
Design of Power Efficient FPGA
based Hardware Accelerators

Jonas Stenbæk Hegner
s052574

Kongens Lyngby 2012
IMM-MSc-2012-133

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-MSc-2012-133

Summary (English)

The aim of this thesis is to use an FPGA to speed up computations, and to
analyse performance trade-offs with respect to latency, throughput and energy
consumption.
To do this an option pricing algorithm was chosen as the test case.
The pricing algorithm was implemented in C and the latency tested on a desktop
PC.
Then a soft core processor system was implemented, to run the application and
to measure the number of cycles it took to do the calculations of option pricing.
The third experiment involved a Application Specific Processor, designed to
implement the option pricing algorithm in hardware.
The latency of these systems was measured, and the power consumption was
measured for the soft core processor and the ASP.
Finally the three systems were compared with respect to their individual energy
consumption. The results clearly show a speed up when comparing Application
Specific processors with CPUs, both desktop CPU and soft core processors.
The energy consumption was also lower for the ASP and when using ASPs in
parallel an even greater reduction is achieved.

ii

Summary (Danish)

Formålet med det project er bruge en FPGA til at accelerere beregninger.
Og derudover at analysere ulemper i forhold til latenstid og energiforbrug. Til
dette formål er valgt en algoritme, som udregner optionspriser, som en test appli-
kation. Algoritmen blev implementeret i C og latenstiden teste på PC. Herefter
blev et soft core processor system implementeret, så applicationen kunne køres
og antallet af clock cykler, der skal til for at køre simulationen, kunne måles.
Endelig blev algoritmen implementeret i hardware på FPGA. Latenstiden samt
effektforbruget blev målt for de to FPGA systemer. Til slut blev de tre systemer
sammenlignet med hensyn til latenstid.
Og de to FPGA systemer blev sammenlignet med hensyn til energiforbruget.
Resultaterne viser der opnå en besparelse i latenstid ved at bruge ASPen sam-
menlignet med de to processore. Også energiforbruget kan reduceres with brug
af en ASP. Ved at benytte flere ASPer i parrallel kan energiforbruget reduceres
yderligere. Samtidig med at latenstiden falder.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis deals with power and latency in implementations in FPGAs and
CPUs.

Advisor: Alberto Nannarelli, Informatics and Mathematical Modelling at the
Technical University of Denmark.

Lyngby, 31-August-2012

vi

Jonas Stenbæk Hegner
s052574

Acknowledgements

I would like to thank my advisor Alberto Nannarelli, DTU for all the help and
discussions of ideas, he provided during the Work on this thesis. His advice and
friendly conversations has been invaluable.

I would also like to thank Edward A. Todirica, DTU for his guidance with
respect to tools.

And thank to Joakim Sindholt, DTU for his contribution in form generation of
some of the modules.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Project overview . 2

2 Background 3
2.1 Accelerators . 3
2.2 Power and energy . 5
2.3 Power . 5
2.4 Energy . 7
2.5 FloPoCo . 7
2.6 Development board . 8

2.6.1 Power monitor . 9

3 Application 11
3.1 Option Pricing . 11
3.2 Monte Carlo Simulation . 12

4 Soft core processor system 15
4.1 Design . 15
4.2 Implementation . 16

4.2.1 Soft Core Processor . 16
4.3 Test . 21

x CONTENTS

4.3.1 Gaussian random function 21
4.3.2 Cycle counter test . 24

5 Application specific processor system 27
5.1 Design . 27
5.2 Implementation . 29

5.2.1 FPMul_binary32_100 . 29
5.2.2 FPAdd_binary32_100 . 29
5.2.3 FPExp_binary32_100 . 29
5.2.4 FPAdd3_binary32_100 30
5.2.5 Random number generator 31
5.2.6 Floating Point Accumulator 32
5.2.7 Module Latency . 32

5.3 Test . 34

6 Experiments 37
6.1 Monte Carlo simulation on PC 37

6.1.1 Monte Carlo Simulation on PC results 38
6.2 Monte Carlo simulation on Microblaze 38

6.2.1 Monte Carlo simulation on Microblaze results 39
6.3 Application Specific Processor . 40

6.3.1 Application Specific Processor results 40
6.4 Energy consumption . 42
6.5 Summary of Power and Energy 43

7 Conclusion 47
7.1 Improvements and Further Experiments 48

Bibliography 50

A How To 53
A.1 Testing with chipscope pro . 53

A.1.1 Example . 54
A.2 Working with XMD . 59

A.2.1 Download Application Executable or Data File 60

B Source Code 63
B.1 Source Code for Monte Carlo Simulation 63

Chapter 1

Introduction

As financial computing and computational heavy applications become more and
more common, the need for low latency solutions is increasing.
ASICs can be used to reduce the processor load and low power, but they lack
flexibility, in a market that is changing rapidly. The time it takes to implement
the ASIC chip means it can be obsolete, when it is ready to be deployed.
More and more companies are getting into hardware acceleration, both with
graphical processing units and FPGAs. This thesis investigates implementation
of a system used in financial computing, specifically to calculate profit of certain
trades.
Three systems performing the same task are tested with respect to latency. And
two of these are also tested with respect to the power and energy consumption
and the impact of parallelization on the latency and power consumption.
During the work on this project two systems has been developed on FPGA, one
system using a general purpose soft core processor, and another system as a
processor designed to implement the specific calculations on the FPGA. Also
a standard PC has been tested with the calculations with respect to latency.
The application, a Monte Carlo simulation used in financial computing has been
implemented in C and as a processor in hardware.

2 Introduction

1.1 Project overview

The one system using a soft core processor runs the Monte Carlo simulation
implemented in c, while executing the C program the power and execution time
was measured. Then the power and energy consumption was calculated. The
same was done for the hardware based Monte Carlo simulation. As for the PC
testing, only the execution time was measured running the simulation.
This report describes the design, implementation and experiments of the before
mentioned systems. As well as the testing. It also describes some tools needed
to do the implementation and testing.
The thesis is organized as follows:

Chapter 2 describes the power measurements in FPGAs as well as the board
used to do the project. Lastly it describes a core generation tool called Flopoco,
used to generate arithmetic units.

Chapter 3 describes the Monte Carlo simulation application, and some basic
background on this specific area of financial computing called option pricing.

Chapter 4 outlines the design implementation and testing of a soft core pro-
cessor system using the core provided by the vendor.

Chapter 5 describes the application specific processor in both design, imple-
mentation and testing.

Chapter 6 outlines the experiments done on the different systems and lastly
the results of the experiments.

Project files are included on a CD, also included on the CD is application notes
and manuals used for the various parts of the project. The documentation for
the Xilinx ML550 board is also included.

Chapter 2

Background

2.1 Accelerators

CPUs are general purpose units which can be used for many different things,
the problem with this is that not all calculations are very efficient. For example,
it is common to offload computer graphics calculations to a Graphics Processing
Unit, or GPU. This is one form of hardware accelerator. The purpose of this
is to increase the overall performance of the system because the GPU is made
specifically for the kind of operations that are used in computer graphics.

