
Generating multi player maps
through multi objective evolution

Tómas Guðmundsson

Kongens Lyngby 2012
IMM-MSC-2012-115

Master’s thesis
Copenhagen, October 11, 2012
Supervisors : Michael Rose, Lektor, mir@imm.dtu.dk, DTU.

Julian Togelius, Associate Professor, julian@togelius.com, ITU.

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-MSC-2012-115

Abstract

In this project, the following research question is set forth: is it possible to create fair
maps for a video game using multi objective evolution algorithms? A description of
the video game used for this project, Civilization V, is provided as well as an overview
of other map generation methods, and research being done in the field of procedural
content generation. A definition for what is fair is made and expressed through
functions, that evaluate maps for the video game Civilization V. These evaluation
functions express five distinct perspectives on how fair maps are perceived. The
fitness functions are designed to conflict as little as possible with each other. A
method is defined as to how this theory is applied in practice to generate maps for
Civilization V. The evaluation functions are applied on maps from the game’s map
generation method, and compared to maps that have been evolved with the method
provided by this project.

ii

Summary

I dette projekt er følgende problemformulering fremsat: er det muligt at skabe ret-
færdige baner til et videospil, ved brug af ‘multi objective evolution’ algoritmer?
Vedlagt er en beskrivelse af videospillet anvendt i dette projekt, Civilization V, samt
et overblik over andre metoder til generering af baner, ligeledes er forskning indenfor
feltet ‘procedural content generation’ vedlagt. En definition af hvad der forst̊as ved
retfærdige baner er fremstillet og udtrykt gennem funktioner, der evaluerer baner
til videospillet Civilization V. Evalueringsfunktionerne udtrykker fem distinktive per-
spektiver p̊a hvad der forst̊as ved retfærdige baner, samtidig med at der stræbes
efter mindst mulige uoverensstemmelser. Defineret er en metode til, hvordan denne
teori anvendes til at generere baner i praksis i Civilization V. Evalueringsfunktion-
erne er anvendt p̊a baner fra spillets metode til banegenerering og sammenlignet
med baner genereret af den førnævnte metode.

iv

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfilment of the requirements for acquiring the
M.Sc. degree in computer science and engineering.

This project focuses primarily on evolutionary algorithms. A method is created for
this purpose that uses fitness functions and a cascading elitism evolutionary strategy.
The fitness functions are also used to evaluate maps that have been created with
this method or from the video game Civilization V. A map generating technique is
also introduced which uses a variation of brush drawing.

This project is based on research performed in the procedural content generation
research field, computational intelligence field and evolutionary algorithms. This
project is heavily influenced by the work done by Julian Togelius, Georgios Yan-
nakakis et. al.

Lyngby, October 2012

Tómas Guðmundsson

vi

List of Figures

2.1 A screenshot of a typical start in Civilization V using the Earth map.
A river starts from player starting position and floats to the sea. . . 6

2.2 A screenshot of resource diversity and iron distribution between two
capitals. 7

2.3 A screenshot of a game that is in turn 219, demonstrating resource
distribution between cities and improvements. 8

4.1 Algorithm for fitness function continental connectivity. 18
4.2 Algorithm for fitness function distance between teams. 18
4.3 Algorithm for assigning resources. 19
4.4 Algorithm for counting unique resources. 20
4.5 Algorithm for fitness function that counts strategic resource distri-

bution. 21
4.6 Algorithm for fitness function averaging player throughput. 21
4.7 Algorithm for getting total throughput 22

5.1 Pattern one. A top and bottom row of that span quarter each of
the height of the Plains terrain. The middle half is Tundra terrain. . 25

5.2 Pattern two. Top left quadrant consists of Grassland terrain while
top right and bottom loft consist of Hills. The bottom right is
transparent and does not modify the terrain that was there before,
here it was and will stay as Ocean. 25

5.3 Pattern three. A Grassland pattern with two lines of Mountain that
are one tile away from the bottom and top height. 25

5.4 Pattern four. A pattern filled with Tundra terrain that gets padded
with Snow and then Coastal lines on both the top and bottom parts. 26

5.5 Pattern five. A mixture of Grassland terrain (green), Plains terrain
(brown) and Tundra terrain (grey). 26

viii LIST OF FIGURES

5.6 Pattern six. A mixture of Desert terrain (yellow), Hill terrain (grey,
black font) and Tundra terrain (grey, white font). 26

5.7 Pattern seven. A Mountain ridge on top followed by Hills. 27
5.8 Pattern eight. Desert strip on the left and Tundra strip on the right

filled up in the middle by Plains terrain. 27
5.9 Pattern nine. Each corner filled up with Mountain terrain while the

rest is filled up by Desert terrain. 27
5.10 Pattern ten. Each corner filled up with Hills terrain while the rest is

filled up by Grassland terrain. 28

6.1 Evaluations of the Archipelago method 34
6.2 Evaluations of the Fractal method 34
6.3 Evaluation of the Skirmish method 35
6.4 Evaluation of the West vs. East method 35
6.5 Graph of the average of the population from five evolution runs . . 37
6.6 Graph of the standard deviation of the population from five evolution

runs . 38
6.7 Evolution with genome size 40, out of 30 individuals after 50 itera-

tions, with total map throughput of 3300 39
6.8 Evolution with genome size 40, out of 30 individuals after 40 itera-

tions, with total map throughput of 4557 40
6.9 Evolution with genome size 40, out of 30 individuals after 40 itera-

tions, with total map throughput of 4049 41
6.10 Evolution with genome size 40, out of 10 individuals after 30 itera-

tions, with total map throughput of 3549 42

List of Tables

5.1 Order of importance of fitness functions 32

6.1 Average evaluations over 10 maps for each method. 34
6.2 Improvement and deterioration of genotypes, fitness values are from

the individual used for mutation. 36
6.3 Four results from different runs. Gsz stands for genome size, pop

for population and iter for iterations. 37
6.4 Averages for each fitness value from five different runs. 37
6.5 Standard deviation of a population from five different runs. 38

A.1 All terrains in Civilization V . 50

B.1 All bonus resources in Civilization V 51
B.2 All strategic resources in Civilization V 51
B.3 All luxury resources in Civilization V 52

C.1 All features in Civilization V . 54

D.1 All Civilization V map methods, part one. 56
D.2 All Civilization V map methods, part two 57
D.3 Parameters for Civilization V map methods 58

x LIST OF TABLES

Contents

Abstract i

Summary iii

Preface v

1 Introduction 1
1.1 Problem statement . 2
1.2 Thesis structure . 2

2 Civilization V 5
2.1 Game Description . 6
2.2 Civilization V Map Generating Methods 8
2.3 Partial representation Civilization V 10

3 Techniques 11
3.1 Map generation techniques . 12
3.2 Procedural content generation techniques 12
3.3 Technique chosen for this project 14

4 Fitness functions 17
4.1 Continental connectivity f0 . 17
4.2 Distance between teams f1 . 18
4.3 Resource assignment fa . 19
4.4 Unique resource distribution f2 . 19
4.5 Strategic resource distribution f3 20
4.6 Average player throughput f4 . 20
4.7 Total value of a map fe . 22

xii CONTENTS

5 Representation 23
5.1 Genotype . 23
5.2 Genotype-to-Phenotype phase . 29
5.3 Evolutionary Algorithm . 30

6 Results 33
6.1 Civilization V maps . 33
6.2 Genotype mutation . 36
6.3 Evolution . 36

7 Discussion 43

8 Conclusions 47
8.1 Future work . 47

A Terrain 49

B Resources 51

C Features 53

D Map generation methods 55

Chapter 1

Introduction

Is it possible to develop an algorithmic method for designing levels, that provides for
an interesting yet balanced game-play in a video game? Video games are as varied
as they are many. Thus applying broad terms like balanced and fair is in and of
itself a vague description. Chess is a good example of a game that is unbiased and
fair, with each player starting with the same amount of pieces, where each piece
has the same ability for both players. Chess is also a good example of how, with
enough time and practice, players can become more skilled than others. Games can
be a form of entertainment and if they do not entertain us we are less likely to play
them. Games that are unfair or biased to some players, may risk that the these
players would not want to play that game. It must thus be a goal of game designers
to ensure their games are fair and balanced.

What does it mean for a game to be fair and balanced? A fair and balanced game
can be described as when every player has an equal chance of achieving victory.
When there are no competing sides, such as in puzzles, the balancing moves from
player versus player to player versus game. In genres like first person shooters, rac-
ing, sports and real-time strategy, it is possible to distinguish where fairness should
be measured. A race car offered to one player that is worse than every other player
receives is unfair. A gun in a first person shooter, that kills with one shot while every
other gun needs ten shots to kill is unfair. These kinds of biases can contribute to
a fair game, so long as there exists biases to every player that can be considered as

2 Introduction

equivalent. For example, a gun that has ten times the firepower of other guns can
be met with armor that can absorb ten times the firepower of other armors. When
there are unmet biases, some players will have an advantage and thus the game is
considered unfair. To level the playing field, game developers try to balance their
games by decreasing or increasing the strength of a game’s elements or introduce
a handicap on some players. The aim is to provide all players with equal chance of
victory.

