FPGA Signal Preprocessing for
Digital Wireless Receivers

Bjarne Petersen

Kongens Lyngby 2012
IMM-M.Sc-2012-102

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

Summary

This thesis deals with the task of exchanging analog filters with digital filters.
These analog filters, used in a base station receiver for wireless communication,
have the job of filtering incoming TETRA and TEDS signals for unwanted
channels and blockers. Analysis performed in this thesis based on a set of
requirements for the filter process, have concluded that the best filter type for
the digital filers is FIR filters of a symmetric structure.

In order to apply FIR filters, a flexible filter architecture has been designed and
implemented as an RTL hardware model with VHDL. Digital filtering can be
broken down to a sum of additions and multiplications. Since embedded mul-
tipliers are limited in FPGAs the designed architecture is based on a resizeable
parallel and sequential part which allows it to make the best use of the multipli-
ers taken the desired clock frequency into account. The architecture supports
symmetric FIR filters of an odd order number. The order can vary from 7 to
575 in predefined steps. A suitable FPGA is necessary to implement filters of
high orders.

This architecture has been used to implement a set of single and dual carrier
systems based on filters of order 383 on a Spartan 3 FPGA.

In order to test the system, the architecture has been surrounded by an envi-
ronment consisting of a set of interfaces enabling the system to receive incoming
data from an ADC and send filtered data to a pc for further analysis. Through
this, the filter architecture was verified and the implemented filters tested suc-
cessfully.

Resumé

Dette speciale beskaftiger sig med at udskifte analog filtre med digitale filtre.
Disse analog filtre sidder i modtageren pa en base station brugt til tradlgs kom-
munikation og har til opgave at filtrere TETRA og TEDS signaler for ugnskede
kanaler samt stgj. Der er udfgrt analyser baseret pa fastlagte krav, som kon-
kluderer, at den bedst egnede digitale filter type er FIR filter med en symmetrisk
struktur.

For at anvende FIR filtre er der blevet udviklet en fleksibel filter arkitektur,
som er implementeret som RTL hardware model i VHDL. Digital filtrering kan
nedbrydes til en sum af multiplikationer og additioner. Eftersom maengden af
integrerede multipliers er begraenset pa FPGAer, sa er den forslaede arkitektur
baseret pa en parallel og sekvensiel del, hvilket muligger at udnytte multpliers
bedst muligt i forhold til den drivende klok frekvens. Denne arkitektur un-
derstgtter symmetriske FIR filtre med en ulig orden. Denne orden kan ga fra
7 og op til 575 i preedefinerede trin. En passende FPGA er ngdvendig for at
implementere filtre med en hgj orden.

Arkitekturen er blevet brugt til at implementere en handfuld single- og dual-
carrier systemer, baseret pa filtre med en orden pa 383, i en Spartan 3 FPGA.

For at teste systemet er arkitekturen implementeret med et sset brugerflader,
som ggr det muligt at modtage data fra en ADC og sende filtreret data til en pc
til videre data behandling. Gennem dette er filterarkitekturen blevet verificeret
og de implementerede testfiltre testet med success.

Preface

This thesis was prepared for the Department of Informatics and Mathematical
Modelling at the Technical University of Denmark in partial fulfilment of the
requirements for acquiring the Master of Science degree in engineering.

The thesis deals with additional digitalization of the receiver in a base station
used for wireless communication designed by Motorola Solutions. The task,
defined by Motorola Solutions, consists of applying digital signal processing
techniques on a field-programmable-gate array thereby replacing analog filtering
with digital filtering.

Lyngby, August 2012

Bjarne Petersen

Acknowledgements

I would like to thank my supervisor at the Technical University of Denmark,
Prof. Dr. Alberto Nannarelli, for having given me the opportunity to do a
project in coorporation with Motorola Solution. Furthermore, I would like to
thank him for his support and guidance during the project.

In addition, I would like to thank Motorola Solutions for having offered me
the project, and for having given me a workplace and equipment at their site
in Glostrup. A special thanks goes to Hans Erik Gram, deployed at Motorola
Solutions, for defining the project, providing the hardware, and for guiding me
throughout the entire project.

Moreover, I would like to thank the entire Tetra Basestation Hardware De-

partment at Motorola Solutions for making me feel welcome and always being
helpful.

Last but not least, I would like to thank everyone who has helped proof reading
this thesis.

Contents

[Resumé|
[Prefacel

|Acknowledgements|

[1__Introductionl

2

(1.1 Project Description|. 0.

1.2 Approach|
(1.3 Equipment| o

igital Filters|

2.1 Filter Types|. o
2.2 Filter Structuresl oL oo
2.3 Requirements| o
2.4 Filter Analysig] 0L
2.5 FIR Filters]
[2.6 Chapter Concluding Remarks|

Implementation|

[3.1 Creating an Environment|

[3.3 Implementation of Filters|
B.4 FPGA Resourcesl

iii

vii

— 0O W

13
16
19
20
22
26

X CONTENTS

3.5 Chapter Concluding Remarks| 49
51
4.1 ADCESMI. . . . oo 51
4.2 Filter Architecturel Lo 54
6_Results] 57
p.1 Single Carrier| L o 58
B2 DualCarrfer] 65
B3 FPGA Utilizationl. 69
................................ 71
6 Future Workl 73
7 Conclusionl 75
|IA Additional Tables And Figures| 77
B Source Codel 87
BIUCERIE . . oo oo oo e e e e e e 87
B2 Maimnvhdl . . . o oo 91
IB.3 myhlter2.vhd|o oo 105
................................ 112

IB.5 myfilter2.m| 118

CHAPTER 1

Introduction

Digital signal processing (DSP) is a primarily technology driven field which
started from around mid 1960s when digital computers and digital circuitry
became fast enough to process large amounts of data efficiently. Today DSP is
used for anything from speech recognition to seismology.

The still ongoing increase in field programmable gate arrays’ (FPGA) size and
performance have made them great hardware accelerators. Furthermore, they
are very cheap when only a small amount of chips are needed (compared to
IC production). These two features, combined with the fact that FPGAs are
reprogrammable, have made them very popular for rapid prototyping.

This project is about using an FPGA for digital signal processing, thereby im-
proving the receiver in a base station used for wireless communication.

1.1 Project Description

The job of a base station is to handle wireless communication. The term commu-
nication can be broken down to two parts, sending and receiving. This project
focuses the receiver part.

2 Introduction

The receiver has to filter the incoming signals (picked up by an antenna) down
to the desired parts. This filtering consists of a series of steps. During one
of these steps, a transition from the analog domain to the digital domain is
performed. The reason for a digital system is manifold, for one it makes it
possible to transmit not just audio but data as well. Furthermore this data can
be encrypted.

This project’s objective is to move the digital transition one step closer to the

antenna by replacing the analog channel-filters with digital filters. The design
proposed by Motorola Solution is shown in figure

antenna

. ‘Relevant components:

Figure 1.1: Receiver Chain

This project will only be concerned with the last few components of this chain
as depicted in figure

ADC abis FPGA) DSP

30.24 MHz

Figure 1.2: Relevant Components

The base station can communicate under TETRAEI and TEDSEI specifications.
The current base station design contains a set of analog filters used to suppress
everything but the carrier signal. Since these analog filters cannot be modified,

ITETRA: Terrestrial Trunked Radio. Two-way transceiver specification designed for gov-
ernment agencies, emergency services, transport services and military

2TEDS: Tetra enhanced data service. Supports wider channels, thereby increasing the
bandwidth and enabling data transmission

1.2 Approach 3

the position of the carrier signal has to be predetermined within the frequency
band. Digital filtering with tune-able filters would relax this requirement and
give more freedom for the placement of the carrier signal. Furthermore, ad-
ditional carrier signal types with different channel widths can be supported.
TEDS comes with four different classes (U25, U50, U100, and U150). The num-
ber indicates the bandwidth of the signal in kHz. So far only two of these are
supported by Motorola’s analog based filter design. Supporting all classes would
be too expensive when designed with analog components.

