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Summary (English)

Part of the thesis has been a study of different approaches for planning under uncer-
tainty. The primary focus has been the planning approaches, ”Planning Based on
Markov Decision Processes (MDP’s), Planning for Extended Goals with Progression
of Computation Tree Logic (CTL), and Epistemic Planning.” Transition systems in
general has also been investigated.

The basic steps with respect to using the planning approaches have been explained
briefly. This includes the general model, goal type, planning problem, planning ap-
proach, solution type, and agent architecture.

The result of the investigation of the planning approaches was a comparison of the
different advantages and disadvantages. The focus was mainly expressibility with re-
spect to uncertainty. The most notable findings were:

• State transitions can not be partially observable during plan execution for any of
the approaches (that observers the transitions made).

• The probabilistic transition systems could model likelihood on action outcomes.

It should be noted that the findings are purely based on the approaches as they have
been specified in this report. There are many extensions/alterations to the approaches
which improve on some of the limitations found in this thesis.

The DTUsat2 satellite has been studied as part of the thesis. The study of the satel-
lite aimed to identify some of the planning problems with respect to DTUsat2. The
planning problems that was looked at are problems where dealing with uncertainty is
paramount to correct planning and operation within the domain.

Recharging the battery of the DTUsat2 satellite was one of these planning problems.
The approaches, ”Planning Based on MDP’s, Planning for Extended Goals with Pro-
gression of CTL, and Epistemic Planning,” was tested with respect to the battery recharg-
ing planning problem.

The most notable findings regarding the models and the test executions were:

• It is necessary to model some kind of likelihood on action outcomes to avoid
unrealistic plans.
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• There are states that needs to be avoided for safety critical reasons. There is a
risk of the battery exploding if recharging is done when the temperature of the
battery is below 0 ◦C or above 45 ◦C.

Part of the thesis is an evaluation of the best planning approach for the planning prob-
lem regarding recharging the battery. This evaluation is of course limited to the three
approaches that has been tested.

Planning for Extended Goals with Progression of CTL was recommended. The rec-
ommendation was made both on the general analysis of the different advantages and
disadvantages but also on the test executions made.

The most prominent advantage of Planning for Extended Goals with Progression of
CTL was the expressiveness of Extended Goals. Path requirements can be guaranteed
to hold. It can, for example, be guaranteed before planning is done that specific states
never will be visited if a plan is found. Recharging outside the temperature bounds can
therefore be avoided. These kind of safety critical guarantees, that are made before
planning is done, are relevant assuming planning is done on the satellite.

iv



Summary (Danish)

Et af målene for denne afhandling har været en undersøgelse af de forskellige til-
gange til planlægning under usikkerhed. Det primære fokus har været planlægningsme-
toderne: ”Planning Based on Markov Decision Processes (MDP’s), Planning for Ex-
tended Goals with Progression of Computation Tree Logic (CTL) og Epistemic Plan-
ning”. Transitionssystemer generelt er også blevet undersøgt.

De basale skridt forbundet med at bruge planlægningstilgangene er blevet forklaret
kort. Det omfatter den generelle model, måltype, planlægningsproblem, planlægn-
ingstilgang, løsningstype og agent arkitektur.

Undersøgelsen af planlægningstilgangene mundede ud i en sammenligning af fordele
og ulemper. Fokus var primært på udtrykskraften i forhold til usikkerhed. De mest
nævneværdige fund var:

• Et tilstandsskift kan ikke være delvist observerbart under eksekveringen af en
plan for nogen af metoderne (der observerer de aktuelle transitioner der bliver
lavet).

• De probabilistiske transitionssystemer kan modellere sandsynlighed på udfaldene
af en handling.

Det skal bemærkes at undersøgelsen udelukkende bygger på metoderne som de er
specificeret i denne rapport. Der findes mange udvidelser/ændringer til metoderne der
forbedrer nogle af begrænsningerne der er fundet i denne afhandling.

DTUsat2 satellitten er blevet undersøgt som en del af denne afhandling. Undersøgelsen
af satellitten havde til formål at identificere nogle af de planlægningsproblemer der er i
forbindelse med satellitten. Planlægningsproblemerne som blev undersøgt var proble-
mer hvor håndtering af usikkerhed var essentielt for korrekt planlægning og handling
inden for domænet.

Genopladning af satellittens batteri var et af disse planlægningsproblemer. Metoderne:
”Planning Based on MDP’s, Planning for Extended Goals with Progression of CTL og
Epistemic Planning” blev tested med hensyn til planlægningsproblemet omhandlende
genopladningen af batteriet.
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De mest nævneværdige fund angående modellerne og testene var:

• Det er nødvendigt at modellere sandsynligheder på udfaldene af handlinger (eller
at sortere udfaldene på en kvalitativ måde) for at undgå urealistiske planer.

• Der eksisterer tilstande der skal undgås af sikkerhedskritiske årsager. Der er en
risiko for at batteriet eksploderer, hvis man genlader når batteriet er under 0 ◦C
eller over 45 ◦C.

En del af afhandlingen er en evaluering af den bedste planlægningstilgang for plan-
lægningsproblemet omhandlende genopladning af satellitens batteri. Det fundne resul-
tat er selvfølgelig kun i forhold til de tre testede planlægningsmetoder.

Den anbefalede planlægningstilgang blev fundet til at være Planning for Extended
Goals with Progression of CTL. Anbefalingen blev baseret både på den generelle anal-
yse af de forskellige fordele og ulemper og på testene af planlægningstilgangene.

En af hovedfordelene ved Planning for Extended Goals with Progression of CTL er
udtrykskraften af Extended Goals. Der kan blandt andet garanteres krav omkring den
tagne sti. Det kan for eksempel garanteres før planlægning at specifikke tilstande ikke
bliver besøgt, hvis en plan bliver fundet. Genopladning af batteriet uden for temperatur
rammerne kan derfor undgås. Denne slags sikkerhedskritiske garantier, der laves før
planlægning, er relevante hvis man antager at planlægningen foregår på satellitten.
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Preface

This thesis, 30 ECTS credits, was prepared at the department of Informatics and Math-
ematical Modeling at the Technical University of Denmark in fulfillment of the require-
ments for acquiring a M.Sc. in Informatics.

The thesis deals with different methods of planning under uncertainty. The primary
focus has been the methods, ”Planning Based on MDP’s, Planning for Extended Goals
with Progression of CTL, and Epistemic Planning.” These selected planning approaches
have been tested on planning domains inspired by the DTUsat2 satellite.

The thesis consists of:

• An introduction to the different areas of uncertainty.

• An introduction to different planning approaches that can deal with some uncer-
tainty.

• Planning problems with respect to the DTUsat2 satellite and test executions of
selected planning approaches.

• Recommendations regarding best planning approach for specific planning prob-
lems.

Lyngby, November 1, 2012

Allan Johnsen
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Chapter 1

Introduction

This chapter provides background knowledge and introduces the purpose of the thesis.
It also contains an overview of the report structure. In the structural overview there will
be a brief description of what each chapter contains.

1.1 Background Knowledge

Planning under uncertainty is the common term for planning when aspects of the plan-
ning domain are uncertain. Actions might for instance have multiple possible out-
comes. When there are multiple possible outcomes of an action there is a non de-
terministic choice between the outcomes. That is the actual outcome is chosen non
deterministically, but it is known to be part of the set of possible outcomes. In case
the outcome of an non deterministic action is not observable after the action has been
executed the acting agent is said to have partial observability of the outcome. This is
because the agent knows the set of possible outcomes, but the agent does not know
which outcome is the actual outcome.

When modeling and planning for uncertainty within a field one course of action would
be identifying the kind of uncertainty that is present within the field. Then the appro-
priate modeling and planning methods for the planning problems can be found.

1.2 Purpose of the Thesis

This thesis focuses on specific planning approaches, and aims to compare these ap-
proaches based on their coverage of the different areas of uncertainty in general. In
addition to this the planning approaches will be compared based on manual test execu-
tions on planning problems within the field.

For this project the field pertains to mission operations in relation to the student satel-
lite DTUsat2. Part of the thesis is an investigation of the planning problems within this
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domain where dealing with uncertainty is paramount to correct planning and operation.

The planning approaches that will be the primary focus are, ”Planning based on MDP’s,
Planning for Extended Goals with Progression of CTL, and Epistemic Planning,” al-
though less complicated approaches are also explored.

It will therefore be these selected planning approaches, that as mentioned, will be tested
on different planning problems in case they are applicable. The goal is to identify key
advantages and disadvantages of using the different approaches for the different plan-
ning problems. For the planning problems that have been used in the testing phase,
it will be evaluated which planning approach is preferable. That is of course if an
approach can be recommended.

1.3 Structure of the Report
Chapter two Planning under Uncertainty begins by clarifying what is meant by uncer-
tainty when planning in Artificial Intelligence. Some of the different areas or topics
of uncertainty are then described. The chapter proceeds to describe different planning
approaches. Finally chapter two contains an analysis of the coverage of the different
planning approaches with respect to the different areas of uncertainty.

In the third chapter Domain Analysis the DTU student satellite DTUsat2 is investi-
gated and some of the planning problems with respect to the satellite are looked into.
The chapter proceeds to analyze what it takes to model and plan for selected planning
problems, and what simplifications that are necessary for the planning approaches to
be applicable. The chapter finishes by looking into the manual test executions of the
planning approaches.

Chapter four Recommendation contains a comparison of the planning approaches based
on the manual test executions and the previous analysis from chapter two. The com-
parison highlights the advantages and disadvantages relevant for each of the selected
planning problems. Finally there is made a recommendation of the most appropriate
planning approach.

Chapter five Conclusion is a summary of the results of the thesis. This chapter high-
lights the conclusions that has been made throughout the report.
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Chapter 2

Planning under Uncertainty

This chapter will introduce the reader to uncertainty and how it affects planning. Differ-
ent approaches for planning under uncertainty will be introduced. There are different
methods to model the planning domain and different methods of extracting plans from
these models. Naturally an introduction to some of these approaches will be included
in the chapter. Finally the coverage of the different areas of uncertainty will be investi-
gated for some of the introduced planning approaches.

2.1 Uncertainty

The notion of Planning under Uncertainty is a broad area. The term uncertainty is used
frequently within the field of planning, there are however different definitions depend-
ing on the material being studied. The whole field might therefore seem a bit intangible
when first introduced.

The definition from ”The STRIPS Assumption for Planning Under Uncertainty” [1]:

”An agent plans under uncertainty whenever it can not flawlessly predict the state
of the environment resulting from its actions.”

This description does not cover multi-agent systems or exogenous events. Exogenous
events are events that change the environment where the change has not been predicted
by the agent. Therefore in this project a wider definition is used:

”An agent plans under uncertainty whenever it can not flawlessly predict the state of
the environment resulting from: its actions, other agents actions, or exogenous events.”

This description covers what planning under uncertainty is in general. It is however
necessary to describe the different areas of uncertainty in more detail to get a deeper
understanding of the field.
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2.1.1 Topics of Uncertainty

The different areas of uncertainty that will be investigated in this report are, ”Partial
Observability of States, Uncertainty with respect to Actions, The Time Aspect, Uncer-
tainty regarding Quantities, Multiple Agents and Concurrency, and Exogenous Events.”

Partial Observability of States

Partial observability of states describes the situations where there exists uncertainty
about what state the system is in. The agent might consider multiple worlds possible.

Imagine that an agent borrows a car where the gas gauge is broken. He knows that
the tank is either half empty or full. He considers both situations possible. In this
example the agent has partial observability of the world. Knowledge about the world
might not be present during planning but could be present during execution e.g. the
agent knows if the tank was full or half empty when it runs dry at his parents or half
way there.

Uncertainty with respect to Actions

Uncertainty regarding an action mostly refer to uncertainty on the effects of the action.
This is often modeled as actions having multiple sets of effects (outcomes) and a prob-
ability distribution on the sets. Likewise there could be modeled uncertainty on the
preconditions (prerequisites) of an action.

When there is only one outcome of an action the action is deterministic. When there
are multiple possible outcomes of an action there is a non-deterministic choice of the
actual outcome of the action. If the actual outcome is known after execution of the
action the outcome is said to be fully observable. If the outcome is not known after
execution of the action the outcome is said to be partial observable because it is known
that the actual outcome is part of the defined set of outcomes, but it is not known which
outcome that is the actual outcome.

Take the situation of the agent with the borrowed car. Imagine the action of driving
can either take the agent all the way to his parents or only halfway there. This corre-
sponds to the action of driving having different effects. There is a non-deterministic
choice of what effect will be applied. Either the agent gets to his parents, or the agent
gets halfway there.

Assume that it is known that 80 % of the time the agent reaches his parents. The
probability distribution on the effects of the action would then correspond to 80 % of
the time the agent reaches his parents, and 20 % of the time he only goes halfway.

Because the agent knows if he is halfway to his parents or if he is at his parents af-
ter execution of the action the outcome is fully observable.

4



For the partial observable case consider an agent buying a Cola from a vending ma-
chine. When the agent pushes the Cola button he does not know which internal con-
tainer the Cola comes from. The agent just knows that the machine gives him a Cola. If
the agent considers getting a Cola from each of the internal containers a different effect
he has partial observability of these effects. He does not know what the (complete)
outcome of the non-deterministic action is after executing the action.

The Time Aspect

The time aspect could for instance be uncertainty about how long the effects of an ac-
tion holds or uncertainty about the time an action takes.

The topic covers modeling time continuously or discretely or a hybrid hereof. See
The Basics of System Dynamics: Discrete vs. Continuous Modelling of Time [2] for an
explanation of the different approaches.

Taking the example from earlier with the agent and the borrowed car there might be
uncertainty regarding how long the action of driving to the agents parents take. That is
an example of uncertainty on the duration of an action.

Consider the situation of an agent eating a meal. The action of eating has the effect
that the agent is not hungry. This effect only lasts a given duration. The agent might
get hungry again after 4-5 hours. This is an example of uncertainty on the duration of
an effect of an action.

Uncertainty regarding Quantities

This topic covers quantities and the uncertainty about consumption or production of
these or uncertainty regarding the size of quantities. The topic covers continuous as
well as discrete quantities.

Take the example where a rover needs to pick up soil. The amount picked up by its
grab varies. It has a fixed sized cargo hold. This could be an example of uncertainty in
the amount held in the cargo hold. Uncertainty on the size of a quantity.

The rover uses power when it grabs soil or moves around. The amount of power used
varies depending on how much soil the grab picks up, or how far the rover needs to
move. The rover has solar panels and a battery. Depending on the direction of the
solar panels, and the position of the rover, the solar panels produces varying amounts
of electricity. This is an example of uncertainty regarding consumption and production
of power. Uncertainty on both in-going and out-going flows.

Multiple Agents and Concurrency

Multiple agents accessing resources concurrently is an example where dealing with
concurrency issues is vital for correct performance.
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Take the example where five people are editing copies of the same report indepen-
dently of each other. When they are done they all want to save at the same time. The
one that saves his copy last overwrites the changes just saved by the others. This ex-
ample shows uncertainty on the result of an agents action because of multiple agents
acting in the same environment concurrently. The issue arises because of writing to a
resource concurrently.

It might be that only one person is allowed to work on the report at a time. This
will give rise to uncertainty regarding who gets access to the resource (the report) and
uncertainty on the average waiting time before one gets access to the resource. Will
every person eventually get access to the resource?

Then there is the situation of cooperation, coordination, and collaboration of agents.
Depending on how many of the previous described uncertainties a model can handle,
the planning situation changes.

When collaborating the uncertainty present for every agent needs to be taken into ac-
count. In case of independent goals the multiple agents just need to plan so they are
out of each others way. Independent plans/goals might give rise to conflicts of interest.

For an example of collaboration imagine the five people each writing a section of the
report. Every section could take an uncertain amount of time. Some of the sections
might have dependencies i.e. they can not be written before one or more of the other
sections have been written.

The agent responsible for the conclusion or last section might be unable to start his
work before the other agents have completed their sections. In this situation the agent
needs to plan for the accumulated writing time of the other agents and uncertainties
regarding their writing time.

This example used time as the only metric for planning, but quality of the different
report sections might also be a metric. So the goal more naturally is, ”create the best
report possible within the time limit”.

Exogenous Events

Exogenous Events deals with uncertainties regarding environment changes. This could
for instance be uncertainties regarding propositions i.e truth values changing seemingly
at random. For information on propositions see [3].

The ocean is an example of an environment which is unpredictable. For instance an
area which is rich on plankton might change, from one day to the next, because of
currents drifting the plankton away.

Seen from the point of view of a fish or a whale this is an exogenous event. Humans,
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intelligent external observers, might however be able to predict the flow.

2.2 Transition Systems
Transition systems is one approach of modeling planning domains (with uncertainty).
The section is inspired by [4] and partially [5] and [6].