1.1 Problem statement

The idea behind this project is heavily influenced by the work done by Togelius et.
al. [13] where the vision is to create content for video games that is unique for
each player. It goes even further and attempts to create content that is based on
what is believed to be fun for the player. Games that would incorporate this kind
of content generation, would allow all their users to experience a game in the way
they think is fun. Gone are complaints of stale material or request for creating new
content after the old content becomes boring. Defining what is fun for each player
is hard to do and is very qualitative. Defining what is fair is also qualitative, but
can be described quantitatively.

The goal for this project is to be able to create maps for the video game Civilization
V, that can be though of as fair. This includes coming up with a definition of
what fair is. To create these maps an evolutionary algorithm will be used. There
are two main parts to that, generation and testing. A map generation algorithm
will be devised as well as fitness functions to evaluate the maps. This allows the
evolutionary algorithm to find maps that are fair by definition. The definition will
be determined by the fitness functions. Using these methods, maps will be created
for Civilization V where players will have an equal chance of achieving victory.

1.2 Thesis structure

This thesis starts by explaining the concepts used in the research, such as evolu-
tionary algorithms, map generation and procedurally generated content, as well as
describing the application domain, which in this case the game Civilization V. Then
a detailed description about the fitness functions that are used to evaluate maps
generated in this project as well as maps created by the game itself. That paves the
way for chapter 5 where the method created for this project is described. The results

1.2 Thesis structure 3

from experiments performed are then presented which is followed by a discussion
and conclusions.

4 Introduction

Chapter 2

Civilization V

Civilization V is a game made by Firaxis Games and published in September 2010
by 2K games[4]. The fifth in a series that dates back to 1991 with the release of
Sid Meier’s Civilization. Civilization V is a turn based strategy game that focuses
on expansion and world domination. World dominance is the key objective which
can be acquired through various means. The game was very well received critically
with a Metacritic score1 of 90, on August 24th, 2012 [15].

Like many video games today, Civilization V has had additional content created for
it since its release. Various fixes have been made to the game since its conception.
With downloadable content added to the game, it gets expanded in terms of re-
sources and playable civilisations among other things. In June 2012, Firaxis released
the first expansion pack to this game called Civilization V: Gods and Kings[5] where
new features such as religion and espionage were added. Civilization V, without any
additional content, contains 19 civilisations, each with their own specific bonuses
and some with specific units. The game also includes non playable characters such
as barbarians and 28 different city states.

1Metacritic is a website that calculates average scores from different reviewers.

6 Civilization V

2.1 Game Description

Civilization V is a tile based game, where each tile is in the shape of a hexagon. The
game takes place on a map which consists of these tiles.There are 9 different types
of terrain that can be placed on a tile. Each terrain has a host of possible resources
and features that can be placed on those tiles. The game has 28 different resources
split into three categories, Bonus, Strategic and Luxury. Not all Resources can fit
on every terrain, for example you will not find bananas on an ocean tile and you
will not find a whale on a mountain tile. Resources will have different effects to a
player. Bonus resources mainly yield food, strategic resources only yield production
and luxury resources mainly yield gold.

Figure 2.1: A screenshot of a typical start in Civilization V using the Earth
map. A river starts from player starting position and floats to the sea.

In Civilization V, there are several meta-resources that benefit a player. These
meta-resources are, food, production, gold, culture, happiness and science. With
the expansion pack Gods and Kings religion is also introduced. Food harvested by
a city increases that cities growth of population. Production is used for producing
buildings and units. Culture is used to issue civilisation wide policies and increase the
influence of the civilisation. Happiness affects the productivity of the cities as well as
growth. Science will further your civilisation knowledge of technologies. Gold can be

2.1 Game Description 7

used in various ways, to purchase influence over land, units, buildings and to trade
for peace. There are various ways of generating each of these throughout the game.
A big component of meta-resource generation comes from the land a player occu-
pies. Each unique luxury resource that gets introduced to the civilisation generates
extra happiness. Grassland provides food while Plains provides food and production.

Figure 2.2: A screenshot of resource diversity and iron distribution between two
capitals.

Besides resources, the Civilization V map also includes features. These features are
varied and serve the purpose of making the map more interesting. Some features
can only appear once in each map such as Mt. Fuji or the Rock of Gibraltar. Other
features are for example, Marshes, Forests and Oasis. Features also add various
yields to tiles. For example, a forest grants one extra food on a tile, but decreases
productivity in a city. See Appendix A, B and C for a complete list of terrain,
resources and features, respectively.

On top of features and resources, Civilization V allows players to improve a tile. In
all there are 20 improvements that are related to what type of terrain or feature is
located on the terrain. For example, a land tile with an Oil resource on it, can be
improved with the Oil Well. A sea tile with an Oil resource on it, can be improved
with the Offshore Platform. A Citadel can be constructed on all land terrain which

8 Civilization V

increases defence for army units while a Camp can only be constructed where Ele-
phants (Ivory), Furs or Deer can be found. This aspect of the game is excluded in
the research done by this project.

The player starts the game in the Ancient era. By technological advancement and
expansion of the player’s civilisation he progresses through different eras to the so
called Future era. It is completely up to the player what era starts when and players
can research the technology of Railroads in the 1600’s or in the 2000’s. With this
in mind, a game of Civilization V can be quite complex and vast. For this project
only a partial subset of the whole game is considered, which is described in section
2.3, taking everything into account is beyond the scope of this research project.

Figure 2.3: A screenshot of a game that is in turn 219, demonstrating resource
distribution between cities and improvements.

2.2 Civilization V Map Generating Methods

Civilization V uses several methods to generate maps. A full list of the methods
can be found in Appendix D The implementation of these methods in the scripting
language can be found in the software development kit that comes with the game

2.2 Civilization V Map Generating Methods 9

when purchased through Steam2. The methods provided with the game are tailored
to an all round experience with the game, single and multi-player, duels and free
for alls as well as team based games. The game also provides some realism when
offering players to play a map of the earth, which is pre-determined and does not
go through the script generation of the random maps.

One method is the Fractal generation. Designated as ”Civ5’s default map script”[6]
this method serves as a base method from which others expand upon. After per-
forming the fractal generation of the map, creating continents of land on a canvas
of Ocean terrain. Then terrain is distributed over the land, based on the latitude of
a tile to imitate the climate of the earth. This way, snow is only present on tiles that
are in the top and bottom 25% of the map. Next rivers are added and lakes. This
method then goes on to divide the map into regions for civilisations and selecting
starting positions for players. It continues by placing resources, first it adds luxury
resources, then strategic and then bonus resources. This method does quite well in
creating maps that generally look like a reasonable substitute for real landmass.

Skirmish is another map generation method which is described as ”Optimized for
1v1 or two-teams multi-player”[7]. Unlike the fractal method it allows users to
define some input parameters. Users can define what will be the dominant terrain
for the map. Be it Grassland or Desert this allows users to aid the map in selecting
what will be the most dominant terrain on the map. This effectively makes the
surrounding environment of every player starting position have the same terrain.
In itself, that will effectively make the map more fair since it excludes possibilities
of a players starting in a Desert while other players start in fertile environment.
Users can also declare how much water will be added to the map, if it should be
completely dry or contain rivers and seas. As mentioned in the description of this
method, it is focused on games featuring multiple players competing against each
other. To combat any shortcomings of resource distribution the game adds what
is called Strategic Balance, which essentially places 6 iron resources and 6 horses
close to every players starting position. This method gives players different maps
every time that are very similar and predictable. After a player has configured this
method it is quite clear what kind of map he is about to play. Whether or not
there will be lakes or seafaring or if there are any mountainous or snowy regions,
are assumptions the player can ignore while playing a map using this method. Due
to its characteristics, this method is suitable for competitive Civilization V play.

2http://store.steampowered.com/app/8930/ - accessed 15th of September 2012.

10 Civilization V

2.3 Partial representation Civilization V

In this project a subset of Civilization V will be considered. As the game is very
complex and vast it is necessary to limit the scope of this project to what is more
manageable. Any consideration to later stages of a map in Civilization V were not
considered, that is terrain improvements. Rivers and lakes were excluded from this
project. Civilisation specific advantages were not included as well as, technologies,
culture and happiness. This subset can be viewed as a snapshot of the map at
the start of the game. By excluding these factors it is possible to compare results
achieved in this project with this subset. For example, including civilisation specific
advantages would require the map generation, in addition to player starting position,
include what civilisation the player is. This would prove to be too much work for
this project. Therefore, all players are assumed to be playing the same civilisation.
A snapshot of the beginning of the game is only considered to make comparison
easier.

Chapter 3

Techniques

Constructing maps for video games can be done in various ways. There are different
algorithms that will achieve different goals. One approach can be described as top
to bottom, where a map’s most visible features, for example rivers and roads are
created first and finally creates the terrain. Another approach can be described as
bottom to top, where the terrain is first created and the approach ends by applying
rivers, flora and other features.

