Sequence Signals for Protein
Expression

Benjamin Daniel Hgyer

Kongens Lyngby 2012
IMM-M.Sc.-2012-128

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-M.Sc.-2012-128

Typeset in ATEX2e using the IMM thesis template by Henrik Aalborg Nielsen,
Thomas Fabricius, Jan Larsen and Finn Kuno Christensen.

Contents

Contents

Summary (English) vii
Summary (Danish) ix
Preface xi
Acknowledgements xiii
1 Introduction 1
1.1 Setting o o 1
1.2 Objective e 3

2 Biological Background 5
2.1 Why Enzymes? 5
2.2 What Are Enzymes? 8
2.3 Amino Acids 9
2.4 DNA to mRNA: Transcription 10
25 mRNA 11
2.6 Ribosome 12
2.7 Codons 13
2.8 tRNA 15

3 Prior Works 19
3.1 Dataset Literature 19
3.1.1 Kudlaetal. 2009 20

312 Welchetal. 2009 23

3.2 Other Selected Literature 24
3.2.1 Gustaffson et al. 2012 24

3.2.2 dosReisetal.2004. 24

iv CONTENTS
3.2.3 Fredrick and Ibba 2004 25
3.24 Navon and Pilpel 2011 25

3.3 Review of Some Existing Codon Measures 25
3.3.1 Codon Adaptation Index 26
3.3.2 tRNA Adaptation Index 27
3.3.3 Effective Number of Codons 27
3.3.4 Frequency of Optimal Codons 27
3.3.5 Other Measures 27

4 Machine Learning Methods 29

4.1 General Model Definition 29

4.2 Higher/Lower Order Error Terms 31

4.3 Overparametrisation 0oL 33

44 p>N e 35

4.5 Dealing With Correlated Variablesand p >N 36
4.5.1 The Ridge Penalty 36
4.5.2 The Lasso Penalty [50] 37
4.5.3 Higher Order of Regularisation 38

4.6 Ridge or Lasso? A Compromise: The Elastic Net 39

4.7 Training the Model oL 40
4.71 Choosing A L 41

5 Parameter Investigation and Definitions 45

5.1 Reference-Based Measures, 45
5.1.1 Codon Adaptation Index (CAI) 46
5.1.2 Two-Codon Adaptation Index (CAIy) 47
5.1.3 tRNA Adaptation Index (tAI) 47

5.2 Dependence On Reference Set In Reference-Based Measures . . . 48
5.2.1 Reference Dependence for CAI 49
5.2.2 Reference Genes for CAIy, 49
5.2.3 Reference Genes for tAT 49

5.3 Non-Reference-Based Measures 52

54 Window-Wise Analysis 53

6 Model Training and Validation 57

6.1 Walk-through of Welch et al. analysis 57
6.1.1 Quick Look At the Predictors 59
6.1.2 Modelling Process 59
6.1.3 Extending the Welch Technique to Kudla Data 64
6.14 Trainingafullmodel 68

6.2 Model Definition oo 71
6.2.1 Choosing an R Package 71
6.2.2 Selectingawand A. 71

6.3 Model Training and Evaluation 74

CONTENTS v
6.3.1 Test Sets e 74

6.3.2 Modelling Parameters 75

6.3.3 Increasing Model Complexity 76

6.3.4 Side Note: Effect of A on Model Complexity 76

6.3.5 One Parameter At a Time 7

6.3.6 Combining Parameters for the Full Model 81

6.3.7 Model Validation 82

6.4 Biological Interpretations 83
6.5 Testing On New Data 84
6.5.1 Data Description 0oL 84

6.5.2 Parameter Estimation 85

6.5.3 Expression Prediction 85

7 The R Package: codonTools 87
8 Conclusion 89
81 Future Work 90

A Data Tables: Predictors and Parameter Values 91
A.1 Summaries of Single-Parameter-Set Models 91
A.2 Final Model Parameters 96
Bibliography 99

vi

CONTENTS

Summary (English)

Optimal protein expression levels is of great interest for companies in the enzyme
business. It is an in-house efficiency that takes nothing away from the customer.
The task of predicting expression levels, given a nucleotide sequence, is hard.
But given the cost of testing many sequences, it is well worth the effort.

This thesis documents an M.Sc. project aimed at describing the biological and
machine learning background of the problem at hand. Additionally it aims to
train a predictive model with a prediction correlation exceeding what is currently
considered state of the art.

Making this thesis has also meant many useful R functions have been written.
These are useful in themselves, but collecting them to a package will enhance
portability and ease of use.

viii

Summary (Danish)

Optimalt proteinudtryk har stor interesse for enzymvirksomheder. Det er en in-
tern effektivitet der ikke fjerner noget fra kunden. At forudsige udtryksniveauet
af en given nukleotid er en svaer opgave, men omkostningerne ved at teste mange
sekvenser taget i betragtning er det besveerligheden veerd.

Dette speciale dokumenterer et kandidatspeciale som stiler efter at beskrive den
biologiske og machine learningsbaggrund for ovenstaende problem. Ydermere
sgges at lave en forudsigelsesmodel med en forudsigelseskorrelation der overgar
hvad der betragtes som det bedste.

Udarbejdelsen af dette speciale har medfgrt en reekke nyttige R funktioner. De
er brugbare i sig selv, men ved at samle dem i en pakke fremmer portabilitet og
anvendelsen.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Mathematical Modelling and Computation. It
was carried out in collaboration with Novozymes A/S.

The thesis deals with codon optimisation as a method for increasing protein
yields in an industrial setting. The goal is to provide an accurate and sufficient
description of DNA to protein translation for a mathematician to get a grasp
of the topic. A parallel goal is to provide some insight into machine learning
techniques in biotechnology for biologists. Finally, the goal is to develop a
model from a machine learning standard, rather than necessarily a biological
standpoint.

This thesis is loosely divided into three parts.
Part 1 Introduction and biological background. Topics from DNA transcription
to RNA translation to proteins are covered.

Part 2 Prior works and machine learning methodology.
Part 3 Modelling building and validation.

Lyngby, 10" October 2012

Benjamin Daniel Hgyer

xii

Acknowledgements

I would like to thank my supervisors, Ole Winther from DTU and Thomas
Poulsen from Novozymes A/S. They helped me frame and formulate the idea
for this thesis. Particularly learning the biological background has been a big
hurdle, so I am grateful for my time at Novozymes.

I would also like to that Joshua Plotkin and Peter Bjarke Olsen for supplying
me with data. Without data, there really would have been no project at all.

No less worthy of thanks are Linzi, Rune and of course Anna, for technical help
(biology), technical help (R) and all-round support, respectively.

Finally I would like to thank my parents and family for all the support they
have provided me with over the years.

xiv

CHAPTER 1

Introduction

1.1 Setting

In today’s energy-concious world, companies and consumers alike are seeking
ways to diminish their energy requirements. They also seek to reduce their
usage of harsh or expensive chemicals, both in the home and in all elements
of the chain of production of day-to-day goods. A class of biological molecules
called enzymes have proven to be advantageous towards both of these goals.

This goal — to be energy efficient — is very much in line with nature’s own
desires: in a sense, it is at the core of evolution by natural selection. Energy is
nature’s underlying currency, and spending as little of it as possible increases
fitness.

Evolutionary pressure for energy efficiency means that nature has had a several-
million-year head-start on us. Inside all cells, enzymes allow reaction rates to
be sped up millions of times without resorting to high temperature or damaging
chemicals. Given the range of organisms in the world found in every thinkable
environment there seem to be enzymes out there for every given task.

Humans have been putting enzymes to work since perhaps as early as 9500
BC, most probably without knowing. In ancient Egypt and Mesopotamia cereal

2 Introduction

crops have been farmed since around this time. Archaeologists consider the most
likely reason for this to be production of beer and bread. And the production
of these is heavily reliant on enzymes at every stage.

Enzymes allow reactions to take place thousands of times quicker than they
would otherwise, and at much lower temperatures. They are essentially to us
physically and biologically, but also to our modern lifestyles. From washing
powder to orange juice to animal feed, they have become an irreplaceable part
of our lives.

Novozymes’ business consists of discovering useful enzymes in nature and bring-
ing them to market by manufacturing them efficiently on an industrial scale.
The universal nature of the genetic code is a critical feature on which enzyme
manufacturers rely heavily. It allows them to grow an enzyme found perhaps in
a mould growing under the sea ice, but without having to nurture the original
mould. Given that enzymes are discovered in a wide range of organisms, it is
convenient that you do not need to grow each separate individual host organism
in its preferred natural environment. Thankfully, you can extract the relevant
DNA code, the gene, and splice it into a well-behaved and well-understood or-
ganism, such as a yeast or bacteria. This means you can focus on growing a
single type of organism and optimise your industrial operation to suit it.

The process sounds simple ... at least conceptually. The biological language
of genetics can be thought of as Lego pieces [1]. If you want to build copies
of a Lego ship you found ‘in nature’, simply note down which pieces it uses
and where they are. Then you can go home and recreate an identical copy of
the Lego ship. The same is true of enzymes. You can probe the structure of
an enzyme and discover which building blocks it is made of. In enzymes, these
blocks are called amino acids. There is even the added bonus that enzymes have
a linear, one-dimensional structure (admittedly embedded in three dimensions)
— so all you need to note down is the order of the blocks. In genetics, the
‘words’ you use to describe the order of amino acids are called codons.

What complicates the issue is that there are ‘accents’ in the DNA code. To use
the Lego analogy one last time, the blocks come in different colours. Structurally
they perhaps the same role and can combine to create the same finished object.
But what happens if you need to find a yellow 2x4 block and you have a big
pile of red ones — with a single yellow one hidden in the middle somewhere?
You will of course find it, but it will take you longer to create the final product.

The same problem is true for enzymes. The building blocks can be written in
(up to six) difference ways, different codons referring to the same amino acid.
Structurally this is not significant; the amino acids are after all the same. But
if it is not matched to the host organism, you may end up with not very much

1.2 Objective 3

enzyme at all.

But the rewards are high. Some experiments report a 250-fold variation between
the highest protein yields and the lowest [2], entirely derived from re-writing
of the gene. The efficiencies are entirely ‘in-house’. That is to say that the
end product is identical in all cases. The consumer sees no difference but the
producer is able to produce more enzyme for a smaller price.

Note: Enzymes are a subclass of protein. The words are used somewhat inter-
changeably in this thesis, but generally protein will be used.

1.2 Objective

Being an engineer, I am inclined to accept the techniques and know-how that
has been built-up (by others) in genetics and biotechnology. Genes are transfer-
able between organisms and their meaning is conserved across all forms of life
(almost, exceptions include some members of the Candida genus [3]). This is a
useful property and it is my duty to extort as much benefit from it as possible,
without worrying too much about how and why the biology works.

Since selecting ‘good’ ways to re-write genes is crucial to modern biotechnology,
it is perhaps remarkable that no deterministic methodology exists. There is no
proven method which will increase yield with certainty, let alone a way to predict
what effect a changed codon (unchanged amino acid) will have [4]. Rewriting a
gene and testing it will in some cases result in increased yield, but in the rest
of cases, the yield drops. Since only positive results are reported [2, 5], there
exists much literature claiming effective techniques. Not surprisingly, each sig-
nificant positive result is followed by an article or two disproving the technique,
and coming up with a new and improved way of predicting protein expression.
Often devised by biologists, the ideas, models and methods are closely linked
to biological phenomena and interpretations. In general, the suggestions are
somewhat anecdotal: evidence exists to support and confirm hypotheses, but
perhaps the evidence is of a limited type or range.

I have no advanced biological education beyond high school; a physical model is
beyond my scope. Therefore we will tackle the problem of predicting protein ex-
pression levels for a given DNA sequence using statistical and machine-learning
techniques. A wide variety of codon usage statistics exist [6, 7, 8, 9, 10] but
they are often investigated singly. My objective is to investigate the predictive
power of many statistics, some pre-existing and some that I will define, together,
using statistical methods to find the most significant predictors. We will train

4 Introduction

models within datasets but also try to define global models perhaps applicable
to several genes within common host organism, or even applicable across hosts.

CHAPTER 2

Biological Background

While this thesis is carried out in completion of a Mathematical Modelling de-
gree, its subject matter is highly biological in nature. I have had to learn many
technical intricacies about enzyme manufacture while preparing this thesis.
Therefore, if terms like codons and mRNA are new to you, I suggest you read
through the following section before proceeding. Note that since enzymes are a
subset of proteins whose only distinguishing characteristic is that they catalyse
reactions, the two terms are used interchangeably. Generally the term used will
be consistent within specific context.

2.1 Why Enzymes?

Enzymes are nature’s catalyst. They are a class of protein which catalyses bio-
chemical reactions. They perform vital functions within cells and outwith them,
from speeding up digestive processes to releasing energy stored in fat. Figure 2.1
shows the principle of enzymatic action. Note that individual enzymes catalyse
only specific reactions and they are unchanged following use, which constitutes
a large part of their attraction. This means very little is needed (low concen-
tration) and this does not need regular replenishment. Enzymes are seen as
an environmentally friendly way to reduce energy costs and as a replacement

6 Biological Background

€ Enzyme available
with empty active

site :}\;)

Active site

Substrate
(sucrose)

@ Substrate binds
to enzyme with
induced fit

Enzyme
Glucose ~ (sucrase)
-
Fruc_:tose

e
g
<>

© Products are
released

© Substrate is
converted to
products

F1GURE 2.1: Schematic of enzyme action. The enzymes is sucrase which breaks
sucrose (in the presence of H,O) down to two products [11].

for hazardous chemical catalysts. They allow reactions, which might otherwise
require extremes in temperature, pressure or pH, to take place in milder condi-
tions. In terms of statistical thermodynamics, they reduce the activation energy
for certain reactions, which really means they increase the probability of that
reaction taking place [12]. At the macro scale, this translates to faster reaction
rates — or effectively a reaction versus no reaction. Figure 2.2 shows how even
a minor lowering of activation energy increases the number of particles suffi-
ciently energised to undergo a particular reaction by a large factor. In common
enzyme applications the reaction rate increase on the order of at least a million.
A particularly effective enzyme, carbonic anhydrase, can increase reaction rates
by ten million [12].

In some cases, they also widen the type of raw material that a manufacturing
process can use. The primary example of this bioethanol production from cellu-
lose (celulosic ethanol) rather than corn (corn ethanol). The primary advantage
is being able to use a waste material rather than corn, which might otherwise
be used as a food source [13].

All organisms produce and rely on enzymes. Many enzymes are shared among
many organisms, such as those involved in basic energy transfers at the cellular
level. Others are more specific, relating for example to digestion of specific food
chemicals or dealing with unique environments.

2.1 Why Enzymes? 7

Energy distribution of particles
0.8-

0.6 -

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.2- I
1
1
I
1
|

r
1
1
1
1
1
1
0.0 - !
1

Energy

FIGURE 2.2: The curve shows the distribution of particles having a given energy. The
area under the curve is one. The curve is a Maxwell-Boltzman distribution. The
Maxwell-Boltzman distribution has the form \/2/r,2.~22/202 /o3 (with a = 1) which
shows the energy distribution of particles in a medium at a given temperature. An
increase in temperature corresponds to moving the maximum to the right and
lowering it (to maintain the unit integral). The lines represent activation energies.
The line to the right represents the energy required for a reaction to take place in
the absence of an enzyme. The total area under the curve to the right of this line
represents the proportion of particles that will react. The line to the left represents
the activation energy in the presence of an enzyme. The area under the curve to
the right of this line is far larger. Hence the reaction happens far more quickly
with an enzyme present.

8 Biological Background

Enzymes have an integral part to play in human history — beyond the enzymatic
activities going on in all our cells. Desirable foods such as bread and beer
represent probably the earliest explicit (but inadvertent) use of enzymes. There,
the enzymes were housed in convenient little wrapper-organisms, yeast, which
were not themselves interested in making bread or beer. But the by-products of
their metabolic activities were just what we needed. Only recently (1859) have
we become aware of what these bags of enzymes were, when Louis Pasteur’s
experiments led him to isolate and identify micro-organisms.

Nowadays we are able to grow yeast or bacteria that have been modified so they
produce lots of a specific desirable enzyme. The enzyme can be isolated and
purified so that, at the point of use, we need not worry about yeast health and
nutrition; we can fully and directly control enzyme concentration with regard
to the chemical process we wish to catalyse.

2.2 What Are Enzymes?

Enzymes are proteins, which means they consist of amino acids joined up in
long chains by peptide bonding. The structure is linear and defined wholly by
its sequence of amino acids. However, they do not exist in long, simple, rope-
like configurations. They exist in minimum-energy, tangled globular or fibrous
structures.

The specific structure the amino acid chain takes is critical to its proper func-
tioning. The first stage of folding — mainly loops back onto itself — is called
secondary structure and tertiary describes the fully, three-dimensional structure
of the molecule. In certain cases, quaternary structures develop from multiple
intertwined proteins, called protein complexes. See Fig. 2.3 for an indication of
the stages of protein folding. For a given amino acid sequence, only one fold-
ing configuration represents the minimal possible energy structure. Given an
amino acid sequence, the physical structure of the protein is unique, but not
necessarily simple to find. Complex algorithms exist to determine the structure
of a sequence which demand huge computer power [15]. Indeed, the issue of
protein folding appears on Wikipedia’s List of unsolved problems in chemistry
[16]. Proteins are uniquely and solely identified by their linear (primary) struc-
ture. This is crucial for the methods of enzyme production in use today since
it makes the problem one-dimensional rather than three-dimensional.

Given the linearity of enzymes, the recipe for them need only specify their amino
acid order. This recipe is found in the deoxyribonucleic acid (DNA) of the cell.
DNA consists of two complementary strands of nucleotide bases intertwined in

2.3 Amino Acids 9

Prima
g Secondary Tertiary
structure
giructure gtructure
Y

™~

(A) Primary structure. (B) Secondary structure,
Linear sequence of for example simple
amino acids. loops and helices.

(c) Tertiary structure.

FIGURE 2.3: Stages of protein folding [14].

a helix. There are four bases: A, T, G and ¢. They are paired so that having
one half of the helix precisely identifies the other: A and T, and G and C are pair
up, respectively, and are called complements. This linear structure uniquely
decribes enzymes, although many stages are involved in the translation from
DNA to enzyme.

2.3 Amino Acids

The building blocks which enzymes comprise are called amino acids. They are a
class of molecule consisting of an amine group (-NHs), carboxylic acid (-COOH)
and a side-chain. The side-chain defines and characterises the amino acid.

Many amino acids exist (around 500 amino acids are known to occur naturally
[17]), but there are just 22 ‘standard amino acids’. Proteins are made of these
22. 20 of these are encoded directly by DNA and the remaining two are rare
and are not coded directly in DNA. The two exceptions both involve modifying
the effect of a STOP codon to represent selenocysteine (existent in all kingdoms

TABLE 2.1: List of the 20 amino acids encoded in DNA.

alanine glutamic acid leucine serine
arginine glutamine lysine threonine
asparagine glycine methionine tryptophan
aspartic acid histidine phenylalanine tyrosine
cysteine isoleucine proline valine

10 Biological Background

of life) [18] and pyrrolysine (in some methane-producing organisms) [19]. 30
or so artificial amino acids have been created in the lab and incorporated into
proteins [20] but this is beyond the scope of this thesis. When referring to the
standard amino acids in this thesis, we are referring to the 20 common amino
acids. They are listed in Table 2.1.

That the 20 standard amino acids are common to all organisms is a vital char-
acteristic which makes genetic engineering possible. It opens the door to trans-
ferring genes between organisms, and expressing certain desirable proteins in
standard host organisms, regardless of where they come from.

2.4 DNA to mRNA: Transcription

Single-celled organisms can be classed broadly into two types: prokaryotes
(mostly bacteria) and eukaryotes (animals, plants, fungi, ...). This thesis deals
exclusively with eukaryotes; hence, for simplicity, we will limit discussion to their
characteristics. We will highlight differences as necessary during the thesis.