2.2.1 Definitions and Examples
The most basic transition system is the deterministic transition system. Following
Ghallab et al., see [4], any classical planning domain can be represented as a restricted
state-transition system which is just a finite deterministic transition system. The defi-
nition can be seen below:

Definition 2.2.1 (Deterministic Transition System) - A deterministic transition system
(DTS) is a triple M = (S,A,γ), where:

• S is a finite set of states.

• A is a finite set of actions.

• γ: S × A→ S is the state transition function.

The example seen in figure 2.1 is a deterministic transition system illustrating that the
lights in a room can either be On or Off. The actions have deterministic outcomes i.e.
the action Turn_On will always turn the light on when in the state Off, and the action
Turn_Off will always turn the light off when in the state On.

Figure 2.1: Example of a Deterministic Transition System.

The example from figure 2.1 is of course a simplification of a real world scenario. The
example can be improved by for instance assuming that the action of turning on the
light might fail. The acting agent might for instance not find the switch in the dark
every time. Introducing two different outcomes of an action means introducing non-
determinism. The definition of the non-deterministic transition system can be seen
below:

Definition 2.2.2 (Non-Deterministic Transition System) - A non-deterministic transi-
tion system (NDTS) is a triple M = (S,A,γ), where:

• S is a finite set of states.
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• A is a finite set of actions.

• γ: S × A→ 2S is the state transition function.

The example seen in figure 2.2 is a non-deterministic transition system illustrating the
improved example where turning on the lights might fail.

Figure 2.2: Example of a Non-Deterministic Transition System.

The example from figure 2.2 can be improved further. Take the case where it is known
how often the acting agent finds the switch in the dark. Expressing this extra knowledge
in the transition system would be an improvement. This can for instance be done by
using a probabilistic transition system. The definition can be seen below:

Definition 2.2.3 (Probabilistic Transition System) - A probabilistic transition system
(PTS) is a triple M = (S,A,P), where:

• S is a finite set of states.

• A is a finite set of actions.

• P: S × A × S→ R]0,1] is the probabilistic state transition function.

P(s, a, s′) is the probability of transitioning from state s to state s′ when doing action
a. Another notation for the probability P(s, a, s′) is Pa(s, s′). The probability is known
to be in the interval ]0, 1].

The probabilities of all the different transitions from doing an action in a state should
sum up to 1: ∑

s′∈S
Pa(s, s′) = 1 (2.1)

Assuming that the acting agent finds the switch 95 % of the time the probabilistic tran-
sition system can be represented as shown in figure 2.3 on the facing page. Note that
100 % probabilities are normally left implicit.

The probabilistic transition system can be extended by including costs and rewards. For
simplification lets refer to this kind of transition system as a Markov Decision Process
(MDP) although the term MDP covers more types of transition systems. The definition
is given below:
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Figure 2.3: Example of a Probabilistic Transition System.

Definition 2.2.4 (Markov Decision Process) - A MDP is a tuple M = (S,A,P,R,C) ,
where:

• S is a finite set of states.

• A is a finite set of actions.

• P is defined as in the Probabilistic Transition System, see definition 2.2.3 on the
preceding page.

• R: S→ R is the reward function.
R(s) is the estimated reward of being in the state s.

• C: S × A × S→ R is the cost function.
C(s, a, s′) is the estimated cost of transitioning from s to s′ by action a. Another
notation for the cost C(s, a, s′) is Cs′(s, a).

Let the example MDP be given by rewards and costs as represented in figure 2.4 and
state names, action names, and probabilities as shown in figure 2.3.

From figure 2.4 it is seen that there is a cost of one, for all action outcomes. The
reward is 10 in the state On and 1 in the state Off.

Figure 2.4: Example of a MDP - Costs and Rewards.

2.3 Goal Types
The basic planning problem is having a transition system, an initial state, and a single
goal state. Instead of a single goal state there might be a set of goal states. Adding a
labeling function1 to the transition system allows expressing Extended Goals.

1The labeling function maps each state to a set of true atomic propositions. Note that other schemes are
possible with respect to the labeling function. If for instance it is needed to represent partial observability of
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Using a Single Goal State

The simple situation of having one goal state works fine for the lighting example from
earlier. The goal state could for instance be the state On. Other transition systems
might however have more states that should be considered as goals. If these states are
not considered as goals, solutions are overlooked when planning.

Using a Set of Goal States

Defining more goal states improves planning because the problem is reduced to only
reaching one of these states. More goal states does, as mentioned, also ensure that
possible solutions are not overlooked.

Using Extended Goals

Extended Goals are formulae written in for instance CTL. Besides having the property
of being able to describe multiple goal states, it is also possible to express path require-
ments and continued reachability goals. These concepts and the more expressive plans
that are necessary will be described in section 2.5 on the next page and section 2.6 on
page 13. Initially planning problems will be looked at in section 2.4.

2.4 Planning Problems
There are different definitions of planning problems depending on which transition sys-
tem and goal type is used. The deviations are minor but for the sake of clarification let
the definitions be as given in the following paragraphs.

As mentioned earlier the classical planning domain can be represented as a Determinis-
tic Transition System. Given a Deterministic Transition System the Classical Planning
Problem is then defined as follows:

Definition 2.4.1 (Classical Planning Problems) - A Classical Planning Problem is a
triple Σ = (M, s0, S g), where:

• M is a finite deterministic state transition system.

• s0 is the initial state, a member of S.

• S g is the set of goal states, a subset of S.

Note that S g can be a singleton.

Example:
M could for example be the DTS from figure 2.1 on page 7, s0 could be the state Off
and S g could be the set {On}.

labels, the labeling function might map states to both propositions and negations of propositions. In case a
proposition or its negation is not part of a state the truth value of the proposition is assumed to be unknown.
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The Simple Planning Problem can be defined as follows:

Definition 2.4.2 (Simple Planning Problems) - A Simple Planning Problem is a triple
Σ = (M, s0, S g), where:

• M is a finite non-deterministic state transition system (take for example either a
NDTS or a PTS).

• s0 is the initial state, a member of S.

• S g is the set of goal states, a subset of S.

Note that S g can once again be a singleton.

Example:
M could for example be the NDTS from figure 2.2 on page 8, s0 could be the state Off
and S g could be the set {On}.

The Extended Planning Problem can be defined as follows:

Definition 2.4.3 (Extended Planning Problems) - A Extended Planning Problem is a
triple Σ = (M, s0, ϕg), where:

• M is a finite labeled transition system (take either a DTS, a NDTS, or a PTS and
add a labeling function L).

• s0 is the initial state, a member of S.

• ϕg is the extended goal expressed in CTL or Probabilistic Computation Tree
Logic (PCTL) in case the labeled transition system is a PTS.

Compared to Simple Planning Problems the noticeable change is the requirement of
transition systems having a labeling function and having an Extended Goal instead of
having a goal state or a set of goal states.

Example:
M could for example be the labeled NDTS in figure 2.5 on page 13, s0 could be the
state S3, and ϕg could be the formula seen in equation 2.5 on page 14.

2.5 Solution Types
For the different planning problems there are different types of solutions. Some of the
types of solutions can arguably be used for more than one type of planning problem.
That said the solution types are in general used for the planning problems as follows:

For a Classical Planning Problem as given by definition 2.4.1 on the facing page a
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solution is a finite sequence of actions known as a plan or a Sequential Plan. For the
finite sequence of actions a1, a2, a3, . . . , an to be a solution, it holds that:

γ(γ(. . . γ(γ(s0, a1), a2), . . . , an−1), an) ∈ S g (2.2)

For a Simple Planning Problem as given by definition 2.4.2 on the previous page a
solution is on the form of Policies, see definition 2.5.1.

Definition 2.5.1 (Policy) - For a given transition system (S, A, . . .) a Policy is a map-
ping Π : S → A. That is ∀ s ∈ S , Π(s) returns an action a ∈ A.

For an Extended Planning Problem as given by definition 2.4.3 on the previous page a
solution is on the form of Plans with Execution Contexts, see definition 2.5.2.

Definition 2.5.2 (Plan with Execution Contexts) - For a given transition system (S, A,
. . .) a Plan with Execution Contexts is a tuple (C, c0, act, ctxt), where:

• C is a finite set of execution contexts.

• c0 is the initial execution context.

• act: S × C→ A is the action function.
act(s,c) gives the next action to take (a ∈ A) when in the given state s and execu-
tion context c.

• ctxt: S × C × S→ C is the context transition function.
ctxt(s,c,s’) takes the previous state s, previous execution context c, and the new
current state s’ and returns the new execution context (c’ ∈ C) the system should
transition to.

For all of these different solutions the term plan will be used interchangeably. This
is a more liberal use than other literature where the term only covers classical plans
(Sequential Plans).

The solutions provided by Policies/Sequential Plans can be divided into different de-
grees of strength. Strong, Strong Cyclic, and Weak. For a Policy/Sequential Plan to
be Strong every possible path taken from the initial state(s) should lead to a goal state.
Furthermore the plan must not contain any loops for it to be a Strong Solution.

Strong Cyclic Solutions are Strong Solutions where loops are allowed. Strong Cyclic
Solutions always succeed if there is some kind of fairness on the transitions so that the
loops eventually are exited. Note by definition you can not have a Strong Cyclic Solu-
tion when you have a Sequential Plan because Sequential Plans do not handle loops.

Weak Solutions only guarantee that there exists at least one path for which the goal
will be reached. Note that you can only have Strong Solutions if you have a DTS as is
the case of Classical Planning Problems (see definition 2.4.1 on page 10). Sequential
Plans are however also used in other places like for example Epistemic Planning.
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The different definitions on the strength of solutions can be found in [4] as well as
the definition of Policies and Sequential Plans.

Plans with Execution Contexts are solutions provided all the sub goals (of the Extended
Goal) are fulfilled.

2.6 Extended Goals and Computation Tree Logic
This section will clarify the functionality of Extended Goals and how they are described
in CTL. The section is not meant to give a (complete) description of CTL. For a full
description of CTL (and PCTL) see [6].

For experimenting with the functionality of Extended Goals the example transition
system needs to be a bit more complex than the previous described lighting example.

Let the planning domain be that of the Simple PacMan Game shown in figure 2.5.
PacMan is one of the often used examples within Artificial Intelligence (see for in-
stance [7]) although the specific transition system is unique. In the example we do not
need partial observability of atomic propositions. Therefore only true propositions are
listed for states. The labels left out are assumed false.

Figure 2.5: Simple PacMan Game - Overview and labeled NDTS.

From the initial state with the yellow PacMan there is a choice of either eating a pel-
let (E.P.) or a dot (E.D.). If the pellet is eaten PacMan becomes invulnerable to the
ghosts and can therefore from then on eat the dots with out fear. Eventually after eating
enough dots the goal state will be reached (if some kind of fairness is assumed).

If the pellet is not eaten initially, PacMan is still vulnerable to the ghosts. He might
succeed in eating all the dots, but he might also be caught by the ghosts before reaching
the goal.
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From any state it is possible to reset the game using the action Reset.

When Progressing CTL the meaning of CTL goals deviate a bit from how CTL is
normally perceived in the model checking community. The following paragraphs elab-
orate on the use of CTL for progression by giving an example of an Extended Goal and
explaining it.

In natural language one example of a continued reachability goal could be, ”Reach the
goal and then reset the game, continuously ”. This Extended Goal can be described in
CTL. The corresponding CTL property:

AG (AF atS5 ∧ AF atS3) (2.3)

No plan can however fulfill the property specified in equation 2.3 for the given plan-
ning domain. The reason is the formulation of the property and the non-deterministic
outcome of the action E.D. (Eat Dot).

The for all operator in CTL has the strict meaning of, ”all possible paths”. Although
it is extremely unlikely (given enough time) the agent might keep looping without ever
reaching the state S5 as intended. ”All paths possible” corresponds to a Strong Solu-
tion.

Therefore the goal expressed in CTL can not be satisfied for the given planning do-
main. The sub goal AFatS5 will not hold because it does not hold for any plan that the
state S5 will eventually be reached on all paths possible. There can only be found a
Strong Cyclic Solution.

Reformulating the goal in equation 2.3 gives an expression that can be satisfied. The
reformulated description of the goal, in natural language, would then be, ”Try reaching
the goal and then reset the game, continuously ”. The reformulated CTL goal can be
seen in equation 2.4. ”There exists a path” or EF corresponds to a Weak Solution.

AG (EF atS5 ∧ AF atS3) (2.4)

The new sub goal EFatS5 is satisfiable.

For the Simple PacMan Game we would like to express the path requirement, ”Pac-
Man should never be caught by ghosts”. This can be expressed in CTL as AG ¬atS6.

The combined CTL expression can be seen in equation 2.5.

AG (EF atS5 ∧ AF atS3) ∧ AG ¬atS6 (2.5)

For this combined goal a plan could be found as the one described in table 2.1 on the
facing page.
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State Context Action Next state Next context
S3 c1 E.P. S1 c1
S1 c1 E.D. S2 c1
S2 c1 E.D. S2 c2
S2 c1 E.D. S5 c2
S2 c2 Reset S3 c1
S5 c2 Reset S3 c1

Table 2.1: Simplified representation of a plan Π using Execution Contexts.

The simplified graphical representation can be converted to a plan on the form (C, c0,
act, ctxt). When moving out of state two the context is changed to c2, no matter if we
reach state two or state five. The plan does therefore not ensure that state five is ever
reached.

The Strong Cyclic goal of reaching a state where atS5 holds could be formulated by
using the until operator. Combined with the other sub goals the expression would be as
follows:

AG (A [EF atS5 ∪ atS5] ∧ AF atS3) ∧ AG ¬atS6 (2.6)

Progressing the formula in equation 2.6 could give a Strong Solution if the Simple
PacMan Game was defined otherwise.

2.7 Planning
Figure 2.6 on the following page shows an overview of how planning is usually done
for the different transition systems and goal types. The type of solution is also noted in
the figure.

Initial states have not been included in the figure although they are required for the
suggested planning approaches. Even in the case of MDP’s and Policy Iteration, where
an initial state would not be used for planning purposes, the initial state is used. This
is because choosing an action, when following a policy, requires that the current state
is known. In general, when following a policy, action outcomes are fully observable
because else the next action can not be looked up.

The planning methods and how they work will be looked into in the following sub-
sections.

2.7.1 Exploration of the Search Space
Exploration of the search space can be done by a search algorithm like for instance
Breadth First Search. In case there are non-deterministic choices the strength of the
solution varies in degree depending on the found path(s) to the goal state(s). See Strong,
Strong-Cyclic, or Weak Solutions in section 2.5 on page 11.
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Figure 2.6: Planning Overview.

2.7.2 Progression

Progression of CTL is described in [4]. The underlying principal being that the goal
formula is either satisfied in the current state, or the goal is progressed and satisfied in
the next state.

In case of a goal formula containing sub goals, as with the CTL formula in equa-
tion 2.5, each sub goal is solved by Progression of CTL. The plan for each sub goal
is then associated with an execution context. This gives a plan on the form of defini-
tion 2.5.2.

For a complete description of planning with execution contexts check [4]. Other ap-
proaches for planning with execution contexts are also covered in [4].

Progression of PCTL has not been explored as a planning approach, but it should be a
reasonable assumption that Progression of PCTL can be done in much the same way
as with Progression of CTL.

PCTL has been used for model checking and there are known approaches for imple-
menting a PCTL model checker. Given a PTS and a policy, PCTL model checking can
be used to check the PCTL properties in the same way CTL properties could have been
checked for a NDTS and a policy.
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2.7.3 Planning Based on Markov Decision Processes

MDP’s and Policy Iteration is a bit outside the scheme with respect to the other plan-
ning approaches because there are no notions of goal states or goal formulae (as given
in Extended Goals).

When planning for a MDP the rewards and costs could however just be ignored, and
planning could be done in the same way as with PTS’s.

The normal approach for planning based on MDP’s is however using the rewards and
costs for estimating utility. Algorithms that optimizes utility, like for instance Policy
Iteration, are then used to determine the optimal policy.

When using utility no guarantees can be made before a policy is found regarding for
instance state avoidance or state reachability goals. That said by assigning costs and
rewards intelligently many of the Extended Goals can be simulated even though they
can not be guaranteed beforehand.

Some continued reachability goals can however not be solved when using policies. In
case the full expressiveness of Extended Goals is needed, using Progression of PCTL
and Plans with Execution Contexts is the viable approach. Rewards and costs are, as
mentioned, irrelevant in this case.

Utility

Utility can be defined as reward minus cost given the cost and reward functions previ-
ously described in definition 2.2.4 on page 9. The estimated average utility of executing
an action Π(s) for a state s can then be defined recursively by:

V(s,Π(s)) =

R(s) −
∑
s′∈S

PΠ(s)(s, s′) ·Cs′(s,Π(s))

 + ∑
s′∈S

PΠ(s)(s, s′) · V(s′,Π(s′))


(2.7)

The left part of the above equation is the reward of the current state s subtracted the
estimated average cost of doing the action Π(s). The summation summarizes the prob-
ability of doing a transition times the cost of doing a transition for all the possible
transitions of the action Π(s).