Various algorithms and techniques exist today. Some are easily available while others
are locked inside a company’s intellectual property. The video game industry has
been one of the leading pushers for advancement of algorithms. The difference
in quality of graphics from video games in 2005 is vast compared to games made
in 1995. A consequence of that improvement is better graphical quality in other
industries such as movies and TV. Researching new algorithms and methods is
important to keep the advancement going. This project aims to find a technique
that can help the video game industry.

12 Techniques

3.1 Map generation techniques

The map generation in the Civilization V game does fractal map generation. A
fractal map generation is a fast algorithm that creates ridge lines that form land.
One way is the mid point displacement technique. This is useful for 2 dimen-
sional maps creating the outline of the map. A characteristic of this technique is
that it is self-similar. Self similarity is when an object is similar to the subset of
itself, magnified. With the mid point displacement technique being useful for 2
dimensional maps, an approach to three dimensional maps is an algorithm called
diamond-square[17] algorithm. It takes an extra step to alter the height values as
well. These techniques create realistic looking maps and terrain but it can be hard
to control these algorithms since they are non deterministic. In Civilization V, once
a map has been outlined then different techniques are used to fill it with terrain,
resources and features.

Another method used in map generation is called Polygonal Map Generation. From
random point it creates Voronoi polygons, smooths the polygons out and treats
these polygons as a parcel that can be a part of a land or sea. After choosing what
polygons are land, which are sea and which are lakes, it looks at elevation. Elevation
is defined by distance from the coastline and then extra features are added to the
map. A detailed description of this algorithm can be found in [1].

Video game developers do not always choose map generation methods. The fact is
that when using map generation methods, they are supplied with either a random
seed or a set of parameters. Even configuring generation methods with parameters
will never amount to the same granularity of constructing a map by hand. De-
signing maps for games can be less time consuming than creating map generation
algorithms. Video game developers benefit from the safety in manual map design.
With manual map design it is easier to ensure all maps are playable and do not
break the game. Today the quality of hand made maps is greater than many map
generation methods. That is why some video game developers simply create all
maps by hand. Maps that are procedurally generated can replace the hand made
maps once these map generation methods get improved.

3.2 Procedural content generation techniques

A paper about search based procedural content generation has been written by
Togelius, Yannakakis et. al [11] that ”contains a survey of all publish papers known
to the authors” on the subject. It classifies procedural content generation (PCG) in
5 ways.

3.2 Procedural content generation techniques 13

• Online versus Offline

• Necessary content versus Optional content

• Random seeds versus Parameter vectors

• Stochastic generation versus Deterministic generation

• Constructive versus Generate-and-test

Online PCG algorithms are usually run right before or during game play thus having
the requirement of generating content quickly. That is to say, that online PCG
can not take more time generating content than reasonable expectations of users
waiting. Offline PCG usually runs separately and can take longer time in generating
content. The content generated is then available to be used in the game after the
algorithm has finished. Necessary content in a video game is that if it is removed
from the game, then it becomes unplayable, examples are protagonists, game rules,
levels. Optional game content can be additional weapons, levels, flora and music.
Seeds used in random number generators will generate random numbers to affect
the content while parameter vectors allow user configuration. Choosing between
those two depends on how much control over the content is wanted. Deterministic
generation provides the same identical content based on input parameters where
as stochastic can provide different content each run with the same parameters.
Constructive algorithms spend some time in assessing the content it has created
and makes sure it is ”good enough” after it has created it once. Generate-and-
test algorithms create the content and then evaluate it. After one pass it then
regenerates content based on the evaluation results and continues until the content
is ”good enough”.

Procedural content generation is not that widespread today but some of the research
that has been done is exciting. In their paper, Controlled Procedural Terrain
Generation Using Software Agents[10], J. Doran and I. Parberry create land
forms aimed for computer games and flight simulators. With intelligent software
agents they generate terrain elevation height maps according to some constraints. In
their proof of concept they created five different agents that serve different purposes,
for example creating coastlines, creating beaches along the coastline and creating
mountains. The outcome is realistic landmass that is unpredictable but controllable.

N. Sorensen and P. Pasquier wrote a paper, Towards a Generic Framework for
Automated Video Game Level Creation [20] where they describe an approach
to generate levels for video games. They use the Feasible-Infeasible Two-population
genetic algorithm to advance their search of solutions. Their genetic representation
is composed of ”building blocks that represent units of levels”. These building
blocks represent a one-to-one mapping from genotype to phenotype and therefore
is of variable size to represent levels of different sizes. It goes on with examples

14 Techniques

from the Super Mario Bros. [19] game having building blocks of, a block, a pipe, a
hole, a staircase, a platform and an enemy. With constraints put on the generated
content they are able to create levels that are playable and interesting maps for the
game.

J. Togelius, R. De Nardi and S. M. Lucas, in their paper Towards automatic
personalised content creation for racing games [13] evolve racing tracks for a
car racing game. They use artificial evolution to evolve two components, drivers and
tracks. Using cascading elitism as the evolution strategy they successfully evolve
controllers for the race car game based on human controlled drivers. The controllers
evolved were then used to create tracks that suited each player’s play style. The
authors of this paper deemed the progress promising but ”there is much that needs
to be done in order for track evolution to be incorporated in an actual game”.

J. Togelius, M. Preuss et. al. wrote a paper Controllable Procedural Map
Generation via Multiobjective Evolution [12] which focuses on creating ”suitably
balanced maps for real-time strategy (RTS) games”. Their representation in the
genotype consists of base coordinates for 3 players, coordinates for two different
resource types as well as feature list. Their focus on StarCraft[2] contains similarities
to this project which focuses on Civilization V. The difference in these two games,
Civilization V and StarCraft are considerable although both are RTS games. For
example StarCraft has a big competitive community and official competitions such as
the WCG[24] where the first prize grants 20,000 USD. This puts different demands
on the quality and attributes of the maps used for either game. Their objective
functions focus on base placement, resource placement and paths. Paths objective
functions are aimed at finding overlaps of paths as well as choke points in a map.
Some of their objective functions partially conflicted with each other due to their
goals with the map design. Using a Pareto front optimisation as an evolution
strategy, they were not able to determine whether or not a true Pareto front could
be found. A result of their paper was that on maps that were created, ”appear like
a reasonably fair design that is hard to understand [...] but looks interesting.”[12]

3.3 Technique chosen for this project

For this project a search based evolutionary algorithm approach was chosen. Evolu-
tionary algorithms are not always an obvious choice since they don’t guarantee good
results. Evolutionary algorithms are instructed by fitness functions on what content
is good and what is bad. For each result that an evolutionary algorithm outputs
there is no telling whether or not it is a global or a local maxima. Despite these
characteristics, evolutionary algorithm method has been chosen for this project since
it can find good solutions.

3.3 Technique chosen for this project 15

The idea of instructing algorithms to find content that is defined by constraints is
exciting. On the horizon it looks like algorithms may be able to determine what users
prefer and will be able to come up with content that is interesting and challenging
to users, unique to every player. That is the motivation behind this project and the
reason behind choosing evolutionary algorithms to aid in this search. The method
is defined, according to the taxonomy paper mentioned above, offline generation
of necessary content using random seed. All content is generated deterministically
through a generate-and-test method. Cascading elitism has been chosen to be the
evolution strategy.

16 Techniques

Chapter 4

Fitness functions

In order to quantitatively evaluate a map, fitness functions have been created. These
fitness functions are used to evaluate a map after it has been constructed. These
fitness functions are designed in such a way that they aim to be unbiased and fair
to all players in a game. The sum of the fitness functions is meant to provide a
definition of a fair map.

4.1 Continental connectivity f0

Continental connectivity simply means which players are connected through a land-
mass that they can reach each other. This involves searching using A* search, and
blocking out terrain that is considered impassable or unembarkable. A search is
made from a player to every other player. The searches that reach their end get
counted up and the sum is then divided by number of players times number of
players excluding that player that is being considered.

18 Fitness functions

1 f o r (player A in p l aye r s) {
2 f o r (p layer B in p l a ye r s) {
3 i f (p layer A != player B) {
4 search = AStar (player A . s ta r t , p layer B . s ta r t , map)
5 search . a l low mountains (f a l s e)
6 search . a l l ow ocean (f a l s e)
7 i f (s earch . h a s r e a c h e d t a r g e t ())
8 l e g s++
9 }

10 }
11 }
12 r e turn l e g s /(p layers N) ∗(players N −1))

Figure 4.1: Algorithm for fitness function continental connectivity.

4.2 Distance between teams f1

A fitness function is needed for determining fair starting positions. The incentive
being, that with an optimal distance between players. The players will then have
both the possibility of exploration and constructing a defence for their cities. If teams
start too far away from each other, it will become hard to maintain an attack on the
other team. If teams start too close to each other players will fight over territory
with very limited resources. It would also be discouraging to inexperienced players,
playing against experienced players who would have the know how to eliminate them
quickly. The optimal length is considered to be diagonal of a quadrant of the map.
For each player in a team, the sum of the distances to every player on any other
team should be the diagonal of a quadrant of the map. For this project, a setup of
two teams was taken into account. Possible extensions to this fitness functions are
for example, changing a quadrant into a triangle.