In eukaryotes, the DNA is contained within the nucleus, along with certain other
complex structures, see Fig. 2.4. The presence of a nucleus is what distinguishes
them from prokaryotes. The process of actually piecing together the amino
acids happens outside the nucleus, in the cytoplasm. But the DNA does not
pass through the nucleus wall. Another genetic molecule, RNA — specifically
mRNA (messenger ribonucleic acid) — does that.

The mRNA is generated by RNA polymerase (RNAP), a molecule which unzips
the DNA molecule and produces a single-stranded complement of one side of
the DNA. The bases of the DNA are transcribed to their complements as before,
but a new base is introduced, uracil (U). See Table 2.2. For example the short
DNA snippet ¢GA would be transcribed to mRNA as GCU. Since this swap
from thymine to uracil is one-to—one, we lose nothing by keeping to thymine in
sequence notations. From now on only the standard DNA bases will be used.
In contrast to the double-stranded DNA, which takes up a very stable helical
structure, mRNA is single-stranded and therefore free to form secondary and
tertiary structures, like proteins. Note that not the whole DNA sequence, the
genome, is transcribed. Only the section coding for the required protein (or
other molecule) is copied, called a gene.

2.5 mRNA 11

Food storage granule

Vacuole

Nucleus

Cell membrane Cytoplasm

FIGURE 2.4: Diagram showing internal structure of a eukaryote (in this case, a yeast
cell) [21].

TABLE 2.2: Conversion from DNA nucleotide bases to mRNA complements.

DNA base | mRNA base
C G
A U
T A
G C

2.5 mRNA

Once outside the nucleus, the mRNA is ready for translation to a chain of
amino acids. A molecule called the ribosome is the key component in reading
the mRNA nucleotide sequence. It is the analogue of the RNAP inside the
nucleus. The part of the mRNA which actually encodes the enzyme is called
the coding region. But mRNA contains several distinct regions before and after
the coding region. At both ends of the molecule are special regions which signify
the start and end of the molecule. At the start, there is a 5’ (pronounced five
prime) cap. This helps the ribosome know where to start. It also serves to
protect the molecule from degradation. Next there is the 5" UTR, or the 5’
untranslated region. This region is not translated to amino acids, but serves

The structure of a typical human protein coding mRNA including the untranslated regions (UTRs)

Cap |5 UTR Coding sequence (CDS) 3'UTR P‘g'a\ﬁ“
Start Stop

5' 3

FIGURE 2.5: mRNA internal elements [22].

12 Biological Background

to promote, inhibit or otherwise regulate the translation. The coding sequence
follows, which is signified by special start message: AUG. (This codon not
only means START.) This is where the actual instructions are for building the
enzyme. The coding sequence is stopped by a STOP message. Continuing along
the mRNA we reach the 3’ UTR which contains sequences affecting, for example,
the stability of the mRNA molecule. The molecule is finished with a poly(A)
tail, a long series of A nucleotide bases. The poly(A) tail is important for getting
the mRNA out of the nucleus, through the nuclear membrane into the cytoplasm
(nuclear export) [23].

2.6 Ribosome

The ribosome is a complex of RNA and protein which catalyses the assembly of
amino acids into enzymes, see Fig. 2.6. It is a relatively large molecule which
envelops approximately nine nucleotide bases at a time. It travels along the
mRNA from 5 to 3’ and several ribosomes are able to travel along the same
piece of mRNA simultaneously, each producing identical enzymes.

This process makes use of tRNA. tRNAs are molecules which exist in a charged
or uncharged state. In their charged state (also called aminoacylated), they
have a particular amino acid attached by covalent bonding at one end. At the
other end is stretch of complementary bases. As the ribosome a passes along the
mRNA charged tRNAs are pulled in and attach momentarily to the three bases
in the centre of the ribosome. At this point, the tRNA release their amino acid
cargo, they detach from the mRNA, and disperse into the cytoplasm uncharged.
Aminocylation replaces their lost amino acid. Meanwhile, the ribosome joins

O Growing peptide chain

&

\ :
\ \ - A Incoming tRNA
\.‘Q&\P‘\ \\‘?\“p\bound to Amino Acid
Outgoing \\ \
empty tRNA g&)
N

MessengerRNA
Ribosome

Peptide Synthesis

FIGURE 2.6: Diagram to show the action of the ribosome [24].

2.7 Codons 13

the amino acid up to form the enzyme. See Section 2.8 for more information
about tRNAs.

As the enzyme becomes longer, the chain of amino acids becomes longer and
extends into the cytoplasm, as process called elongation. As this happens, the
chain folds into stable secondary structures.

Once the STOP signal is reached, the enzyme is complete and it detaches from the
ribosome. Depending on its purpose, it may then be secreted through the cell
wall into the cells external environment (secreted enzymes) or catalyse reactions
within the cell (non-secreted).

2.7 Codons

It has been mentioned that the DNA code is interpreted by tRNA, via mRNA.
There are four nucleotide bases in mRNA (A, U, G and ¢) which are read in
triplets called codons. Hence there are 43 = 64 possible codons. However
there are only twenty amino acids, plus a STOP signal. All codons are in use.
Hence, by the pigeon hole principle,! some amino acids necessarily have than one
codon encoding. On average there are 64/21 ~ 3 codons per amino acid (plus
STOP). In reality the number of codons for each amino acid varies from one to
six, methionine and tryptophan, and leucine, serine and arginine, respectively.
Figure 2.7 maps out all the 64 codons of the standard genetic code and their
corresponding amino acids (plus the sTOP codon). To clarify to effect of multi-
codon amino acids, consider the following two sequences.

ATGTCGGGGCTCTAG
ATGTCTGGATTGTGA

These sequences both have the same meaning, namely:
START - Serine - Glycine - Leucine - STOP.

An interesting feature of the degeneracy is that, often, the first two bases are
sufficient to identify the amino acid. For example, the codons for proline are
CCG, CCA, cCT and CCC: just the first two bases suffice. In the case of histidine
and glutamine, the degeneracy is not four-fold, but the changes are still only in
the final position. See Fig. 2.7.

IThe pigeon hole principle is attributed to German mathematician Dirichlet. Given n
items I;—1,...,In to sort into m classes Cj—1,...,Cm, where n > m and all I; must be
sorted somewhere, at least one C; must contain more than one element of I.

14

Biological Background

%,
Mﬁ%’ﬂha A
fﬁﬂiaumne § 'C

F1GURE 2.7: Codon table [25].

2.8 tRNA 15

So why are there so many codons? What is clear is that reading codons in
triplets is a good choice. There are 21 amino acids to code for, hence we need at
least 21 possible ways combine our bases [23]. If we had only two, there would
be 16 combinations, which falls short of requirements. Having some degeneracy
reduces the sensitivity of the code to mutations. Mutations (mistakes) can occur
at many stages of the process and are a real problem for survival. (Sometimes
the effect of a mutation is positive. But this must be considered a rarity.) If we
have six ways of encoding the same amino acid, we are effectively increasing the
probability that a given mutation will not be deleterious to the final enzyme.

2.8 tRNA

The mapping from codon to amino acid is done by transfer ribonucleic acids
(tRNA). They are at the core of translation from the four-nucleotide base triplet
language of DNA and RNA to the 20-amino acid language of enzymes. Put
simply, they are molecules which carry a specific amino acid cargo. The cargo
is unloaded inside the ribosome and attached to the growing amino acid chain,
a process called elongation. (The amino acid chain, on completion, i.e. reaching
a STOP codon, folds up and is then an enzyme.) Each particular tRNA carries
one particular amino acid.

Naturally the amino acid sequence must reflect that encoded in the mRNA.
This is achieved because the tRNAs bind onto mRNA inside the ribosome —
and only one tRNA can bind onto any one codon. Hence — conceptually at
least — at one end of the tRNA there is an amino acid and at the other there
is a codon-reverse-complement, an anticodon. In reality, tRNA is a complex
L-shaped molecule. See Fig. 2.8.

In the simplest cases, those of tryptophan and methionine, which have one codon
each, the mapping from codon to tRNA to amino acid is straightforward. More
often there are multiple codons which map to single amino acids. One guess
might be that there is one tRNA associated with each codon, i.e. for lysine
which has two codons there would be two tRNAs. They would each have a
cargo of lycine, but their anticodon parts would differ: one would have TTT
(corresponding to codon AAA) and the other would have TTC (corresponding to
AAG). The other extreme guess would be that perhaps the tRNA is capable of
binding onto both AAA and AAG, i.e. some sort of TTX anticodon, where the X is
capable of binding to both A and G. Reality lies somewhere in between. Special
bases which can bind to multiple bases exist, but also there are often more than
one tRNA per amino acid.

16 Biological Background

_amino acid
~ (tryptophan)

\) ‘
8 specific
tRNA
molecule __
e tRNA
binds to |

its codon
5 in mMRNA
<< \
L
anticodon

»y
W

N\

4

y
\

H H H base-pairing
i

anticodon
codon in MRNA

(@

(A) True diagram of tRNA molecule with (B) Sufficient diagram illustrating tRNA
anticodon and amino acid binding site concept.
shown.

F1GURE 2.8: Diagrams of tRNA of varying detail [26, Fig. 1.9(A)].

TABLE 2.3: Table of wobbles [23, p. 744].

Last anticodon base (on tRNA) | Last codon base (on mRNA)
C G
A U
U Aor G
G UorC
I U, Cor A

Often these multiply-binding codons are positioned in the third position. The
amino acids which are encoded by four codons share one feature: the only part
which changes is the final base. This means, for example, alanine’s four codons
GCA, GCC, Gea and GCT could all be translatable by a single tRNA, cGX, where
X represents the ‘wobble base’.

These special bases capable of binding to several distinct bases are tabulated in
Table 2.3. Notice that some of the bases we already know (U and G) have this
‘wobble’ property. A new base, inosine (1), common in tRNA’s structure, is able
to bind to three bases.

Using Table 2.3 we can deduce that lysine in any form can bind to tRNA with
a TTT anticodon. For alanine we require minimally two separate tRNA types:

2.8 tRNA

17

CGI and cGce [12, 23].

18

Biological Background

CHAPTER 3

Prior Works

This thesis relies primarily on two datasets which have associated literature.
The following is a summary of the nature of the datasets and original use in
their respective articles. Note that some concepts will be mentioned in passing
without a formal introduction or description. They will generally be covered
later in the thesis.

3.1 Dataset Literature

Genetic data is hard to come by. The processes involved in generating custom
genetic sequences are expensive and time consuming. For this reason, many
articles published on the topic of codon optimisation are analyses of already-
existing data. This has the benefit that models can be compared and assessed
more directly, but it runs the risk that these limit datasets may not be truly
representative.

We have chosen to use two publicly available datasets for the bulk of my analysis
and model development giving me a total of 210 genes. A sufficient dataset for
my analysis is a list of genes and corresponding expression level. But these
datasets do have some interesting features. Below is a summary of the articles
from which these datasets originate.

20 Prior Works

14 15
0.8 0.8
< %91 = 06
5 <
o
0.4 4 04 -
0.2+ 0.2
0 T T T T 1 0 T T T T 1
0 02 04 06 08 1 0 02 04 06 08 1
GC3 GC3
(A) CAI versus ac3 content in the 154 (B) CAI versus Gc3 content in 4288 real
sample genes. E. coli genes.

FIGURE 3.1: CAI versus Gc3 content (G or € base in the third codon position). The
154 mutated synonymous genes represent much of the diversity present in real E.
coli genes. [2, Figs. 1C and 1D]

3.1.1 Kudlaet al.: Coding-Sequence Determinants of Gene
Expression in Escherichia coli [2]

Description of dataset The dataset from this article consists of 148 genes all
encoding GFP! and each with 240 codons. The codons are varied randomly and
synonymously in the third base position, the wobble position. It was checked
that there are no duplicates. Of the 240 codons, 226 are candidates for wobble-
base mutations. (Some amino acids do not have codons that can be ‘wobbled’
in the final position: tryptophan only has one possible encoding, TGG.) For
example, a codon encoding tyrosine can be replaced by either TAT or TAC with
equal probability. The mean number of differences between two sequences was
114. The maximum difference was 180. The GC content in the third position
(ce3) and CAT of the generated sequences indicate that they represent much of
the diversity present in 4288 endogenous E. coli genes, see Fig. 3.1.

The cells were exposed to identical experimental conditions and consistency
within replicates of identical sequences is high (reported Spearman r = 0.98).
The host organism is E. coli. The range of protein expression varies 250-fold.

LGFP: green florescent protein. The protein is intracellular (non-secreted). Its expression
level is measured by measuring the fluorescence of the cell.

3.1 Dataset Literature 21

’a'g-a"g\
7 1
i i
% R
-~ -
E:t' 1 7%~ 1%
i 3 g & {0
' Y _c’g Mo
a=t q] 1
11 t -2 t=9
9=5 AN I_
1 a a t=a
tl—aI\ \c_ / (!-I
-c i i
i75 ama=C=g=g=C=g=a=a=g=a=a=t =a=g=t
i
774
P
§
iy
amag={ =mg=g=t
(A) Free energy —15.5kcalmol ! (B) Free energy —4.5kcal mol™!

FI1GURE 3.2: Simple example to show folding energies vary. [2, Fig. 2B|

Summary of result While this article does investigate codon choices, its
focus is rather on the influence of mRNA folding. It briefly considers other
measures, such as CAI, FoP, number of rare codons (CAI < 0.1), number of
consecutive rare codons and longest, contiguous stretch of rare codons, but dis-
counts theses in favour of its main premise: the minimum folding energy of the
messenger RNA (mRNA) could be a predictor for protein expression.

Kudla et al. find that traditional global codon measures (i.e. calculated across
the whole gene) are not significant factors when predicting protein expression.
They also find that predicted global mRNA folding energy is not significant.
However they find that, on carrying out a window-wise analysis, the folding
energy becomes highly predictive. The window-wise GC content also becomes
significant — but since this is closely related to the folding energy, they do not
consider GC content interesting.

Folding energy, called free energy and measured in kcal mol ™!, is a (usually neg-
ative) value which indicates how much energy is required to unfold the molecule.
Longer sequences of looped mRNA will give a lower free energy (larger absolute
value and more difficult to unfold). See Fig. 3.2. Given the the discrete and
non-linear nature of the problem, with many local minima, such predicted val-
ues extremely intensive to calculate. For this reason we will not consider them
in this thesis.

The particular window which they find to be significant is at the start: from

22 Prior Works

codon position —4 to +37, relative to the start codon. They suggest therefore
that the initiation of translation is significant, rather than the elongation. That
is to say: it is important to what degree it is easy to get translation started,
rather than how quickly or easily it reaches completion.

They proceed to suggest why this might be impacting on GFP expression levels.
Since multiple ribosomes are able to be bound to a single strand of mRNA at any
one time it seems reasonable that having a slower region, i.e. where the mRNA
is tightly folded, will cause a build-up of ribosomes. Or alternatively, given
a strand of mRNA that has a longer translation time, if the rate of ribosome
attachment is constant, more ribosomes will be bound to the mRNA at any one
time than another mRNA with a shorter translation time. Given that ribosomes
are ‘one size fits all’, i.e. the same ribosome can translate any piece of mRNA,
if you have many ribosomes held up in translating a single piece of mRNA,
there will be fewer ribosomes available for other elongations. This will limit
the expression of all (or at least some) other proteins within the cell, some of
which might be crucial to cell health. Hence, having a poorly folded mRNA
in your enzyme gene (which presumably is foreign to the cell and certainly not
crucial to the cell’s natural functioning) can negatively influence the translation
of important proteins in the cell and ultimately lead to poor cell health. Poor cell
health can in turn reduce the expression of the protein we are interested in, in
this case GFP. Kudla et al. have thus reversed the direction of causality: rather
than good codon choices causing good expression and thus high cell health, they
say good codon choices should encourage high cell health, which in turn leads
to good expression.

They do suggest that CAI plays a role in translation, but only in the rate of
elongation (not initiation). But note that the rate of elongation does not directly
affect protein expression rates (after an initial run-in period): only the initiation
rate is important for this. They suggest genes that have quicker translation
(due to more suited codons with respect to CAI) will sequester fewer ribosomes,
leading to better cell health. Hence they propose that high CAI correlates with
high cell health — which in turn supplies the potential for high expression.

The practical influence of this stance is that inserting weakly folded mRNA at
the start of the gene has a positive effect on expression, even if this requires you
to choose codons with low CAI values.

3.1 Dataset Literature 23

3.1.2 Welch et al.: Design Parameters to Control Syn-
thetic Gene Expression in Escherichia coli [5]

Description of dataset This dataset contains genes coding for two distinct
proteins: a DNA polymerase of bacillus phage $29 and a single chain anti-
body, scFv2. Both are expressed in E. coli. There are 32 synonymous genes
for the polymerase protein and 30 for scFv. The genes were designed by back-
translating from the amino acid sequence to a random codon sequence using
Monte Carlo methodology. This resulted in an average pairwise identity between
synonymous genes of 82 % and 79 % for the polymerase and scFv respectively.
The range of protein expression ranged from undetectable to about 10 % and
about 30 % of total cell protein, respectively: in general a variation of about
40-fold.

The technique of back-translating from an amino acid sequence to codon se-
quence is common in genetic research. It is often cheaper to sequence a protein
than a genome or gene. It simply means that, given an amino acid, you select
uniform-randomly from the possible codons for that amino acid.

Welch et al. use partial least squares to try to predict protein expression using
codon usage frequencies as variables. Codon usage frequency is the frequency
of occurrence of a particular codon relative to the frequency of the amino acid
it encodes. Hence the sum of frequencies of codons encoding a given amino acid
is one. The variables were pre-filtered to remove those with no variance (i.e.
amino acids with only one codon representation) and sTopP codons. Also, in the
case of two-codon amino acids, one codon was removed. Since they must sum
to one, they are directly inversely correlated.

The analysis sought to avoid over-fitting by using five-fold cross-validation. The
modelling was repeated ten times and the number of components giving the
lowest prediction error on the test set was noted.

Summary of result There were three sets of PLS modelling in this article:
one for each protein and one for the combined dataset.

In modelling the polymerase data, six amino acids were found to be most signi-
ficant. Of the six, five encode the most common amino acids in the polymerase
gene. Also, five of the genes were used more often in the gene than in the genome
on the whole. The model reached a cross-validation R? of 0.69.

2Single chain antibody scFv from OncoMed, Redwood City, California, USA.

24 Prior Works

For the scFv data, 9 genes had no detectable expression: this was not well-
explained by any model. They chose to remove these from the model and found
five components to be ideal under cross validation. The predictive power R2 for
this model was 0.68.

Combining the two datasets was done by normalising the expression within their
subset to 3.00. There are a number of reasons for why expression levels might
not be directly comparable between proteins, since their whole composition is
potentially entirely different. The cross validation R? for this model was 0.65.

The method of this article will be looked at more closely in Section 6.1 where
the analysis will also be applied to the dataset from Kudla.

3.2 Other Selected Literature

We now present a brief summary of a few articles that cover important issues,
or explain the issues particularly clearly. They do not necessarily contain tech-
nqgiues that we apply directly, but they contain ideas that have shaped some of
the measures we choose to define in Chapter 5.

3.2.1 Gustaffson et al.: Engineering Genes for Predictable
Protein Expression [27]

Gustafsson et al. give a gentle but thorough introduction to codon optimisation.
Popular methods like CAI and tAI are reviewed, as well as more general sci-
entific modelling methodology. The engineering hurdles of producing datasets
are also mentioned. Looking toward the future, the authors believe that dir-
ect experimental design and synthesis of genomes, followed up by multivariate
analysis, is the path to understanding protein sequence design principles.