Figure 2.1: CPU to Hardware Accelerator

These hardware accelerators are faster than the general purpose units but also
have a narrower field of use. They are also not flexible, when the chip is made,
it is made for a very specific task, and to change it requires a whole new chip.
Implementing hardware acceleration into an FPGA gives the designer the ability

4 Background

to change parts of the accelerator if needed. In many cases an Application
Specific Processor or ASP implemented in an FPGA may lead to lower latency,
but development time is not much shorter than for ASICs, but due to its ability
to be reconfigured it is much more flexible and cost effective than ASICs.
There are two different approaches commonly used in financial computing, one
is a hybrid approach, where the FPGA is connected to the host PC via network,
the PC sends the data that are to be used in the calculations, other calculations
are done on the PC. The other is pure FPGA computing, where the FPGA
computes all values.

One of the biggest concerns in financial computing is the latency of the calcu-
lations and the variations in latency, also called jitter. When using a PC to do
the calculations, other processes delaying calculations may cause jitter. In pure
FPGA setups there is almost no jitter, and potentially lower latency [Loc12].

Figure 2.2: FPGA vs Software

As can be seen in figure 2.2 [Loc12] in software alot of things add to the jit-
ter, like cache misses, other running processes interrupting. These factors can
greatly increase the latency.
This is not the case in hardware processors with specific purposes, because they
only have to do one thing.

The biggest downside of doing the application specific processor is the develop-
ment time. As illustrated in figure 2.3 [Loc12] the low latency FPGA solutions
have considerably longer development time.

This is the advantage with software implementations, the development time can
be as low as days compared to weeks with FPGAs.

2.2 Power and energy 5

Figure 2.3: Development time vs latency

2.2 Power and energy

This part describes the calculation of power and energy consumption in a system
on FPGA boards.

2.3 Power

When considering power consumption in FPGAs, four parameters are impor-
tant.

• Total power Ptot - The total power consumed by the system.

• Bias power Pbias - The power used by to bias the FPGA(configuration,
memory and interconnects).

• Static power Pstat - The power consumed when the system is inactive.

• Dynamic power Pdyn - The power consumed by the switching activity in
the chip.

The dynamic power can be written is.

Pdyn = Epc(dyn) · f (2.1)

Where Epc(dyn) is the dynamic energy dissipated per cycle and f is the frequency.
The FPGA configuration also contributes to the total power, this is what we
call bias power Pbias, this is measured without downloading a bit stream to the

6 Background

FPGA(no configuration).
The equation for the biased total power is:

Ptot(bias) = Pbias + Pstat + Epc(dyn) · f (2.2)

This means to get the total power of the system implemented on the FPGA
alone, we need to unbias the total power. This will make the power figures
independent of the FPGA type and size.

Ptot = Ptot(bias) − Pbias (2.3)

As we can see from 2.2 the total power also depends on the frequency.
Lets call the power measured when reset is pressed Preset and the clock is
stopped. So the equation for Preset is:

Preset = Pbias + Pstat (2.4)

When measuring power on the FPGA, the total power and the power consumed
when reset is pressed, is measured. If we isolate Pstat in the equation 2.4 we
get:

Pstat = Preset − Pbias (2.5)

we can now write the equation for the dynamic power .

Pdyn = Ptot − Pstat (2.6)

An example of the power calculation is shown below.
The measured values are
First we calculate the unbiased Ptot and the Pstat

Frequency
[MHz]

Preset
[mW]

Pbias
[mW]

Ptot(bias)
[mW]

100MHz 254.32 212.06 300.49

Table 2.1: Example power values

Ptot = Ptot(bias) − Pbias = 300.49− 212.06 = 88.43 mW (2.7)

Pstat = Preset − Pbias = 254.32− 212.06 = 42.26 mW (2.8)

2.4 Energy 7

We can now calculate the dynamic power

Pdyn = Ptot − Pstat = 88.43− 42.26 = 46.17 mW (2.9)

2.4 Energy

The power consumption is the power the system uses on average during opera-
tion. Another parameter is the energy used to perform the execution of a given
operation.

E = P · top (2.10)

One system could use less power than another, but if the execution time is
longer, the system is still using more energy. To determine the energy used we
first need the energy per clock cycle Epc and the number of cycles used in a
given application. The total energy pr cycle can be written as:

Epc_tot =
Ptot
f

= Ptot · T (2.11)

This gives us the equation for the total energy used for a application.

Etot = Epc_tot · ncycles (2.12)

Where ncycles is the total number of cycles used during execution. With cycle
time T = 1

f .

2.5 FloPoCo

In this project many different arithmetic units are used, to cut down on develop-
ment time for standard components, an arithmetic core generation tool can be
used. One tool that can be used to create these unit, is FloPoCo developed by
Florent de Dinechin and his group at university of Lyon, France. This section
will describe this tool and its use.
FloPoCo as a tool, is capable of producing synthesizable VHDL code especially
suitable for FPGAs, using a command line interface. The tool includes options

8 Background

to specify target hardware and frequency. It can generate whole pipelined dat-
apaths or single arithmetic operators.
Below is an example of the generation of a floating-point adder.

FloPoCo command for an adder is:

. / f l opo co FPAdder wE wF

Where wE is the number of bit of the exponent and wF is the number of bits in
the fraction. To get a 32 bit single precision floating-point adder, on a Virtex-5
at 100MHz the command would look like this:

. / f l opo co FPAdder 8 23 −f r equency=100 −t a r g e t=v i r t e x5

This will produce the synthesizable VHDL code in a single file.

2.6 Development board

The FPGA development board used in this project is the Xilinx ML550 with a
Virtex-5 FPGA chip.

Figure 2.4: Xilinx ML550 FPGA development board

2.6 Development board 9

This board was chosen for its physical power monitor connectors and the size
of the FPGA chip. This enables measurements of power consumption through
the use of a multimeter.
Some features of the board are listed below:

• Xilinx Device: XC5VLX50T-FFG1136 FPGA

– 7200 slices
– 6-input LUTs
– 48 DSP slices
– 2160 Kb block RAM

• on-board clock oscillators up to 250MHz

• Power monitor connector for powers measurements

• JTAG interface

2.6.1 Power monitor

The Xilinx ML550 board features a power monitor connector for measuring the
voltages of the different power supplies on the board. The power connector gives
access to three voltages:

• Vaux powers things like JTAG and DCM.

• Vint is the core voltage, powers the chip.

• Vcco is connected to I/O

The voltage important in this project is Vint The schematic of the power monitor
connector for the fpga chip is shown below in figure 2.5. To get the reset power
Preset the power is measured as above but with the reset pressed.
To measure the total biased power, first the bit stream is downloaded, so the
system is running. With a multimeter measuring the voltage over pin 2 and 3
in figure 2.5, between these two is a 10.0mOhm kelvin resistor. This together
with the reference voltage of Vintmon, gives us the power calculated by:

Ptot(bias) = Vint(s+s−) · Vintmon/R (2.13)

To measure the bias power Pbias, the same measurement as for the total biased
power is used, but without downloading the bit stream. We can then measure
the unconfigured FPGA.

10 Background

Figure 2.5: Power monitor schematic

Chapter 3

Application

As the financial analysis becomes more and more complex, financial computing
is getting more important. Financial computing often involves large models.
Areas like option pricing can greatly benefit from hardware acceleration. In this
chapter option pricing using Monte Carlo simulation is described. This is the
application that has been used to do the power consumption experiments in fpga.