The right part of the equation is the estimated average utility of the subsequent states.
That is the states following s after action Π(s).

The equation does not usually converge to a finite value. Therefore it is necessary
to introduce a discount factor γ. Where 0 < γ < 1. Introducing γ gives us:
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V(s,Π(s)) =

R(s) −
∑
s′∈S

PΠ(s)(s, s′) ·Cs′(s,Π(s))

 + γ · ∑
s′∈S

PΠ(s)(s, s′) · V(s′,Π(s′))


(2.8)

Ensuring that the value converges to a finite value is not the only reason for introducing
a discount factor. It can also be argued that it makes sense because distant rewards and
costs should have decreased importance for a state. The further steps away the less
influential the step should be considered in respect to a state.

Instead of finding the estimated average utility of a state and an action recursively
solving the equation system V(S ,Π) will give the estimated average utility of all state
action pairs.

Solving the planning problem can now be seen as the problem of finding actions such
that the utility is optimal. There are different algorithmic approaches for finding the
optimal plan (optimizing utility).

Policy Iteration

Policy Iteration is one approach of optimizing utility. The algorithm is described in
pseudocode in figure 2.7 on the next page.

Initially the plan Π is set to the empty plan (in line 2). Then the plan Π′ is initialized to
a random plan (in line 3). The while loop is then entered where the plan Π is iteratively
improved until no changes occur. When no improvements can be found, the optimal
plan Π is returned [4].

The body of the while loop is the step suggesting an improvement to the plan. The
body first calculates the estimated average utility for every state s and action Π(s) in
line 7. Which is the same as solving the equation system V(S ,Π).

Then all states s are traversed in line 9. If there exists an action that causes a better
utility than previous, then this action is chosen as the new suggested action for Π′(s).
The while loop is escaped when all suggestions are the same as the previous plan (Π =
Π′).

Example:

Reusing the PacMan example let the MDP M be described as shown in figure 2.8.
Assume action costs are one on all transitions. The algorithm starts by selecting a
random plan. This could for instance be the plan Π1:
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1: Policy Iteration(M, γ)
2: Π← ∅
3: select any Π′ , ∅
4: while Π , Π′ do
5: Π← Π′
6: for all s ∈ S do {Find the solution to the system of equations V(S ,Π)}
7: V(s,Π(s))← R(s) −

∑
s′∈S

PΠ(s)(s, s′) ·Cs′ (s,Π(s))


+γ ·

∑
s′∈S

PΠ(s)(s, s′) · V(s′,Π(s′))


8: end for
9: for all s ∈ S do

10: if ∃ a ∈ A s.t.

V(s,Π(s)) <

R(s) −
∑
s′∈S

Pa(s, s′) ·Cs′(s, a)


+γ ·

∑
s′∈S

Pa(s, s′) · V(s′,Π(s′))


then

11: Π′(s)← a
12: else
13: Π′(s)← Π(s)
14: end if
15: end for
16: end while
17: return Π

Figure 2.7: Policy Iteration
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Π1 = {(S 1,Reset),
(S 2, E.D.),
(S 3, E.D.),
(S 4, E.D.),
(S 5,Reset),
(S 6,Reset)}

Figure 2.8: Simple PacMan Game - Overview and MDP (costs not included).

The system of equations V(S,Π1) is then solved:

V(S 1,Reset) =R(S 1) − PReset(S 1, S 3) ·CS 3(S 1,Reset)+
γ · (PReset(S 1, S 3) · V(S 3, E.D.)

V(S 2, E.D.) =R(S 2) − (PE.D.(S 2, S 2) ·CS 2(S 2, E.D.) + PE.D.(S 2, S 5) ·CS 5(S 2, E.D.))+
γ · (PE.D.(S 2, S 2) · V(S 2, E.D.) + PE.D.(S 2, S 5) · V(S 5,Reset))

V(S 3, E.D.) =R(S 3) − (PE.D.(S 3, S 4) ·CS 4(S 3, E.D.) + PE.D.(S 3, S 6) ·CS 6(S 3, E.D.))+
γ · (PE.D.(S 3, S 4) · V(S 4, E.D.) + PE.D.(S 3, S 6) · V(S 6,Reset))

V(S 4, E.D.) =R(S 4) − ( PE.D.(S 4, S 4) ·CS 4(S 4, E.D.) + PE.D.(S 4, S 5) ·CS 5(S 4, E.D.)+
PE.D.(S 4, S 6) ·CS 6(S 4, E.D.))+

γ · ( PE.D.(S 4, S 4) · V(S 4, E.D.) + PE.D.(S 4, S 5) · V(S 5,Reset)+
PE.D.(S 4, S 6) · V(S 6,Reset))

V(S 5,Reset) =R(S 5) − PReset(S 5, S 3) ·CS 3(S 5,Reset)+
γ · (PReset(S 5, S 3) · V(S 3, E.D.))

V(S 6,Reset) =R(S 6) − PReset(S 6, S 3) ·CS 3(S 6,Reset)+
γ · (PReset(S 6, S 3) · V(S 3, E.D.))
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Assuming that γ is 0.9 then:

V(S 1,Reset) =1 − 1 · 1 + 0.9 · (1 · V(S 3, E.D.))
V(S 2, E.D.) =1 − (0.5 · 1 + 0.5 · 1) + 0.9 · (0.5 · V(S 2, E.D.) + 0.5 · V(S 5,Reset))
V(S 3, E.D.) =1 − (0.5 · 1 + 0.5 · 1) + 0.9 · (0.5 · V(S 4, E.D.) + 0.5 · V(S 6,Reset))

V(S 4, E.D.) =1 −
(

1
3
· 1 + 1

3
· 1 + 1

3
· 1

)
+

0.9 ·
(

1
3
· V(S 4, E.D.) +

1
3
· V(S 5,Reset) +

1
3
· V(S 6,Reset)

)
V(S 5,Reset) =50 − 1 · 1 + 0.9 · (1 · V(S 3, E.D.))
V(S 6,Reset) =1 − 1 · 1 + 0.9 · (1 · V(S 3, E.D.))

The corresponding matrix equation, A · X = B:

1 0 −0.9 0 0 0
0 0.55 0 0 −0.45 0
0 0 1 −0.45 0 −0.45
0 0 0 0.7 −0.3 −0.3
0 0 −0.9 0 1 0
0 0 −0.9 0 0 1


·



V(S 1,Reset)
V(S 2, E.D.)
V(S 3, E.D.)
V(S 4, E.D.)
V(S 5,Reset)
V(S 6,Reset)


=



0
0
0
0
49
0


The solution:

V(S 1,Reset) ≈34.3141
V(S 2, E.D.) ≈68.1661
V(S 3, E.D.) ≈38.1268
V(S 4, E.D.) ≈50.4121

V(S 5,Reset) ≈83.3141
V(S 6,Reset) ≈34.3141

It can be seen that Π1 is not the optimal plan. When reaching line 9 it is possible to find
actions that improve the utility of the plan. The algorithm does therefore not terminate
at this step.

Indeed the algorithm continues until the optimal plan ΠOptimal is found:

ΠOptimal = {(S 1, E.D.),
(S 2, E.D.),
(S 3, E.P.),
(S 4, E.D.),
(S 5,Reset),
(S 6,Reset)}
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With utility:

V(S 1, E.D.) =1 − 1 · 1 + 0.9 · (1 · V(S 2, E.D.))
V(S 2, E.D.) =1 − (0.5 · 1 + 0.5 · 1) + 0.9 · (0.5 · V(S 2, E.D.) + 0.5 · V(S 5,Reset))
V(S 3, E.P.) =1 − (1 · 1) + 0.9 · (1 · V(S 1, E.D.))

V(S 4, E.D.) =1 −
(

1
3
· 1 + 1

3
· 1 + 1

3
· 1

)
+

0.9 ·
(

1
3
· V(S 4, E.D.) +

1
3
· V(S 5,Reset) +

1
3
· V(S 6,Reset)

)
V(S 5,Reset) =50 − 1 · 1 + 0.9 · (1 · V(S 3, E.P.))
V(S 6,Reset) =1 − 1 · 1 + 0.9 · (1 · V(S 3, E.P.))

→

V(S 1,Reset) ≈89.4120
V(S 2, E.D.) ≈99.3467
V(S 3, E.D.) ≈80.4708
V(S 4, E.D.) ≈83.0775

V(S 5,Reset) ≈121.4237
V(S 6,Reset) ≈72.4237

Remarks:

Value Iteration is another approach for optimizing utility. The algorithm, and a short
comparison of the two approaches, can be found in the appendix in section A on
page 57.

2.8 Epistemic Planning
Epistemic Planning is another approach for modeling and planning for uncertainty.
The definitions in this section are from the journal, ”Epistemic planning for single-
and multi-agent systems” [8]. The section has primarily drawn inspiration from [8]
and partially from [9].

2.8.1 The Language
Given a finite set of atomic propositions P and a finite set of agents A, the language
LK(P, A) is generated by the following Backus Naur Form:

ϕ ::= ⊤|⊥|p|¬ϕ|ϕ ∧ ϕ|Kiϕ (2.9)

⊤ is always, ⊥ is never, p ∈ P, and i ∈ A. ϕ can either be a compound proposition or a
atomic proposition as shown above. Kiϕ intuitively describes that agent i knows ϕ.

22



2.8.2 Epistemic Models
Epistemic Models are used when defining Epistemic States.

Definition 2.8.1 (Epistemic Models) - An Epistemic Model is a triple M = (W, R, V),
where:

• W is a finite set of worlds.

• R : A→ 2W×W is the indistinguishability relation.
In case (w, v) ∈ R(a) then agent a can not distinguish between the worlds w and
v. This is also denoted wRav.

• V: P→ 2W is the valuation function.
Each atomic proposition p ∈ P is mapped to a set of worlds. Intuitively every
atomic proposition is mapped to every world where the proposition is true.

Every relation Ra ∈ R is an equivalence relation. This simply means that Ra partitions
the set of worlds W such that every w ∈ W is a member of one, and only one, partition.
It also means that for any Ra ∈ R it is given that the relation is reflexive, symmetric,
and transitive.

The properties reflexivity, symmetry, and transitivity are demonstrated below.

For all w1,w2,w3 ∈ W, and all a ∈ A, it holds that:

w1Raw1 (reflexivity)

if w1Raw2 then w2Raw1 (symmetry)

if w1Raw2 and w2Raw3 then w1Raw3 (transitivity)

2.8.3 Epistemic States
The reason we have been using the term worlds instead of states becomes apparent
given the following definition of states:

Definition 2.8.2 (Epistemic States) - An Epistemic State is a pair (M, Wd), where:

• M is an Epistemic Model.

• Wd is the set of designated worlds.

Consider the state (M, {w}). The set {w} is a singleton only containing w, and therefore
the state is a global state of the domain of M. This view of the world is considered to
be modeled by an omniscient external observer. Agents are however rarely omniscient
external observers.

The global state can be seen from an agents local point of view as the state (M,Wd).
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Here Wd is the non empty set of designated worlds Wd ⊆ W. Intuitively Wd is the set of
worlds the specific agent considers possible. For a given agent a ∈ A the state is derived
as (M, {v|wRav}). Where {v|wRav} is all the worlds that the agent can not distinguish
from the actual world (including of course the actual world on account of reflexivity).

2.8.4 Event Models

Event Models are used when defining Epistemic Actions.

Definition 2.8.3 (Event Models) - An Event Model is a tuple ε = (E,Q,pre,post), where:

• E is the set of events.

• Q : A→ 2E×E is the indistinguishability relation.
In case (e1, e2) ∈ Q(a) then agent a can not distinguish between the events e1
and e2. This is also denoted e1Qae2. All the indistinguishability relations in Q
are once again equivalence relations as described for Epistemic Models.

• pre: E→ LK(P, A) is a function mapping events to preconditions. The precondi-
tions are conjunctions of atomic propositions and negations of atomic proposi-
tions.

• post: E → LK(P, A) is a function mapping events to postconditions. The post-
conditions are also conjunctions of atomic propositions and negations of atomic
propositions.

2.8.5 Epistemic Actions

Epistemic Actions are defined in much the same way as with Epistemic States.

Definition 2.8.4 (Epistemic Actions) - An Epistemic Action is a pair (ε, Ed), where:

• ε is an Event Model.

• Ed is a set of designated events.

Consider the Epistemic Action (ε, {e}) composed of the event model ε and the singleton
{e}. This is a global view of the action assumed to be made by an external omniscient
observer. The local view of an Epistemic Action can again be defined as:

(ε, Ed) (2.10)

Here the local view of the Epistemic Action by an agent a is once again constructed
as (ε, {e′|eQae′}). Intuitively Ed ⊆ E and Ed is the set of events the agent can not
distinguish from the actual event taking place. The actual event taking place is once
again included in the set of events on the account of reflexivity.
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2.8.6 Product Update of a State with an Action
The product update of a state with an action is defined as follows:

Definition 2.8.5 (Product Update of a State with an Action) - A Product Update of
a State (M,Wd) with an Action (ε, Ed) where M = (W,R,V) and ε = (E,Q,pre,post) is
denoted (M,Wd) ⊗ (ε, Ed). The resulting state ((W′,R′,V ′),W ′

d) is defined as follows:

• W′ = {(w, e) ∈ W × E|M,w |= pre(e)}

• R′i = {((w, e), (v, f )) ∈ W ′ ×W ′|wRiv and eQi f }

• V ′(p) = ({(w, e) ∈ W′|M,w |= p} − {(w, e) ∈ W′|post(e) |= ¬p}) ∪
{(w, e) ∈ W ′|post(e) |= p}.

• W′d = {(w, e) ∈ W′|w ∈ Wd and e ∈ Ed}

2.8.7 Epistemic Planning Domain
The Epistemic Planning Domain can be described like classical planning domains with
a restricted state transition system [8]. The definition can be seen below.

Definition 2.8.6 (Epistemic Planning Domains) - An Epistemic Planning Domain can
be described by a tuple Σ = (S , A, γ), where:

• S is a finite or recursively enumerable set of epistemic states of LK(P, A).

• A is a finite set of actions of LK(P, A).

• γ is defined as:

γ(s, a) =
 s ⊗ a if a is applicable in s

unde f ined otherwise
(2.11)

2.8.8 Epistemic Planning Problems
Epistemic planning problems can be defined in much the same way as classical plan-
ning problems.

Definition 2.8.7 (Epistemic Planning Problems) - An Epistemic Planning Problem is
a triple (Σ, s0, ϕg), where:

• Σ is an epistemic planning domain on (P, A).

• s0 is the initial state, which is a member of S .

• ϕg is the goal formula. The set of goal states S g = {s ∈ S |s |= ϕg}.
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2.8.9 Planning

Given an Epistemic Planning Problem, planning can be done as with classical plan-
ning. The problem can for instance be addressed as a Breadth First Search. In the
same manner as with a classical planning domain the actions are applied to the initial
state in a breadth first order. Given enough time the goal formula will eventually be
entailed by the attained state if it is possible to construct a plan for the domain. Then
extracting the Sequential Plan is simply backtracking the actions taken.

The plan found would then be a sequence on the same form as the following exam-
ple sequence:

s0 ⊗ a1 ⊗ a2 ⊗ a3 ... ⊗ an |= ϕg

Example:

Let figure 2.9 represent the Epistemic State s0.

Figure 2.9: Representation of the epistemic state s0.

There are three atomic propositions C1,C2,C3. It can be seen, as an external observer,
that either one of the propositions are true (w1 − w3), or they are all false (w4). Note
that propositions not listed in a world as true are assumed false in this graphical repre-
sentation of the Epistemic State s0.

The state is seen from agent i’s point of view. In state s0 agent i knows that the actual
world is either w1, w2, or w3. Agent i does not know which world is the actual and fur-
ther more finds the three worlds indistinguishable. The designated worlds (w1−w3) are
marked with ⊙, and the world w4, which agent i does not consider possible, is marked
with •.

The indistinguishable worlds w1 − w3 are connected by lines. Each line is marked by
the agent that considers the connected worlds indistinguishable (in this case i). Note
that arrowheads are omitted from the lines because the relations are bidirectional on
account of symmetry.

The knowledge of agent i in state s0 is given as shown in equation 2.12.
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¬KiC1 ∧ ¬Ki¬C1 ∧ ¬KiC2 ∧ ¬Ki¬C2 ∧ ¬KiC3 ∧ ¬Ki¬C3 (2.12)

For simplicity the impossible worlds (w4) are normally omitted from the graph and
model. The redundant indistinguishability relations are also normally omitted. These
are the relations that can be derived given the property that the indistinguishability re-
lation is transitive (line from w1 to w3) and reflexive (self loops).

The normal graphical representation of s0 can be seen in figure 2.10

Figure 2.10: Simplified representation of the epistemic state s0.

Now let us assume that there are two actions available for the agent. Action a1 in
figure 2.11 and action a2 in figure 2.12.

Figure 2.11: Representation of the epistemic action a1.