1 f o r (player A in team A) {
2 f o r (p layer B in team B) {
3 search = AStar (player A . s ta r t , p layer B . s ta r t , map)
4 i f (s earch . h a s r e a c h e d t a r g e t ())
5 t o t a l l e n g t h += search . g e t d i s t a n c e t r a v e l l e d ()
6 }
7 }
8 f i t n e s s = (t o t a l l e n g t h / number o f p layer s)
9 f i t n e s s = f i t n e s s / s q r t ((Map : :DIMY/2.0ˆ2 + Map : :DIMX/2 .0ˆ2)) ;

10 r e turn f i t n e s s ;

Figure 4.2: Algorithm for fitness function distance between teams.

4.3 Resource assignment fa 19

4.3 Resource assignment fa

Resource assignment is the act of assigning ownership of a resource to a player. It
is a prerequisite for fitness functions 2, 3 and 4. It goes through every resource
in a map and assigns it to a owner. Here A* search is used to find the closest
starting position of a player. When the closest player has been found the resource
in question is determined to be his property. A player will never own a resource that
is closer to some other player than himself.

1 f o r (row in map) {
2 f o r (column in row) {
3 i f (c e l l . h a s r e s o u r c e ()) {
4 f o r each (p laye r) {
5 search = AStar (c e l l , p l aye r . s t a r t , map)
6 search . al low embark (t rue)
7 search . a l low mountains (f a l s e)
8 i f (s earch . h a s r e a c h e d t a r g e t ()) {
9 i f (s h o r t e s t (search . g e t d i s t a n c e t r a v e l l e d))

10 c l o s e s t p l a y e r = p laye r ;
11 }
12 }
13

14 c e l l−>set owner (c l o s e s t p l a y e r) ;
15 }
16 }
17 }

Figure 4.3: Algorithm for assigning resources.

4.4 Unique resource distribution f2

In Civilization V each player receives a bonus towards his empire’s happiness when it
discovers a new resource. So for example, the first time the Germans find Silver, the
Germans become happy. The next time the Germans find Silver, they have already
been impressed by it, and its discovery will not affect the Germans’ happiness. When
a player starts in an area that has more varied resource distribution, it makes for a
more interesting game play. This fitness function also aims at keeping the number
of unique resources that each player owns equal. The fitness function keeps track
of whether or not a player owns a certain resource. It then goes on and calculates
the percentage of resources a player owns. The average percentage is then returned
as the value for this fitness function.

20 Fitness functions

1 f o r (row in map) {
2 f o r (column in row) {
3 i f (c e l l . h a s r e s o u r c e ()) {
4 unique found [owner] [r e s ou r c e] = true
5 }
6 }
7 }
8

9 f o r each (p laye r) {
10 f o r each (r e s ou r c e)
11 i f (unique found [p laye r] [r e s ou r c e])
12 cur un ique count++
13 }
14 un ique pe r p l aye r += cur un ique count / max resources
15 }
16 r e turn un ique pe r p l aye r / no p l aye r s ;

Figure 4.4: Algorithm for counting unique resources.

4.5 Strategic resource distribution f3

In Civilization V resources do have different usages and benefits. Strategic resources
are resources that not only benefit players with the usual yield of food, production
and gold, but also serve as a prerequisite to building units. This is one of the
most important aspects of ensuring fairness in the game. In a world where military
strength can determine a winner, not having horses or iron will surely lead to a
downfall. This fitness functions counts the number of strategic resources each
player has. This percentage is then divided by the optimal percentage a player
should have or 1

plN
where plN is the number of players. This will sum up to the

average percentage of strategic resources a player owns and is then divided by the
number of players. The aim is to find a map where all players have an equal share
of the strategic resources on the map.

4.6 Average player throughput f4

Each resource gives different yield of food, gold and production. This fitness function
counts the actual yield of each resource per player. The relative yields for each player
is compared to what other players share is. This allows the evaluation search to find
maps that contain equal share of resource yields between each player. The best n
tiles from the players starting position, within a circle with a radius two tiles, is also

4.6 Average player throughput f4 21

1 f o r (row in map) {
2 f o r (column in row) {
3 i f (c e l l . h a s s t r a t e g i c r e s o u r c e ()) {}
4 s t r a t e g i c c o u n t [p laye r]++
5 t o t a l s t r a t e g i c s++
6 }
7 }
8 }
9 f o r each (p laye r)

10 cur avg = ((s t r a t e g i c c o u n t [p laye r] / t o t a l s t r a t e g i c s) / (1 . 0 /
n o o f p l a y e r s))

11 va l += cur avg ;
12 }
13 r e turn va l / n o o f p l a y e r s ;

Figure 4.5: Algorithm for fitness function that counts strategic resource distri-
bution.

included.

1 f o r (row in map) {
2 f o r (column in row) {
3 throughput [c e l l . p layer owner] += c e l l . y i e l d
4 throughput [t o t a l] += c e l l . y i e l d
5

6 f o r each (p laye r)
7 f o r each (neighbour in rad iu s (2))
8 n e i g h b o u r y i e l d s [p laye r] . add (neighbour . y i e l d)
9 }

10 throughput [p laye r] . add (n e i g h b o u r y i e l d s [0 , 4])
11 throughput [t o t a l] . add (n e i g h b o u r y i e l d s [0 , 4])
12

13 f o r each (p laye r)
14 cur avg = ((throughput [p laye r] / throughput [t o t a l]) / (1 . 0/

n o o f p l a y e r s))
15 avg p layer throughput += cur avg ;
16 r e turn avg p layer throughput / g e t n o o f p l a y e r s

Figure 4.6: Algorithm for fitness function averaging player throughput.

22 Fitness functions

4.7 Total value of a map fe

When a group of maps have similar values in all fitness functions this fitness function,
fe serves as an heuristic for selecting the most fertile land. This grades maps in
terms of yields, that is how much gold, food and production each map has. The
more there is, the more players can do. It would also be possible use this fitness
function to find the map with the least resources, making it more challenging for
players to play on.

1 f o r (row in map)
2 f o r (column in row) {
3 throughput = c e l l . y i e l d
4

5 r e turn to ta l th roughput ;

Figure 4.7: Algorithm for getting total throughput

Chapter 5

Representation

For this project a custom map generation has been created to generate maps. A type
of brush drawing technique is used, with random resource, feature and player starting
point placement. An evolutionary search is made where each map is evaluated with
fitness functions and a cascading elitism is used as an evolutionary strategy.

5.1 Genotype

To effectively represent a map, a descriptive representation is stored in a genotype.
A genotype needs to be able to represent a finished version of a map in smaller
amount of memory. In Civilization V, maps can range from 24 · 24 or 576 tiles, up
to 256 · 128 or 32,768 tiles. Each tile then contains various information vital to the
game. With 28 resources and 9 different terrain, the search space for a map has
grown quite considerable. In this project, the map size is usually 60 · 48, which is
2,880 tiles. This size has been chosen since in the game Civilization V, that map
size has been determined as the size for 4 players.

In this project a genotype is defined of four vectors that contain the following.

24 Representation

• Vector of tile block placements

• Vector of resource placements

• Vector of feature placements

• Vector of player placements

The tile blocks consists of 5 integers, resource placement and feature placement 3
integers each and player placement of two integers. This sums up to 13 integers
or 52 bytes. The size of the genome in bytes however is Gn · 52, so for Gn = 40
the size will be approximately 2 kilobytes. This fits quite well to the Civilization
V game, but missing still are river placement, barbarians, player’s civilisation and
starting era to mention a few. The genotype used in this project also includes a
size variable (Gn), determining how many entries of each the genotype should have.
The smaller the size the less descriptive a genotype will become. The larger the
genotype, more values need to be changed in order for the search to progress. An
ideal ratio between the size of the map and the size of the genotype is hard to
determine. The smaller the size of the genotype the smaller the search space will
be. This increases the likelihood of finding the best solution but also limits the
expressibility of the method. The larger the size of the genotype the larger the
search space will be. This will make it harder to find a good solution and requires
more resources to do so. However in this project a larger genotype will be able to
draw more on each map since more tile blocks will be used.

5.1.1 Tile blocks

A tile block is represented by the following quintuple.

TB = (p, x, y, w, h)

Where p is the pattern, x and y the two dimensional coordinate. The w and h
represent the dimensions of the pattern. At initiation of the genotype, all values are
selected at random from a uniform distribution. The size of the tile block vector is
equal to the size of the genotype (Gn). This extremely flexible set up of patterns,
also known as brushes or stamps, can be randomly generated or predefined patterns.
The patterns used in this project are demonstrated in figures 5.1 through 5.10.

It is important to note that these can be of any width and height. So essentially,
a map with nothing but mountains can be expressed with a genotype of size one,
with the only tile block consist of the mountain terrain, and its height and width
is equal to the height and width of the map in question. An unplayable map to be
sure, but possible to create.