Summing up, digitalizing the filters gives the following advantages: Flexible re-
programmable filters and Support for more channels and channel types resulting
in a very flexible multi-carrier receiver.

1.1.1 Delimitation

This is a prototype development based on a proof of concept mentality. Only
the neighbouring components of the FPGA are of concern, these being the
analog-to-digital-converter (ADC) and the DSP. The interface to the ADC is
well defined while the interface to the DSP is not defined at all. Therefore, no
interface for the DSP will be designed on the FPGA. After incoming data has
been filtered on the FPGA, the next step would be I1Q demodulation. The IQ
demodulation is not part of this project. The coefficients defining the filters are
thought to be generated on the DSP and transmitted to the FPGA. The ADC
provided does not have the desired dynamic range wanted for a final product,
hence, the output of the filters cannot have the desired dynamic range. As
shown in figure an external clock is driving the ADC/FPGA. In this project
the clock will be generated on the FPGA board and driving the ADC.

1.2 Approach

The first step of this thesis was to study filters, both analog and digital.
By doing this, a general knowledge was achieved which would function as a
foundation through the entire project.

The next step was to do analysis on filters and find the right filter type for
this project based on predefined requirements. Since the available hardware
resources limit the filter size, different filter structures and algorithms were
analysed to reduce the required hardware resources. For this MATLAB was
used since it is very strong in creating and analysing filters. Time was spent
learning the program and its filterbuilder tool.

4 Introduction

The next step was to create an environment on the FPGA in which the
filter architecture could be implemented. First, a control unit was designed to
interface with the ADC, thereafter a control unit to interface with a PC through
an USB connection. At that point the environment was ready to be connected
to a basic test filter. In order to analyse the data from the filter the basic
environment needed to be extended with an SDRAM controller to store
data samples. The USB interface was extended as well in order to load the data
stored in the SDRAM to a pc and analyse them with MATLAB.

1.3 Equipment
This section presents a brief description of the equipment used in this project.

ADS1675REF Hardware Kit
This kit consists of two hardware boards, the ADS1675REF (ADC by TI)
and the XEM3010-1500P (FPGA by Opal Kelly). The FGPA board can
be mounted on the ADC board as shown in figure

i ‘“‘*l.""'

co [

5 B
..‘ i
2C31 y
m cm'g“
)
M g X
oTRA ﬁm
R23.3

Figure 1.3: ADS1675REF Hardware Kit

ADS1675REF
This board holds the ADS1675 chip, a 24-bit, AY analog-to-digital con-
verter that has the following key features:

1.3 Equipment 5

e AC Performance:
103dB of Dynamic Range at 4AMSPS
111dB of Dynamic Range at 125kSPS
-107dB THD

e DC Accuracy:
3ppm INL
4mV /°C Offset Drift
4ppm/°C Gain Drift

e Programmable Digital Filter with User-Selectable Path:
Low-Latency: Completely settles in 2.65ms
Wide-Bandwidth: 1.7MHz BW with flat passband

e Flexible Read-Only Serial Interface:
Standard CMOS
Serialized LVDS

e Fasy Conversion Control with START Pin
e Out-of-Range Detection
e Power: 575mW

A full description of the chip can be found here [3].

XEM3010-1500P
The XEM3010 board holds the FPGA chip and has the following key
features:

e Xilinx Spartan-3 FPGA
1.5 M gates - 30k logic cells
32 18r18-multipliers
32MB SDRAM

e Cypress PLL clock generator

e USB microcontroller

e 8 LEDS, 2 pushbuttons

e Two 80 pin expansion connectors

e FrontPanel support (see next section)

6 Introduction

Power Supplies
A set of controllable power supplies were used to supply the ADC and the
FPGA board.

Signal Generators
Signal generators were used (sine, TETRA) to generate input signals for
the ADC.

Digital Oscilloscopes
Digital Oscilloscopes were used for onboard sanity measurements.

PC
A computer was used to run the software presented in the next section.

1.4 Software Tools

ISE Project Navigator [Xilinx]
VERSION 13.4, O.87XD
Used for HDL development, synthesis, implementation and bit-file gener-
ation.

CoreGenerator [Xilinx]
VERSION 13.4, O.87XD
Used for generation of hardware components such as storage elements.

Modelsim [Altera]
VERSION 10.0, STARTER EDITION

Used for HDL simulations.

FrontPanel [Opal Kelly]
VERSION 4.0.8
Used to program the FPGA by loading bit-files generated by Xilinx ISE.
Also used to set the PLL clocks which, among others, drive the ADC. Last
but not least it is used to execute small programs that can communicate
with the FPGA through a USB connection.

1.5 Setup 7

MATLAB
VERSION R2010A
Used for filter analysis and creation, data analysis, and creating the graphs
used in this report.

ADCPro [Texas Instruments]
VERSION 1.2.2 BUILD 5
This tool enables data sampling with the ADS1675REF kit and has a few
analysis features such as FFT. Data samples are viewable as plots. This
tool has served as a reference when analysing data in MATLAB and for
verifying the hardware setup.

XVI32
VERSION 2.54
This hex editor was used to convert data, extracted from the FPGAs SDRAM
though a FrontPanel script, from HEX to ASCIL

Notepad++ (with HEX-Editor Plugin)
VERSION 6.1.2 (VERSION 0.9.5)
Used for quick-view of data extracted from the FPGA SDRAM and for
code editing.

Texmaker (with MiKTeX)
VERSION 3.3.3 (VERSION 2.9.4407)
Used to create this document.

Inkscape
VERSION 0.48
Used for manipulation of PDF images.

Visio 2010 [Microsoft]
Used to create most of the diagrams in this report.

1.5 Setup

This section describes how the ADC and the FPGA board were set up and
connected with power supplies and their settings.

8 Introduction

The XEM3010 and the ADS1675 board have a set of jumpers onboard which
must be set in correlation with the use of the board as stated in [4]. A silkscreen
drawing of the ADS1675 is shown in figure

s
o

(G

o

Texa:

=
exas Instruments
ADSIS7TREF Pev B
Ter T1 2010

000000000000000000000

g
[]
[goo

Figure 1.4: ADS1675REF Silkscreen Drawing

The pins and jumpers were supplied and set as stated in the following table.

Pin Applied Description
J5-1 +5V Supplies analog parts

Jb-2 GND
J4-1 +9V Differential amplifier supply
J4-2 GND
J4-3 GND
J4-4 -4V
J9-1 J2-1 Connected to J2
J9-2 J2-2
J2-1 +3.0V Supplies digital parts
J2-2 GND
P1-1 +5V XEM3010 supply
P1-2 GND
JP1 OFF Located on FPGA board
JP2 OFF
JP3 ON
JP4 OFF
J1 ON Located on FPGA board

J2 OFF Located on FPGA board

1.5 Setup 9

A differential input signal, generated by a signal generator, was applied at J1
and J3.