Action a1 has two events where the event e1 has ¬C1 as precondition, and the event
e2 has C1 as precondition. Both events are considered equally possible (they are both
marked with ⊙). Both events do not change the truth values of any propositions (post-
conditions = ⊤). Finally it is seen that the two events are distinguishable from each
other during execution for any agent (they are not connected by any lines).

Action a1 is a sensing action telling the agent whether C1 is true or not. Action a2
is a sensing action telling the agent if C2 is true or not in the same way as with action
a1.

Figure 2.12: Representation of the epistemic action a2.

Given the two actions a1 and a2, the initial state s0, and the goal formula shown in
equation 2.13, a plan can be found. Such a plan could for instance be s0 ⊗ a1 ⊗ a2.
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The goal formula should be considered in contrast to the knowledge modeled by the
initial state s0 seen in equation 2.12 on the preceding page. The difference being that
agent i knows the truth values of the propositions in the goal state, and agent i has no
knowledge about the truth values of the propositions in the initial state.

The plan suggests first updating the state s0 with action a1 as shown in figure 2.13.

(KiC1 ∨ Ki¬C1) ∧ (KiC2 ∨ Ki¬C2) ∧ (KiC3 ∨ Ki¬C3) (2.13)

Figure 2.13: Representation of the state s0 ⊗ a1.

The plan then suggest updating with a2 giving a resulting state as shown in figure 2.14.

Figure 2.14: Representation of the state s0 ⊗ a1 ⊗ a2.

It is seen in figure 2.14 that agent i can distinguish between the worlds (no worlds are
connected). It is also seen that the actual world is either w1, w2, or w3 because agent
i considers w1 − w3 designated. Because none of the designated worlds are indistin-
guishable with other worlds the actual world will be known by agent i after execution
of the plan.

If the actual world is w1 agent i will know: KiC1 ∧ Ki¬C2 ∧ Ki¬C3. If the actual
world is w2 agent i will know: KiC2 ∧ Ki¬C1 ∧ Ki¬C3. If the actual world is w3 agent
i will know: KiC3 ∧ Ki¬C2 ∧ Ki¬C1.

Agent i will therefore know the truth value of the propositions C1, C2, C3. Therefore
s0 ⊗ a1 ⊗a2 |= (KiC1 ∨ Ki¬C1) ∧ (KiC2 ∨ Ki¬C2) ∧ (KiC3 ∨ Ki¬C3).

2.8.10 Plausibility
Work is currently being done in the field called Plausibility Planning. The work takes
inspiration from Epistemic Planning. The simplified explanation is that Plausibility
Planning introduce the concept of preordering. Introducing a preorder of worlds with
respect to the Epistemic States and a preorder of events with respect to the Epistemic
Actions.
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The agent therefore knows which world it finds most plausible. The agent also knows
what event (when doing an action) it considers the most plausible. Consequently the
agent knows what world it will find most plausible after doing an action.

This enables the agent to plan with a qualitative approach of evaluating what actions to
do. The extra knowledge available might consequently enable an agent to make better
plans. The work is still in progress but the idea is to improve on the concepts from
Epistemic Planning as described.

2.9 Agent Architecture
Depending on the problem in focus there are of course plenty of advanced agent archi-
tectures that are applicable. The following simple agent architectures will however, as
a simplification, be assumed chosen throughout the report.

2.9.1 Sequential Plans
For the sequential plan we assume that the agent does not reason about progress and
simply mindlessly execute (or try to execute) the actions as the sequence dictates.

2.9.2 Policies
Policies require the agent to keep track of the current state it is in. Otherwise the next
action to take can not be looked up in the policy. How the agent keeps track of the
current state is in principle irrelevant, but when making a transition (or afterwards) the
new state needs to be observed in some way.

2.9.3 Plans with Execution Contexts
The agent is assumed to keep track of the current state and Execution Context. Other-
wise the next action to do can not be looked up in the plan. How this is done is once
again in principle irrelevant. It should however be noted that the Context Transition
Function, ctxt, maps previous state, previous Execution Context, and new state to the
new Execution Context. So the new state needs to be observed in some way as with
policies.

2.10 Analysis of Approaches
There are many extensions and alterations to the planning approaches which takes some
of their limitations into account. For the following subsections the planning approaches
will however only be regarded in the way they are defined in this report. That includes
the definitions of planning problems, planning approaches, solutions, and agent archi-
tectures.
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2.10.1 Partial Observability of States

Table 2.2 shows an overview of the different models and their expressive power.

Transition systems can emulate Partial Observability of States by introducing a corre-
sponding Belief State (see [3]). Seen from a modeling point of view this is just another
state in the transition system. For example can a transition system without a Labeling
Function emulate partial observability of a implicit literal by having an extra state in
the transition system where the value of the literal is assumed to be unknown i.e. a
Belief State.

For transition systems with Labeling Functions or in the case of Epistemic States the
literals that are partially observable are just made explicit (as are the literals that are
fully observable).

Models: Non-Deterministic
Outcome of Actions

Can Emulate Partial
Observability of

States
DTS (S, A, γ) No Yes

Labeled DTS (S, A, γ, L) No Yes
NDTS (S, A, γ) Yes Yes

Labeled NDTS (S, A, γ, L) Yes Yes
PTS (S, A, P) Yes Yes

Labeled PTS (S, A, P, L) Yes Yes
MDP’s (S, A, P, R, C) Yes Yes

Labeled MDP’s (S, A, P, R, C, L) Yes Yes
Epistemic States and Event Models Yes Yes

Table 2.2: Overview of Expressive Power.

2.10.2 Partial Observability of Action Outcome

Partial Observability of Action Outcome, as it is described in section 2.1.1 on page 4,
can be non-deterministic actions where the actual outcome is only partial observable
after action execution.

Example:

Figure 2.15 on the next page shows the two possible observations, o1 and o2, from
turning on the lights from the state Off. Here we abstract away from how the observa-
tions are actually made and just assume that the o1 corresponds to observing On and o2
corresponds to observing Off.

30



In case of full observability of the action outcome when doing the action Turn_On
we get either the observation o1 (corresponding to transitioning to the state On) or the
observation o2 (corresponding to transitioning to the state Off ).

In case of partial observability of the action outcome when doing the action Turn_On
we get the set of observations {o1, o2}. This corresponds to observing the Belief State
{On, Off}.

Figure 2.15: Observations - Turning the light On.

Handling Partial Observability of Action Outcome

For a planning approach to handle this kind of Partial Observability of Action Out-
comes it is therefore required that observations are made when executing actions and
making state transitions.

It is also required that these observations can be partial i.e. not knowing completely
what state the system has transitioned to.

Of course the observations needs to be taken into account before further action. None
of the approaches does this in their raw form (as described in this report).

The overview of the approaches can be seen in table 2.3 on the following page. Follow-
ing a policy requires that transitions are fully observable. Otherwise the next action to
take can not be looked up in the policy. Some form of observation is therefore required
regarding the state change. The same is true when following a Plan with Execution
Contexts. When following Plans with Execution Contexts there needs to be kept track
of the current state and current execution context.

Handling this kind of Partial Observability of Action Outcomes could for instance be
done by having a probability distribution over states and updating the distribution based
on the action taken and the observations made (probabilistic approach). This of course
requires that the method of choosing appropriate action is updated so it handles proba-
bility distributions over states instead of just having a current state.

Another approach is having an ordering of states and updating the ordering of states
based on the action taken and the observations made (Qualitative Approach).
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Planning Approach and Solution Type Use
Observations

Observations
can be Partial

Exploration of Search Space and Sequential
Plans No -

Exploration of Search Space and Policies Yes No
Policy Iteration and Policies Yes No

Progression and Plans with Execution
Contexts Yes No

Epistemic Planning and Sequential Plans No -

Table 2.3: Partial Observability of Action Outcomes.

2.10.3 Likelihood of Action Outcome

Knowledge about the likelihood of an action outcome enables a more informed choice
when planning. One approach is assigning probabilities on action outcomes (Proba-
bilistic Approach). Table 2.4 shows an overview of the models expressive power in
this respect. Another approach is having a pre-order of action outcomes (Qualitative
Approach). None of the models use pre-orders (or other orders).

Models: Assigns Probabilities on Outcomes
DTS (S, A, γ) No

Labeled DTS (S, A, γ, L) No
NDTS (S, A, γ) No

Labeled NDTS (S, A, γ, L) No
PTS (S, A, P) Yes

Labeled PTS (S, A, P, L) Yes
MDP’s (S, A, P, R, C) Yes

Labeled MDP’s (S, A, P, R, C, L) Yes
Epistemic States and Event Models No

Table 2.4: Likelihood of Action Outcome.

2.10.4 Time and Quantities

The planning approaches all discretize time so continuous time can not be handled. The
approaches either abstract away from durations on actions, or all actions are assumed
to take one time unit. The approaches can not model durations on effects.

None of the approaches can handle continuous quantities. They can all discretize a
quantity so long as the quantity and production/consumption of the quantity can be
represented by a finite number of states (different amounts of the quantity).
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2.10.5 Exogenous Events
The approaches does not handle exogenous events as they are described in this report.
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Chapter 3

Domain Analysis

This chapter will introduce the reader to the DTUsat2 satellite and some of the planning
problems regarding DTUsat2. The chapter also contains an analysis of one or more
of the planning problems. Results from the manual test executions of the planning
approaches will be outlined, and observations will be made. The planning approaches
that will be tested are, ”Planning Based on MDP’s, Planning for Extended Goals with
Progression of CTL and Epistemic Planning.”

3.1 DTUsat2

For a full description of the DTUsat2 Student Project see Solving the mystery of bird
migration - Tracking small birds from space in [10] and DTUsat Mission Overview in
[11].

Mission Description

The mission of the DTU student satellite is to track from space the migration of small
birds.

The cuckoo bird normally lays its eggs in the nests of other birds thus leaving the
fostering of its chicks to other species of birds. When the (grown) chicks decide to
migrate from northern Europe to Africa it is therefore without having met their parents.

Figure 3.1 on the following page shows an example of the migratory routes.

How these birds manage to navigate flawlessly several thousand kilometers alone and
in the night is still unclear. The DTUsat2 Student Project is supposed to help scientist
understand this phenomenon better by tracking the migratory routes of the birds.
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Figure 3.1: Example of migratory routes.

3.2 DTUsat2 Planning Problems
There are several planning problems regarding DTUsat2. For the following selected
planning problems dealing with uncertainty is paramount to correct planning and op-
eration within the domain.

3.2.1 Charging the Battery
The battery must only be charged when it is between 0 ◦C and 45 ◦C. This constraint
was defined because there exists a risk of the battery exploding if charging at too low
or too high temperatures.

There are several temperature sensors on DTUsat2. There are however only three that
measure the temperature on the battery. They each measure independently of each
other. They are of different type so they have different confidence intervals.

The conditions the sensors work under might cause the sensors to return wrong tem-
perature measurements now and then. The sensors might also break down completely.

For enabling recharging of the battery more often a heater is placed on the battery.
Power consumption of the heater should be kept at a minimum so the power can be
used by other parts of the satellite. Heating the battery to an acceptable temperature for
recharging should not be done if the power generated from the solar panels is too small.

Taking all these different aspects into consideration, recharging can be seen as an in-
teresting planning problem (the Battery Recharging Planning Problem - BRPP) where
there are both critical consequences and less critical consequences of recharging the
battery.

3.2.2 Attitude Control Subsystem
The Attitude Control Subsystem is responsible for orienting the satellite correctly to-
wards earth. The side of the satellite, on which the antenna is located, should be pointed
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towards earth.

The satellite transmits a beacon of selected housekeeping data every 30 seconds. The
ground station should be able to receive this data no matter what orientation the satel-
lite has. Likewise the satellite needs to be able to receive commands from the ground
station independently of the satellite orientation.

The Communication Subsystem is however also able to enter a high rate data mode
upon instruction from the ground station. This high rate data mode will be able to
send more detailed housekeeping data, and/or data from the PPL (Primary Payload)
and PICOCAM (see [11]).

Data sent in the high rate data mode can only be received by the ground station when
the satellite is oriented towards earth correctly. The ground station also needs to use a
high gain antenna (directional antenna) for it to receive data in high rate data mode.

These limitations are present because more data can be transmitted for the same amount
of energy. The Attitude Control Subsystem is therefore critical for the mission success.
Part of the Attitude Control Subsystem is a 3-axis magnetometer, three magnetic tor-
quers, a sun sensor board, and a deployable gravity gradient boom. These are some of
the available sensing capabilities and means of influence.

Besides this there is a sensor that measures if the gravity gradient boom has been re-
leased. The time taken for the gravity gradient boom to release is known to vary. The
Attitude Control Subsystem should shift state from detumbling to dampening when the
gravity gradient boom has been deployed. The latter of the two states is the less power
consuming state.

There are also heat sensors attached to the sides of the satellite so it is possible to
sense which side of the satellite is approximately pointing towards earth and which
sides are pointing out into space.

The Planning Problem

Deploying the gravity gradient boom will be outlined as a planning problem (the Grav-
ity Gradient Boom Deployment Planning Problem - GGBDPP) in the following para-
graphs:

Based on the measurements from the 3-axis magnetometer the satellite’s rotation should
be slowed using the magnetic torquers (detumbling). Then the heat sensors and the sun
sensor board should be used to determine if the satellite is approximately pointing to-
wards earth.

If the orientation of the satellite is acceptable the gravity gradient boom should be
deployed so stabilization can be achieved passively. With out powering the magnetic
torquers too much at least.
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The 3-axis magnetometer, the heat sensors, and the sun sensor board return differ-
ent confidence intervals on different measurements. Once again the values might not
always be returned correctly because of the working conditions. There also exists a
risk that the equipment breaks down or is already broken.

The gravity gradient boom should be deployed when the orientation of the satellite
is correct, else the satellite might be stabilized pointing the wrong way.

When the gravity gradient boom is deployed the attitude control system should change
state to save power. The deployment of the gravity gradient boom is known to vary in
time. If necessary the satellite should be flipped if the satellite stabilized pointing away
from earth.

3.3 Applicability of Planning Approaches
The planning approaches, ”Planning Based on MDP’s, Planning for Extended Goals
with Progression of CTL, and Epistemic Planning,” should be able to model and plan
for the BRPP and the GGBDPP given the following simplifying assumptions:

• Observations as they are described in section 2.10.2 on page 30 can not be partial.

• Time can be discretized and action durations assumed to take one time unit.
There is no need to have durations on effects.

• There is no need to represent continuous quantities.

• Exogenous Events can be abstracted away from during planning and plan execu-
tion.

3.4 Extended Battery Recharging Planning Domain
The Extended Battery Recharging Planning Domain (EBRPD) is inspired from the
description of the BRPP from section 3.2.1 on page 36.

3.4.1 Specification of the EBRPD
The general specification of the EBRPD abstracts away from power production and
consumption. Heating the battery is simply assumed to always be a viable choice.

Let there be given two atomic propositions OK and Charging. The atomic proposi-
tion OK describes if the temperature is acceptable for recharging or not. The atomic
proposition Charging describes if the system is recharging or not.

Let the actions available be SenseTemp, StabilizeTemp, BeginCharging, and StopCharg-
ing.
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The action SenseTemp is assumed to change the truth value of the atomic proposi-
tion OK if the environment has changed temperature.

Assume that the action StabilizeTemp tries to adjust the heater on the battery so that
the temperature gets acceptable for recharging (tries to make the atomic proposition
OK true).

The action StabilizeTemp is able to fail in stabilizing the temperature if the action is
applied when the temperature is unacceptable for recharging (if OK is false initially it
might remain that way).

The result of executing the action StabilizeTemp is assumed to be unknown when ap-
plying the action in a state where the temperature is unacceptable for recharging.

The action BeginCharging starts recharging of the battery (the proposition Charging
gets true). It is fully observable and the action is assumed to always succeed when
the action is applicable. The action is only applicable when the battery is not charging
(Charging is false).

The action StopCharging stops recharging of the battery (the proposition Charging
gets false). It is fully observable and the action is assumed to always succeed when
the action is applicable. The action is only applicable when the battery is charging
(Charging is true).

3.4.2 Models of EBRPD and Example Runs

The complete documentation of the models and the example runs can be found in the
appendix in section B.3 on page 71.

Policy Iteration - Model

Figure 3.2 on the following page and figure 3.3 on the next page are the graphical rep-
resentation of a MDP representing the EBRPD.

Note that the actions are abbreviated in the following way, ”SenseTemp = ST, Sta-
bilizeTemp = STB, BeginCharging = BC and StopCharging = SC”. Strictly speaking
MDP’s do not contain information regarding atomic propositions. The combinations
of the atomic propositions are used for naming the states instead. This will make later
comparison of models easier. In the case of (OK ∨ !OK) the truth value of OK is
unknown i.e. it is not meant as a tautology but just used to visualize that there is no
knowledge of the truth value of the atomic proposition OK.
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Figure 3.2: Charging Battery - Probabilities and Actions.