3.1 Option Pricing

Options are contracts between an owner of an financial asset and another party,
giving the second party the right or option to trade that asset at an agreed upon
price, on or before an expiration date, in Europe option can only be exercised
on the expiration date. In this case we will only consider European options.
The agreed upon price that is to be paid if the option is exercised is called the
strike price. The price of the asset at the moment the option is bought is called
the security price. The real price of the asset can fluctuate. So if at the expira-
tion date the real price is higher than the strike price the owner of the option
can make a profit, if not then he can choose not to exercise the option.
The difference between the initial security price and the strike price is paid at

12 Application

the point when the option is bought.

For example A has a stock priced at 50e(the security price at the moment)
B can buy the option to trade that stock in 1 year, at the strike price of 60e.
Then if after a year the stock security price has increased to for example 70e, B
will exercise the option an make a profit of 10e. If on the other hand the stock
security price is decreased to 30e after a year, B will not exercise the option.
B’s loss in this case will only be the difference between the strike price and the
initial security price 10e. A makes a profit of 10e either way.

To try to predict the profit of an option, several methods have been used, the
method described here is parametric Monte Carlo simulation.

3.2 Monte Carlo Simulation

The algorithm for the Monte Carlo simulation [EL04] of option pricing is done
as shown in the pseudocode below:

Algorithm 1 Algorithm for Monte Carlo simulation
S0 = Security Price
K = Strike Price
r = Risk free interest Rate
σ = Security Volatility
t = Time to expiration
n = Number of iterations
r = Risk free interest rate
sum = 0
t = Time to expiration
n = Number of iterations
vsqrdt = σ

√
t

drift =
(
r − σ2

2

)
t

expRT = e−r·t

for i = 1→ n do
St = S0 · edift+vsqrdt·Vrandom

if (St −K) < 0 then
sum = sum+ (St −K) · expRT

end if
end for
return sum/n

3.2 Monte Carlo Simulation 13

σ, r and t are constant, this means drift, expRT and vsqrdt can be calculated
in advance, before the execution of the algorithm.
Before the implementation of the algorithm a number of modification, to mini-
mize the execution time has been made. As can be seen from the pseudo code
above, the algorithm can be modified by moving some of the multiplications
around, this means less cycles to get the final result. For example if K is di-
vided by S0 so that K1 = K / S0, the multiplication S0 can then be removed
from the for loop. similarly expRT can be removed from the loop. in the end we
can have a modified algorithm shown in algorithm 2 These modifications also

Algorithm 2 Optimized Algorithm for Monte Carlo simulation
S0 = Security Price
K = Strike Price
r = Risk free interest Rate
σ = Security Volatility
t = Time to expiration
n = Number of iterations
vsqrdt = σ

√
t

drift =
(
r − σ2

2

)
t

r = Risk free interest Rate
sum = 0
t = Time to expiration
n = Number of iterations
K1 = Strike Price / S0
final = S0 · expRT / n
for i = 1→ n do
St = edift+vsqrdt·Vrandom

if (St −K1) < 0 then
sum = sum+ (St −K1)

end if
end for
return sum ·final

makes the implementation of the algorithm simpler. The initial c implementa-
tion can be seen in appendix This algorithm uses standard gaussian distributed
numbers. The standard gaussian distribution has a variance of 1 and a mean of
zero.

14 Application

Chapter 4

Soft core processor system

4.1 Design

To get consistent cycle count we need to implement a CPU in the FPGA, this
way we have no other processes to interfere with the execution, as would be the
case with a desktop PC. To run programs written in C on a FPGA, a soft core
processor is needed. To calculate the energy used by the system to run a given
application, we need a cycle counter. The ML550 board used, also requires a
clock modulator. The system is shown in figure 4.1.
The operations that are used in the applications for this project, are all single
precision floating point.
The cycle count of the applications is unknown, assuming the execution time
does not exceed 30min at 100MHz. We would need:

cycles =
30 · 60
10−8

= 180000000000 (4.1)

Nbits =
log(180000000000)

log(2)
= 37.3bits (4.2)

The cycle counter is attached with dotted wires in figure 4.1 because it is only
present when cycle count experiments are done.

16 Soft core processor system

Figure 4.1: Soft core processor diagram

4.2 Implementation

4.2.1 Soft Core Processor

Because the simulations in this project are all single precision, a single precision
processor can be used for the C implementation. As a CPU for the C exper-
iments on FPGA, the soft-core processor Microblaze from Xlinx was chosen.
Listed below are a few features of the processor.

• 32 bit RISC architecture

• Optional hardware FPU

– Supports addition, subtraction, multiplication, division, comparison,
conversion and square root

• Small area

• Expandable with custom peripherals

• Programming language C/C++

• Supports linux OS

• JTAG debug module

The processor is implemented with 64KB instruction and data memeory con-
nected via the local memory bus, this is the fastest memory in Microblaze and
there are no cache misses to create jitter.

4.2 Implementation 17

Figure 4.2: Microblaze Architecture

4.2.1.1 Cycle counter

Since the Microblaze uses 32bit registers, the minimum number of register we
need to store 37 bits is 2, therefore makes sense to use a 64bit counter. Either
way we would need 2 32bit register in the Microblaze.
A simple implementation can used.

4.2.1.2 Clock modulator

Because the ML550 board only has differential clock, a clock modulator is used
to convert the differential to a single ended clock.
The clock modulator used is an IP core from ISE design suite.

4.2.1.3 Complete system

The complete system is shown in the figure 4.3
When the cycle count is measure a configuration as shown in figure 4.4 is used.
In this configuration the Microblaze has 3 32 bit registers connected to the
outside of the processor.

• Control register at 0xCH400000 - this contains the reset and enable sig-
nal for the counter. writing 0x00000002 resets the counter. writing
0x00000001 starts the counter.

• Count MSB register at 0xCH400004 - This contains the most significant
bits of the counter.

18 Soft core processor system

Figure 4.3: Finished soft core processor system

Figure 4.4: Finished soft core processor system for cycle experiments

4.2 Implementation 19

• Count LSB register at 0xCH400008 - This contains the least significant
bits of the counter.

4.2.1.4 Applications

The simulation that is run on the Microblaze is a C implementation of the
algorithm in 3.2.
The body of the c code is quite straight forward, the challenging part is the
gaussian floating point random number generator. Because C does not have a
native function for gaussian distributed random numbers, two different methods
were implemented.

4.2.1.5 Random Number Generation

Two different method for random number generation were implemented and
analysed. One method commonly used in C, and another method more suited
for FPGA implementation. Both method approximate standard gaussian dis-
tributions.

4.2.1.6 Random numbers using Box-Muller transformation

This method uses the normal random function in C rand(), the generated num-
bers are then transformed using the Box-Muller transforms.

