implementation approach to
mutex constraining PDBs. The overhead in computation time is insignif-
icant, as it causes no reduction in coverage.

• Redundant variable pruning leads to a decrease in computation time with-
out affecting the informedness of mutex constrained PDB heuristics. The
decrease is considered insignificant as it does not affect coverage.

• EPDBG increases both computation time and informedness compared to
iPDB.

• EPDBG is superior to iPDB as it leads to a significant increase in coverage.

We stress that the value of the experimental data and therefore also the above
statements should be interpreted with precaution. Most of the results may
be subject to change if we consider other limitations for time and memory
for the search and different configuration parameters for the PDB heuristics.
Furthermore, the data and associated analysis only relates to the benchmark
set under consideration.

However, the analysis serves the intended purpose of evaluating the practical
usefulness of our theoretical results and observations. And for this particular
benchmark set, created by the automated planning community involved with
IPC, this chapter documents that our results lead to a better heuristic with
increased performance.
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Chapter 6

Future work

As this project has shown, there is still room for improvement in the area of gen-
eral heuristics. While state-of-the-art heuristic methods are still evolving, the
return-on-investment is gradually lowering as heuristics become better (Helmert
& Röger, 2008).

However, abstraction heuristics such as the M&S heuristic and PDB heuristics
has much in common and one may benefit from the same observations that im-
proved the other. Considering constrained abstractions and redundant variable
pruning for the M&S heuristic would be an interesting road to follow. This has,
to our knowledge, not yet been investigated. The practical effect of mutex con-
straining were few while our theoretical analysis showed more potential. This
may be because the approximation of mutex collection computed by FD is too
poor. Investigating if a better approximation is obtainable within reasonable
computation time would be a natural next step.

Even though we have made improvements to the variable selection procedure of
iPDB, it still has several weaknesses that are not easily overcome. For instance,
we have no guarantee that two or more variables that are all irrelevant to a
pattern, would not improve the induced heuristic, if they were added to the
pattern simultaneously. The selection technique is an obvious area for future
work.
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Most of the general heuristics that perform well on the IPC benchmark test set
rely on some abstraction or relaxation strategy that is of immense importance
for their performance, yet not straight forward to generalize while preserving
good heuristic estimates in general. For the PDB heuristic, the variable selection
is vital to the effectiveness of the heuristic. The iterative approaches discussed
in this thesis works well, but are not competitive with problem specific solvers
based on pattern databases (Felner et al. , 2004; Korf & Felner, 2007). To this
end, investigating a structured way of providing problem specific heuristic in-
formation to planning systems presents itself as an interesting avenue for future
research. Furthermore, succeeding with this could turn the general problem
solvers into cost-effective solvers for real-world problems.

We have done preliminary experiments that show great potential for a method
we call structural pattern database generation (SPDBG). SPDBG builds upon
the mutex constrained iPDB-method, but the iterative variable selection is re-
placed by a combinatorial approach based on user-specified information for a
problem or a set of problems. The user is presented with a set of different vari-
able types identified in the planning task or in the set of planning tasks under
consideration. Variables of the same type such as the balls or the grippers in
the Gripper tasks often occur in planning tasks and can automatically and
efficiently be identified (Domshlak et al. , 2012). Based on the categorization,
the user chooses several combinations of variable types which each gives rise
to a set of patterns, where each pattern is one of the possible combination of
variables with the chosen types.

Example 6.1 (structural pattern database generation) Consider a set of
Gripper tasks with a varying number of balls. The following variable types are
easily identified: balls, grippers, robot(s). The user might specify the following
three combinations: 1: three balls, 2: two balls, (one) robot, 3: three balls, two
grippers, (one) robot. For a task with n balls, combination 1 would give rise to
a oattern for each combination of three balls, combination 2 would give rise to
a pattern for each combination of two balls and the robot, etc.

We have also experimented using different learning strategies on sets of related
problems to select which types of variables to consider. All in all, the preliminary
results exhibit some ambiguity. First of, the heuristic now becomes dependant
on the learning strategy or the information specified by the user. In the latter
case this implies that the user needs to analyze or experiment with the problem
set to make informed choices. For some related planning tasks, we get a dramatic
improvement in CPU time whereas other tasks show a degradation in both
informedness and CPU time when comparing SPDBG to the general pattern
database heuristics. The results indicate that there is potential, but further
work and research is required to make the approach viable.
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Conclusion

This project set out with the goal of improving general heuristics for automated
planning. A discussion of the inherent complexity of planning and heuristic
search has shown that heuristic search has limited use in the completely general
setting. Yet, for less general settings and in particular for tractable problems,
heuristic search is the forefront of automated planning.

The admissible PDB heuristic has been successfully applied to find optimal
solutions to big combinatorial problems but is also on par with state-of-the-art
for general heuristic via the iPDB-method.

We have combined well known mutex constraining techniques with novel ap-
proaches and considered the effects on the iPDB-method. Our results are theo-
retical improvements and refinements of the iPDB-method. Moreover our redun-
dant variable pruning technique generalizes to all heuristics, using constrained
abstraction. We have also considered how to make the results viable to practical
applications and implemented the new heuristics in the FastDownward planning
system.

Our main result is variable pruned mutex constrained extended pattern database
generation of which experimental evaluation shows that the improvements carry
over to practice and sets the pattern database heuristic in front of currently
leading heuristics for optimal planning on the benchmark set considered.
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Appendix A

Source

Documentation for the FastDownward planning system is available at:

www.fast-downward.org

To obtain and build the planner the following tools are needed: Mercurial, GNU
C++ compiler, GNU make, gawk, flex, bison and Python 2.7+. The original
source code can be obtained by the command:

hg clone http://hg.fast-downward.org

Our fork of the project, where the heuristics discussed in this thesis are imple-
mented can be obtained by the command:

hg clone https://bitbucket.org/mettienne/fastdownward

Change into the “src” directory and run the script “build all” to build the
planner. We refer to the FastDownward documentation instructions on how to
run the planner. The configuration space for our heuristic is given below:

www.fast-downward.org
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impdb(pdb_max_size=2000000, collection_max_size=20000000,

num_samples=1000, min_improvement=10,

cost_type=NORMAL, mutex=FALSE, extend=FALSE)

• pdb max size (int): max number of states per PDB.

• collection max size (int): max number of states for collection.

• num samples (int): number of samples.

• min improvement (int): minimum improvement while hill climbing.

• cost type (NORMAL, ONE, PLUSONE): Action cost adjustment type.
No matter what this setting is, axioms will always be considered as actions
of cost 0 by the heuristics that treat axioms as actions.

– NORMAL: all actions are accounted for with their real cost.

– ONE: all actions are accounted for as unit cost.

– PLUSONE: all actions are accounted for as their real cost +1 (except
if all actions have original cost 1, in which case cost 1 is used). This
is the behaviour known from the LAMA planner.

• merge (bool): use constrained abstractions (mc-iPBD/mc-EPDBG).

• mutex (bool): use extended variable selection (EPDBG) instead of iPDB.

• prune (bool): use mutex pruning.
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