3.2.2 dos Reis et al.: Solving the Riddle of Codon Usage
Preferences: a Test for Translational Selection [28]

This is a seminal article in tAI codon usage analysis. The wobble-base theory
for tRNA is covered. The authors discuss the parameters of the statistic and
how they vary depending on the organism being studied. They also consider the

3.3 Review of Some Existing Codon Measures 25

problem gene length. (A shorter gene is more likely to exhibit extreme codon
usage.) The usefulness of certain statistics is heavily dependent on gene length.

3.2.3 Fredrick and Ibba: How the Sequence of a Gene Can
Tune Its Translation [29]

This article offers a good overview to the topic of codon optimisation. It also
focusses on the variation of codon statistics along the length of the sequence.
Specifically the authors talk about the translation speed along the sequence. It
relates this mostly to tRNA abundance. The authors suggest that slow tran-
scription may be an advantage that helps to ensure correct folding. Since a
protein is identified solely by its folded structure (which is a result primarily is
its linear structure), ensuring (or allowing the opportunity for) correct folding
is an evolutionary advantage.

3.2.4 Navon and Pilpel: The Role of Codon Selection in
Regulation of Translation Efficiency Deduced from
Synthetic Libraries [30]

This article is considers both CAI and tAI, but focusses on the bottle-neck
effect. The authors point out that two genes may have identical CAI and tAl
values, but have different orders of codons which might affect translation. They
rate bottleneck strength, which increases if low-CAT and -tAI codons are used.
Specifically they define it as the mean of the inverse tAI value for the region in
question. They also consider bottleneck location.

They analyse both the Kudla and Welch datasets. The Kudla set appears to

have a strong ‘bottleneck’ effect in the relative region 0.16 to 0.28. The Welch
set has a weaker dependence on bottleneck location.

3.3 Review of Some Existing Codon Measures

There are many ways to quantify various qualities in a genetic sequence [31].
This is evident in the large range of measures that seek to summarise sequences.
There are two reasons for this.

First, the nature of the data being analysed allows it. Genetic sequences are

26 Prior Works

long with many possible ‘features’: they can be described arbitrarily and ad
nauseam. Given this potentially high dimensionality, and given that the output
is relatively simple (an expression measure: one-dimensional, at least), many
different measures will be able to describe a model of at least moderate predictive
power.

Second, we simply do not understand the intracellular process that result in
protein production, let alone know how to influence them to our advantage.

Current codon usages measures can broadly be split into two distinct types
based on what the null hypothesis is. The first group holds measurements up
against a random null hypothesis, i.e. that there is no underlying significance in
the codon choice in the gene as a whole. The second tries to see how unusual the
sequence is compared to how ‘normal’ genes look in, for example, that organism.
Usually this is phrased as being measured against a (set of) reference gene.

3.3.1 Codon Adaptation Index

The codon adaptation index (CAI) is a widespread measure for codon usage bias.
Indeed Fox [8] hails it as ‘the gold standard’ among bias indices. Developed by
Sharp and Li in 1986 [32, 33], it essentially measures the distance from a given
gene to a reference gene with respect to their within—amino-acid codon usages.
This represented a departure from the existing methods, which could be split
into two groups:

e various forms of counts of ‘optimal codons’ versus ‘non-optimal codons’,
e.g. frequency of optimal codons (Fop) [34] and codon bias index (CBI)
[35],

o distance measures relative to a random or equal-usage null-hypothesis, e.g.
effective number of codons (Nc) [6] and relative codon usage bias (RCB)
[36].

Precisely which reference gene is used does not seem to be considered in most
articles. Does the reference gene have a strong influence on the predictive power
of its dependent CAI statistics? In the R package seqinr [37] a reference gene
is supplied (in the form of its w vector). But in the documentation, it becomes
clear that questions have not been asked. One the one hand, if calculating CAI
values from this reference produces good results, then there is no problem. On
the other hand, it is conspicuous that no one has investigated it. The document-
ation says: “According to this source file, there were no reference for Escherichia

3.3 Review of Some Existing Codon Measures 27

coli It turns out that the data for Escherichia coli and Saccharomyces
cerevisiae are identical to table 1 in Sharp and Li (1987) [33]”

The CAI is covered in more detail in Section 5.1.1

3.3.2 tRNA Adaptation Index

The tRNA adaptation index (tAI) analogous to the CAI but rather than meas-
uring adaptation to a reference gene, it is measured relative to the supply of
the tRNAs that are required for translation of codons to amino acids. The idea
is that if there are fewer tRNAs available, the sequence will be more efficient
by not using the corresponding codons. The tAI is covered in more detail in
Section 5.1.3.

3.3.3 Effective Number of Codons

This measure, denoted Nc, quantifies how many codons a given gene uses [6].
Obviously a gene may use up to a maximum of 61 codons. The smallest Nc
value is 20, where only one codon is used per amino acid. The principle is that
highly expressed genes have highly tuned codon usages, and are likely to have a
low Nc. Hence Nc can be seen as an indicator of a highly selected set of codons.

3.3.4 Frequency of Optimal Codons

This measure, Fop, is one of the earliest codon measures [34]. Optimality is
defined from a combination of factors, including tRNA wobble-base pairing,
tRNA abundance and nucleotide chemistry. The frequency is then simply the
ratio of the counts of the optimal codon (for all amino acids) to the total number
of codons.

3.3.5 Other Measures

There are many measures, and many slight variations on each of these measures.
The purpose of this thesis is not to describe many existing codon measures,
but rather to see whether good predictions can be gained using more neutral

28 Prior Works

measures, i.e. without necessarily a biological story to defend them. Cannarozzi
and Schneider provide a very good overview of codon measures [31].

CHAPTER 4

Machine Learning Methods

The Human Genome Project, declared complete in 2004 [38], is the pinnacle
of data gathering. The project ran for 15 years and sequenced each of our
approximately 20 thousand genes, identifying the 3 billion or so base pairs they
comprise [39]. But this project is no longer unique. Research is under way to
gather all genetic data regarding, for example: the Neandertal Genome Project
to map the genes of our closest relative [40]; The Chimpanze Genome Project
to map the genes of our closest living relative [41]; the Human Connectome
Project to fully map pathsways and functions of our brain [42]; the Human
Variome Project to better understand how certain genes lead to disease [43];
and 1000 Genomes to gain understanding for genetic variation across our species
[44]. These technological projects themselves produce enormous datasets, but
they also pave the way for others to perform smaller-scale analyses and data
generation. The data generated by Kudla et al. [2] and Welch et al. [5] are
examples of this.

4.1 General Model Definition

This thesis seeks to model protein expression levels using quantitative codon
measures calculated from genes, with the aim to accurately predict protein ex-

30 Machine Learning Methods

pressions given a new gene. Linear modelling will be used for this. The basic
form of a linear model is

y=X'8, (4.1)

where y is a vector of the IV observed protein expression levels, 8 is a vector
of the p parameter values and X is an N X p matrix containing N observations
of the p variables. The intercept term will be assumed to be included in the
observation matrix as a column of ones (and correspondingly an extra parameter
at the start of §). This implies a perfect model with no prediction error. In
reality, the only thing we can be sure of is X which contains the observations.
Hence a realistic model cannot find y exactly, but only to within an error . The
model parameter vector is also only an estimate, B:

y=X"B+e (4.2)
This can be written
§=X"p, (4.3)

where § = y — ¢ is the estimate of protein expression, ¢ is the real-life error, X is
a matrix containing columns of parameters (and rows of observations) and 3 is a
vector of estimated model parameters. The error term, i.e. the deviation of the
model from real data points, must be minimised to ensure a good model, but it
is assumed to be non-zero since there is some random variation in, for example,
the measured protein expressions and in the measured predictors. However in
general there will be true features in the model that are missed due to lack of
understanding of the system. Hence the error term will contain more than just
the measurement error.

The parameter vector S wholly defines the model. It describes the correlation
of each column in X with the protein expression y. These values are estimated
as B by training a model on some example data. The quantitative way to find
an optimal § is to minimise the sum of the magnitude of prediction errors,
ly — 9] = |e|, for all N (test set) observations. In practice, the sum of £2 (¢T¢)
is often minimised. This technique is known at least squares regression and is
not only simple to conceptualise, but also gives the best possible linear unbiased
estimates of 3 [45]. The term we seek to minimise is the residual sum of squares
(RSS) for a given set of parameters 3:

N
RSS(8) =) e}

4.2 Higher/Lower Order Error Terms 31

where the sum is over all N observations. Rewriting to matrix notation, this
becomes

RSS(B) =¢'e
= (y—XB)"(y - Xp).
RSS() is the quantity we need to minimise. With respect to 8 the function is a
simple quadratic. Hence we know that a minium exists and that it can be found

by differentiating with respect to 8 and finding the stationary point. This leads
to the normal equation [46]:

ORSS

Tl XA —
5 BZB—X(y XB) = 0. (4.7)

Solving for B gives
f=(XTX)"'XTy, (48)
with the condition that (XTX)~! exists, i.e. that XX is non-singular. This

condition demands that XTX be full rank, i.e. that its columns and rows be
linearly independent of one another. Inserting Eq. (4.8) into Eq. (4.3) gives

where
H=X(X"X)"'XT, (4.10)

is known as the hat matrix (since it places the “on y).

4.2 Higher/Lower Order Error Terms

A model is fitted by minimising an objective function. Often, as in this case,
Eq. (4.4), the objective function sums the square of the residuals, RSS. The
objective function can be defined in any way that ensures larger residuals (indic-
ation of poor fit) result in a high objective function value, so that in minimising
the function we minimise the errors. Even if we restrict ourselves to objective
functions of the form

fobj (ﬂ) = Z(yz - gz(ﬁ))qv (411)

where ¢ is the exponent applied to the residuals, there is still a lot of variation
possible. As ¢ — 1, the residual term becomes less sensitive to extreme values.

32 Machine Learning Methods

Models by various sum of least—-exponent residuals

850 -

Exponent

650 -

FIGURE 4.1: Various exponents ¢ for residual-least—to-the-power-g models. Lower
exponents try to fit more values more closely. Larger exponents focus on minim-
ising the largest residuals.

The model will prefer to find a fit that places a line close to many points without
worrying about points further away. If ¢ becomes large, the importance of large
residuals dominates. Hence the the model will minimise the largest residual,
regardless of how many large residuals this results in. Figure 4.1 show the
optimised linear fits for a range of residual-exponents. We see that for very
large ¢ = 50, the model tries to reach up to the outliers in the top right of the
plot, despite this increasing the residuals for the majority of points.

Setting ¢ = 2 is a remarkably good trade-off: it coincides with the best linear
unbiased estimator by the Gauss-Markov theorem [45, Lecture 1]. But it is
perhaps interesting to consider how we naturally would draw a line. Presumably
we apply some sort of objective function when given the task of drawing a line
through a cloud of points [47]. Restricting objective functions to the type in
Eq. (4.11), carrying out a quick small-scale experiment gives the result shown
in Fig. 4.2. Tt seems there were two kinds of people in my test: those with more
care for large residuals and those who tend to prefer to match many points
closely. The latter corresponds to ¢ significantly under 2: ¢ =~ 1.1. The former
corresponds to something closer to ¢ = 4; it seems they have over-compensated
for the larger residuals, probably by trying to find the least squares solution
they learnt about in statistics!

4.3 Overparametrisation 33

Draw the line that fits the data most closely

850 -

650 -

25 50 75 100

FIGURE 4.2: We asked a group of people (some with scientific training, some
without) to draw a line through the data as best they could. Most people (by
an insignificant margin, admittedly) drew a line close to an ¢; error term. The
blue line is a least squares fit.

4.3 Overparametrisation

In linear algebra terminology, y exists in a higher-order r space than does g,
C. ¢ is a projection of y into a p-dimensional model space P. The difference
between these is the error term |e|, where the vector € is in r — p dimensional
space. The dimension r of y is the true dimensionality of the problem at hand.
Given that a model is usually a simplification of reality, p will be smaller than
r. Figure 4.3 shows the relationship between y, § and ¢ for r = 3 and p = 2 (as
best can be shown on two-dimensional paper).

Imagine that the true system that we are modelling is of dimension » = 10. That
implies the true description of y requires ten linearly independent dimensions,
or ten uncorrelated parameters. Given that we do not know what the system
constitutes, we do not know that » = 10. However suppose we naively measure

15 quantities x = {1, ..., zp=15} that we believe to be correlated with y. Let us
assume that we have captured the full dimensionality of the true system in the
first ten parameters {z1,...,210}. Then the remaining five parameters must be

correlated initial ten parameters. We have overparamatrised the model.

34 Machine Learning Methods

FiGURE 4.3: Projection of r = 3-dimensional y observation vector in C to p = 2-
dimensional § in P, with an » — p = 1-dimensional orthogonal error ¢ [48]. P is
the column space of X and ¢ € C\P

In any real system there will be noise which, theoretically (if it is true noise,
i.e. no structure in any dimension) cannot be described or predicted. In the
situation described above, the extra five parameters could be used by the model
to ‘predict’ the noise. (In that case, the system y would really have ten dimen-
sions, plus noise.) Given that noise has no structure, these five parameters have
no way of succeeding. In fact, they will decrease the predictive power of the
model. This is because they will find structure that appears to be there in the
limited training data which does not exist in real life, i.e. new data.

In this way, overparametrising a model can lead to fantastic fits to training data,
but the model will generalise poorly and produce poor predictions on test data
(it fits the noise term €). In the extreme case when the number of observations
is equal to the model size p the fit will be perfect (on training data), since each
parameter in 8 has an entire observation devoted to it.

The predictors = can of course be correlated even if the model is not strictly
speaking overparametrised. For example if we want to predict the weight of a
person and we measure both the left and right feet: these measurements will be
highly correlated. This is a problem since, when projecting y from C to P to get
7, the basis vectors for P — which are the columns of predictors in X — will
not be orthogonal. This leads to high variance in the value of predictors, since
the model essentially has two (almost) identical ways to identify . The model
will erratically switch between highly correlated predictors.

44p>N 35

This problem also manifests itself in the equations. The condition associated
with Eq. (4.8) (that (XTX)~! exists) requires that X'X be invertible. The
effect of correlated predictors is that XTX becomes singular. Thus, Eq. (4.7)
cannot be solved and the solution B is undefined.

4.4 p>N

Traditional statistical techniques struggle to produce useful predictive models
when there are more parameters than observations. This is, in a sense, because
they fit the given data too well — they fit the real-life situation (hopefully) and
they fit the error. For example, given two observations, it is always possible to
fit the data in two dimensions exactly (i.e. two points can always be joined by a
line). However this model will also have taken error terms into account (i.e. the
position of the two points only known to within an error term, but the model
ignores this). Given that the error cannot be assumed to be well-represented by
the two observations, the model will generalise poorly. The dimensionality that
a model can represent is maximally equal to the number of dimensions.

The number of free parameters p in a model is related to a quantity called the
number of degrees of freedom df. Since the model parameters are estimated from
the observations, it is possible to quantify the number of observations used to
estimate each parameter. Having more observations per parameter will result in
a more stable 3, since noise on the observations gets averaged out (assuming the
noise is zero-mean). Given that individual observations are subject to noise, if
each parameter is supported by only one observation, there will be considerable
variance on the parameter, and the model will generalise poorly.

The difficulties are exacerbated when there are more variables in the model than
observations available. In that case there will be infinitely many solutions that
fit the test data perfectly. Again, the problem comes when trying to model a
new data point. It is likely the model has captured error as a non-random term,
which gives poor predictions. Think of the two observation situation again. If
our model is three-dimensional (a plane) we can find any number of planes that
pass exactly through the two points.

The case p > N quickly arises in analysis of genetic data. The analysis of codon
optimising is no exception: in its most basic form, the model developed in this
thesis is trained on over 10 thousand variables, with only a total of around 200
observations. This situation is described as p > N.

36 Machine Learning Methods

4.5 Dealing With Correlated Variables and p > N

The problem with many parameters and correlated parameters is that the matrix
XTX becomes poorly defined resulting in extremely large, unstable parameter
values, or singular resulting in no solution at all.

4.5.1 The Ridge Penalty

It was this problem that Hoerl and Kennard wanted to solve [49]. To break the
linear dependence of columns (correlated predictors) we add a diagonal (and
therefore orthogonal) matrix AI to X"X. This makes the columns independent
and thus the inversion (XTX + AI)~! is possible. This technique is called ridge
regression. Equation (4.8) then becomes

Bridge = (XTX + AT) "' XTy. (4.12)

Using the ridge regression requires making a choice of A\. The effect of various
choices is best seen by taking a step back to Eq. (4.4), which becomes

error term

ridge term
N R —_—
RSS(A) = > (i — & Priage.s)’ + Mage - (4.13)
=1

where 32 = BT3. We see that the parameter vector # is now included in the
objective function: specifically the inner product with itself Z§:1 Ajz, or BTB, is
included and scaled by the ridge parameter A\. As mentioned previously in the
section about orders of errors, this will encourage the model to minimise the
largest parameters in B. Once parameters become small they will tend not to
be minimised further.

This has an implication for correlated predictors. Suppose we have included two
highly correlated predictors in a model and we use the ridge regression. The
ridge terms means the parameters associated with those two predictors will both
be minimised together. For example, suppose a we are interested in predicting
a person’s weight, y. We might think foot length is a relevant predictor. But
for some reason we include the length of each foot in the model, 8, and f;.
Suppose the actual parameter associated with foot length is St = 1. But
given that we have two predictors containing the same information, they must
‘share’ the parameter weight, hence 5; + 8, = 1. Suppose the minimisation of
the objective functions Eq. (4.13) starts with {4, 5;} = {1,0}. Minimising the
sum of squares will lead to the solution {4, 8;} = {0.5,0.5}, i.e. the parameters
share the weight equally amongst them.

4.5 Dealing With Correlated Variables and p > N 37

In the general case, there can be many correlated predictors. Hence the para-
meter estimates for each individual predictor can end up being very small. This
leads to difficulties in interpreting the parameters. For example, in the above
case, we would be lead to believe that each foot is a relevant predictor of weight.
Really, one foot is sufficient. Also, since parameter values can become extremely
small, there can be problems of numerical stability [46].

The averaging of parameter weight happens regardless of the value of A. But the
extent to which is happens is controlled by A. Specifically, A controls whether the
residual sum of squares term or the parameter size term dominates in Eq. (4.13).
A = 0 corresponds to a normal least—squares solution. A — oo corresponds to
a solution where the prediction residuals have no importance. Only minimising
the parameter values counts. This is minimal when all are zero, which is a
meaningless solution.

4.5.2 The Lasso Penalty [50]

Changing the exponent of the g term in the objective function changes the
behaviour of the model. Consider Fig. 4.1 on page 32. There, a lower exponent
q means the line moves closer to many points. This corresponds to the line
looking for a place where many residuals are zero, without worrying about a few
individually large residuals. In the ridge regression, the penalty form means that
large residuals are avoided and many small (non—zero) residuals are preferred.

Analogously, changing the parameter penalty to an L;—norm, i.e.)\Zle | Bj|,
causes many parameters to go to 0, allowing for a few larger ones. Using the
weight prediction model described above, this would mean one foot parameter
would go to 1 and the other to 0. This is positive in two ways and negative in
one.

good: Tt makes the resulting model easier to interpret, since there are fewer
non-zero parameters with numerically large weight.

good: The number of non—zero parameters will (ideally) correspond to the true
dimensionality of the problem.

bad: Successive runs of the model (successive minimisations of the objective
function) during cross-validation may result in a different set of (non—
zero) parameters, which can hinder interpretation.

There is no closed—form term for the minimum of the lasso objective function,
since the L1 norm is not differentiable, but it can be expressed as a constrained

38 Machine Learning Methods

optimisation problem:

N
A . 2
Blasso = argénmz (yz - x;r/B) (414)
i=1
subject to |B]; < t. (4.15)

In Langrangian form, its link to the ridge becomes obvious:

N

2
p D
Prasso = argénin Slwi=D wiBi | XD 18l ¢ (4.16)
i=1

i=1 j=1

As for the ridge regression, the parameter A must be chosen. The extremes, 0
and oo are the same as for the ridge regression. In signal processing literature
the lasso method is called basis pursuit [51].

