
An Evaluation of EEG Scanner’s Dependence on the Imaging

Technique, Forward Model Computation Method,

and Array Dimensionality

Carsten Stahlhut1, Hagai Thomas Attias2, Arkadiusz Stopczynski1,

Michael Kai Petersen1 Jakob Eg Larsen1, Lars Kai Hansen1.

Abstract— EEG source reconstruction involves solving an
inverse problem that is highly ill-posed and dependent on a
generally fixed forward propagation model. In this contribution
we compare a low and high density EEG setup’s dependence on
correct forward modeling. Specifically, we examine how differ-
ent forward models affect the source estimates obtained using
four inverse solvers Minimum-Norm, LORETA, Minimum-
Variance Adaptive Beamformer, and Sparse Bayesian Learning.

I. INTRODUCTION

Electro-encephalography (EEG) holds great promise for

functional brain imaging due to its high temporal resolution.

In comparison with functional magnetic resonance imaging

(fMRI) and positron emission tomography (PET), the slow

hemodynamic response does not affect EEG. In addition

fMRI and PET involve heavy scanner equipment and im-

mobilization constraints that compromise the experimental

situation, while EEG can be performed under much more

natural conditions.

Today EEG based brain imaging suffers from a lack of

spatial specificity due to the complex propagation of neural

quasi-static electric fields to the array of sensors placed at

the scalp surface. Motivated by the desire to perform reliable

and precise reconstruction of the neural current density,

much effort has been devoted to development of improved

inversion methods. The current literature can be divided in

two major approaches: Equivalent current dipole (ECD) and

distributed models. In ECD methods [1] it is assumed that

the brain activity is generated by a small number of focal

sources, which restricts the source localization problem to

a challenge of determining the positions and orientations of

the ECDs. In distributed models several prior assumptions

are made in order to solve the ill-posed inverse problem.

For example l2-norm approaches, like the weighted mini-

mum norm method [2] and low resolution electromagnetic

tomography (LORETA) [3], assume sources to be diffuse and

highly distributed. On the other hand models based on the

l1-norm [4], lp-norms [5], minimum variance beamformer

[6], Bayesian model averaging [7], multiple priors models

[8], and automatic relevance determination methods [9],

[10], implement more focal sources. Most of these source
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localization methods employ spatial-temporal priors in order

to accommodate for the focal source distribution.

While the recent EEG imaging literature mainly have

focused on the source reconstruction performance using

high density EEG equipment we here draw the attention to

quantify the performance of EEG brain imaging using few

electrodes as we are interested in mobile EEG equipment. We

have previously, demonstrated the feasibility of performing

online brain imaging on a smartphone device [11] allowing

for experiments in more naturalistic settings. We here seek

a quantification of how well the current sources can be

reconstructed when evaluating different forward models and

source reconstruction methods.

Analyzing the importance of precise forward models and

their influence on either the forward problem or the in-

verse problem is far from new to the EEG community. A

number of contributions have already been published e.g.

[12], [13]. A majority of the forward model investigations

performed evaluates the forward models at sensor level or

only examine a few dipoles located in different brain regions.

These contributions have been of crucial importance to the

EEG community as they have shed light on serious issues

that we need to be aware of when the source solutions

are used as the basis of conclusions in a given setup. In

[12] an examination of the influence of geometric errors

on the source estimates is performed using BEM models

constructed from MR or CT images. A quite similar approach

as the analysis above have been presented in [14]. The

study in [14] deals with geometric errors introduced by

using too simple head models (spheres) compared to more

realistic BEM models. To evaluate the effect, angles between

forward fields were examined when assuming no noise at the

sensor level. In contrast to [14] we explored forward model

uncertainties in face of noise present at the sensor level [15]

and demonstrated that indeed source confusion is dependent

on the interplay of forward field errors and the amount of

noise present in the recordings.

