
Remote Control of Device behind
�rewall using a RESTful service

M. Christian van Zanten

Kongens Lyngby 2012

IMM-MSc-2012-114

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-MSc-2012-114

Summary (English)

This thesis describes how a Web server on a device behind a �rewall can be
exposed via a central mediator. Bruel & Kjær is a world-leading manufacturer
and supplier of sound and vibration test and measurement solutions. They
produce the hand held type 2250 device which is used as a portable device
or form part of stationary monitoring systems. The 2250 can be controlled
remotely via the Web server present on the device. This currently requires that
the Web server can be addressed and that relevant ports are open on �rewalls.

This project describes how these requirements can be circumvented by intro-
ducing a central service to mediate tra�c between user and the 2250. State of
the art solutions combined with user scenarios are the basis of the requirements
for the developed proof of concept prototype. This prototype is based on cloud
computing on the Windows Azure platform and RESTful Web service architec-
ture. In relation to these technologies key concepts, risk and risk mitigation are
discussed.

Based on these technologies the design and implementation of the prototype is
chosen and speci�ed. The implementation of the prototype is validated using
functional and performance tests. It is found that mediating tra�c via a central
service hosted on a cloud computing platform is a viable solution, but the in-
creased latency makes it un�t for real time remote controlling. It does however
open a wide range of possibilities for controlling a device where response time is
not critical. Before this can be used commercially security, scope, and business
case have to be de�ned.

Keywords: Remote control, Remote access, HTTP, REST, RESTful Web ser-
vice, Cloud Computing, Windows Azure, Reverse Proxy, CAP Theorem.

ii Summary (English)

Summary (Dansk)

Denne afhandling beskriver hvordan en Web server på en enhed bag en �rewall
kan eksponeres via en central service. Bruel & Kjær er en ledende fabrikant
og leverandør af lyd og vibrations løsninger til test og målinger. Brüel & Kjær
fremstiller den håndholdte enhed 2250, der bruges som en bærbar måle enhed
eller som del af et stationært overvågnings system. 2250'eren kan fjernstyres via
enhedens Web server. Dette kræver at Web serveren kan addresseres og at de
relevante porte er åbne på �rewalls.

Denne afhandling beskriver hvordan disse krav kan blive omgået ved at intro-
ducere en central service til at formidle tra�k mellem bruger og enhed. State-of-
the-art løsningers funktionalitet kombineret med brugerscenarier danner basis
for kravene til den udviklede proof-of-concept prototype. Prototypen er baseret
på cloud-computing på Windows Azure platformen og RESTful Web service
arkitektur. I relation til disse teknologier er centrale begreber, risici og risicire-
duktion gennemgået.

Prototypens implementering og design er blevet valgt og speci�ceret på bag-
grund af disse teknologier. Prototypens implementering er blevet valideret
vha. funktionelle- og ydelsestests. Konklusionen på dette er at formidling af
tra�kken via en central service placeret på en cloud-computing platform er en
funktionsdygtig løsning, men den yderligere latens gør den uegnet som realtids-
fjernstyring. Den åbner derimod en bred vifte af muligheder for fjernstyring af
en enhed, hvor responstid ikke er kritisk. Før denne løsning kan bruges i kom-
mercielt øjemed skal sikkerhed, gyldighedsområde og business case de�neres.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc. in Informatics. The thesis was prepared in collab-
oration with Brüel & Kjær Sound and Vibration.

The thesis deals with the opportunities and risks with remote controlling a
device via a local RESTful Web service on the device via a third part service
hosted on a cloud platform.

Embrace the beauty of the HTTP standard and enjoy the reading

Lyngby, 3-September-2012

M. Christian van Zanten

vi

Acknowledgements

I would like to thank:

Lars Damsgaard for guiding me through the use of the embedded platform

Christian Bækdorf for architectural inspiration and design ideas

Niels Bruun Svendsen for technical input and help with project management

my supervisor Bjarne Poulsen for sharing knowledge about thesis writing

Tomasz Cielecki for teaching me about push noti�cations

Ulrik Andersen for his insights on networks and communication

Connie Hansen for proof reading and mental coaching

My family for accepting the fact that writing a thesis takes time

viii

Contents

Summary (English) i

Summary (Dansk) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Brüel & Kjær . 1
1.2 Hand-held Analyser Type 2250 2
1.3 Noise Monitoring Terminal . 4
1.4 Vision . 6
1.5 The Problem . 6

1.5.1 Scenarios . 7
1.5.2 Thesis De�nition . 7

1.6 Methodology . 8
1.7 Outline . 9

2 Analysis 11
2.1 State of the Art . 11

2.1.1 RemoteAPI and Browser Interface 11
2.1.2 LogMeIn . 12
2.1.3 Microsoft Push Noti�cation Service 14
2.1.4 Azure Service Bus and Windows Communication Foun-

dation . 16
2.1.5 Functionality Overview 17

2.2 Functional Requirements . 17
2.3 Non-Functional Requirements . 20
2.4 Use Cases . 21

x CONTENTS

2.5 Use Case Coverage . 24
2.6 Domain Analysis . 24

2.6.1 Device/2250 . 24
2.6.2 Customer . 27
2.6.3 Registration . 27
2.6.4 2250WebServer . 27
2.6.5 User Account . 27
2.6.6 Preferences . 28
2.6.7 Setup . 28
2.6.8 Data . 29
2.6.9 Status . 29
2.6.10 Browser Interface . 29
2.6.11 RemoteAPI . 30
2.6.12 RelayService . 31
2.6.13 RelayClient . 31

2.7 Mockups . 32
2.8 Chapter Summary . 34

3 Technology Analysis 35
3.1 Cloud Computing . 35

3.1.1 Cloud Computing Categories 37
3.1.2 Scalability . 38
3.1.3 Security Risks in Cloud Computing 40
3.1.4 Choice of Cloud Computing Category and Cloud Provider 41

3.2 Windows Azure . 42
3.2.1 Execution Models . 42
3.2.2 Messaging . 46
3.2.3 Data Management . 49
3.2.4 Risk Mitigation in Windows Azure 51

3.3 Web Services . 53
3.3.1 SOAP . 53
3.3.2 REST . 54
3.3.3 Windows Communication Foundation 57
3.3.4 Choice of Web Service technology 57

3.4 REST in depth . 58
3.4.1 Client Server . 58
3.4.2 Addressability . 59
3.4.3 Statelessness . 60
3.4.4 Uniform Interface . 61
3.4.5 Connectedness . 63
3.4.6 Layered System . 63
3.4.7 Cache . 63
3.4.8 Web Service Security . 64
3.4.9 REST Security . 66

CONTENTS xi

3.5 Chapter Summary . 66

4 Components and Communication 67

4.1 Component Design . 67

4.2 Overall Communication . 68

4.2.1 Addressable Devices . 69

4.3 Communication between RelayClient and RelayService 71

4.3.1 Polling . 71

4.3.2 Tunnel . 72

4.3.3 Push Noti�cation . 74

4.3.4 Choice of Communication Strategy 75

4.4 RelayService and RelayClient Detailed Communication Protocol 76

4.4.1 Packet Types . 78

4.4.2 Packet Structure . 79

4.5 Chapter Summary . 80

5 RelayClient 81

5.1 Behaviour . 81

5.2 Design . 82

5.2.1 Communication . 84

5.2.2 ClientCommunication . 87

5.2.3 CustomHttp . 88

5.2.4 RelayClient . 88

5.2.5 Detailed Behaviour . 89

5.3 Implementation . 91

5.3.1 Quirks of The Embedded Platform 92

5.3.2 RelayClient a Generic Proxy 92

5.3.3 Integrating in BasicEnv 93

5.4 Chapter Summary . 93

6 RelayService 95

6.1 Choosing an Execution Model . 95

6.1.1 Choosing a Messaging system 96

6.1.2 RelayServiceBasic Design 97

6.2 RelayServiceBackend Design and Implementation 99

6.2.1 RelayServiceBackend Implementation 102

6.3 StatusInterface Design and Implementation 102

6.3.1 Choosing Storage Type 106

6.4 Frontend Design and Implementation 106

6.5 Chapter Summary . 107

xii CONTENTS

7 Discussion 109
7.1 Validating the Solution . 109

7.1.1 Functionality Acceptance Test 110
7.1.2 Performance Acceptance Test 110

7.2 Security . 115
7.3 A RelayService Without Cloud 116
7.4 Consistency, Availability, Partition-Tolerance and Scalability . . . 117
7.5 Evaluating Solution . 119

8 Conclusion 121
8.1 Findings . 121
8.2 Overall Conclusion . 123
8.3 Future Work . 124

A Use Cases 125
A.0.1 Use Case: Authenticate 2250 126
A.0.2 Use Case: Authenticate Customer 127
A.0.3 Use Case: Register 2250 128
A.0.4 Use Case: See 2250 Status 129
A.0.5 Use Case: Unstable Network 129

B Screenshots of StatusInterface text/html Representation 131

C Unit and Integration Tests 135

D Performance Test Data 141

Bibliography 145

Chapter 1

Introduction

This chapter will focus on the background of the company Brüel & Kjær and
the company history regarding environmental management solutions. It will
describe the hardware which are integrated parts of these environmental man-
agement solutions, namely the hand-held analyser type 2250 and the noise mon-
itoring terminal. A vision which describes the long term goals of this project
will be given. The problems Brüel & Kjær faces in regards to ful�lling the vision
will be identi�ed. Scenarios will be introduced to further quantify the problem
and a thesis de�nition will be given to describe how this thesis aims to solve the
general problem in regards to ful�lling the vision. A methodology section will
describe the development methodology and the modelling standard. Finally an
outline section will describe the further content in this dissertation.

1.1 Brüel & Kjær

"Brüel & Kjær Sound and Vibration Measurement A/S supplies in-
tegrated solutions for the measurement and analysis of sound and
vibration. As a world-leader in sound and vibration measurement
and analysis, we use our core competences to help industry and
governments solve their sound and vibration challenges so they can
concentrate on their primary task: e�ciency in commerce and ad-
ministration."[11]

2 Introduction

The company has a rich history. It was founded in 1942 by Per Vilhelm Brüel
and Viggo Kjær. After a slow start the company �ourished up until 1992 where it
was sold to a German holding company, due to �nancial problems. The company
was split into six, Brüel & Kjær Sound and Vibration Measurements A/S (the
core sound and vibration market), Brüel & Kjær Vibro (machinery condition
monitoring), B-K Medical (ultrasonic medical diagnostic instruments), Innova
Air Tech Instruments A/S (gas analysis instrumentation), and Danish Pro Audio
(studio microphones). I will use Brüel & Kjær or B&K to describe Brüel & Kjær
Sound and Vibration Measurements A/S. [21]

In 2009 Brüel & Kjær bought the Australian company Lochard, the global leader
in supplying environmental management solutions for airports. B&K Environ-
mental Management Solutions (EMS) combines noise and climate measurements
in airports and cities with the purpose of minimizing the environmental impact
and to ensure that national and international regulations are met[30].

1.2 Hand-held Analyser Type 2250

In this section key aspects of the hand-held analyser type 2250 will be intro-
duced. The 2250 is used for recording, logging and post-processing of sound or
accelerometer data. The 2250 covers many areas of application and it is very
versatile, both in respects of hardware as well as software[5]. It is the equivalent
of a Swiss army knife of sound measurements. The hardware is shown in �gure
1.1. From an user interaction perspective the following objects are present:

• touch screen

• event pushbutton: for marking events.

• navigation pushbuttons: up, down, left and right buttons.

• back/erase/exlude pushbutton: to mark data with exclude marker or erase
last 5 seconds of data measurement.

• reset measurement pushbutton: for resetting the measurement.

• power switch: for turning the device on and o�.

• commentary pushbutton: for attaching recorded messages to measure-
ments.

• accept pushbutton: to accept changes.

• store pushbutton: for storing measurements.

1.2 Hand-held Analyser Type 2250 3

Figure 1.1: Hardware overview of the 2250. Source: [5, p. 4]

From a connection point of view the following objects are present:

• 3.5 mm stereo socket: for connecting headphones

4 Introduction

• USB interface: for connecting to a PC

• Output socket: output software determined signals

• Trigger input: for input that will be used as trigger

• Input: for AC/DC or CCLD signals

• CF slot: slot for inserting a Compact Flash card

• SD slot: slot for inserting a Secure Digital memory card

The device is running Windows CE version 3.0 with .Net compact framework
version 3.5. The device can run a variety of di�erent software depending on
the speci�c application use. The 2250 can also run a Web server which enables
remote access and remote control. There are two interfaces which enables the
remote control, a the RemoteAPI Web service and the browser interface that
looks like any other Web page. These interfaces are detailed in section 2.6
Domain Analysis.

1.3 Noise Monitoring Terminal

The Noise Monitoring Terminal is a stationary monitoring system used in EMS.
The NMT can be placed around airports, construction sites and cities to mea-
sure sound levels and help create a better environment. The NMTs are often
placed in remote locations, like the Australian desert or mounted at inaccessi-
ble places like near the top of an electrical mast. Locations like these seldom
have an Ethernet connection available. The data collected is streamed via a
GRPS connection to a central data center and thereafter made available to/for
customers. The components in a NMT is described in �gure 1.2 The NMT
consists of two batteries, a GPS receiver, a GRPS router, a weather station, an
external microphone, a 2250 hand-held analyser and a Compact Flash to LAN
adapter[6]. The GRPS router model varies depending on the country where it
is set up1.

The NMT streams the data to a central data center by creating an outgoing
HTTP connection. The address of this data center is manually con�gured on
the initial setup. The customer can access this data using a platform called
Noise Sentinel. It is interesting from a business perspective because the service
produces recurring revenue.

1Most routers are actually upgraded to 3G routers at the present time. The actual tech-
nology used is without consequence for this project, therefore the term GRPS router will still
be used.

1.3 Noise Monitoring Terminal 5

Figure 1.2: Hardware overview of the Noise Monitoring Terminal. Source: [6,
p. 12]

Going to the Australian desert or up electrical masts to con�gure a device after
the initial setup is not a viable scenario -this makes remote control of the NMT
a very valuable function. To enable the remote access as mentioned in section
1.2, the GRPS router must be manually con�gured to forward port data. The
Web server on the 2250 must be con�gured to start. Furthermore the NMT
needs a public IP address.
The actual port forwarding setup varies depending on the router model. As
a public IP address can be dynamic, dynDNS is used. dynDNS allows users
to have a sub domain that points to a computer with regularly-changing IP
addresses, such as those served by many Internet service providers. An update

6 Introduction

client built into the computer keeps the hostname up to date with its current
IP address. The update client does not work on all networks. On the networks
where this does not work the IP address must be manually setup in dynDNS,
for obvious reasons this only works when the IP address is static.

1.4 Vision

The vision of this project is to provide a proof of concept prototype where the
2250 is remote controlled without it having a public IP address. Creating devices
that can be initialized and remote controlled from anywhere in the world poten-
tially reduces the time spent on con�guring NMTs by B&K sta� and provides
added value for customers by providing remote control and access of a 2250.
This furthermore enables B&K to decouple the physical interface on the 2250
from the remote control interface enabling B&K to provide faster and better
ways of remote controlling a device o�-site.

These are important steps in ensuring Brüel & Kjærs position as the world
leading provider of sound and vibration measuring equipment.

1.5 The Problem

For Brüel & Kjær the overall problem manifests itself in the following two sub
problems. The �rst problem is how to provide a customer with the status of his
NMTs. Right now the only "life sign" is streamed data. Beyond this you must
obtain remote access to the device to see status information. This is a viable
solution if the customer needs to check one or two devices, but if the customer
has ten, this becomes tedious. The second problem bounds in the fact that
an inbound connection on the NMT is needed for remote access to the device.
The di�culty with an inbound connection is due to several issues. First of, the
entire con�guration is rather long and varies depending on the speci�c hardware
setup. If any errors occurs in this setup a person must go the actual location of
the device and recon�gure it. Secondly it often proves to be both troublesome
and time consuming to get a public IP from the internet provider. It requires a
special SIM card. In countries like Great Britain there is a long delivery time on
these SIM cards, resulting in a postponed delivery date for the NMT. In other
countries like Australia, the price of a public IP address is increased by the IPv4
address shortage. At several occasions the internet provider has promised public
IP addresses but provided B&K with another product.

1.5 The Problem 7

1.5.1 Scenarios

User scenarios are included to help quantify the problem and describe the mo-
tivation for and application of the proposed solution. The two scenarios below
describe typical scenarios for users of the proposed solution. In 2.4 Use Cases
the scenarios will be used as basis for the use cases.

1.5.1.1 Scenario 1

The company Easy Airport has bought three Noise Monitoring Terminals to
measure the e�ect they have on the local environment. Bryan from Easy Airport
wants to register his NMTs to his company. Bryan logs onto the NMT control
Website via a Web browser. Registers the three NMTs which are now bound
to the account he logged in with. He goes to the overview and sees that two of
them are online and one is not.

1.5.1.2 Scenario 2

Anders wants to remote control his NMT device. He logs on to the NMT control
Website. He goes to the overview of devices picks his one device and chooses it
for remote control. The device does not have a public IP address so Anders can
not remote control it directly.

1.5.2 Thesis De�nition

This thesis aims to solve the general problems behind the issues Brüel & Kjær
are experiencing with the remote control of their 2250 devices. The starting
point will be the existing RESTful remote control interface on the 2250. The
thesis aims to solve this issue by combining cloud computing and RESTful
Web services technology. The problem statement will be addressed by meeting
the objectives de�ned in this section. The methodology used to develop the
prototype is de�ned in 1.6 Methodology and a outline of the thesis is given in
1.7 Outline which also speci�es where the speci�ed objectives are addressed.

The objectives of this project are to:

1. Introduce the needed background information from the application domain
in Brüel & Kjær.

2. Discuss the current solution and compare this to existing solutions which
can be considered state of the art in access and communication with a

8 Introduction

remote device.

3. Identify, model and prioritize requirements for the application and describe
use cases realizing the requirements.

4. Introduce di�erent types of Web services and key concepts regarding se-
curity in Web services.

5. Describe RESTful Web services in depth and security for RESTful Web
services.

6. Introduce the concept of cloud computing, important concepts related to
cloud computing, and security risks in cloud computing.

7. Introduce the Windows Azure platform and discuss risk mitigation.

8. Identify components in the proposed solution, survey communication so-
lutions between these components, and design communication protocols
between components.

9. Design with scalability in mind.

10. Design with extensibility and versatility in mind.

11. Implement a proof of concept prototype of the proposed solution using
relevant and reasonable design patterns.

12. Validate the prototype with acceptance tests based on use cases as well as
reasonable performance tests based on the non functional requirements.

13. Discuss scalability, CAP theorem, and possible restrictions and limitations
related to the prototype.

14. Discuss how the thesis addresses the problem statement, how it ful�ls the
objectives, and future work in this area.

1.6 Methodology

The development of this project will follow an iterative process. The iterative
development project starts with an initial planning. Afterwards the process will
iterate through the analysis, design, implementation, test and evaluation phases
a number of times until it is deemed mature for deployment. The goal of this
project is to supply a proof of concept prototype. This prototype will be the
�nal deployment in the iterative process. The analysis, design, implementation,
test and evaluation will be presented in their �nal state in the iterative pro-
cess. Therefore the progress will not be presented and it will appear as if the

1.7 Outline 9

development followed the waterfall method. Throughout the process design and
analysis will be visualised using the Uni�ed Modelling Language (UML).

In the initial analysis phase use cases will be de�ned based on user scenarios.
Based on these use cases functional, non functional and runtime requirements
will be de�ned. The overall design with focus on components and communi-
cation protocols. The communication protocols will be modelled with UML
protocol state machine diagrams. The structure inside the components will be
modelled with UML class diagram. The behaviour of key objects inside each
component will be modelled with UML state machine diagrams.

As the primary focus of the project is a back end implementation, the following
iterations will deal with re�nement of functional requirements and mitigation of
technical risks.

The design must describe how security can be incorporated in the solution and
the implementation can implement security measures if deemed necessary from
Brüel & Kjærs point of view.

1.7 Outline

This section outlines the chapters in the report, as well as gives a brief intro-
duction to their content.

Introduction (Objectives addressed: 1)
This chapter introduces the background information for the problem state-
ment. The vision and problem statement are de�ned and the methodology
and outline for the project is speci�ed.

Analysis (Objectives addressed: 2, 3)
In this chapter the existing remote control interfaces on the 2250 are anal-
ysed and the functionality compared with other state of the art solutions.
The requirements are derived and use cases are speci�ed which cover the
highly prioritized requirements. Key concepts of the domain are intro-
duced based on requirements and use cases.

Technology Analysis (Objectives addressed: 4, 5, 6, 7)
In this chapter the concept of cloud computing is clari�ed. Key aspects
such as scalability and the CAP theorem, as well as cloud categories are
discussed. Security risks in cloud computing are identi�ed. Windows
Azure as a cloud computing platform is described and relevant design
options are discussed. It is also speci�ed how Windows Azure mitigates

10 Introduction

the identi�ed risks.
A de�nition of Web services is given and the di�erent types of Web services
are introduced. RESTful Web services is chosen and described in-depth.
Security risks for Web services are identi�ed and is speci�ed how these
risks can be mitigated using RESTful Web services.

Components and Communication (Objectives addressed: 8, 9)
Components in the solution are presented. Overall communication on
a abstract level is discussed and concrete communication strategies are
presented. The Tunnel strategy is chosen and its protocol speci�ed.

RelayClient (Objectives addressed: 10, 11)
In this chapter the behaviour of the RelayClient prototype is de�ned. The
implementation, and design including key software patterns are speci�ed.

RelayService (Objectives addressed: 9, 10, 11)
Design and implementation of the RelayService prototype are de�ned in
this chapter. Cloud computing design options are chosen to ensure scala-
bility.

Discussion (Objectives addressed: 12, 13)
This chapter brie�y describes how the prototype design is validated using
unit, integration, functionality acceptance and performance acceptance
tests. Security, how the RelayService can be hosted in-house, scalability
and CAP theorem applied to this project are discussed before the proto-
type is evaluated.

Conclusion (Objectives addressed: 14)
In this chapter it is assessed how well the vision, the project statement and
the objectives of this thesis are met. Based on this an overall conclusion
is provided and future work described.

Chapter 2

Analysis

2.1 State of the Art

The desire to remote control a device is not new, neither are the problems that
present themselves when both controller and the device controlled are behind
�rewalls. This section will describe the basic functionality of the existing in-
terface on the 2250 device and with this as basis investigate already existing
solutions for communicating with non addressable devices and remote control-
ling devices. A functionality overview of all the solutions will be given in 2.1.5
Functionality Overview. In this section remote controlled devices will be re-
ferred to as hosts, remote controllers as clients and any mediator between as
gateway.

2.1.1 RemoteAPI and Browser Interface

The existing software for remote controlling a 2250 consists of the Browser
Interface and a remote control interface (RemoteAPI). They are both available
via the Web server on the 2250. The Browser Interface allows a client to see
and control the running GUI on the host. Both interfaces are available using
TCP and the HTTP protocol. Authentication is based on the HTTP Basic
Access Authentication standard[20] and the communication is not encrypted.
The communication between client and host is direct and it is therefore required
that the client can make a connection directly to the host. As mentioned in the

12 Analysis

previous chapter this requires a public IP address for the host. The existing
solution o�ers no solution for seeing an overview of devices or seeing the status
of device if the device is unavailable.

RemoteAPI and Browser Interface Functionality Summarized

Expose GUI
Functionality exposes the GUI on the host to the client. Thereby
the client is able to interact with the host the same way as if he was
using it on site.

Direct connection
The solution functions when a direct connection can be achieved be-
tween the client and the host. This allows data to �ow directly from
client to host without having to channel it through a gateway.

Expose Web applications
Functionality exposes the Web server and the running Web applica-
tions to the client. The client is able to interact with these applica-
tions as with any other server.

Extensible
The solution can be combined with custom application running on the
host, ensuring versatility for specialized hosts. In t his project this is
important so that the solution can be combined with the BasicEnv1

software and otherwise extended if need be.

Windows CE compatible
The solution can be installed and run on the Windows CE platform.

2.1.2 LogMeIn

The LogMeIn solutions are commercial products for remote controlling and �le
sharing. In this subsection the solution will be described from a technical per-
spective. It is made for hosts running Windows or Mac OS while the client only
needs to run a modern Web browser. The LogMeIn setup is described in �gure
2.1.

The LogMeIn host creates an outbound SSL secured connection to the LogMeIn
gateway, which is placed in the LogMeIn data center. Because the connection
is created by the host and is outbound the �rewall will accept it like secure
Web tra�c. The client browser creates a connection to the LogMeIn gateway

1B&K Basic Environmental Client software

2.1 State of the Art 13

Figure 2.1: Diagram showing the LogMeIn communication �ow. Source: [26].

and authenticates itself. After authentication the client will be authorized to
exchange data with the hosts belonging to the user's account. The gateway
forwards the encrypted data between client and host. As an extra level of
security the client also needs to authenticate himself to the host. Once the
client authenticates himself to the host and it authorizes his access the remote
session begins[26].

As LogMeIn themselves state, there is a great bene�t in using a gateway to
mediate the tra�c between the client and the host:

The bene�t of using the gateway, instead of establishing a direct link
between the client and the host, is that either the client or host (or
both) can be �rewalled. The LogMeIn gateway ensures that users
do not need to con�gure �rewalls.[26]

The LogMeIn service is made in such a way that it discovers if a direct connection
can be made between the client and the host after authentication and if possible
makes such a connection thereby reducing stress on the gateway and reducing
latency. To further enable this they have also implemented a solution using the

14 Analysis

User Datagram Protocol (UDP) protocol which is less often �ltered by �rewalls
and thereby supports more direct connections.