4.5.3 Higher Order of Regularisation

The general form for the penalty function class of which the lasso and ridge are
members is

2

N P
Dolwi=D mB | +2)_ 18I (4.17)
=1 j=1

j=1

N | =

where g controls the behaviour of the model fitting and the way that elements
of § approach zero [52]. Larger ¢ allows more complex models that do not
select against multiple correlated predictors. Lower values encourage sparsity
in predictors, i.e. many [elements are zero. The case of 0 < ¢ < 1 is called
the bridge regression [53]. In this case the objective function is not convex
and hence a minimum does not exist [54]. Fu has carried out a comparison of
the bridge and lasso techniques [55]. The case ¢ = 0 is called subset selection
[56]. Here, the lop-norm means adjusting A really means concretely choosing how
many parameters to search for. The sparsity of the 3 is fixed. The lasso [; is
represents lowest norm (encourages sparsity) for which the objective function is
convex (solvable).

4.6 Ridge or Lasso? A Compromise: The Elastic Net 39

4.6 Ridge or Lasso? A Compromise: The Elastic
Net

The ridge regression is more gentle. It is ideal when you believe your parameters
are all useful and they have comparatively small contributions [46]. It limits the
absolute value of parameters, which offers better predictions. Correlated values
will tend to approach a common value and no predictors will ‘drop out’ of the
model (by getting a zero—parameter). Increasing A does not help this. Rather,
it encourages the parameters to approached a single shared value [50, 57].

The lasso is appropriate when you have many correlated variables (which is
necessarily the case when p > N [52]. Among a group of correlated predictors,
a single predictor will be chosen and the rest will fall out of the model (parameter
value zero). Likewise, predictors not correlated with the response are removed
from the model. This improves interpretation of the model [46]. In the case of,
for example, gene expression data [58], where there are many parameters this
property is extremely valuable.

Some datasets are distinct in having: a) few observations; b) many predictors;
c) highly correlated subgroups of predictors, and; d) many irrelevant predict-
ors. Many genomic applications share these traits. Here we may wish to remove
many predictors from the model entirely (lasso) while shrinking remaining para-
meter values to aid predictive power (ridge). A trade—off call the elastic net [59]
attempts to cover this case.

Suppose we combine Eqs. (4.13) and (4.16) to give a new objective function:
RSS(8, A, 21) = (y — 2i8)° + Ml BI° + NI, (4.18)
where A, and \; weight the ridge and lasso penalties, respectively. This would

appear to solve the problem. For the sake of tidiness, we can rewrite Eq. (4.18)
by setting

Ar
= 4.1
TN (419
so that the objective function becomes
RSS(8, A, M) = (y — 2:8)* + (1 —)| 8] + a8, (4.20)

since the values A\, and \; themselves are arbitrary. This allows us to weight
the ridge and lasso constraints against each other. This penalty formulation is
known as the naive [59] or vanilla elastic net [54].

40 Machine Learning Methods

In practice, good performances for this model structure requires that either A,
or \; are small, i.e. the model either performs like a ridge or like a lasso. This
is related to the fact that parameters are effectively shrunk twice, once under
the ridge regime and once under the lasso. The solution is to undo the ridge
shrinkage [54].

Friedman, Hastie and Tibishirani’s R package glmnet [60] uses the following
implementation:

5 = min | oo (4= X76)" + A PalB)] (4.21)
where
PalB) = (1 -) |83 + 0. (4.22)

In this form, the A, term allows us to weight the effect of the parameter penalty
against the residual contribution. The elastic net mixing parameter o term
controls the relative weights of the ridge and lasso terms. Lasso corresponds to
« =1 and ridge to o = 0.

4.7 Training the Model

A model is selected based on its residuals. Since a model can in many cases fit
the response perfectly (zero residual), this cannot be a useful measure of model
acuity. However, fitting a model and testing it on new data will keep over-fitted
models in check. This requires a larger set of observations: one part to train on,
another to test. This situation is shown in Fig. 4.4a. However this only gives
us one change to ‘get it right’. It is dependant on the training set and test set
both being highly representative of the underlying true data, both in terms of
correlations with predictors but also in model noise. This could be repeated, of
course, with new sets of data. But data is expensive and often fairly limited.

Therefore data can be split up into several chunks and multiple models can be
trained [46]. Say we split the data into four chunks. Each chunk is removed one
at a time, and the model is trained on the remaining three chunks and tested
on the one removed chunk. See Fig. 4.4b. The model parameters can then be
averaged over all the runs to give a more realistic model, and one that hopefully
is better able to predict new data.

This process is called cross-validation. Depending on how we split the data (for
example just two splits, or as many splits as there are observations), we will need

4.7 Training the Model 41

(A) Simple training/test set split. (B) Cross-validation [52].

FI1GURE 4.4: Methods for preventing overfitting.

to run the model multiple times. The more times we run the model, the more
information we can extract from each data point. But the computation time also
increases. Depending on the model complexity, this can become so large that it
is impractical. The number of splits is called the number of folds. Depending
on the data size, cross validations of five- to twenty—fold are common, while
N—fold cross validation, called jack knifing, is also common.

When datasets are small we cannot entirely save ourselves by cross validating.
Suppose we start with a reasonably small dataset of 30 observations. Performing
five-fold cross-validation on this will give us four models each trained on 25
observations and tested on 5 observations. Since 25 is not very many points,
there may be significant variation — 25 points are not enough to ‘absorb’ outliers
in the training data, so the model will be affected. Likewise, if we have unusual in
the test set, they will not be drowned out by the rest of the points. Hence quite
large errors can appear [46]. Figure 4.5 illustrates the effect of this principle.

4.7.1 Choosing A

A is a hyper-parameter in the model. It is not used to predict the data directly.
Rather, it is used to tune how complex the model becomes, i.e. how many
effective parameters the model contains.

In searching for an appropriate value for A we are really searching for the value
which minimises the prediction error on the test set. Hence we run the model

42 Machine Learning Methods

0.8

1-Err

0.4

0.2

0.0
|

0 50 100 150 200
Size of Training Set

FI1GURE 4.5: The model accuracy, 1 — Err, increases with dataset size. For small
datasets, the effect can be very large [46, Fig. 7.8]. Err is the expected test error,
which is the mean of errors on test data in cross-validation runs.

multiple times for various A. The value which consistently scores a low prediction
error is chosen.

This is often combined with cross validation. The reason is that an ideal A
exists for each set of data. However our interest is not in modelling the data
itself — we want to be able to model new data. If a model is well-trained on a
set of training data, there will be bias. The training data is systematically and
permanently different from the true data distribution, and the difference in the
two sets is the bias. The term bias describes the fact that the model is fit to
the training data, which is an imperfect representation of reality. In terms of
the ridge regression, this implies that the objective function consists mostly of
the residuals, i.e. a small .

A large A reduces model complexity, which means fewer parameters are trained.
With fewer parameters, the model is less likely to capture the underlying error
in the data, so bias is reduced. However successive modellings are likely to land
on different parameter values — hence prediction variance is increased.

Figure 4.6 illustrates the trade-off. Practical values for A\ are often extremely
small. Therefore log A values are often given.

4.7 Training the Model

43

Prediction Error

High Bias Low Bias
Low Variance High Variance
- -

Test Sample

/

Training Sample

Low High

Model Complexity

FIGURE 4.6: Bias—variance trade-off [46, p. 38].

44

Machine Learning Methods

CHAPTER 5

Parameter Investigation and
Definitions

This section will introduce the specific codon measures that we will be calcu-
lating and using as predictors in the model. Some are popular and common
in literature today [31] while others are ones that we define here. The newly
defined measures will generally lack an a priori biological justification. This is
in line with the aim of the thesis.

5.1 Reference-Based Measures

Two of the codon measures that I will be using rely on a comparison between
the given gene and a reference for its class. Here we introduce the measures and
consider what effect the choice of reference has on the measure.

46 Parameter Investigation and Definitions

5.1.1 Codon Adaptation Index (CAI)

Developed by Sharp and Li in 1986 [32, 33| the codon adaptation index measures
the distance of a gene from a reference gene. Its formula is

CAI(L(g)) = exp <i Zlog wc(l)> = (H wc(l)> , (5.1)
=1 =1

where L is the length of gene g and w,(l) is the relative adaptiveness of the
codon ¢ in the reference genes (not g). Relative adaptiveness is defined

We = L, s €{C.}, (5.2)

max(f)

where f, is the frequency of codon ¢ which is the [*" codon in g. @ is the amino

acid encoded by ¢ and {C, } is the set of synonymous codons encoding amino acid
a. Certain codons will appear multiple times in the gene. Each time a certain
codon appears, the contribution to the sum in Eq. (5.1) will be the same. Hence
we can rewrite the equation to sum over codons rather than length, and use
counts rather than frequencies. This makes the dependence on the actual gene
more clear. The more usual form is

CAI(o(g)) = exp (! ZOC logwc> = (H ocwc> - , (5.3)

0
tot cc cec

where oyt is the total number of unique codons in the sequence and o, is the
number of occurrences of codon c.

In general, only sense codons are included in the count. This means STOP
codons are removed. Often also single-codon amino acids are removed, since
they have no freedom to choose a codon and therefore cannot deviate from any
reference gene.

A CAI ranges from zero to one. A value of one implies that the optimal codon
(according to the reference gene) is used every time. Going toward zero, more
rare codons are used.

5.1 Reference-Based Measures 47

5.1.2 Two—Codon Adaptation Index (CAI)

The two—codon CAI measure is defined entirely analogously to Eqgs. (5.1) and (5.3):
1

CAT,y(¢ (H (bcwc) " (5.4)

ceD
fe
max(fs)’

where ¢ is the two—codon analogy of o, ¢ and a are the paired equivalents of
their earlier definitions and D is the set of all codon pairs.

s e {D,}), (5.5)

We =

The CAI is interpreted just as the CAI measure.

5.1.3 tRNA Adaptation Index (tAI)

This is closely related to the CAI index. But rather than comparing the codon
use in a given gene to the codon use in a set of reference genes, codon use is
related to the pool of tRNA available for translation [28, 31, 61]. The premise
is that if you use a codon for which there are only very few tRNA available
to carry out the translation, translation rates will be slowed and the protein
encoded by the gene will be produced in smaller amounts.

The tRNA availability is not known directly. tRNA is a biological molecule
which is encoded in DNA so levels are estimated by counting the number of
copies of tRNA DNA there is in a given organism’s genome. This is called
the tRNA gene copy number (tGCN) [61] which correlates strongly with actual
tRNA levels within the cell [34, 35, 62].

Just like CAI, tAl is calculated as the geometric mean of codon weights w? along
the sequence g:

1
L

L

tAI(L(g)) = exp(Zlogw l)> = (H wz(l)> (5.6)
=1

Z:OC log w,,) = (H ocwi> - . (5.7)

tcec ceC

tAI(o(g)) = exp (

However the definition for the relative adaptiveness w’ is quite different in this

48 Parameter Investigation and Definitions

case. First absolute relative adaptiveness W is calculated for each codon ¢ as

W, =
J

(1 — Scj)tGCNCj, (58)
=1
where j indexes the n tRNAs that match codon ¢ and s is a selective coupling
constraint between codon c¢ and its j*" tRNA. Here we set s = 0 if it is a direct
match and s = 0.5 if there is a mismatch at the final position [61], although
more involved constraints have been defined [28]. Then

H
_ W it W, #£0
We = { ma’gw-;) else ¢) s € {Ca}’ (59)

with s, C and a as for Eq. (5.2).

5.2 Dependence On Reference Set In Reference—
Based Measures

There is a dependence on the particular reference set in each of the three meth-
ods described in the w, wy and wyar vectors. Often software supplies standard
w-vectors for use in calculations [10, 37], but sometimes researchers supply or
calculate their own [63].

In the case of the R package seqinr [37] the w vector for CAI calculation
is supplied for a number of organisms (Eschericia coli, Bascillus subtilis and
Saccharomyces cerevisiae). All data are referenced to the codonW program [10],
but: “According to this source file, there were no reference for Escherichia coli
[...]- It turns out that the data for Escherichia coli [...] are identical to table
1 in Sharp and Li (1987) [33].” This adaptation index was calculated from 24
highly expressed genes where half are ribosomal and half are metabolic.

24 is quite a small number of genes and the small number was presumably
accepted because not many genes had been sequenced at the time when the
CAI was first described [64]. An essential property of the reference set is that
it consists of genes with somehow good codon usage. Since more essential genes
are presumably written in an ideal, they are good candidates for representing
the ideal codon usage of an organism.

Beyond the loose phrase “highly expressed genes” there is little information on
selecting a good reference set. Researchers that select their own reference set
often start with the entire genome and extract only the ribosomal genes, on

5.2 Dependence On Reference Set In Reference—Based Measures 49

which they base their w vector [63]. This is not a large problem, since research
suggests that CAI values are robust and largely insensitive to the reference set
[64]. This indicates there is indeed a consistency in codon usage among all (any)
highly expressed genes.

We investigate this assumption by calculating w values for a number of E. coli
genomes. The built-in w vector from seqinr and codonW [33] will also be
considered.

5.2.1 Reference Dependence for CAI

Five genomes were downloaded from the Nucleotide database at the National
Center for Biotechnology Information [65]. The genomes are all E. coli:

1. K-12 substr. MG1655 (NC_000913)

2. BL21-Gold(DE3)pLysS AG (NC_012947.1)
3. 026:H11 str. 11368 (NC_01336.1)

4. SE11 (NC_011415.1)

5. O157:HT str. Sakai (NC_002695.1)

See Figs. 5.1 and 5.2. We see that there are clear differences between the refer-
ences from different genes. However we cannot quantify whether this is signific-
ant, since we do not know the scale of the difference.

5.2.2 Reference Genes for CAl,

Using the same reference genes as for the standard CAI, we perform a similar
multidimensional scaling for the CAly, see Fig. 5.3 on page 51.

5.2.3 Reference Genes for tAl

12 sets of tRNA copy numbers were downloaded. A multi-dimensional scaling
was performed on these, too. We see clear grouping of some of the adaptiveness
vectors. We would expect the grouped copy number sets to contribute equally

50 Parameter Investigation and Definitions

0.050 -
sl

0.025 -

> s5
0.000 - ec

&4

—0.025 -

s3

FicuRrE 5.1: Multidimensional scaling of w vectors for five E. coli genomes, plus the
common 24-gene reference.

s5
0.01 -
sl
0.00- S2
>
s4
-0.01-

s3

FicuRE 5.2: Multidimensional scaling of w vectors for five E. coli genomes, without
the common 24-gene reference.

5.2 Dependence On Reference Set In Reference—Based Measures 51

sl

-10 -

_15- s3

=25 0 25 50

FicURE 5.3: Multidimensional scaling of w vectors for five E. coli genomes.

in a model. Again, we do not have a sense of scale in this plot. Hence it may
be that all the measures are extremely correlated with each other, compared
to correlations between a response variable and other predictors. Hence it is
possible that they either all are included at a low level (ridge—style) or that on
random one is included each time (lasso—style).

52 Parameter Investigation and Definitions

ARlrfre§t
5
536
. O157H7_E
. 0157+
i
C_SMS3
CFTO73
0 20 40

FIGURE 5.4: Multidimensional scaling of w’ vectors for 12 sets of E. coli tRNA copy
number tables.

5.3 Non—Reference-Based Measures

The bulk of the predictors calculated for this model are not measurements relat-
ive to a reference set. They are simpler to define without having to worry about
whether the reference set is a good reference. Also, given the data structure we
have (many identically-coding genes expressed in the same host), the relativity
concept loses power — after all, each gene is measured in reference to the same
thing.

Here briefly describe the new measures without much discussion. The aim of the
thesis is to find relevant predictors without requiring a biological justification
for them. After all, we do not understand all the biology in the system, so it
is entirely possible that some predictor, that does not come with a biological
justification, turns out to be highly predictive. Many predictor are grouped into
natural families.

Codon counts Single and double.

0. = number of ¢ codons os = number of ¢ codons-pairs (5.10)

5.4 Window-Wise Analysis 53

Codon frequencies Single and double.

fo= f=2 (5.11)

Relative synonymous codon usage (RSCU) Single and double [66].

Je
1/A

where A is the number of synonymous codons associated with ¢, and analogously
for D and J.

RSCU, = ~% = f, A RSCU3; =...=¢sD, (5.12)

GC counts Total GC content, as well as in positions 1, 2 and 3.

Top and bottom codon within each amino acid.

T, = Icg%x fe B, = grencri fe- (5.13)

a

Top and bottom pair counts and scaled by length.

Longest contiguous stretch of top bottom and scaled by length.

5.4 Window-Wise Analysis

Inspired by articles investigating bottleneck effects [2, 29, 30] we decide to in-
clude a window-wise aspect to the modelling. Each predictor will be calculated
for a segment of the sequence. The data will be split into thirds as follows: the
first third, the second third, the third third, the two final thirds and the whole
sequence, see Fig. 5.5. Figures 5.6 and 5.7 show a multi-dimensional scaling of
the observations in all the datasets. Not that the predictors are not weighted in
this analysis. It is purely exploratory and just to see whether there might be a
window-effect in the data.

We do not see any proof of a window dependance of predictors. This is most
notable (and surprising) in the Kudla plot (facet K in Fig. 5.6), where we might

54 Parameter Investigation and Definitions

Ficure 5.5: Window-wise analysis will be carried out in the splits show here.

expect to see separation, given the conclusions in the article. However it may
well be that the distinguishing predictors are being overwhelmed and their in-
fluence hidden by all the other predictors. This show that on average (in some
sense) across all predictors defined, there is no window effect.

The the facet containing all data, we do see some grouping, partly separating the
different proteins, but also apparently separating the first window. Certainly
the red dots seem more tightly grouped than the blue and green. (Admittedly
they appear to be grouped within the blue and green dots.)

5.4 Window-Wise Analysis

55

A
10 - .
PR o
0- :l. ':. o oo
-10- = S B
,20_
c
10- ° .
Ly St s
> 0-° ’!"."" _'.t‘ ‘\
.
-10-°,
-20 - .
Al
10 - Sl

S, 0,

T
.I'.‘.n”‘..-?ﬁu

et

PR

T

window
 First third
- Middle third
Last third

FiGURE 5.6: Multi-dimensional scaling displayed on two-dimensional scatter plots.
There is some distinct grouping of the first window (red dots) in the full dataset
plot. In the Kudla set, where the article claims that the first third is significantly
different, there is separation under this view of the MDS.

56 Parameter Investigation and Definitions

C
A
10 -
A
R A{
A\ A
0- L\ fA, | ‘:
L SN SV
>
window
A y e First third
A 1 * Middle third
-10 - A s Last third
A
A
A set
A e 2a
A b
A
20 1 1 1
-10 0 10
X

F1GURE 5.7: Multi-dimensional scaling for the combined Welch dataset. The thirds
comprising a single sequence are joined up. We see complete separation of the two
proteins.

CHAPTER 6

Model Training and
Validation

6.1 Walk-through of Welch et al. analysis

This paper carries out a partial least squares (PLS) analysis aimed at predicting
the expression of a set of synonymous genes. The data is for two different
proteins, as described in Section 3.1.2. Three models are trained: one for each
protein and one for the combined set.

We carry out the modelling in R using the partial least squares regression func-
tion plsr from the pls package [67].

The predictors are codon frequencies defined as the frequency that each codon
is chosen for each particular amino acid. Hence, the codon frequencies within
each amino acid sum to one. Therefore, in the case of two-codon amino acids,
using just one codons frequency is sufficient. Generally the final codon frequency
within each amino acid will contain redundant information (the last codon fre-
quency is not needed, since we know they must sum to one). But in these cases,
all codon frequencies are retained, since otherwise we are relying on the model
to build this in.