Figure 3.3: Charging Battery - Costs and Rewards.
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Policy Iteration - Solution

The policy Π2 seen below has been found by the Policy Iteration Algorithm where γ
was assumed to be 0.9.

Π2 =

{
(′′OK ∧Charging′′, S tabilizeTemp),

(′′OK ∧ ¬Charging′′, BeginCharging),
(′′(OK ∨ ¬OK) ∧Charging′′, S enseTemp),
(′′(OK ∨ ¬OK) ∧ ¬Charging′′, S enseTemp),
(′′¬OK ∧Charging′′, S tabilizeTemp),

(′′¬OK ∧ ¬Charging′′, S tabilizeTemp)
}

(3.1)

Progession of CTL - Model

Figure 3.4 on the following page shows a representation of the EBRPD modeled by a
NDTS.

Labels are omitted from the figure although state names are made so they correspond
to labels. The same notations and abbreviations used in the MDP is used here.

Let the labeling function L be given as:

L(′′OK ∧Charging′′) = {OK,Charging}
L(′′OK ∧ ¬Charging′′) = {OK,¬Charging}

L(′′(OK ∨ ¬OK) ∧Charging′′) = {Charging}
L(′′(OK ∨ ¬OK) ∧ ¬Charging′′) = {¬Charging}

L(′′¬OK ∧Charging′′) = {¬OK,Charging}
L(′′¬OK ∧ ¬Charging′′) = {¬OK,¬Charging}

(3.2)

Because of the need to have partial observable propositions there is no closed world
assumption. That means both positive and negative propositions needs to be part of the
labeling function. If both the positive and negative version of a proposition is omitted
there is no knowledge present about the truth value of the proposition. This is the case
for the atomic proposition OK in the state ′′(OK ∨ ¬OK) ∧ ¬Charging′′ and the state
′′(OK ∨ ¬OK) ∧Charging′′.

Progession of CTL - Goal and Solution

The goal is the CTL formula shown in equation 3.3.

AG (A (EF (OK ∧Charging) ∪ OK ∧Charging) ∧ AF (OK ∧Charging))

∧ AG (OK ∨ ¬Charging)
(3.3)
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Figure 3.4: Transition System with Labels Omitted.

Progressing the CTL subformulas gives the plan shown in table 3.1 if ”(OK ∨ ¬OK) ∧
¬Charging” is assumed to be the initial state.

State Context Action Next state Next context
”(OK ∨ ¬OK) ∧ ¬Charging” c1 SenseTemp ”¬OK ∧ ¬Charging” c1
”(OK ∨ ¬OK) ∧ ¬Charging” c1 SenseTemp ”OK ∧ ¬Charging” c1

”OK ∧ ¬Charging” c1 BeginCharging ”OK ∧Charging” c2
”¬OK ∧ ¬Charging” c1 SenseTemp ”¬OK ∧ ¬Charging” c1
”¬OK ∧ ¬Charging” c1 SenseTemp ”OK ∧ ¬Charging” c1

”OK ∧Charging” c2 StabilizeTemp ”OK ∧Charging” c1
”OK ∧Charging” c1 StabilizeTemp ”OK ∧Charging” c2

Table 3.1: Plan Found by Progressing the CTL Formula in Equation 3.3.

Epistemic Planning - Model

The Epistemic Planning Domain Σ is a model of the EBRPD. It can be represented
graphically as shown in figure 3.5.

Note that some lines are dashed. This is simply a visual aid telling that the action
not necessarily leads to the exact same Epistemic State, but that the action leads to an
Epistemic State which is bisimilar to the one the dashed arrow points to. Therefore,
depending on the exploration path, dashed arrows might need to be exchanged with
normal arrows and vice versa if Epistemic States are drawn as they are explored.
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Figure 3.5: Epistemic Planning Domain - EBRPD.

Epistemic Planning - Problems and Solutions

The example Epistemic Planning Problem using the previous described Epistemic Plan-
ning Domain:

Problem One

• Σ = figure 3.5.

• s0 = figure 3.6.

• Φg = OK ∧Charging.

Figure 3.6: Problem One - Initial Epistemic State.

For ProblemOne there are no strong solutions. Assuming that actions will be explored
in a breadth first manner and chosen in alphabetical order the first weak solution that is
found is s0 ⊗ BC ⊗ S T .

The term weak solution means that not all of the designated worlds of the reached
state (and the partitions they are part of) entails the goal formula, but at least one des-
ignated world does. Where a strong solution means that all the designated worlds (and
the partitions they are part of) entails the goal formula. At least when defined for the
single agent case.
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3.4.3 Observations
The following observations are made with respect to the previous described manual
test executions.

Observations - Policy Iteration

The goal was reaching the state ”OK∧Charging” and staying there. This was captured
quite efficiently by the way the costs and rewards were modeled.

The policy found was acceptable. It would have been better if the state ”!OK ∧
Charging” and the state ”(OK ∨ !OK) ∧ Charging” was mapped to StopCharging
as a safety precaution. That said at least the states ”!OK ∧ Charging” and ”!OK∧
!Charging” was not mapped to the action SenseTemp. The probabilities on the transi-
tions ensured that this was not the case.

Hoping that the temperature will get back in the accepted area by itself might be a
possibility, but it is a fair assumption that this is not considered efficient enough.

Observations - Progression of CTL

The plan found was acceptable but not optimal. The problem is that from the state
”!OK∧ !Charging” the action SenseTemp is picked in hopes of the temperature nor-
malizing by itself. This should be considered in contrast to picking StabilizeTemp
where the temperature gets stabilized by the satellite.

Without probabilities (or some other measure of describing the most likely state change)
it is not possible to know how often the temperature will change on its own when call-
ing the action SenseTemp.

The plan found does however guarantee that it is impossible to reach a state where
there is a risk of the battery exploding. This was achieved by the formulation of the
goal. More generally the planning approach guarantees that the complete extended
goal, as given by the CTL formula, will hold if a plan is found.

Observations - Epistemic Planning

The continued goal of reaching a state where OK ∧ Charging holds makes Epistemic
Planning a bit unsuited in it’s simplest form. That said the actual reached world will be
known after execution of the plan. Measures like for instance replanning could there-
fore be implemented to make up for the failed attempts at reaching a state where OK ∧
Charging holds.

The plan might lead to a world where the battery is recharging when the tempera-
ture is outside the acceptable bounds.

The planning approach insures that one of the designated worlds models the formula
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OK ∧Charging if a plan is found. It can therefore be proven that there is a chance that
the correct world will be reached before planning is done.

3.5 Other Domain Examples
Besides the EBRPD experiments with other planning domains have been made. The
problem regarding deployment of the gravity gradient boom has for instance also been
investigated. The different models and test executions of the planning approaches can
be found in the appendix. See section B.2 on page 62 and section B.4 on page 82.
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Chapter 4

Recommendation

This chapter will make a recommendation of planning approach for the EBRPD based
on both the domain analysis and the previous comparison of the approaches. The rec-
ommendation is based on the three tested approaches, ”Planning Based on MDP’s,
Planning for Extended Goals with Progression of CTL and Epistemic Planning.”

4.1 Analysis of Best Practice for the EBRPD
There are several pros and cons of using the different planning approaches with respect
to the EBRPD.

4.1.1 Consideration of the Likelihood of Action Outcomes

The probabilities used in the MDP ensured that the action SenseTemp was not chosen
in situations where waiting for the temperature to change on its own was not viable.
This is of course an advantage compared to the other approaches that does not consider
the likelihood of action outcomes.

Regarding assignment of the probabilities in the MDP it should be said that the assign-
ments has not been made on empirical collected data or some other source of statistical
information. The probabilities are therefore most likely wrong.

It could be argued that in cases where the probabilities are unknown it does not make
sense to pick the MDP approach to model the domain. This of course depends on the
worst case deviation when estimating probabilities. Some of the probabilities might
be known even though they have not been used in the testing process. In any case,
assuming that the actual deviations are small, there is a clear advantage of not picking
actions with a small possibility of success.

Although sensing the temperature was not chosen at inappropriate points when Plan-
ning Based on MDP’s no guarantees could however be made beforehand. When the

47



actual planning needs to take place on the satellite the advantage is therefore limited.

4.1.2 Guarantees and Path Requirements
As mentioned one of the disadvantages of using MDP’s and Policy Iteration is that
no guarantees can be made beforehand about reaching a desired state or avoiding a
undesired state. When the planning is done on the satellite this is not good enough.
For the domain the desired state would be the state where the battery is recharging and
the temperature is OK. The undesired states would be the states where the battery is
recharging while the temperature might be or is outside the acceptable bounds.

When Planning for Extended Goals with Progression of CTL it is possible to make
guarantees if a plan is found. For the specific domain no plan can be found where
all paths leads to the desired state. The state where the battery is recharging while the
temperature is OK. It can however be guaranteed that attempts to reach the state will be
made continuously. If there is any kind of fairness it is ensured that the state will even-
tually be reached. It can also be guaranteed that the undesirable states are never visited.

Epistemic Planning also enables one to make guarantees beforehand. As mentioned
no strong plan to reach the desired state can be found for the specific domain. That
said, in case a plan is found, it can once again be guaranteed that there is a chance that
the reached world will be the desired world. The world where the battery is recharging
while the temperature is OK. With intelligent replanning and assumptions of fairness
the desired world will eventually be reached. Epistemic Planning does not enable path
requirements and therefore no guarantees can be made with respect to never visiting
undesirable states.

4.1.3 Partial Observability of Action Outcome
The model of the EBRPD has been simplified in order for the planning approaches to
be applicable. Most of the simplifying assumptions, like abstracting away from time
durations on effects or actions, can arguably be said to have negligible effect.

One of the simplifying assumptions is however that it is not necessary to allow par-
tial observations. There are situations where this is not a reasonable assumption. Take
for instance the action of sensing the temperature. There are multiple ways of defining
the outcomes of the action. In figure 4.1 on the next page a simple set of possible out-
comes and a more complex set is shown.

The two epistemic states shows two different cases of the resulting state after sensing
the temperature. The left example is the one used in section 3.4.2 on page 39 (see Epis-
temic Planning - Model). For the left state it is assumed that the action of sensing the
temperature tells us that it is either OK to recharge the battery or not OK to recharge
the battery. Both cases are assumed to be fully observable.
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Figure 4.1: Sensing the Temperature - A simple and a more complex set of possible
outcomes.

A slightly more reasonable model is the one to the right. There are three different
outcomes of the action of sensing the temperature. Either we get the result that the
temperature is OK, or the result that it is not OK, or the result that the temperature is
still unknown. Thus allowing for the temperature sensing to fail in some way.

In reality the problem of sensing the temperature is however more complex. The right
example comes close at modeling the real world sufficiently. This is because when the
temperature is measured the value returned can of course be either in a OK region or a
not OK region. The sensors are also known to deviate so in case of temperature values
just on the border of OK or not OK, the actual temperature region can not be decided
(temperature remains unknown).

There is however also the case of the sensor failing because of the environment the
sensor is working in, and simply giving a completely wrong value. This value might
be so far out of the reasonable range that it is detected. Depending on the modeling
approach detected failed attempts at sensing the temperature could simply be ignored
leading to the world where the temperature is unknown. The situation might also need
to be explicitly pointed out leading to a world where for instance a specific fail propo-
sition is flagged true.

When the temperature sensor fails, the value might however also simply fall within
the OK region, or the not OK region, or on the border of the two regions. This situation
of the sensor failing can therefore not be distinguished from any of these three situa-
tions.

When a value is returned from measuring the temperature, the correct approach is
therefore assuming that we have partial observability over the actual outcome. Sim-
ply always transitioning to a state where the temperature is unknown does however not
capture the knowledge gained by sensing the temperature.

One approach is getting a probability distribution of the temperature regions or possible
states that the action sensing the temperature leads to (Probabilistic Approach). There
are other approaches than the probabilistic for allowing this kind of Partial Observabil-
ity of Action Outcomes. Partial Observable Markov Decision Processes (POMDP’s)
however use the probabilistic approach. Transition systems in general could take ad-
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vantage of the approach.

For Epistemic Planning a preorder of equivalence classes or worlds might be used to
indicate the most likely partition/world in a qualitative way. Using preorders for Epis-
temic Planning is looked into in the article Plausibility Planning [9]. The probabilistic
approach could of course also be used for Epistemic Planning and likewise could the
qualitative approach be used for transition systems.

4.1.4 Evaluation and Recommendation
Planning Based on MDP’s has an advantage over the other approaches because it is the
only approach that models the likelihood of the outcomes as described in section 4.1.1
on page 47.

Epistemic Planning and Planning for Extended Goals with Progression of CTL how-
ever has the advantage that there can be made guarantees as described in section 4.1.2
on page 48. Planning for Extended Goals with Progression of CTL has a slight advan-
tage over Epistemic Planning because Extended Goals can be expressed and guaran-
teed. Path requirements, avoidance goals in particular, where relevant for the domain.

The continued goal of recharging was also better captured by Extended Goals com-
pared to the Epistemic Planning Approach. Epistemic Planning only plans for reacha-
bility goals.

Assuming that the computational power of the satellite is sufficient for the planning
approaches, and assuming that the planner will be implemented on the satellite and the
satellite just receives the planning problem, Planning for Extended Goals with Pro-
gression of CTL will be my recommendation for the EBRPD.

The recommendation is also based on the assumption that a simple representation of
the action SenseTemp is sufficient. Measuring the temperature can be assumed not to
fail if for instance the temperature is sampled several times or other similar fixes.

With the limited computational power available on DTUsat2 it does not really make
sense to implement a general purpose planner on the satellite. Solving the planning
problems on the ground station and simply transmitting the solutions to the satellite is
however feasible.

This however negates some of the arguments for using Planning for Extended Goals
with Progression of CTL and might make Planning Based on MDP’s a viable choice.
Desired reachability or avoidance goals can for instance be checked, after planning,
using model checking techniques (ensuring sound Policies). That said, speculating in
alterations or extensions would also allow the approach Planning for Extended Goals
with Progression of CTL to be improved. The likelihood of action outcomes could for
instance be taken into account by using Progression of PCTL. The initial recommen-
dation therefore stands.
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The DTU Student Satellite Project does not only cover DTUsat2 but evolves satel-
lite construction in general. When the time comes for launching a satellite with more
computational power the plan is to implement a general purpose planner. The work
done in this thesis can therefore be saved for future use.
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Chapter 5

Conclusion

This chapter summarizes the primary points made in the different chapters focusing on
the conclusions and the findings made.

5.1 Planning Under Uncertainty
The different areas of uncertainty were clarified and the different planning approaches
defined. There was an initial analysis of the different planning approaches. This analy-
sis described the general coverage of the approaches with respect to the different areas
of uncertainty.

The planning approaches only had small deviations in advantages and disadvantages.
Capturing the likelihood of action outcomes should be mentioned as one of the notable
differences between the approaches. The probabilistic modeling approaches can cap-
ture the likelihood of action outcomes.

Common for the approaches is that none of them handle partial observations as they
are defined in this report.

Given a deeper analysis more deviations might be found. Planning with multiple agents
were for instance not looked into. This was mainly because the satellite planning prob-
lems were primarily cases of single agent planning.

5.2 Domain Analysis
The satellite and its purpose was outlined. The primary purpose being tracking the
migratory routes of cuckoo birds. Then two of the planning problems of the DTUsat2
satellite were examined.

Taking the planning approaches into consideration the EBRPD was defined. Simplify-
ing assumptions were made compared to the more general description of the planning
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problem. These assumptions where necessary for the planning approaches to be appli-
cable.

The three planning approaches, ”Planning Based on MDP’s, Planning for Extended
Goals with Progression of CTL and Epistemic Planning,” was tested on the EBRPD.
The most notable observations were:

• The MDP captured the likelihood of the outcomes of the action SenseTemp and
therefore gave better plans.

• No guarantees could be made beforehand when using MDP’s and Policy Itera-
tion. Epistemic Planning allowed to make guarantees beforehand on reachability
goals. Planning for Extended Goals with Progression of CTL allowed for making
guarantees beforehand on both reachability and avoidance goals.

5.3 Recommendation
It was found that Planning for Extended Goals with Progression of CTL was the rec-
ommended approach for planning with respect to the EBRPD. That is of course out of
the three tested approaches. Expressing and guaranteeing avoidance of specific states
where the primary reason for the approach to be recommended.

The recommendation was of course based on a lot of assumptions. A less simplified
planning problem can probably be handled more sufficiently by Planning for Extended
Goals with Progression of PCTL using an agent architecture that allows partial ob-
servations. This was argued in the chapter but should of course be documented by
further investigation. POMDP’s might for instance be an better alternative depending
on where the actual planning is done and how the different attributes are weighed.
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Appendix A

Value Iteration

Value Iteration is another approach than policy iteration (seen in figure 2.7 on page 19)
to optimize utility. The algorithm is described in pseudocode in figure A.1 on the fol-
lowing page.