5.1 Genotype 25

Figure 5.1: Pattern one. A top and bottom row of that span quarter each of
the height of the Plains terrain. The middle half is Tundra terrain.

Figure 5.2: Pattern two. Top left quadrant consists of Grassland terrain while
top right and bottom loft consist of Hills. The bottom right is transparent and
does not modify the terrain that was there before, here it was and will stay as
Ocean.

Figure 5.3: Pattern three. A Grassland pattern with two lines of Mountain that
are one tile away from the bottom and top height.

26 Representation

Figure 5.4: Pattern four. A pattern filled with Tundra terrain that gets padded
with Snow and then Coastal lines on both the top and bottom parts.

Figure 5.5: Pattern five. A mixture of Grassland terrain (green), Plains terrain
(brown) and Tundra terrain (grey).

Figure 5.6: Pattern six. A mixture of Desert terrain (yellow), Hill terrain (grey,
black font) and Tundra terrain (grey, white font).

5.1 Genotype 27

Figure 5.7: Pattern seven. A Mountain ridge on top followed by Hills.

Figure 5.8: Pattern eight. Desert strip on the left and Tundra strip on the right
filled up in the middle by Plains terrain.

Figure 5.9: Pattern nine. Each corner filled up with Mountain terrain while the
rest is filled up by Desert terrain.

5.1.2 Resources

A resource is represented by the following triple.
R = (r, x, y)

28 Representation

Figure 5.10: Pattern ten. Each corner filled up with Hills terrain while the rest
is filled up by Grassland terrain.

Where r is the resource, x and y the two dimensional coordinate. At initiation each
resource is chosen at random from a uniform distribution, the same as with the x
and y coordinates. No safety checks are performed to ensure that the genotype
is not broken. That is whether or not the resource is located on a terrain that is
allowed by the game’s rules. Of course x and y coordinates are randomly chosen
within the confines of the map’s dimensions. The resource vector is 8 times as large
as the size of the genotype (8 · Gn).

5.1.3 Features

A feature is represented by the following triple.

F = (f, x, y,)

Where f is the feature, x and y the two dimensional coordinate. At initiation all
values are randomly chosen. A constriction is enforced here. Some features are
declared singletons, i.e. only one can exist in each instance of a map. If a feature
is selected by random, that is a singleton, it is stored for later reference so that
feature is not selected again. The size of this vector is equal to 4 times the size of
the genotype (4 · Gn).

5.1.4 Player starting coordinates

A player starting position is represented by the following tuple.

P = (x, y)

5.2 Genotype-to-Phenotype phase 29

Where x and y the two dimensional coordinate. The vector including player starting
positions contains a two values, the x and y coordinates. During initiation these
values get selected at random from a uniform distribution and enforced to be within
the confines of the map’s dimensions. The size of this vector is equal to the number
of players have been chosen for this map.

5.2 Genotype-to-Phenotype phase

An important factor in the evolution is the genotype-to-phenotype phase. Where a
fully represented entity of what the genotype is trying to capture, is created. In this
project, that is a Civilization V map. This map however is a partial representation
of the map in Civilization V as described in section 2.3. There was not enough time
to represent a complete version of the Civilization V map in this project. Just the
fact that a full length game can take up to 250 turns, and at each turn the effects
of terrain and resources can be modified, is evidence that it would be out of scope
for this project.

5.2.1 Pattern drawing

The pattern drawing technique is the major part how the map will end up looking.
While generating the map, every tile block is looked at. On a blank canvas consisting
only of ocean terrain, the tile blocks are drawn. When a tile block is drawn it will
overwrite all terrain that was there before. If the current tile block reaches over tile
blocks that have previously been drawn, they current tile block takes precedence.
This allows for a wide array of different possibilities and expression. A pattern that is
a square of grassland, might receive another square of Ocean right inside it, creating
an O shaped island. Another square of coasts might then completely overwrite that
island or amend it to create a C shaped island. This is quite open and various forms
can be made. However if the last tile block in the tile block vector is a mountain,
ocean or a coast pattern, with starting coordinates (0,0) and width and height equal
to the maps. Then a very bad map is created, in fact, unplayable. The fact that
this is a possibility is however good for expressibility.

5.2.2 Element distribution

While generating the map elements are distributed over the map according to their
coordinates in the genotype. The genotype however can conflict with itself, for

30 Representation

example in such a way where on one tile there is supposed to be an Ocean, but also
some Elephants. When these conflicts are found, a breadth first search, spiralling
outwards from the desired tile is conducted. Then a coordinate of the closest suitable
terrain where Elephants can reside, according to the games rules, is returned. A
rule is enforced on the spiralling search, stating that a tile can not have more than
one neighbouring tile, that also has a resource upon it. This way, resources get
spread over the map more equally. The broken genotype is then fixed by changing
the coordinates in the genotype, as well as in the map, where the Elephants would
reside. A similar thing is done with features, so Forests do not end up in a Desert
or the Ocean. Fixing the broken genotype is done to ensure that this will not be
needed to be done every single time a map is generated. When placing resources,
it is ensured that a resource is not placed next to another resource, thus creating a
cluster of resources.

5.3 Evolutionary Algorithm

This evolutionary algorithm consists of two main parts. The mutation of the geno-
type or population, and survival or selection. In this project a cascading elitism
algorithm is used to perform the selection of the best individuals per generation.
This cascading elitism is inspired by the work done by Julian et. al. [13]

5.3.1 Genotype mutation

A genotype mutation is needed to alter the phenotype. The design of the genotype
ensures that small changes can result in big changes. For instance, changing a pat-
tern of a tile block that only contains ocean terrain, to some pattern that contains
three different terrains is a big change, but accomplished by only changing one value.

Every value in the genotype is modified based on two different random number
generators. Both random number generators use a normal distribution to draw
numbers from. The difference between them being the standard deviation. While a
width and height change of 3 might be considerable, a x,y position change will not.
Therefore two different standard deviations are used to address different changes
in the genotype. Since all values are integers a rounding off is performed. This
will result in some values will be changed considerably, while others not at all.
Being a normal distribution most values will not change that much. For modifying
identification numbers of tile blocks, resources and features, as well as the width
and height of tile blocks, a standard deviation of 4 was selected with a mean of 0.

5.3 Evolutionary Algorithm 31

For all coordinates, standard deviation was set to a tenth of the width and height
for x and y values respectively and a mean was chosen to be 0.

5.3.2 Cascading elitism

Cascading elitism algorithm is described in [13]. It suits well when optimising for
several fitness functions. Fitness functions are sorted by importance, such as strate-
gic resource distribution could be more important than unique resource distribution.
In that order, maps get discarded with the worst fitness value for that fitness func-
tion. It is possible to discard different number of maps for each fitness function. For
example, discarding the worst 50% of the most important fitness function, but only
20% of the second most important. This puts weights on each fitness function. It
will become quite difficult to include the maps that score high in the least important
fitness function, since those maps will be discarded if they have a perform badly on
the more important fitness functions.
This is well suited to Civilization V and the fitness functions described earlier since
they are clearly not equally important. In table 5.1 fitness functions are ordered by
their importance as the experiments were performed.

32 Representation

Fitness function Comments
1 f4 Player throughput is one of the more

important ones, since the resources that
belong to you and in your starting vicin-
ity greatly affects on how quickly your
empire gets built.

2 f3 Strategic resources are quite important
as has been discussed. Starting with
no possibility of mounted units against
players who have them by the handful
is not fair.

3 f0 Continental connectivity is important
to allow players to reach each other
through land instead of the need to
spend resources to manufacture naval
units.

4 f1 Distance to players is somewhat impor-
tant to allow players to have some time
to build up there empire. It is however
equally unfair to all players.

5 f2 Unique resources give a map extra in-
trigue and players receive happiness
bonuses for each extra unique resource,
therefore not extremely important.

Table 5.1: Order of importance of fitness functions

Chapter 6

Results

In this project three main experiments were conducted to establish the validity of
the work that has been done. The fitness functions are used to evaluate maps that
are created by the Civilization V map generators. The effectiveness of the genome
mutation is also tested and presented as well as the evolution of maps and some
solution candidates are presented after evolution. All fitness evaluations rank on a
scale from 0 to 1.

6.1 Civilization V maps

For evaluating the Civilization V map generation methods, 10 different maps were
created each with random settings. Each map was graded 50 times, with random
start locations for 4 different players. The average grade for each fitness function
was then graphed on figures 6.1, 6.2, 6.3 and 6.4. The average grade for all ten
maps is then presented in table 6.1. This is done to compare the averages of the
different fitness functions. The average for each fitness function is calculated to
counter the effects of random start locations. The average of 50 different starting
locations for each map gives a general overview of how well a map is performing.

Four methods were tested in these experiments. The Fractal and Skirmish methods
described in section 2.2 are used as well as the Archipelago method and the West

34 Results

Method f0 f1 f2 f3 f4 fe

Archipelago 0.0082 0.5601 0.5393 0.6300 0.6722 5692
Fractal 0.0498 0.5323 0.5018 0.5787 0.6269 5744
Skirmish 0.9705 0.5597 0.3918 NA 0.6970 4395
West vs East 0.8282 0.5710 0.6606 0.6896 0.6998 5125

Table 6.1: Average evaluations over 10 maps for each method.