A CDEF G H | K L N P Q R S T \Y Y
1.00- - s : . : : : :
0.75 gl ki ¥l bf £3 RESEE 51 0 b
050~ i T i Do i
025_ 1 i : I . X R ‘H B Lo B c e
000-:: - - PO 4 RN b EREE 5 B
1.00 - ; y ; ¥ .

0.75 -

0.50 -.
00.25- 3 ———
c 1E g il ERE i AEEERE -
Lo~ - + 4t . A 4 — e aE B 1 AL
o 1.00 - > 2 >
o
T 0.75 -

0.50 - .

0.25

0.00 -
1.00 -

0.75- f 3 AN
0503 : : ' - : ;
025-::::
0.00 - -

.
[
o

Je -
le]—-

Mmoo

ealb -

200 - -
pob -
6 = e
w=-
1eb -
red -
ebb -

266 -

BHB — wer
166 -

1e0 -

ee -

We Ve
eee -

- e
210 - .
610 -

200 —*

200 = -+
599 —ypii s
100 = reeee
eeo -

FiGURE 6.1: Codon frequencies within their amino acid per data set. Similar to RSCU, but not normalised by uniform frequency.
Within each amino acid and gene, frequencies sum to one. Hence dots that are vertically closely grouped across the codons for
a single amino acid means even codon usage, i.e. each codon is used the average number of times. See amino acid serine (S) for
data set K: there are six possible codons and their frequencies appear grouped around 1/6 = 0.16. The vertical variation within
a single codon tells us about the variation in usage of that codon within that data set. For example, amino acid threonine (T)
for data set A is commonly representative by codon Acc, although in some specific genes this preference is less strong (perhaps
all way right down to parity with AcT). While sequences of both experiments are ‘designed’, we can see how they have been
designed differently. Mutations in the Kudla sequences are uniform random, hence a more uniform distribution of points across
the full range of the spectrum. Welch sequences were mutated randomly but according to probabilities from an E. coli codon
usage table. (Note: Single-codon amino acids are excluding. Two-codon amino acids have one codon removed, since it adds
no extra information. This pattern is not extended to other amino acids, since it puts extra strain on the model and renders
parameters less interpretable.)

8G

uonepije, pue Suluies] |SpO

6.1 Walk-through of Welch et al. analysis 59

6.1.1 Quick Look At the Predictors

Figure 6.1 shows the Welch—style codon measures for each of the datasets in
Welch (A and B) and Kudla. The predictors are calculated as codon frequencies
normed within their group of synonyms. Specifically the Welch—style frequency
W is

= Je , ¢ €C,. (6.1)

ch fc’

6.1.2 Modelling Process
The data will be group in five data sets:

1. Set A from Welch.
2. Set B from Welch.
3. Set C from Welch (a combination of sets A and B).
4. The Kudla dataset.
5

. The complete datasets combined.

In the article we have analyses on datasets a—c, which allow us to make dir-
ect comparisons and confirmations [5]. For each dataset 1-5, five-fold cross-
validation is performed

6.1.2.1 Model Complexity

The pls modelling method allows a total number of parameters equal to the
number of observations. However, there is a limit to the usefulness of many para-
meters. Using the cross—validation to test the models, the number of parameters
can also be selected. This will ensure the highest predictive power possible. Fig-
ures 6.2 to 6.4 show models with an increasing number of components (one to
nine) for each of the Welch data subsets (a, b and c). Below each set of models is
a plot showing the variation of the predictive power of the model with increasing
model complexity.

The incredibly low cross-validation R? values in (in particular in dataset B)
may be due to the very small datasets. There are 24 points in set B. Under

60 Model Training and Validation

Prediction plot for number of components n = 1 to 12

Now

Predicted values
-

2
Observed values

Cross—Validation Plot For Complexity

0.8- \/_\ Error
a 0.7~

= AdjustedCV

w
g067 = Train
@ 05-

0.4 -

03- i i | | i i i i i i i
1 2 3 4 5 6 7 8 9 10 11 12
Number of components

FIGURE 6.2: Welch set A. There is a sharp minimum in error (root of mean of
squared error of prediction, RMSEP) at 2 components. Owing to the very small
dataset, we put this down to variance in the cross-validation folds. We choose to
use 6 components.

five-fold cross validation, this leaves just approximately 20 points for modelling
and 4 or 5 points for testing. Small datasets in both the training and testing
parts lead to high variance (and potentially very high errors). It may be the
case that taking the average of the five estimated sets of model parameters does
give a good model. Hence, the models may perform better than their cross-
validation R? values suggest. This is a natural consequence of small datasets:
the cross-validation error is exaggerated [46, Sec. 7.10.1], see Fig. 4.5.

6.1 Walk-through of Welch et al. analysis 61

Prediction plot for number of components n =1 to 12

Predicted values

R*=0.976
* R%,=-0.944
!

1 2

Observed values

Cross—Validation Plot For Complexity

1.25-
1.00 - M_
o = AdjustedCV

L

0.75 -
g = Train
¥ 0.50 -

0.25 -

S e S S |
1 2 3 4 5 6 7 8 9 10 11 12
Number of components

FIGURE 6.3: Welch set B. The cross-validation optimum is very low at around
2 components. To avoid a case of a local minimum (or false minimum due to
variance) we choose the number of components to be 4. Cross-validation R are
extremely low everywhere. This cannot be explained at this stage.

62

Model Training and Validation

Prediction plot for number of components n = 1 to 12

1%}
03
p=}
©
>2
=
Q
Bl
£
20-
o
3-
5-
1-
0- X *RZ,=-0.217
el
1 2 30
Observed values
Cross—-Validation Plot For Complexity
)
1.0- Error
L S~ = AdustedcV
0.8-
n == Train
=
X 0.6-
0.4-

| i i | i i i i i i i]
1 2 3 4 5 6 7 8 9 10 11 12
Number of components

F1GURE 6.4: Welch set C. The cross validation curve is extremely shallow. Optimal

number of components is chosen to be 6. Like set B, this set suffers from extremely
poor apparent cross-validation R?, peaking at a little over 0.2.

6.1 Walk-through of Welch et al. analysis 63

Welch Dataset A A s,
31 *
15 21
?
(G
E_z 5 15 4
x
: !
8 w 14 R2=0.79
B1- g R(CV)=0.69
5]
o) R?=0.878 B os4 s
o R?%,=0.285 o
01 0
1 1 1 1
0 1 2 3 0 ¢05 1 15 2 25 3
Measured Expression s easured Expression
Welch Dataset B B s
3_
c 25
RS
7]
7 s 2
e
u>j 15
° o *s e
Q E 1 R2=0.88
gl E RACV)=0.68
i)
0 0.5 5
o
0- 0
6 o5 1 15 2 25 3
. 05
Measured Expression Measured Expression
Welch Dataset C c
- |
= 25
= .
“E’_z- S ‘
b E 15 |
w *
= -
S1- F 1| .
= P R2=0.77
8 Eosla" B RICV) =065
o

0.5 1 15 2 25 3
Measured Expression ’ Measured Expression

(A) Recreation of Welch analysis on the (B) The modelling result as summarised in
data in the article. the article [5, Fig. 2].

FiGURE 6.5: The two results are very similar, right down to very small details.
Given this similarity of result, it is surprising that our cross-validated R? values
are so low. The model is trained on the data by five—fold cross-validation. The
trained model is then used to predict itself, as in the article. The colours in the
lower plots represent dataset: the red points are from set A and the blue from B.

64 Model Training and Validation

6.1.3 Extending the Welch Technique to Kudla Data

The data from Kudla et al. [2] was pre-processed as described in the Welch
article: the response variable was scaled to have a maximum of 3 and then
each dataset (A, B and C) was column—centred and —scaled, i.e. the response
and predictors. A model was then trained using five—fold cross-validation. This
process was repeated ten times and at each stage the number of components
giving the lowest cross-validation error was noted, see Fig. 6.6 for a view of each
modelling. Figure 6.7 shows the full situation for a single modelling run. We
see clearly that training error falls off as model complexity rises, while cross-
validation error ultimately rises.

Figure 6.8 shows the model predicting on its own training data. It appears to
have projected the data into a space where the data lies fairly close together. It
has a fair cross-validation R? = 0.445, but this does still not compare with the
numbers reported from the Welch article.

Something which was not done on in the Welch article was to keep a separate
test set to judge the model performance. We did this for the Kudla data set,
withholding 20 observations selected at random (out of the 154 total). The
result of this testing is shown in Fig. 6.9. There is certainly a good correlation:
R? = 0.69.

6.1 Walk-through of Welch et al. analysis 65

10 modelling runs on Kudla set

1.0-

o
©
1

RMSEP of Adjusted CV
o
©

0.7 -

(I) i é é le é EIS ; EIS é lIO lll ll2 ll3 ll4 ll5 ll6 ll7 ll8 1I9 2‘0

Number of components

FIGURE 6.6: Cross-validation error for 10 model runs on Kudla data. The smallest
error occurs around 5 components, although there is a bit of variance. From this
we suggest that 5 components should be used for predictions.

Cross Validation for Kudla Set

1.0- Error
== AdjustedCV
== Train

0.9-

a 0.8-
40}
0
=
o

0.7 -

0.6 -

0.5-

(IJ i é é 4‘1 é EI} ; é é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1I9 2‘0

Number of components

FIGURE 6.7: Cross validation plot. A larger number of components results in a
better training data fit (smaller root mean squared error of prediction, RMSEP).
The cross validation error has a fairly flat minimum between 3 and 7. A sensible
and reasonably conservative choice for the number of component is 5.

66 Model Training and Validation

Kudla Dataset

c *
L2
[}
3
g MR
[=%
X
i
°
2 -
Q *
=
L1
o
R*=0.727
R?,=0.445
0-
I I I I
0 1 2 3

Measured Expression

FIGURE 6.8: An indication of model performance: prediction on training data. This
plot corresponds to the plots in Fig. 6.5.

Prediction plot on
Kudla test data

2.0-

i
wn
1

Predicted Expression
5
i

0.5-

1 2
Measured Expression

FIiGURE 6.9: Testing the model on fresh data. Line indicates perfect fit. The
prediction correlation on the test data is R? = 0.69

6.1 Walk-through of Welch et al. analysis

67

Error versus model complexity

1.0-

estimate
= adjCVv
- test
0.9- = train
a 0.8-
40}
[%2]
=
o
0.7 -
0.6 -

Components

FIGURE 6.10: Having completed the modelling, we are free to ask — hypothetically
— if we picked the best number of components. From this plot we see that we
could have avoided some overfitting by choosing a smaller model. However, the
dip in test error is likely due to uncertainty in the parameters. Given another set

of test data, it might not have looked so good.

68 Model Training and Validation

6.1.4 Training a full model

All the datasets are now combined and a full model is trained. A random subset
of 40 observations is withheld for testing. The response is normalised to have a
maximum value of three within each data set. The cross-validation plot of error
against model complexity for 10 model runs is shown in Fig. 6.11. Figure 6.12
show the trace of cross-validation performance for a single model run.

Testing the model on the unseen test set yields a result shown in Fig. 6.13, with
R? = 0.68. This is slightly better than for just the Kudla data set. On the one
hand, we had far more points on which to train a model. On the other hand,
there was a greater variety of genes. This is a good result

From the figure, it does seem that the model is better at predicting the lower
expressions. This indicates that the residual has a dependence on the response;
or at least that they share a cause. This could indicate that the response variable
should be pre-processed in some way. We move on to carry out a full modelling
with new predictors.

6.1 Walk-through of Welch et al. analysis 69

10 modelling runs on full data set set

1.00-
0.95-
0.90 -

0.85-

RMSEP of Adjusted CV

0.80 -

é ; EI% é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 2‘0

Number of components

FIGURE 6.11: Modelling the combined dataset of Kudla and Welch. The optimal

number of components for prediction is between 5 and 9. We choose 5 as a conser-
vative estimate.

Cross Validation for Full Data Set

1.0- Error
= AdjustedCV
= Train
0.9-
o
0
s 0.8-
o
0.7 -
0.6 -

o

012345678 91011121314151617181920

Number of components

FIGURE 6.12: The prediction performance is best at about 6 components, but we
choose in favour of a simpler model.

70 Model Training and Validation

Prediction plot on
Combined dataset

Validation ¢
set *
*
test - o *
*
* train e d B°
27 * © R ¥
*
c
S ©
% *
g S .
3
w *
e * o
o]
3
Q
©
L
[2
i i i i
0 2 3

1
Measured Expression

FicURE 6.13: Validation plot for the combined dataset of Welch and Kudla. Welch-
style analysis has been applied using a five—component partial least squares model.
This results in a prediction correlation of R?* = 0.68. The test data are shown
as well as the training data. The test data is projected into the cloud of points
from the training set. This indicates good model structure. However the points
are quite dispersed. There is a lot of residual variance in the data.

6.2 Model Definition 71

6.2 Model Definition

6.2.1 Choosing an R Package

There are many choices for linear modelling when using R [68]. We considered
sparsenet [69, 70], 1lars [71] and glmnet [60]. We decided to use glmnet, since
it has a simpler interface and considerably more on-line support than the newer
sparsenet package. In general sparsenet might be preferable for reasons of
time efficiency. But at this stage, waiting a few extra moments for a model to
be trained is not considered a big expense.

6.2.2 Selecting o and A

Since the datasets we are have contain relatively few samples and a large number
of predictors, we have decided to use the elastic net modelling technique. This
requires that we find an appropriate a value. In principle the model also requires
a choice of A, but in practice glmnet calculates the model for many choices of A
and chooses the best one by cross-validation. However in order to find a choice
of @ we must decide on a range of As over which « will be assessed.

Performing a walk through the parameter space enclosed by a = (0,1] and
log A = [=5,1] at a resolution of 150 points in each direction, we total 22,500
combinations. At each point a model is fitted to the training data with five-fold
cross-validation. Each data subset of treated separately. (o, A) pairs are then
compared based on their mean cross-validation residual. The result is plotted
with a heatmap in Fig. 6.14. The plot for Welch dataset B is shown again in
Fig. 6.15, since its residuals are better shown on a separate scale.

The elastic net mixing parameter « is often chosen on qualitative grounds based
on a knowledge of the underlying data structure [46]. Hence choosing one value
for a is deemed sufficient, since the nature of the underlying data is the same.
From Fig. 6.14 this we conclude that an appropriate value for the elastic net
« is 0.25. Taking Fig. 6.15 into account, one might be inclined to choose a
lower value. However the data in Welch set B has already been found to be
particularly hard to model (see Fig. 6.3) and it certainly seems different to the
other sets. In the interests of parsimony, we keep o = 0.25 for all data sets.

Note that the A parameter is essentially free for each model, hence we might
assume that the model for Welch set B will search through areas of relatively
small \. Judging by the purple shade in the leftmost edge of Fig. 6.15, we hope

72 Model Training and Validation

that residuals are lower for these lower A\ values, and that the lower residuals
stretch up into slightly higher o values. If this is the case, setting a = 0.25
should give a fairly good modelling result.

6.2 Model Definition 73

Welch2A Welch2B

1.00 -

0.75 -

0.50 -

0.25-

0.00 -
Welch2C WelchAll

Kudla

1.00 - .
Residual
0.9
0.75 - 0.8
0.50 07
' 0.6
0.25 - 05
0.4

1
-50 -25 00 25 50
logLambda

FIGURE 6.14: o and)\ cross-validation plots for the datasets. The horizontal line
a = 0.25 seems to cross through mostly red areas, which indicate a low cross-
validation residual.

74 Model Training and Validation

Welch2B

1.00 -

0.75 -

Residual
0.9

0.8
0.7

0.6

0.25-

25 5.0

0.0
logLambda

FIGURE 6.15: « and X cross-validation Welch dataset 2B. Here we see more detail.
Keeping a might not be ideal for this particular dataset, but in the interest of
parsimony, we keep to a constant a value.

6.3 Model Training and Evaluation

6.3.1 Test Sets

The data consists of three sets (Welch set A, Welch set B and Kudla) and these
are analysed in five collections (Welch set A, Welch set B, Kudla, Welch sets A
and B and all sets together). Test sets were extracted before any analysis was
carried out. Test observations were picked at random and if excluded from one
set, excluded from all others. Figure 6.16 shows the principle.

This is done partly to ensure that at no point was a model trained on any data
that is later used for testing. Training a model on one set and seeing certain
features performing well as predictors may influence our predictor selection on
other sets (containing some of the same observations). But it was also done to
ensure valid comparisons between modelling. If, for example, there is an unusual
data point with a hard-to-predict expression level, this will appear in all test
sets and will mean less variability in test statistics.

The actual data splits are summarised in Table 6.1.

6.3 Model Training and Evaluation 75

Combined

FIGURE 6.16: Graphical explanation of test—set selection methodology. The red
areas of A and B contain the same data points at the red areas in the combined
dataset. In reality, the test set is not contiguous; it is defined as a random propor-
tion of the full set.

TABLE 6.1: Splits of training and test sets, and number of points in cross-validation
folds for each dataset. Five-fold cross-validation. Cross-validation values are roun-
ded. Actual partitions may differ by one datapoint.

Set Total | Train | Test | % Test | CV train | CV test
Welch A 28 20 8 29 16 4
Welch B 24 18 6 25 14 4
Welch C 52 38 14 27 30 8
Kudla 154 125 29 19 100 25
All 206 163 43 21 130 33

6.3.2 Modelling Parameters

The full model has access to a total of 8,523 predictors (discounting window-wise
predictors). Many of these are codon measures adapted to ‘double’ measures,
i.e. rather than perhaps count occurrences of a particular codon, we count oc-
currences of a particular par of codons (in a particular order). Given that there
are 61 sense codons (64 minus three STOP codons), this gives a total of 3,721
features in this measure alone. With such a large number of possible features,
we also have the chance that some features will not be present in any genes. We
only have a a total of 216 genes of maximum length 575 codons (the polymerase
from Welch set A; the others, scFv from Welch set B and GFP from Kudla, have
281 and 240 codons, respectively), so it is not unlikely that some combinations
will not appear.

The actual problem is that if all observations have the same value of a particular
measure (0, or some other value), then it cannot possibly be of value to the
model. This parameter will be conflated with an intercept term. Therefore any
predictor whose variance is zero can be omitted from the model.

This situation can be thought of as ill-posed: we have some features that do

76 Model Training and Validation

not, appear in our dataset, but they may actually be valid in reality. Likewise,
suppose a rare feature is present in our data and found to be highly correlated
with the response. This will potentially not be of very much predictive value
for any new data, since that rare feature may not be present.

However, we will not pre-process the data by filtering out zero-variance pre-
dictors. During modelling, this adds an extra layer to the data handling, and
the model type we are using will immediately find that zero-variance predictors
contribute nothing that is not already accounted for by the intercept term. The
product of this thesis will be a model — and hence (only) the required predictors
can be calculated.

6.3.3 Increasing Model Complexity

In order to see whether the selected variables have good predictive value we
will investigate them one at a time on the full dataset. The (relatively) large
number of observations will encourage stable (low variance) cross-validation res-
ults. Once they have been investigate individually, we will build more complex
models. We should see the cross-validation error drop with increased predictors.

Before we begin, we note that the modelling power will only be additive (in some
sense) if each newly added set of predictors is uncorrelated with the already-
present ones. Otherwise their contributions will be averaged (by the ridge part)
and many individual predictors will be set to zero (removed by the lasso part).
Their reduction in error rate will be less than might be expected.