The idea behind value iteration is much the same as Policy Iteration. The difference
being that value iteration uses old estimates of utility when recalculating utility of an
altered plan.

It can be shown that there exists a maximum number of iterations needed to guar-
antee that Value-Iteration returns an optimal policy [4].

Normally a stopping criterion is used. The policy is returned when the difference of the
previous estimated utility and the current estimated utility is below some value ε. For
such a plan the found utility does not differ from the optimum utility with more than ε
[4].

In the pseudocode in figure A.1 on the next page the old utility values are initialized in
the beginning of the algorithm. Then the while loop is entered. The while loop iterates
k times and is escaped afterward.

The body of the while loop estimates every utility value of every action in every state.
Then the best of these actions are chosen for each state and their utility values are saved
as the new ”old estimate” of utility for that state.

For insuring an ε-optimal policy the algorithm should be altered such that instead of
iterating k times, the while loop is exited when the margin of difference between two
plans are below the threshold ε.
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1: Value Iteration(M,γ)
2: for all s ∈ S do
3: select any initial value V0(s)
4: end for
5: k← 1
6: while k < maximum number of iterations do
7: for all s ∈ S do
8: for all a ∈ A do
9:

Vtemp(s, a)←
R(s) −

∑
s′∈S

Pa(s, s′) ·Cs′ (s, a)


+γ ·

∑
s′∈S

Pa(s, s′) · Vk−1(s′)


10: end for
11: Vk(s)← maxa∈A Vtemp(s, a)
12: Π(s)← arg maxa∈A Vtemp(s, a)
13: end for
14: end while
15: return Π

Figure A.1: Value Iteration
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A.1 Comparison of Policy Iteration and Value Iteration
The two approaches are identical in some aspects.

”They both compute a sequence of plans: Π1, Π2, Π3,...,Πi,... and a sequence of sets of
values Vi(s) for each s ∈ S .” [4]

The difference between the two approaches is that value iteration estimates Vi from
the value Vi−1 where as policy iteration calculates the whole equation system Vi every
step. Intuitively Value Iteration is computational cheaper each step than Policy Itera-
tion.

Policy Iteration however takes fewer iterations to converge [4]. Deciding on which
approach to use should therefore be done either based upon further research or empiri-
cal testing.
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Appendix B

Example Models and Manual
Test Executions

This chapter contains the complete documentation of the example models and manual
test executions used in the report. The chapter also contains some extra example models
and some extra manual test executions.

B.1 Description of SBRPD
This section contains a specification of the Simple Battery Recharging Planning Do-
main (SBRPD) inspired from the battery recharging planning problem from section 3.2.1
on page 36.

For simplicity let the domain only consist of three different states, TempUnknown,
Charging and BadTemp. Assume that the battery is not charging in the states Tem-
pUnknown and BadTemp. Assume that the battery is charging in the state Charging.

Given that there is a heater present on the battery assume that the action StabilizeTemp
tries to adjust the setting on the heater so that the temperature of the battery reaches the
accepted temperature for recharging. The action StablizeTemp should always result in
a transition to the state TempUnknown. It is assumed it is always profitable to stabilize
the temperature of the battery for recharging.

The action of sensing the temperature (SenseTemp) is simplified so it does not return
three temperatures or the confidence interval of three temperatures. The action is as-
sumed to give the result that either the temperature is acceptable, the temperature is
unacceptable or the action fails and the temperature remains unknown.

If the temperature is acceptable with respect to recharging, the system should transition
to the state Charging. If the temperature is unacceptable the system should transition
to the state BadTemp. In case the action SenseTemp fails, when in a state where the

61



temperature has been decided, the previous temperature is assumed to be the correct
temperature.

The actions StablizeTemp and SenseTemp are therefore assumed to be applicable in
all states but transitions should be defined as described above.

B.2 Simple Battery Recharging Planning Problem
This section will contain different models of the SBRPD from the section Description
of SBRPD on page 61. The section will also contain example test runs of the planning
approaches using the models defined.

B.2.1 SBRPD Represented as a MDP
This sub section defines a MDP modeling the SBRPD.

Beginning with the formal representation, let the states be:

S = {TempUnknown, BadTemp,Charging} (B.1)

Let the actions be:

A = {S tabilizeTemp, S enseTemp} (B.2)

Let the transition probabilities be:

Paction(s f rom, sto) =
{ (

PS tabilizeTemp(BadTemp,TempUnknown) = 1
)
,(

PS tabilizeTemp(Charging,TempUnknown) = 1
)
,(

PS tabilizeTemp(TempUnknown,TempUnknown) = 1
)
,(

PS enseTemp(TempUnknown,TempUnknown) = 0.1
)
,(

PS enseTemp(TempUnknown,Charging) = 0.8
)
,(

PS enseTemp(TempUnknown, BadTemp) = 0.1
)
,(

PS enseTemp(Charging, BadTemp) = 0.1
)
,(

PS enseTemp(Charging,Charging) = 0.9
)
,(

PS enseTemp(BadTemp, BadTemp) = 0.95
)
,(

PS enseTemp(BadTemp,Charging) = 0.05
)}

(B.3)

The transition probabilities listed are the probabilities above zero. The zero probabili-
ties, e.g. PS tabilizeTemp(TempUnknown,Charging) = 0, are left out.
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Let the rewards be:

R(TempUnknown) = 1,R(BadTemp) = 1,R(Charging) = 100

Let the costs be:

Csto (s f rom, action) =
{ (

CTempUnknown(TempUnknown, S tabilizeTemp) = 50
)
,(

CTempUnknown(BadTemp, S tabilizeTemp) = 1
)
,(

CTempUnknown(Charging, S tabilizeTemp) = 50
)
,(

CTempUnknown(TempUnknown, S enseTemp) = 1
)
,(

CBadTemp(TempUnknown, S enseTemp) = 1
)
,(

CCharging(TempUnknown, S enseTemp) = 1
)
,(

CBadTemp(BadTemp, S enseTemp) = 50
)
,(

CCharging(BadTemp, S enseTemp) = 50
)
,(

CCharging(Charging, S enseTemp) = 1
)
,(

CBadTemp(Charging, S enseTemp) = 1
)}

(B.4)

Figure B.1 and figure B.2 are the graphical representation of this MDP.

Figure B.1: Charging Battery - Probabilities and Actions.

B.2.2 Test Run of Policy Iteration on SBRPD
This section will give a test execution of Policy Iteration on the MDP representing the
SBRPD.
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Figure B.2: Charging Battery - Probabilities, Costs and Rewards.

Let the initial policy be given by:

Π1 =

{
(TempUnknown, S tabilizeTemp),

(BadTemp, S tabilizeTemp),

(Charging, S tabilizeTemp)
} (B.5)

With a value for γ the equation system VΠ1 can be solved. Assuming that γ is equal to
0.9 the result will be:

VΠ1 (TempUnknown) = 1 − 1 · 50 + 0.9 · 1 · VΠ1 (TempUnknown)
VΠ1 (BadTemp) = 1 − 1 · 1 + 0.9 · 1 · VΠ1 (TempUnknown)
VΠ1 (Charging) = 100 − 1 · 50 + 0.9 · 1 · VΠ1 (TempUnknown)

→

VΠ1 (TempUnknown) = −490
VΠ1 (BadTemp) = −441
VΠ1 (Charging) = −391

The algorithm will then suggest the following plan:
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Π2 =

{
(TempUnknown, S enseTemp),

(BadTemp, S tabilizeTemp),

(Charging, S enseTemp)
} (B.6)

It can be seen that the action taken from the state BadTemp will still be StabilizeTemp
because it gives the best expected average utility. The chosen actions have changed to
SenseTemp for the other states. The algorithm then solves the equation system with the
new plan:

VΠ2 (TempUnknown) = 1 − 1 + 0.9 ·
(
0.8 · VΠ2 (Charging) + 0.1 · VΠ2 (BadTemp)

+ 0.1 · VΠ2 (TempUnknown)
)

VΠ2 (BadTemp) = 1 − 1 + 0.9 · 1 · VΠ2 (TempUnknown)

VΠ2 (Charging) = 100 − 1 + 0.9 ·
(
0.9 · VΠ2 (Charging) + 0.1 · VΠ2 (BadTemp)

)
→

VΠ2 (TempUnknown) ≈ 719
VΠ2 (BadTemp) ≈ 647
VΠ2 (Charging) ≈ 827

The policy Π2 is the policy found by the algorithm because no alterations to the policy
can be made that improves the expected average utility.

B.2.3 SBRPD Represented as a Transition System with Labels

The transition system representing the SBRPD can be constructed as follows:

Σ = (S , A, γ, L) (B.7)

Where the states are given as:

S = {TempUnknown, BadTemp,Charging} (B.8)

The actions are given as:

A = {S tabilizeTemp, S enseTemp} (B.9)
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The state transition function γ is given as:

γ(BadTemp, S tabilizeTemp) = {TempUnknown}
γ(Charging, S tabilizeTemp) = {TempUnknown}

γ(TempUnknown, S tabilizeTemp) = {TempUnknown}
γ(TempUnknown, S enseTemp) = {TempUnknown, BadTemp,Charging}

γ(BadTemp, S enseTemp) = {BadTemp,Charging}
γ(Charging, S enseTemp) = {BadTemp,Charging}

(B.10)
The labeling function L is given as:

L(TempUnknown) = {atTempUnknown}
L(BadTemp) = {atBadTemp}
L(Charging) = {atCharging}

(B.11)

Figure B.3 shows the transition system with the labels omitted.

Figure B.3: Transition System with Labels Omitted.

B.2.4 Test Run of Progression of CTL on SBRPD

This section will construct a plan using execution contexts through progression of an
example test goal written in CTL.

Let the goal be the CTL formula shown in equation B.12.

AG (A (EX atCharging ∪ atBadTemp) ∧ (AF atTempUnknown)) (B.12)
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The first sub goal from equation B.12 is:

A (EX atCharging ∪ atBadTemp) (B.13)

The second sub goal from equation B.12 is:

AF atTempUnknown (B.14)

Assume that TempUnknown is the initial state, the sub goal in equation B.13 is asso-
ciated with execution context c1 and the sub goal in equation B.14 is associated with
execution context c2.

The plan will then be found in the following manner:

Starting from TempUnknown it is seen that atBadTemp < L(TempUnknown). There-
fore EX atCharging needs to be satisfied and A (EX atCharging ∪ atBadTemp) has to
be satisfied for all the possible successor states.

The applicable actions in TempUnknown is SenseTemp and StabilizeTemp. It is seen
that SenseTemp is the only action which has the possibility of leading to a state where
atCharging holds. SenseTemp is therefore chosen as the given action to take in the state
TempUnknown when the execution context is c1.

The three possible states SenseTemp can lead to from the state TempUnknown is: Tem-
pUnknown, Charging and BadTemp.

The execution context should not be altered when transitioning to TempUnknown be-
cause the progressed goal is the same as the initial goal and the states of course are the
same.

The execution context should not be altered when reaching the state Charging be-
cause it does not satisfy atBadTemp. Some action therefore needs to be found such
that EX atCharging is satisfied and A (EX atCharging ∪ atBadTemp) is satisfied in
the successor states.

The execution context should however be altered to c2 when reaching the state BadTemp
because atBadTemp holds in the state.

The partial plan found this far can now be listed as shown in table B.1 on the next
page.

The actions applicable in the state Charging is SenseTemp and StabilizeTemp. It is only
the action SenseTemp that satisfies EX atCharging, it is therefore naturally chosen.
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State Context Action Next state Next context
TempUnknown c1 SenseTemp Charging c1
TempUnknown c1 SenseTemp TempUnknown c1
TempUnknown c1 SenseTemp Badtemp c2

Table B.1: Partial Plan.

The two successor states of Charging when applying the action SenseTemp are the
states Charging and BadTemp. The execution context does not need to be altered for
the successor state Charging because the same state with the same goal has already
been progressed (using execution context c1). The execution context can therefore re-
main c1.

When reaching BadTemp we once again have to change the execution context be-
cause atBadTemp is satisfied. Last time the execution context was changed to c2 when
BadTemp was reached. This can be done again because both times when reaching
BadTemp the new goal to be satisfied was AF atTempUnknown.

The new partial plan can be seen in table B.2.

State Context Action Next state Next context
TempUnknown c1 SenseTemp Charging c1
TempUnknown c1 SenseTemp TempUnknown c1
TempUnknown c1 SenseTemp Badtemp c2

Charging c1 SenseTemp Charging c1
Charging c1 SenseTemp Badtemp c2

Table B.2: Extended Partial Plan.

The only goal left to satisfy now is AF atTempUnknown for the state BadTemp. There
are two applicable actions in BadTemp, the action SenseTemp and the action Stabi-
lizeTemp.

Out of the two actions only StabilizeTemp ensures that all paths eventually leads to
atTempUnknown. As it happens the only successor state of BadTemp when applying
the action StabilizeTemp is the state TempUnknown where atTempUnknown holds.

The execution context can therefore once again be altered to c1. Seeing the initial
goal was progressed in the execution context c1 and the initial goal is the same as the
new goal. This completes the plan because all CTL goals have been progressed.

The complete plan can be seen in table B.3 on the next page.
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State Context Action Next state Next context
TempUnknown c1 SenseTemp Charging c1
TempUnknown c1 SenseTemp TempUnknown c1
TempUnknown c1 SenseTemp Badtemp c2

Charging c1 SenseTemp Charging c1
Charging c1 SenseTemp Badtemp c2
BadTemp c2 StabilizeTemp TempUnknown c1

Table B.3: Complete Plan.

B.2.5 SBRPD Represented as an Epistemic Planning Domain
This section will model the SBRPD as an epistemic planning domain.

Given the set of atomic propositions {atTempUnknown, atBadTemp, atCharging} and
a single agent a let the epistemic model M = (W,R,V) be given by:

W = {TempUnknown, BadTemp,Charging} (B.15)

R(a) = {(TempUnknown,TempUnknown), (BadTemp, BadTemp),
(Charging,Charging)}

(B.16)

V(atTempUnknown) = {TempUnknown}
V(atBadTemp) = {BadTemp}
V(atCharging) = {Charging}

(B.17)

Let the action (S tabilizeTemp, {e1, e2, e3}) be abbreviated S T B and the action (S enseTemp, {e′1,
e′2, e

′
3, e
′
4, e
′
5, e
′
6, e
′
7}) be abbreviated S T . Let the epistemic actions available be defined

as represented graphically in figure B.4 on the following page and figure B.5.

Assume that the state (M, {TempUnknown}) is the initial state. The epistemic planning
domain can be explored through a breadth fist search. The planning domain is repre-
sented graphically in figure B.6.

B.2.6 Test Run of Epistemic Planning on SBRPD
The section will give an example of an epistemic planning problem. For the specific
planning problem a plan will be found through an example test run of the epistemic

69



Figure B.4: Epistemic Action STB.

Figure B.5: Epistemic Action ST.

Figure B.6: Epistemic Planning Domain - SBRPD.
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planning approach.

Take an epistemic planning domain, an initial state and a goal formula and you have a
epistemic planning problem on the form (Σ, s0, ϕg).

Let the problem be given using the previous described epistemic planning domain Σ:

Problem One = (Σ, (M, {TempUnknown}), atCharging) (B.18)

Solutions can be found through exploration of the planning domain.

For Problem One no strong solutions exist. In case the first weak solution that is found
is returned the algorithm will return s0 ⊗ S T . This is because the action of sensing
the temperature transitions to an epistemic state where at least one of the designated
worlds (and its partition) entails the goal formula (atCharging).

B.3 Extended Battery Recharging Planning Problem
This section will define different models of the EBRPD from section 3.4 on page 38.
The section will also contain example test runs of the planning approaches using the
models defined.

B.3.1 EBRPD Represented as a MDP

The MDP representing the EBRPD has as states combinations of the atomic proposi-
tions OK and Charging.

Strictly speaking MDP’s do not contain information regarding atomic propositions.
The combinations of the atomic propositions are used for naming the states instead.
This will make later comparison of models easier.

Combinations of OK and Charging is of course not enough seeing we have partial
observability of the atomic proposition OK. Therefore the MDP also contains belief
states that are combinations of (OK ∨ !OK) and the atomic proposition Charging. That
is if (OK ∨ !OK) is part of a state name it is not meant as a tautology but just used to
visualize that there is no knowledge of the truth value of the atomic proposition OK.

Given an assignment of probabilities, costs and rewards the MDP representing the
EBRPD can be constructed as the example described by figure B.7 on the following
page and figure B.8 on the next page.

Note that the actions are abbreviated in the following way: SenseTemp = ST, Stabi-
lizeTemp = STB, BeginCharging = BC and StopCharging = SC.
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Figure B.7: MDP Representing the EBRPD - Probabilities and Actions.

Figure B.8: MDP Representing the EBRPD - Costs and Rewards.
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B.3.2 Test Run of Policy Iteration on EBRPD

This section will give a test execution of Policy Iteration on the MDP representing the
EBRPD.