Figure 6.1: Evaluations of the Archipelago method

Figure 6.2: Evaluations of the Fractal method

Vs. East method. Archipelago method creates a collection of islands imitating a
world for seafaring nations. The landmass is quite minimal and the amount of ocean
and coasts is quite high. It is used as a candidate for a map that is not filled with
land. West vs East method is a map that is split in to two sides, namely west
and east. A thin line of sea separates these parts. This map method is aimed for

6.1 Civilization V maps 35

Figure 6.3: Evaluation of the Skirmish method

Figure 6.4: Evaluation of the West vs. East method

competitive team play where each team is located on either part. That is the reason
for this method being chosen for testing.

The methods tested rank nicely. The Archipelago method does not perform well
in continental connectivity as expected since it is filled with islands. On average
it did not manage to get any fitness evaluations higher than 0.67. The amount
of sea in this method also makes it harder to have it rank highly since resource
placement happens on the small land that exists. Fractal method did not perform
better and as can be seen in figure 6.2 it fluctuates somewhat between maps. The
skirmish method does not seem to perform well overall and exceeds in continental
connectivity and player throughput. Skirmish map does not receive a grade for
fitness function f3 since strategic resources are placed close to player starts after
the game begins. West vs. East method, specifically designed for multi-player

36 Results

games, does considerably well in all fitness functions except distance from players
to other players. The player placement is not a product of the method from the
game.

6.2 Genotype mutation

To advance an individual, its genotype is mutated. This process should gener-
ate different genotypes that result in improved or deteriorated phenotypes. Since
the mutation is random, not all mutations will improve nor deteriorate. Given an
genotype that results in a map that gets high grades, the majority of the mutated
individuals should deteriorate. Same as with bad individuals, the majority should
improve. To make sure that this is the case for the mutation performed in this
project, four individuals were chosen, two that performed badly and two that per-
formed well. Each of those individuals then had 100 mutated offsprings generated
and were measured against its parent. Results can be seen in table 6.2 showing how
many were improved based on the parent and how many deteriorated.

Individual f4 f3 f2 f1 f0 Improved Deteriorated
Good 1 0.76 0.68 0.73 0.99 0.50 26 74
Good 2 0.91 0.76 0.78 0.83 1.00 21 79
Bad 1 0.49 0.44 0.62 0.49 1.00 91 9
Bad 2 0.61 0.53 0.68 0.93 1.00 78 22

Table 6.2: Improvement and deterioration of genotypes, fitness values are from
the individual used for mutation.

These results allow us to assume that with evolution that by selecting the best
individuals of every generation that a local maxima of these fitness function will be
reached.

6.3 Evolution

Many evolution simulations runs with different parameters were made for this project.
The parameters that were tweaked were, genome size population size and number
of iterations. The population size allows us to compare more individuals per each
iteration. The number of iterations performed affects for how long we mutate and
search for new individuals. A description on the affect of genome size is described
in 5.1. The parameters that performed the best will be presented here,and can be
seen in table 6.3. An average of five different runs is also presented in table 6.4

6.3 Evolution 37

and the standard deviation can be seen in 6.5. The graph of these averages and
standard deviation can be seen in 6.5 and 6.6 Screenshots of the maps made can
be seen in figures 6.7, 6.8, 6.9 and 6.10.

These maps did perform well in comparison to the Civilization V maps. They scored
higher using the fitness evaluations in this project. The maps generated feature no
aspects that break the game and result in a non-playable map. That is to say the
randomisation of the map drawing does not create unreachable areas. These maps
look like they could be played in the game although, due to the nature of the map
drawing technique with rectangle brushes, they look very ”blocky”.

Gsz Pop Iter f0 f1 f2 f3 f4 fe

40 30 50 1.00 0.83 0.74 0.94 0.91 3,300
40 30 40 1.00 0.96 0.70 0.95 0.79 4,557
40 30 40 1.00 0.92 0.71 0.84 0.89 4,049
40 10 30 1.00 0.64 0.77 0.95 0.90 3,549

Table 6.3: Four results from different runs. Gsz stands for genome size, pop for
population and iter for iterations.

f0avg f1avg f2avg f3avg f4avg feavg

0.86 0.69 0.69 0.70 0.74 4,173
0.90 0.70 0.67 0.63 0.65 4,203
0.93 0.84 0.69 0.67 0.65 4,323
0.98 0.61 0.66 0.63 0.66 3,929
0.99 0.74 0.67 0.63 0.68 4,224

Table 6.4: Averages for each fitness value from five different runs.

Figure 6.5: Graph of the average of the population from five evolution runs

38 Results

f0sd f1sd f2sd f3sd f4sd fesd

0.25 0.12 0.04 0.10 0.09 383.22
0.22 0.15 0.05 0.12 0.13 342.61
0.17 0.13 0.03 0.11 0.08 287.01
0.10 0.11 0.03 0.07 0.09 368.80
0.07 0.16 0.06 0.13 0.13 422.30

Table 6.5: Standard deviation of a population from five different runs.

Figure 6.6: Graph of the standard deviation of the population from five evolution
runs

When faced with maximising values over five fitness functions these results are
encouraging. It is evident that they are not conflicting each other, but rather
enforcing each other. For example, having equal amounts of strategic resources
and unique luxury resources will in part, also supplement having equal amounts of
throughput per player. Being designed in that way, to limit conflicts also allows for
higher grades across every fitness function.

6.3 Evolution 39

Figure 6.7: Evolution with genome size 40, out of 30 individuals after 50 itera-
tions, with total map throughput of 3300

40 Results

Figure 6.8: Evolution with genome size 40, out of 30 individuals after 40 itera-
tions, with total map throughput of 4557

6.3 Evolution 41

Figure 6.9: Evolution with genome size 40, out of 30 individuals after 40 itera-
tions, with total map throughput of 4049

42 Results

Figure 6.10: Evolution with genome size 40, out of 10 individuals after 30
iterations, with total map throughput of 3549

Chapter 7

Discussion

This project has established a solid foundation with further potential for map gener-
ation. There are shortcomings in the application but there is also great value. The
results that have been presented receive a high value from the fitness functions. This
tells us that the maps are fair, but only according to the definition made by the
fitness functions. Assessing whether or not those maps are truly fair, is subjective
to definitions of fair. The definition of what is fair, can vary tremendously. That
makes it hard to find a consensus on what is fair. Based on informal discussions
through online forums 1 2 with players of the game, there is no consensus on what
people think is fair or what people want in their maps. Some players voice their
complaints about how resource distribution is game changing, other players think
that it is a vital part of the Civilization V game and is a fun challenge rather than an
upsetting imbalance. Finding a balance on what players think is fair, can be hard.
The fitness functions described in this project are complete in defining what is fair.
It proved hard to define them, and even harder to include more. Maximising five
objectives is a challenge, and including more would pose an even greater challenge.

The shortcomings of this project are the map drawing technique and verification
technique. The map drawing, while easily capturing the genotype, outputs maps
that are not aesthetically pleasing. The majority of the generated maps are very

1http://www.civplayers.com/index.php?section=smf&topic=10097.0
2http://forums.civfanatics.com/showthread.php?t=473236

http://www.civplayers.com/index.php?section=smf&topic=10097.0
http://forums.civfanatics.com/showthread.php?t=473236

44 Discussion

square, where the only detectable patterns are rectangular in shape. While the hope
was that with enough overlapping rectangles, interesting patterns would emerge but
this was not the case. This did not however affect the results from performing badly
with the fitness functions created. This would suggest that independent of map
drawing techniques, it would be possible to achieve good results from the fitness
functions. Creating maps that are generally aesthetically pleasing and fair would be
a possibility. Confirmation of the fairness of the results in this project is lacking.
Upon close inspection one can verify whether or not the maps are fair. Subjective
as that is, there is no opinion on how far resources and how much output there
is shared between players. Creating a survey, asking players to rate the fairness
of maps would be interesting, but not a confirmation on the issue. Opinions vary
greatly among the few people that have enough knowledge about Civilization V. The
greatest possibility of verification of fairness for this project is a play test, simulated
or user based. The feedback from those tests would be able to verify whether or not
fairness has been achieved. It would give weight to the definition of fair composed
by the fitness functions described in this project. Unfortunately, this was outside
the scope of this project.

This project can be further improved and used as a tool for developers as well as
modders3 aiding with map creation. A scenario would be where a user would choose
fitness functions and prioritise them according to his preferences. Set the number
of maps generated and iterations to be performed. With the resulting maps he
would choose the one he likes the most and further improve on that map using
map modification tools. This would provide the user with a map that is based on
a fair map and would be improved upon by the user, aesthetically or in any other
way. Another scenario is implementing this into a map modification tool. This
has been done before [9] and is also a promising research field. The modification
tool comes up with a map which the user modifies. After the user’s modification a
limited evolution around the modification is performed and suggested to the user.
Reinforced evolution like this has the user dictating in what direction the map should
go with suggestions and evaluations from the algorithm.