In figure[L.5]a block diagram of the ADC is shown. On the right side all its I/O
pins are shown, those will be explained at a later point.

o _ a z -
< g & "] v 5] a
o << x 5 £ S
x o O > > o z a
= 3 ADS1675 spwn
PLL
START
CLK
Dual Filter
Path CMOS-and DRDY, DRDY

LVDS- DOUT, DOUT
Compatible

Serial SCLK, SCLK

—>
(—
Interface cs

AINP Low-LatencyF Ite

Modulator

AINN o
Wide-BandwidthF Ite and —
! " DS

Control
SCLK_SEL
DRATE[2:0]
FPATH
LL_CONFIG
OTRD
OTRA

AGND
DGND

Figure 1.5: ADS1675REF Block Diagram

The DS modulator compares the input signal with the reference signal. Af-
terwards the signal goes through a filter. In this project the wide-bandwidth
filter and the fastest high-speed mode (4MSPS) is used. Finally the sample is
outputted as a 24bit signal, transmitted bit by bit (MSB first) at a clock rate
3 times the input clock. This value is of type 2’s complement and calculated as
follows:

Input Ideal output code
Vin 2 VREF TFFFFF)0
Vin = EEE 0000010
Vin = 0 00000070
Vin = ofEE FFFFFFeq
Vin < —Vrerp (%) 8000004,

In high-speed mode (used in this project) the 24th bit (LSB) is held low, hence,
only a 23 bit resolution is provided.

For initial test purposes the XEM3010 was connected to a PC through its USB

10 Introduction

port. The ADCPro software was installecﬂ on that machine and used to collect
samples. A signal generator generated a 500kHz 2VPP sine wave. A frequency
plot is shown in figure[I.6] The plot shows a peak close to 500kHz corresponding
to the frequency of the generated signal. At 1IMHz and 1.5MHz the first and
second harmonics are visible. This shows that the test setup is working.

=0
File E¥YM Test Taools Help
. oot [ty 8, ol o = +
ADS1675REF g Multichannel FFT

0

Comm Mode LvDS oy I DstaRate 4MSPS < I

o -

FPATH Wide Bandwidth < l

Low Latency Config Fast Made

|' About | Controls

Amplitude (dBc)

Wref

o s.0ov
| ! ! | 0 i 1 1 1 i
200000 400000 600000 300000 1E+6 1.2E+6 1.4E+6 1.6E+6 1 BE+6 2E+6
Frequency (Hz)
Bl :2lw|
Block Size 8192 Tl
Plot Al [Display Cnly CHL
I™ Continue Reading @ Data Limit

Fircaen, drernina
Harmonics :.);9— 2nd harmanic mag. lw
DC Leakage Bins 9]1— 3rd harmonic mag. | 0.00dBc
Fundamental Leakage Bins -+~ 9'3— 4th harmonic mag, lw
Harmonic Leakage Bins +i- 1.)'3— Sth harmonic mag. l_oﬁﬁﬁ

Collecting | 100%

‘ Display ‘ FFT Stats

Figure 1.6: ADCPro FFT on 2VPP 500kHz sine wave

Sanity measurements have shown a significant difference in the impedance of the
signal generator and the ADC resulting in a voltage reduced incoming signal.
This is of no concern for this project, since it has been verified that the voltage
across the input terminals corresponds to the voltage measured by the ADC.

The ADC samples can sample at a rate of up to 4MSPS (samples generated
at 4dMHz). This means, as given by the Nyquist sample theorem, that the
maximum frequency that can be captured is:

. 4MH
fS>QB<:>B<fE:TZ:2MHz

3Windows XP required

1.6 Thesis Structure 11

Every signal at this frequency or higher will drown due to aliasing and cannot be
reconstructed. This behaviour is depicted in the plot as well since the frequency
band goes from 0 to 2 MHz. The wide-bandwidth filter applied starts suppress-
ing at a frequency of 0.425 times the data rate which at 4MSPS corresponds to
1.7 MHz. Hence, the influence of high frequency signals is minimized.

1.6 Thesis Structure

The thesis is divided into chapters as follows:

Chapter 2 introduces digital filtering and performs filter analysis in order to find
the best suited filter type for this project.

Chapter 3 describes how an environment is created as a hardware model con-
sisting of interfaces and a filter architecture capable of implementing filters of
the desired filter type.

In chapter 4 the hardware model is tested and verified.

Chapter 5 presents a set of results obtained with the hardware model.

In chapter 6 future work is presented while chapter 7 concludes the thesis.

12

Introduction

CHAPTER 2

Digital Filters

Digital filtering is a type of signal processing and the task of a filter is to suppress
unwanted components (such as noise) while letting everything else pass. The
filters studied in this thesis are applied on time domain signals but do alter the
signals based on their frequency, which is the most common methocﬂ Hence,
the filter analysis presented here is based on the frequency spectrum.

2.1 Filter Types

There exists a big variety of digital filters, classified by many different aspects.
This chapter will provide are brief overview and outline which filter types are
relevant for this project.

The magnitude response (in terms of frequency) of a filter can basically be
broken down to four classes, categorised by which part of the frequency-band
is affected by the filter. They are called low-pass, high-pass, band-pass and
band-reject (or band-stop) filters. Figure shows examples of these four filter
classes.

IThere exists filters that do not act in the frequency domain (e.g. image processing) but
they are of no interest for this project

14

Digital Filters

A

passband

magnitude

o

Low-pass filter

stopband

-
I
T

magnitude

0 stopband

|
I
frequency 1

Band-pass filter

passband

stopband

\

|
I
frequency 1

>

High-pass filter

passband

@
°
2
S
@
@
£
0 stopband | o
>
frequency 1
A Band-reject filter
1
passband passband
o
°
2
c
oo
<3
£

o

stopband

\

-

frequency

Figure 2.1: Filter classes in terms of magnitude response (normalized plots)

Since this project is about receiving data transmitted by a carrier signal of a cer-
tain bandwidth (channel width) located around a certain center /base frequency
and suppressing everything else, the filters of interest are band-pass filters. Fig-
ure [2.2] shows such a channel with a filter around it and the resulting signal,
which is gained by multiplying the filter and the signal graph.

—filter

magnitude

—— signal
~N
[cemer |
[equeney |
|
Chanel
width

0 frequ

ency 1

magnitude

filtered
signal

frequency 1

Figure 2.2: Band-pass filter example

2.1 Filter Types 15

Digital filters are most commonly of the type linear time-invariant system (LTI
system). An LTI system can be characterized entirely by a single function called
the tmpulse response.

Such a filter acts on its input signals through linear convolution, denoted y = fx
x where f is the filter’s impulse response, x is the input signal, and y is the
convolved output. The formally definition of the linear convolution process is
as follows:

ylnl = aln]* fln] = Y alk]fln—k = Y flklzln - K] (2.1)
k

k

This definition is also called for the time-domain point of view. In the frequency
domain an LTT system is described by its transfer function, which for discrete-
time systems is the Z-transform of the impulse responsﬂ Convolution in the
time-domain corresponds to multiplication in the frequency-domain. This is
depicted in figure 2.3

LTI system

x(t) f(t)

time-domain

y(t) = f(t) *x(t)

wuojsuesy-z

LTI system

X(z) F(z) Y(z) = F(2)-X(2)

frequency-domain

Figure 2.3: LTT system

2For continues-time systems the Laplace transform is used which would be the case for
analog filters.

16 Digital Filters

The direct transfer to the Z-plane for discrete-time signals is defined as:

X(2) = Z{z[n]} = > aln]" (2.2)

where z is a complex variable.