Let the initial policy be given by:

Π1 =

{
(′′OK ∧Charging′′, S tabilizeTemp),

(′′OK ∧ ¬Charging′′, BeginCharging),
(′′(OK ∨ ¬OK) ∧Charging′′, S topCharging),
(′′(OK ∨ ¬OK) ∧ ¬Charging′′, S enseTemp),
(′′¬OK ∧Charging′′, S topCharging),

(′′¬OK ∧ ¬Charging′′, S tabilizeTemp)
}

(B.19)

With a value for γ the equation system VΠ1 can be solved. Assuming that γ is equal to
0.9 the result will be:

VΠ1 (′′OK ∧Charging′′) = 100 − 1 · 10 + 0.9 · 1 · VΠ1 (′′OK ∧Charging′′)
VΠ1 (′′OK ∧ ¬Charging′′) = 1 − 1 · 1 + 0.9 · 1 · VΠ1 (′′OK ∧Charging′′)

VΠ1 (′′(OK ∨ ¬OK) ∧Charging′′) = 1 − 1 · 1 + 0.9 · 1 · VΠ1 (′′(OK ∨ ¬OK) ∧ ¬Charging′′)
VΠ1 (′′(OK ∨ ¬OK) ∧ ¬Charging′′) = 1 − 1 + 0.9 · (0.9 · VΠ1 (′′OK ∧ ¬Charging′′)

+ 0.1 · VΠ1 (′′¬OK ∧ ¬Charging′′))
VΠ1 (′′¬OK ∧Charging′′) = 1 − 1 · 1 + 0.9 · 1 · VΠ1 (′′¬OK ∧ ¬Charging′′)

VΠ1 (′′¬OK ∧ ¬Charging′′) = 1 − 1 · 10 + 0.9 · 1 · VΠ1 (′′(OK ∨ ¬OK) ∧ ¬Charging′′)

→

VΠ1 (′′OK ∧Charging′′) ≈ 900
VΠ1 (′′OK ∧ ¬Charging′′) ≈ 810

VΠ1 (′′(OK ∨ ¬OK) ∧Charging′′) ≈ 641.742
VΠ1 (′′(OK ∨ ¬OK) ∧ ¬Charging′′) ≈ 713.047

VΠ1 (′′¬OK ∧Charging′′) ≈ 569.468
VΠ1 (′′¬OK ∧ ¬Charging′′) ≈ 632.742

The algorithm will then suggest the following plan:
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Π2 =

{
(′′OK ∧Charging′′, S tabilizeTemp),

(′′OK ∧ ¬Charging′′, BeginCharging),
(′′(OK ∨ ¬OK) ∧Charging′′, S enseTemp),
(′′(OK ∨ ¬OK) ∧ ¬Charging′′, S enseTemp),
(′′¬OK ∧Charging′′, S tabilizeTemp),

(′′¬OK ∧ ¬Charging′′, S tabilizeTemp)
}

(B.20)

The algorithm then solves the equation system with the new plan:

VΠ2 (′′OK ∧Charging′′) = 100 − 1 · 10 + 0.9 · 1 · VΠ2 (′′OK ∧Charging′′)
VΠ2 (′′OK ∧ ¬Charging′′) = 1 − 1 · 1 + 0.9 · 1 · VΠ2 (′′OK ∧Charging′′)

VΠ2 (′′(OK ∨ ¬OK) ∧Charging′′) = 1 − 1 + 0.9 · (0.9 · VΠ2 (′′OK ∧Charging′′)
+ 0.1 · VΠ2 (′′¬OK ∧Charging′′))

VΠ2 (′′(OK ∨ ¬OK) ∧ ¬Charging′′) = 1 − 1 + 0.9 · (0.9 · VΠ2 (′′OK ∧ ¬Charging′′)
+ 0.1 · VΠ2 (′′¬OK ∧ ¬Charging′′))

VΠ2 (′′¬OK ∧Charging′′) = 1 − 1 · 10 + 0.9 · 1 · VΠ2 (′′(OK ∨ ¬OK) ∧Charging′′)
VΠ2 (′′¬OK ∧ ¬Charging′′) = 1 − 1 · 10 + 0.9 · 1 · VΠ2 (′′(OK ∨ ¬OK) ∧ ¬Charging′′)

→

VΠ2 (′′OK ∧Charging′′) ≈ 900
VΠ2 (′′OK ∧ ¬Charging′′) ≈ 810

VΠ2 (′′(OK ∨ ¬OK) ∧Charging′′) ≈ 792.372
VΠ2 (′′(OK ∨ ¬OK) ∧ ¬Charging′′) ≈ 713.047

VΠ2 (′′¬OK ∧Charging′′) ≈ 704.135
VΠ2 (′′¬OK ∧ ¬Charging′′) ≈ 632.742

The policy Π2 is the policy found by the algorithm because no alterations to the policy
can be made that improves the expected average utility.

B.3.3 EBRPD Represented as a Transition System with Labels

The transition system representing the EBRPD can be constructed as follows:

Σ = (S , A, γ, L) (B.21)
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Where the states are given as:

S ={′′OK ∧Charging′′,
′′OK ∧ ¬Charging′′,
′′(OK ∨ ¬OK) ∧Charging′′,
′′(OK ∨ ¬OK) ∧ ¬Charging′′,
′′¬OK ∧Charging′′,
′′¬OK ∧ ¬Charging′′}

(B.22)

The actions are given as:

A = {S enseTemp, S tabilizeTemp, BeginCharging, S topCharging} (B.23)

The state transition function γ is given as:

γ(′′OK ∧Charging′′, S tabilizeTemp) = {′′OK ∧Charging′′}
γ(′′OK ∧ ¬Charging′′, S tabilizeTemp) = {′′OK ∧ ¬Charging′′}

γ(′′(OK ∨ ¬OK) ∧Charging′′, S tabilizeTemp) = {′′(OK ∨ ¬OK) ∧Charging′′}
γ(′′(OK ∨ ¬OK) ∧ ¬Charging′′, S tabilizeTemp) = {′′(OK ∨ ¬OK) ∧ ¬Charging′′}

γ(′′¬OK ∧Charging′′, S tabilizeTemp) = {′′(OK ∨ ¬OK) ∧Charging′′}
γ(′′¬OK ∧ ¬Charging′′, S tabilizeTemp) = {′′(OK ∨ ¬OK) ∧ ¬Charging′′}

γ(′′OK ∧Charging′′, S enseTemp) = {′′OK ∧Charging′′,′′ ¬OK ∧Charging′′}
γ(′′OK ∧ ¬Charging′′, S enseTemp) = {′′OK ∧ ¬Charging′′,′′ ¬OK ∧ ¬Charging′′}

γ(′′(OK ∨ ¬OK) ∧Charging′′, S enseTemp) = {′′OK ∧Charging′′,′′ ¬OK ∧Charging′′}
γ(′′(OK ∨ ¬OK) ∧ ¬Charging′′, S enseTemp) = {′′OK ∧ ¬Charging′′,′′ ¬OK ∧ ¬Charging′′}

γ(′′¬OK ∧Charging′′, S enseTemp) = {′′OK ∧Charging′′,′′ ¬OK ∧Charging′′}
γ(′′¬OK ∧ ¬Charging′′, S enseTemp) = {′′OK ∧ ¬Charging′′,′′ ¬OK ∧ ¬Charging′′}
γ(′′OK ∧Charging′′, S topCharging) = {′′OK ∧ ¬Charging′′}
γ(′′OK ∧ ¬Charging′′, BeginCharging) = {′′OK ∧Charging′′}

γ(′′(OK ∨ ¬OK) ∧Charging′′, S topCharging) = {′′(OK ∨ ¬OK) ∧ ¬Charging′′}
γ(′′(OK ∨ ¬OK) ∧ ¬Charging′′, BeginCharging) = {′′(OK ∨ ¬OK) ∧Charging′′}

γ(′′¬OK ∧Charging′′, S topCharging) = {′′¬OK ∧ ¬Charging′′}
γ(′′¬OK ∧ ¬Charging′′, BeginCharging) = {′′¬OK ∧Charging′′}

(B.24)
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The labeling function L is given as:

L(′′OK ∧Charging′′) = {OK,Charging}
L(′′OK ∧ ¬Charging′′) = {OK,¬Charging}

L(′′(OK ∨ ¬OK) ∧Charging′′) = {Charging}
L(′′(OK ∨ ¬OK) ∧ ¬Charging′′) = {¬Charging}

L(′′¬OK ∧Charging′′) = {¬OK,Charging}
L(′′¬OK ∧ ¬Charging′′) = {¬OK,¬Charging}

(B.25)

Because of the need to have partial observable propositions there is no closed world
assumption. That means both positive and negative propositions needs to be part of the
labeling function. If both the positive and negative version of a proposition is omitted
there is no knowledge present about the truth value of the proposition. This is the case
for the atomic proposition OK in the state ′′(OK ∨ ¬OK) ∧ ¬Charging′′ and the state
′′(OK ∨ ¬OK) ∧Charging′′.

Figure B.9 shows the transition system with the labels omitted (state names correspond
to labels though). The same notations and abbreviations are used as with the MDP.

Figure B.9: Transition System with Labels Omitted.

B.3.4 Test Run of Progression of CTL on EBRPD

This section will construct a plan using execution contexts through progression of an
example test goal written in CTL.
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Let the goal be the CTL formula shown in equation B.26.

AG (A (EF (OK ∧Charging) ∪ OK ∧Charging) ∧ AF (OK ∧Charging))

∧ AG (OK ∨ ¬Charging)
(B.26)

The first sub goal from equation B.26 is:

A (EF (OK ∧Charging) ∪ OK ∧Charging) (B.27)

The second sub goal from equation B.26 is:

AF (OK ∧Charging) (B.28)

The last part AG (OK ∨ ¬Charging) ensures that it always holds that either the tem-
perature is OK for recharging or the battery is not recharging.

Assume that ”(OK ∨ ¬OK) ∧ ¬Charging” is the initial state, the sub goal in equa-
tion B.27 is associated with execution context c1 and the sub goal in equation B.28 is
associated with execution context c2.

The plan will then be found in the following manner:

Starting from ”(OK∨¬OK)∧¬Charging” it is seen that L( ”(OK∨¬OK)∧¬Charging”)
2 OK∧Charging. Therefore EF(OK∧Charging) needs to be satisfied and A(EF(OK∧
Charging) ∪ OK ∧Charging) has to be satisfied for all the possible successor states.

The applicable actions in ”(OK ∨ ¬OK) ∧ ¬Charging” is SenseTemp, StabilizeTemp
and BeginCharging. BeginCharging cannot be applied because it would lead to a state
violating AG (OK ∨ ¬Charging). Through exploration it is seen that both SenseTemp
and StabilizeTemp can lead to OK ∧Charging. Assuming the exploration approach re-
turns the action resulting in the shortest path, SenseTemp is returned and explored first.
SenseTemp is therefore chosen as the given action to take in the state ”(OK ∨ ¬OK) ∧
¬Charging” when the execution context is c1.

The two possible states SenseTemp can lead to from the state ”(OK∨¬OK)∧¬Charging”
is: ”¬OK ∧ ¬Charging” and ”OK ∧ ¬Charging”.

The execution context should not be altered when transitioning to ”¬OK∧¬Charging”
because the progressed goal is not fulfilled yet. The same goes for ”OK∧¬Charging”.
Some action therefore needs to be found such that EF(OK ∧Charging) is satisfied and
A(EF(OK∧ Charging) ∪ OK ∧ Charging) is satisfied in the successor states for both
states.

From ”OK ∧ ¬Charging” the shortest path that leads to OK ∧ Charging is taking
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the action BeginCharging. The only successor state from ”OK ∧ ¬Charging” after ap-
plying the action BeginCharging is the state ”OK ∧ Charging” that of course satisfies
the goal OK ∧Charging. The execution context is therefore altered to c2 when transi-
tioning from ”OK ∧ ¬Charging”.

From ”¬OK ∧ ¬Charging” the shortest path that leads to OK ∧ Charging is taking
the action SenseTemp.

The execution context should not be altered when looping because the progressed goal
is the same as previous.

The other successor state ”OK ∧¬Charging” has already been explored with the same
progressed goal so here the execution context does not need to be changed and no new
states needs to be explored as well.

The partial plan found this far can now be listed as shown in table B.4.

State Context Action Next state Next context
”(OK ∨ ¬OK) ∧ ¬Charging” c1 SenseTemp ”¬OK ∧ ¬Charging” c1
”(OK ∨ ¬OK) ∧ ¬Charging” c1 SenseTemp ”OK ∧ ¬Charging” c1

”OK ∧ ¬Charging” c1 BeginCharging ”OK ∧Charging” c2
”¬OK ∧ ¬Charging” c1 SenseTemp ”¬OK ∧ ¬Charging” c1
”¬OK ∧ ¬Charging” c1 SenseTemp ”OK ∧ ¬Charging” c1

Table B.4: Partial Plan.

The actions applicable in the state ”OK ∧ Charging” is SenseTemp, StabilizeTemp
and StopCharging. Taking the action SenseTemp violates AG (OK ∨ ¬Charging).
The two paths {S tabilizeTemp} and {S topCharging, BeginCharging} both satisfies
AF (OK ∧Charging) but as before lets assume the shortest path is returned i.e. Stabi-
lizeTemp. The only successor state from ”OK ∧ Charging” when applying the action
StabilizeTemp is ”OK ∧ Charging”. The state satisfies the goal (OK ∧Charging) so
the execution context is changed to c1 again.

The new partial plan can be seen in table B.5 on the next page.

From ”OK∧Charging” multiple paths can be found that satisfies A(EF(OK∧Charging)∪
OK ∧Charging) and does not violate AG (OK ∨ ¬Charging). Assuming the shortest
is returned StabilizeTemp is the chosen action. Once again it is seen that the only
successor state from ”OK ∧ Charging” when applying the action StabilizeTemp is
”OK ∧Charging”. The state satisfies the goal OK ∧Charging so the execution context
is changed to c2 again. This completes the plan.

The complete plan can be seen in table B.6 on the facing page.
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State Context Action Next state Next context
”(OK ∨ ¬OK) ∧ ¬Charging” c1 SenseTemp ”¬OK ∧ ¬Charging” c1
”(OK ∨ ¬OK) ∧ ¬Charging” c1 SenseTemp ”OK ∧ ¬Charging” c1

”OK ∧ ¬Charging” c1 BeginCharging ”OK ∧Charging” c2
”¬OK ∧ ¬Charging” c1 SenseTemp ”¬OK ∧ ¬Charging” c1
”¬OK ∧ ¬Charging” c1 SenseTemp ”OK ∧ ¬Charging” c1

”OK ∧Charging” c2 StabilizeTemp ”OK ∧Charging” c1

Table B.5: Extended Partial Plan.

State Context Action Next state Next context
”(OK ∨ ¬OK) ∧ ¬Charging” c1 SenseTemp ”¬OK ∧ ¬Charging” c1
”(OK ∨ ¬OK) ∧ ¬Charging” c1 SenseTemp ”OK ∧ ¬Charging” c1

”OK ∧ ¬Charging” c1 BeginCharging ”OK ∧Charging” c2
”¬OK ∧ ¬Charging” c1 SenseTemp ”¬OK ∧ ¬Charging” c1
”¬OK ∧ ¬Charging” c1 SenseTemp ”OK ∧ ¬Charging” c1

”OK ∧Charging” c2 StabilizeTemp ”OK ∧Charging” c1
”OK ∧Charging” c1 StabilizeTemp ”OK ∧Charging” c2

Table B.6: Complete Plan.

B.3.5 EBRPD Represented as an Epistemic Planning Domain
This section will model the EBRPD as an epistemic planning domain Σ.

Given the set of atomic propositions {OK,Charging}, where Charging is abbreviated
to C, and a single agent a let the epistemic model M = (W,R,V) be given by:

W = {w1,w2,w3,w4} (B.29)

R(a) = {(w1,w1), (w2,w2), (w3,w3), (w4,w4), (w2,w4), (w4,w2)} (B.30)

V(OK) = {w1,w2}
V(Charging) = {w1,w3}

(B.31)

Let the action (S tabilizeTemp, {e′1, e′2, e′3}) be abbreviated S T B, the action (S enseTemp,
{e1, e2}) be abbreviated S T , the action (BeginCharging, {e′′1 }) be abbreviated BC and
the action (S topCharging, {e′′′1 }) be abbreviated S C. Assume (M, {w2, w4}) is the ini-
tial state.

79



Assume the epistemic actions available are defined as represented graphically in fig-
ure B.10.

Figure B.10: Epistemic Actions.

The epistemic planning domain has been explored through a breadth first search start-
ing from the initial state. The epistemic planning domain is represented graphically as
shown in figure B.11. Note that some of the transitions rely on states being bisimilar.

Figure B.11: Epistemic Planning Domain - EBRPD.