LogMeIn Functionality Summarized

Gateway
The solution is built so that a gateway can facilitate tra�c between
the client and the host. This implementation allows a connection to
be established indirectly between the client and the host when both
are behind �rewalls and neither can accept incoming connections.

Access without public IP address
The Gateway implementation allows data to be sent between de-
vice and host when neither can accept incoming connections. This
functionality is a direct implication thereof and it states that a host
without a public IP address can be communicated with.

Expose GUI
This functionality is described in 2.1.1

Direct connection
This functionality is described in 2.1.1

Con�dentiality
Data transmitted between client and host is encrypted and con�den-
tial.

Host Overview
This service allows you to see an overview of the hosts available for
a speci�c client and see if a particular host is online.

Info even when o�ine
Functionality allows a client to see status information about a host
even if it is o�ine. This requires a gateway or another central service
which stores this data.

2.1.3 Microsoft Push Noti�cation Service

In this subsection a state of the art smart phone communication method will be
described.

The Microsoft Push Noti�cation Service in Windows Phone o�ers
third-party developers a resilient, dedicated, and persistent channel
to send data to a Windows Phone application from a Web service in
a power-e�cient way.[31]

2.1 State of the Art 15

Many modern smart phone applications have a client running on a phone and
a server part often running as a service in the cloud. To be able to push data
from the server to the client the push noti�cation services were created. The Mi-
crosoft Push Noti�cation Service solutions consists of four components a client
application, a push client service, the push noti�cation service and the cloud
service.

Figure 2.2 shows how the client application running on the phone can request
a push noti�cation URI from the Push Client Service (1). The Push Client
Service then negotiates with the Microsoft Push Noti�cation Service (MPNS)
and returns a noti�cation URI to the client application (2 and 3). The client
application can then send the URI to the cloud service (4). When the Web
service has information to send to the client application, it uses the URI in
sending a push noti�cation to the Microsoft Push Noti�cation Service (5), which
in turn routes the push noti�cation to the application running on a Windows
Phone2 device (6)[31].

Figure 2.2: Diagram showing the Microsoft Push Noti�cation Service struc-
ture. Source: [31]

2Push Noti�cation is also available for Windows 8 applications

16 Analysis

The Push Noti�cation provides a way of sending noti�cations to the host from
the client, but it does provide the functionality3 nor �exibility4 to function as the
sole means of communication and send requests and receive responses. Therefore
additional communication for this must be incorporated into the solution. It is
worth noting that the Microsoft Push Noti�cation Service is not unique, similar
services exist for Apple and Android devices.

Microsoft Push Noti�cation Service Functionality Summarized

Gateway
This functionality is described in 2.1.2

Access without public IP
This functionality is described in 2.1.2

Extensible
This functionality is described in 2.1.1

Con�dentiality
This functionality is described in 2.1.1

2.1.4 Azure Service Bus and Windows Communication
Foundation

The Azure Service Bus is a part of the Microsoft Azure cloud platform which will
be detailed in section 3.2. In combination with the Windows Communication
Foundation (WCF), detailed in 3.3.3 Windows Communication Foundation, the
Azure cloud platform o�ers the Service Bus Relay. The Service Bus Relay
enables a local service running in an enterprise environment behind a �rewall
to connect to the Azure Service Bus and expose its interface. The exposed
interfaces will be available to speci�c consumers or to anyone, depending on
the settings. This e�ectively allows a service to circumvent any �rewall and to
expose a service without a public IP address. The communication between the
Service Bus and the service is handled by the WCF framework and is seamless
for the publisher when con�gured. It does however require that the service
exposed is a WCF service.[40] It is worth noting that WCF does not run on the
Windows CE platform and that the Service Bus Relay does not per default give
an overview if a service is online or o�ine.

Azure Service Bus and WCF Functionality Summarized

3Push Noti�cation only allows information �ow from Client to Host.
4There are size limitations on noti�cations (currently 1KB in header 3KB in payload).

2.2 Functional Requirements 17

Gateway
This functionality is described in 2.1.2

Access without public IP
This functionality is described in 2.1.2

Expose Web applications
This functionality is described in 2.1.1

Extensible
This functionality is described in 2.1.1

Con�dentiality
This functionality is described in 2.1.1

2.1.5 Functionality Overview

An overview of the functionality o�ered by the di�erent solutions can be seen
in table 2.1. The table marks what functionality is o�ered by what solution.
The functionalities listed are the union of all the functionalities o�ered. From
the overview it is clear that none of the existing solutions will be satisfactory.
One of the most obvious reasons for this is that only the existing B&K solution
runs on Windows CE. This also means that even though some of the solutions
are Extensible they cannot be used. The existing B&K solution however lacks
other functionality e.g the Info even when o�ine functionality. This is a re-
quirement from B&K which will be identi�ed in the next section together with
the additional functional and non-functional requirements.

2.2 Functional Requirements

One of the main problems in this project is how to connect two instances where
neither accepts incoming connections. How can two people communicate if they
do not have phone numbers and their phones are only able to make outgo-
ing calls. If they have a common friend with two phones and phone numbers
they can call him. The common friend can hold the two telephones up against
each other and now a conversation can take place. The concept of introducing a
common friend who mediates communication is also the core concept in the Log-
MeIn, Microsoft Push Noti�cation Service, and Azure Service Bus and Windows
Communication Foundation solutions. The functional requirements will build
upon this design choice. The functional requirements are furthermore inspired
by the existing solutions and based on communications with B&K employees as

5The Push Noti�cation can give status information about the device, such as if it is idling,
the screen is turned on etc. However this is only if the device is o�ine and it is not the status
info desired by the users in our scenarios

18 Analysis

Functionality Existing
Solution

LogMeIn Push Noti-
�cation

Service
Bus +
WCF

Gateway x x x
Direct con-
nection

x x

Con�denti-
ality

x x x

Access
without
public IP
address

x x x

Expose
GUI

x x

Extensible x x x
Expose
Web appli-
cations

x x

Info even
when of-
�ine

x (x)5

Host
overview

x

Windows
CE com-
patible

x

Table 2.1: Use cases versus requirements.

well as the user scenarios. The functional requirements presented, their priori-
tization and the non-functional requirements speci�ed in the following chapter
are for the proof of concept prototype and not a �nal product. The functional
requirements are categorized based on their priority into the two categories must
have and nice to have.

Must have requirements (MH)

MH1. Solution must work when neither customer nor 2250 accept incoming con-
nections. This must be done by facilitating communication via a central
RelayService to RelayClient software present on the 2250. This require-
ment is the combination of the Gateway and Access without public IP
address functionality described in the previous section.

2.2 Functional Requirements 19

MH2. RelayService must expose the Web applications running on the 2250 Web
Server, including RemoteAPI and the Browser Interface as is. This ensures
the Expose GUI and Expose Web applications functionalities as they are
present in respectively the Browser Interface and RemoteAPI. The further
restriction that the remote control interfaces are exposed as is, ensures
backwards capability with existing client software, consuming either of
the two interfaces. This is a further requirement of B&K.

MH3. Customer can see current status of a 2250 device or last available status.
Ful�lling this requirement realizes the Info even when o�ine functionality.
This allows to troubleshoot problems better and to ensure information is
available even if the device is temporarily not reachable.

MH4. Customer must be able to see overview of all the 2250's he has registered.
This corresponds to the Host overview functionality described in the pre-
vious section.

MH5. Customer must authenticate to 2250 with an existing User Account when
accessing its interfaces. This functionality protects 2250 devices from
unauthorized access.

MH6. The device must authenticate to the RelayService. This protects the solu-
tion from malicious users posing as a 2250 and also serves to identify the
individual devices.

MH7. RelayService should always give a response. This ensures that the cus-
tomer will get a response within a reasonable time period even if the de-
vice is o�ine. This is a usability requirement and can be related directly
to the non-functional NFR3 requirement.

MH8. Customer must only see status of 2250 that are registered to him. This
ensures that status information is not available to other customers or ma-
licious users.

MH9. Customer must authenticate to RelayService before he can see overview
of devices or register any devices. This requirement dictates that the
customer must authenticate a necessity for the authorization needed in
MH4 and MH8.

MH10. The solution must be resilient to fault at and o�ine periods for the Re-
layService and RelayClient. The RelayClient and RelayService should
constantly seek states where relay of requests is possible.

Nice to have requirements (NH)

NH1. Customer is able to register a unregistered 2250.

20 Analysis

NH2. RelayService and 2250 must be able to process multiple remote control
requests. Not necessarily in parallel.

NH3. RelayService must be able to handle multiple active customers.

NH4. RelayService must be able to handle multiple active 2250.

NH5. Communication is encrypted. This maps to the Con�dentiality function-
ality described in the previous section.

NH6. Customer will automatically switch to direct control of a device if this
is possible. This maps to the combination of the Gateway and Direct
connection functionality only o�ered by the LogMeIn solution.

2.3 Non-Functional Requirements

The non-functional requirements are based on communication with B&K and
are based on the target platform, the application use, as well as B&K's business
model.

NFR1. Any new software on the 2250 must run on Windows Compact Edition
with .Net Compact Framework 3.5 like the existing software. This maps
to the Windows CE compatible functionality described in the previous
section.

NFR2. Brüel & Kjær is not in the data center business and therefore require that
any gateway or central service introduced will be hosted elsewhere.

NFR3. Additional latency introduced by our system must be minimized. Pro-
totype criteria: round trip time must be less than a 5 second increase
compared to direct remote controlling.

NFR4. Minimum of network tra�c overhead. Limited bandwidth available. Must
take up as little as possible of the bandwidth. Prototype criteria: it must
be able to co-function with NMT streamer software

NFR5. Any new software on the 2250 must have minimal CPU and memory us-
age. Prototype criteria: it must be able to co-function with the BasicEnv
software.

NFR6. Prototype must be backwards compatible ensuring that no functionality of
the device is compromised by the RelayClient software. Prototype criteria:
it must be able to co-function with the BasicEnv software.

2.4 Use Cases 21

2.4 Use Cases

The use cases introduced in this section serve the purpose of further detailing
the user scenarios presented in 1.5.1 Scenarios. The aim of these use cases is
to quantify the work �ows in which the functional requirements are realized
and use this to substantiate the functional requirements. These use cases will
in subsection 2.6 be used to map important concepts in the domain. The use
case diagram in �gure 2.3 shows the seven use cases, their relations and the
two actors, the customer and the 2250. Three use cases will be included in this

Figure 2.3: Use case diagram

section namely See 2250 overview, Update 2250 Status and Send Remote Control
Command while the remaining four use cases Authenticate 2250, Authenticate
Customer, Register 2250, and See 2250 Status will be included in the appendix
and only described textually in this section. The use cases will be described
using the common use case style described in Fowler, p. 101[18], as it o�ers a
suitable level of complexity.

22 Analysis

See 2250 overview
Actor Customer
Description See overview of the 2250 devices registered to a spe-

ci�c customer.
Precondition Customer is authenticated.
Postcondition None.
Main path

1. Customer requests to see 2250 overview.

2. RelayService receives request.

3. RelayService returns overview info about the
2250 devices registered to the customer.

4. Customer receives overview.

Update 2250 Status
Actor 2250
Precondition 2250 is authenticated.
Postcondition 2250 status is updated or no update acknowledge-

ment is received by the 2250.
Success End Condition 2250 status is updated and saved in the RelayService.
Failed End Condition 2250 status is not updated in the RelayService.
Main path

1. RelayService sends update request to 2250.

2. 2250 receives update request.

3. 2250 sends 2250 status information.

4. RelayService receives status information.

5. RelayService saves status information.

Extensions 2a 2250 does not receive update request.

4a RelayService does not receive status informa-
tion.

4a1 RelayService sends update request to 2250.

2.4 Use Cases 23

Send remote control command
Actor Customer, 2250
Precondition None.
Postcondition None.
Main path

1. Customer sends one or more remote control re-
quest to RelayService.

2. RelayService receives one or more remote con-
trol requests.

3. RelayService veri�es that the 2250 is reachable.

4. RelayService forwards the received remote con-
trol requests to RelayClient on the 2250.

5. The RelayClient receives one or more remote
control requests.

6. The RelayClient forwards the request to the
2250 Web server and sends a remote control
control response for each request.

7. RelayService receives remote control responses.

8. RelayService forwards the remote control re-
sponses.

9. Customer receives remote control responses.

Extensions 3a The RelayClient and the 2250 are not reach-
able.

3a1 The RelayService noti�es the customer that
the 2250 is not reachable.

5a The RelayClient does not receive remote con-
trol request.

5a1 RelayService noti�es Customer that remote
control request could not be delivered.

7a RelayService does not receive remote control
responses.

7a1 RelayService noti�es customer that the 2250 is
not reachable.

9a Customer does not receive remote control re-
sponses.

24 Analysis

Authenticate 2250
This use case is included in A.0.1 Use Case: Authenticate 2250. In this use case
the 2250 authenticates itself to the RelayService which validates the credentials
and informs the 2250 of the outcome.

Authenticate Customer
This use case is included in A.0.2 Use Case: Authenticate Customer. In this
use case the customer authenticates himself to the RelayService which validates
the credentials and informs the customer of the outcome.

Register 2250
This use case is included in A.0.3 Use Case: Register 2250. In this use case the
customer registers a ownership of a 2250 at the RelayService.

See 2250 Status
This use case is included in A.0.4 Use Case: See 2250 Status. In this use case
the customer chooses a single 2250 and sees its status. Preconditions are that
the customer is authenticated and the 2250 is registered to him.

2.5 Use Case Coverage

Use case coverage describes how well the existing use cases cover the speci-
�ed requirements. Having a high coverage also means that the use cases can
be translated into acceptance tests which will be satisfying to prove program
functionality. The use case coverage is described in table 2.2 Use Cases versus
Requirements.

2.6 Domain Analysis

In this section key concepts in the domain which are relevant to this project
are identi�ed. The concepts are identi�ed based on the functional requirements
in section 2.2, the non-functional requirements in section 2.3 and the use cases
in section 2.4. These descriptions help map the domain, disambiguate terms
and aid the development process later in this project. An overview of these key
concepts is available in �gure 2.4.

2.6.1 Device/2250

The 2250 is a physical piece of hardware. It is versatile and exist in many ap-
plication contexts. The de�nition given here is only su�cient for a 2250 used in

2.6 Domain Analysis 25

Requi-
rement

Authen-
ticate
2250

Update
2250
Status

Authen-
ticate
Cus-
tomer

See
2250
Overview

See
2250
status

Register
2250

Send
Remote
Control
Com-
mand

MH1 x
MH2 x
MH3 x x
MH4 x
MH5 x
MH6 x
MH7 x
MH8 x
MH9 x
MH10 x
NH1 x
NH2 x
NH3
NH4
NH5
NH6

Table 2.2: Use Cases versus Requirements

26 Analysis

Figure 2.4: Diagram showing an overview of the domain

environmental solutions. They are uniquely identi�ed by a serial number and
are sold by B&K to customers. They can be connected to a Weather Station
to detect pressure and/or a GRPS router to provide a wireless internet connec-
tion. In other systems they may be connected to di�erent pieces of interesting
hardware. The operating system for the 2250 is the Windows CE. When the
2250 is used in a Noise Monitoring Terminal it runs the NMT Client software,
this software runs on top of the B&K Basic Environmental Client software Ba-
sicEnv. Remote access to a device happens via two BasicEnv Web application
which are exposed via the Windows CE inbuilt Web server.

The BasicEnv Web applications are exposed via the Web server built into the
Windows CE OS. When the Web server exposes these interfaces it will be re-
ferred to as the 2250 Web Server. In any state the device has Status, Setup,
Preferences, Data and Commands. Access to the device is controlled via User
Accounts. The device will always have an Admin User Account and may have
an Guest User Account.

2.6 Domain Analysis 27

2.6.2 Customer

A customer is a person or company that owns one or more 2250s. It is the
customer who accesses and remote controls a device. B&K has no other access
than the one granted by the customer so if a B&K employee is accessing a device
it is on behalf of a customer with the customers credentials. Therefore B&K
employees do not represent an individual actor.

2.6.3 Registration

A registration is a relationship between a customer and a 2250. A customer can
register a 2250 by notifying and proving this ownership to B&K.

2.6.4 2250WebServer

The exposed interfaces are o�ered through combination of the Web server and
the BasicEnv Client software. To reduce complexity, the combination of the
exposed interfaces and the Web server will be modelled as a single component
named the 2250 Web Server which provides two interfaces as illustrated in �gure
2.5.

Figure 2.5: The 2250 Web Server component

The two interfaces provide ways of remote accessing and controlling the device,
one is the Browser Interface enabling remote control via a normal browser, the
second is the RemoteAPI a REST interface enabling remote control via a custom
software client.

2.6.5 User Account

The term User Account covers a user present on the 2250. There are two user
accounts per default, the admin user account and the guest user account. These
user accounts govern access and authorization to the two interfaces.

28 Analysis

2.6.6 Preferences

The preferences is a group of settings used to con�gure system, hardware and
network settings. Below is an excerpt of settings groups in Preferences.

Power Settings These settings con�gure the power saving settings for the de-
vice such as when to turn o� the backlight, when to dim the backlight and
when to enter standby mode.

Regional Settings These settings con�gure settings that varies depending on
the region such as decimal point, date separator, date format, time zone,
language and keyboard layout.

Storage Settings These settings con�gure automatic naming of projects as
well as project pre�xes.

Users Con�gures whether multiple users are allowed.

Modem/DynDNS Settings These settings con�gure the modem and Dyn-
DNS. The DynDNS relates to the DynDNS settings described in 1.3 Noise
Monitoring Terminal.

Network Settings These settings con�gure/shows network information such
as DHCP attributes, DNS attributes, MAC address and status.

Web Server Settings The settings con�gure the Web server status and user
accounts.

2.6.7 Setup

Setup de�nes the measurement setup. The measurement setup is primarily
concerned with acoustic settings. Understanding sound values and parameters
is beyond the scope of this project. The settings are however included to give a
quick overview for the interested reader. The setup is split up into the following
categories.

Input Input de�nes the microphone input. Which socket to retrieve data from,
the transducer used, triggerinput etc.

Frequency Weightings De�nes how to weight broadband exclusive peak and
broadband peak.

Statistics De�nes what to base statistics on.

2.6 Domain Analysis 29

Measurement Control De�nes whether a measurement should be controlled
manually or automatic.

Signal Recording De�nes control attributes for a recording, such as minimum
duration, maximum duration, peak recording level, etc.

Output Socket Signal De�nes whether to output a signal on a socket and
which signal to output.

Occupational Health De�nes threshold level peaks over time such as heat.

2.6.8 Data

The Data contains attributes representing the ongoing measurements. The data
is volatile as the measured data varies over time.

2.6.9 Status

The status of a 2250 is a collection of attributes that convey information that
is persistent over longer periods of time and describe the system and network
status. These attributes will be a subset of the attributes found in Preferences in
the RemoteAPI. The status can, because of its persistent constraint, be stored
on a remote location and only updated when the status information is changed
on the 2250. The status attributes of a device is described in table 2.3.

Attribute Name Attribute Description
ModelVersion Firmware version of the NMT
LANIPAddress Local IP Address of the device
LANMACAddress MAC address
LANSubnetMask Local network subnet mask
InstrumentType Type of instrument (in this case a 2250)
Device Serial number for the device
Online Describes whether a 2250 is online and accessible. This

is redundant information when you are accessing the
device and it is therefore not included in the RemoteAPI
Preferences.

Table 2.3: Attributes describing the status of a device

2.6.10 Browser Interface

The Browser Interface is accessible via any modern Web Browser. It is used for
remote access to the device and mirrors the actual UI on the device. Figure 2.6

30 Analysis

shows a screenshot of the Browser Interface. In the right side a series of buttons
are placed which allows the customer to perform certain standard actions. These
buttons are copies of the pushbuttons described in section 1.2. To the left a
240x320px image is placed. This image is a screenshot from the actual device.
As it is a screen shot the content of it will vary depending on the software and
software state.

Figure 2.6: Browser Interface UI

The entire interface is built on AJAX. Whenever a fresh screenshot is received
a new is requested from the server. This potentially adds up to a picture being
loaded every half second. All interaction are sent via HTTP POST or HTTP
GET requests to the Web server. Clicks on screen include the coordinates and
will simulate a physical user click on the screen.

2.6.11 RemoteAPI

The RemoteAPI is accessible on the 2250WebServer via the path "/RemoteAPI".
The RemoteAPI strives to be a REST interface. It is composed of four compo-
nents: Preferences, Setup, Data and Commands. Each component contains a
number of attributes which are all direct descendants of the component. This
means that all attributes are addressed via the following hierachical path struc-
ture RemoteAPI/<component>/attribute. The following list describes the four
components

2.6 Domain Analysis 31

RemoteAPI Preferences The Preferences resource consist of all the attributes
in display settings, power settings, regional settings, storage settings, head-
phone settings, users, printer settings, modem/DynDNS settings, network
settings and Web server settings, described in subsection 2.6.6. Because
of the �attened structure the individual categories have been removed and
all attributes are grouped together.

RemoteAPI Setup The Setup resource consist of all the attributes in input,
frequencey weightings, statistics, measurement control, signal recording,
output socket signal and occupational healthdescribed in subsection 2.6.7.
Because of the �attened structure the individual categories have been re-
moved and all attributes are grouped together.

RemoteAPI Data The Data resource contains attributes of the type men-
tioned in 2.6.8 Data.

RemoteAPI Commands The Command component contain a varying num-
ber of attribute depending on the speci�c application running on the device
and its state.

2.6.12 RelayService

In this solution communication is facilitated through a central mediator named
RelayService. Requests will be made to the RelayService functions as a reverse
proxy. The request will be forwarded to the 2250 and the response will be sent
from the 2250 to the RelayService and then forwarded to the customer. The
indirect access via the RelayService combined with the requirement to expose the
existing interface as is, implies that the RelayService must expose the Browser
Interface and the RemoteAPI interface. The requirement for a customer to see
the status of a device will be realized with a status interface (StatusInterface).
This interface should also be available on the RelayService so that it is accessible
from anywhere.

2.6.13 RelayClient

The additional software on the 2250 used for communicating with the RelaySer-
vice will be referred to as the RelayClient. The RelayClient is a part of the 2250,
but is not contained in the 2250 Web Server, but should instead be regarded as
a separate component.

32 Analysis

2.7 Mockups

The new functionality described in the functional requirements demands an
extended user interface. In this project the extended user interface are o�ered
by the RelayService either as a Web service or as a Web page. This user interface
is described in this section using a state machine to describe the interaction
�ow and several mockups showing the user interface in di�erent states of the
interaction. Providing mock ups in the early face of a project allow users and
key stakeholders to give an input and/or validate the given interface. The �ve
states of the user interface are the Sign In, the Device Overview, the Device
Status, the Register Device and the existing Browser Interface.

Figure 2.7: User Interface �ow

As �gure 2.7 illustrates, the interaction starts at the Sign In state. The customer
must sign in before he can access any of the other functionality as described in
requirement MH9. This will be done with a username and a password as shown
in �gure 2.8.

Figure 2.8: Sign in mock up

When the customer is signed in he reaches the device overview page illustrated
in �gure 2.9. In this page the customer can see an overview of all his registered
devices. It is possible for the customer to navigate to the register device page,
to sign out of the system or to click on a device to see its status.

In the Register Device page shown in �gure 2.10 the customer registers a device

2.7 Mockups 33

Figure 2.9: Device overview mock up

by typing the serial number and the registration key. When the registration is
complete the customer returns to the Device Overview page. The customer can
at any time choose to abort the registration and sign out or go to the Device
Overview page.

Figure 2.10: Register device mock up

In the Device Status page show in �gure 2.11 the customer can see the device
status as de�ned in 2.6.9. From the device status the customer can choose
to navigate to the Browser Interface, the Register Device page or the Device
Overview page.

The Browser Interface is the already existing Browser Interface introduced in
2.6.10 Browser Interface. A screenshot showing the Browser Interface is shown
in �gure 2.6.

34 Analysis

Figure 2.11: Device status mock up

2.8 Chapter Summary

In this chapter functionality of existing solutions have been identi�ed and com-
pared. Due to lack of support in Windows CE the only usable solution is the
existing B&K software, which will be extended. Functional and non-functional
requirements have been identi�ed based on the functionality of existing solu-
tions, user scenarios and communication with B&K. Use cases have been made
which realize the requirements and which will serve as basis for acceptance test.
To ensure coverage a table with requirements versus use cases have been made.
Based on the requirements and the use cases main concepts in the domain have
been identi�ed and described, thereby providing the necessary background in-
formation about this speci�c domain to understand the further design. Based
on the use cases and with the domain analysis as reference, mock ups have been
made to show the desired user interface.

Chapter 3

Technology Analysis

In this chapter the main technologies used in this project will be described in
depth. These technologies will serve as the foundation for the solution design.
The concept of cloud computing will be clari�ed, the main implications will
be described, and the security risks related to cloud computing speci�ed. An
overview of the relevant subjects in the Microsoft Azure cloud platform will be
given. The concept of Web services will be introduced and the di�erent types
of Web services discussed. It will justify why RESTful Web services are chosen
and RESTful Web services will be described in depth.

3.1 Cloud Computing

A central service like the RelayService needs a place to be hosted. It is evident
in NFR2, that B&K is not interested in hosting a service themselves. One of the
popular ways of hosting, and the one used by B&K, is cloud computing. In the
following section cloud computing will be discussed. The following terminology
will be used to describe the actors in cloud computing.

Cloud provider
The provider of a cloud platform and the data center in which it runs.

Cloud consumer
The consumer of the cloud platform. The Cloud consumer uses cloud

36 Technology Analysis

computing to host one or more services. In the current scenario this will
be B&K

Cloud user
The user of a cloud service. In theory it does not matter to a user whether
a service is hosted in the cloud or somewhere else. In the current scenario
this will be the customer described in 2.6.2.