Other types of uncertainities affecting the forward models

are the specific tissue conductivity values and the impor-

tance of modeling specific tissues as anisotropic rather than

isotropic have been discussed in [13], with the overall

consensus that inaccurate modeling of the skull leads to

significant error contributions on the sources. In fact [13],

[16] states that a smearing effect on the forward potential

computation is introduced by the skull anisotropy. The deeper



a source is located the more it is surrounded by anisotopic

tissues. Thus, electric fields generated by deeper sources are

more affected by the anisotropy than superficial sources.

Of more recent studies [17] should be mentioned in which

a careful analysis of how the number of electrodes, geometric

errors (spheres versus FEM head models), and anisotropy

versus isotropy affect the source estimates obtained by

beamformers. To the authors knowledge this is the first

study comparing how different inverse methods solutions are

affected by different choices of forward models as well as

the resolution with respect to the number sensors.

II. METHODS

The relation between the measured EEG signal and the

brain’s current sources can be expressed as a linear instan-

taneous form in the sources. The forward relation can be

written as [18]

Y = AX+ E , (1)

where the measured EEG signal is denoted Y ∈ ℜNc×Nt ,

the current sources X ∈ ℜNd×Nt , and the noise E is assumed

additive. Number of channels, dipoles (or sources), and time

samples are denoted Nc, Nd, and Nt, respectively. The

coupling of sensors and the current sources is expressed

through the lead field matrix/forward model A ∈ ℜNc×Nd

with the rows referred to as the lead fields for the sensors

and the columns as the forward fields for the sources. The

forward model depends on sensor positions, a so-called

’head model’ of the spatial distribution of tissue, and tissue

conductivity values. Multiple methods based on the physical

properties of the brain and Maxwell’s equations are available

for computing A.

A. Minimum Norm and LORETA

Given the linear relation in Eq. (1) and if we as-

sume the noise to be time independent Gaussian dis-

tributed, the observation model becomes p (Y |X ) =
∏Nt

t=1
N

(

yt

∣

∣Axt, β
−1ΣE

)

where ΣE is the noise spatial

covariance matrix. We here realize the source localization

by a Bayesian formulation of the widely used minimum

norm (MN) [2] and LORETA [3] methods as they allow

fast computation of the inverse solution. With MN regarded

as a special case of the LORETA we use as prior distri-

bution for the sources a multivariate Gaussian p (X |α ) =
∏Nt

t=1
N

(

xt

∣

∣0, α−1LTL
)

with L being the Laplacian op-

erator incorporating spatial smoothness on the source level.

MN is obtained in the limit of no spatial smoothness, i.e.

replacing L = I. Source estimates are now obtained from

Bayes’ rule by computing the posterior distribution over the

sources, which leads to p (X |Y ) =
Nt
∏

t=1

N (xt|µt,Σx) with

Σx = α−1K− α−1KATΣyAKα−1 (2)

µt = α−1KATΣyyt. (3)

Here we have defined K ≡ LTL and Σ−1

y ≡

α−1AKAT + β−1Σε. Estimation of sources and the pre-

cision parameters α and β are carried out using a standard

expectation-maximization (EM) scheme [19].

B. Beamforming

Here we use minimum-variance adaptive beamforming,

which reconstructs the signal si of each dipole i by a spatial

filter, si =
∑

j Wijyj . It chooses the filter that minimizes the

noise variance in the reconstructed signal under a unit-gain

constraint. Thus, for each i, we seek

Ŵij = argminW

(

WΣEW
T
)

ii
, (ŴA)ii = 1. (4)

The resulting reconstruction is given by

xi =

(

ATC−1

y y
)

i

(ATC−1
y A)ii

(5)

where Cy is the empirical data covariance. In dense EEG

systems, where the number of sensors exceeds 100, this

covariance is low-rank and must be suitably regularized.

However, in systems with a small number of sensors, such as

the one described here, regularization is usually not required.