Z0 =
√
−2 lnU cos (2πV)

Z1 =
√
−2 lnU sin (2πV)

(4.3)

Where U and V are uniformly distributed random numbers. This method is
not suited for FPGA implementation because of the many different and slow
operations, like square root, logarithm, sine and cosine. A comparison of the
execution time for the two methods can be seen in the test section The source
code is shown below:

20 Soft core processor system

#define PI 3.141592654
f loat gaussian_ra ()

{
stat ic f loat U, V;
stat ic int phase =0;
f loat Z ;

i f (phase == 0) {
// generate 2 random f l o a t s in range] 0 , 1 [

U = (rand () +1.) /(RAND_MAX+2.0) ;
V=rand () /(RAND_MAX+1.) ;

//perform Box−Muller transforms
Z=s q r t f (−2.∗ l o g f (U)) ∗ s i n f (2 .∗PI∗V) ;
} else
Z=s q r t f (−2.∗ l o g f (U)) ∗ c o s f (2 .∗PI∗V) ;

phase=1−phase ;

return Z ;
}

Figure 4.5: C function for random number generator using Box-Muller

4.2.1.7 Random numbers using LFSR

One way of generating uniformly distributed pseudo random numbers in FP-
GAs, is to use linear feedback shift registers. These can be configured with
a predefined word length, the period of the register is then PLFSR = 2n − 1
[Alf96].
In this random number generator, the LFSR is used to generate the fraction of
the floating point number, therefore an LFSR of 23 bits is needed, the period is
therefore 223 − 1 = 8388607.
Because the LFSR is uniformly distributed, 4 generated numbers are averaged,
the resulting distribution is gaussian. When generating floating point numbers
centred around zero directly, the output number can be subnormal, the mod-
ules used later in the section 5 are not compatible with subnormal numbers, the
generator needs to adjust for this. To do this numbers are generated initially
in a positive range away from zero. To limit the range of the numbers, to a
small range of positive floating point numbers, the exponent is set to a specific
number in this case the exponent is set so that the range is [2.0:4.0[.
The range is then offset by subtracting 3.0, which gives a range of [-1.0:1.0[. In
the last stage the range is expanded to [-3.5:3.5[, this is done to get a variance of
approximately 1. In the test section some tests of the random number function
is shown. The source code for the C implementation can be seen below:

4.3 Test 21

uint32_t l f s r 1 = 455u ;
uint32_t l f s r 2 = 68787u ;
uint32_t l f s r 3 = 8u ;
uint32_t l f s r 4 = 98u ;

// gaussian_ra genera te s f l o a t i n g numbers with gauss ian d i s t r i b u t i o n

f loat gaussian_ra ()
{

uint32_t res , res2 , ran_temp ;
f loat Z ;

r e s =0;
// generate 4 random numbers from the l i n e a r feedback
// s h i f t r e g i s t e r s
l f s r 1 = (l f s r 1 >> 1) ^ (−(l f s r 1 & 1u) & 0x00420000u) ;
l f s r 2 = (l f s r 2 >> 1) ^ (−(l f s r 2 & 1u) & 0x00420000u) ;
l f s r 3 = (l f s r 3 >> 1) ^ (−(l f s r 3 & 1u) & 0x00420000u) ;
l f s r 4 = (l f s r 4 >> 1) ^ (−(l f s r 4 & 1u) & 0x00420000u) ;
// c a l u l a t e the average to ge t gauss ian d i s t r i b u t i o n
r e s+=l f s r 1+l f s r 2+l f s r 3+l f s r 4 ;

// compile changes t h i s to a s h i f t opera t ion
r e s2=r e s /4 ;

// s e t exponent o f random number , to ge t a range
// o f [2 : 4 [
ran_temp=re s2 & 0 x 0 0 7 f f f f f | 0x40000000 ;
// o f f s e t range to [−1 ,1[and then expand to [−3 ,5:3 ,5 [
Z=(∗(f loat ∗)&ran_temp−3.0) ∗ 3 . 5 ;

return Z ;
}

Figure 4.6: C code for random number generator using LFSR

4.3 Test

4.3.1 Gaussian random function

To test the mean and variance of the random number function, 1000000 random
numbers are generated and the variance and mean is calculated in Matlab. Fur-
ther more a histogram is produce to confirm the bell shape of the distribution.
The variance should be close to 1 and the mean should be close to zero.

22 Soft core processor system

4.3.1.1 Random numbers using Box-Muller

The histogram is shown in figure 4.8:

Figure 4.7: Histogram for Box-Muller random number generator

As can be seen the histogram is reasonobly bell shaped. The mean and variance
is shown in the table below: With mean close to zero and variance close to 1,

Mean 0,0010
Variance 0,9987

Table 4.1: Mean and variance of Box-Muller random number generator

the numbers generated are close to standard gaussian distribution.

4.3.1.2 Random numbers using LFSR

The histogram is shown in figure 4.8:

As can be seen the histogram is reasonably bell shaped. The mean and variance
are shown in the table below: With these numbers the numbers generated are

Mean 0,000011916
Variance 1,097

Table 4.2: Mean and variance of LFSR random number generator

4.3 Test 23

Figure 4.8: Histogram for LFSR random number generator

even closer to a standard gaussian distribution compared to the Box-Muller
method. To obtain more precision more LFSRs are needed so that the average
could be over more values, for example an average of 16 vaules. But because of
the size restriction of the FPGA chip, this is not feasible. The other way is to
generate more values from the four, but this would lower the throughput. Since
system in this project is more a proof of concept, than an actual product, the
random generator is using 4 LFSRs.

4.3.1.3 Random generator time test

A test of the execution time was done on a desktop pc, at two different fre-
quencies and with as little other processes running as possible, to give more
consistent results. Specifications of the pc was:

• Processor: Intel Core2duo e6600

• Memory: 4Gb RAM

• OS: Xubuntu 12.04

– kernel 3.2.0-31-generic-pae
– gcc 4.6.3

Each method is run 10000000 and 100000 times, and at two different cpu fre-
quencies, while the time is recorded. This is done 10 times and the average is
taken.

24 Soft core processor system

LFSR BOX-Muller
Frequency
[MHz]

Texec
[ms]

ncycles Texec
[ms]

ncycles Ratio

n=100000
1600 2.5 4000000 23 36800000 8.97
2400 1.6 3840000 15.4 36960000 9.16
Average 3920000 36880000 9.07
n=1000000
1600 25 40000000 229.1 366560000 9.2
2400 17 40800000 152.5 366000000 9.63
Average 40400000 366280000 9.41

Table 4.3: Execution time test for the random number generators

As can be seen from table 6.1, the LFSR method is almost a factor 10 more
efficient, the impact of the two methods on the Monte Carlo simulation can be
seen in sections 6.2 and 6.1.1.

4.3.2 Cycle counter test

Test of the system has been done in Xilinx SDK, the software development kit
for Microblaze. The test is done with a simple program that increments numbers
in a for loop, this test can then be executed for a number of iterations of the for
loop. The cycle count can then be read with the command mrd,followed by the
register number of the counter, in the Xilinx Microprocessor Debugger XMD.
Below is a table of the obtained cycle counts. As can be seen in table 4.5 as the

Number of
iterations

Plain for
loop

For loop
with j++

For loop
with j++
b++

For loop
with j++
b++ g++

10 140 190 240 290
100 1220 1720 2220 2720
1000 12020 17020 22020 27020
10000 120020 170020 220020 270020
100000 1200020 1700020 2200020 2700020

Table 4.4: Cycle Counts from Microblaze cycle tests

number of iterations is increased the number of cycles is increased linearly. The
same is the case when the number of calculations per cycle is increased. The
numbers are consistent.