LTT system filters can be divided into two categories: finite impulse response
(FIR) filters and infinite impulse response (IIR) filters. As the name implies, a
FIR filter consists of a finite number of sample values, reducing the convolution
sum (equation to a finite sum per output sample instant. An IIR filter,
however, requires that an infinite sum is performed.

The infinite response is produced through a feedback. Thus IIR filters are also
called recursive filters and FIR filters non-recursive. The following section about
structures will elaborate on this. More on this topic can be found here [9]. The
feedback plays a crucial role for the behavior of a filter. The filter analysis in
section [2.4will go deeper into this.

2.2 Filter Structures

Figure shows the direct form structure of an L order FIR filter. This struc-
ture corresponds to a graphical representation of the transfer function defined
as:

) = 3SR (23)

x[n]

0]

Figure 2.4: Direct form FIR filter [9]

2.2 Filter Structures 17

The structure consists of a delay pipeline (tapped delay), adders, and multipli-
ers. A delay in the signal is transformed into a multiplication by z~' in the
Z-transform. The operands for the multipliers are the delayed input values and
the coefficients defining the transfer function and, consequently, the filter. The
output of the filter, given by the finite convolution sum, is:

where f holds the coefficients.

Figure [2.5|shows the same filter with a different structure called the transposed-
form. This structure is achieved by taking the direct-form structure and 1)
exchanging the input and output 2) inverting the signal flow direction and 3)
substituting the adders with forks and vice versa. The transposed structure
shows benefits in the number of required shift registers.

yn]

Figure 2.5: Transposed form FIR filter [9]

A very interesting structure is shown in figure This structure is achieved by
designing the impulse response in such a way that its coefficients are mirrored
around the center. By using this symmetry the number of multiplications can
be halved by folding the delay pipe line. As will be shown later, the critical
resource on the FPGA is the amount of multipliers. The symmetric structure
is very interesting because it reduces the amount of required multipliers.

18 Digital Filters

yIn]

Figure 2.6: Symmetric form FIR filter [9]

As mentioned, the IIR filters do have a feedback loop and do, consequently,
consist of a recursive part and a non-recursive part compared to FIR filters
which only have the latter. This is depicted in figure The transfer function
for such a filter consists of two summations, one for the recursive part and one
for the non-recursive part. IIR filters can also be of a transposed form as shown
for the FIR filters.

x[n] z

Recursive part

b[0] b{1]

yn]

Nonrecursive part

Figure 2.7: TIR [9)

The recursive part in the figure visualizes why the IIR filters have an infinite
impulse response compared to FIR filters. The FIR filter’s output will even-
tually, depending on its length (order), stabilize given a single input while the
IIR’s output will not due to the recursive part.

The structures presented here are only a few of many.

2.3 Requirements 19

2.3 Requirements

Further analysis is required to determine whether a filter of type IIR or FIR
is the correct choice for this project. In order to continue the filter analysis a
set of requirements is presented which will guide the filter design in the right
direction.

There are five different signal types to be handled with the following specifica-
tions:

1. TETRA - 25 kHz bandwidth

2. TEDS-U25 - 25 kHz bandwidth
3. TEDS-U50 - 50 kHz bandwidth
4. TEDS-U100 - 100 kHz bandwidth
5. TEDS-U150 - 150 kHz bandwidth

Those channels could be placed anyway within the frequency band. Since it is
a multi-carrier system, two or more of those channels could actually be present
with a proper distance between the two channels.

In order to design suitable filters additional requirements are necessary which
define the relations between the stop-band and the pass-band. These require-
ments are described by the following blocker criteria:

1. 4/- 500kHz and more, blocker level = -105 dBc
2. +/- 200kHz, blocker level = -100 dBc

3. +/- 100kHz, blocker level = -95 dBe

4. +/- 50kHz, blocker level = -90 dBc

The requirements shall be read as follows: +/- [distance in terms of frequency
from the channels center frequency], [required suppression at that frequency
compared to a carrier signal]. These blocker requirements are only true for the
TETRA specification. The requirements for the TEDS specifications are less
strict. Hence, a filter design able to hold filters that obey the strict TETRA
requirements will automatically be able to hold filters with less strict require-
ments.

20 Digital Filters

Furthermore the following requirements have to be met:

Passband ripple within 1 dB

Good linearity

Stability

Filter must be moveable in the frequency band at a resolution of 250 Hz

Last but not least, the filter must be implementable on an FPGA.

2.4 Filter Analysis

In this chapter the difference between the IIR and FIR filter class in respect of
this project will be analysed.

To begin with, the blocker requirements’ influence will be analysed. Figure |2.8
shows a 25 kHz wide TETRA signal centered at 1 MHz (green) surrounded by
matched filters (blue). The red crosses mark the blocker requirements.

The two plots show an IIR and a FIR sample filter, respectively. These mag-
nitude plots point out one of the main differences between the two filter types.
The IIR filters attenuation keeps decreasing and the slope decays more rapidly
than the blocker requirements, hence, the closest blocker with respect to the
signal determines the requirements for the IIR filter.

The FIR filters attenuation, however, reaches a limitﬂ This limit corresponds
to the strongest blocker, which is the blocker furthest away from the channel.
Due to the nature of the FIR filter this requirement must already have been
met at the closest blocker location.

Using the blocker requirements, the following filter specific requirements can be
determined:

1. For an IIR filter the stopband attenuation has to be -90dB at +/- 50kHz
away from the signal center

2. For a FIR filter the stopband attenuation has to be -105dB at +/- 50kHz
away from the signal center

3This is not the case for all FIR algorithms but will serve as a good guideline

2.4 Filter Analysis 21

0
filter
=50 [data signal [|
-~ X blockers
% -100- X X X X X —
o
S -150- .
5
¢§0 -200- B
=250 .
_30C Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency (Hz) x 10°
(a) IIR filter
0 .
filter
[data signal
=50 o
o X blockers
°
[0}
B -10(X X x v 4
=
[}
©
= 15
_20 Il Il Il l Il Il Il Il I |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz) 6
(b) FIR filter

Figure 2.8: The two different filter types meeting the blocker requirements

By looking at the order of the two filters used to generated these example plots
another difference comes clear. The IIR filter is of an order around 10 while
the FIR filter’s order is above 300. The order size has a direct influence on the
hardware required for an implementation. Based on this, the IIR filter seems to
be the right choice.

However, the magnitude response is only one side of a filter, its counterpart is
the phase response. The IIR and FIR filter show different qualities here as well.
One of the requirements has defined the phase to have good linearity within
the passband. Non-linearity in the passband can distort the signal and make
it impossible to reconstruct the transmitted data. IIR filters do not guaranty
linearity. FIR filters on the other side can very easily guarantee linearity. This
linearity can be achieved by making the filter symmetric or anti-symmetric,
which is no drawback at all. This means that a symmetric filter structure can
be used (as presented in without further consideration, which halves the
amount of multiplications required.

22 Digital Filters

Non-linearity can be corrected in an IIR filter by applying correction functions,
but those are heavy and require a lot of operations. Furthermore, IIR filters
have some negative sides when quantizing the filter coefficients. This quantiza-
tion will introduce oscillation effects that cannot be avoided, furthermore the
quantization has negative effects on the phase. The filter might even become
unstable. FIR filters maintain good linearity even if their coeflicients becomes
quantized. Due to their oscillation effects and stability issues the IIR filter are
not an option for this project. So, even though the FIR filter requires a much
larger filter order to meet the magnitude requirements it has advantages in all
other aspects. Due to these reasons the filter type used for this project will be
FIR filters. More on this topic can be found in [I0], [7], [8], and [5].