The concept of cloud computing is open for interpretation and the term can
cover anything from simply outsourcing your hardware to the solution to all a
company's worries. From a hardware perspective Cloud Computing is o�ering
utility computing. To really understand the bene�ts of utility computing one
must �rst understand the troubles of conventional hosting.

When supplying server utility for a company's service the keyword is provision-
ing. The usage of a service is seldom evenly distributed throughout a week or
even a day. Instead a service experiences peak periods with intense usage while
the usage will be low the majority of the day. A company must choose a provi-
sioning strategy for supplying server resources for the service. The two options
available are underprovisioning and provisioning for peak periods.

Underprovisioning means having less server capacity than necessary. In best
case scenario this results in an unavailable service to some of the users, of them
a fraction will not return as users. This can be quite devastating for a company
as their reputation su�ers and they potentially loose many users[1].

Provisioning for peak periods means having server capacity enough to handle
all users at the busiest moments. This leads to a low average utilization of the
servers as the peak period often represents a limited time period. This strategy is
further complicated by user growth. If the user base grows new hardware must
be purchased. Delivery time could be weeks, this means that company must
predict the user growth several days ahead. For new services this can be quite
hard as services can experience rapid growth and rapid decline. In contrast
to conventional hosting utility computing has the three advantages described
below[1].

• It provides the illusion of unlimited resources. For the consumer of utility
computing there are unlimited resources. It is possible to scale up fast,
thereby eliminating the need to plan far ahead for provisioning.

• It eliminates the need of initial investment. Companies no longer need
to invest in hardware upfront, but can instead start small and gradually
increase capacity as needed. In business language this is known as a shift
from capital expenditure to operation expenditure.

3.1 Cloud Computing 37

• Pay as you go. This enables scalability as a consumer can pay for a
large number of resources for a short period of time and then scale down
afterwards.

All three bene�ts either reduce cost or enable scaling, but scalability is more
than provisioning resources it is also scalable software. The remaining sections
will discuss cloud computing from a software perspective. From a software
and application perspective the important concepts in cloud computing are the
cloud computing categories, the framework supplied by the cloud provider, the
ability to accommodate the possibilities in utility computing and the new risks
introduced by cloud computing.

3.1.1 Cloud Computing Categories

Cloud computing is categorised depending on the level of abstraction the cloud
provider provides for the cloud consumer. In this subsection the di�erent cate-
gories will be described. The choice of cloud computing category will be made in
3.1.4 Choice of Cloud Computing Category and Cloud Provider based on these
descriptions.

3.1.1.1 Infrastructure-as-a-Service

Infrastructure-as-a-Service (IaaS) abstracts CPU, memory and storage, o�ering
these to the consumer. It is the lowest level of abstraction in the cloud. The
cloud provider manages the physical resources and supply virtual instances of
operating systems to the cloud consumer. The consumer is given full ownership
of the virtual resources and he can con�gure them as he sees �t. This results
in better control and more �exibility for the cloud consumer but also require
more administration[41]. This is very similar to conventional hosting from a
software perspective. Examples of IaaS cloud providers are Amazon EC21 and
Rackspace2.

3.1.1.2 Platform-as-a-Service

Platform-as-a-Service (Paas) is the step up from IaaS and provides the next level
of abstraction for the cloud costumer. Here the cloud provider also manages a
service oriented application infrastructure, which provides the cloud consumer
with the essential building blocks needed in his own service. This infrastructure

1http://aws.amazon.com/ec2.
2http://www.rackspace.com/cloud.

38 Technology Analysis

can contain access control, messaging services, load balancing etc. The cloud
consumer can use these basic building blocks to compose his own service.

When using PaaS you loose �exibility and control over the IT con�guration
and the software environment as this is provided and handled by the cloud
provider. This also means that the cloud consumer can abstract away from
maintenance, patching operating systems and software etc. as this is handled
by the cloud provider[41]. In other words the PaaS can be regarded as a means of
deploying applications without dealing with the necessary server con�guration
and maintenance. Examples of a PaaS cloud providers are Windows Azure3 and
Google App Engine4.

3.1.1.3 Software-as-a-Service

Software-as-a-Service (SaaS) is a term used beyond the scope of cloud comput-
ing. From a cloud user's perspective almost everything in the cloud is SaaS.

SaaS provides the highest abstraction layer in cloud computing for cloud con-
sumers. The cloud provider manages the infrastructure, the platform as well as
one or more key applications for the cloud consumer. Where the applications
in PaaS enabled cloud computing from a technical point of view the applica-
tions in SaaS are responsible for business functionality as consumer relationship
management and supply chain management.

In SaaS the infrastructure, platform and application is run by the cloud provider.
The cloud consumer has little control and �exibility and all maintenance is
handled by the cloud provider[41]. An example of a SaaS cloud provider is
Salesforce5.

3.1.2 Scalability

One of the great promises of utility computing is scalability. The term scalability
describes the ability to handle growth/decline or the ability to increase/decrease
size to handle growth/decline[3]. There exist two types of scaling; vertical scal-
ing (scale up) and horizontal scaling (scale out). Vertical scaling will typically
consist of adding more resources to an existing node or instance. A general
example is adding more RAM and CPU power to a server. It is clear that such
a scaling method have serious limitations in the ability to scale, as there are
limitations in how much CPU and RAM you can add to a single computer.

3http://www.windowsazure.com.
4http://developers.google.com/appengine.
5http://www.salesforce.com.

3.1 Cloud Computing 39

Horizontal scaling adds more nodes to an existing system. This could be adding
another server to a server park.

It is a common misconception that cloud computing will solve all scalability
issues. The number of instances you can spin up and down and the speed at
which this can be done, are irrelevant if the application itself is not scalable.
True scalability comes from a scalable platform combined with a scalable appli-
cation which can be distributed across multiple running instances. The di�erent
cloud computing categories provide di�erent levels of aid in creating a scalable
application. Using IaaS the cloud consumer must facilitate scalability himself
across multiple virtual machines. In PaaS the software environment provides
support for scalability but the application must still consider it. In SaaS the
scalability must be handled by the cloud provider.

3.1.2.1 Brewers CAP theorem

Brewers CAP was introduced in Towards Robust Distributed Systems [9] based
on previous work in �Harvest, yield, and scalable tolerant systems� [8] and
�Cluster-based scalable network services� [19]. The theorem is essential for scal-
ing horizontally. Brewers CAP theorem states that it is impossible for a dis-
tributed system to simultaneously guarantee Consistency (all nodes see the same
data at the same time), Availability (a guarantee that every received request is
processed) and Partition-Tolerance (the system continues to operate despite ar-
bitrary message loss or failure of part of the system)[10]. The CAP properties
are modelled in �gure 3.1.

According to this theorem a system can at most guarantee to be either Consis-
tent and Available (CA), Consistent and Partition-Tolerant (CP) or Available
and Partition-Tolerant (AP). Brewers CAP theorem was formally proved by
Gilbert and Lynch in �Brewer's Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services�[23].

More than a decade later the perspective on the CAP has changed. While
the CAP theorem does state that only two out of the three criteria can be
perfectly guaranteed, they are not all or nothing and can be implemented to
various degrees. The choice of C. A. or P. is not static but can in fact be
changed dynamically. These shifts in perception have changed the focus of
guaranteeing C. A. or P. perfectly to which degrees Consistency and Availability
are guaranteed under a network partition[7]. It is important for the application
designer to decide to what degree he wants to guarantee two of the properties
and as a cloud consumer he must also consider if and how the cloud provider
supports Consistency, Availability and Partition-Tolerance.

40 Technology Analysis

Figure 3.1: Venn diagram showing the three properties Consistency, Availabil-
ity and Partition tolerance. Any system can guarantee at most two
of these three properties at any given time.

3.1.3 Security Risks in Cloud Computing

One of the main concerns regarding Cloud Computing is security. These se-
curity concerns can be the deciding factor when a future cloud consumers and
users determines whether to use cloud computing. Therefore it is important
to identify what security risks cloud computing present and investigate how
the individual cloud provider mitigates these risks by addressing them and/or
by giving the consumer tools to address them. In this subsection risks unique
to cloud computing will be identi�ed based on BizCloud Overview of Top 10
Security Threats of Cloud Computing [27] and �Assessing the Security Risks of
Cloud Computing�[25]. It is based on these security risks that risk mitigation by
the chosen cloud platform provider will be discussed in 3.2.4 Risk Mitigation in
Windows Azure and this risk mitigation will be discussed again in section 7.3.

3.1.3.1 Unauthorized User Access and Malicious Insider

When migrating to cloud computing the consumer looses control over the inter-
nal security control. This is handled by the cloud provider and the consumer's
security controls are outside the cloud security mechanism. The threat of a mali-
cious insider existed before the migration to the cloud, but it is worth mentioning
that now the malicious insider can come from the cloud provider. Furthermore
the consumer no longer has physical access to servers. These are quite substan-
tial risks for companies where such an in�ltration can cause damage to �nances,

3.1 Cloud Computing 41

production and reputation[27].

3.1.3.2 Geographical Data Location

In cloud computing you are totally separated from the hardware. This means
that you may not know where your data is located and maybe not even know
which country. This can be an issue because of national privacy regulations.
If your data is of highly sensitive manner it may also be an issue storing it in
countries like the United States where they have the Patriot Act. If the cloud
provider o�ers redundancy and backup you must likewise consider the location
of these services[25].

3.1.3.3 Data Segregation

For cloud environments and especially for PaaS and SaaS, cloud consumer data is
stored in a shared environment. 3.4.8 Web Service Security will discuss how data
can be protected while in transit, but it is equally important that it is protected
when at rest. This new risk is due to the fact that the cloud consumers now
share infrastructure, in contrast the regular hosting in data centers do not have
this issue as little or no infrastructure is actually shared. As a service provider
it is equally important that you can ensure that your users data is segregated.
This can be done by programatically compartmentalize the resources or encrypt
resources on a per user basis[25].

3.1.3.4 Uptime

The cloud is not �awless and even though cloud computing scales horizontally
and Availability and Partition-Tolerance are valued higher than consistency, it
still happens that the cloud is down. Redundancy o�ered by the cloud provider
in the form of running an application in multiple data centres might not be
enough. A recent example of this is the breakdown of Microsoft Azure due to a
leap year bug[29].6 Using cloud computing does not guarantee 100% uptime[27].

3.1.4 Choice of Cloud Computing Category and Cloud
Provider

In the choice of cloud computing category the most important factor is ab-
straction. Choosing a platform that provides the highest level of maintenance

6Apparently Microsoft developers have not learned their lesson from the Zune leap year
bug http://www.nytimes.com/2009/01/01/technology/personaltech/01zune.html

http://www.nytimes.com/2009/01/01/technology/personaltech/01zune.html

42 Technology Analysis

abstraction allows focusing on other issues. It is however clear that there is no
SaaS platform provider which o�ers the desired functionality for this project.
Therefore PaaS has been chosen as this provides maintenance abstraction while
allowing implementation of custom functionality.

In this project Windows Azure will be used to host the RelayService. There are
four main arguments for choosing Windows Azure:

• B&K is already using this platform and are therefore familiar with it.

• Good integration with the development environment used (Visual Studio).

• It has a �exible and extensive framework.

• Allows use of same programming language on RelayClient and RelaySer-
vice.

The framework will be described in the following section.

3.2 Windows Azure

Windows Azure (or simply Azure) is Microsofts cloud computing platform build
to host and scale Web applications through Microsoft data centers. Azure is clas-
si�ed both as PaaS and IaaS, because it supports both categories. The platform
consists of the following components Execution Models, Data Management, Net-
working, Business Analytics, Messaging, Caching, Identity, High-Performance
Computing, Media, Commerce and the Software Development Kits. In this sec-
tion the following three core components Execution Models, Data Management
and Messaging will be explained. On the background of these core components
explained how Windows Azure mitigates the risks identi�ed in 3.1.3 Security
Risks in Cloud Computing.

3.2.1 Execution Models

The Execution Model term covers the running instances in the cloud computing
platform. The term role is used to describe the di�erent categories of computing
instances available. In this subsection the di�erent categories will be introduced.
The choice of execution model is covered in section 6.1 after the initial design
decisions have been made. The three types of roles are Virtual Machine Role,
WebRole and WorkerRole. All roles are virtual instances running on top of
a physical host server. The use of the roles for di�erent applications will be

3.2 Windows Azure 43

described later in this section. Each has virtual CPU power, virtual RAM
memory and a virtual hard drive. The Azure platform does not regard the data
stored on the virtual hard drive or in the memory as persistent, nor does it
facilitate consistency of this data between the roles.

If the host server for an instance experiences a hardware failure the instance
will be lost. Any unique data stored in the virtual hard drive or memory of
the host is lost. Windows Azure will spin up a new instance with the speci�c
role[28]. The 99.95% uptime in the Windows Azure Service Level Agreement[32]
is only guaranteed if at least two redundant instances run in di�erent Upgrade
Domains7. It is clear from this that in regards to execution models Windows
Azure sacri�ces Consistency for Partition-Tolerance and Availability. In this
case Windows Azure takes this sacri�ce to the extreme as it makes no attempt to
have consistent roles. Even though consistency and persistence is not guaranteed
in Azure roles it is present in the Azure platform. Persistent storage is o�ered
with Azure data management and allows Azure roles access and manipulate a
common set of data. This will be discussed in 3.2.3 Data Management.

The execution models support horizontal scaling by creating multiple instances
of the same role8. When multiple instances of the same image is running tra�c
is routed via a load balancer. The load balancer decides which instance to
forward to based on resource usages etc., this is illustrated in �gure 3.2. There
is no way to know which instance will receive a certain request. This further
complicates having state information on a role.

3.2.1.1 Virtual Machine Role

The virtual machine role represents a virtual machine. This is similar to the
virtual machines running on other IaaS providers such as Amazon9. Some of the
advantages of running a virtual machine in Azure is the world wide reach of the
Azure data centres and the bene�ts of the Azure framework[28].

7Upgrade Domain refers to a set of Windows Azure compute nodes to which platform
updates are concurrently applied. Two identical instances will per default be in di�erent
Upgrade Domains. This also implies that the instances are running on di�erent physical
hardware.

8This can be done manually in the azure cloud manager or auto scaling can be enabled
based on di�erent load variables

9http://aws.amazon.com/ec2/.

44 Technology Analysis

Figure 3.2: Diagram showing the Load Balancer which delegates incoming re-
quests to an instance of the role. It is not possible to know which
instance will process a request.

3.2.1.2 WebRole

The WebRole instance is a Web application hosted on a Azure Virtual Machine
running IIS10. The Web Role is best suited as a Web based front end for an
application. The WebRole is not suitable for long running processes[28].

3.2.1.3 WorkerRole

David Platt who teaches .Net programming on the Harvard University has made
a quite interesting description of the di�erence between a Worker Role and a
Web Role.

When you go to the store to buy a �sh, you are welcomed by a nice
pretty lady. She takes the order, and handles it back to the person
who cut the �sh. This pretty lady does not know anything about
how you cut a �sh. And the person, who is cutting the �sh, does
not know anything about consumer service. So to clarify it for you.
The nice pretty lady is the Web Role, looking good, and is visible

10Internet Information Services, a Microsoft Web Server

3.2 Windows Azure 45

and accessible for the consumer. The person who cuts the �sh, is
the Worker Role. He/she does not have to be good looking at all,
but needs to know what he/she`s doing to get the process done.

The WorkerRole is comparable to a Windows service running in the background.
It is primarily suited for running background tasks and services[28]. Figure 3.3
describes the lifecycle of a WorkerRole. After the WorkerRole is instantiated

Figure 3.3: Sequence diagram showing the life cycle of a Worker Role

the OnStart method is called. After this has �nished the Run method is called.
When the Run method is �nished the WorkerRole is destroyed and a new in-
stance of the WorkerRole is instantiated. Because of this lifecycle the Run
method should contain a loop that does not �nish unless it is absolutely neces-
sary.

3.2.1.4 Separation of Background and Front End Processes

One of the major arguments for separating background and foreground services
onto di�erent instances is scalability. The separation based on the service they

46 Technology Analysis

provide enables better server resource administration. Keeping the two apart
also ensures that neither are using the others resources. Imagine if Google was
slow because they were busy indexing behind the scene. The two processes can
also scale independently based on their needs and it makes a more �exible design
as the front end is no longer tied to a single back end instance. It enables the
front end to make a request to any speci�c back end.

To accommodate the separation of back end and front end services Microsoft has
introduced the Messaging framework which will be discussed in the following
subsection.

3.2.2 Messaging

In the distributed cloud environment communication between instances are done
via messaging. The Azure framework present three ways of exchanging mes-
sages between roles: Direct Connection between message producer and con-
sumer which requires a proprietary message system, the Azure Cloud Queue
and the Azure Service Bus. The Azure Cloud Queue represents a queue model
while the Service Bus both supports a queue and a topic/subscription model.
3.2.2.3 Message Systems Pros and Cons summarizes the pros and cons of the
di�erent message systems. In section 6.1 an execution model will be chosen
that requires messaging. In 6.1.1 Choosing a Messaging system the choice of
messaging system will be made based on the descriptions in this subsection.

3.2.2.1 Cloud Queue and the Service Bus Queue

The Cloud Queue and the Service Bus Queue, which is a part of the Service
Bus, both implement a queue and are therefore somewhat similar. They both
follow the basic concept of a message being added to the tail of the queue
and dequeued in the head of the queue. There are however implementation
di�erences. The Cloud Queue is part of the Azure Storage and have strength in
data storage while the Service Bus Queue is facilitated by the Service Bus which
supplies more advanced functionality. Mizonov and Manheim[33] describes the
di�erences between the two queue implementations. The table 3.1 highlights
some of the important di�erences between the implementations.

3.2.2.2 Service Bus Topics/Subscriptions

The Service Bus Topics/Subscription is an implementation of the publish-subscribe
pattern. Publish-subscribe is a message pattern where message senders, called
publishers, do not know the intended receiver(s) of a message. The messages

3.2 Windows Azure 47

Comparison
Criteria

Windows Azure Queues Service Bus Queues

Ordering
Guarantee

No Yes - First-In-First-Out
(FIFO)

Delivery
guarantee

At-Least-Once At-Least-Once and At-Most-
Once

Message
groups

No Yes (through the use of mes-
saging sessions)

Maximum
message size

64 KB 256 KB

Maximum
queue size

100 TB 1, 2, 3, 4 or 5 GB

Maximum
message
Time To
Live

7 days Unlimited

Maximum
number of
queues

Unlimited 10,000

Average
latency

10 ms 100 ms

Maximum
throughput

Up to 2,000 messages per sec-
ond

Up to 2,000 messages per sec-
ond

Table 3.1: Queue Capabilities

are sent to an intermediary node at which receivers (also called subscribers)
have subscribed to messages of interest. Messages of interest are forwarded to
the individual subscribers. The sender and receiver have no direct relationship
and this gives a loose coupling. In the Service Bus subscribers subscribe to a
topic and optionally adding a �lter. The �lter can be based on several standard
properties of the messages or the message content if it is XML serialized. Like
the Service Bus Queue the Service Bus Topics support At-Least-Once, At-Most-
Once and deadlettering. Likewise the topics have similar restrictions in size and
capacity.

3.2.2.3 Message Systems Pros and Cons

Below the pros and cons of the di�erent message systems are summarized.

Direct Connection

48 Technology Analysis

+ Independent of cloud

+ Unlimited message size

+ Low latency

- N Worker Roles and M Web Roles require N*M connections

- Does not specify a speci�c message standard

Azure Queue

+ Good for large volume of messages

+ Only 10 ms of latency

- Message size only up to 64 KB

- If messages are intended for a speci�c instance, multiple queues are
needed to prevent receivers from stealing each others messages be-
cause it is impossible to know who the intended receiver is before
reading the message.

- No ordering guarantee

Service Bus Queue

+ FIFO ordering

+ Message size up to 254 KB

- If messages are intended for a speci�c instance, multiple queues are
needed to prevent receivers from stealing each others messages be-
cause it is impossible to know who the intended receiver is before
reading the message.

- 100 ms of latency

Service Bus Topic/Subscription

+ FIFO ordering

+ Message size up to 254KB

+ Publish/subscription pattern allows multiple receivers and senders

+ Allows �ltering via SQL messages

+ Allows fast �ltering on CorrelationId

- 100 ms of latency

3.2 Windows Azure 49

3.2.3 Data Management

Data stored on a virtual hard drive on a role is neither persistent nor durable.
Furthermore the idea of storing data on individual clients complicates horizontal
scaling. To accommodate this Windows Azure introduces a persistent storage
outside a role which is available to all running instances of an application. In
this central storage three types of storage exist; Blob, Azure Table and Azure
SQL.

3.2.3.1 Blob

Blob is an acronym for Binary Large OBject. Blobs are used for storing individ-
ual data items. A single blob will typically contain a document, picture, audio
�le or a video. A Blob is stored in a Blob container tied to a storage account.
The Blob container is similar to a directory in normal computing terms. There
are several features available for managing Blobs. Blobs can be accessed via a
RESTful Web service interface, it can be publicly exposed as read only, snap-
shots of a Blob can be made for revision control and the Blob can be locked so
that it only accessible by a single application[39].

3.2.3.2 Azure Table

Azure Table Storage is a key value storage for rows such as orders news feeds and
other data that does not require server side computations such joins, sorts, views,
and stored procedures. The data is stored in rows which, unlike a relational
database table, can contain a varying set of properties[39]. In fact the Azure
Table Storage is a NoSQL database[12]. Similar to Blob storage, access can be
obtained via a RESTful Web service interface.

3.2.3.3 Azure SQL Database

Azure SQL Database is a relational database available in the Azure Storage
solution. Azure SQL supports a subset of the Transact-SQL11 for SQL Server
2008 and thus have an tabular data stream (TDS)12 interface similar to the
one of SQL Server 2008. Behind this interface there are notably di�erences.
SQL Azure servers and databases are virtual objects and do not correspond

11: Transact-SQL is a language that contains commands used to administer instances of
SQL Server including creating and managing all objects in an instance of SQL Server, and
inserting, retrieving, modifying, and deleting all data in tables. Applications can communicate
with an instance of SQL Server by sending Transact-SQL statements to the server.

12TDS is SQL Server native communication language.

50 Technology Analysis

to physical servers or databases and a database is not a single database but
rather a cluster consisting of three database nodes in the same data center[2].
Requests made from an application are initially handled by the SQL Azure
Gateway Layer. The Gateway Layer has two functions. First it acts as a
proxy, �nding the database nodes tied to the storage account. Secondly it
functions as a statefull �rewall which understands TDS. As a statefull �rewall is
checks the TDS packages and only forward the packages to the database nodes
if they meet requirements such as encryption, username, password, order, etc.
Valid requests are sent to the primary database node which forwards it to the
secondary nodes as shown in �gure 3.4. A response is only sent when at least
one of the secondary nodes have also processed the request[2]. SQL supports
scaling out by introducing federations. In practice this means that tables are
divided onto multiple instances based on the primary key of a table. E.g all
touples with primary keys lower than 1000000 are stored on federation member
one, all touples with primary keys larger than 1000000 and lower than 2000000
are stored on federation member two etc.

Figure 3.4: Flow diagram showing how a SQL transaction is processed in the
system.

3.2.3.4 Azure Table and SQL Azure Compared

The Azure Storage is often depicted as a single uniform data storage. At a
lower level of abstraction this is not the case as the di�erent types of storage
have di�erent characteristics. The Blob and Table both assure BASE (Basi-
cally Available, Soft state, Eventually consistent). �Windows Azure Storage:
A Highly Available Cloud Storage Service with Strong Consistency� [13] sug-

3.2 Windows Azure 51

Comparison Cri-
teria

Azure Table SQL Azure

Geographical repli-
cation of data

Yes No

Table Schema Relaxed (Each row in a
table can have di�erent
properties)

Managed (Fixed schema
for each table)

Relations between
data

No Yes (using foreign keys)

Server side process-
ing

No (Only supports
CRUD)

Yes (Supports CRUD +
joins, views, etc.)

Maximum data size 100TB per table 150GB per database
Charge Storage size + transac-

tions
Storage size

Table 3.2: Azure storage comparison

gests that Azure Table contains elements of both CP and AP, however from
the cloud customers perspective it is the AP which is o�ered. The SQL Azure
database guarantee the more traditional ACID (Atomicity, Consistency, Isola-
tion, Durability) which is equivalent of CP in Brewers theorem. Azure Tables
and Azure SQL database are overlapping meaning that a solution could use
either for data storage. The choice between the two are among other things the
choice between Availability and Consistency[34]. In reality both choices provide
strong consistency and an impressive availability, therefore other characteristics
are important in the choice of storage solution. Table 3.2 shows some of the
important di�erences between the two storage types.
The two storage types address two di�erent needs. One is massively scalable
but with limited data management while the other has more limited scalability
but excels in data management. In fact the two are complimentary and many
solutions use both Azure Table and SQL Azure. It is understand that the two
are not mutually exclusive and that part of a data storage could be kept in
Azure Table and part of the data storage could be kept in SQL Azure. In 6.3.1
Choosing Storage Type the choice of storage type will be made based on needs
highlighted by the design as well as the di�erences described here.

3.2.4 Risk Mitigation in Windows Azure

It is important to understand how the cloud provider mitigates risks. Not only
to convince cloud consumers that moving their solution to the cloud is a sound
choice, but also to guarantee to the cloud users that their accounts and data
are handled in a secure and satisfactory manner. This subsection describes how

52 Technology Analysis

the Azure platform mitigates risks identi�ed in 3.1.3 Security Risks in Cloud
Computing.