4.3 Test 25

The other test performed is a test of the Monte Carlo simulation with 100000
iterations on the Microblaze. First for the Monte Carlo simulation using Box-
Muller method as shown in figure 4.9 The other random generator for Monte

Figure 4.9: ChipScope test of Monte Carlo simulation using Box-Muller on
Microblaze

Carlo simulation using LFSR method, the result is shown in figure 4.10 The

Figure 4.10: ChipScope test of Monte Carlo simulation using LFSR on Mi-
croblaze

simulation has also been run on a desktop PC, the results converted to decimal
is: The small variations are due to the fact that they use different seeds, and
maybe some differences in the rounding.

26 Soft core processor system

Test Result
PC LFSR 24.873938
Microblaze
LFSR

24.873522

PC Box-
Muller

24.591898

Microblaze
Box-Muller

24.831852

Table 4.5: Results of Monte Carlo Simulation for 100000 iterations

The maximum frequency of the system is 100MHz because the Microblaze is
configured with a input frequency of 100MHz. The highest frequency the Mi-
croblaze can be configured with is 125MHz

Chapter 5
Application specific

processor system

5.1 Design

To create a application specific processor implementing the algorithm described
in algorithm 2, the floating point operations needed are

• Multiplier

• Adder

• Exponential function

• Accumulator

• Gaussian random number generator

The complete datapath of the application specific processor computing option
price by Monte Carlo simulation is shown in figure 5.1.
Besides the datapath a control unit is needed to start and stop the execution,
for the control unit to do this a counter is needed.
The complete system looks like this figure 5.2

28 Application specific processor system

Figure 5.1: Application specific processor datapath

Figure 5.2: Complete Application specific processor system

5.2 Implementation 29

5.2 Implementation

The modules of the operations multiplication, addition, exponential function
and accumulator can be generated with FloPoCo and gaussian random number
generator can be implemented following the LFSR method described in section
4.2.

5.2.1 FPMul_binary32_100

This is a standard binary32 multiplier, as described in [EL04] pages 435-442
The module was created in FloPoCo, with a target frequency of 100MHz and
target platform Virtex-5.

The top level has the following ports:

Name Direction Description
CLK input 100Mhz

clock input
X input First operant
Y input Second oper-

ant
Z output Result of the

multiplica-
tion

Table 5.1: Ports of FPMul_binary32_100

5.2.2 FPAdd_binary32_100

This is a standard binary32 adder, as described in [EL04] pages 417-429 The
module was created in FloPoCo, with a target frequency of 100MHz and target
platform Virtex-5. The top level has the following ports:

5.2.3 FPExp_binary32_100

The binary32 exponential function is actually a specialized polynomial evalua-
tor. It uses tables to do the operation. It contains range reduction, polynomial

30 Application specific processor system

Name Direction Description
CLK input 100Mhz

clock input
X input First

operand
Y input Second

operand
Z output Result of the

addition

Table 5.2: Ports of FPAdd_binary32_100

evaluation and reconstruction.

The top level has the following ports, shown in table 5.3

Name Direction Description
CLK input 100Mhz

clock input
X input Input

operand
R output Result of the

exponential
operation

Table 5.3: Ports of FPExp_binary32_100

5.2.4 FPAdd3_binary32_100

This is a standard binary32 3 to 1 adder, is basically a FPAdd_binary32_100
with one extra input. The module was created in FloPoCo, with a target fre-
quency of 100MHz and target platform Virtex-5. The top level has the following
ports:

5.2 Implementation 31

Name Direction Description
CLK input 100Mhz

clock input
X Input First

operand
Y Input Second

operand
Z Input Third

operand
R Output Result of the

addition

Table 5.4: Ports of FPAdd3_binary32_100

5.2.5 Random number generator

This module follows the same approach as the C function from 4.3.1.3. The
architecture of the module can be seen below in figure 5.3

Figure 5.3: LFSR random generator architecture

32 Application specific processor system

5.2.6 Floating Point Accumulator

This is a binary32 accumulator it consists of two parts the accumulator, called
LongAcc, which accumulates binary32 numbers to a 64 bit fixed point sum, and
post normalisation unit, called LongAcc2FP, that transforms the fixed point
sum to a binary32 number. The architecture is shown in figure 5.4.

Figure 5.4: Floating point accumulator architecture

This module has the ports.

5.2.7 Module Latency

The latency for the modules used in the ASP is shown in table 5.6.

The system is pipelined so as to give a throughput of one iteration of the sim-
ulation per clock when the pipeline is filled. This means the simulation can be

5.2 Implementation 33

Name Direction Description
CLK input 100Mhz clock input
X Input Operand
newDataset input Indicates a new

accummulation is
started (unused)

data_out Output Accummulatedpga
sum in binary32

XOverflow Output Indicates the expo-
nent of X is too big

XUnderflow Output Indicates the expo-
nent of X is too
small

ready Output Ready signal

Table 5.5: Ports of FPAdd_binary32_100

Function Latency
FPAdd x + y 2
FPExp ex 3
FPMul x · y 2
FPAdd3:1 x + y + z 2
FPAcc x = x + y 3
RNDgen random 8

Table 5.6: Latency of the modules and the complete system

34 Application specific processor system

executed in the ASP in 100031 cycles.

5.3 Test

For the testing ChipScope was used to do the on board testing and Isim was
used to do the simulation of the Monte Carlo simulation.
The Monte Carlo simulation was done with the following parameters in table
5.7.

Name Decimal
Value

Hex Value

n 100000
St 0
S0 90
r 0.1
sigma 0.25
t 2.0
K 100
K1 1.111 0x3F8E38E4
drift 0.137500 0x3E0CCCCD
vsqrdt 0.353553 0x3EB504F3
expRT 1.221403 0x3F9C56ED
final 0.004397 0x3B901521

Table 5.7: Monte Carlo simulation parameters

The output of the testbench can be seen below The test with Chipscope can be

Figure 5.5: Test bench simulation of the ASP

seen in figure 5.6.
Converted to decimal we get the values in table 5.8.
This variation is probably due to rounding in the floating-point units. And

5.3 Test 35

Figure 5.6: Chipscope output of the ASP

Test Result
PC LFSR 24.873938
ASP test
bench

25.873938

ASP Chip-
Scope

25.660650

Table 5.8: ASP test results

difference in seed for the random generators.

Maximum frequency is 104.707MHz

36 Application specific processor system

Chapter 6

Experiments

This chapter contains a brief description of the experiments made in this project.

6.1 Monte Carlo simulation on PC

In order to compare Monte Carlo Simulation on Microblaze with the same sim-
ulation running on a pc, a few timing experiments was done.
For both Simulation with the Box-Muller method and LFSR the execution time
was measured on a desktop computer. The pc had the following specifications:

• Processor: I5-3350m processor

• Memory: 8GB RAM

• OS: Xubuntu 32bit

• gcc version 4.6.3

• kernel 3.2.0-31

38 Experiments

6.1.1 Monte Carlo Simulation on PC results

The Monte Carlo was also tested on a desktop pc with both random number
generators. The simulation was run with 100000 iteration and the execution
time measured. The same pc as on page 23.