The difference in the channel width of the five TETRA/TEDS specifications
plays a minor role. The TETRA has the narrowest channel (25kHZ) while the
TEDS go up to 150kHz. The order of a filter grows inversely proportional to
the passband width. Hence, in order to meet the TEDS requirements a filter of
a lower or equal order is required than for the TETRA. Therefore, the analysis
will from hear on be based on the TETRA specifications. Furthermore, the
position of the channel in the frequency band does not influence the filter order.

2.5 FIR Filters

In this section different FIR bandpass filter algorithms will be analysed. This
analysis will be based on MATLAB's filter tool filterbuilder and is, consequently,
restricted to the filter types supported by it. The goal is to find a suited filter
with sufficient stop-band attenuation that can be implemented on the FPGA.
The filter order is of great concern because it is restricted to the amount of
multiplications and additions the FPGA can perform each cycle.

MATLAB’s filterbuilder supports four different filter types:

1. Single-rate
2. Decimation
3. Interpolation

4. Sample-rate converter

Since the incoming sample rate is defined to be the same as the outgoing the
type of interest is single-rate.

2.5 FIR Filters 23

Furthermore a set of different algorithms for FIR filters are supported. The
algorithms consists of a method and a structure. The structures being:

1. Direct form FIR
2. Direct form FIR transposed
3. Direct form symmetric FIR

4. Overlap-add FIR

As mentioned multiplication is a critical aspect in the filter implementation,
hence, the number of multiplication should be as small as possible. This would
be achieved by using the direct-form symmetric FIR structure which halves
the number of needed multipliers, as established earlier. However, the filter
structure does not influence the filter order so for this analysis the chosen filter
structure does not matter.

Last but not least the design methods:

1. Equiripple
2. FIR least squares

3. Kaiser Window

The following is an analysis of these three methods. The analysis will determine
which filter method suits the project best in terms of usage of hardware resources
which is directly related to the filter order. Therefore, the parameter of concern
is the filter order only.

Figure[2.9)shows a FIR filter generated with the Equiripple algorithm that meets
all requirements. Figure [2.10]shows a close up of the filter in the passband and
highlights the linearity of the phase. This behavior is consistent for all all FIR
filters. MATLAB has generated this filter with the minimum order necessary to
meet all requirements which is 417.

24 Digital Filters

Magnitude Response (dB)
T T T

Magnitude (dB)

Frannancy (kH7\

(a) Magnitude response and requirements

Magnitude (dB) and Phase Responses
T T T

Filter #1: Magnitude 4.459
— Filter #1: Phase
-1.1722

Magnitude (dB)
|
&
3
|
>
@
3
®
Phase (radians)

|
A |
S ®
s 3
|

N

a

»

r

>

A 0 0 R

1 12 14 16 18

Erannancy (kH7\

(b) Magnitude and phase response

Magnitude Response (dB)
T

Magnitude (dB)

1 1
0.98 0.99 1 1.01 1.02 1.03
Frannanmy (kH7\

(c) Passband - ripple within 1 dB

Figure 2.9: Equiripple FIR filter design, minimum order = 417

Figure shows a minimum order filter designed with the Kaiser window
method. The close-up of the passband reveals an extremely smooth band with
no visible oscillation, contrary to the Equiripple. But this behaviour comes with
a price because the minimum order for this filter is 724. It can be seen that the
attenuation of the stopband slowly increases (as it does for the IIR filter). By
taking advantage of this the filter order can be reduced to 691 without violating
the requirements. The yield is not that high since the order has decreased by
33 which corresponds to 4.5%. This trick can also be applied on the Equiripple

2.5 FIR Filt

ers 25

Magnitude (dB) and Phase Responses
T T T

20}

Magnitude (dB)

=100

—40f

-60}-

-80}

—115.7213
—10.0901
Ha4s9 2
8
©
@
H-11722 =
@
@
@
--6.8034 &
— Filter #1: Magnitude -12.4346
mm[\m — Filter #1: Phase
! k . -18.0658

0.98
Fran

1

naney (kH7\

1.02

Figure 2.10: FIR filter linearity

algorithm but since the transition from the passband to the stopband is quite
sharp only a reduction of few orders can be achieved.

Magnitude Response (dB)
T T T

. AN AR IR i
(a) Magnitude res;::sﬂ;m;:(; requirements

Franuanny (kH7\

(b) Passband - no visible ripples

Figure 2.11: Kaiser-Window FIR filter design, minimum order = 724

The last method is the least-square method as depicted in figure 2.12] A min-

imum order

options is not supported. The plots show a figure of order 600

which is in between the order number for the Equiripple and Kaiser-Window.
All requirements are met. By looking at the passband it comes clear that it is

26 Digital Filters

just as smooth as for the Kaiser-Windows, but comes for a lower price in terms
of order number.

Magnitude Response (dB)
T T T

-60f -

-80f -

Magnitude (dB)

=100 m

MWMWWWWWWWWW%WWW
14 16

0.8 1 1.2
Frequency (kHz)

-120

-140
0 0.2 0.4

18

(a) Magnitude response and requirements

Magnitude Response (dB)
T T T T T T T

Magnitude (dB)
=)
T

| | | | | | | | |
0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
Frequency (kHz)

(b) Passband - no visible ripples

Figure 2.12: Least-squares FIR filter design, order = 600

Summing up, the best filter method, in terms of lowest order, that meets the
requirements is the Equiripple. The least-squares method offers a much better
pass band behaviour, but for a high price. The Kaiser-Window is too costly.
The figures in appendix[AJH] A7 and [A710] show the settings and

information of the filters used in this chapter.

2.6 Chapter Concluding Remarks

In this chapter an overview of the different digital filter types was given. Based
on the requirements (as stated in|2.3)) the most suitable filter type for this project
is the band-pass FIR filter. A variety of different algorithms (as presented in[2.5))

2.6 Chapter Concluding Remarks 27

for designing FIR filter exists. Since the analysis was restricted to MATLABs
filterbuilder only the algorithms supported by it have been analysed. It was
concluded that the best algorithm for this project is the Equiripple with a
symmetric structure. A suitable filter architecture will have to support filters of
an order up to 417 which is necessary to meet the TETRA requirements. Since
the requirements for the TEDS are not as strict those filter’s minimum order
will, consequently, be lower.

28

Digital Filters

CHAPTER 3

Implementation

The first part of the implementation is to create an environment on the FPGA
that is capable of communicating with the ADC and receive its samples. Fur-
thermore, it should be possible to get hold of these samples, which requires
another interface. The XEM3010 board comes with a USB port and predefined
libraries to implement it with an hardware description language (HDL). By con-
necting the board to a PC via the USB port communication can be achieved
by writing a program in XML and executing it with FrontPanel. Other pro-
gramming languages are supported as well, such as C and JAVA, but since this
interface is a small part of the environment a simple XML program will suffice.
The chosen HDL is VHDL and implementation is done on the register-transfer
level (RTL).