3.2.4.1 Geographical Data Location

Windows Azure allows the cloud consumer to choose the geographical location
of his data storage as well as his running instances. The consumer has the choice
of eight geographical locations; four in north America, one in Western Europe,
one in Northern Europe and two in Asia. This mitigates the Geographical Data
Location risk introduced in 3.1.3.2 Geographical Data Location. However this
can still be unacceptable for some consumers. Sometimes the consumer may
be required to store the data within a speci�c country (e.g. China) and other
times storing data in the cloud will be unacceptable due to legislation or o�cial
demands. The only way to solve such demands would be to host the services
in-house, this will be discussed in 7.3 A RelayService Without Cloud.

3.2.4.2 Data Segregation

In 3.1.3.3 Data Segregation the data segregation risk was identi�ed. The Mi-
crosoft Storage does not apply encryption on a per consumer basis. However
they do allow the individual consumers to encrypt data themselves. This is
the primary mechanism provided by the Azure platform to mitigate the Data
Segregation risk.

3.2.4.3 Uptime

The Uptime risk described in 3.1.3.4 Uptime is mitigated by having both local
and o� site redundancy available. Microsoft o�ers a 99.95% monthly uptime
Service Level Agreement (SLA) if the consumer have geographically separated
redundancy. The di�erent components of the Azure platform have been inves-
tigated on the background of the Brewers CAP theorem. The conclusion of this
is that it is theoretically possible to ensure Availability and Partition-Tolerance,
but it is di�cult in practice. The main issue is that while the instances are
separated they still rely on the same platform and are still vulnerable to total
Azure breakdowns. The Azure platform has become more mature and stable but
consumers and users exist whom will require a better uptime than promised in
the SLA. The primary way to achieve such an uptime is still to have redundant
instances hosted a place that is tolerant to Azure failures.

3.3 Web Services 53

3.3 Web Services

The previous sections discussed important concepts in regards to hosting the
RelayService. This section will discuss how the StatusInterface can be realized
on the RelayService. The interface o�er a service via Web communication and
this section will give an overview of the two Web service categories. Based on
this overview a category is chosen for realizing the StatusInterface and the Web
service technology will be described in depth. Security risks related to Web
services will be identi�ed and it will be discussed how the chosen Web service
category can mitigate these risks.

The W3C13 de�nition of a Web service is from 2004 and is tightly coupled
with speci�c standards for SOAP based Web services[24]. This de�nition must
be relaxed to include the modern RESTful Web services. Below the relaxed
de�nition is given.

Definition 3.1 A Web service is a software system designed to support in-
teroperable machine-to-machine interaction over a network typically conveyed
using HTTP.

Web services fall into two categories.

1. SOAP based Web services

2. RESTful Web services.

In this section the two Web service types and the Windows Communication
Foundation framework will be described.

3.3.1 SOAP

SOAP was developed for Microsoft in 1998, and is currently being maintained
by the XML Protocol Working Group of the World Wide Web Consortium. In
2003 SOAP version 1.2 became a W3C recommendation. Later it became the
underlying layer of WSDL and UDDI.

Web Services Description Language (WSDL) is also XML-based, and describes
functionality o�ered by a Web Service[35, p. 148]. A WSDL-�le is machine-
readable and describes how to call the Web Service, which parameters it takes
and what the service returns.

13The World Wide Web Consortium http://www.w3.org/

54 Technology Analysis

When talking about SOAP and Web Services, there are many other speci�-
cations than just SOAP and WSDL. Collectively, all these speci�cations are
referred to as WS-*. The motivation of all these di�erent speci�cation, comes
from many di�erent requirements from di�erent groups. For example the WS-
Security that apply security for Web services. Then there are others like WS-
MetadataExchange that allow retrieval of meta data from a Web Service end-
point. SOAP is still widely used in business to business integration, partly due
to the well developed standards which �ts most needs.

3.3.1.1 SOAP based Web Services Pros and Cons

+ Required machine readable de�nition in the WSDL.

+ Can use di�erent transport layer protocols.

+ Supports asynchronous and synchronous messaging.

+ WS-* includes messaging, transaction, compensation and security stan-
dards.

- Overhead introduced by the use of XML.

- Complex standards require use of framework.

3.3.2 REST

REpresentational State Transfer (REST) is a resource oriented architecture for
communicating, for example over the Internet. It was introduced in Ph.d Roy
Fieldings dissertation from 2000[14]. REST is a set of constraints that together
form an architectural pattern. For a service to become RESTful it has to con-
form to the constraints; Statelessness, Addressability, Uniform Interface, Con-
nectedness, Layered System and Cache. These constraints will be discussed in
depth in section 3.4. REST was derived by analysing the existing World Wide
Web architecture. Therefore the combination of REST and the HTTP protocol
appears seamless. However the two are mutually independent and REST as an
architectural pattern is not bound to any speci�c technology or protocol. A
RESTful Web service however is the combination of REST architecture applied
to Web services using Web standards like HTTP[42]. In other words RESTful
Web services is a single application of REST. Because of the seamless integra-
tion with HTTP and the relatively simple architectural constraints RESTful
Web services are regarded as simple and lightweight when compared to SOAP
based Web services.

3.3 Web Services 55

Since its introduction the REST architectural pattern has seen little change and
it remains as described in Roy Fieldings dissertation. The concept of RESTful
Web services has also remained unchanged as it is REST architecture integrated
with Web standards. Until recently the only development from a software per-
spective has been the emergence of frameworks supporting REST. Where SOAP
based Web services used to be the preferred choice, companies are now turn-
ing towards REST. Large Web based companies like Amazon14, Facebook15

and Google16 have mature REST APIs and the trend goes towards integrating
back end business to business via RESTful Web services. To cater for this the
JBoss community17 promoted the development of a new series of standards, the
REST-*.

3.3.2.1 REST-*

REST-* was publically announced at JBoss World 2009. The Website dedicated
to the project gives the following description[38].

REST-* is an open source project dedicated to bringing the architec-
ture of the Web to common patterns in middleware technology.REST
has a the potential to re-de�ne how application developers inter-
act with traditional middleware services. The REST-* community
aims to re-examine which of these traditional services �ts within
the REST model by de�ning new standards, guidelines, and speci-
�cations. Where appropriate, any end product will be published at
IETF.

The four areas REST-* addresses are Work�ow/Business Process Management,
Messaging, Compensations and Transactions. These are key components in de-
signing more complex business to business interactions. The concept of transac-
tions is actually a REST anti pattern as distributed transaction models require
server side session context, and the proposed standards have little to do with the
original REST architecture. Roy Fielding wrote this response to the REST-*
standards

Bill, if you want people to have an open mind about what you are
trying to do, then the respectful thing would be to remove REST
from the name of your site.

14http://docs.amazonWebservices.com/AmazonS3/latest/dev/Welcome.html.
15http://developers.facebook.com/docs/reference/api/.
16https://developers.google.com/custom-search/docs/dev_guide.
17http://www.jboss.org/

56 Technology Analysis

Quite frankly, this is the single dumbest attempt at one-sided "stan-
dardization" of anti-REST architecture that I have ever seen. It
even manages to one-up the previous all-time-idiocy of IBM when
they renamed their CORBA toolkit "Web Services" in a deliberate
attempt to confuse customers into thinking they had something to
do with the Web.

Distributed transactions are an architectural component of non-
REST interaction. Message queues are a common integration tech-
nique for non-REST architectures. To claim that either one is a
component of "Pragmatic REST" is the equivalent of putting a gi-
ant Red Dunce Hat on your head and then parading around as if it
were the latest fashion statement.

The idea that the community would welcome such a pack of market-
ing morons as the standards-bearers of REST is simply ridiculous.
Just close the stupid site down.

Sincerely,

Roy T. Fielding [15]

Fielding's wish came through. Although the REST-* site is still running the
project is almost dead. The last update to the proposed standards were in March
2010 and no further submission have been made since then. The implementation
of the REST-* standard also limits itself to the HornetQ (a JBoss product) which
implements the REST-* Messaging standard. Although the REST-* standards
has little relation with the original REST principles, it did attempt to address
important shortcomings as non-repudiation in RESTful Web services. These
shortcomings have yet to be solved and limits the REST application in some
business areas where transaction, compensation and messaging are essential.

3.3.2.2 RESTful Web services Pros and Cons

+ Architectural style, not a standard.

+ Simple due to good integration with the existing HTTP protocol and other
Web standards.

+ Not bound to XML so overhead may be reduced.

+ Good interfaces for exposing data.

+ Good scalability. Inherited scalability from Web standards.

- No standard for implementing transactions.

3.3 Web Services 57

- No required standard for describing a RESTful services.

- Due to statelessness constraint, state must be kept at client side, which
requires fat clients.

- HTTP which RESTful Web services are based on do not per default sup-
port asynchronous communication.

3.3.3 Windows Communication Foundation

Windows Communication Foundation (WCF) is a set of API's in the .Net frame-
work used for designing, building applications under SOA(Service-Oriented Ar-
chitecture). WCF supports both advanced RESTful and SOAP based Web
services and includes implementation of several WS-* protocols such as WS-
security.

Communication is done via synchronous or asynchronous messages containing
data that are send between endpoints. Endpoints contain an URI address and a
binding property, where data can be strings, bytestreams and XML. An example
could be a client of a service requesting data from that service. Fx REST will
do it by sending out a GET request, and data would be returned. Although
it is platform independent on the client-side, the server side will be bound to
Microsoft[36].

3.3.3.1 Windows Communication Foundation Pros and Cons

+ Client-side is platform independent

+ Flexible (Supports both SOAP and REST)

+ Switch protocols without programming

+ Supports both synchronous and asynchronous communication

- Service relies on the WCF framework and requires that the server supports
hosting these services. The .Net compact framework does only provides a
subset of WCF. This limited WCF framework cannot host services.

3.3.4 Choice of Web Service technology

In this section the Web service technology for exposing the RemoteAPI, the
Browser Interface, and the StatusInterface on the RelayService will be chosen.
Thereby taking the �rst step in ful�lling MH2 and MH3.

58 Technology Analysis

The optimal choice for Web services technology would be WCF as the combi-
nation with the Azure Service Bus enables publishing the Web service, so it is
accessible when a public IP address is not present. This solution is described in
2.1.4 Azure Service Bus andWindows Communication Foundation and the prob-
lem with this solution is that only a subset of the WCF framework is supported
in the .Net Compact framework18 and therefore it cannot host services. This
results in a loss of design consistency between the 2250 and the RelayService.
As a result WCF is disregarded.

Therefore the choice stands between a SOAP based Web service and a REST-
ful Web service. The SOAP based Web services strengths lie in the WSDL
description, the many standards and the good frameworks for stub generation.
In contrast the RESTful Web services excel with the its simplicity, scalability
and seamless integration with the HTTP standard. The existing RemoteAPI
interface is a RESTful Web services and the functional requirement MH2 spec-
i�es that we must ensure backward compatibility. Therefore the RemoteAPI
interface must be present as a RESTful interface and the logical choice is to also
expose the StatusInterface using the same technology.

3.4 REST in depth

This section describes the REST constraints de�ned in Roy Fieldings disser-
tation[14] and �Principled design of the modern Web architecture� [16]. Anti-
patterns are patterns that may be commonly used but are ine�ective and/or
counter productive in practice19. Examples of REST anti patterns are included
in this section to illustrate the e�ects and document their existence. It is worth
noting that if a constraint is broken the application is no longer considered as
RESTful.

3.4.1 Client Server

Client and server are separated by a uniform interface. The interface gives a
loose coupling between the client and the server. The client deals with user
interface and session context while the server handles data storage and other
back end functions.

18This is due to size restrictions of the ROM on an embedded device
19Anti-pattern Wikipedia http://en.wikipedia.org/wiki/Anti-pattern

3.4 REST in depth 59

3.4.2 Addressability

All resources must be uniquely addressable. The address of the resource must
reasonably describe the concept of a resource and can in some cases also describe
its relation to other resources. In the World Wide Web URI is used for address-
ing and this standard is therefore also used by RESTful Web services. This
constraint allows us to directly address a resource and use it as an entry point.
Furthermore it supports the HTTP caching as it exposes the resources individu-
ally. The URI standard has a hierarchical structure and a RESTful Web services
should use this to make meaningful addresses and give information about the
resource structure.

3.4.2.1 Addressability Anti-pattern

Web sites that do not uniquely identify relevant resources through URI are
violating the addressability constraint of REST. An example of such a violation
is from the Web application of the Danish State Railways (DSB). One of the
features of the Web application is to search for journeys and buy tickets. After
performing a search we reach the page illustrated in �gure 3.5. The URI for

Figure 3.5: Search result page violating the addressability constraints

the result page does not appear to re�ect the search and performing additional
searches with varying parameters reveal that the URI remain the same. The

60 Technology Analysis

conclusion is that the search result as a resource is not addressable and a search
result cannot be accessed directly via a link.

3.4.3 Statelessness

Communication between client and server must be stateless. Each request from
the client must be self contained so that all information needed to understand
the request is contained in the request itself. Server side communication context
must not be used to process a request and therefore all session state is kept on
the client side. In other words no session or communication context may be
stored on the server. However resources exposed and other data on the server
can be stateful without violating this constraint.

Fielding argues that

Scalability is improved because not having to store state between
requests allows the server component to quickly free resources, and
further simpli�es implementation because the server doesn't have to
manage resource usage across requests. [14, p.79]

In regards to cloud computing and horizontal scaling it gives a further advan-
tage as it is irrelevant what server instance a request is delegated to. This is
important in the Azure platform as the request is delegated by the load balancer
as described in 3.2.1 Execution Models.

3.4.3.1 Statelessness Anti-pattern

A large number of Web sites use cookies and sessions to maintain a session
state. This requires additional server side resources for maintaining the session
state and is a violation of the statelessness constraint in REST. Resources are
freed by performing garbage collection on the stored session after a short idle
time. The Web application from DSB discussed in 3.4.2.1 contains an example
of statelessness anti-pattern. If a user performs a search and tries re-access the
results after approximately 20 minutes he or she will be met with the Web page
illustrated in �gure 3.6. It can be di�cult to say whether the statelessness anti-
pattern is present because the addressability anti-pattern is present or if the
addressability anti-pattern is unimportant because of the stateless anti-pattern.
It is however clear that their presence result in bad usability for the user.

3.4 REST in depth 61

Figure 3.6: Search result page violating the statelessness constraint

3.4.4 Uniform Interface

The REST architecture style applies the software engineering concept of gener-
ality and emphasizes uniform interfaces between components. The standardized
way of interacting with resources gives a low barrier and decouples the interface
from the actual service it provides. The uniform interface requires that informa-
tion is transferred in a standardized way and it can therefore not be designed for
a speci�c application's needs. The following constraints govern the development
of the uniform interface.

Identi�cation of resources
Individual resources are identi�ed in requests. The representation pre-
sented to the requester is conceptually separate from the actual resource.
For example a resource will often be stored in a database while the repre-
sentation can be in the XML or JSON20 format.

Manipulation of resources through representations
The representation of a resource, including the meta data attached, in-
cludes the information needed to modify or delete the resource.

Self descriptive messages
Messages must include descriptive information on how to process the mes-
sage itself. For example a HTTP response will include a content type �eld.
Responses must also explicitly or implicitly indicate their cacheability

Hypermedia as the engine of application state
Resources act as entry points to the application. Further transitions are
dynamically identi�ed within the hypermedia by the server. Fx if a work
�ow consist of interaction with a series of resources the client only knows
the entry point resources and is thereafter guided by the server which

20JavaScript Object Notation Wikipedia http://en.wikipedia.org/wiki/JSON.

62 Technology Analysis

will respond with a link to the next resource. This is also evident in the
connectedness requirement.

RESTful Web services follow the Create Read Update Delete (CRUD) interface,
mapping to the HTTP methods POST, GET, PUT and DELETE. The concepts
of safety21 and idempotence22 are used to classify and distinguish between meth-
ods. A RESTful Web service should be designed so that GET is safe. Changes
should not be requested via the GET method. PUT and DELETE methods
must be idempotent and POST is neither safe nor idempotent[17, Section 9.1.2].

3.4.4.1 Uniform Interface Anti-pattern

DSB provides us with an example of the uniform interface anti-pattern in their
journey search interface. Going through the HTML reveals a sematic misuse of
the HTTP methods as seen in �gure 3.7. POST is used for the search function
but the function is safe and therefore GET should be used. Using POST instead
of GET forces the browsers to invalidate their cached representations and will
typically present usability issues for the user when navigating backwards and
forwards.

Figure 3.7: HTML source showing the semantic violation

21A safe method is a method where changes, if any, are not requested by the invoker. The
invoker cannot be held accountable for any side e�ects as "he" did not request them.
Example of Safe method: Performing a Google search can be considered safe as you are simply
requesting data and not requesting any changes. Google may log your search and therefore a
change does occur, but as it was not requested the search can still be considered safe.

22An idempotent method is a method where applying the method one or more times with the
same parameters will yield the same result. By de�nition a safe method must be idempotent.
Example of Idempotent method: Updating your contact details on a Website can be considered
idempotent as doing so one or more times will yield the same result.

3.4 REST in depth 63

3.4.5 Connectedness

Relationships between resources should be described as transitions in hyperme-
dia. In RESTful Web services relationships that are navigable forward should
be described with links.

3.4.6 Layered System

In REST a series of layers can exist between the client and the server. The client
cannot see beyond the initial layer and does not communicate directly with the
ultimate receiver. The intermediary layers/components can actively transform
message content as they are self-descriptive and their semantics visible to these
components. The layered system can be used to encapsulate legacy services and
clients and can support scalability by enabling load balancing and caching.

3.4.7 Cache

The cache constraint is added to improve network e�ciency. Responses must
either implicitly or explicitly declare whether they are cacheable. The client can
then optionally reuse the cacheable response for identical requests. Likewise the
intermediary components, as described in the previous subsection, can choose
to reply with a cached response. HTTP/1.1 speci�es three headers in a HTTP
response for declaring cacheability Cache-Control, ETag and Vary[17].

Cache-Control
The Cache-Control header can be used to specify a time to live which
de�nes how long a response is valid. The header can also declare that the
response is not cacheable

ETag
An ETag is a unique Id for this version of a resource at a speci�c URI. If
used the server will include an ETag in every response and the client can
choose to include an ETag header in a HTTP conditional get request. If
the clients ETag matches the ETag of the response, the server will respond
with the 304 (NOT MODIFIED) status code.

Vary
Multiple representation of a resource can exist on the same URI. For ex-
ample content negotiation can be used to specify whether the response
should be in XML or JSON format. The ETag cannot make this distinc-
tion. The Vary header �eld allows a server to de�ne which other header
�elds will cause the response to vary.

64 Technology Analysis

The conditional GET can also be used by setting a If-Modi�ed-Since header. If
the response to the given request hasn't changed, the server will respond with
the 304 status code.

3.4.8 Web Service Security

To support machine to machine interaction Web services expose standardized
interfaces. In SOAP the WSDL is self describing and provides all information
needed to communicate with a service, in REST the entry points along with the
self descriptive messages likewise provide information needed to interact with
a resource. This makes Web services more vulnerable to attacks when made
publicly available. The threats for a Web service can be grouped into the four
categories Unauthorized access, Unauthorized alteration of message, Man in the
Middle and Denial of Service Attacks[35].

Unauthorized access
A service is available to an unauthorized participant. Information within
a message is viewable by a unintended or unauthorized participant.

Unauthorized alteration of message
An attacker alters a message by adding, removing or modifying the con-
tent. The receiver mistakenly accepts the content as being from the orig-
inator. In a broad context this category also includes replay attacks and
session jacking. This threat is often present in combination with the Man
in the Middle threat.

Man in the Middle
An attacker compromises an intermediary node in the layered architec-
ture and positions himself between the consumer and provider and poses
as respectively provider and consumer. The attacker can control the ex-
change of messages and potentially read and/or modify the content of the
messages23.

Denial of Service Attacks
The objective of this attack is to make the service unavailable to legitimate
users, by using all the systems resources. The system is made unavailable
by �ooding it with messages from an attacker. Signed or encrypted mes-
sages are especially e�ective as they require additional processing.

The general security mechanisms that minimizes the risk are described below.
These descriptions covers the general concepts. The actual implementation

23An example of a Man in the Middle attack is a routing detour which by modifying headers
directs sensitive messages to an outside location.

3.4 REST in depth 65

varies depending on platform, framework and architecture.

3.4.8.1 Authentication

In distributed systems authentication is the mechanism by which clients and
service prove that they are acting on the behalf of a speci�c user or system.
Authentication can be one directional where the clients identity is veri�ed by
the provider or bi-directional where both client and provider prove their identity.
Proof of identity methods can range from supplying username and password to
digital certi�cates24.

3.4.8.2 Authorization

The authorization mechanism provides access control so that only authentic
clients obtains access to protected resources and services. The access control is
de�ned by an authorization policy which typically de�nes permissions on the
basis of roles, groups or privileges. Roles groups and privileges are determined
based on identity which is established via authentication, thus authorization is
dependent on authentication.

3.4.8.3 Integrity

Messages are sent over computer networks and can potentially be modi�ed as
mentioned above. The integrity mechanism ensures that the content is original
and has not been modi�ed. In other words that the data received is the same as
the data sent. Integrity can be achieved by using digital signature to validate
the content of a message. The predominant way of doing this is by using hashing
algorithms and digitally signed digest codes.

3.4.8.4 Con�dentiality

Con�dentiality is the ability to ensure that data is only available to those who
have the proper authorization. When messages are sent via untrusted sources
con�dentiality is ensured by applying encryption to the message. This can be
done at a network layer where point to point encryption can be enforced or at
an application layer where messages or parts of messages can be encrypted.

24See http://en.wikipedia.org/wiki/Public_key_certi�cate for explanation of this concept

66 Technology Analysis

3.4.9 REST Security

REST itself does not deal with security standards and protocols. The seamless
combination of REST and Web standards found in RESTful Web services give
a very simple way to mitigate several of the risks discussed above. RESTful
Web services can use the HyperText Transfer Protocol Secure (HTTPS) for
encryption, HTTPS is a combination of HTTP and SSL/TLS. This ensures
server authentication and con�dentiality. Encryption happens on a transport
layer level and therefore security is guaranteed on a transport level and not on
an application level. This is one of the main conceptual di�erences between
security in SOAP based Web services and RESTful Web services25. Combin-
ing encryption with the Transport Layer Protocol TCP ensures Integrity. The
HTTP Access Authentication speci�cation[20] can be used for authentication,
but other standards like openId can be used as well. It is evident that the given
con�dentiality can be dangerous as it exposes authentication data to everyone.

It is important to note that encrypting on a transport layer makes it impossible
for intermediary nodes to read the requests and provide cached responses.

3.5 Chapter Summary

In this chapter the bene�ts of cloud computing was discussed. The di�erent cat-
egories were introduced and other relevant concepts were discussed. Windows
Azure was chosen as PaaS provider and the key concepts of Windows Azure
were discussed. This discussion will later serve as the foundation for the choices
regarding design and implementation in Windows Azure. The concept of Web
services and the two types SOAP based and RESTful Web services were intro-
duced. It was chosen that the StatusInterface should be RESTful and the REST
architecture was discussed in depth to understand the design requirements. This
understanding shall later be used to validate that the design complies with the
REST constraints. Security risks in cloud computing as well as for Web ser-
vices were discussed and it was discussed how respectively Windows Azure and
RESTful Web services mitigates these risks.

25WS-Security allows encryption on an application layer, which allows endpoint to endpoint
encryption e�ectively preventing all intermediary nodes from reading encrypted content

Chapter 4

Components and
Communication

The aim of the this chapter is to describe the components in the design, their
interfaces and specify the data �ow between these components. The overall
data �ow will be described and it will be speci�ed how individual devices can
be addressed thereby ful�lling one of the REST constraints. Three di�erent
communication strategies for interaction between RelayClient and RelayService
will be described and their pros and cons listed. One communication strategy
will be selected based on the pros and cons and used as basis for the protocol
between RelayService and RelayClient. Requirements for the protocol will be
de�ned and the protocol speci�ed using a protocol state machine diagram. The
message types will be identi�ed and the message structure described.

4.1 Component Design

There are four major components in this solution all introduced in section 2.6.
The 2250WebServer, the RelayClient (detailed in chapter 5), the RelayService
(detailed in chapter 6), and the Customer as illustrated in �gure 4.1. The
2250WebServer is an existing component and as mentioned previously it pro-
vides the RemoteAPI and the Browser interfaces. The MH2 requirement spec-
i�es that the RelayService should provide the same interfaces as the 2250Web-
Server. Furthermore the functional requirements dictate that the RelayService
o�er the StatusInterface, which realizes the functionality described in MH3,

68 Components and Communication

MH4, and NH1. These three interfaces will be used by the Customer. The
RelayClient must use the RemoteAPI and Browser interfaces on the 2250Web-
Server as it forwards HTTP requests to the individual interfaces. On a high level
of abstraction the RelayClient must o�er an interface (ForwardHttp) which for-
wards HTTP requests to the 2250WebServer and the RelayService must provide
an interface used by the RelayClient to authenticate (2250Authenticate) real-
izing requirement MH6. The actual design may vary from the representation
modelled here. The ForwardHttp and 2250Authenticate interfaces and the com-
munication between RelayClient and RelayService will be introduced in section
4.2 and detailed in section 4.3 where the actual design is chosen.

Figure 4.1: Component diagram showing the overall components in the solu-
tion and the interfaces the provide and consume.

4.2 Overall Communication

Figure 4.1 shows the interfaces and the uses. This combined with the Send
remote control command use case provide the basis for describing the commu-
nication �ow when sending remote control commands.