LFSR BOX-Muller
Frequency
[MHz]

Texec
[ms]

ncycles Texec
[ms]

ncycles Ratio

1600 16 25600000 37.1 59360000 2.32
2400 11 26400000 24.3 58320000 2.21
Average 26000000 58840000 2.26

Table 6.1: Execution time test for the Monte Carlo simulation

The table above shows that changing the random generation method to LFSR
based gives a factor 2 speed up on a desktop pc.

6.2 Monte Carlo simulation on Microblaze

When doing the experiments on Microblaze, first the bit stream is downloaded
to the board. Then Xilinx SDK is used to download the executable to the Mi-
croblaze instruction memory.
The execution is started with the command and when execution is done the
stop command is issued. If needed registers can be read after execution. See
appendix for detailed information on downloading, execution and register read.
The Monte Carlo simulation experiments is done to compare the soft core proces-
sor to the application specific processor. The experiments also aim to compare
the two different ways of generating gaussian distributed random numbers de-
scribed in 4.2.
These are the experiments:

• Monte Carlo with Box-Muller random generator

• Monte Carlo With LFSR random generator

To measure the cycle count each application is run for 100000 iterations of the
simulation.

The power is measured as described in 2.6.1 and calculated as described in 2.2.

6.2 Monte Carlo simulation on Microblaze 39

6.2.1 Monte Carlo simulation on Microblaze results

Microblaze Vmon
[V]

Vs+s−
[mV]

Vs+s−rst
[mV]

Preset
[mW]

Pstat
[mW]

Pdyn
[mw]

Ptot(bias)
[mW]

Ptot
[mW]

50MHz 0.995 3.180 2.488 247.556 35.494 68.854 316.410 104.348
100MHz 0.994 3,899 2.505 248.997 36.935 140.005 387.561 175.499

Table 6.2: Power measurements for Monte Carlo simulation on Microblaze

In this table 6.3 is shown the cycle counts for the microblaze experiments.

ncycles
Microblaze
Box-Muller

511,826,387

Microblaze
LFSR

163,056,258

Table 6.3: Cycle count for Microblaze

40 Experiments

6.3 Application Specific Processor

In the application specific processor the cycle count is already known, because
this is what the control unit uses as a stop condition. So the ASP experiments
only measures power. This is done for 2 different configurations.

• A system with 1 x ASP

• A system with 4 x ASP

In figure 5.1 the part of the ASP that is repeated is marked with a blue line.
The new configurations follow this schematic.

Figure 6.1: ASP multi path implementation

Where the FP-adder-tree consists of 3:1 FPAdd3_binary32_100 and 2:1 FPAdd_binary32_100.
The chip on the board used is not big enough for the 8 x ASP and 16 x ASP
experiments.

6.3.1 Application Specific Processor results

For the power experiments with ASP we the results shown in tables 6.9 and 6.5.

The figure 6.2 shows the power for the two different ASP configurations. As can
be seen the power is increased proportionate to the frequency.

6.3 Application Specific Processor 41

1 x ASP Vmon
[V]

Vs+s−
[mV]

Vs+s−rst
[mV]

Preset
[mW]

Pstat
[mW]

Pdyn
[mw]

Ptot(bias)
[mW]

Ptot
[mW]

50MHz 0.994 3.065 2.447 243.232 31.170 61.429 304.661 92.599
100MHz 0.996 3.759 2.457 244.727 32.655 131.165 374.396 162.335

Table 6.4: Power measurements for 1 x ASP

4 x ASP Vmon
[V]

Vs+s−
[mV]

Vs+s−rst
[mV]

Preset
[mW]

Pstat
[mW]

Pdyn
[mw]

Ptot(bias)
[mW]

Ptot
[mW]

50MHz 0.995 4.725 2.646 263.277 51.215 206.861 470.138 258.076
100MHz 0.994 6.890 2.644 262.814 50.752 421.589 684.866 472.804

Table 6.5: Power measurements for 4 x ASP

Figure 6.2: Power for different ASP configurations

42 Experiments

The area of the different configurations and systems is shown in table 6.6, the
increase in area is not completely linear, because of the of some minor differences
in the configurations. For example the adder tree is not present in the 1 x ASP
configuration. And for the multi ASPs several multipliers can be saved.

Slices LUTs Flipflops DSP
units

Microblaze 1,200(2) 2,891(1) 2,305(1) 5(3)
1 x ASP 840(2) 2,674(1) 1,766(1) 8(4)
4 x ASP 3,078(6) 8,795(4) 4,974(2) 26(14)
8 x ASP 7,903(15) 24,327(12) 14,028(7) 50(26)
16 x ASP 16,256(31) 48,468(23) 28,211(14) 98(51)

Table 6.6: Area for different configurations(the values in () are percentage of
the xc5vlx330t chip)

6.4 Energy consumption

From the results in sections 6.2 and 6.3 we get the energy consumption figures
of the ASP and the Microblaze implementations.

50Mhz Epc(tot)
[pJ]

Texe [µ s] Energy
[µJ]

Energy
Ratio

Speedup

Microblaze
Box-Muller

20.869 10,236,527.740 106,813.0 1:1

Microblaze
LFSR

20.869 3,261,305.160 33,917.6 1:3 3

1 x ASP 18.520 2,000.620 185.3 1:577 5118
4 x ASP 51.615 500.620 129.2 1:828 20447

Table 6.7: Comparison of ASP and Microblaze at 50MHz

As can be seen from tables 6.8 and 6.7 using the ASP approach can reduce the
latency compared to both PC and Microblaze. And the system is low power.

If we for example compare the energy used for 50MHz and 100Mhz of 1 x ASP
we would expect the energy used to be the same, as it is in ASIC, this is not
the case. This is because the static power is very high compared to ASICs.
From table 6.9 the static power is 30% of the total power for 50MHz and 20%
for 100MHz. This affects the energy consumption since the contribution of the

6.5 Summary of Power and Energy 43

100Mhz Epc(tot)
[pJ]

Texe [µ s] Etot [µJ] Energy
Ratio

Speedup

Microblaze
Box-Muller

17.550 5,118,263.870 89,825.5 1:1 1

Microblaze
LFSR

17.550 1,630,652.580 28,617.8 1:3 3

1 x ASP 16.233 1,000.310 162.3 1:553 5118
4 x ASP 47.280 250.310 118.3 1:759 20447

Table 6.8: Comparison of ASP and Microblaze at 100MHz

static power will increase in the 50MHz system because the execution time is
longer. This is illustrated in figure 6.3. As can be seen the static power only
contributes half the time for the 100MHz system. The large static power is
something we cannot change, it is part of the power in an FPGA.

The unbiased energy consumption of the 1 x ASP and the 4 x ASP is shown in
figure6.4. Again the static power contributes more when the execution time is
longer.

ASP Pstat Ptot
[mW]

Pstat:Ptot
[%]

Etot
[µJ]

50MHz 31.170 92.599 33.60 185.3
100MHz 32.655 162.335 20.11 162.3

Table 6.9: Ratio between 1 x ASP at two frequencies

6.5 Summary of Power and Energy

A summary table of the power and timing results is shown in the figure below.
Here only the Microblaze simulation using the LFSR random number generator
is used. The frequency is 100MHz.