B.3.6 Test Run of Epistemic Planning on EBRPD
Some example epistemic planning problems (with different goals and initial states)
will be defined in this section. Plans for these epistemic planning problems will then
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be found through example test runs.

Let the planning problems be defined as follows:

Problem One

• Σ = figure B.11 on the preceding page.

• s0 = figure B.12.

• Φg = OK ∧Charging.

Problem Two

• Σ = figure B.11 on the preceding page.

• s0 = figure B.13.

• Φg = OK ∧Charging.

Figure B.12: Problem One - Initial Epistemic State.

Figure B.13: Problem Two - Initial Epistemic State.

Solutions can be found through breadth first searches. In the following it is assumed
that actions will be chosen in alphabetical order. It will be noted if the solution found
is strong or weak and if there exists a strong solution.

For ProblemOne no strong solutions exist. In case the first weak solution that is found
is returned the algorithm will return s0 ⊗ BC ⊗ S T . The resulting state is the same as
represented in figure B.13.

Note that the state does not entail OK ∧ Charging because not all of the designated
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worlds (and their partitions) entail the formula. There is however one designated world,
or more precisely a designated world and its partition, that entails the formula. The so-
lution is therefore a weak solution.

For ProblemTwo no strong solution exists. In case no actions taken is an approved
solution, the first weak solution to be found is simply s0. Otherwise the first weak
solution to be returned is s0 ⊗ S T . The resulting state is the same as the initial state in
both cases.

B.4 Gravity Gradient Boom Deployment Planning Prob-
lem

The deployment of the Gravity Gradient Boom is a stepwise procedure. The order of
the actions taken are important and the actions are stepwise dependent of each other.
The problem does not really entail much planning because of this. That said the plan-
ning domain will still be explored for the different planning procedures in hope of
revealing more pros and cons of the different approaches.

Assume the specification of the Gravity Gradient Boom Deployment Planning Domain
(GGBDPD) is given as described in the following paragraphs.

Let there be given the following states:

InitialState
Released
Detumbling
Detumbled
OrrientedTowardsEarth (OTE)
BoomReleaseBegun (BRB)
BoomDeployed (BD)
PowerSaving
OrrientedTowardsSpace (OTS)
OrrientedTowardsEarthandPowerSaving (OTEandPS)

From the initial state (InitialState) it is assumed there is an action that releases the
satellite (SatelliteRelease - SR). This leads to the state Released.

For simplicity one could assume that the initial state is Released seeing that the actual
control of satellite release is probably handled by and external system. The satellite
is probably not even ”online” before the release is complete. Including the state does
however give a more thorough description of the actual steps completed in the stabi-
lization of the satellite. For the examples it is therefore assumed to be present.

In Released one should be able to begin detumbling (BeginDetumbling - BD) tran-
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sitioning to the state Detumbling. The satellite uses a B-dot algorithm to detumble.
Detumbling is done using the 3-axis magnetometer to measure the magnetic field of
the earth and the three magnetic torquers to apply counter spin (see [11]).

From Detumbling one should be able to check if the satellite has slowed down its
rotation enough (CheckDetumbling - CD). This action should either lead to the state
Detumbled or make no state transition in case the satellite has not slowed down yet.

When the satellite is detumbled the orrientation of the satellite should be able to be
checked (CheckOrrientation - CO). This is assumed to be done using the sun sensor,
the heat sensors and the 3-axis magnetometer. If the satellite is oriented towards earth
correctly the action should lead to the state OrrientedTowardsEarth (OTE).

From OTE it should be possible to do the action BoomRelease BR. This action should
lead to the state BoomReleaseBegun (BRB).

From BRB it should be possible to check the progress of the boom release - is it re-
leased or not - using the sensor present for the task. Let this action be called Check-
BoomReleaseProgress (CBRP). Let the action lead to the state BoomDeployed (BD) if
the boom is released. If the boom is not released yet no state transition should be done.

From the state BD the attitude control subsystem should shift service level from de-
tumbling to the more power saving GG Boom dampening. Let this action be called
ShiftMode (SM) and let it lead to the sate PowerSaving.

The satellite might still have stabilized orienting towards space. Therefore from the
state PS the action Check Orrientation (CO) should be applied again. If the satellite is
oriented correctly the action should lead to the state OrrientedTowardsEarthandPow-
erSaving (OTEandPS). If the satellite is oriented incorrectly the action should lead to
the state OrrientedTowardsSpace (OTS).

From the state OTS the action Flip should be applicable. This actions should lead
to the state OTEandPS.

The state OTEandPS is assumed to be the final state is this planning problem. It should
be noted though that after reaching this state the satellite should be able to transmit
data at a high rate to the ground station. In a power sufficient manner.

B.4.1 GGBDPD Represented as a MDP

Given an assignment of probabilities, costs and rewards the MDP representing the
GGBDPD can be constructed as the example described by figure B.14 and figure B.15.
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Figure B.14: MDP Representing the GGBDPD - Probabilities and Actions.
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Figure B.15: MDP Representing the GGBDPD - Costs and Rewards.
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B.4.2 Test Run of Policy Iteration on GGBDPD

This section will give a test execution of Policy Iteration on the MDP representing the
GGBDPD.

Let the initial policy be given by:

Π1 =

{
(InitialS tate, S R)

(Released, S D)
(Detumbling,CD)
(Detumbled,CreateS pin)
(OT E, BR)
(BRB,CBRP)
(BD, S M)
(PowerS aving,CO)
(OTS , Flip)

(OT EandPS ,NoOp)
}

(B.32)

Note that NoOp is an action assumed to be applicable in OTEandPS resulting in no
state change (the state transition is a self loop) and having the cost of 1.

With a value for γ the equation system VΠ1 can be solved. Assuming that γ is equal to
0.9 the result will be:

VΠ1 (InitialS tate) = 0.9 · 1 · VΠ1 (Released)
VΠ1 (Released) = 0.9 · 1 · VΠ1 (Detumbling)

VΠ1 (Detumbling) = 0.9 · (0.8 · VΠ1 (Detumbled) + 0.2 · VΠ1 (Detumbling))
VΠ1 (Detumbled) = −9 + 0.9 · 1 · VΠ1 (Detumbling)

VΠ1 (OT E) = 0.9 · 1 · VΠ1 (BRB)
VΠ1 (BRB) = 0.9 · (0.5 · VΠ1 (BD) + 0.5 · VΠ1 (BRB))
VΠ1 (BD) = 0.9 · 1 · VΠ1 (PowerS aving)

VΠ1 (PowerS aving) = 0.9 · (0.1 · VΠ1 (OTS ) + 0.9 · VΠ1 (OT EandPS ))
VΠ1 (OTS ) = −49 + 0.9 · 1 · VΠ1 (OT EandPS )

VΠ1 (OT EandPS ) = 99 + 0.9 · 1 · VΠ1 (OT EandPS )
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→
VΠ1 (InitialS tate) ≈ −30.5163

VΠ1 (Released) ≈ −33.907
VΠ1 (Detumbling) ≈ −37.6744
VΠ1 (Detumbled) ≈ −42.907

VΠ1 (OT E) ≈ 581.662
VΠ1 (BRB) ≈ 646.292
VΠ1 (BD) ≈ 789.912

VΠ1 (PowerS aving) ≈ 877.68
VΠ1 (OTS ) ≈ 842

VΠ1 (OT EandPS ) ≈ 990

The algorithm will then suggest the following plan:

Π1 =

{
(InitialS tate, S R)

(Released, S D)
(Detumbling,CD)
(Detumbled,CO)
(OT E, BR)
(BRB,CBRP)
(BD, S M)
(PowerS aving,CO)
(OTS , Flip)

(OT EandPS ,NoOp)
}

(B.33)

The algorithm then solves the equation system with the new plan:

VΠ2 (InitialS tate) = 0.9 · 1 · VΠ2 (Released)
VΠ2 (Released) = 0.9 · 1 · VΠ2 (Detumbling)

VΠ2 (Detumbling) = 0.9 · (0.8 · VΠ2 (Detumbled) + 0.2 · VΠ2 (Detumbling))
VΠ2 (Detumbled) = 0.9 · (0.5 · VΠ2 (Detumbled) + 0.5 · VΠ2 (OT E))

VΠ2 (OT E) = 0.9 · 1 · VΠ2 (BRB)
VΠ2 (BRB) = 0.9 · (0.5 · VΠ2 (BD) + 0.5 · VΠ2 (BRB))
VΠ2 (BD) = 0.9 · 1 · VΠ2 (PowerS aving)

VΠ2 (PowerS aving) = 0.9 · (0.1 · VΠ2 (OTS ) + 0.9 · VΠ2 (OT EandPS ))
VΠ2 (OTS ) = −49 + 0.9 · 1 · VΠ2 (OT EandPS )

VΠ2 (OT EandPS ) = 99 + 0.9 · 1 · VΠ2 (OT EandPS )
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→

VΠ2 (InitialS tate) ≈ 338.473
VΠ2 (Released) ≈ 376.082

VΠ2 (Detumbling) ≈ 417.868
VΠ2 (Detumbled) ≈ 475.906

VΠ2 (OT E) ≈ 581.662
VΠ2 (BRB) ≈ 646.292
VΠ2 (BD) ≈ 789.912

VΠ2 (PowerS aving) ≈ 877.68
VΠ2 (OTS ) ≈ 842

VΠ2 (OT EandPS ) ≈ 990

The policy Π2 is the policy found by the algorithm because no alterations to the policy
can be made that improves the expected average utility.

B.4.3 GGBDPD Represented as a Transition System with Labels
The transition system representing the GGBDPD can be constructed as follows:

Σ = (S , A, γ, L) (B.34)

Where the states are given as in the description of the domain in section B.4 on page 82.
For each state assume that there is a label on the form ”atStateName” which is true in
the given state (for instance atInitialState is true in InitialState).
The actions given are:

A = {S R, S D,CD,CreateS pin,CO, BR,CBRP, S M, Flip} (B.35)

Where the state transition function γ is given as described in the introduction of sec-
tion B.4 on page 82.

Figure B.16 on the facing page shows the transition system with the labels omitted
(state names correspond to labels though).

B.4.4 Test Run of Progression of CTL on GGBDPD
This section will construct a plan using execution contexts through progression of an
example test goal written in CTL.

Let the goal be the CTL formula shown in equation B.36.

AG (EF (atOT EandPs)) (B.36)
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Figure B.16: Transition System with Labels Omitted.
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The only sub goal from equation B.36 on page 88 is:

EF (atOT EandPs) (B.37)

Assume that InitialState is the initial state and that the sub goal in equation B.37 is
associated with execution context c1.

The plan will then be found in the following manner:

Starting from InitialState it is seen that L(InitialState) 2 atOTEandPS. Therefore EF
(atOTEandPS) needs to be satisfied in the state and for all the possible successor states
(for the chosen action). Only the action SR is possible, luckily choosing this action
satisfies EF(atOTEandPS).

It is seen that the labels of the successor state L(Released) 2 atOTEandPS. Therefore
EF(atOTEandPS) needs to be satisfied in the state and for all the possible successor
states (for the chosen action). Only the action SD is possible, luckily choosing this
action satisfies EF(atOTEandPS).

It is seen that the labels of the successor state L(Detumbling) 2 atOTEandPS. Therefore
EF(atOTEandPS) needs to be satisfied in the state and for all the possible successor
states (for the chosen action). Only the action CD is possible, luckily choosing this
action satisfies EF(atOTEandPS) for both successor states. The successor state Detum-
bling does not need to be expanded further because it has already been expanded with
the initial execution context (c1).

It is seen that the labels of the successor state L(Detumbled) 2 atOTEandPS. There-
fore EF(atOTEandPS) needs to be satisfied in the state and for all the possible suc-
cessor states (for the chosen action). The only action satisfying EF(atOTEandPS) in
Detumbled is CO. The successor state Detumbled does not need to be expanded further
because it has already been expanded with the initial execution context c1.

It is seen that the labels of the successor state L(OTE) 2 atOTEandPS. Therefore
EF(atOTEandPS) needs to be satisfied in the state and for all the possible successor
states (for the chosen action). Only the action BR is possible, luckily choosing this
action satisfies EF(atOTEandPS).

It is seen that the labels of the successor state L(BRB) 2 atOTEandPS. Therefore
EF(atOTEandPS) needs to be satisfied in the state and for all the possible successor
states (for the chosen action). Only the action CBRP is possible, luckily choosing this
action satisfies EF(atOTEandPS) for both successor states. The successor state BRB
does not need to be expanded further because it has already been expanded with the
initial execution context c1.

It is seen that the labels of the successor state L(BD) 2 atOTEandPS. Therefore EF(atOTEandPS)
needs to be satisfied in the state and for all the possible successor states (for the cho-
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sen action). Only the action SM is possible, luckily choosing this action satisfies
EF(atOTEandPS).

It is seen that the labels of the successor state L(PowerSaving) 2 atOTEandPS. There-
fore EF(atOTEandPS) needs to be satisfied in the state and for all the possible successor
states (for the chosen action). Only the action CO is possible, luckily choosing this ac-
tion satisfies EF(atOTEandPS) for both successor states.

It is seen that the labels of the successor state L(OTS) 2 atOTEandPS. Therefore EF(atOTEandPS)
needs to be satisfied in the state and for all the possible successor states (for the cho-
sen action). Only the action Flip is possible, luckily choosing this action satisfies
EF(atOTEandPS).

When reaching OTEandPS the execution context should normally be changed to the
next sub goal but we only have one sub goal so the execution context remains c1. In
both cases of reaching OTEandPS we find that L(OTEandPS) |= atOTEandPS. Assum-
ing there is a NoOp action that leads to OTEandPS from OTEandPS this action can be
applied in OTEandPS. The complete plan can then be listed as shown in table B.7.

State Context Action Next state Next context
InitialState c1 SR Released c1
Released c1 SD Detumbling c1

Detumbling c1 CD Detumbled c1
Detumbling c1 CD Detumbling c1
Detumbled c1 CO Detumbled c1
Detumbled c1 CO OTE c1

OTE c1 BR BRB c1
BRB c1 CBRP BRB c1
BRB c1 CBRP BD c1
BD c1 SM PowerSaving c1

PowerSaving c1 CO OTS c1
PowerSaving c1 CO OTEandPS c1

OTS c1 Flip OTEandPS c1
OTEandPS c1 NoOp OTEandPS c1

Table B.7: Complete Plan.

B.4.5 Epistemic Planning Domain Representing the GGBDPD

This section will model the GGBDPD as an epistemic planning domain Σ.

Assume there is a single agent a and let the epistemic model M = (W,R,V) be given
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by:

W = {InitialS tate,Released,Detumbling,Detumbled,

OT E, BRB, BD, PowerS aving,OTS ,OT EandPS }
(B.38)

R(a) = {(InitialS tate, InitialS tate), (Released,Released), (Detumbling,Detumbling),
(OT E,OT E), (BRB, BRB), (BD, BD), (PowerS aving, PowerS aving),
(OTS ,OTS ), (OT EandPS ,OT EandPS )}

(B.39)

V(atInitialS tate) = {InitialS tate}
V(atReleased) = {Released}

V(atDetumbling) = {Detumbling}
V(atDetumbled) = {Detumbled}

V(atOT E) = {OT E}
V(atBRB) = {BRB}
V(atBD) = {BD}

V(atPowerS aving) = {PowerS aving}
V(atOTS ) = {OTS }

V(atOT EandPS ) = {OT EandPS }

(B.40)

Let the epistemic actions available be defined as represented graphically in figure B.17.

From the epistemic state (M, {InitialState}) the planning domain has been explored in a
breadth first manner. The state transition system shown in figure B.18 on page 94 and
figure B.19 on page 95 is the partially explored epistemic planning domain where the
depth explored corresponds to eight actions taken.

Note that some of the transitions rely on states being bisimilar.

B.4.6 Test Run of Epistemic Planning on GGBDPD
This section will give an example epistemic planning problem. For this planning prob-
lem a plan will be found through a test run of the epistemic planning approach.

Let the planning problem be defined as follows:

Problem One

• Σ corresponds to the partially explored domain shown in figure B.18 and fig-
ure B.19.
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Figure B.17: Epistemic Actions.

• s0 = figure B.20 on page 95.

• Φg = atOT EandPS .

The plan is found through an exploration of the epistemic planning domain. In the fol-
lowing it is assumed that actions will be chosen in alphabetical order. It will be noted
if the solution found is strong or weak and if there exists a strong solution.

No strong solutions exists. The first weak solution to be found is s0⊗ S R⊗ S D⊗CD⊗
BR⊗CBRP⊗S M⊗CO. Note that the resulting state does not entail atOT EandPS be-
cause not all of the designated worlds (and their partitions) entails the formula. There
is however one designated world that entails the formula and the solution is therefore a
weak solution.

93



Figure B.18: Partial Epistemic Planning Domain, Part one - GGBDPD.
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Figure B.19: Partial Epistemic Planning Domain, Part two - GGBDPD.

Figure B.20: Problem One - Initial Epistemic State.
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