Following the use case the communication starts with the Customer sending a
remote control request to the RelayService. A remote control request is any
request for either the RemoteAPI or the Browser interface. These are Web
applications and the interfaces communicate via HTTP messages, therefore re-
mote control request and responses are HTTP messages. From the Customers
point of view the interfaces o�ered by the RelayService must be identical to
the RemoteAPI and the Browser interface o�ered by the 2250WebServer, as
de�ned in MH2. The implication of this is that the RelayService must appear
to be a 2250WebServer from the Customers viewpoint. This design quali�es
RelayService as a reverse proxy1.

1A Reverse proxy is a type of proxy server which acts as an intermediary for servers and
retrieves resources from these given servers on the behalf on clients

4.2 Overall Communication 69

Figure 4.2: Sequence diagram showing the overall control and data �ow when
a request is relayed.

After the RelayService processes the request it forwards it to the RelayClient.
How this is done will be determined in section 4.3. When the RelayClient re-
ceives the request it processes it and forwards it to the 2250WebServer. The
2250WebServer returns a HTTP response exactly as it would if it was commu-
nicating directly with the Customer. The RelayClient processes this response
and forwards it to the RelayService which processes the response and forwards
the modi�ed version to the Customer.

4.2.1 Addressable Devices

Following requirement NH4, multiple devices may be reachable via the Relay-
Service . It acts as a router for the remote control requests and therefore it
is necessary to distinguish what device the request is ultimately intended for

70 Components and Communication

so that it can forward the HTTP request to the correct RelayClient as seen in
�gure 4.2. The MH2 requirement dictates that the HTTP content must not
contain additional information and as the HTTP content does not address the
device the value identifying the device must be present in the HTTP header.
One solution is to make each device uniquely addressable using the URI stan-
dard. If the device is regarded as a resource then making it uniquely addressable
ful�ls the Addressable REST constraint speci�ed in 3.4.2. This design will be
used so the RemoteAPI remains RESTful.

The URI standard is transformed and used in a HTTP request by splitting the
identi�er into a host part and a path part. This is also apparent in �gure 4.3
where the address http://remoteapi.relayservice.com/path is split into the host
"remoteapi.relayservice.com" and the path part "/path".
If the design chosen reference the device in the path for example
http://remoteapi.RelayService.com/device/<deviceId> it will cause a path mis-
match between a given resource on the reverse proxy and one at the 2250Web-
Server. This would require that the path is modi�ed by extracting the device
identi�er and altering the path to the one matching the given resource on the
2250WebServer. This also requires that the HTTP response content is modi�ed
so that all relative as well as local absolute links will reference the resources on
the reverse proxy. This requires inherent knowledge about the the content of
the HTTP messages and how links appear, so that the content can be parsed
and links modi�ed. Instead of this it is chosen to maintain the same rela-

Figure 4.3: This �gure shows a HTTP request sent to http://remoteapi.

RelayService.com/path. The URI is split into the Path param-
eter in the HTTP request line(1) and the Host header �eld(2).

tive path on the reverse proxy and the 2250WebServer. This means that the
resource <device>/index.html on a device will also be addressed <RelaySer-
vice>/index.html. The implication of this is that the device will be present as
a root resource on the RelayService. This will be achieved by having the unique
identi�er for the device as a sub domain in the address. The result of this design
choice will be the given address e.g. device-123445567.RelayService.com/path.
A further implication of this choice is that all relative links in the HTTP re-
sponse will have a correct reference. As the RemoteAPI and Browser interface

http://remoteapi.RelayService.com/path
http://remoteapi.RelayService.com/path

4.3 Communication between RelayClient and RelayService 71

do not contain any absolute links, it is unnecessary to modify the content of the
HTTP responses.

Take a moment to appreciate how simple a solution this is to an otherwise
complex problem.

4.3 Communication between RelayClient and Re-

layService

Previously in the project the communication between the RelayClient and Re-
layService has been unspeci�ed and only considered on an abstract level. This
section will establish the overall communication �ow between the two. Three
di�erent strategies which are technically possible will be considered, each with
its own strengths and weaknesses. When evaluating the strategies two of the
criteria are latency, the amount of time a customer has to wait for a command to
be processed, and overhead, the amount of extra tra�c incurred by this strategy.

In all the proposed strategies it will be the RelayClient who initiates contact to
the RelayService. This is because incoming connections cannot always be made
to the 2250, which is the core problem in this project.

4.3.1 Polling

One of the simplest solutions to the core problem is a poll strategy. Whenever
the customer wants to remote control the device he will send requests to the
RelayService. At regular intervals the RelayClient will poll requests from the
RelayService and afterwards push responses to the RelayService. This commu-
nication �ow is further detailed in �gure 4.4. One of the strengths with this
strategy is the loose coupling between the RelayClient and the RelayService.
The RelayService has a well de�ned interface and it is possible to substitute the
RelayService as long as this interface is realized. This strategy ful�ls the REST
Statelessness constraint and it thereby minimizes the load on RelayService al-
lowing it to handle more RelayClients[4].

To minimize the latency the polling frequency must be high. This in turn
increases the overhead. To balance the two the rate of relay messages must be
predicted as the ideal situation is when the polling rate and the rate of messages
are identical[4]. This relay message rate is impossible to predict and it will only
be possible to minimize either latency or overhead. Minimizing one will be at
the expense of the other. Another possibility is long-polling. In long-polling
the RelayClient requests a relay request from the RelayService. If no new relay

72 Components and Communication

Figure 4.4: Sequence diagram describing the communication �ow between Re-
lay and RelayService using the poll strategy.

request is present the connection will be kept alive for a given interval waiting for
such a message. Due to the open connection long-polling share more similarities
with the Tunnel solution than the Polling solution. Below the pros and cons of
the Polling strategy are summarized.

+ Both the ForwardHTTP and the 2250Authentication interfaces are placed
on the RelayService. This moves complexity to the RelayService from the
RelayClient who will only consume services and not provide any.

+ Simple communication strategy with limited amount of messages exchange.

+ The ForwardHTTP and 2250Authentication interfaces can be RESTful,
using standard technology and a clear interface will enable a proprietary
RelayService made by customers

+ Ful�ls REST Stateless constraint

- The solution will introduce either latency or overhead, most likely a great
deal of both.

- High polling rate increases the load on the RelayService drastically.

4.3.2 Tunnel

Another solution is to establish a connection (referred to as tunnel) from the Re-
layClient to the RelayService and channel data through this tunnel2. When the

2The name comes from the similarity to SSH and VPN tunnels. In modern Web devel-
opment the proposed Tunnel solution is similar to the WebSocket protocol as it provides

4.3 Communication between RelayClient and RelayService 73

RelayClient starts it creates a connection to the RelayService. The connection
is created and kept alive whenever the RelayClient can reach the RelayService.
If the connection is closed the RelayClient will attempt to re-establish the con-
nection. Whenever the Customer wants to remote control the device he will
send requests to the RelayService. The commands are then channelled through
the Tunnel to the client application. This communication �ow is further de-
tailed in �gure 4.5. This established connection between the RelayClient and

Figure 4.5: Communication �ow between RelayClient and RelayService using
the tunnel strategy.

the RelayService allows requests to be instantly forwarded to the RelayClient,
afterwards responses are instantly sent to the RelayService and thereafter to
the Customer. On the other hand establishing a connection and keeping it alive
at all times possible induces overhead. On the server side this also violates
the REST Statelessness constraint as information for each connection must be
maintained. Keeping the connection alive and storing information on the server
increases load on the server to such a degree that the server must be scalable
in order accommodate multiple connections[4]. The pros of cons of the Tunnel
solution are summarized below.

+ Simple communication strategy with limited amount of messages exchange.

+ Messages are instantly transferred to the RelayClient thereby creating a
minimum of latency.

- Violates REST Statelessness constraint

- Connection between RelayClient and RelayService must be kept alive, this
creates overhead.

bidirectional communication between client and server.

74 Components and Communication

4.3.3 Push Noti�cation

The Push Noti�cation solution is inspired by the Push Noti�cation Services for
modern smart phones which was introduced in 2.1.3 Microsoft Push Noti�cation
Service. It can be considered a hybrid of the Poll and Tunnel solution as con-
cepts of both are present. The idea is to have a standard service that forwards
noti�cations to the remote device. For this to be possible a Push Noti�cation
Client must establish and maintain a connection to a Push Noti�cation Server.
The RelayClient can then request an endpoint on the Push Noti�cation Server
via the Push Noti�cation Client and provide this endpoint to the RelayService.
The RelayService can via this endpoint send noti�cations to the RelayClient
via the Push Noti�cation Server and Client. This allows the RelayService to
signal to the RelayClient that a remote control request has been received and
the RelayClient can fetch this request. The actual �ow of this is described in
�gure 4.6. The Push Noti�cation is a very generic solution that can be used not

Figure 4.6: Communication �ow between Client Application, RelayService,
PushNoti�cationClient, and PushNoti�cationService using the
Push Noti�cation strategy.

only by the RelayClient but also by any other application on the 2250 which
requires noti�cations from a remote third party. It does however require that a
connection is established and kept alive for noti�cations to be passed through
and the solution introduces a great deal of complexity. Below the pros and cons
of the solution are summarized.

+ Noti�cations are instantly transferred to the RelayClient thereby creating

4.3 Communication between RelayClient and RelayService 75

a minimum of latency on noti�cations.

+ Generic solution that can be used by other applications on the 2250.

+ The interface for polling and pushing the remote control requests and
responses can be standardized.

+ Possible to separate RelayService and Push Noti�cation Service so that
RelayService is situated at the customer's data center while Push Noti�-
cation Server is hosted in the cloud.

- Violates REST Stateless constraint

- After noti�cation is received the remote control request must be fetched.
This extra step increases latency.

- Complex communication strategy with more message needed to be ex-
changed.

- Complex solution which requires more programming resources to be im-
plemented.

- Noti�cation connection must be kept alive, this creates overhead.

4.3.4 Choice of Communication Strategy

The Push Noti�cation strategy provides the most generic solution and could be
used for other applications on the 2250 device. However genericness is already
o�ered in rich measure when the RelayService combined with the RelayClient
provide access to Web applications on a device. Furthermore the Push Noti�-
cation requires additional messages sent back and forth. This adds complexity
and increases latency when compared with Tunnel solution. The Tunnel solu-
tion o�ers the lowest latency. It does induce overhead by keeping the connection
alive but this is not notable when compared to the overhead induce by the Poll
strategy or the Push Noti�cation strategy which also requires a connection kept
alive for pushing noti�cations. The Tunnel solution does require communication
state on the RelayService which increases the load on the service. This must
be mitigated by ensuring the RelayService is scalable. Therefore the Tunnel
solution has been chosen. In the following section this solution will be realized
with a detailed communication protocol.

76 Components and Communication

4.4 RelayService and RelayClient Detailed Com-

munication Protocol

In the previous section the Tunnel solution was chosen as communication strat-
egy. This strategy combined with the functional requirements and B&K wishes
form the basis of the requirements for the communication protocol. Below the
communication requirements (CR) are listed.

CR1 Based on requirement MH6 the protocol must support 2250 authentication
to the RelayService.

CR2 To maintain a constant connection the protocol must give the means to
keep the connection alive. To minimize computing on the 2250 following
requirement NFR5 the keep alive must be initiated by the RelayService.

CR3 B&K has requested that the protocol must initially determine the protocol
version so that it can be upgraded at a later time. The RelayClient is the
prime mover in the initiating sequence and should therefore also initiate
the ProtocolNegotiation.

CR4 Once authenticated it must be possible to signal the counterpart that the
connection should be disconnected.

CR5 The protocol must support that the remote control request and responses
exchange. The exchange of remote control request and responses must
happen asynchronously allowing request to be handled concurrently thereby
improving throughput. This follows from requirement NH2.

It is possible to use existing standards to realize the communication require-
ments. One possibility is to create and maintain a HTTP connection from the
RelayClient to the RelayService. The main arguments against choosing this
protocol are: additional overhead introduced by the HTTP headers, violation
of the Client Server paradigm which HTTP is based on, and the relay of HTTP
requests requires �ltering of HTTP messages based on their content and headers
when other messages are based on HTTP as well. This introduces a great deal
of complexity while reducing the �exibility of the communication.

Instead a proprietary message protocol will be developed. Based on communica-
tion speci�cations it is possible to de�ne the 2250Authentication and Forward-
Http interfaces introduced in section 4.1. These interfaces are shown in �gure
4.7. The interfaces describe the functionality the respective components must
support. The 2250Authenticate interfaces must supply following functionality;

4.4 RelayService and RelayClient Detailed Communication Protocol 77

Authenticate, NegotiateProtocol, RespondRelay and Disconnect. The Forward-
Http interface must supply the following functionality; KeepAlive, RequestRelay
and Disconnect.

Figure 4.7: Component diagram showing the RelayService and RelayClient
components and a detailed view of the interfaces that they provide
to and consume from each other. Realization of the ForwardHttp
and 2250Authentication interfaces present in �gure 4.1

The protocol state machine in �gure 4.8 describes the communication protocol
design from the RelayClients perspective. This protocol version will be speci�ed
as 1.0. The protocol will use TCP as transport layer, which ensures ordering and
reliability. Initially the transport level connection is established by the Relay-
Client so messages can be exchanged. If the connection fails the state machine
goes into its �nal state. If the connection is successful a ProtocolNegotionRe-
quest is sent to the RelayService which sends a ProtocolNegotiationResponse.
These messages are exchanged to negotiate the protocol version thereby realizing
CR3. If the protocol version matches this protocol version (1.0) an Authenti-
cationRequest message is sent, an AuthenticationResponse message is received
and the state machine enters the Protocol negotiated state, otherwise it reaches
the �nal state.
Upon reaching the protocol negotiated request the protocol state machine pro-
ceeds to the Authenticated state if the authentication was successful otherwise
it reaches the �nal state. In the Authenticated state KeepAliveRequest and
RelayRequest can be received. KeepAliveRequests are modelled as synchronous
message exchange where the state machine enters the Keeping Connection Alive
state and �rst leaves this state when the RelayClient sends a KeepAliveRe-
sponse. The RelayRequest and RelayResponses are modelled asynchronously,
meaning that multiple RelayRequest can be received before a RelayResponses
are sent. In other words the RelayClient can handle multiple simultaneous re-
quests.

78 Components and Communication

Figure 4.8: Protocol state machine specifying the communication between Re-
layClient and RelayService from the point of view of the Relay-
Client

4.4.1 Packet Types

To support the protocol speci�cation a proprietary packet speci�cation is needed.
The protocol state machine in �gure 4.8 combined with the interface descriptions

4.4 RelayService and RelayClient Detailed Communication Protocol 79

Seq.
Msg.
Id

Packet Type Description

T1 (Connect) This functionality is included in the
TCP layer

T1 ProtocolNegotiation-
RequestPacket

Packet containing list of proposed pro-
tocols

T1 ProtocolNegotiation-
Response-Packet

Packet containing chosen protocol. The
chosen protocol should be one of the
proposed protocols

T1 AuthenticationRequest-
Packet

Packet containing authentication cre-
dentials

T1 AuthenticationResponse-
Packet

Packet containing authentication re-
sponse indicating success

KeepAliveRequestPacket Ping message
KeepAliveResponsePacket Pong answer

T3 RelayRequestPacket Packet containing a Relay Request
T4 RelayResponsePacket Packet containing a Relay Response

DisconnectPacket Packet indicating a disconnect by either
side

Table 4.1: Packet Types

in �gure 4.7 can be used to defer the packet types needed in this communication
protocol. These packet types are described in table 4.1

4.4.2 Packet Structure

The packet structure consists of a header and a payload. The TCP protocol
ensures that the communication is reliable and ordered. This makes a "start of
header" and "checksum" redundant information in our packet. A payload size
is needed to determine the content length of a packet, this value will be referred
to as PayloadSize. A value describing the packet type is needed so the packet
type can be identi�ed by reading the header, this value will be referred to as
PacketType. As mentioned earlier in this section the communication protocol
speci�es that the RelayClient can receive a new Relay Request before it has
responded to the current. To allow concurrency in the handling of requests a
token is needed to uniquely identify the request/response pairs, this value is
referred to as ConversationId. There is no need to further wrap the content of
the packet as the content length can already be used to determine the end of a
packet. Figure 4.9 depicts a packet which ful�ls the combination of requirements.
This is the packet structure chosen.

80 Components and Communication

Figure 4.9: Diagram showing the structure of a packet sent between Relay-
Service and RelayClient. Non UML.

The Payload content will vary depending on the packet type. An example of
package content is a RelayRequestPacket. The packet content will contain an
raw byte representation of the HTTP request. The PacketType of the packet will
be the a byte value uniquely identifying the RelayRequestPacket, the Conver-
sationId will be a unsigned 32 bit integer uniquely identifying the conversation
and the PayloadSize will be the length of the HTTP request in bytes including
the Header and HTTP request line.

4.5 Chapter Summary

In this chapter the main components in the design and their interfaces were
described. The overall data �ow between the components was detailed and it
was chosen to address each device in the host part of a URL thereby allowing the
relative path to remain identical for resources on the RelayService and the 2250
Web Server. Three communication strategies Poll, Tunnel and Push Noti�cation
were introduced and it was chosen to use the Tunnel strategy mainly due to its
low latency. A detailed protocol for the Tunnel strategy has been described in a
protocol state machine diagram and message types as well as message structure
has been de�ned.

Chapter 5

RelayClient

In this chapter the design and implementation of the RelayClient will be intro-
duced and discussed. According to NFR1 the RelayClient implementation is
bound to the Windows CE platform and the .Net Compact Framework. The
overall behaviour of the RelayClient will be de�ned. Thereafter the di�erent
components will be introduced and key classes in the component will be de-
scribed in detail. During this description the design patterns used will be intro-
duced. The detailed behaviour of the RelayClient will be speci�ed based on the
overall behaviour, the components and the key classes. Key points and special
considerations in the implementation will be discussed. The combination of the
previous chapter and the present establishes the design, implementation and
interactions of the RelayClient.

5.1 Behaviour

The purpose of the RelayClient is quite simple. The RelayClient must:

1. Connect to the RelayService. Based on requirement MH10 and the pro-
tocol speci�ed in �gure 4.8.

2. Receive relay requests from the RelayService and forward these requests
to the 2250WebServer. Based on communication �ow speci�ed in �gure
4.2 and the protocol in �gure 4.8.

82 RelayClient

3. Receive relay responses from the 2250WebServer and forward these re-
sponses to the RelayService. Based on communication �ow speci�ed in
�gure 4.2 and the protocol in �gure 4.8.

The communication between the RelayClient and the RelayService was de�ned
in the protocol state machine in �gure 4.8 page 78. The communication between
RelayClient and 2250WebServer needs not be explicitly de�ned as it is a simple
HTTP client server request response communication.

The behaviour of the RelayClient is speci�ed in �gure 5.1. The RelayClient
starts by initializing. During this phase it will retrieve the credentials needed
to connect to the RelayService, the RelayService address, and the RelayService
port. After the device is initialized it will attempt to connect to the Relay-
Service. In the ConnectToRelayService state in �gure 5.1 all communication
from the Initial state to the Protocol negotiated in the protocol state machine
�gure 4.8 takes place. If this fails it enters the Sleep state and waits for a given
period before it enters the ConnectToRelayService state and retries to connect.
Thereby ful�lling MH10 for the RelayClient.

If the connection is successful it enters the Idle state. This is the equivalent
of the Authenticated state in the protocol. In the Idle state four things can
happen.

1. A KeepAliveRequest can be received from the RelayService. In that case
the RelayClient should send a KeepAliveResponse to the RelayService and
re-enter the Idle state.

2. A RelayRequest can be received from the RelayService. In that case the
RelayClient should forward the RelayRequest to the 2250Webserver and
re-enter the Idle state.

3. A RelayResponse can be received from the 2250WebServer. In that case
the RelayClient should forward the RelayResponse to the RelayService
and re-enter the Idle state.

4. The connection can disconnect or time out. In that case the RelayService
should enter the ConnectToRelayService state and attempt to establish a
connection. Thereby requirement MH10.

5.2 Design

The RelayClient consists of four software components; Communication, Client-
Communication, CustomHttp and RelayClient. The four component and inter-

5.2 Design 83

Figure 5.1: State machine de�ning the behaviour of the RelayClient.

relationships are illustrated in �gure 5.2. These components will be speci�ed in
this section.

Figure 5.2: Component diagram showing the components used in the Relay-
Client application.

84 RelayClient

5.2.1 Communication

The Communication component is the core component in the communication
between the RelayClient and RelayService. The component contains the classes
needed by both the RelayClient and RelayServer. The class diagram in �gure
5.3 shows an overview of majority of classes in this component. Of these classes
the most interesting are the ExtendedTcpClient, the TcpTunnel, the TcpTun-
nelPacket and the CommunicationFactory which will be described in detail.

5.2.1.1 ExtendedTcpClient

The ExtendedTcpClient is described in �gure 5.4. As shown in the �gure it
realises the IExtendedTcpClient interface. The IExtendedTcpClient interface
de�nes methods for connecting, disconnecting, and writing to the connection.
The referenced delegates ConnectionClosedHandler and DataReceivedHandler
are public events1 allowing other classes to subscribe to this event. The use of
delegates and events in this way is a modern c# architectural variant2 of the
Observer pattern[37]. The Observer pattern is described in depth in Gamma et
al., p. 293 [22]. Using delegates decouples the Observer from the Observable and
allows events from the Observable to reach the Observer with the Observable
only having a function reference and not a reference to the Observer. These
references must be freed whenever the Observer or the Observable are no longer
used to prevent memory leaks. This is done by having the relevant classes
implement the IDisposable interface and remove the reference when disposed.

5.2.1.2 TcpTunnel

The TcpTunnel is an abstract class which realizes the ITcpTunnel as shown in
�gure 5.5. The TcpTunnel's main objective is to parse raw data into packets and
send packets via an IExtendedTcpClient subclass. The TcpTunnel registers it-
self with the ConnectionClosedHandler and the DataReceivedHandler events on
the IExtendedTcpClient subclass so that it receives events when data is received
or the connection is closed. The ITcpTunnel de�nes methods for writing via the
tunnel and closing the tunnel. The two delegates TcpTunnelPacketReceived-
Handler and the TcpTunnelChangedHandler allows other objects to register for
packet received events and tunnel status changed events. E�ectively allowing
registered objects to be noti�ed when a message is received. The use of this is
further detailed in 5.2.5 Detailed Behaviour.

1An event is a speci�c implementation of a delegate with a more limited access so that
di�erent observers cannot overwrite or cancel each others registration

2Another modern variant of this pattern is the Reactive Extensions (Rx) Framework
(http://msdn.microsoft.com/en-us/data/gg577609.aspx).

5.2 Design 85

Figure 5.3: Class diagram showing an excerpt of classes and interfaces in the
Communication component. The classes and interfaces can be
grouped into the following types; delegates, tcp tunnel packets,
factory classes and interfaces, the extended tcp client class and
interface and the tcp tunnel abstract class and interface.

5.2.1.3 TcpTunnelPacket

The TcpTunnelPacket realizes the ITcpTunnelPacket and represents a packet
ful�lling the packet de�nition from 4.4.2 Packet Structure. All the speci�c

86 RelayClient

Figure 5.4: Extract of the Communication component showing the Extend-
edTcpClient class which realises the IExtendedTcpClient interface.

Figure 5.5: Extract of the Communication component showing the TcpTunnel
class which realises the ITcpTunnel interface.

packet implementations inherit from this base class. An example of this is
the TcpTunnelAuthenticationRequestPacket which is a subclass of TcpTunnel-
Packet but also realises the ITcpTunnelAuthenticationRequestPacket interface.
The di�erent packets are realizations of the packets described in 4.4.1 Packet
Types.

5.2.1.4 CommunicationFactory

The classes in the Communication component are instantiated using the abstract
factory pattern. The abstract factory de�nes an interface for instantiating a
family of related objects without specifying their concrete subsclasses[22, p. 87].
This pattern is used to create a system that is independent of how objects are
created, composed and represented, to reveal just interfaces of a class library and
to constrain which objects that can be used together. This allows a more loose
coupling and will provide great bene�t if the protocol between RelayClient and
RelayService should change. In the Communication component the ICommu-
nicationFactory represents the abstract factory and the CommunicationFactory
represents the concrete factory.

The CommunicationFactory is a singleton. The singleton is a design pattern
used to restrict the number of instantiations of a class to one. This pattern is

5.2 Design 87

used because multiple factories of the same instance would introduce unneces-
sary overhead as a single factory is su�cient. This is an especially valid point for
the RelayClient where resources are limited. The singleton pattern is described
in [22, p. 127].

5.2.2 ClientCommunication

A class diagram for the ClientCommunication component is shown in �gure 5.6.
The ClientCommunication component provides a client implementation in the
Tunnel solution. It uses the Communication component for handling basic com-
munication while it implements the actual protocol. The component consists of
two classes and two interfaces. The ClientCommunicationFactory, the TcpTun-
nelClient, IClientCommunicationFactory and ITcpTunnelClient. The abstract
factory pattern is again used to create objects in this component. The Client-
CommunicationFactory implements the IClientCommunciationFactory interface
and inherits from the CommunicationFactory so this single factory can be used
for all creation of communication objects. The TcpTunnelClient implements the
ITcpTunnelClient interface and is a specialization of the TcpTunnel class. The
TcpTunnel registers with the TcpTunnelPacketReceived event. When a packet
is received the TcpTunnelClient processes the logic and triggers events via the
inherited TcpTunnelChanged delegate. This enables generic use of this client.

Figure 5.6: Class diagram showing classes and interfaces in the ClientCom-
munication component together with an extract of the Communi-
cation component

88 RelayClient

5.2.3 CustomHttp

A class diagram for the CustomHttp component is shown in �gure 5.7. The
CustomHttp component is used to parse and represent HTTP requests and re-
sponses. The subclasses of IHttpClient provides functionality to send HTTP
requests and receive their responses. It provides asynchronous send and receive,
where the combination of the HttpResponseReceived event and a unique Id for
each request ensures that responses can be matched to the corresponding re-
quests. The IHttpResponse and IHttpRequest interfaces de�ne functionality for
respectively converting IHttpRequest to a System.Net.HttpWebRequest3 and
converting from a System.Net.HttpWebResponse4 to a IHttpResponse.