44 Experiments

Figure 6.3: Graph of the energy consumed.

Figure 6.4: Graph of the unbiased energy consumed.

6.5 Summary of Power and Energy 45

Timing Power
100MHz ncycles Texe [µ s] Speedup Ptot

[mW]
Energy
[µ J]

Ratio

Microblaze 163,056,258 1,63,652.58 1 175.5 8982.49 1:1
PC 260000 11,000 6 N.A. N.A. -
1 x ASP 100031 1,000.31 1630 162.5 162.3 1:553
4 x ASP 25031 250.31 6515 472.8 118.3 1:759

Table 6.10: Summary of power and timing results

46 Experiments

Chapter 7

Conclusion

The aim of this thesis is to use an FPGA to accelerate an algorithm.
And to do an analyse of performance trade-offs with respect to latency/through-
put and to investigate energy consumption in the FPGA.
In order to obtain these measurements, an algorithm for option pricing was used
as a test case.

In this project a soft core processor system was implemented and a C applica-
tion implementing option pricing using Monte Carlo simulation was created. A
second configuration of the system specifically designed to measure cycle count
in the execution of a C program in Microblaze
Through test it has been shown that the output is comparable with the C im-
plementation run on a desktop PC.
It has been shown that when measuring power consumption on FPGAs, one
has to take into account that the FPGA is biased, with power being consumed
by other parameters then the unit we wish to measure power for. A solution
to this has also been shown, unbiasing the results and thereby making them
independent of the board and the FPGA chip size and type.
It has also been shown that in FPGAs the static power gives rise to some vari-
ation in the energy consumed by the tested systems. This is because of internal
properties of FPGAs.
A system for measuring execution time or cycles on the Microblaze soft core

48 Conclusion

processor has been implemented and described. And shown to give consistent
measurements.

Two different approaches to gaussian pseudo random generators, has been im-
plemented and compared with respect to latency. Test has been done to show
that choosing an effective random number generator has a very big impact on
the execution time of the Monte Carlo simulation. Considering only the Microb-
laze a speed up of 3 was obtained by changing to another random generator.

A solution to the longer development times by using FPGAs, is to use libraries
to create as many of the units as possible. Libraries such as FloPoCo can really
speed up the implementation of a large datapath.
The problem with these standard solution can be that they are not as optimized
as a unit implemented specifically for the current project. Another solution is
to use IP cores, these on the other hand are often not as flexible as the libraries.
Things such as input output length are often fixed. It may also be more expen-
sive buying licenses for IP cores, than using these more generic units created by
libraries or tools.
And with a library such as FLoPoCo the units can be tweaked after generation,
because you have access to the source code. A downside of FLoPoCo is that it
might not produce the prettiest and readable code.

The results with regard to power and timing has been summerized in table 6.10.
The table clearly shows that using an FPGA based ASP approach to option
pricing gives a very low energy consumption and a great speedup both in com-
parison to a soft core processor and compared to a PC CPU. Although power
measurements has not been done for a PC CPU, we can safely assume that the
power consumption is greater than the few hundred mW used by the FPGA
implementation.

7.1 Improvements and Further Experiments

With more time it would have been interesting to investigate a way to measure
the power dissipation in a CPU in a desktop. Exchanging FloPoCo with a com-
mercial floating-point library and measure the difference in power consumption.
Moving the design to a board with a bigger FPGA, to test even more paralleli-
sation.
Expand the design to be part of a desktop computer.

7.1 Improvements and Further Experiments 49

As for the Microblaze experiments, it would be interesting to try a multiproces-
sor setup, with 4 or 8 Microblaze processors.
Reduce jitter in PC implementation, maybe by running a minimum Linux or
BSD system(No GUI, network etc.).
Investigates other financial applications, like NASDQ OUCH or ITCH.

50 Bibliography

Bibliography

[Alf96] Peter Alfke. Efficient shift registers, lfsr counters, and long pseudo-
random sequence generators. 1996.

[Ash02] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kauf-
mann Publishers, 2002.

[EL04] Milos D. Ercegovac and Tomás Lang. Digital Arithmetic. Morgan
Kaufmann Publishers, 2004.

[Loc12] John Lockwood. A low-latency library in fpga hardware for
high-frequency trading. http://insidehpc.com/2012/08/23/video-
a-low-latency-library-in-fpga-hardware-for-high-frequency-
trading/?goback=.gde_2354499_member_156862104, 2012.

[Xil12a] Xilinx. Chipscope pro software and cores user guide. 2012.

[Xil12b] Xilinx. Edk concepts, tools, and techniques. 2012.

[Xil12c] Xilinx. Embedded system tools reference manual. 2012.

[Xil12d] Xilinx. Microblaze processor reference guide. 2012.

52 BIBLIOGRAPHY

Appendix A

How To

A.1 Testing with chipscope pro

After test bench testing it is often useful to test on the board. To test system
output and internal signal a tool like Xilinx Chipscope Pro is very useful. This
section describes the basics of getting started with Chipscope.
The tool flow of testing with Chipscope could be like this:

• Prepare ise.

– Set keep hierarchy to yes.

– Set clock to jtag clock.

• Add chipscope module.

• Synthezise.

• configure chipscope module.

– Add ILA(Integrated Logic Analyzer) unit.

– Set number of signals to analyze and their data width.

– Make connections between ILA and the desired signals.

54 How To

• Open analyze With chipscope.

– Download bitstream.

– Start capturing signals.

A.1.1 Example

This Example uses the Floating Point multiplier project FP_Multiplier_genesys,
this consists of a control unit that loads two floating point vector and the re-
sult of multiplying these together(the expected result), from a ROM. The two
vectors are transmitted to a floating point multiplier. The output of the mul-
tiplication is then sent to the control unit, which compares it to the expected
result and sets an led high if they match.

A.1.1.1 Preparing project

To make it easier to find the signals, that are to be captured, set the Keep
Hierachy to yes, this preserves all modules as they are including their signals.

Right click Synthezise -XST→ Process Properties→ Set Keep Hierachy to yes.

Figure A.1: Synthezise Process Properties

To set the clock.

Testing with chipscope pro 55

Right click Generate Programming File → Process Properties → Startup Op-
tions → Set FPGA Startup Clock to JTAG clock.

Figure A.2: Generate Programming File Process Properties

A.1.1.2 Adding Chipscop Module

A Chipscope module is needed to run the chipscope analysis, call the module
chipscope_probe.

New Source → Choose ChipScope Definition and Connection File.

A.1.1.3 Configure Chipscope Module

To open the configuration click the chipscope_probe.cdc file in the Hierachy
view, this opens the Chipscope Core Inserter.

In the opened window click next. To add the ILA click New ILA Unit and click
next. Set the Number of input trigger ports to 3.
Set the Trigger Width of TRIG0 and TRIG1 to 32 bits and TRIG2 to 1 bit and
click Next.

56 How To

Figure A.3: Make Connections window

Figure A.4: Chipscope Core Inserter

Testing with chipscope pro 57

Figure A.5: Configure data triggers

In the Net Connections tab click Modify Connections.
Select the CLK signal and click Make Connections. In the Trigger/Data Signals
Select Z (all 32 bits) in the module fp1 and click Make Connections. Do the
same for TP1 with correct_led from the module CONTROLLER.