6.3.4 Side Note: Effect of A\ on Model Complexity

The effect of A on the number of parameters can be been explicitly in Fig. 6.17.
We see that as A increases, the number of parameters falls dramatically. A
larger A gives more weight to the parameter penalty term (P, (/) in Eq. (4.21))
compared to the residual term, which means parameters are increasingly forced
to be smaller. Many predictors’ parameters become exactly zero due to the ¢,
regularisation of lasso. Decreasing model size helps avoid overfitting, but too
simple a model will fail to pick up structure in the data. Hence an optimum
exists. This is found with by tracking the cross-validation error at each A.
The minimum is at the solid line in the figure, corresponding to 128 non-zero
parameters in the model. Allowing for variance, and erring to the side of a
simpler model and away from overfitting, the dotted line suggests a 92 parameter
model is sufficient in this case. Figure 6.18 shows this more clearly.

6.3 Model Training and Evaluation 77

Number of Model Components for Various A

250

n

o

=]
|

[N

ul

o
|

Number of non-zero components
(model complexity)
I
o
1

50 -

FIGURE 6.17: Number of components drops at A increases. A is effectively a penalty
on model complexity.

Figure 6.18 shows A (the logarithm of A, for scale convenience) plotted against
the cross-validation error for the same data and model. We see the minimum
and the uncertainty associated with this value (£ 1s.d. by convention [60]). The
value chosen is the value to the right of the minimum (larger A\) whose error is
equal to the upper bound of the minimum. Hence predictions would be made
with logA = —0.75, or A = 0.47, corresponding to a model of (non-zero) 92
parameters.

In certain cases the error rises only slowly and the uncertainty of the error is
large. In this case, there will not be a A(Err + 1s.d.) value — the error does
simply not rise to this level within the range of sampled A values. This implies
that the highest A\ value will be picked, which inevitably corresponds to a zero—
parameter model. To deal with this, we use the minimum-error A\ value in these
cases.

6.3.5 One Parameter At a Time

The 8 thousand or so predictors are readily grouped. For example, the predictors
concerning GC content could reasonably be grouped together, as could those
identifying the top codon used within each amino acid. Therefore we start by

78 Model Training and Validation

Finding ideal A parameter
164 109

1.0-

Error

FIGURE 6.18: The cross-validation error falls with increasing regularisation until a
minimum (solid line), at which point it increases as the model suffers from over-
fitting. The X for prediction is chosen to be within one standard deviation on the
error of the minimum, in favour of a simpler model.

introducing parameters to the model in groups. This also provides an efficient
way to get an overview of the more predictive codon measures.

Table A.1 contains a long table of model performances for small groups of para-
meters. Each data set is listed (A, B, C are from Welch, K is from Kudla and X
is the total dataset). Each model is trained on a variety subsets of codons. To
investigate the window effect, that codon preferences might be more important
in certain parts of the sequence, each codon measure is calculated on various
subsets of the gene, based on splits into three parts. In the table they are coded
with a hyphen meaning that third is included and a dot meaning it is not:

Notation | Included
- whole sequence
- first third only
- middle third only
“e- final third only
- final two thirds only

The predictor groupings were:

6.3 Model Training and Evaluation 79

¢ GC: GC1, GC2, GC3 and GCT.

e cail: All codon adaptation indices (one standard and five calculated from
ribosomal genes)

e cai2: All codon-pair adaptation indices (five calculated)

e tai: All tRNA adaptation indices (12 calculated from tRNA gene copy
number tables)

e ai: All the three previous groups (any predictor with ‘ai’ in its name)
e freq: All frequency-based predictors, single and double.

e rscu: All RSCU-based predictors, single and double.

e eff: All count-based predictors, single and double.

e topC: Top codons per each amino acid.

e lowC: Lowest codon per each amino acid.

e succ: All measures related to successive pairs of top (and low) codon.

e contig: All measures related to lengths of successive (contiguous) top (and
low) codons.

e sin: All single versions of freq, rscu and eff.
e dub: All double versions of freq, rscu and eff.
e top2: All succ and contig measures for top codons only.

e low2: All succ and contig measures for low codons only!.

6.3.5.1 Summary of Single-Paramater-Group Models

Even though a model using each parameter set was trained on each dataset,
many ended up with no parameters. This was often the case for the double
codon measures. For example the parameter sets contig and top2 rarely resulted
in a meaningful predictive model. (The predictor set low2 never resulted in a
useful model, so was removed from all modellings, as noted earlier.) This is
because codon pair features are exceedingly sparse. Many features do not occur,
particularly in shorter sequences. Also, if they occur the same number of times

IThe predictor group ‘low2’ did not produce any models with any non-zero parameters,
hence this was excluded entirely early on.

80 Model Training and Validation

we have a predictor with no variance, which can only ever produce a model
identical to a simple intercept model.

Fewest meaningful models were found for dataset B. This is also the smallest
dataset. But this cannot be the sole driver: dataset A was well-described by
many models, and but their joint dataset, C, was considerably less well-described
than A on its own. This, despite a doubling of observations. Clearly there
is something inherently difficult to model in dataset B — and certainly very
different from A.

The predictor sets noted with 0 means that for that dataset and that sub-
sequence and for the given predictors, no useful models could be trained. B
again is extreme in that only two sequence regions were found to give useful
models. They are the full sequence (‘ai’ significant) and the middle third (tai
significant).

As an aside, we can investigate how the parameters weights are shared in these
two models. For the full-sequence model, a little under half of the parameters
are set to zero. The non-zero parameters are: the standard CAI statistic and all
of the tAI statistics. This suggests that the ridge has been working primarily
on the tAI parameters (they were shrunk to a similar size) and the lasso worked
primarily on the CAI parameters (all but one was set to zero).

For the middle-third—sequence model only one parameter is set to zero. This
suggests either that the 12 tAI measures are all superbly independent (i.e. they
were not eradicated by penalisation), or that the A for the model was very low.
We confirm that lambda was very small: its true value is A = 2.16 x 1073.

The variation in A values says something about the level of correlation within
each subset of predictors. Larger A values is an indication of less dependence
between predictors. This is more likely to be the case for small predictor sets,
since there is more ‘room’ for them to be independent. The GC set is a good
example of this: their A values are consistently close to 1, whereas for other
groups it is often lower.

Comparing the number of successful models per sequence window is interesting.
We see that all the datasets from Welch, A, B and C, are best predicted by
the middle third and last two thirds sequence segments. Of all the 47 models
trained on those sets, only 3 are trained on the first third. (26 models were on
some third-of-a-subset sequence.) This is in contrast to the Kudla set, which
seems comparatively well-described by the first third of the sequence: 11 of its
40 models are on the first third. (23 models were on some third-of-a-sequence
subset.) Clearly the first third sequence is meaningful for the Kudla data. This
is also what was found in the article [2]; but it seems it is not true in general.

6.3 Model Training and Evaluation 81

Error and Model Complexity for Full Model

104 187] 94"

0.8 -

Error

-4 -3 -2 -1 0
log(A)

FIGURE 6.19:) selection for the full model. The training set error minimum occurs
with 187 parameters. In favour of parsimony, we choose a smaller model (to within
one standard deviation on the errror). We choose A = 0.441, corresponding to 94
parameters.

6.3.6 Combining Parameters for the Full Model

We are most interested in generating a general model. Ideally, it will be able
to predict expression of any gene?, not just for a gene that you have already
expressed (i.e. not just one of the three specific genes we have here). Therefore
we concentrate our efforts on training a model on the full dataset. This will also
give more support for the model, since the combined dataset contains many
more observations.

We combine all predictors for all sub-sequences datasets for observations from
Welch and Kudla. This gives a model set-up with 163 observations and 42,615
predictors. The model is trained and found to give a minimum cross-validation
error at Amin = 0.219, see Fig. 6.19. Allowing for uncertainty in error and erring
toward a simpler model, we settle for a prediction lambda of A\jgq = 0.441.
This brings the number of components from over 42 thousand to 94. Of the
94 significant parameters, it is interesting to note not only what they measure,
but where they measure it. Tabulating this information, Table 6.2, shows that

2We are limited to making predictions for E. coli, since that is all we have data for. While
generalisations may be possible, these datasets cannot support the predictive abilities of such
a model to other organisms.

82 Model Training and Validation

Prediction Plot for Full Model

Validation
set
e Testing
0.5- « Training
Dataset
) <A
S
< 00- A B
>
kel = K
2
L2
S
9
a 05-
|
~10-

Observed Values

FIGURE 6.20: Validation plot on unseen test data. The red points are predicted
based on the model trained on the blue points. The genes come from different
datasets, as indicated by shape. There is one extremely outlying point in the test
set, the red triangle to the lower left of the plot. It originates from the Kudla data.
Setting this point aside, visually we have an extremely satisfactory fit. Objectively
we tend to underestimate the more highly expressed genes and overestimate the
lesser.

the first third is by far the most influential sub-sequence. We must weigh this
against the fact that the Kudla data account for 77 % of the observations.

TABLE 6.2: Breakdown of the 94 parameters identified in Fig. 6.19 by which sequence
segment they are based omn.

Full First 1/3 Middle 1/3 Last 1/3 End 2/3

22 42 7 10 13

A more thorough discussion about the selected parameters will take place in
Section 6.4.

6.3.7 Model Validation

6.4 Biological Interpretations 83

Having chosen a model we can check how well it performs in predicting the
test data we set aside at the beginning of the modelling process. Figure 6.20
looks good. The model appears to have projected the new points well within
the envelope of the training points. This indicates that the model has found
structure in the training data which is also present in the test data, and uses
this to predict the response. The prediction correlation is R? = 0.85, which is
very impressive. It is an improvement on the Welch-style analysis of the Kudla
and Welch combined dataset in Fig. 6.13, which achieved an R? of 0.68.

6.4 Biological Interpretations

See Table A.2 for a print-out of the modelling parameters.

The purpose of this thesis is not necessarily to assign biological meaning to
results that work. That being said, it is preferable if some justification for the
model structure can be found. This is also one of the main advantages of the
lasso technique: to clear out correlated variables and leave relevant ones behind
that hopefully are easily interpretable.

Reverse-engineering a biological justification from a black-box model is fraught
with difficulty and very open to confirmation fallacy. However, we will try to
make some generalisations about the parameters identified in the final model,
without giving reasons why things are like that.

Of all the predictors calculated on the first sequence third, there seems to be very
many double-codon counts of low-GC content codons. Given that GC content is
related to folding energy, this could be related to Kudla’s result: that strong
RNA folding in the first third of the gene correlates with strong expression.

It seems that GC content is the driving underlying factor in many of the pre-
dictors. Many of the codon (pairs) selected over the whole gene sequence are
very low on GC bases. Given this, it seems strange that GC3 is only chosen in
the last third sequence segment.

While 94 components is certainly more interpretable that several thousand, we
are not able to assign meaning to these components. They do have a good
prediction ability, but investigating the parameter values, Table A.2, we see
that many predictors have very small parameters associated with them. A
few have larger values. This could be a case of the ridge regression keeping
some parameters from becoming exactly zero, and of the lasso keeping some
parameters rather large.

84 Model Training and Validation

6.5 Testing On New Data

In order to test the model fully, we have some data that is completely unrelated
to the learning sets we have been using this far. The data is from a group
at Novozymes A /S investigating the endogenous (intra-cellular) protein content
of cells a various times during a fermentation process [63]. The cell is not
Escherichia coli, but a Lactobacillus.

6.5.1 Data Description

There are five datasets. A sample was collected at five times through the fer-
mentation process in order to track the genetic activity within the cell at various
stages of life. Until now we have assumed a steady state — that the expression
levels were taken in optimal conditions that are not time dependent, i.e. any
change in protein expression was assumed to be a direct result of its codon
sequence.

Our previous datasets consist of many replicates of the same gene with silent
mutations. Thus we had many observations of the same gene (three genes in
total). This dataset is very different. We have estimated protein levels within a
single cell, for many different proteins. Thus we have no repeats for proteins.

Testing our model on this will present various challenges:

e We have no repeats. Any noise on the data points will used directly to
predict, since we have nothing to average over.

e It is in a different organism. The model parameters may well not translate
across to different organisms.

e There is a time-effect. We are not interested in this, so we will simply
treat each dataset as independent. If one is very poorly predicted, it may
indicate the organism was under stress at the point in time.

The response is not directly protein expression. It is a series of emPAI values
[72]. They are known to correlate well with actual protein levels. Therefore
we will take them as a good proxy for protein levels, and we will not discuss it
further.

The sequence data is read from Nucleotide database at the National Center for
Biotechnology Information [65]. This means we cannot be absolutely certain

6.5 Testing On New Data 85

that the sequences are actually the ones that encoded the protein being expres-
sion. Mutations happen. But we will assume this effect is small. Again, we will
not discuss this further.

6.5.2 Parameter Estimation

The data was read in using the same script as for the Welch and Kudla data-
sets. That being so, we calculated several parameters that need not have been
calculated. However they were removed after parameter calculation and will not
influence the analysis.

Each of the five time repeats was normalised and kept as independent response
values for testing model performance. Sixth and seventh sets of responses were
constructed by taking the means and sums of the first five, respectively. On
close inspection of the responses, we saw that many of the emPAT values were
zero. That caused problems with the scaling of the responses. We decided only
to use the mean and sum responses. (Of course there are directly in proportion,
so there should be no difference in predictive ability.)

6.5.3 Expression Prediction

The model from the Welch and Kudla datasets was used to predict expression
values for the new data. The result is shown in Fig. 6.21.

We decided to try to train a model on the dataset, using the same predictors.
These predictors were not defined with this kind of data in mind. We suspect
that the model will perform poorly, since there are not many predictors that
focus on the length of the gene. In a dataset with only one protein encoded
multiple times, the length is constant. Hence it has not yet made sense to worry
about length effects.

Figure 6.22 shows the model training for the Lactobacillus dataset. The model
immediately ‘converges’ to an intercept-only model. That is to say, the predict-
ors have no significance in estimating a protein expression level for a given gene
(protein) in Lactobascillus.

86 Model Training and Validation

Prediction plot for Lactobacillus data

2.5 Response

ymean

© ysum

Predicted Values

50-
|
-1
Observed Values

Fi1GURE 6.21: Prediction of Lactobacillus data using E. coli model. The prediction

correlations for the mean and sum response are 0.037 and 0.033, respectively. This
model has no predictive value.

A selction for Lactobacillus model

Error
S
—
S
—
—_—
—
—
—_—
—

5 !
log(A)
FIGURE 6.22: The model has minimum error at zero components (just intercept).
This tells us we are more likely to get a good estimate by taking an average of
previous measurements than we are by using this model. Clearly the predictors

are deficient.

CHAPTER 7

The R Package: codonTools

In order to carry out thesis we have produced a number of R functions. They
act as short-cuts for calculating codon statistics and enable new sequences to
be analysed with ease.

The the functions are written as S4 classes which has quickly become the stand-
ard in bioinformatics. At the core of the functions is the Org class. This object
stores sequence data along with other properties of the gene.

all.dat[[1]]

Genetic sequence date (class 'Org')
Sequence length: 720

Number codons: 240

Sequence type: DNA

Expression: 7673 flourescence
Sequence label: GFP_002

Organism: e.coli

Belongs to: Kudla

Notes: no

str(all.dat[[1]])

88 The R Package: codonTools

Formal class 'Org' [package ".GlobalEnv"] with 8 slots

#it ..0@ seq : chr "atggttagtaagggtgaggaacttttcactggagttgtcccaattcttgttgaattagats
..0 label : chr "GFP_002"

#it ..Q exp : num 7673

#it ..Q@ exp.type: chr "flourescence"

..0 belongs : chr "Kudla"

#it ..Q alph : chr "DNA"

#it ..Q@ organism: chr "e.coli"

..Q@ notes : chr "no"

A full set of extractor functions exist. And on assigning a new Org content is
checked to make sure it is valid. A modified seQ function allows the sequence
to be extracted and formatted as either a vector of single characters, a single
character string or split into codons.

Most functions are adapted so that they can accept either an Org object, a
character string (in any of the three formats mentioned above) or a list of Orgs
(or characters). Output is appropriate for, for example, incorporation into a
matrix of predictors.

Modelling functions from glmnet and pls are handled. And objects created
by these functions are plotted nicely. Almost all the plots in this thesis have
been made using the new functions. Also, plotting functions can accept a list
of models and they figure is then facetted to show all the models in a neat way.
This makes use of ggplot2 [73].

The functions will be collected into a package called codonTools soon, with full
R help documentation and package vignettes.

The source code for the thesis will be made available either online or otherwise.

CHAPTER 8

Conclusion

Bioinformatics is a fast-moving industry where machine learning is becoming a
key tool. The amounts of data are enormous; it would be impossible to digest
without efficient modelling techniques.

Preparing this thesis has entailed three parts. First, learning about the biology
of the system. It is an exciting topic where it is commonly accepted that no
one knows the full story. This makes it an excited area of work for a mathem-
atician. Second, we have spent a good deal of time describing the mathematics
implemented in the modelling. The aim of these two parts has been to ensure
that the thesis is readable by, understandable by and useful to, not just applied
mathematicians and computer scientists, but also biologists.

We set out to produce a model that did not rely heavily on pre-existing codon
statistics, which are described to a large extent by their biological significance.
We wanted to investigate whether sparse modelling techniques could identify
structure in (relatively small) datasets consisting of synonymous genetic se-
quences and protein expression responses.

We achieved a prediction correlation of R? = 0.85 which compares very fa-
vourably to Welch et al.’s 0.68. We did not constrain ourselves by requiring a
biological justification while defining predictors.

90 Conclusion

Unfortunately we were not able to get a completely fresh test set that suited
our situation. This is certainly something we are keen to explore more.

8.1 Future Work

An interesting area to explore further would be how the model translates across
to other organisms. We would ideally have similar data to the E. coli data that
we have now, but for a variety of other organisms.

It would also we interesting to spend more time on the window-wise analyses,
in particular looking for bottlenecks and their significance.

Other features that might be tested include off-frame statistics. This would
be easy to implement given the R modelling structure we set up. But we feel
we may have exhausted the data. The real limit here is a lack of data, which
unfortunately is costly to make and has fairly limited use outside of ours.

The test we carried out toward the end of the project was not ideal for our
model. However it would be interesting to develop a model for this purpose.
This seems like a more natural way of predicting. On the one hand, you might
predict entirely from a model and a set of sequences, in order to find the highest
expression sequence. However often the model will perform better if trained a
little on some data. In our current situation that would mean some examples of
genes synonymously encoding the protein that you are interested in. It would
be more general if the training data could come from any protein (from the same
organism).

The scope for advanced machine learning applications in biotechnology is huge.
The problem is that, to predict protein expressions, we currently need a quite
specific sort of data. We must develop methods that can generate predictive
models from a wider class of data.

APPENDIX A

Data Tables: Predictors
and Parameter Values

A.1 Summaries of Single-Parameter-Set Models

TABLE A.l: Pertaining to Section 6.3.5. Model performances for various subsets
of predictors (identified in column Predictor set). p is the number of non-zero
parameters in the model for the given A value. % of P is the percentage p/P, where
P is the number of predictors in the current set. Err(CV) is a cross-validation error
(as on the y-axis of, for example, Fig. 6.18 on page 78) and R? is the correlation
of the true response with predictions of the data on itself using the model

Set Window | Predictors set A D % of P Err(CV) R?