Figure 5.7: Class diagram showing classes and interfaces in the CustomHttp
component.

5.2.4 RelayClient

A class diagram for the RelayClient component is shown in �gure 5.8. The
RelayClient component handles the behaviour and con�guration of our client
software. The Con�guration class represents a con�guration, specifying user-
name, password and server details for the Tunnel connection. The con�guration

3The format in which a request is sent to the 2250WebServer.
4The format responses from the 2250WebServer are received in.

5.2 Design 89

is read by an ICon�gurationReader subclass. The RelayClient realizes the IRe-
layClient interface which de�nes the two methods; Initialize and Run. The
Initialize method takes a Con�guration as argument and initializes the Relay-
Client for a connection. The Run method starts a connection and restarts the
connection if it is disconnected. The RelayClient object controls the behaviour
of the application and realizes the speci�c behaviour speci�ed in 5.1 Behaviour.
The loose coupling between the RelayClient and the ITcpTunnelClient subclass
adds �exibility so that the behaviour can be changed by creating a new sub-
class of IRelayClient or the connection can be changed by providing a di�erent
subclass of ITcpTunnelClient to the RelayClient.

Figure 5.8: Class diagram showing classes and interfaces in the RelayClient
component.

5.2.5 Detailed Behaviour

In this subsection the behaviour of the RelayClient object and it's use of other
classes will be described in detail using sequence diagrams. This will give an
overview of the program logic.

The initialization sequence described in �gure 5.9 gives an overview of the ini-

90 RelayClient

Figure 5.9: Initialization sequence for the RelayClient. The sequence diagram
corresponds to the Initializing state in �gure 5.1.

tialization state where objects are created and register to relevant events and
delegates5. The RelayClient creates the TcpTunnelClient, which during it's ini-
tialization creates an ExtendedTcpClient object and register for DataReceived
and ConnectionClosed events at the given object. When the TcpTunnelClient is
initialized the RelayClient registers for TcpTunnelPacketReceived and TcpTun-
nelChanged events at the TcpTunnelClient. Afterwards the RelayClient creates
a HttpClient and registers for HttpResponseReceivedEvents. The registration
of events gives an indication of the information �ow in the application. An
example of such information �ow is present in �gure 5.10.

Data is received by the ExtendedTcpClient and this is forwarded via the DataRe-
ceived event. The TcpTunnelClient is a subclass of TcpTunnel which receives
this data and translates it into packages. Once a complete package is received
the TcpTunnelPacketReceived event is triggered. The TcpTunnelClient is also
registered for this event and upon triggering it determines the packet type and
chooses the appropriate action according to the protocol state machine. If the
appropriate action causes a status change for the tunnel connection the Tcp-
TunnelChanged event is triggered. An example of such an action is the arrival
of a TcpTunnelAuthenticationResponsePacket which either indicates that the
authentication succeeded or failed. Figure 5.10 shows a sequence in which the

5The diagram abstracts away from the fact that the individual classes are created using
the abstract factory pattern.

5.3 Implementation 91

Figure 5.10: Relay Sequence showing how a request is processed and for-
warded and how a response is received and forwarded. This
Sequence diagram corresponds to execution region C in �gure
4.2.

message received is a relay request. The RelayClient is registered to receive all
message events. If the message is a relay request the request is forwarded to the
HttpClient which asynchronously performs the request on the 2250WebServer.
When the response is received the HttpResponseReceived event is triggered by
the HttpClient. The RelayClient receives the event and forwards it via the
TcpTunnelClient and ExtendedTcpClient.

5.3 Implementation

This section will present key points in the implementation of the chosen design.
The three things that stand out in the implementation of the RelayClient are
the special considerations due to the embedded platform, how the RelayClient

92 RelayClient

can address not only the 2250WebServer but also other local devices and how
the application can be integrated in the existing BasicEnv solution.

5.3.1 Quirks of The Embedded Platform

There are some special considerations when implementing on the embedded
platform. The .Net Compact framework is limited and this requires additional
implementation and may require additional workarounds.

Apparently there is client side limit on the number of concurrent network con-
nections to a host. Determining this consumed a great deal of time which is why
it is mentioned here. This plays a role in the forward of requests (OC3) to the
2250WebServer from the RelayClient . This limit is not unique for the platform
and a similar limitation exist on regular platforms however with a larger limit
than 2 which is the default maximum on the .Net Compact Framework6. Having
a limit on the number of connections in itself is not a problem but rather a clever
design decision to prevent �ooding. However the System.Net.HttpWebRequest
class is used to communicate with the 2250WebServer and this combination cre-
ates trouble. In some situations the HttpWebRequest class implementation has
some issues accepting that a connection should not be kept alive, even when
this is indicated in the HTTP header. Two connections which are kept alive
e�ectively blocks any other requests to the same host. The solution to this is to
force the connections to close after a given idle period7 as seen below.

httpWebRequest.ServicePoint.MaxIdleTime = 50;

To reduce the number of active and awaiting connections and to ensure a min-
imum of load a semaphore in the HttpClient is used to restrict the number of
active requests to two. Any requests beyond that will wait until the semaphore
is released. This prevents the framework from discarding the requests due to
limitations on the number of simultaneous connections to the speci�c service
point.

5.3.2 RelayClient a Generic Proxy

In 4.2.1 Addressable Devices it was de�ned how the HTTP requests and re-
sponses could and should be modi�ed to ensure that the devices were address-
able. It was determined that by identifying the device in a subdomain the

6This speci�c limit is based on section 8.1.4 in Hypertext Transfer Protocol � HTTP/1.1
[17].

7Default maximum idle time is 100 seconds. The example code sets it to 0.05 seconds.

5.4 Chapter Summary 93

relative paths would still match and need not be modi�ed. The host �eld does
however still state that the HTTP request is meant for the RelayService as Re-
layService acts as a reverse proxy8. It would be su�cient to simply change this
value to "localhost" as the RelayClient will always be present on the 2250 itself.
However changing the host �eld does provide a unique opportunity. As men-
tioned previously the 2250 is a versatile device and can be used in many setups.
2.6.1 Device/2250 describes how it in environmental setups can be connected to
a GRPS router and/or a weather station and that it in other setups may have
other hardware attached or available over the local network. By allowing the
host �eld to specify to whom the RelayClient will forward the request to these
devices can now be reached on the local network. This means that the Relay-
Client functions as a regular proxy and gives endless opportunities. Therefore
this solution is chosen, even though the bene�ts are not utilized in this project.
Because the addressing of device takes place on the RelayService the modi�ca-
tion of host name should also happen there. The only change in implementation
is that the HttpClient should not always connect to the "localhost" but instead
use the value in the HttpRequest host �eld as target.

5.3.3 Integrating in BasicEnv

The RelayClient must be integrated in the existing BasicEnv solution, so that
it runs at start up. As this is a proof of concept prototype it is chosen to
have a minimum integration. At the point where other processes are started in
the BasicEnv software an additional code section has been added which starts
the RelayClient as a separate process. This level of integration is su�cient for
determining the ful�lment of requirement NFR5 page 20. In the long term
this should be substituted with a better integration which for example allows
the RelayClient to shut down and start up automatically when the software is
updated.

5.4 Chapter Summary

In this chapter the design and implementation of the RelayClient has been
discussed. The overall behaviour of the RelayClient has been introduced and
the four components Communication, ClientCommunication, CustomHttp and
RelayClient have been described. Key classes and interfaces in the di�erent
components have been detailed. Based on this and the overall design the detailed
behaviour of the initialization sequence and the detailed behaviour when a relay
request is received has been de�ned. Noteworthy points in the implementation
have been introduced. It was de�ned how HTTP requests needed additional

8Having a mismatch in the host header �eld will cause the server to ignore the request.

94 RelayClient

workarounds to close a connection, how a semaphore has been introduced to
limit the number of connections, how the solution has been made so that it can
forward requests to devices on the local network as well and how the RelayClient
has been integrated with the existing BasicEnv software.

Chapter 6

RelayService

The design and implementation options on the cloud platform relevant to this
project were described 3.2 Windows Azure. The selections were postponed until
overall design choices were made. In chapter 4 Components and Communica-
tion the design decisions for the systems as a whole were made. In this chapter
the combination of background knowledge from Windows Azure and the over-
all design choices will be combined and the design and implementation of the
RelayService including the StatusInterface will be speci�ed.

6.1 Choosing an Execution Model

In 3.2.1 Execution Models the di�erent execution models supplied by Windows
Azure were discussed. It was discussed how and why solutions could be split
into background and foreground processes hosted on respectively WebRoles and
WorkerRoles. One of the main arguments for this was scalability. The opposing
design where all processes are present on the same instance will be considered
to better understand this argument.

The RelayService has three tasks it must address.

1. Handling requests for the relay interface and send responses. As de�ned
in 4.2 Overall Communication.

96 RelayService

2. Handling requests for the StatusInterface and send responses. As de�ned
in 4.1 Component Design.

3. Creating and maintaining connections with RelayClients. Based on the
combination of MH10 and the speci�ed protocol de�ned in �gure 4.8.

In the case where foreground and background processes are not separated a
single role will handle all three tasks. When all tasks are handled by a sin-
gle instance, communication between instances is unnecessary and the design
choice provides a bene�t. However consider if the load increases and additional
instances are spun up. The RelayClient will be connected to a single instance.
Due to the load balancing described in 3.2.1 Execution Models requests for a
speci�c device would not necessarily reach the instance connected to the de-
vice. Therefore the request must be forwarded between the instances and the
initial bene�t of no communication between instances are lost. Also consider
the case where increased load by the background processes would cause the
foreground processes to become unresponsive. This would violate the MH7 re-
quirement (page 17) of always sending a response to the customer. Separation
of the foreground and background processes mitigates this risk and provides a
good design where individual roles have well de�ned responsibility and scope.
The RelayService is separated into the WebRole RelayServiceFrontend and the
worker role RelayServiceBackend. The RelayServiceFrontend receives requests
for the exposed interfaces from the Customer. The RelayServiceBackend han-
dles connections and communication with RelayClients. To process an actual
request communication between the front end and back end is needed. This
communication will be discussed in the following subsection.

6.1.1 Choosing a Messaging system

The options for communication between instances in Windows Azure has been
described in 3.2.2 Messaging. The choice of direct network connection is not
viable. When multiple instances are running each WebRole must be connected
to each WorkerRole. The cost of maintaining a high number of connections is
too high. The choice therefore stands between the Azure Queue, the Service Bus
Queue and the Service Bus Topic/Subscription. The message data exchanged
between the front end and back end will represent HTTP messages. The mes-
sages should be processed immediately and need not be stored for longer periods
of time. The actual size of HTTP messages is not known, but allowing larger
messages is more desirable. It is also relevant that messages always have an in-
tended receiver. Messages from the front end must reach the back end instance
that has a connection to the speci�c device. Messages from the back end must
reach the front end instance that send the original request so that it can forward
the response to the customer.

6.1 Choosing an Execution Model 97

Considering this the Service Bus Topic/Subscriptions have been chosen. It has
the advantage that messages can be sent to central topic and simply be addressed
using an Id as correlation �lter allowing a fast hashtable look up. This provides
a great deal of simpli�cation in the design process. In comparison choosing a
queue based solution would require that each message receiver created its own
queue to ensure that it will read only the messages and all the messages intended
for it. This also requires multiple outbound queue connections. Again this would
give rise to a situation where the number of references increase dramatically as
the number of instances increase similar to the number of connections in the
Direct Connection.

6.1.2 RelayServiceBasic Design

To accommodate the new design the RelayService component is split into the
RelayServiceBackend and the RelayServiceFrontend. The basic functionality is
moved into a third component called RelayServiceBasic. The RelayServiceBa-
sic consists of classes specifying the content exchanged between the front end
and back end together with the classes used for exchanging the content. The
diagram in �gure 6.1 shows the new structure of the component where both the
RelayServiceFrontend and the RelayServiceBackend use the RelayServiceBasic
to exchange data over the Service Bus.

Figure 6.1: Component diagram showing the relationship between Service
Bus, RelayServiceFrontend, RelayServiceBackend, and RelaySer-
viceBasic. The components are placed within the same cloud plat-
form.

The class diagram showing classes relevant for content exchanged via the Ser-
vice Bus is shown in �gure 6.2. The content exchanged is represented by
the generic IRelayResponse and IRelayRequest interfaces. In this application

98 RelayService

Figure 6.2: Class diagram showing the relevant interfaces and classes for relay
messages in the RelayServiceBasic component.

the IRelayRequest will always represent a HTTP request and the IRelayRe-
sponse will always represent a HTTP response. To represent this specializa-
tion the IHttpRelayResponse and IHttpRelayRequest interfaces are used. The
IHttpRelayRequest de�nes the ConvertFromHttpRequest which enables conver-
sion from System.Net.HttpRequest1 to IHttpRelayRequest. The IHttpRelayRe-
sponse de�nes the ConvertToHttpResponse which enables conversion from an
IHttpRelayResponse to System.Net.HttpResponse2. These conversions are de-
�ned because the object received when a Customer send a request is
System.Net.HttpRequest and the object send to the Customer as a response is of

1This is the format that the request is originally in.
2This is the format used to send a response to the Customer.

6.2 RelayServiceBackend Design and Implementation 99

the type System.Net.HttpRequest. The IHttpRelayRequest and IHttpRelayRe-
sponse are realised by the respective classes HttpRelayRequest and HttpRelayRe-
sponse.

The RelayServiceFrontend uses the IFrontendQueueHandler interface to com-
municate via the Service Bus. The IFrontendQueueHandler de�nes the method
EnqueueRelayRequest and the event RelayResponseReceived. The IFrontendQueue-
Handler is a specialisation of the IQueueHandler which de�nes general methods
and properties for queue handling. The IBackendQueueHandler likewise inherits
from IQueueHandler. This interface is used by the back end to communicate via
the Service Bus. The IBackendQueueHandler de�nes the method EnqueueRe-
layResponse and the event RelayRelayRequestReceived.

The IFrontendQueueHandler and IBackendQueueHandler are realised by the
respective classes FrontendQueueHandler and BackendQueueHandler. The two
classes both inherit from QueueHandler which realises the IQueueHandlerInter-
face. The QueueHandler class contains the actual logic used for connecting to
the Service Bus via the Topic/Subscription strategy.

The QueueConnector uses the clientId provided in the Initialization method to
create a subscription. The clientId will be used as a CorrelationFilter meaning
that all messages with a CorrelationId matching the clientId will be read by
this speci�c QueueConnector and forwarded via the FrontendQueueHandler or
BackendQueueHandler. The use of CorrelationId as a �lter ensures a faster
dispatching of messages as the recipients can be looked up in a hash table in
constant time.

6.2 RelayServiceBackend Design and Implemen-

tation

The components related to the back end design are shown in �gure 6.3. The
top component in the back end design is the RelayServiceWorkerRole. It is a
worker role as described in 3.2.1.3 WorkerRole and is responsible for starting
the background processes. The RelayServiceBackend component is responsible
for accepting incoming connections from RelayClients and handling the collec-
tion of connections. The RelayServiceBasic, CustomHttp and Communication
components have already been described in respectively 6.1.2 RelayServiceBasic
Design, 5.2.3 CustomHttp and 5.2.1 Communication. The ServiceCommunica-
tion component provides a server implementation in the Tunnel implementa-
tion. It uses the Communication component for basic communication while
it implements the actual protocol. It is the server equivalent of the Client-
Communication described in 5.2.2 ClientCommunication. The Authentication

100 RelayService

Figure 6.3: Component diagram showing the relations between relevant com-
ponents from the back end design point of view.

component provides functionality for authenticating the RelayClient when it
initiates a connection.

The class diagram in �gure 6.4 shows the most important classes in the back end
design. The RelayServiceWorkerRole class implements the worker role function-
ality. It is responsible for creating an IRelayServerController for each possible
endpoint3. The RelayServerController realizes the IRelayServerController and
handles incoming connections from RelayClients. When a connection is estab-
lished the RelayController creates an IRelayServer (via the factory) and initial-
izes it. The RelayServer realizes the IRelayServer interface. It contains the logic
de�ning how the RelayService handles a single Tunnel connection as well as a
reference to an IBackendQueueHandler which it uses to receive relay requests
and send relay responses. The Tunnel connection is realized via the TcpTun-
nelServer class which realises the ITcpTunnelServer interface and inherits from
TcpTunnel. An IAuthenticator is passed to the TcpTunnelServer from the Re-
layServer. This IAuthenticator class authenticates the credentials supplied by
the RelayClient4.

The sequence diagram in �gure 6.5 shows the control and data �ow when an
IRelayRequest is received. The data �ow in the RelayService follows a structure
similar to the one in RelayClient and is event based. Initially the RelayServer
registers with the RelayRequestReceived event at the IBackendQueueHandler.

3In this case an endpoint equals a given port on which a RelayClient can communicate
with the RelayService.

4In the proof of concept prototype this is realized but the Authenticator class which con-
nects to a database and compares the query results with the provided credentials

6.2 RelayServiceBackend Design and Implementation 101

Figure 6.4: Class diagram showing the most important classes for the back
end design across the di�erent components.

When a relay request is received the event is triggered and the RelayServer
noti�ed. The RelayServer registers with the ResponseReceived event at the
IRelayRequest and sends the IRelayRequest to the RelayClient via the Tcp-
TunnelServer. When the TcpTunnelServer receives a TcpTunnelRelayRespon-
sePacket it �nds the corresponding IRelayRequest and feeds it the raw relay
response. The IRelayRequest instantiates the relay response as an IRelayRe-
sponse and triggers the RelayResponseReceived event. The RelayServer receives
this event and forwards the IRelayResponse to the RelayServiceFrontend via the
IBackendQueueHandler.

102 RelayService

Figure 6.5: Sequence diagram showing the control logic and data �ow for the
back end when a relay request is received. Contained in Execution
region B �gure 4.2.

6.2.1 RelayServiceBackend Implementation

One of the implications of the design speci�ed in the �gure 6.5 is that the
TcpTunnelServer must save the IRelayRequests it sends in a collection so that
it can match the responses with the given requests. In the implementation the
TcpTunnelServer has a List called _unrespondedMessages which is precisely
such an collection.

6.3 StatusInterface Design and Implementation

The StatusInterface aims to provide customers with an overview of a 2250 status
independent of its online status, thereby ful�lling requirement MH3 (page 17).
The StatusInterface is based on the resources identi�ed in 2.6 Domain Analysis.
The �ve resources which will be present in this interface are Customer, Regis-
tration, Device, Browser Interface and RemoteAPI. The relation between these
resources can be seen in �gure 6.6. The Device resource will be represented by
the status as described in 2.6.9 Status. According to the REST Addressable

6.3 StatusInterface Design and Implementation 103

Figure 6.6: Class diagram showing the resources in the StatusInterface and
their relations.

constraint the resources must be uniquely addressable. In 4.2.1 Addressable
Devices a design was chosen so that the 2250WebServer was addressable and
the RemoteAPI remained RESTful. As a result of this the Browser Interface
also remains addressable. The three new resources will be addressed using the
de�nition described in table 6.1. The hierarchical address structure shows that
a Registration belongs to a Customer.

Resource URI
Customer /api/customers/<userId>
Registration /api/customers/<userId>/RegisteredDevices/<deviceId>

Device /api/devices/<deviceId>

Table 6.1: Address for StatusInterface resources.

The StatusInterface is realized using an ASP.NET MVC 3 design which fol-
lows the Model-View-Controller pattern. The class diagram in �gure 6.7 shows
the structure of the solution. The CustomerController controls requests for the
Customer and the Registration resources while the DevicesController controls
requests for the Device resource. When a requests is made to the Web server
hosting the StatusInterface, prede�ned functions are invoked in the respective
controllers based on registered routes. For example if /api/devices/1234553 is
requested at the Web server the function Device in the DeviceController with
the parameter deviceId=1234553 will be invoked.

It is possible to provide a �lter restricting access to the functions in a con-
troller based on HTTP method. If the Uniform Interface constraint (page 61)
is honoured and the HTTP methods POST, GET, PUT and DELETE maps to
CRUD, the �ltering can be used to de�ne what type of operations can be made
on a given resource via the controller.

The individual resources are represented in the model by the classes DeviceRe-
source, RegistrationResource and CustomerResource. These are accessed via
their respective managers DeviceManager, RegistrationManager, and Customer-

104 RelayService

Figure 6.7: Class diagram of the StatusInterface.

Manager and the data access objects DeviceDao, RegistrationDao, and Cus-
tomerDao. Following the REST constraints the managers only allow a subset
of CRUD operations on the resources. Function calls to the Controllers will
respond with representations of the DeviceResource, RegistrationResource and
CustomerResource objects. The Accept header in the HTTP request is used
to determine the actual representation sent. This implementation supports
text/xml, application/json and if they are not supplied it will send a text/html
response. The text/html response is a regular view which allows users to inter-
act with the resources from a browser as described in 2.7 Mockups. Screen shots
of the text/html representation of the resources can be found in Appendix B.

Basic HTTP authentication is required to protect the resource and authorization
is determined based of these credentials on a per user basis. A Customer can

6.3 StatusInterface Design and Implementation 105

only see his own CustomerResource and only see Registrations made by himself.
The Devices are likewise protected so that only Devices which are registered by
the Customer can be viewed by the Customer.

To improve performance of the StatusInterface, caching is integrated in the
implementation. Caching using the HTTP/1.1 standard was discussed in 3.4.7
Cache. In the current domain and with the user interaction speci�ed by the
use cases it is hard to predict when a resource is updated or changed. The
CacheControl header, which states how long a response is valid, is une�ective in
this case. Therefore the ETag header, which uniquely determines entity versions,
will be used to introduce caching. As mentioned in 3.4.7 Cache the Vary �eld
can be used to describe what other header �elds in a HTTP request will cause
the response to vary. It was determined that the resource representations will
depend on the Accept header, therefore the Vary will be de�ned to Accept to
signal that a di�erent Accept header may result in a di�erent response. As an
ETag for the Device resource the time for last update of the resource will be
used while a hashed value of a customers registrations will be used as ETag for
the Customer resource.

This sums up the design of the StatusInterface. Throughout the design it has
been speci�ed how the solution uses the HTTP standard and how this relates
to REST. Table 6.2 sums up how the StatusInterface ful�ls the Statelessness,
Uniform Interface, Connectedness and Addressable Rest constraints.

Constraint Compliance
Client Server (page 58) HTTP as used �ts the Client Server paradigm with

the devision of responsibilities as speci�ed in the
REST constraint

Statelessness (page 60) No communication state is stored on the StatusIn-
terface.

Addressable (page 59) Each resource will have a URI and is therefore ad-
dressable.

Uniform Interface (page
61)

Resources are accessed and manipulated using
HTTP methods and the content is self descriptive

Connectedness (page 63) Associations between resources will be represented
by links.

Layered System (page 63) The design complies with the Layered System con-
straint as this is in built in the HTTP communica-
tion.

Cache (page 63) Caching is supported by the use of the ETag and
Vary �elds in the HTTP response

Table 6.2: Table showing compliance with REST constraints.

106 RelayService

6.3.1 Choosing Storage Type

In 3.2.3 Data Management the di�erent storage types in Windows Azure were
introduced. Earlier in this section the resource representation and their class
representations have been introduced, these will serve as basis for judging what
storage type will be the optimal choice. The three resource that needs to be
present in the data storage are the customer, the device and the registration.
The two resources customer and device will be accessed independently. This
combined with the one to many relationship between customer and registration
and the one to one relationship between registration and device results in sep-
aration of customer and device into di�erent tuples that should have a relation
between them.

The data model requires limited amount of storage. The number of customers
and registrations can not exceed the number of devices. The devices are rep-
resentations of physical hardware and the number of such devices will be lower
than 100k (high estimate). Because a limited amount of data is stored for each
customer, device and registration and the number of devices and customers will
be relatively small, the storage needed will be limited as well. The 150GB limit
on SQL Azure will not be an issue. Furthermore the storage model will not
likely change or need to be dynamic for the status information. Combining all
these observations leads to the conclusion that the bene�ts of Azure Table are
not needed in this project and instead the SQL Azure will be chosen because of
the server side processing, the relations between tuples and the charging model.

The implications of this choice in regards to Brewers CAP theorem will be
discussed in 7.4 Consistency, Availability, Partition-Tolerance and Scalability.

6.4 Frontend Design and Implementation

The class diagram in �gure 6.8 show the important classes in the front end design
and their relations. The SubdomainModule implements the IHttpModule inter-
face. An IHttpModule is a class that can be used to catch all HTTP requests and
�lter them. In the SubdomainModule this is used to specify what action should
be taken by the front end based on the subdomain. This is shown in the sequence
diagram in �gure 6.9. If the subdomain matches the one speci�ed in 4.2.1 Ad-
dressable Devices to access the RemoteAPI and Browser Interface the module
invokes the ProcessRequest method on the RemoteControlHandler class. The
RemoteControlHandler processes the request wrapping it as an IHttpRelayRe-
quest and changing the host name to the appropriate host as speci�ed in 5.3.2
RelayClient a Generic Proxy. After this the IHttpRelayRequest is forwarded
to the RelayServiceBackend via the IFrontendQueueHandler. The RemoteCon-

6.5 Chapter Summary 107

Figure 6.8: Class diagram showing the classes and interface relevant for the
front end RelayService to function as a reverse proxy.

trolHandler creates a semaphore stores this in a Dictionary that maps from the
request id to the semaphore and afterwards waits a certain time period for the
semaphore to be freed. If the semaphore is not freed within the given time period
the request times out and a 404 is sent to the Customer. If the IFrontendQueue-
Handler receives an IRelayResponse this triggers the IRelayResponseReceived
event. The ResponseReceived method is invoked on the RemoteControlHandler.
The RemoteControlHandler looks up the semaphore based on the Id of the relay
request. The semaphore is freed and the response is sent to the Customer.
In this design each speci�c handler represent an entry point to a di�erent host.
In the current setup the only addresses host is the 2250WebServer and there-
fore the only handler present is the DeviceRemoteControlHandler which inherits
from the RemoteControlHandler. For the DeviceRemoteControlhandler the host
will be "localhost" as all requests are targetted at the local 2250WebServer.