Figure A.6: Modify Connections window

To exit the configuration click Return to Project Navigator, click yes to save.

58 How To

A.1.1.4 Analyzing with Chipscope

Select the top module of the design and click Analyze Design Using Chipscope
to open Chipscope Pro.

In the JTAG Chain dropdown menu choose Xilinx Platform USB Cable, and
click OK on both popups.

Right click device and choose configure click OK to configure the board with
the bit stream.

Figure A.7: Download the bit stream to the board

Double click Waveform and Trigger Setup.

Figure A.8: Setting up the Chipscope window

To run the analysis click the play symbol. This will start the signal capture. As
can be seen on figure A.9 chipscope captures the output of the multiplier Z and
the led indicating that the multiplication was done correctly.

The box Trigger Condition Equation can be used to start the capturing of signal,
when a specific condition is met, for example a signal switching to high. This is

Working with XMD 59

Figure A.9: Running Chipscope

useful to capture states at a specific time, i.e a done signal switching to indicate
operations are completed. M0 is for triggerport TP0.

A.2 Working with XMD

The Xilinx Microprocessor Debugger is used to run and debug the a Microblaze
system or application. This section will describe some of the useful commands
needed when working with the debugger. The XMD is a command line interface
in the Xilinx SDK, a screenshot of the interface is shown in figure A.10. An
example of the flow of operations used in this project for testing:

• Connect to the Microblaze.

• Download executable and optionally data files to the Microblaze.

• Run executable.

• Stop executable.

• Read or write registers.

A.2.0.5 Connecting to Microblaze

In order to issue commands to the Microblaze, we need to connect to the Mi-
croblaze debug module. To connect to the debug module after the bit stream
has been downloaded(i.e with Impact) to the board, open the XMD window.
The following command establishes the connection:
mb mdm

60 How To

A.2.1 Download Application Executable or Data File

To download the application that is to be run on the Microblaze.

dow <YourAppl icat ion . e l f >

This will download the .elf YourApplication to the instruction memory of the
Microblaze. To download a data use:

dow −data <YourData . dat> <address>

This will download the .dat file YourData, this file is a binary file in the data
memory at the address specifyed(an editor like hexedit can be used to create
the .dat files). The address is a 32 bit hex number. An example could be
0xCF400000.

A.2.1.1 Run Application

To start the execution of the .elf, use the command:

run

A.2.1.2 Stop Application Execution

To stop the execution use:

stop <proc e s s o r id>

Where processor id indicates the number of the processor that is to stop, in case
the system has more than one, the processor ids start at 0. One thing to be
careful of is to issue the stop command right after the run command, before the
XMD terminal outputs "Processor Started. Type "stop" to stop processor". If
stop is issued before the connection between pc and board is often corrupted.
An a full shut down of the board with redownloading of the bit stream necessary.

A.2.1.3 Reading and Writing Registers

Reading memory registers is done with the command:

Working with XMD 61

mrd <address> <x>

Where address is the memory address and x is used to read subsequent registers,
i.e. 4 will read out the register on address and the subsequent 3 registers.

Figure A.10: XMD terminal in SDK

mwr <address> <value>

Where value is the 32 bit hex number to write in the specified address.

62 How To

Appendix B

Source Code

B.1 Source Code for Monte Carlo Simulation

/∗
∗ Fi l e : monte_carlo_main . c
∗ Author : s052574
∗
∗ to compile run gcc −s t d=c99 monte_carlo_sim_opt . c −o monte −lm
∗
∗ Created on May 16 , 2012 , 2:48 PM
∗/

#include <s td i o . h>
#include <s t d l i b . h>
#include <math . h>

f loat gaussian_ra (void) ;
int main (void) {

int n = 100000;
f loat S_0=90.0 ;
f loat S_t=0. ;
f loat K=100.0

f loat r =0.1 ;
f loat sigma=0.25;

64 Source Code

f loat t =2.0 ;

f loat K1=100.0/S_0 ;
f loat vsqrdt = sigma∗ s q r t f (t) ;
f loat d r i f t = (r−(sigma∗ sigma /2)) ∗ t ;
f loat expRT = expf (r ∗ t) ;
f loat sum = 0 . ;
f loat f i n a l = (S_0∗expRT) /n ;

srand (2) ;
for (int i =0; i<n ; i++){

S_t = expf (d r i f t+vsqrdt ∗ gaussian_ra ()) ;

i f (S_t−K1 > 0) {
sum+=(S_t−K1) ;

}

}
sum=sum∗ f i n a l ;

p r i n t f ("Average␣sum␣ i s ␣%f \n" , sum) ;

return (EXIT_SUCCESS) ;
}

// gaussian_ra genera te s f l o a t i n g numbers with gauss ian d i s t r i b u t i o n
#define PI 3.141592654

f loat gaussian_ra ()
{
stat ic f loat U, V;
stat ic int phase =0;
f loat Z ;

i f (phase == 0) {// generate two f l o a t i n g po in t numbers
U = (rand () +1.) /(RAND_MAX+2.0) ;
V=rand () /(RAND_MAX+1.) ;

//Use Box−Muller transforms to change the
// d i s t r i b u t i o n to gauss ian

Z=s q r t f (−2.∗ l o g f (U)) ∗ s i n f (2 .∗PI∗V) ;
} else
Z=s q r t f (−2.∗ l o g f (U)) ∗ c o s f (2 .∗PI∗V) ;

phase=1−phase ;

return Z ;
}

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Project overview
	2 Background
	2.1 Accelerators
	2.2 Power and energy
	2.3 Power
	2.4 Energy
	2.5 FloPoCo
	2.6 Development board
	2.6.1 Power monitor

	3 Application
	3.1 Option Pricing
	3.2 Monte Carlo Simulation

	4 Soft core processor system
	4.1 Design
	4.2 Implementation
	4.2.1 Soft Core Processor

	4.3 Test
	4.3.1 Gaussian random function
	4.3.2 Cycle counter test

	5 Application specific processor system
	5.1 Design
	5.2 Implementation
	5.2.1 FPMul_binary32_100
	5.2.2 FPAdd_binary32_100
	5.2.3 FPExp_binary32_100
	5.2.4 FPAdd3_binary32_100
	5.2.5 Random number generator
	5.2.6 Floating Point Accumulator
	5.2.7 Module Latency

	5.3 Test

	6 Experiments
	6.1 Monte Carlo simulation on PC
	6.1.1 Monte Carlo Simulation on PC results
	6.2 Monte Carlo simulation on Microblaze
	6.2.1 Monte Carlo simulation on Microblaze results

	6.3 Application Specific Processor
	6.3.1 Application Specific Processor results

	6.4 Energy consumption
	6.5 Summary of Power and Energy

	7 Conclusion
	7.1 Improvements and Further Experiments

	Bibliography
	A How To
	A.1 Testing with chipscope pro
	A.1.1 Example
	A.2 Working with XMD
	A.2.1 Download Application Executable or Data File

	B Source Code
	B.1 Source Code for Monte Carlo Simulation