A - GC 0.77 3.00 75.00 0.46 0.63
A - cail 0.06 6.00 100.00 0.48 0.45
A - ai 0.06 17.00 73.91 0.42 0.62
A - freq 0.99 18.00 14.06 0.48 0.74
A - rscu 1.25 16.00 0.38 0.51 0.93
A - eff 1.25 16.00 0.38 0.51 0.93
A -—- sin 1.04 27.00 14.06 0.48 0.74
A - dub 1.14 29.00 0.35 0.50 0.93
A - cail 0.10 6.00 100.00 0.53 0.29
A - ai 0.23 14.00 60.87 0.52 0.42

92 Data Tables: Predictors and Parameter Values

TABLE A.l: Pertaining to Section 6.3.5. Model performances for various subsets
of predictors (identified in column Predictor set). p is the number of non-zero
parameters in the model for the given A value. % of P is the percentage p/P, where
P is the number of predictors in the current set. Err(CV) is a cross-validation error
(as on the y-axis of, for example, Fig. 6.18 on page 78) and R? is the correlation
of the true response with predictions of the data on itself using the model

Set Window | Predictors set A p % of P Err(CV) R?
A - GC 0.98 2.00 50.00 0.51 0.58
A = cail 0.22 5.00 83.33 0.50 0.37
A - ai 0.53 5.00 21.74 0.53 0.37
A - freq 0.84 20.00 15.62 0.47 0.78
A - rscu 1.56 5.00 0.12 0.52 0.84
A = eff 1.56 5.00 0.12 0.52 0.84
A - lowC 1.18 2.00 10.00 0.52 0.71
A e sin 0.88 24.00 12.50 0.48 0.77
A - dub 1.63 10.00 0.12 0.53 0.83
A “e- cail 0.07 6.00 100.00 0.52 0.41
A ‘- topC 0.04 17.00 85.00 0.19 0.98
A - GC 0.86 2.00 50.00 0.51 0.54
A - cail 0.06 6.00 100.00 0.47 0.46
A - topC 0.20 13.00 65.00 0.33 0.94
B -—- ai 0.25 13.00 56.52 0.49 0.41
B - 0 0.00 0.00 0.00 0.00 0.00
B e tai 0.00 11.00 91.67 0.35 0.74
B “e- 0 0.00 0.00 0.00 0.00 0.00
B - 0 0.00 0.00 0.00 0.00 0.00
C - GC 0.90 1.00 25.00 0.48 0.55
C -—- rscu 1.21 10.00 0.24 0.52 0.74
C - GC 1.10 1.00 25.00 0.53 0.42
C - tai 0.00 12.00 100.00 0.47 0.54
C - ai 0.13 11.00 47.83 0.51 0.37
C - rscu 0.55 66.00 1.59 0.41 0.92
C = eff 0.73 58.00 1.39 0.44 0.88
C - sin 0.69 22.00 11.46 0.52 0.74
C - dub 0.73 89.00 1.08 0.44 0.88
C “e- GC 0.96 2.00 50.00 0.52 0.46
C “e- rscu 1.14 11.00 0.26 0.52 0.68
C “e- eff 0.98 40.00 0.96 0.51 0.78
C “e- lowC 0.08 17.00 85.00 0.43 0.86
C “e- dub 0.99 28.00 0.34 0.52 0.76
C - GC 0.98 1.00 25.00 0.51 0.50
C - rscu 0.73 34.00 0.82 0.47 0.88
C - eff 0.53 84.00 2.02 0.45 0.92

A.1 Summaries of Single—-Parameter-Set Models 93

TABLE A.l: Pertaining to Section 6.3.5. Model performances for various subsets
of predictors (identified in column Predictor set). p is the number of non-zero
parameters in the model for the given A value. % of P is the percentage p/P, where
P is the number of predictors in the current set. Err(CV) is a cross-validation error
(as on the y-axis of, for example, Fig. 6.18 on page 78) and R? is the correlation
of the true response with predictions of the data on itself using the model

Set Window | Predictors set A\ P % of P Err(CV) R?

C .- dub 0.70 49.00 0.59 0.47 0.88
K - cail 0.00 5.00 83.33 0.72 0.38
K -—- tai 0.17 5.00 41.67 0.81 0.11
K ——- ai 0.03 8.00 34.78 0.72 0.41
K ——- freq 0.28 50.00 39.06 0.50 0.75
K - rscu 0.20 84.00 2.02 0.35 0.94
K - eff 0.20 83.00 2.00 0.35 0.94
K - sin 0.30 72.00 37.50 0.50 0.75
K ——- dub 0.19 146.00 1.77 0.36 0.95
K - GC 1.17 2.00 50.00 0.74 0.48
K - cail 0.01 5.00 83.33 0.64 0.53
K - ai 0.39 14.00 60.87 0.72 0.37
K - freq 0.56 28.00 21.88 0.56 0.71
K - rscu 0.39 50.00 1.20 0.39 0.90
K - eff 0.39 51.00 1.23 0.39 0.90
K - succ 1.28 3.00 75.00 0.75 0.47
K - contig 1.28 2.00 50.00 0.76 0.47
K - sin 0.56 42.00 21.88 0.56 0.71
K - dub 0.39 83.00 1.01 0.40 0.91
K - top2 0.88 3.00 100.00 0.70 0.47
K - rscu 1.05 7.00 0.17 0.77 0.47
K - eff 1.05 7.00 0.17 0.77 0.47
K - dub 1.10 6.00 0.07 0.77 0.46
K e cail 0.78 5.00 83.33 0.79 0.26
K - cai2 0.98 3.00 60.00 0.80 0.30
K ‘- tai 0.00 10.00 83.33 0.75 0.37
K ‘- ai 0.39 4.00 17.39 0.75 0.29
K ‘e freq 1.28 10.00 7.81 0.77 0.46
K “e- rscu 1.28 11.00 0.26 0.77 0.48
K ‘- eff 1.28 11.00 0.26 0.77 0.48
K - sin 1.28 9.00 4.69 0.77 0.45
K ‘- dub 1.22 19.00 0.23 0.77 0.49
K - GC 0.90 2.00 50.00 0.74 0.44
K --- cail 0.00 5.00 83.33 0.74 0.31
K - cai2 0.08 2.00 40.00 0.77 0.22
K - ai 0.05 9.00 39.13 0.76 0.29

94 Data Tables: Predictors and Parameter Values

TABLE A.l: Pertaining to Section 6.3.5. Model performances for various subsets
of predictors (identified in column Predictor set). p is the number of non-zero
parameters in the model for the given A value. % of P is the percentage p/P, where
P is the number of predictors in the current set. Err(CV) is a cross-validation error
(as on the y-axis of, for example, Fig. 6.18 on page 78) and R? is the correlation
of the true response with predictions of the data on itself using the model

Set Window | Predictors set A P % of P Err(CV) R?

K - freq 1.24 14.00 10.94 0.77 0.45
K - rscu 1.16 12.00 0.29 0.76 0.50
K — eff 1.16 13.00 0.31 0.76 0.50
K - sin 1.24 15.00 7.81 0.77 0.45
K — dub 1.21 19.00 0.23 0.77 0.50
X -—- cail 0.00 6.00 100.00 0.71 0.28
X -—- al 0.01 9.00 39.13 0.74 0.28
X -—- freq 0.17 30.00 23.44 0.50 0.72
X — rscu 0.47 49.00 1.18 0.46 0.83
X — eff 0.39 63.00 1.51 0.44 0.86
X — lowC 0.62 4.00 20.00 0.72 0.36
X -—- sin 0.13 50.00 26.04 0.48 0.75
X -—- dub 0.47 77.00 0.93 0.46 0.84
X - GC 0.86 2.00 50.00 0.70 0.40
X - freq 0.73 11.00 8.59 0.63 0.54
X - rscu 0.48 37.00 0.89 0.46 0.81
X - eff 0.48 38.00 0.91 0.45 0.82
X - succ 0.82 2.00 50.00 0.70 0.38
X - contig 0.82 1.00 25.00 0.70 0.38
X - sin 0.73 17.00 8.85 0.63 0.55
X - dub 0.51 52.00 0.63 0.46 0.81
X - top2 0.82 2.00 66.67 0.70 0.38
X - GC 0.88 2.00 50.00 0.72 0.36
X - cail 0.00 6.00 100.00 0.72 0.25
X - cai2 0.02 5.00 100.00 0.74 0.20
X - ai 0.56 11.00 47.83 0.72 0.24
X - freq 0.93 5.00 3.91 0.71 0.39
X - rscu 1.07 5.00 0.12 0.71 0.43
X - eff 1.06 6.00 0.14 0.71 0.43
X - topC 0.94 1.00 5.00 0.74 0.30
X - sin 1.02 6.00 3.12 0.72 0.38
X - dub 1.12 7.00 0.08 0.72 0.43
X “em GC 0.78 2.00 50.00 0.70 0.37
X . freq 0.79 6.00 4.69 0.66 0.46
X “e- rscu 1.03 8.00 0.19 0.70 0.47
X - eff 0.99 9.00 0.22 0.69 0.48

A.1 Summaries of Single—-Parameter-Set Models 95

TABLE A.l: Pertaining to Section 6.3.5. Model performances for various subsets
of predictors (identified in column Predictor set). p is the number of non-zero
parameters in the model for the given A value. % of P is the percentage p/P, where
P is the number of predictors in the current set. Err(CV) is a cross-validation error
(as on the y-axis of, for example, Fig. 6.18 on page 78) and R? is the correlation
of the true response with predictions of the data on itself using the model

Set Window | Predictors set A\ P % of P Err(CV) R?

X ‘- sin 0.91 4.00 2.08 0.67 0.44
X “e- dub 1.04 8.00 0.10 0.70 0.48
X - GC 0.79 2.00 50.00 0.67 0.45
X - cail 0.00 6.00 100.00 0.70 0.30
X - ai 0.03 7.00 30.43 0.73 0.25
X .- freq 0.82 9.00 7.03 0.68 0.45
X - rscu 1.12 7.00 0.17 0.71 0.44
X - eff 1.06 12.00 0.29 0.71 0.44
X - topC 0.64 5.00 25.00 0.70 0.43
X - sin 0.88 12.00 6.25 0.68 0.45
X - dub 1.12 8.00 0.10 0.72 0.43

96 Data Tables: Predictors and Parameter Values

A.2 Final Model Parameters

TABLE A.2: Final model parameter values

Predictor Parameter value
(Intercept) 0.09
full dub.eff.ttgaca -0.00
full dub.eff.ctgece -0.04
full dub.eff.acgctg 0.00
full dub.eff.atcggt -0.00
full dub.eff.gtagta 0.00
full dub.eff.gttgta 0.03
full dub.eff.ctagtc -0.03
full _dub.eff.ggtgtt 0.02
full dub.eff.gtagtt -0.07
full dub.eff.gatttt -0.03
full dub.rscu.gatttt -0.00
full dub.rscu.ctggac -0.00
full dub.rscu.cttaaa 0.00
full dub.rscu.ctgcce -0.01
full dub.rscu.ttgaca -0.00
full dub.rscu.ctagtc -0.00
full dub.rscu.tttaaa -0.02
full dub.rscu.gtagta 0.00
full dub.rscu.gttgta 0.00
full dub.rscu.gtagtt -0.00
full lowC.E -0.05
full lowC.A 0.01
first _sin.freq.aca 1.86
first _sin.freq.agt 0.07
first _sin.freq.gtt 1.65
first dub.freq.aca 0.02
first _dub.freq.gtt 0.01
first _sin.eff.aca 0.02
first _sin.eff.gtt 0.01
first dub.eff.agcaag -0.05
first _dub.eff.cacaag -0.05
first _dub.eff.ttgaca -0.00
first _ dub.eff.ctgcce -0.04
first dub.eff.gaactt 0.04
first _dub.eff.ctggac -0.04
first _dub.eff.gaagga 0.05

first dub.eff.aagggg -0.08

A.2 Final Model Parameters

97

TABLE A.2: Final model parameter values

Predictor

Parameter value

first _dub.eff.atggta
first _dub.eff.gtagta
first _dub.eff.gttgta
first _dub.eff.atggtg
first _dub.eff.gtagtt
first _dub.eff.gaattg
first _sin.rscu.aca
first _sin.rscu.agt

first _sin.rscu.gtt

first _dub.rscu.gaagga
first _dub.rscu.gaactt
first _dub.rscu.gaattg
first dub.rscu.cacaag
first _dub.rscu.ctggac
first _dub.rscu.cttaaa
first _dub.rscu.ctgece
first _dub.rscu.ttgaca
first _dub.rscu.aagggg
first _dub.rscu.atggta
first _dub.rscu.atggtg
first _dub.rscu.agcaag
first _dub.rscu.gtagta
first _dub.rscu.gttgta
first _dub.rscu.gtagtt
first top2succ.s

first _top2succ.s

first _topcontig.s

mid _dub.eff.aagaat
mid _dub.eff.tatatc
mid dub.eff.acacta
mid _dub.rscu.gatttt
mid _dub.rscu.aagaat
mid _dub.rscu.acacta
mid topC.E

last _sin.freq.ggc

last sin.freq.tca

last _dub.freq.tca
last _sin.eff.tca

last dub.eff.acgaaa
last _dub.eff.cagaag
last _sin.rscu.tca

0.01
0.00
0.03
-0.09
-0.07
-0.13
0.02
0.03
0.00
0.01
0.01
-0.02
-0.01
-0.00
0.00
-0.00
-0.00
-0.01
0.00
-0.02
-0.00
0.00
0.00
-0.00
-0.06
-0.06
-0.06
-0.00
-0.06
-0.01
-0.00
-0.00
-0.00
0.01
0.30
-2.01
-0.04
-0.04
0.03
-0.01
-0.00

98

Data Tables: Predictors and Parameter Values

TABLE A.2: Final model parameter values

Predictor

Parameter value

last _dub.rscu.cagaag
last _dub.rscu.aagttc
last _dub.rscu.acgaaa
end dub.eff.aagaat
end _dub.eff.tatatc
end dub.eff.acacta
end dub.eff.ttggtg
end sin.rscu.gaa

end sin.rscu.gag

end dub.rscu.gatttt
end dub.rscu.ttggtg
end dub.rscu.aagaat
end dub.rscu.acacta
end dub.rscu.gtcgag
end GC3

end topC.K

-0.00
0.00
0.00

-0.00

-0.01

-0.01

-0.13

-0.01
0.01

-0.00

-0.00

-0.00

-0.00
0.00
0.29
0.06

Bibliography

1

2]

3]

4]

[5]

[6]

7]

18]

Laura Beil. ‘Unnatural Selection’. In: Science News 178.8 (Oct. 2010).
URL: http://www.sciencenews.org/view/feature/id/63605/title/
Unnatural__selection (cit. on p. 2).

Grzegorz Kudla et al. ‘Coding-Sequence Determinants of Gene Expression
in Escherichia coli’. In: Science 314.5924 (Apr. 2009), pp. 255-258. DOL:
10.1126/science. 1170160 (cit. on pp. 3, 20, 21, 29, 53, 64, 80).

MA Santos et al. ‘The Non-Standard Genetic Code of Candida spp.: an
Evolving Genetic Code or a Novel Mechanism for Adaptation?’ In: Mo-
lecular Microbiology 26 (3 Oct. 1997), pp. 423-431. DOI: 10.1046/j.1365-
2958.1997.5891961.x (cit. on p. 3).

Joshua B Plotkin and Grzegorz Kudla. ‘Synonymous But Not the Same:
the Causes and Consequences of Codon Bias’. In: Nature 12 (Jan. 2011),
pp- 32-42. DOI: 10.1038/nrg2899x (cit. on p. 3).

Mark Welch et al. ‘Design Parameters to Control Synthetic Gene Ex-
pression in Escherichia coli’. In: PLoS ONE 4.9 (2009). por: 10. 1371/
journal.pone.0007002 (cit. on pp. 3, 23, 29, 59, 63).

Frank Wright. ‘The ‘Effective Number of Codons’ Used in a Gene’. In:
Gene 87 (1990), pp. 23-29 (cit. on pp. 3, 26, 27).

Frank Supek and Kristian Vlahovicek. ‘Comparison of Codon Usage Meas-
ures and Their Ability in Prediction of Microbial Gene Expressivity’. In:
BMC' Informatics 6 (2005), p. 182. poI: 10.1186/1471-2105-6- 182
(cit. on p. 3).

Jesse M Fox and Ivan Erill. ‘Relative Codon Adaptation: A Generic Con-
don Bias Index for Prediction of Gene Expression’. In: DNA Research 17
(2010), pp. 185-196. DOI: 10.1093/dnares/dsq012 (cit. on pp. 3, 26).

http://www.sciencenews.org/view/feature/id/63605/title/Unnatural__selection
http://www.sciencenews.org/view/feature/id/63605/title/Unnatural__selection
http://dx.doi.org/10.1126/science.1170160
http://dx.doi.org/10.1046/j.1365-2958.1997.5891961.x
http://dx.doi.org/10.1046/j.1365-2958.1997.5891961.x
http://dx.doi.org/10.1038/nrg2899x
http://dx.doi.org/10.1371/journal.pone.0007002
http://dx.doi.org/10.1371/journal.pone.0007002
http://dx.doi.org/10.1186/1471-2105-6-182
http://dx.doi.org/10.1093/dnares/dsq012

100 BIBLIOGRAPHY

[9] Josep M Comeron and Montserrat Aguadé. ‘An Evaluation of Measures
of Synonymous Codon Usage Bias’. In: Journal of Molecular Evolution 47
(1998), pp. 268-274. DOL: 10.1007/PL00006384 (cit. on p. 3).

[10] John Peden. CodonW. 1997. URL: http://codonw. sourceforge . net/
(visited on 12/09/2012) (cit. on pp. 3, 48).

[11] Antranik. Organic Compound 8: Proteins. 2012. URL: http://antranik.
org/organic-compound-3-proteins/ (cit. on p. 6).

[12] Hans Sejr Olsen. Enzymes at Work. Novozymes A/S. Customer Commu-
nications. No. 2001-00269-04. 2004 (cit. on pp. 6, 17).

[13] David J Tenenbaum. ‘Food vs. Fuel: Diversion of Crops Could Cause More
Hunger’. In: Environmental Health Perspectives 116 (6 2008), A254-A257
(cit. on p. 6).

[14] R Bownen. The Structure of Proteins. 2002. URL: http://www.vivo.
colostate.edu/hbooks/genetics/biotech/basics/prostruct.html
(cit. on p. 9).

[15] Ken A Dill et al. ‘The Protein Folding Problem: When Will It Be Solved?’
In: Current Opinion in Structural Biology 17 (2007), pp. 342-346. DOL:
10.1016/j.sbi.2007.06.001 (cit. on p. 8).

[16] Wikipedia. List of unsolved problems in chemistry — Wikipedia, The Free
Encyclopedia. 2012. URL: http://en.wikipedia.org/w/index .php?
title=List_of_unsolved_problems_in_chemistry&oldid=496555994
(visited on 12/09/2012) (cit. on p. 8).

[17] Ingrid Wagner and Hans Musso. ‘New Naturally Occuring Amino Acids’.
In: Angewendte Chemie 22 (11 1983), pp. 816-828. DOI: 10.1002/anie.
198308161 (cit. on p. 9).

[18] Linda Johansson, Guro Gafvelin and Elias SJ Arnér. ‘Selenocysteine in
Proteins — Properties and Biotechnological Use’. In: Biochimica et Bio-
physica Acta 1726 (1 2005), pp. 1-13. DOI: 10.1016/j.bbagen.2005.05.
010 (cit. on p. 10).

[19] Joseph A Krzycki. ‘The Direct Genetic Encoding of Pyrrolysine’. In: Cur-

rent Opinion in Microbiology 8 (6 2005), pp. 706-712. DOI: 10.1016/j.
mib.2005.10.009 (cit. on p. 10).

[20] Jianming Xie and Peter Schultz. ‘Adding Amino Acids to the Genetic
Repetoire’. In: Current Opinion in Chemical Biology 9 (2005), pp. 548
554 (cit. on p. 10).