3.1 Creating an Environment

This chapter describes the HDL-implementation of an interface on the FPGA
able to communicate with the ADC and a PC connected with an USB cable, in
that order. The final VHDL source code can be found in appendix [B-2}

30

Implementation

3.1.1 ADC Interface

The layout of the ADC chip (ADS1675), shown in figure|3.1b] reveals the chip’s
pins. Of all the pins only some are relevant for the interface (pin 28 to 46 and

55), a schematic of these pins is shown in figure

+5VD

c7o
0.1uF

Vee

R30 33

RIBA N33

START
ICS

(a) Relevant pins

Av0D
AGND
AGND

AN

ANP
AGND
AvoD
8IS
AGND
AGND
AvoD

AVDD

<
s
]

DGND.
DGND.
DGND

EFN
1

o0
o
D

[o s [e]

[Tl ool eI

[=1=1

I

1

ADS1675

3 3

I 2 I [
22298 =238829°¢23§

&
8

(b) ADS1675 chip overview

[

ov
sl s
LL_CONFI

ovop
oo
oROY
oROY
oout
oour
scik

scrk

orRA
otRD

5]

s
START
DRATE(0)
DRATE(1)
DRATE(2)
FPATH

The pins’ specific purpose and function will be explained later in this chapter,
for now it is enough to know that we have a set of control pins, a set of output

pins and a clock driving the chip.

The first part of the interface is to assign the necessary pins in a UCF file. In
order to create this file, it is necessary to know how the pins of the ADC are
connected to the FPGA. As mentioned, the FPGA is part of the XEM3010
board which is mounted on the ADC board. They are connected through two
80-pin connectors. One of them serves as a passthrough and enables connection

3.1 Creating an Environment 31

of other devices. The other connector enables connection between the FPGA
and the ADC chip. A schematic of how the pins linked to the connector can be
found in figure in appendix [Al The pin enumeration of the connector (J6)
corresponds to the pin enumeration of the FPGA chip.

In the UCF file physical pins have to be assigned by using their symbolic pin
names, figure[A.3]in appendix[A]shows table used to assign the pins. For correct
instantiation of the pins, their function and behavior must be known. Table
shows the relevant pins together with a brief description. The resulting UCF-file
defining the pin assignments is attached in appendix

No. Name Type Description Setting
28 PDWN CMOS Power down mode Always low
29 CLK SEL CMOS SCLK generation Set to '0’ (internal
generation)
30 LVDS CMOS Selects CMOS or Set to’l’ (LVDS)
LVDS behavior
32 LL CFG CMOS Low latency filter be- Set to 0’
haviour (not used)
33 FPATH CMOS Select wide bandwith / Set to ’0’ (WB)
low latency
34,35,36 DR2, DR1, CMOS Select data rate Set to 71017 (fast
DRO rate)
37 START CMOS start sampling set to resel (con-
tinuous sampling)
38 /CS CMOS Chip select set to ’0’ (normal
mode)
41,42 /SCLK, LVDS DOUT clock rate (3 connected to
SCLK times the FPGA clock) LVDS buffer
43,44 /DOUT, LVDS Data bit connected to
DouUT LVDS buffer
45,46 /DRDY, LVDS Start of new data sam- connected to
DRDY ple transmission LVDS buffer
55 FPGA_CLK CMOS chip driving clock 30 MHz

Table 3.1: Pin description

The control signals of the ADC define the mode of the chip. For this project
the fastest high-speed mode (DRATE = 101) with the wide-bandwidth filter is
used (see section . Since these control pins are directly connected to the
FPGA they just need to be assigned in the VHDL implementation. The next
step is to receive data from the ADC. For this, six pins are set aside. Since the
mode is set to high-speed these six pins work as three differential LVDS pins. A

32 Implementation

LVDS buffer has been implemented and outputs the signals: DOUT - one bit of
data, SCLK - the clock at which the data bit is updated, DRDY - indicates the
beginning of a new data sample. A data sample consists of 24 bits, hence, the
DRDY signal will go high every 24th clock cycle when the ADC is active. The
datasheet in [3] states that the very first sample after a reset should be ignored
since it might be invalid. To satisfy this and to control the collection of the data
samples a state machine has been implemented as shown in figure [3.2

data_ready = ‘0’
counter =23

data_ready = ‘0
counter =23

AQy¥a

data_ready <= ‘1"
counter <= 23

data_ready <= ‘0’
DRDY counter <= counter -1
data(counter) <= DOUT

Figure 3.2: ADC sample receiving FSM

The following is a description of the functionality of the FSM: A system reset
brings the FSM in the init state. Here it remains until a ready signal from the
ADC is received (DRDY = ’1’). When this happens state skip is entered in
order to ignore the first sample (as mentioned above). When the ready signal
goes low again (according to specifications it remains high for 2-4 clock cycles)
the machine enters the idle state and is now ready to receive data as soon as
DRDY goes high again by entering the sample state. The ADC sends the 24bit
data sample bit by bit, a 24bit wide register is ready to receive them. For this
purpose a counter counting from 23 and down is used which assigns the current
data bit to the correct place in the 24 bit data register (this register is only

3.1 Creating an Environment 33

enabled in the sample state). When 23 clock cycles have passed and 23 bits
have been received the FSM enters the data-state and sets a ready signal high,
indicating that a new data sample has been received, furthermore the sample
is written to a register allowing the sample to be stable for the next 24 cycles.
At this point the DRDY signal should go high again, and a new transmission
should start (the machine would then go back to the sample state). If, for any
reason, this should not be the case, the FSM goes to the init state instead,
waiting for the ADC to send samples again. Recall, that the ADC is operating
in high-speed mode. Hence, the LSB is not generated by the ADC and can be
ignored. For this reason the data state is entered when the counter becomes 1
and not 0.

This state machine completes the ADC interface.

3.1.2 USB Interface

The next step is to implement a USB interface which enables the FPGA to com-
municate with a PC. Opal Kelly has mounted a USB connector on the XEM3010
board. For utilization of the USB port a set of libraries and components are
available, that are ready for implementation. Opal Kelly calls it for the okHost
interface as described in [6]. At the PC side Opal Kelly has provided the tool
FrontPanel which can execute programs that can communicate with the oKhost
module on the FPGA.

Figure [3.3| shows the overall structure. The left side holds the FrontPanel Soft-
ware which has executed an example program written in XML. On the right side
is the FPGA which contains the host interface elements and a user specific de-
sign. At this point the user specific design is the ADC interface as documented
in the previous section. This user design is now being extended with the okHost
elements to create the USB interface.

The okHost interface supports bi-directional communication enabling it to re-
ceive and send signals or data to and from the FPGA. The okHost component
is the main component which can be connected to different kinds of endpoints.
The okWireOr component is used to control the communication between the
different endpoints and the okHost. Five different kind of endpoints are sup-
ported. The okPipes are used to send a series of data. They are perfect for
unloading storage components on the FPGA to the PC or to fill them. There
are two pipe components, one for sending and one for receiving. The okWires
are used to continuously send or receive the current value of a signal (vector of
16 bits). The last type is the TriggerIn. It can be used to send up to 16 single-bit
trigger signals which can be synced to any local clock. The other components

34 Implementation

FrontPanel Software on PC FPGA
N\

FrontPanel Example @ e
USB Cable | uController

~

Host Interface

User Design

Endpoint (Wire Out) —
Endpoint (Wir —
XML: dpoint (Wire Out)
<object class="pushbutton">
<label>Start</label> Endpoint (Wire In)
<size>80,20</size> N
<endpoint>0x08</endpoint> ' Endpoint (...)