A way of evaluating the map in another way would be by using simulation-based[11]
evaluation functions. For the Civilization V game this would include using the
artificial intelligence of the non-playable characters (NPC) to play several games.
For this project, it was simply out of scope but it would be possible to do. Some
NPCs can play the game in different ways. Configuring a play test using NPCs,
that are configured to behave the same way and have the same advantages. For
Civilization V, this means that they use the same mentality configuration as well
as play as the same civilisation. A satisfying result would be that every NPC has
an equal share of wins over every other NPC. This method would take considerable
time if graphic rendition of the game being played can not be skipped. Equal shares

3Modders is a term over people who modify a game

45

of wins for every NPC would mean that the map could be considered to be fair.

46 Discussion

Chapter 8

Conclusions

In this project the purpose was to create maps for the video game Civilization V that
were fair and balanced. Creating a definition of what a fair map is through fitness
functions. Representing the map with genotypes, and phenotypes for evaluation.
Creating an evolutionary algorithm that searched for candidates that were optimised
over multiple objectives. All this has been done and results have been presented.
There is not conclusive evidence to support the claim that the maps produced are
fair but rather a demonstration of maps that fulfil the definition of fair that the
fitness functions provide. For everyone that agrees with these definition these maps
are fair. This work has also done the groundwork necessary to further this research
on fair map generation, especially for the game series Civilization V as well as others.

8.1 Future work

There are several aspects that would improve this project and could further research
in this field.

• Improving representation of the Civilization V game

• Adding output of generated maps to civilisation map files

48 Conclusions

• Adding simulation based evaluation functions

• Adding other map drawing methods

A first step to improve the accuracy of this project is to represent the Civilization V
game better. That is to say to include things that have been excluded in this project
such as rivers. This step would allow for a map to be generated as an equivalent of
a Civilization V map. Generated maps can improve further on their compliance with
Civilization V’s map features, such as supporting starting era and technologies.

Creating a map file that is readable by the game is trivial and a requisite for any
evaluation functions that are based on the game being played. This would open up
the possibilities to get user feedback as users could play generated maps from this
project. It would also greatly validate or invalidate the claims made in this project.

As mentioned above, simulation-based evaluation functions could greatly rein-
force the claim of fair maps. This could also reinforce or discredit the fitness func-
tions. Automated playthroughs, using non-playable characters, would output a vast
amount of data that could improve this project. Time to reach a technology, an era
as well as time to first civilisation extermination, could be measure the quality of a
generated map.

As described in chapter 3, there are several different map drawing techniques avail-
able. Having a map drawn that is not as ”blocky” would result in maps that are
more realistic. Maps that contain blocks of features, such as those generated in this
project, are predictable in a way and thus limiting intrigue. More patterns, turning
rectangles into hexagonal and circle shapes, would also generate maps that look
better, but would not guarantee more fair maps.

It is the author’s true belief that this project has laid solid groundwork for future
improvements that could be beneficial to many parties in the game research field,
game developers, and others alike.

Appendix A

Terrain

50 Terrain

Name Yield Resources found on
Food Gold Production

Coast 1 1 0 Oil, Fish, Whales, Pearls
Desert 0 0 0 Iron, Oil, Aluminium, Uranium

Sheep, Stone, Gold, Silver, Gems
Marble, Cotton, Incense

Grassland 2 0 0 Iron, Horses, Coal, Uranium, Cattle,
Sheep, Stone, Gold, Gems Marble,
Cotton, Wine

Hills 0 0 2 Sheep, Iron, Coal, Aluminium, Ura-
nium, Sheep, Deer, Stone, Gold, Sil-
ver, Gems, Marble

Mountain 0 0 0 -
Ocean 1 1 0 -
Plains 1 0 1 Iron, Horses, Coal, Aluminium,

Uranium, Wheat, Sheep, Stone,
Gold, Gems, Marble, Ivory, Cotton,
Wine, Incense

Snow 0 0 0 Iron, Oil, Uranium, Stone
Tundra 1 0 0 Iron, Horses, Oil, Aluminium Ura-

nium, Deer, Stone, Silver, Gems,
Marble, Furs

Table A.1: All terrains in Civilization V

Appendix B

Resources

Bonus resources Food Gold Production
Bananas 1 0 0
Cattle 1 0 0
Deer 1 0 0
Fish 1 0 0
Sheep 1 0 0
Stone 0 0 1
Wheat 1 0 0

Table B.1: All bonus resources in Civilization V

Strategic resources Food Gold Production Revealed by
technology

Aluminium 0 0 1 Electricity
Coal 0 0 1 Scientific Theory
Horses 0 0 1 Animal Husbandry
Iron 0 0 1 Iron Working
Oil 0 0 1 Biology
Uranium 0 0 1 Atomic Theory

Table B.2: All strategic resources in Civilization V

52 Resources

Luxury resources Food Gold Production
Cotton 0 2 0
Dyes 0 2 0
Furs 0 2 0
Gems 0 3 0
Gold 0 2 0
Incense 0 2 0
Ivory 0 2 0
Marble 0 2 0
Pearls 0 2 0
Silk 0 2 0
Silver 0 2 0
Spices 0 2 0
Sugar 0 2 0
Whales 1 1 0
Wine 0 2 0

Table B.3: All luxury resources in Civilization V

Appendix C

Features

Extra information.
El Dorado provides 500 gold one time and 5 culture.
Fountain of Youth provides 10 happiness.
Krakatoa gives 5 science.
Mt. Fuji provides 5 culture.
Old Faithful provides 2 science and 3 happiness.
The Barringer Crater provides 3 science.
The Great Barrier reef provides 2 science.

54 Features

Name Yield Impassable Resources
found on

Food Gold Production
Atoll 1 0 1 No
Cerro de Potosi 0 0 10 Yes
El Dorado 0 0 0 Yes
Fallout -3 -3 -3 No
Flood Plains 2 0 0 No Wheat, Sugar
Forest 1 0 1 No Uranium, Deer,

Furs, Dyes, Silk
Fountain of Youth 0 0 0 Yes
Ice 0 0 0 Yes
Jungle 1 0 -1 No Oil, Uranium,

Bananas, Gems,
Dyes, Spices

Krakatoa 0 0 0 Yes
Lakes 2 1 0 Yes
Marsh -1 0 0 No Oil, Uranium,

Sugar
Mt. Fuji 0 1 0 Yes
Oasis 3 1 0 No
Old Faithful 0 0 0 Yes
Rivers 0 1 0 Yes
Rock of Gibraltar 2 5 0 Yes
Barringer Crater 0 2 0 Yes
Grand Mesa 0 3 2 Yes
Great Barrier Reef 2 1 1 Yes

Table C.1: All features in Civilization V

Appendix D

Map generation methods

Civ5 Map generation methods.

56 Map generation methods

Name Parameters Description
Archipelago World Age, Temperature,

Rainfall, Sea Level, Re-
sources

A collection of island this
is built for seafaring nations.
With landmass quite minimal
resources are often scattered
together in patches.

Continents World Age, Temperature,
Rainfall, Sea Level, Re-
sources

A true imitation of the Earth
with no similarities. Few and
big continents with adequate
resource distribution.

Four Corners World Age Tempera-
ture, Rainfall, Resources,
Buffer Zones, Team
Setting

Four corners are a big land-
mass that are separated by
sea and coast line that form a
cross, essentially creating four
corners of a map. The four
corners are connected with a
patch of land in the middle
making it a continuous region
of land.

Fractal None A fractal based method that
results in erratic coastline and
several continents.

Great Plains None A map designed to imitate
a region of North America,
Great Plains consists mostly
of desert, plains and grass-
land with a small gulf of sea
in a bottom right corner.

Highlands Temperature, Rainfall,
Resources, Mountain Pat-
tern, Mountain Density,
Bodies of Water

A mountainous map with
lakes and various terrain.

Ice Age World Age, Temperature,
Rainfall, Sea Level, Re-
sources, Landmass Types

A method that is rich with ice
snow and ocean. Many conti-
nents and sparse resources.

Inland Sea World Age, Temperature,
Rainfall, Resources

Like the name suggests a
large sea is centred at the
middle of the map.

Table D.1: All Civilization V map methods, part one.

57

Name Parameters Description
Lakes World Age, Temperature,

Rainfall, Resources, Bod-
ies of Water

A continuous continent with
several lakes and big lakes in-
side.

North Vs. South World Age, Temperature,
Rainfall, Resources, Team
Setting

A map that is split in
two parts, namely north and
south with a arid desert line
in the middle to separate the
map. Aimed at competitive
team play.

Oval World Age, Temperature,
Rainfall, Sea Level, Re-
sources

An oval shaped land mass
with ingrown gulfs.

Pangaea World Age, Temperature,
Rainfall, Sea Level, Re-
sources

A one continent map with
small surrounding islands.

Ring Dominant Terrain, Land
Shape, Isthmus Width,
Resources

A map that creates a big ring
of landmass.