C. Sparse Bayesian Learning (SBL)

SBL is a promising recent addition to the source analysis

toolkit. In constrast to the previous methods which result

in brain images with a rather low spatial resolution, SBL’s

images are very sparse. This sparseness is achieved by

modeling each dipole distribution by a Gaussian with its own

separate precision parameter αi, p (X) =
Nt
∏

t=1

N
(

xt|0,D−1
)

,

where D = diag (α) leading to a posterior distribution

p (X |Y ) =
Nt
∏

t=1

N (xt|µt,Σx) with

Σ−1

x = ATβΣ−1

E
A+D (6)

µt = ΣxA
TβΣ−1

E
yt. (7)

The precision parameters are estimated from data by a EM-

like algorithm, made efficient using a convex optimization

technique. The update rule for α is given in [9].

III. EMPIRICAL EVALUATION

We demonstrate the influence of the choices of forward

models on the source estimates depending on which inverse

method that is used. In order to validate how the inverse

methods are affected by these choices we focus on two

different EEG setups, Emotiv EPOC (16 channels) and

Biosemi Active-II system (64 channels). For each of the EEG

setups we examine three types of head models; 3-spheres

(SPM8 toolbox), BEM-CP (SPM8 toolbox) [20], BEM-OP

(OpenMEEG toolbox) [21] all using the same cortical surface

with a resolution of 5,124 vertices. In contrast to spheres

models BEM models face high numerical challenges in order

to extract the forward fields at the cortical level. A limitation

with the BEM-CP implementation is a risk of improper

handling of forward fields for vertices very close to the

inner skull. This issue is illustrated in Fig. 1 in which we

demonstrate the 2-norm of each of the 5,124 vertices forward

fields. We note that the BEM-CP has a number of vertices

having forward fields much larger than the average. In this

section we inspect how such discontinuties in the electric

field may affect the source solutions.
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Fig. 1. The distribution of the squared 2-norm of the forward fields for
three different forward models 3-spheres, BEM-CP, and BEM-OP when
using 64-channel Biosemi layout.

Evaluation is carried out on synthetic data. We select a

small cortical area in the right temporal lope as being active

and with a half sine as temporal signature. Fig.2.a shows the

spatial distribution. As true forward propagation model we

apply the OpenMEEG BEM model with tissue conductivities

brain:skull:scalp = 0.33:0.0041:0.33S/m. Gaussian noise is

added to the clean EEG signal in the order of SNR = 10,

see Fig.2.b. We define SNR as the ratio between the power

of the clean EEG and the noise. Fig.2.c shows the source

solutions of MN, LORETA, MVAB, and SBL methods when

applied to a low resolution setup of 16 channels (Emotiv) and

high density 64-channels (Biosemi). Overall MN, LORETA,

and MVAB all leads to widespread activity with MVAB

having difficulties to capture the simulated source in the

temporal lope. MN seems to be more affected by the BEM-

CP’s discontinuties in the electric field for the Emotiv setup

compared to Biosemi. However, LORETA minimizes the

influence of these discontinuties by its spatial smoothness.

The source estimates of the SBL algorithm on the other hand

leads to highly sparse solutions with a few strong sources

located close to the true source region.

IV. CONCLUSIONS

We examined inaccurate forward models influence on the

source reconstruction in a low and high density EEG setup.

Source solutions obtained using MN, LORETA, and SBL

demonstrated possibility of recovering sources located in the

temporal lope at a SNR=10 reliable for most of the forward

models and with SBL being the method resulting in the

most consisting source estimates for the the different forward

models. Further studies should evaluate the performance

under lower SNRs and with multiple source regions being

active simultaneously. Moreover, forward models considering

anisotropy such as Finite Volume Model and Finite Element

Model would be interested to include in the comparison.
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Fig. 2. a) Simulated spatial source distribution. b) Simulated sensor signal including noise. c) Reconstructed source estimates using MN, LORETA,
MVAB, and SBL on two different EEG setups, Emotiv (Nc = 16) and Biosemi (Nc = 64) and three head models: 3-shell, BEM-CP, and BEM-OP.