6.5 Chapter Summary

In this section the design and implementation of the RelayService have been
speci�ed. The RelayService was split into a WebRole and a WorkerRole based
on the nature of the processes present in the RelayService. The Service Bus
Publish/Subscription has been chosen for communication between the front end
and back end processes. The classes needed for this communication have been
separated into the RelayServiceBasic component. The RelayServiceBackend
representing the WorkerRole has been de�ned and the behaviour speci�ed via

108 RelayService

Figure 6.9: Sequence diagram showing the control logic and data �ow for the
front end when a relay request is received. Contained in Execution
region B �gure 4.2.

sequence diagram. In relation to de�ning the StatusInterface design and imple-
mentation the SQL Azure was chosen as storage type. The RESTful StatusIn-
terface was speci�ed and it was discussed how it satis�es the REST constraints.
Last but not least the remaining front end design and implementation has been
speci�ed and the behaviour detailed.

Chapter 7

Discussion

This chapter will describe how the implementation is validated and describe
the acceptance tests used to evaluate the design. The performance acceptance
tests will determine how the solution functions over time as well as estimate the
increased latency introduced by the solution. Security in the application will
be discussed and future work in this area identi�ed. It will be discussed what
changes should be made to the solution if it were to be hosted locally instead of
in the cloud. The design will be evaluated in relation to Brewers CAP theorem
and �nally the solution as a whole will be evaluated.

7.1 Validating the Solution

White box unit tests and black box integration test have been implemented to
validate the prototype throughout the development process. The unit tests have
been focussed on testing object creation in the factories and the object conver-
sions. Via the reverse proxy and the StatusInterface, black box integration tests
have been conducted to test the integration between the di�erent components
in the project and their behaviour when combined. Both unit tests and inte-
gration tests can be found in Appendix C. To validate the functionality of the
prototype versus the requirements, acceptance tests have been made. In this
section acceptance tests for functionality and acceptance tests for performance
will be described.

110 Discussion

7.1.1 Functionality Acceptance Test

Acceptance tests determine whether the requirements of the project has been
met. These tests will be performed to determine to what extend the RelaySer-
vice ful�ls the functional requirements. The acceptance tests are based on the
use cases. Section 2.5 identi�ed how the use cases cover the functional require-
ments, therefore successfully going through a use case ensures that the covered
requirements are met. The tests themselves are manually performed using the
Browser Interface and the text/html representation of the StatusInterface. The
results of these tests can be seen in table 7.1.

The non-functional requirements are based on other metrics, speci�ed in the
requirements themselves. Table 7.2 shows and describes how the non-functional
requirements are met. The requirement NFR3 (page 20 requires additional
processing to evaluate. This will be done in the following section where the
performance is measured.

7.1.2 Performance Acceptance Test

In this section the latency and stability performance metrics of the reverse proxy
functionality will be evaluated. The stability test will determine how the Relay-
Service functions over time. In the Browser Interface the GUI is continuously
updated by sending HTTP requests via the AJAX technology. Over a time
period of 24 hours it will be measured how many of the requests which are pro-
cessed by the RelayService are successful (200 status code) and how many that
are not. This is done by implementing a log on the RelayService which identi�es
the status code and saves this in a database. Due to the fact that the requests
are enumerated it is possible to determine the percentage of requests that reach
the RelayService and are processed. The results of this test are presented in
table 7.3.

Establishing and understanding the latency introduced by the RelayService com-
pared to a direct connection is a complex matter. The latency in the direct con-
nection (DLatency) consists of the time it takes for the request and response to
travel over the network (NTime1) and the time it takes for the 2250WebServer
to process the request (PTime).

DLatency = NTime1 + PTime (7.1)

The latency for the RelayService (RSLatency) consist of the time it takes for the
request and response to travel between RelayService and Customer(NTime2),

7.1 Validating the Solution 111

Requirement Sta-
tus

Note

MH1 (Communication is
facilitated by central ser-
vice)

Tested manually be realizing use case
Send Remote Control Command.

MH2 (Expose existing
Web interfaces as is)

Tested manually be realizing use case
Send Remote Control Command.

MH3 (Status information
is available even when de-
vice is o�ine)

Tested manually be realizing use cases
Update 2250 Status and See 2250 Sta-
tus.

MH4 (Overview of regis-
tered 2250)

Tested manually be realizing use case
See 2250 Overview.

MH5 (Access authentica-
tion on 2250)

Tested manually be realizing use case
Send Remote Control Command.

MH6 (2250 authenticates
to RelayService)

Tested manually be realizing use case
Authenticate 2250.

MH7 (Response always
sent by RelayService)

Tested manually be realizing use case
Send Remote Control Command.

MH8 (Customer is limited
to seeing his own 2250s)

Tested manually be realizing use case
See 2250 Overview.

MH9 (Customer authenti-
cates to RelayService)

Tested manually be realizing use case
Authenticate Customer.

MH10 (RelayService and
RelayClient constantly
seek connection)

Tested manually be realizing use case
Authenticate 2250.

NH1 (Customer can regis-
ter unregistered 2250)

Tested manually be realizing use case
Register 2250.

NH2 (RelayService can
handle concurrent re-
quests)

Tested manually be realizing use case
Send Remote Control Command.

NH3 (RelayService han-
dles multiple active Cus-
tomers)

Not su�ciently tested. Large scale tests
are needed to validate this requirement.

NH4 (RelayService han-
dles multiple active 2250s)

Not su�ciently tested. Large scale tests
are needed to validate this requirement.

NH5 (Encrypted commu-
nication)

Functionality not implemented.

NH6 (Software automat-
icaaly switches to direct
connection between cus-
tomer and 2250 whenever
possible)

Functionality not implemented.

Table 7.1: Ful�lment of functional requirements.

112 Discussion

Requirement Sta-
tus

Note

NFR1 (RelayClient runs
on 2250 platform)

All must have requirements are ful�lled
with the RelayClient running on the
2250 device.

NFR2 (RelayService not
hosted in-house)

Windows Azure is used to host the Re-
layService.

NFR3 (Max. 5 sec-
onds added latency com-
pared to direct connec-
tion between Customer
and 2250)

Not su�ciently tested. This require-
ment will be addressed in the following
section.

NFR4 (Minimize band-
width)

Not tested. The communication be-
tween RelayClient and RelayService is
designed to minimize overhead. How-
ever to validate this requirement the
RelayClient should run concurrently
with the NMT streamer software which
utilizes a great portion of the available
bandwidth.

NFR5 (Minimal CPU and
memory usage)

The RelayClient is integrated into the
BasicEnv software and the must have
requirements are ful�lled with both ap-
plications running concurrently.

NFR6 (Prototype does
not compromise existing
software on device)

The RelayClient is integrated into the
BasicEnv software and the must have
requirements are ful�lled with both ap-
plications running concurrently.

Table 7.2: Ful�lment of non-functional requirements

Successful Unsuccessful Unprocessed Total
Number 41844 6 0 41850

Percentage 99.99% 0.01% 0.00% 100%

Table 7.3: Stability test

7.1 Validating the Solution 113

the time it takes to process the request at the front end (FERQ), the time it
takes to process the request at the front end (FERS), the time it takes to send
response and request via the Service Bus (SB), the time it takes for the back
end to process the request (BERQ), the time it takes for the back end to process
the response (BERS), the time it takes to send the request and response via the
tunnel (TunnelTime), the time it takes to process the request at the RelayClient
(RCRQ), the time it takes to process the request at the RelayClient (RCRS),
the time it takes to send the request to the 2250WebServer (NTime3) and the
time it takes for the 2250WebServer to process the request (PTime).

RSLatency = NTime2 + FERQ+ FERS + SB +BERQ+BERS

+ TunnelT ime+RCRQ+RCRS +NTime3 + PTime (7.2)

To simplify this the processing time in RelayService, the RelayClient and the
send time in the Service Bus will be combined in the RSPTime variable. Fur-
thermore the assumption will be made that NTime3 is negligible as this is a
local connection on the same device.

RSLatency = NTime2 +RSPTime+ TunnelT ime+ PTime (7.3)

Based on this the extra latency introduced can be written as

IncreasedLatency = RSLatency −DLatency

IncreasedLatency = NTime2 +RSPTime+ TunnelT ime−NTime1 (7.4)

From this it is clear that the added latency cannot be attributed to the process-
ing time alone, but also varies with the network time. The increased latency
will be greater the closer the Customer and 2250 are compared to the Relay-
Service. For example if the 2250 and the Customer are both in Alaska and the
RelayService is hosted in Northern Europe the direct connection allows lower
network latency while the RelayService requires that data is sent from Alaska
to Northern Europe to Alaska and then back again, e�ectively ramping up the
latency. This complicates the assessment of ful�lment of requirement NFR3 as
it varies with network connections and locations. The increased latency will be
determined in a single set up where the 2250 and the Customer is on the same
local network placed in Denmark while the RelayService is hosted in North-
ern Europe. The latency will be measured as a round trip time by using the
Firefox Firebug plugin. This is placed on the Customer side and if it increases
latency it will do so equally for both tests. The requests are HTTP GET re-
quests performed with the AJAX technology in the Browser Interface. The
increased latency is determined by sorting the two sets based on their latency
and subtracting one from the other. The data is avaiable in Appendix D.

114 Discussion

The histogram of the data combined with the a bell curving describing a normal
distribution based on the variance and mean of the data is shown in �gure 7.1.
Based on this diagram the assumption is made that the IncreasedLatency follows
a normal distribution. Based on this assumption it is possible to predict that
99.5% of the requests will have an increased latency below 1.8 seconds.

Figure 7.1: Histogram of measured IncreasedLatency and Normal Distribution
plotted together. Non UML.

Because the Customer and 2250 is situated on the same network it will be
assumed that NTime2 = TunnelTime. NTime1 and NTime2 can be determined
as the connect, send and receive measurements combined for the respective
direct and relay measurements. Based on this the RSPTime can be isolated,
this value is static and identifying this allows to estimate increased latency as a
function of how close the customer is to the RelayService(NTime2), how close
the 2250 is to the RelayService (TunnelTime), and how close the Customer is
to the 2250 (NTime1). A combined histogram and bell curve for the normal
distribution using the measured mean and variance is show in �gure 7.2. Based
on this diagram the assumption is made that the RSPTime follows a normal
distribution. Based on this assumption it is possible to predict that 99.5% of
the requests will have an increased latency below 1.66 seconds.

Based on this number it is possible to conclude that the remaining 3.341 sec-
onds are satisfactory to contain network latencies and requirement NFR3 can
therefore be considered as ful�lled.

1The 5 seconds in the requirement subtracted the 1.66 seconds

7.2 Security 115

Figure 7.2: Histogram of measured RSPTime and Normal Distribution plotted
together. Non UML.

7.2 Security

In 3.4.8 Web Service Security security issues related to Web services were dis-
cussed. In the same subsection it was also discussed what security mechanisms
could be used to mitigate these risks. Before determining the level of security in
the proposed solution, the security in the existing set up with a direct connection
will be discussed.

The direct connection has a direct connection between Customer and 2250Web-
Server. The protocol used is HTTP and the data is unencrypted. To authenti-
cate users the HTTP basic access authentication is used but the 2250 does not
authenticate itself to the customer. In theory a malicious user could pose as
a 2250 to other customers. This solution can only be considered secure when
customer and 2250 are on the same local network where it is guaranteed that
no eavesdroppers are present.

In the proposed solution all tra�c is relayed over the RelayService. The Sta-
tusInterface uses the HTTP basic access authentication on the RelayService
while requests to the RemoteAPI and Browser Interface are validated on the
2250WebServer. The RelayClient authenticates itself to the RelayService us-
ing the proprietary protocol previously de�ned. Currently the RelayService
does not authenticate itself to the Customer or the RelayClient. Like in the

116 Discussion

direct connection solution the tra�c is unencrypted. Even though using the
RelayService provides the same level of security as the direct connection it is
still unacceptable. If this solution should ever become commercially viable SSL
should be used to encrypt tra�c and to provide authentication of the Relay-
Service. Another way to increase security is to require authentication with the
reverse proxy before access to the 2250WebServer is granted. There are several
ways of doing this:

1. Introduce state to the use of the reverse proxy based on sessions or to-
kens. These strategies compromises respectively the REST architecture
and requirement MH2 (page 17).

2. Use the Proxy-Authentication and Proxy-Authorization headers speci�ed
by the HTTP protocol. This violates the MH2 requirement.

When the additional security measures are implemented the communication to
and the use of the Web services can be regarded safe and commercially viable.
The security issues regarding cloud computing will be discussed in the following
section.

7.3 A RelayService Without Cloud

In this section it will by discussed why and how the RelayService can be realized
without utilizing a cloud computing platform.

The most prominent security risks related to cloud computing are Unauthorized
User Access and Malicious Insider, Geographical Data Location, Data Segrega-
tion and Availability. Even though Availability is important to strive after the
other three risks are the most relevant in this solution. Microsoft attempts to
mitigate these threat, as described in 3.2.4 Risk Mitigation in Windows Azure
and for a majority of cloud users the risk mitigation will be su�cient. One of the
major issues however is the Geographical Data Location where some customers
may be unsatis�ed with any data being stored in other countries or even simply
remote locations.

One way to avoid these risks is to use an alternative to cloud computing and
host the RelayService locally. This strategy will remove the bene�ts of cloud
computing but is technical possible. Two elements in the RelayService are cloud
speci�c. The worker role used to instantiate RelayServerControllers and the use
of the Service Bus. The WorkerRole can be removed by creating class with
a main method which at runtime creates RelayServerControllers with speci�c

7.4 Consistency, Availability, Partition-Tolerance and Scalability 117

IP endpoints. The use of the Service Bus is limited to the RelayServiceBa-
sic component. The interaction between the front end and back end happens
via the use of the IFrontendQueueHandler and IBackendQueueHandler. The
only class that use the Service Bus directly is the QueueHandler. The classes
FrontendQueueHandler and BackendQueueHandler inherits from this class. The
�exible solution provided by the abstract factory pattern enables creating new
subclasses of IFrontendQueueHandler and IBackendQueueHandler as well as a
new concrete IRelayServiceBasicFactory will allow a complete transition from
the Service Bus messaging to another message strategy. This could be a direct
connection between the front end and back end or a simple queue implementa-
tion if they coexist on the same server.

This shows how �exible the solution actually is and how easily the bene�ts of
cloud computing can be traded for local hosting and increased security.

7.4 Consistency, Availability, Partition-Tolerance

and Scalability

Throughout the design process scalability has been an important factor in the
design. This scalability has been supported by the two major technologies
RESTful Web services and Windows Azure. The two technologies are comple-
mentary and in all aspects independent. Scalability in RESTful Web services
come from the Cache constraint combined with the Layered System constraint.
This allows clients and intermediary nodes to use cache responses. Intermediary
nodes can however only send responses if the request and responses are unen-
crypted. In the StatusInterface caching is supported by supplying the ETag
header �eld. The scalability provided by Windows Azure comes from having
multiple instances of a given role, this is supported by the Statelessness con-
straint in REST which makes it unimportant what instance handles a given
request. This design choice is what allows the Windows Azure load balancer to
function.

In relation to horizontal scaling presented in 3.1.2 Scalability it is important
which units there should be scaled, when they should be scaled, and how they
are scaled. The identi�ed scaling units are the WebRole, the WorkerRole, SQL
Azure, and the Service Bus. The scalability of these units are described in table
7.4
Due to the software design and because the front end is stateless the decision
between C. A. or P. for the StatusInterface bounds in the choice of data storage.
The choice fell upon the SQL Azure storage which can be classi�ed as Consis-
tent and Partition-Tolerant. This choice was made not because Consistency was
weighted over Availability but rather because of the di�erences in functionality

118 Discussion

Scale Unit When and how
WebRole When: When CPU load or memory usage exceeds maxi-

mum, or when number of threads exceeds maximum.
How: Request additional instance in cloud manager or en-
able auto-scaling on the speci�ed parameters as explained
in 3.2.1 Execution Models.

WorkerRole When: When CPU load or memory usage exceeds maxi-
mum, or when number of tcp connections are exhausted
How: Request additional instance in cloud manager or en-
able auto-scaling on the speci�ed parameters as explained
in 3.2.1 Execution Models.

SQL Azure When: Load on database is too high.
How: Using SQL Azure federations where the database is
spread out on multiple federations as explained in 3.2.3.3
Azure SQL Database.

Service Bus When: Number of messages exceeds 2,000 messages per
second.
How: Create new Service Bus namespace and new Service
Bus

Table 7.4: Scalability matrix

and pricing between the two di�erent storage models.

The other aspect is what the reverse proxy can be categorised as. In chap-
ter 4 Components and Communication it was decided to maintain a constant
connection between the RelayClient and the RelayService. When the RelaySer-
vice was split into a back end and front end the connection was between the
RelayClient and a single instance of the back end. This single connection and
at any rate the single device classi�es this as Available and Consistent. This is
due to the very nature of the domain and is as such unchangeable.

If a database node fail occurs the StatusInterface can reach a situation where
requests will be ignored to preserve Consistency. If the 2250 fails or is o�ine the
requests will not reach the device and no response will be sent. The result is the
same in both scenarios, no useful response is received. The remote proxy should
not and can not be used for real time control of the 2250 and the StatusInterface
need not be up at all times (if it did the choice of data storage would be di�erent).
Therefore the fact that a useful response is not received is acceptable for the
solution and the choices made between C. A. and P. valid.

7.5 Evaluating Solution 119

7.5 Evaluating Solution

Based on the performance tests it is evident that the round trip time will increase
when using the RelayService as mediator, compared to a direct connection be-
tween the Customer and 2250. The increased time will especially be signi�cant
compared to a direct connection when the customer and 2250 are situated with
a short network distance and the RelayService is situated with a longer network
distance as evident in equation 7.4. The increased round trip time makes the
solution unsuitable for real time controlling of the device. But for other appli-
cations where time delay is less signi�cant the solution is still valid and it will
meet the NFR3 requirement.

Another limitation is the acceptable size of HTTP request and responses. The
solution uses the Service Bus to communicate between the front end and back
end. The Service Bus has limited message sizes as described in 3.2.2 Messaging.
The maximum message size is 256KB and therefore the solution cannot be
used to transfer large �les. However the interfaces that currently exist on the
2250WebServer do not de�ne resources of such large size. The solution is suitable
for the intended use, but any large data transfers require workarounds.

The proposed proof of concept prototype meets all the must have requirements
speci�ed in 2.2 Functional Requirements as well as all the non-functional re-
quirements from 2.3 Non-Functional Requirements which have been tested. The
solution provides access to 2550WebServers that are situated behind �rewalls
or do not have a public IP address. This allows customers to access their de-
vices from anywhere. Furthermore the solution allows customers to get a quick
overview of their devices and the status of these. As an added feature, the
RelayClient can act as a forward proxy and allow customers to access other
network devices on the local network. This only requires a minimum of added
implementation. Based on the ful�lment of requirements and the implementa-
tion quality the proof of concept prototype has been a success. In 8.3 Future
Work it will be discussed how the solution can be evolved from the prototype
state to a viable product.

120 Discussion

Chapter 8

Conclusion

This chapter contains the �ndings of and the overall conclusion for this project as
well as the future work. The chapter will compare the proof of concept solution
with the vision as well as the the problem statement and describe the objectives.
Based on these �ndings the overall conclusion will be made. The �ndings and
overall conclusion will be put into perspective by a section describing future
work.

8.1 Findings

In chapter 1 Introduction the vision and problem statement were de�ned. The
vision of this project is de�ned as the following:

The vision of this project is to provide a proof of concept proto-
type where the 2250 is remote controlled without it having a public
IP address. Creating devices that can be initialized and remote
controlled from anywhere in the world potentially reduces the time
spent on con�guring NMTs by B&K sta� and provides added value
for customers by providing remote control and access of a 2250. This
furthermore enables B&K to decouple the physical interface on the
2250 from the remote control interface enabling B&K to provide
faster and better ways of remote controlling a device o�-site.

122 Conclusion

In 1.5 The Problem the two major problems were identi�ed as:

1. Providing an overview and status of a registered 2250s for a customer

2. Providing access to 2250 potentially behind �rewalls/routers and with
inbound ports closed.

This thesis has described how both problems can be addressed by introducing
a central service hosted on the Windows Azure platform. The service provides
the StatusInterface as a RESTful Web service. This allows customers to get an
overview of registered devices, and provides reverse proxy functionality e�ec-
tively allowing a customer to access a device placed anywhere. In 1.5.2 Thesis
De�nition a set of objectives were chosen to quantify the di�erent aspects of the
development and design of such a solution. (Objectives ful�lled: 1).

2.1 State of the Art detailed the functionality of the existing solution and the
functionality of other state of the art solutions. The 10 must have 6 nice to
have and 6 non-functional requirements were identi�ed based on the described
functionality as well as the user scenarios introduced in 1.5 The Problem. Seven
use cases were designed which cover all must have requirements. (Objectives
ful�lled: 2, 3).

Chapter 3 Technology Analysis speci�ed the advantages of cloud computing, de-
�ned scalability, introduced the CAP theorem and identi�ed the Unauthorized
User Access and Malicious Insider, Geographical Data Location, Data Segrega-
tion, and Uptime security risks. Windows Azure was chosen as PaaS provider
for the RelayService in 3.1.4 Choice of Cloud Computing Category and Cloud
Provider. Windows Azure provides a platform designed to facilitate scalability
and the di�erent design options as well as risk mitigation were discussed. Win-
dows Azure does mitigate the majority of risks to a degree that is acceptable
by B&K and their customers. Out of SOAP, RESTful and WCF Web services
RESTful architecture was chosen for the new StatusInterface to keep a uniform
architecture across platforms. RESTful Web services mitigate identi�ed Web
service security risks by utilizing the underlying Web standards. (Objectives
ful�lled: 4, 5, 6, 7).

In chapter 4 Components and Communication it was speci�ed how addressing
the device in the host �eld allowed the relative path to a resource to remain the
same on the device and the reverse proxy. The Tunnel strategy was chosen as
communication strategy between RelayClient and RelayServer and a proprietary
protocol for the communication was detailed. (Objectives ful�lled: 8, 9).

8.2 Overall Conclusion 123

In chapter 5 RelayClient the behaviour of the RelayClient prototype has been
de�ned. The implementation, and design including the Abstract Factory, Single-
ton and Observer patterns. A implementation was chosen were the RelayClient
could act as a forward proxy. (Objectives ful�lled: 10, 11).

In the chapter 6 RelayService it was chosen to separate the RelayService into a
front end (WebRole) and a back end (WorkerRole) to increase scalability. The
Service Bus topic/subscription was chosen as a message system for communica-
tion between the two. The StatusInterface has been developed honouring the
REST constraints. SQL Azure storage was chosen as persistent memory for
the StatusInterface due to the increased functionality and more suitable pricing
model. (Objectives ful�lled: 9, 10, 11).

In the chapter 7 Discussion security, use of cloud computing, combination of
cloud computing and REST, CAP theorem related to the prototype, and eval-
uation of design were discussed. It was determined that the security o�ered by
the prototype was insu�cient and it was speci�ed how it could be improved. It
was also determined how the RelayService could be hosted in-house to mitigate
cloud computing security risks. Furthermore it was established that REST ar-
chitecture facilitates the horizontal scaling in Windows Azure. In relation to the
CAP theorem it was established that the reverse proxy focusses on CA while the
StatusInterface focusses on CP. The design evaluation showed strengths as well
as shortcomings of the prototype, one of the most evident shortcomings is the
increased latency making it un�t for time critical remote controlling. The two
most evident pros are that it allows access to device regardless of �rewalls and
inbound port settings, and that it facilitates a new user interface independent
of the physical appearance of the device. Based on acceptance tests it is con-
cluded that all must have requirements have been met. Some nice to have and
non-functional requirements were not tested as they required long term testing
or multiple 2250s or customers (in the thousands). (Objectives ful�lled: 12, 13).

8.2 Overall Conclusion

Based on the �ndings in this thesis it can be concluded that it is possible to
relay tra�c via a central service and facilitate communication when both parties
have private IP addresses or are behind �rewalls. It can also be concluded that
it is possible to maintain a status for each device on the central service so that
customers can get a quick overview. The solution does need further work to
be commercially viable which will be discussed in 8.3 Future Work, the aspect
regarding a new remote control interface will also be discussed brie�y. As a
whole it can be concluded that the proof of concept prototype and the project
as a whole is a success.

124 Conclusion

8.3 Future Work

The future work describes the remaining development necessary before the so-
lution can be regarded as commercially viable.

As discussed in 7.2 Security the security in the prototype is at an unsatisfac-
tory level. Implementing encryption and two way authentication will be one
of the steps in convincing users of the security of the solution and becoming
commercially viable.

The RelayClient is currently a proof of concept prototype. This client has
strict requirements in regards to memory and CPU use as requirement NFR5
expresses. While the current RelayClient is fully functional it is a requirement
that the code should be revised and optimized even further. In combination
with this the RelayClient should be integrated better in the BasicEnv to ensure
on the �y shut down and start up of the RelayClient when software and �rmware
upgrades are in progress.