Skirmish Dominant Terrain, Water
Setting, Resources

A map that is aimed at all
kinds of competitive player
vs player games, a continuous
landmass with variable water
and seas.

Small Continents World Age, Temperature,
Rainfall, Sea Level, Re-
sources

Many small continents with
tight resources.

Terra World Age, Temperature,
Rainfall, Resources

Terra is a method that im-
itates the look of the earth
without looking exactly alike.
A fractal method that is in-
structed to create earths 7
continents.

Tiny Islands World Age, Temperature,
Rainfall, Sea Level

A island extensive map with
no considerable landmass.
An imitation of a Caribbean
sea. Resulting in a map with
sparse resources.

West Vs. East World Age, Temperature,
Rainfall, Resources, Team
Setting

A map that is split in two
parts, namely west and east.
A thin lien of sea and coast-
line in the middle is used
two separate the map in two
parts. Aimed at competitive
team play.

Table D.2: All Civilization V map methods, part two

58 Map generation methods

Name Values
Bodies of Water Random, Small Lakes, Large Lakes, Seas
Buffer Zones Oceans, Mountains, Random
Dominant Terrain Grasslands, Plains, Forest, Jungle, Desert,

Tundra, Hills, Global Climate, Random
Isthmus Width 2, 3, 4 Plots Wide, Random
Land shape Natural, Pressed, Solid, Random
Landmass Types Wide Continents, Narrow Continents, Islands,

Small Islands, Random
Mountain Density Random, Thin, Normal, Dense
Mountain Pattern Ridge-lines, Scattered, Ranges, Clusters
Rainfall Arid, Normal, Wet, Random
Sea Level Low, Medium, High, Random
Resources Sparse, Standard, Abundant, Legendary

Start, Strategic Balance, Random
Team Setting Start Together, Start Anywhere
Temperature Cool, Temperate, Hot, Random
Water Setting Rivers, Small Lakes, Seas, Rivers and Seas,

Dry, Random
World Age 3, 4, 5 Billion Years, Random

Table D.3: Parameters for Civilization V map methods

Bibliography

[1] Amit P. amitp@cs.stanford.edu. Polygonal map generation for games.
http://www-cs-students.stanford.edu/˜amitp/game-programming/
polygon-map-generation/, 2012. URL visited on 2012-09-10.

[2] Blizzard. Starcraft. http://en.wikipedia.org/wiki/StarCraft, 2012.
URL visited on 2012-09-16.

[3] Cameron Browne and Frederic Maire. Evolutionary game design. IEEE Trans-
actions on Computional Intelligence and AI in Games, 2(1):1–16.

[4] 2K Games. 2k conquers pcs with the release of sid meier’s civilization v
on september 21, 2010 in north america. http://www.2kgames.com/#/news/
2k-games-conquers-pcs-with-the-release-of-sid-meier-s-civilization-reg-v-on-september-21-2010-in-north-america,
2012. URL visited on 2012-09-02.

[5] 2K Games. 2k games - blog - civilization v expansion pack announced. http://
www.2kgames.com/blog/civilization-v-expansion-pack-announced,
2012. URL visited on 2012-08-15.

[6] Firaxis Games. fractals.lua. Lua script provided with the Civilization 5 SDK of
the Fractals map generation method.

[7] Firaxis Games. skirmish.lua. Lua script provided with the Civilization 5 SDK
of the Skirmish map generation method.

[8] Firaxis Games. Civilopedia 5. http://civilopedia5.com, 2012. URL visited
on 2012-09-16.

http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://en.wikipedia.org/wiki/StarCraft
http://www.2kgames.com/#/news/2k-games-conquers-pcs-with-the-release-of-sid-meier-s-civilization-reg-v-on-september-21-2010-in-north-america
http://www.2kgames.com/#/news/2k-games-conquers-pcs-with-the-release-of-sid-meier-s-civilization-reg-v-on-september-21-2010-in-north-america
http://www.2kgames.com/blog/civilization-v-expansion-pack-announced
http://www.2kgames.com/blog/civilization-v-expansion-pack-announced
http://civilopedia5.com

60 BIBLIOGRAPHY

[9] Michael Mateas Gillian Smith, Jim Whitehead. Tanagra: Reactive planning
and constraint solving for mixed-initiative level design. IEEE Transactions on
Computional Intelligence and AI in Games, 3(3):201–215, 2011.

[10] Ian Parberry Jonathon Doran. Controlled procedural terrain generation using
software agents. IEEE Transactions on Computional Intelligence and AI in
Games, 2(2):111 – 119, 2010.

[11] Kenneth O. Stanley Cameron Browne Julian Togelius, Georgios N. Yannakakis.
Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computional Intelligence and AI in Games, 3(3):172–186,
2011.

[12] Mike Preuss Nicola Beume Simon Wessing Johan Hagelback Corrado Grap-
piolo Julian Togelius, Georgios N. Yannakakis. Controllable procedural map
generation via multiobjective evolution. 2012.

[13] Renzo De Nardi Julian Togelius and Simon M. Lucas. Towards automatic
personalised content creation for racing games. In IEEE Symposium on Com-
putational Intelligence and Games, 2007, pages 252 – 259, 2007.

[14] Paul Martz. Generating random fractal terrain. http://www.
gameprogrammer.com/fractal.html, 2012. URL visited on 2012-09-07.

[15] Metacritic. Sid meier’s civilization v for pc reviews. http://www.metacritic.
com/game/pc/sid-meiers-civilization-v, 2012. URL visited on 2012-
09-16.

[16] Carlos Cotta Miguel Frade, F. Fernandez de Vega. Breeding terrains with
genetic terrain programming: The evolution of terrain generators. International
Journal of Computer Games Technology, 2009(125714):13, 2009.

[17] Gavin S P Miller. The definition and rendering of terrain maps. SIGGRAPH
Comput. Graph., 20(4):39–48, August 1986.

[18] MouseyPounds. Civ5map file format. http://forums.civfanatics.com/
showpost.php?p=10386463&postcount=1, 2012. URL visited on 2012-09-
02.

[19] Nintendo. Super mario bros. http://en.wikipedia.org/wiki/Super_
Mario_Bros., 2012. URL visited on 2012-09-16.

[20] Elvis Alistar Robert Pieter van Leeuwen Phillipa Avery, Julian Togelius. Compu-
tational intelligence and tower defense games. IEEE Congress on Evolutionary
Computation, pages 1084–1091, 2011.

[21] K.J. de Kraker R. Bidarra. R.M. Smelik, T. Tutenel. A declarative approach
to procedural modeling of virtual worlds. Computers & Graphics, 35:352–363,
2011.

http://www.gameprogrammer.com/fractal.html
http://www.gameprogrammer.com/fractal.html
http://www.metacritic.com/game/pc/sid-meiers-civilization-v
http://www.metacritic.com/game/pc/sid-meiers-civilization-v
http://forums.civfanatics.com/showpost.php?p=10386463&postcount=1
http://forums.civfanatics.com/showpost.php?p=10386463&postcount=1
http://en.wikipedia.org/wiki/Super_Mario_Bros.
http://en.wikipedia.org/wiki/Super_Mario_Bros.

BIBLIOGRAPHY 61

[22] Nathan Sorenson and Philippe Pasquier. Towards a generic framework for auto-
mated video game level creation. In Applications of Evolutionary Computation,
volume 6024 of Lecture Notes in Computer Science, pages 131–140. Springer
Berlin / Heidelberg, 2010. 10.1007/978-3-642-12239-2-14.

[23] Julian Togelius, Mike Preuss, and Georgios N. Yannakakis. Towards multiob-
jective procedural map generation. In Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, PCGames ’10, pages 3:1–3:8, New
York, NY, USA, 2010. ACM.

[24] WCG. World cyber games awards. http://www.wcg.com/renew/history/
wcg2011/wcg2011_awards.asp, 2012. URL visited on 2012-11-05.

http://www.wcg.com/renew/history/wcg2011/wcg2011_awards.asp
http://www.wcg.com/renew/history/wcg2011/wcg2011_awards.asp

	Abstract
	Summary
	Preface
	1 Introduction
	1.1 Problem statement
	1.2 Thesis structure

	2 Civilization V
	2.1 Game Description
	2.2 Civilization V Map Generating Methods
	2.3 Partial representation Civilization V

	3 Techniques
	3.1 Map generation techniques
	3.2 Procedural content generation techniques
	3.3 Technique chosen for this project

	4 Fitness functions
	4.1 Continental connectivity f0
	4.2 Distance between teams f1
	4.3 Resource assignment fa
	4.4 Unique resource distribution f2
	4.5 Strategic resource distribution f3
	4.6 Average player throughput f4
	4.7 Total value of a map fe

	5 Representation
	5.1 Genotype
	5.2 Genotype-to-Phenotype phase
	5.3 Evolutionary Algorithm

	6 Results
	6.1 Civilization V maps
	6.2 Genotype mutation
	6.3 Evolution

	7 Discussion
	8 Conclusions
	8.1 Future work

	A Terrain
	B Resources
	C Features
	D Map generation methods