<position>10,10</position>
<bit>3</bit>
</object> j

Verilog: (or VHDL) /

okWireIn startEP(...,
.ep_addr (8’h08), .ep_data(buttonwire));

Figure 3.3: USB interface overview [0]

are driven by the USB clock which is 48MHz. An overview of the components
is shown in figure

| okHost 71 okWireln

(
¢ okWireOR

okTriggerin

okWireOut

okPipeln

I

okPipeOut

|

Figure 3.4: okHost components [6]

The first part of this interface is to send the value of a signal from the FPGA to
the PC. This signal could be the register holding the samples received from the
ADC. Since this sample is 24 bits wide, two okWireOut blocks are necessary
(each block can only submit 16 bit wide signals). Furthermore, an okHost and
an okWireOr block is necessary. This interface is part of the main VHDL file
which can be found in appendix [B:2] To receive the data a XML program has
been written which can show the signal as a hex-value and as a binary value as
shown in figure At a later point the interface was extended with triggers
and pipes, see section [3.2} The final XML code can be found in appendix [B-4]

3.1 Creating an Environment 35

[FFFS0E|

SRMe G000 G000 SUSD SEEe 008

Figure 3.5: FrontPanel wireout example

3.1.3 Setting the Clocks

The XEM3010 comes with a PLL which is capable of generating five different
clocks. These clocks can be set with the FrontPanel software. Figure [3.6] shows
an overview of the clocks. CLKA is set 100 MHz and used to drive the SDRAM
(see section [3.2). CLKD is connected to the ADC and set to be 30 MHz. The
projects description defined the clock to be 30.24 MHz but the PLL can not
generate such precise clock frequencies. Even though the dividers actually do
support this frequency, measurements have shown that the resulting frequency
is not the desired one when using large dividers, hence, 30 MHz will be used.
The timing constraints created for the clock nets are based on the desired clock
frequency (30.24 MHz).

The ADC generates an output clock, SCLK, which is 3 times its driving clock
(CLKD). This clock is used to drive the ADC FSM. Last but not least there is
the USB clock accessable through the okHost. All components interacting with
the USB controller are driven by this clock.

PLL Pin Clock Name [Connection
CLKA SYS_CLK1 SDRAM

CLKB SYS_CLK2 Not Connected
CLKC SYS_CLK3 Not Connected
CLKD SYS_CLK4 ADC

CLKE SYS_CLK5 Not Connected
XBUF N/A Not Connected

Figure 3.6: XEM3010 PLL clocks [2]

3.1.4 Peripherals

The XEM3010 has 2 buttons and 8 LEDs onboard ready for use. These have
been used heavily for debugging. Figure [A]] in appendix [A] shows a table
describing their symbolic pin locations. Holding the two buttons at the same
time will activated the reset signal, while holding the buttons individually has
been used for transmitting the current value of a register. The LEDs have

36 Implementation

been used to show the clocks, which makes it easy to verify whether the board
is working. Furthermore, the LEDs have been used to show different system
statuses.

3.2 SDRAM

In order to verify that the implementation on the FPGA board works properly,
sampled data has to be analysed. Since the system receives data in real time
and the data cannot be analyzed in real time it has to be stored. This enables
performing multiple analysis on the same data set. The board comes with
32MByte of SDRAM and the idea is to synthesize the SDRAM block and use
it to store processed data. When enough samples are collected the contents of
the memory will be read to a PC through the FrontPanel software. From here
the data can be analysed with various tools, in this case MATLAB.

3.2.1 Implementing the Memory

In order to use the memory block a controller is necessary, this controller is
not trivial to implement. Xilinx’s CoreGenerator is able to generate memory
controllers, but unfortunately it does not support SDRAM. The FrontPanel
software comes with a few sample projects and one of thenﬂ actually implements
the SDRAM, hence a controller. As it turns out, this project is designed with
Verilog. Only the part containing the controller is of interest which needs to be
extracted. Due to the structure of this project the easiest way of doing it is by
extracting the relevant code of the top module and translating it to VHDL. The
components used by the top-module written in Verilog can be used as they are.

The memory controller uses page-writes of 512x16 bits blocks. A FIFO is applied
on the read and on the write part of the memory block. The controller is able to
switch between read and write mode. Reading and writing at the same time is
not supported. The SDRAM system is shown in figure The top component
of the SDRAM controller consists of the FIFO FAULT block, the FIFOs and
a minor part of the SDRAM controller itself. The minor part consists of a
state machine controlling the data flow between the controller and the FIFOs
and some signal synchronisations. These parts have been rewritten in VHDL
in order to integrate it in this project. Two changes have been made as well.
The incoming data signal (DIN) of the FIFO on the write side (input) of the
SDRAM has been changed from 16 bits to 64 bit. The second change is applied

IThe project is named RAMteser

3.2 SDRAM 37

on the data pointer of the SDRAM. Instead of using a single pointer it now has
two, one for reading and one for writing, which makes it more dynamic. The
reason for the 64 bit wide input signal is the following: The output signal of
the filter will be over 40 bit wide, depending on the length of the filter (this will
come clear in section. A 48 bit wide signal would have been sufficient but
since the CoreGenerator does not support 48/16 bit FIFOs a 64/16 bit FIFO
has been chosen instead. The FIFOs size has not changed.

SDRAM_RD_EN SDRAM_WR_EN

SDRAM CONTROLLER

— 3 0UT[15:0}+ [15:0] E—
DIN[15:0] DOUT[15:0]

SDRAM
>
WR_CLK RD_DATA_COUNT[10:0] 32 MB WR_DATA_COUNT([10:0] RD_CLK

WR_EN FIFO IN - - FIFO OUT RD_EN
(@x512x16) (ax512x16)

[€——RD_CLl CL—
X |_ _] X

f—EMmPTY- EMPTY—{
&—SDRAM_CLK:
F—FuLL uLL—

FIFO
FAULTS

FIFO_IN_FULL FIFO_OUT_FULL

FIFO_IN_EMPTY FIFO_OUT_EMPTY

Figure 3.7: Memory configuration

Each FIFO can contain 4 blocks, which is sufficient since the SDRAM_CLK (set
to 100 MHz) is much faster than the other clocks applied to the FIFOs. The
output FIFO interacts with the USB communication unit (okHost) and runs at
48 MHz. The INPUT FIFO stores sampled data or data from the filter. These
a produced at a clock rate of 30M Hz x 3/24 = 3.75M Hz. Since the width of
the input vector has been widened to four times its original size, the bandwidth
is four times as much, resulting in a relative frequency of 15 MHz. This is the
rate at which data is send to the FIFO, the actual clock to which it is connected
is3x30MHz=90MHz.

SDRAM uses refresh cycles to keep its contents stored. These refresh cycles
reduce the effective bandwidth of the SDRAM by a negligible factor, hence
over/underrun of the FIFOs will not be a problem.

38 Implementation

The controller is supposed to read one block of data of the input FIFO as soon
as it contains at least one block of data, and write one block of data if the output
FIFO has room for at least on more block of data. If, for any reason, this rule
is not obeyed the FIFO FAULT block sets a corresponding alarm register high
until next reset. There are four of these registers:

1. FIFO_IN_FULL goes and stays high if WR_EN of the input FIFO is trig-
gered even though the FIFO is full.

2. FIFO_IN_EMPTY goes and stays high if RD_EN of the input FIFO is
triggered even though the FIFO is empty.

3. FIFO_OUT_FULL goes and stays high if WR_EN of the output FIFO is
triggered even though the FIFO is full.

4. FIFO_OUT_EMPTY goes and stays high if RD_EN of the output FIFO is
triggered even though the FIFO is empty.

For debugging purposes these four values have been connected to a LED on the
board.

The use of the memory block will be as follows:

1. Set the controller to write mode and begin to sample

2. When a sample is received from the ADC write it to the input FIFdﬂ
3. If the FIFO contains at least one blockEI write it to the Memory.

4. When enough samples are taken change the controller to read mode.

5. The controller reads data from the memory and writes a block to the
output FIFO when it has room for at least one more block.