In 7.5 Evaluating Solution it was established that the increased latency made
the solution un�t for time critical remote controlling. One way to reduce load
on the RelayService, provide a faster round trip time and to enhance the user
interface would be to create a new REST client for accessing the RemoteAPI and
the StatusInterface. This REST client should provide a GUI that is separated
from the GUI on the 2250 and be designed for remote controlling via a RESTful
Web service and take into account the strengths and weaknesses such a design
has. This could also provide value for the customers as mentioned in 1.4 Vision.

To validate the solution large scale and long term tests should be designed to
stress test the solution as well as verify that it behaves correctly over a longer
period of time. This would validate NH3, NH3 and NFR4 which could not
be establushed in 7.1.1 Functionality Acceptance Test and 7.1.2 Performance
Acceptance Test. Keep in mind that the RelayClient will be running for long
time periods and the 2250 may be placed far from the o�ce location. A crash
of the RelayClient would require physical presence to restart.

After the above issues have been addressed it is time to consider how this solution
�ts in the B&K roadmap. Designing the extend of the use and the further focus
areas is not easy in an environment with multiple stakeholders and con�icting
interests. The software design itself is beautifully isolated from the rest of the
software and admirably simple. From a technical point of view there is nothing
to hinder for the application being integrated into other B&K products like the
Lan-XI modules.

Appendix A

Use Cases

126 Use Cases

A.0.1 Use Case: Authenticate 2250

Authenticate 2250
Actor 2250
Preconditions None
Postconditions None
Success End Condition 2250 has received positive authentication response
Failed End Condition 2250 has received negative or no authentication re-

sponse
Main path (M)

1. 2250 sends authentication request to relay ser-
vice

2. RelayService receives authentication request

3. RelayService processes authentication request

4. RelayService sends positive authentication re-
sponse

5. 2250 receives authentication response

Extensions 2a RelayService does not receive authentication
request

2a1 2250 waits a given interval and restarts at step
1

4a RelayService sends negative response

5a 2250 does not receive authentication response

5a1 2250 waits a given interval and restarts at step
1

127

A.0.2 Use Case: Authenticate Customer

Authenticate Customer
Actor Customer
Preconditions None
Postconditions None
Success End Condition Customer has received positive authentication re-

sponse
Failed End Condition Customer has received negative or no authentication

response
Main path (M)

1. Customer sends authentication request to sys-
tem

2. RelayService receives authentication request

3. RelayService processes authentication request

4. RelayService sends positive authentication re-
sponse

5. Customer receives authentication response

Extensions 2a RelayService does not receive authentication
request

4a RelayService send negative response

5a Customer does not receive authentication re-
sponse

128 Use Cases

A.0.3 Use Case: Register 2250

Register 2250
Actor Customer
Precondition Customer is authenticated
Postcondition
Success End Condition 2250 is registered to Customer
Failed End Condition 2250 is not registered to Customer
Main path (M)

1. Customer sends register request to RelaySer-
vice

2. RelayService receives register request

3. RelayService veri�es the content of the register
request

4. RelayService registers 2250 to customer

5. RelayService sends positive register response to
customer

6. Customer receives register response

Extensions 2a RelayService does not receive register request

3a RelayService cannot verify the content of the
register request

3a1 RelayService sends negative register response
to customer

6a Customer does not receive authentication re-
sponse

129

A.0.4 Use Case: See 2250 Status

See 2250 status
Actor Customer
Precondition Customer is authenticated.
Postcondition
Success End Condition Customer has received 2250 status
Failed End Condition Customer has not received 2250 status
Main path (M)

1. Customer requests to see status of a 2250

2. RelayService receives request

3. RelayService validates that customer owns the
2250

4. RelayService responds with 2250 status

5. Customer receives response

A.0.5 Use Case: Unstable Network

130 Use Cases

Appendix B

Screenshots of
StatusInterface text/html

Representation

Figure B.1: Screen shot of the StatusInterface login. Non UML.

132 Screenshots of StatusInterface text/html Representation

Figure B.2: Screen shot of the StatusInterface showing an overview of the
customer and his registered devices. Non UML.

Figure B.3: Screen shot of the StatusInterface showing the registered devices
for a customer and allowing the customer to register a new device.
Non UML.

133

Figure B.4: Screen shot of the StatusInterface showing the status of a single
device. Non UML.

134 Screenshots of StatusInterface text/html Representation

Appendix C

Unit and Integration Tests

136 Unit and Integration Tests

Figure C.1: Screen shot of the Communication tests. Non UML.

137

Figure C.2: Screen shot of the CustomHttp tests. Non UML.

138 Unit and Integration Tests

Figure C.3: Screen shot of the RelayServiceBasic tests. Non UML.

Figure C.4: Screen shot of the reverse proxy tests. Non UML.

139

Figure C.5: Screen shot of the StatusInterface tests. Non UML.

140 Unit and Integration Tests

Appendix D

Performance Test Data

Below is a excerpt of the measured data. The remaining data is available digi-
tally.

142 Performance Test Data

No. DNS lookup Blocked Connecting Sending Waiting Receiving

1 0 0 0 0 444 10

2 0 0 0 0 440 20

3 0 0 0 0 440 20

4 0 0 0 0 440 20

5 0 0 0 0 440 20

6 0 0 0 0 440 20

7 0 0 0 0 450 10

8 0 0 10 0 440 10

9 0 0 0 0 440 20

10 0 0 10 0 430 20

11 0 0 0 0 440 20

12 0 0 0 0 440 20

13 0 0 0 0 440 20

14 0 0 0 0 440 20

15 0 0 0 0 440 20

16 0 0 0 0 440 20

17 0 0 0 0 440 20

18 0 0 10 0 440 10

19 0 0 0 0 450 10

20 0 0 0 0 450 10

21 0 0 0 0 440 20

22 0 0 0 0 440 20

23 0 0 0 0 440 20

24 0 0 0 0 440 20

25 0 0 0 0 450 10

26 0 0 10 0 440 10

27 0 0 0 0 440 20

28 0 0 0 0 440 20

29 0 0 0 0 450 10

30 0 0 10 0 440 10

...

Table D.1: Data from direct connection in sorted order.

143

No. DNS lookup Blocked Connecting Sending Waiting Receiving

1 0 0 40 0 1210 50

2 0 0 40 0 1220 50

3 0 0 40 0 1240 40

4 0 0 40 0 1290 40

5 0 0 40 0 1300 50

6 0 0 40 0 1310 50

7 10 0 40 0 1320 40

8 0 0 40 0 1330 40

9 10 0 40 0 1350 50

10 0 0 50 0 1360 40

11 0 10 40 0 1360 40

12 0 0 50 0 1370 40

13 0 0 40 0 1370 50

14 10 0 40 0 1380 40

15 10 0 40 0 1380 40

16 0 0 40 0 1390 40

17 0 0 40 0 1390 50

18 0 0 110 0 1320 50

19 0 0 40 0 1400 40

20 0 0 50 0 1385 50

21 0 0 40 0 1400 50

22 0 0 40 0 1410 40

23 0 0 40 0 1410 50

24 0 0 50 0 1410 40

25 0 0 40 0 1410 50

26 0 0 40 0 1420 40

27 0 0 40 0 1410 50

28 0 0 40 0 1420 50

29 0 0 40 0 1440 40

30 0 0 50 0 1420 50

...

Table D.2: Data from RelayService connection in sorted order.

144 Performance Test Data

Bibliography

[1] Michael Armbrust et al. �A view of cloud computing�. In: Commun. ACM
53.4 (Apr. 2010), pp. 50�58. issn: 0001-0782. doi: 10.1145/1721654.
1721672. url: http://doi.acm.org/10.1145/1721654.1721672.

[2] Walter Wayne Berry et al. Inside SQL Azure. url: http://social.
technet.microsoft.com/wiki/contents/articles/1695.inside-

sql-azure.aspx.

[3] André B. Bondi. �Characteristics of scalability and their impact on per-
formance�. In: Proceedings of the 2nd international workshop on Software
and performance. Association for Computing Machinery, 2000, pp. 195�
203. isbn: 158113195X.

[4] Engin Bozdag, Ali Mesbah, and Arie van Deursen. �A comparison of push
and pull techniques for AJAX�. English. In: WSE 2007: NINTH IEEE
INTERNATIONAL SYMPOSIUM ON WEB SITE EVOLUTION, PRO-
CEEDINGS. Ed. by Huang, S and DiPenta, M. 9th IEEE International
Symposium on Web Site Evolution, Paris, FRANCE, OCT 05-06, 2007.
IEEE Comp Soc; PCOST; FAU; Queens Univ. 10662 LOS VAQUEROS
CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA: IEEE
COMPUTER SOC, 2007, 15�22. isbn: 978-1-4244-1450-5.

[5] Brüel and Kjær. Hand-held Analyzer Types 2250 and 2270: Product Data.
User Manual, Brüel and Kjær. Version BP 2025 � 18. 2012.

[6] Brüel and Kjær. Noise Monitoring Terminal Types 3639-A, 3639-B and
3639-C with Hand-held Analyzer Type 2250. User Manual, Brüel and Kjær.
Version English BE 1818 � 15. 2012.

[7] Eric Brewer. �CAP Twelve Years Later: How the �Rules� Have Changed�.
English. In: COMPUTER 45.2 (2012), 23�29. issn: 0018-9162.

http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://social.technet.microsoft.com/wiki/contents/articles/1695.inside-sql-azure.aspx
http://social.technet.microsoft.com/wiki/contents/articles/1695.inside-sql-azure.aspx
http://social.technet.microsoft.com/wiki/contents/articles/1695.inside-sql-azure.aspx

146 BIBLIOGRAPHY

[8] Eric Brewer and Armando Fox. �Harvest, yield, and scalable tolerant sys-
tems�. In: Proceedings of the 7th Workshop on 15 Hot Topics in Operating
Systems. Iee, 1999, pp. 174�178. isbn: 0769502377.

[9] Eric A. Brewer. Towards Robust Distributed Systems. Keynote at ACM
Symposium on the Principles of Distributed Computing. Slides available
online (12 pages). 2000. url: http://www.cs.berkeley.edu/~brewer/
cs262b-2004/PODC-keynote.pdf.

[10] Julian Brown. Brewer's CAP Theorem, The kool aid Amazon and Ebay
have been drinking. url: http://www.julianbrowne.com/article/
viewer/brewers-cap-theorem.

[11] Bruel and Kjær. Brüel & Kjær Company Website. http://www.bksv.
com/AboutUs/AboutBruelAndKjaer.aspx.

[12] Andrew J. Brust. NoSQL and the Windows Azure platform Investiga-
tion of an Unlikely Combination. White paper, Microsoft Corporation.
Available online (28 pages). 2011. url: http://download.microsoft.
com/download/9/E/9/9E9F240D- 0EB6- 472E- B4DE- 6D9FCBB505DD/

WindowsAzureNoSQL%20WhitePaper.pdf.

[13] Brad Calder et al. �Windows Azure Storage: A Highly Available Cloud
Storage Service with Strong Consistency�. English. In: SOSP 11: PRO-
CEEDINGS OF THE TWENTY-THIRD ACM SYMPOSIUM ON OP-
ERATING SYSTEMS PRINCIPLES. 23rd ACM Symposium on Operat-
ing Systems Principles (SOSP 2011), Cascais, PORTUGAL, OCT 23-26,
2011. ACM SIGOPS; INESC ID. 1515 BROADWAY, NEW YORK, NY
10036-9998 USA: ASSOC COMPUTING MACHINERY, 2011, 143�157.
isbn: 978-1-4503-0977-6.

[14] Roy T. Fielding. �Architectural Styles and the Design of Network-based
Software Architectures�. PhD thesis.

[15] Roy. T Fielding. Re: [rest-discuss] REST-*. url: http://tech.groups.
yahoo.com/group/rest-discuss/message/13266.

[16] Roy T. Fielding and Richard N. Taylor. �Principled design of the modern
Web architecture�. In: ACM Trans. Internet Technol. 2.2 (May 2002),
pp. 115�150. issn: 1533-5399. doi: 10.1145/514183.514185. url: http:
//doi.acm.org.globalproxy.cvt.dk/10.1145/514183.514185.

[17] Roy T. Fielding et al. Hypertext Transfer Protocol � HTTP/1.1. 1999.
url: http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[18] Martin Fowler. UML Distilled Third Edition: A Brief Guide to the Stan-
dard Object Modelling Language. Pearson Education Limited, 2004. isbn:
0321193687.

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.bksv.com/AboutUs/AboutBruelAndKjaer.aspx
http://www.bksv.com/AboutUs/AboutBruelAndKjaer.aspx
http://download.microsoft.com/download/9/E/9/9E9F240D-0EB6-472E-B4DE-6D9FCBB505DD/Windows Azure No SQL%20White Paper.pdf
http://download.microsoft.com/download/9/E/9/9E9F240D-0EB6-472E-B4DE-6D9FCBB505DD/Windows Azure No SQL%20White Paper.pdf
http://download.microsoft.com/download/9/E/9/9E9F240D-0EB6-472E-B4DE-6D9FCBB505DD/Windows Azure No SQL%20White Paper.pdf
http://tech.groups.yahoo.com/group/rest-discuss/message/13266
http://tech.groups.yahoo.com/group/rest-discuss/message/13266
http://dx.doi.org/10.1145/514183.514185
http://doi.acm.org.globalproxy.cvt.dk/10.1145/514183.514185
http://doi.acm.org.globalproxy.cvt.dk/10.1145/514183.514185
http://www.w3.org/Protocols/rfc2616/rfc2616.html

BIBLIOGRAPHY 147

[19] Armando Fox et al. �Cluster-based scalable network services�. In: SIGOPS
Oper. Syst. Rev. 31.5 (Oct. 1997), pp. 78�91. issn: 0163-5980. doi: 10.
1145/269005.266662. url: http://doi.acm.org/10.1145/269005.
266662.

[20] J. Franks et al. HTTP Authentication: Basic and Digest Access Authenti-
cation, RFC 2617. 1999. url: http://www.w3.org/Protocols/rfc2616/
rfc2616.html.

[21] Svend Gade. A Brüel and Kjær History Lesson Short Version. url: http:
//www.blnz.com/news/2008/10/07/Br\%C3\%BCel_Kj\%C3\%A6r_

History_Lesson_Short_4921.html.

[22] Erich Gamma et al.Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley Longman, Inc., 1995. isbn: 0201633612.

[23] Seth Gilbert and Nancy Lynch. �Brewer's Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services�. In: (2002). url:
www.gartner.com/id=685308.

[24] H. Haas, A. Brown, and Group. Web Services Glossary. 2004. url: http:
//www.w3.org/TR/2004/NOTE-ws-gloss-20040211.

[25] Jay Heiser and Mark Nicolett. �Assessing the Security Risks of Cloud
Computing�. In: (2008). doi: G00157782. url: www.gartner.com/id=
685308.

[26] LogMeIn Inc. LogMeIn Security: An In-Depth Look. White paper, Log-
MeIn. Available online (22 pages). 2012. url: https://secure.logmein.
com/welcome/documentation/EN/pdf/common/LogMeIn_SecurityWhitepaper.

pdf.

[27] Jason. BizCloud Overview of Top 10 Security Threats of Cloud Computing.
url: http://bizcloudnetwork.com/bizcloud-overview-of-top-10-
security-threats-of-cloud-computing.

[28] John Joyner. Windows Azure Web, Worker, and VM roles demysti�ed.
url: http://www.techrepublic.com/blog/networking/windows-
azure-web-worker-and-vm-roles-demystified/4017.

[29] Nicholas Kolakowski. Microsoft Windows Azure Downtime Blamed on
Leap Year Bug. url: http : / / www . eweek . com / c / a / Enterprise -

Applications / Microsoft - Windows - Azure - Downtime - Blamed - on -

Leap-Year-Bug-707169/.

[30] Josts Engineering Co Ltd. Brüel & Kjær announces the acquisition of
Australian company Lochard Ltd. with the intention of providing customers
with world-class Environment Management Solutions. url: http://www.
indiaprwire.com/pressrelease/defense/2009062828362.htm.

[31] Microsoft. Push Noti�cations Overview for Windows Phone. url: http:
//msdn.microsoft.com/en-us/library/ff402558(v=vs.92).aspx.

http://dx.doi.org/10.1145/269005.266662
http://dx.doi.org/10.1145/269005.266662
http://doi.acm.org/10.1145/269005.266662
http://doi.acm.org/10.1145/269005.266662
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.blnz.com/news/2008/10/07/Br\%C3\%BCel_Kj\%C3\%A6r_History_Lesson_Short_4921.html
http://www.blnz.com/news/2008/10/07/Br\%C3\%BCel_Kj\%C3\%A6r_History_Lesson_Short_4921.html
http://www.blnz.com/news/2008/10/07/Br\%C3\%BCel_Kj\%C3\%A6r_History_Lesson_Short_4921.html
www.gartner.com/id=685308
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211
http://dx.doi.org/G00157782
www.gartner.com/id=685308
www.gartner.com/id=685308
https://secure.logmein.com/welcome/documentation/EN/pdf/common/LogMeIn_SecurityWhitepaper.pdf
https://secure.logmein.com/welcome/documentation/EN/pdf/common/LogMeIn_SecurityWhitepaper.pdf
https://secure.logmein.com/welcome/documentation/EN/pdf/common/LogMeIn_SecurityWhitepaper.pdf
http://bizcloudnetwork.com/bizcloud-overview-of-top-10-security-threats-of-cloud-computing
http://bizcloudnetwork.com/bizcloud-overview-of-top-10-security-threats-of-cloud-computing
http://www.techrepublic.com/blog/networking/windows-azure-web-worker-and-vm-roles-demystified/4017
http://www.techrepublic.com/blog/networking/windows-azure-web-worker-and-vm-roles-demystified/4017
http://www.eweek.com/c/a/Enterprise-Applications/Microsoft-Windows-Azure-Downtime-Blamed-on-Leap-Year-Bug-707169/
http://www.eweek.com/c/a/Enterprise-Applications/Microsoft-Windows-Azure-Downtime-Blamed-on-Leap-Year-Bug-707169/
http://www.eweek.com/c/a/Enterprise-Applications/Microsoft-Windows-Azure-Downtime-Blamed-on-Leap-Year-Bug-707169/
http://www.indiaprwire.com/pressrelease/defense/2009062828362.htm
http://www.indiaprwire.com/pressrelease/defense/2009062828362.htm
http://msdn.microsoft.com/en-us/library/ff402558(v=vs.92).aspx
http://msdn.microsoft.com/en-us/library/ff402558(v=vs.92).aspx

148 BIBLIOGRAPHY

[32] Microsoft. Service Level Agreements. url: https://www.windowsazure.
com/da-dk/support/legal/sla/.

[33] Valery Mizonov and Seth Manheim.Windows Azure Queues and Windows
Azure Service Bus Queues - Compared and Contrasted. url: http://
msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx.

[34] MKNZ. Azure Storage, BASE and ACID. url: http://convective.
wordpress.com/2009/07/13/azure-storage-base-and-acid/.

[35] Michael P. Papazoglou. Web services: Principles and Technology. Pearson
Education Limited, 2007. isbn: 9780321155559.

[36] Murali Manohar Pareek. WCF (Windows Communication Foundation)
Introduction and Implementation. 2008. url: http://www.codeproject.
com / Articles / 30374 / WCF - Windows - Communication - Foundation -

Introduction.

[37] Doug Purdy and Je�rey Richter. Exploring the Observer Design Pattern.
url: http://msdn.microsoft.com/en-us/library/ee817669.aspx.

[38] Rest-*. url: http://www.jboss.org/reststar.

[39] Je�rey Richter. Understanding Cloud Storage. url: http://www.windowsazure.
com/en-us/develop/net/fundamentals/cloud-storage/.

[40] Aaron Skonnard. A Developer's Guide to Service Bus in Windows Azure
platform AppFabric. White paper, Microsoft Corporation. Available online
(50 pages). 2009. url: http://go.microsoft.com/fwlink/?LinkID=
150834.

[41] Ishpreet Singh Virk and Raman Maini. �Cloud Computing: Windows
Azure Platform�. In: Journal of Global Research in Computer Science 3.1
(2012), pp. 74�76. issn: 2229-317x.

[42] Erik Wilde and Cesare Pautasso, eds. REST: From Research to Practice.
1st Edition. Springer, Aug. 2011. isbn: 9781441983022. url: http://
amazon.com/o/ASIN/1441983023/.

https://www.windowsazure.com/da-dk/support/legal/sla/
https://www.windowsazure.com/da-dk/support/legal/sla/
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://convective.wordpress.com/2009/07/13/azure-storage-base-and-acid/
http://convective.wordpress.com/2009/07/13/azure-storage-base-and-acid/
http://www.codeproject.com/Articles/30374/WCF-Windows-Communication-Foundation-Introduction
http://www.codeproject.com/Articles/30374/WCF-Windows-Communication-Foundation-Introduction
http://www.codeproject.com/Articles/30374/WCF-Windows-Communication-Foundation-Introduction
http://msdn.microsoft.com/en-us/library/ee817669.aspx
http://www.jboss.org/reststar
http://www.windowsazure.com/en-us/develop/net/fundamentals/cloud-storage/
http://www.windowsazure.com/en-us/develop/net/fundamentals/cloud-storage/
http://go.microsoft.com/fwlink/?LinkID=150834
http://go.microsoft.com/fwlink/?LinkID=150834
http://amazon.com/o/ASIN/1441983023/
http://amazon.com/o/ASIN/1441983023/

	Summary (English)
	Summary (Dansk)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Brüel & Kjær
	1.2 Hand-held Analyser Type 2250
	1.3 Noise Monitoring Terminal
	1.4 Vision
	1.5 The Problem
	1.5.1 Scenarios
	1.5.2 Thesis Definition

	1.6 Methodology
	1.7 Outline

	2 Analysis
	2.1 State of the Art
	2.1.1 RemoteAPI and Browser Interface
	2.1.2 LogMeIn
	2.1.3 Microsoft Push Notification Service
	2.1.4 Azure Service Bus and Windows Communication Foundation
	2.1.5 Functionality Overview

	2.2 Functional Requirements
	2.3 Non-Functional Requirements
	2.4 Use Cases
	2.5 Use Case Coverage
	2.6 Domain Analysis
	2.6.1 Device/2250
	2.6.2 Customer
	2.6.3 Registration
	2.6.4 2250WebServer
	2.6.5 User Account
	2.6.6 Preferences
	2.6.7 Setup
	2.6.8 Data
	2.6.9 Status
	2.6.10 Browser Interface
	2.6.11 RemoteAPI
	2.6.12 RelayService
	2.6.13 RelayClient

	2.7 Mockups
	2.8 Chapter Summary

	3 Technology Analysis
	3.1 Cloud Computing
	3.1.1 Cloud Computing Categories
	3.1.2 Scalability
	3.1.3 Security Risks in Cloud Computing
	3.1.4 Choice of Cloud Computing Category and Cloud Provider

	3.2 Windows Azure
	3.2.1 Execution Models
	3.2.2 Messaging
	3.2.3 Data Management
	3.2.4 Risk Mitigation in Windows Azure

	3.3 Web Services
	3.3.1 SOAP
	3.3.2 REST
	3.3.3 Windows Communication Foundation
	3.3.4 Choice of Web Service technology

	3.4 REST in depth
	3.4.1 Client Server
	3.4.2 Addressability
	3.4.3 Statelessness
	3.4.4 Uniform Interface
	3.4.5 Connectedness
	3.4.6 Layered System
	3.4.7 Cache
	3.4.8 Web Service Security
	3.4.9 REST Security

	3.5 Chapter Summary

	4 Components and Communication
	4.1 Component Design
	4.2 Overall Communication
	4.2.1 Addressable Devices

	4.3 Communication between RelayClient and RelayService
	4.3.1 Polling
	4.3.2 Tunnel
	4.3.3 Push Notification
	4.3.4 Choice of Communication Strategy

	4.4 RelayService and RelayClient Detailed Communication Protocol
	4.4.1 Packet Types
	4.4.2 Packet Structure

	4.5 Chapter Summary

	5 RelayClient
	5.1 Behaviour
	5.2 Design
	5.2.1 Communication
	5.2.2 ClientCommunication
	5.2.3 CustomHttp
	5.2.4 RelayClient
	5.2.5 Detailed Behaviour

	5.3 Implementation
	5.3.1 Quirks of The Embedded Platform
	5.3.2 RelayClient a Generic Proxy
	5.3.3 Integrating in BasicEnv

	5.4 Chapter Summary

	6 RelayService
	6.1 Choosing an Execution Model
	6.1.1 Choosing a Messaging system
	6.1.2 RelayServiceBasic Design

	6.2 RelayServiceBackend Design and Implementation
	6.2.1 RelayServiceBackend Implementation

	6.3 StatusInterface Design and Implementation
	6.3.1 Choosing Storage Type

	6.4 Frontend Design and Implementation
	6.5 Chapter Summary

	7 Discussion
	7.1 Validating the Solution
	7.1.1 Functionality Acceptance Test
	7.1.2 Performance Acceptance Test

	7.2 Security
	7.3 A RelayService Without Cloud
	7.4 Consistency, Availability, Partition-Tolerance and Scalability
	7.5 Evaluating Solution

	8 Conclusion
	8.1 Findings
	8.2 Overall Conclusion
	8.3 Future Work

	A Use Cases
	A.0.1 Use Case: Authenticate 2250
	A.0.2 Use Case: Authenticate Customer
	A.0.3 Use Case: Register 2250
	A.0.4 Use Case: See 2250 Status
	A.0.5 Use Case: Unstable Network

	B Screenshots of StatusInterface text/html Representation
	C Unit and Integration Tests
	D Performance Test Data
	Bibliography