[21] BBC. KS3 Bitesize. 2012. URL: http: //www . bbc . co . uk/schools/
ks3bitesize/science/organisms_behaviour_health/disease/revise2.
shtml (cit. on p. 11).

http://dx.doi.org/10.1007/PL00006384
http://codonw.sourceforge.net/
http://antranik.org/organic-compound-3-proteins/
http://antranik.org/organic-compound-3-proteins/
http://www.vivo.colostate.edu/hbooks/genetics/biotech/basics/prostruct.html
http://www.vivo.colostate.edu/hbooks/genetics/biotech/basics/prostruct.html
http://dx.doi.org/10.1016/j.sbi.2007.06.001
http://en.wikipedia.org/w/index.php?title=List_of_unsolved_problems_in_chemistry&oldid=496555994
http://en.wikipedia.org/w/index.php?title=List_of_unsolved_problems_in_chemistry&oldid=496555994
http://dx.doi.org/10.1002/anie.198308161
http://dx.doi.org/10.1002/anie.198308161
http://dx.doi.org/10.1016/j.bbagen.2005.05.010
http://dx.doi.org/10.1016/j.bbagen.2005.05.010
http://dx.doi.org/10.1016/j.mib.2005.10.009
http://dx.doi.org/10.1016/j.mib.2005.10.009
http://www.bbc.co.uk/schools/ks3bitesize/science/organisms_behaviour_health/disease/revise2.shtml
http://www.bbc.co.uk/schools/ks3bitesize/science/organisms_behaviour_health/disease/revise2.shtml
http://www.bbc.co.uk/schools/ks3bitesize/science/organisms_behaviour_health/disease/revise2.shtml

BIBLIOGRAPHY 101

[22] Molecular Station. mRNA UTR Sructure Ezon Intron Cap. 2007. URL:
http://www.molecularstation. com/molecular - biology - images /
503-rna-pictures/66-mrna-utr-structure-exon-intron-cap.html
(cit. on p. 11).

[23] Lubert Stryer. Biochemistry. 3rd ed. W. H. Freeman and Company, 1988.
ISBN: 0716719207 (cit. on pp. 12, 15-17).

[24] Hana Kucera. Translation. 2010. URL: http://www.genomebc.ca/education/
articles/translation/ (cit. on p. 12).

[25] RBSS Biology. Codon Wheel. 2012. URL: http://rbssbiologyllilos.
wikispaces.com/Codon+Wheel (cit. on p. 14).

[26] B Alberts et al. Molecular Biology of the Cell. 4th ed. 2004 (cit. on p. 16).

[27] Claes Gustafsson et al. ‘Engineering Genes for Predictable Protein Ex-
pression’. In: Protein Ezprssion and Purification 83 (Mar. 2012), pp. 37—
346. DOI: 10.1016/j.pep.2012.02.013 (cit. on p. 24).

[28] Mario dos Reis, Renos Savva and Lorenz Wernisch. ‘Solving the Riddle of
Codon Usage Preferences: a Test for Translational Selection’. In: Nucleic
Acids Research 32.17 (2004), pp. 5036-5044. DO1: 10.1093/nar/gkh834
(cit. on pp. 24, 47, 48).

[29] Kurt Fredrick and Michael Ibba. ‘How the Sequence of a Gene Can Tune
Its Translation’. In: Cell 141 (Apr. 2010), pp. 227-229. DOI: 10.1016/j .
cell.2010.03.033 (cit. on pp. 25, 53).

[30] Sivan Navon and Yitzhak Pilpel. ‘The Role of Codon Selection in Reg-
ulation of Translation Efficiency Deduced from Synthetic Libraries’. In:
Genome Biology 12.2 (Feb. 2011). por: 10.1186/gb-2011-12-2-r12
(cit. on pp. 25, 53).

[31] Alexander Roth, Maria Anisimova and Gina M Cannarozzi. ‘Measuring
codon usage bias’. In: Codon Evolution. Mechanisms and Models. Ed. by
Gina M Cannarozzi and Adrian Schneider. Oxford University Press, 2012.
Chap. 13. 1SBN: 978-0-19-960116-5 (cit. on pp. 25, 28, 45, 47).

[32] Paul M Sharp and Wen-Hsiung Li. ‘An Evolutionary Perspective on Syn-
onymous Codon Usage in Unicellular Organisms’. In: Journal of Molecular
Evolution 24 (1986), pp. 28-38 (cit. on pp. 26, 46).

[33] Paul M Sharp and Wen-Hsiung Li. ‘The Codon Adaptation Index — A
Measure of Directional Synonumous Codon Usage Bias, and Its Potential
Applications’. In: Nucleic Acids Research 15 (1987), pp. 1281-1295 (cit.
on pp. 26, 27, 46, 48, 49).

[34] Tshimichi Ikemura. ‘Correlation Between the Abundance of Escherichia
coli Transfer RN As and the Occurence of the Respective Codons in its Pro-
tein Genes: A Proposal for a Synonymous Codon Choice that is Optimal
for the E. coli Translational System’. In: Journal of Molecular Biology 151
(1981), pp. 389-409 (cit. on pp. 26, 27, 47).

http://www.molecularstation.com/molecular-biology-images/503-rna-pictures/66-mrna-utr-structure-exon-intron-cap.html
http://www.molecularstation.com/molecular-biology-images/503-rna-pictures/66-mrna-utr-structure-exon-intron-cap.html
http://www.genomebc.ca/education/articles/translation/
http://www.genomebc.ca/education/articles/translation/
http://rbssbiology11ilos.wikispaces.com/Codon+Wheel
http://rbssbiology11ilos.wikispaces.com/Codon+Wheel
http://dx.doi.org/10.1016/j.pep.2012.02.013
http://dx.doi.org/10.1093/nar/gkh834
http://dx.doi.org/10.1016/j.cell.2010.03.033
http://dx.doi.org/10.1016/j.cell.2010.03.033
http://dx.doi.org/10.1186/gb-2011-12-2-r12

102 BIBLIOGRAPHY

[35] Bennetzen and Hall. ‘Codon Selection in Yeast’. In: Journal of Biological
Chemistry 257 (1982), pp. 3026-3031 (cit. on pp. 26, 47).

[36] Uttam Roymondal, Shibsankar Das and Satyabrata Sahoo. ‘Predicting
Gene Expression Level from Relative Codon Usage Bias: An Application
to Escherichia coli Genome’. In: DNA Research 16 (2009), pp. 13-30. DOI:
10.1093/dnares/dsn029 (cit. on p. 26).

[37] D Charif and J R Lobry. ‘SeqinR 1.0-2: a contributed package to the R pro-
ject for statistical computing devoted to biological sequences retrieval and
analysis’. In: Structural approaches to sequence evolution: Molecules, net-
works, populations. Ed. by U Bastolla et al. Biological and Medical Phys-
ics, Biomedical Engineering. New York: Springer Verlag, 2007, pp. 207—
232. 1SBN: 978-3-540-35305-8 (cit. on pp. 26, 48).

[38] Jeremy Schmutz et al. ‘Qualist Assessment of the Human Genome Se-
quence’. In: Nature 429 (2004), pp. 365-368. DOIL: 10.1038/nature02390
(cit. on p. 29).

[39] National Human Genome Research Institute. An Overview of the Human
Genome Project. National Institute of Health. 2011. URL: http://www.
genome.gov/12011238 (visited on 27/09/2012) (cit. on p. 29).

[40] Department of Evolutionary Genetics. The Neandertal Genome Project.
Max-Planck-Gesellschaft. URL: http://www.eva.mpg.de/neandertal/
(cit. on p. 29).

[41] Ajit Varki. ‘A Chimpanzee Genome Project Is a Biomedical Impreative’.
In: Genome Research (2000), pp. 1065-1070. po1: 10.1101/gr.10.8.1065
(cit. on p. 29).

[42] National Human Genome Research Institute. The Human Connectome

Project. National Institute of Health. URL: http://www.humanconnectomeproject.
org/ (visited on 27/09/2012) (cit. on p. 29).

[43] Human Variome Project International Limited. The Human Variome Pro-
ject. URL: http://www.humanvariomeproject.org/ (visited on 27/09/2012)
(cit. on p. 29).

[44] 1000 Genomes. 1000 Genomes: A Deep Catalog of Human Genetic Vari-
ation. European Bioinformatics Institute. URL: http://www.1000genomes.
org/ (visited on 27/09/2012) (cit. on p. 29).

[45] Line Katrine Harder Clemmensen and Karl Sjostrand. ‘Computational
Data Analysis’. DTU IMM Course 02582: lecture notes (cit. on pp. 30,
32).

[46] Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed.
Springer Series in Statistics. Springer Science+Business Media, 2009. 1SBN:
978-0-387-84857-0. DOIL: 10.1007/b94608 (cit. on pp. 31, 37, 3943, 60,
71).

http://dx.doi.org/10.1093/dnares/dsn029
http://dx.doi.org/10.1038/nature02390
http://www.genome.gov/12011238
http://www.genome.gov/12011238
http://www.eva.mpg.de/neandertal/
http://dx.doi.org/10.1101/gr.10.8.1065
http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
http://www.humanvariomeproject.org/
http://www.1000genomes.org/
http://www.1000genomes.org/
http://dx.doi.org/10.1007/b94608

BIBLIOGRAPHY 103

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Frederick Mosteller et al. ‘Fitting Staight Lines By Eye’. In: Ezploring
Data Tables, Trends, and Shapes. Ed. by David C Hoaglin, Frederick Mos-
teller and John W Tukey. John Wiley & Sons, Inc., 1985. Chap. 6. 1SBN:
0-471-09776-4 (cit. on p. 32).

Bjarne Kjar Ersbgll and Knut Conradsen. ‘An Introduction to Statistics’.
2007 (cit. on p. 34).

Arthur E Hoerl and Robert W Kennard. ‘Ridge Regression: Biased Estim-
ation for Nonorthogonal Problems’. In: Technometrics 12 (1 Feb. 1970),
pp. 55-67. DOIL: 10.2307/1267351 (cit. on p. 36).

Robert Tibshirani. ‘Regression Shrinkage and Selection via the Lasso’.
In: Journal of the Royal Statistical Society Series B (Methodological) 58.1
(1996), pp. 267288 (cit. on pp. 37, 39).

Scott Shaobing Chen, David L Donoho and Michael A Saunders. ‘Atomic
Decomposition by Basis Pursuit’. In: Journal of the Royal Statistical Soci-
ety Series B) 58 (1996), pp. 267—288. DOL: 10.1137/S1064827596304010
(cit. on p. 38).

Christopher M Bishop. Pattern Recognition and Machine Learning. In-
formation Science and Statistics. Springer Science+Business Media, 2006.
ISBN: 978-0387-31073-2 (cit. on pp. 38, 39, 41).

Ildiko E Frank and Jerome H Friedman. ‘A Statistical View of Some Chem-
ometrics Regression Tools’. In: Technometrics 35.2 (1993), pp. 109-135.
DOI: 10.1080/00401706.1993.10485033 (cit. on p. 38).

Kevin P Murphy. Machine Learning: A Probabilistic Perspective. Mas-
sachusetts Institute of Technology, 2012. 1SBN: 978-0-262-01802-9 (cit. on
pp- 38-40).

Wenjiang J. Fu. ‘Penalized Regressions: The Bridge Versus the Lasso’. In:
Journal of Computational and Graphical Studies 7.3 (1998), pp. 397-416.
DOI: 10.1080/10618600.1998.10474784 (cit. on p. 38).

Leo Breiman. ‘Heuristics of Instability and Stabilization in Model Selec-
tion’. In: Annals of Statistics 24.6 (1996), pp. 2350-2383. DOI: 10.1214/
a0s/1032181158 (cit. on p. 38).

Mark Schmidt. Least Squares Optimization with L1-Norm Regularization.
2005 (cit. on p. 39).

Shirish Krishnaj Shevade and S Sathiya Keerthi. ‘A Simple and Efficient
Algorithm For Gene Selection Using Sparse Logistic Regression’. In: Bioin-
formatics 19.17 (2003), pp. 2246-2253. DOIL: 10.1093/bioinformatics/
btg308 (cit. on p. 39).

Hui Zou and Trevor Hastie. ‘Regularization and Variable Selection Via
the Elestic Net’. In: Journal of the Royal Statistical Society Series B 67
(2005), pp. 301-320. pOI: 10.1111/j.1467-9868.2005.00503.x (cit. on
p. 39).

http://dx.doi.org/10.2307/1267351
http://dx.doi.org/10.1137/S1064827596304010
http://dx.doi.org/10.1080/00401706.1993.10485033
http://dx.doi.org/10.1080/10618600.1998.10474784
http://dx.doi.org/10.1214/aos/1032181158
http://dx.doi.org/10.1214/aos/1032181158
http://dx.doi.org/10.1093/bioinformatics/btg308
http://dx.doi.org/10.1093/bioinformatics/btg308
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x

104

BIBLIOGRAPHY

[60]

[61]

62]

[63]

|64]

[65]

[66]

167]

[68]

[69]

[70]

Jerome H Friedman, Trevor Hastie and Robert Tibshirani. ‘Regulariza-
tion Paths for Generalized Linear Models via Coordinate Descent’. In:
Journal of Statistical Software 33.1 (2010), pp. 1-22. URL: http://www.
jstatsoft.org/v33/i01/ (cit. on pp. 40, 71, 77).

M dos Reis, L Wernisch and R Savva. ‘Unexpected Correlations Between
Gene Expression and Codon Usage Bias From Microarray Data For the
Whole Escherichia coli K-12 Genome’. In: Nucleic Acids Research 31.23
(2003), pp. 6976-6985. DOIL: 10.1093/nar/gkg897 (cit. on pp. 47, 48).

S Kanaya et al. ‘Studies Of Codon Usage and tRNA Genes Of 18 Unicel-
lular Organisms and Quantification Of Bacillus subtilis tRNAs: Gene Ex-
pression Level and Species—Specific Diversity Of Codon Usage Based On
Multivariate Analysis’. In: Gene 238.1 (1999). pmiD: 10570992, pp. 143
155 (cit. on p. 47).

Peter Bjarke Olsen. Internal report (confidential). Novozymes A /S, 2012
(cit. on pp. 48, 49, 84).

Ronald Jansen, Harmen J Bussemaker and Mark Gerstein. ‘Revisiting
the Codon Adaptaion Indexn From a Whole-Genome Perspecive: Ana-
lyzing the Relationship Between Gene Expression and Codon Occurence
In Yeast Using a Variety Of Models’. In: Nucleic Acids Research 631.8
(2003), pp. 2242-2251. DOIL: 10.1093/nar/gkg306 (cit. on pp. 48, 49).

NCBI. The Nucleotide Database. National Center for Biotechnology In-
formation, U.S. National Library of Medicine. 2012. URL: http://www.
ncbi.nlm.nih.gov/nuccore (cit. on pp. 49, 84).

Paul M Sharp and Wen-Hsiung Li. ‘Codon Usage In Regulatory Genes In
Escherichia coli Does Not Reflect Selection For ‘Rare’ Codons’. In: Nucleic
Acids Research 14.19 (1986). PMCID: PMC311793, pp. 7737-7749 (cit. on
p. 53).

Bjgrn-Helge Mevik, Ron Wehrens and Kristian Hovde Liland. pls Partial
Least Squares and Principal Component Regression. R package version
2.3-0. 2011. URL: http://CRAN.R-project.org/package=pls (cit. on
p. 7).

R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing. Vienna, Austria, 2012. URL:
http://www.R-project.org/ (cit. on p. 71).

Rahul Mazumder, Trevor Hastie and Jerome Friedman. sparsenet: Fit
Sparse Linear Regression Models Via Nonconvexr Optimization. R pack-
age version 1.0. 2012. URL: http://CRAN.R-project . org/package=
sparsenet (cit. on p. 71).

Rahul Mazumder, Jerome Friedman and Trevor Hastie. SparselNet: Co-
ordinate Descent with Non-Convex Penalties. 2009. URL: www.stanford.
edu/~hastie/Papers/Sparsenet/paper_spnet_main.pdf (cit. on p. 71).

http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
http://dx.doi.org/10.1093/nar/gkg897
http://dx.doi.org/10.1093/nar/gkg306
http://www.ncbi.nlm.nih.gov/nuccore
http://www.ncbi.nlm.nih.gov/nuccore
http://CRAN.R-project.org/package=pls
http://www.R-project.org/
http://CRAN.R-project.org/package=sparsenet
http://CRAN.R-project.org/package=sparsenet
www.stanford.edu/~hastie/Papers/Sparsenet/paper_spnet_main.pdf
www.stanford.edu/~hastie/Papers/Sparsenet/paper_spnet_main.pdf

BIBLIOGRAPHY 105

[71] Trevor Hastie and Brad Efron. lars: Least Angle Regression, Lasso and
Forward Stagewise. R package version 1.1. 2012. URL: http://CRAN.R-
project.org/package=lars (cit. on p. 71).

[72] Ysushi Ishihama et al. ‘Exponentially Modified Protein Abundance Index
(emPAI) for Estimation of Absolute Protein Amount in Proteomics by
the Number of Sequences Peptides per Protein’. In: Molecular € Cellular
Proteomics 4 (9 2005), pp. 1265-1272 (cit. on p. 84).

[73] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New
York, 2009. 1SBN: 978-0-387-98140-6. URL: http://had.co.nz/ggplot2/
book (cit. on p. 88).

http://CRAN.R-project.org/package=lars
http://CRAN.R-project.org/package=lars
http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Setting
	1.2 Objective

	2 Biological Background
	2.1 Why Enzymes?
	2.2 What Are Enzymes?
	2.3 Amino Acids
	2.4 DNA to mRNA: Transcription
	2.5 mRNA
	2.6 Ribosome
	2.7 Codons
	2.8 tRNA

	3 Prior Works
	3.1 Dataset Literature
	3.1.1 Kudla et al. 2009
	3.1.2 Welch et al. 2009

	3.2 Other Selected Literature
	3.2.1 Gustaffson et al. 2012
	3.2.2 dos Reis et al. 2004
	3.2.3 Fredrick and Ibba 2004
	3.2.4 Navon and Pilpel 2011

	3.3 Review of Some Existing Codon Measures
	3.3.1 Codon Adaptation Index
	3.3.2 tRNA Adaptation Index
	3.3.3 Effective Number of Codons
	3.3.4 Frequency of Optimal Codons
	3.3.5 Other Measures

	4 Machine Learning Methods
	4.1 General Model Definition
	4.2 Higher/Lower Order Error Terms
	4.3 Overparametrisation
	4.4 p>N
	4.5 Dealing With Correlated Variables and p>N
	4.5.1 The Ridge Penalty
	4.5.2 The Lasso Penalty Tibshirani1996
	4.5.3 Higher Order of Regularisation

	4.6 Ridge or Lasso? A Compromise: The Elastic Net
	4.7 Training the Model
	4.7.1 Choosing

	5 Parameter Investigation and Definitions
	5.1 Reference-Based Measures
	5.1.1 Codon Adaptation Index (CAI)
	5.1.2 Two–Codon Adaptation Index (CAI2)
	5.1.3 tRNA Adaptation Index (tAI)

	5.2 Dependence On Reference Set In Reference–Based Measures
	5.2.1 Reference Dependence for CAI
	5.2.2 Reference Genes for CAI2
	5.2.3 Reference Genes for tAI

	5.3 Non–Reference-Based Measures
	5.4 Window-Wise Analysis

	6 Model Training and Validation
	6.1 Walk-through of Welch et al. analysis
	6.1.1 Quick Look At the Predictors
	6.1.2 Modelling Process
	6.1.3 Extending the Welch Technique to Kudla Data
	6.1.4 Training a full model

	6.2 Model Definition
	6.2.1 Choosing an R Package
	6.2.2 Selecting and

	6.3 Model Training and Evaluation
	6.3.1 Test Sets
	6.3.2 Modelling Parameters
	6.3.3 Increasing Model Complexity
	6.3.4 Side Note: Effect of on Model Complexity
	6.3.5 One Parameter At a Time
	6.3.6 Combining Parameters for the Full Model
	6.3.7 Model Validation

	6.4 Biological Interpretations
	6.5 Testing On New Data
	6.5.1 Data Description
	6.5.2 Parameter Estimation
	6.5.3 Expression Prediction

	7 The R Package: codonTools
	8 Conclusion
	8.1 Future Work

	A Data Tables: Predictors and Parameter Values
	A.1 Summaries of Single–Parameter-Set Models
	A.2 Final Model Parameters

	Bibliography