6. A FrontPanel script reads the data at the output FIFO through the USB
interface and stores it in a file on the PC.

A counter is used to keep track of the amount of samples written to the SDRAM.
When a predefined number is reached it will stop writing data. In the final design
this number has been set to a value corresponding to 32 MB of data contents
in the SDRAM. When reading data with the FrontPanel 128 kB data is read.

2The input FIFO is the FIFO containing the data that will be written to the memory
3512*16bits

3.2 SDRAM 39

This number can be changed to any desired value in the source code. Figure
[3:8 shows the final design of the graphical USB interface script.

‘WireQut Panel @

O07EOQA

HHEE $000 $I00 OO0 $90E D80S

Capture Data

Lo | [mwo

Figure 3.8: Graphical interface designed with FrontPanel

The last two digits of the hex value correspond to the state of the memory.
In state [A] the memory is in write mode and in state [B] it is in read mode.
The first four digits correspond to the value of the address write-pointer. In
this specific case 7Fpe, pages haven been written to the memory. By pressing
the button in the lower right corner labelled ”[B] READ” the controller will
switch to read mode. The hex value will now show the write-pointer address.
At this point it is possible read data from the memory by pressing the ” Capture
Data” button. The write pointer will increase accordingly. Furthermore a file
is created containing the memory dump.

3.2.2 Timing Constraints

The timing adjustmens between the SDRAM and the rest of the sample project
(from which the controller was extracted) consist of a clock buffer applied on the
SDRAM clock and a timing constraint specified in the UCF file. When applying
the SDRAM controller to this project the data received from the SDRAM block
became invalid. After some testing this could be lead back to timing issues. By
defining the set and hold times specified by the memory block vendor [I] along
with I/O optimizations valid timings were achieved. Xilinx’s Timing Constraints
User Guide [II] was used as a reference for this. A lot of tests and time was
necessary to achieve this. It should be noted than when the clocks used in this
project get replaced by others, valid timing can not be guaranteed.

40 Implementation

3.2.3 The Memory Dump

As mentioned, the FrontPanel script is able to create a dump file of the memory’s
contents. Such a file consists of raw unformatted data. To access the data two
different tools were used. Notepad++ with a hex-plugin, used to get quick
access to the data, shows the binary data as hex-values. As it turns out it is
not possible to save the data as an ASCII formatted text file. For this purpose
the tool XVI comes in play. After opening the file it is possible to export the
data into an ASCII formatted file by using the print function. Unfortunately,
XVI interprets the hex data in a different way than Notepad++ (the correct
way), the order of the data is mixed up. Since the exported ASCII file is going
to be used in MATLAB for further analysis, the data can be brought in the
right order by MATLAB. In figure and the tools’ data representation
is shown.

File Edt Search View VEVnm:thng Language Seftings Macro Run Plugins Window 2 X
= e @ D (2= BEF(51E2 00D GEEHS

B example I

Add 0 2 4 6 8 a © e Dump o

000al0 0767 0000 0768 0000 0760% 0000 0OVea 0000 .g
000a20 076b[0000 076c[0000 07640000 076e|0000 .k..
000a30 O7ef 0000 0770 0000 0771 Q000 0772 0000 .o...

s

w

{

000a40 0773 0000 0774 0000 0775 0000 0776 0000
000a50 0777 0000 0778 0000 0779 0000 0O77a 0000
000a60 077k 0000 077c 0000 077d 0000 077e 0000 .{..
000a70 O7F7f 0000 0780 0000 0781 0000 0V82z 0000&€.......
000a80 0783 0000 0784 0000 0785 0000 0786 0000 .f.......

000a80 0787 0000 0788 0000 078% 0000 0OV8a 0000 .#...7..)
000aad 078k 0000 078c 0000 078d 0000 078e 0000 .<...E.......

M=o oB

Ko >

+
3
i
L3 T

000ak0 O78f 0000 0790 0000 0791 0000 0782 0000 AP
000ac0 0793 0000 0794 0000 0795 0000 0796 0000 .™..."...+...—.. ~
Hex Edit View nb char: 33555000 Ln:174 Col:15 Sel:0 Hex Li NS

Figure 3.9: Memory dump shown in Notepad++ with hex-plugin

F 5
KVI32 - example = | B
File Edit Search Address Bookmarks Tools XVscript Help
i . &+
DSEX & BEEIIGE § N
48 07 00|00 &8 07|00 00 &%/ 07 00|00 62 07 00|00 &B . h* ile J|® k|~
07 |[DO[00[&C[07][00700]6D[07][00[00[6E[07F] 00|00|&F 07| |* 1(* m|* nf® of*
00|00/ 70|07 /00 /00|71 07 00 /0072|0700 00(/72/07 00 ol* ql* x(* ElL
00|74|07(00|00(75(07|00|00|7&|07(00|00|77(07|00|00 G(* ul* | W
78|07/00|00|7% 07|00 /00 7A|07|00|00|7B|07(00|00|7C||x* ve = * i |
07|00|00(7D|07|00(00|7E|07|00|00(7F(07|00(00(80|07||* H* =0 0| £
00/00/81|07 /00 00|82 07 0000 83|07/00 0084 07 00 . . F|® =
00|85|07(00|00(B8&(07|00(00|87|07(00|00|88(07|00|00 & T EAh ©
89 07 00|00 8% 07|00 00 2B 07 00|/00|/8C 070000 BD | . L E*
07,00 00|82/ 07 00|00 8F 07/00/00/ 5007|0000 31 a7/ Ze . . ‘-j
Adr, hex: A19 Char dec: 103 |Overwrite
h.

Figure 3.10: Memory dump shown in XVI32

The data consists of a 32 bit wide counter value.
values are marked. The same three values are marked in the other picture as
well, but the order of the numbers is messed up. Each values consists of 8 hex
numbers X = x1Tox324T5x6x7rg. In XVI32 the order has become the following
T3T4T1T2T7T8T5Te. Lhis can be seen in the next figure [3.11] as well. Here a
piece of the exported ASCII file is shown. This file will be the one loaded into
MATLAB and after correcting the order of the digits the data can be analyzed.

File: example
output by xXvI3Z2

offset hex. 00 01 02
0018009F0: 5D 07 00
001800A00: 61 07 00
001800A10: &5 07 00
001800A20: 69 07 00

04
5E
62
66
BA

D01800A30: 6D 07][00

3

001800A40: 7 7 00
001800A50: 7 7 00
001800A60: 7 7 00
001800A70: 7D 07 00
001800A80: 81 07 00
001800A90: 85 07 00

72
76
TA
=
82
86

06
00
00
00
00
00
00
00
00
00
00
00

08
5F
63
67
6B
6F
73
I
7B
F
83
B7

09
07
07
07
07
07
07
07
07
07
07
o7

In the first picture three

0A OB OC 0D OE OF
00 00 60 07 00 00
00 00 64 07 00 0O
00 00 68 07 00 00
[00 00 6C_07][00 00
00 00 70 07 00 00
00 00 74 07 00 0O
00 00 78 07 00 00
00 00 7C 07 00 0O
00 00 80 07 00 00
00 00 84 07 00 0O
00 00 88 07 00 00

L == =Ry I T

[A s S R Y e e

Figure 3.11: Memory dump exported to ASCII with XVI32

3.2.4 Precision

According to the ADS1675 reference guide [3] 14.33 noise-free bits are guaran-
teed when using the high speed mode. By using the implemented environment
this could be verified in the following way: A simple state machine was added

42 Implementation

to the design which keeps track of the lowest and biggest sample value received.
These extrema are stored in registers and can be send to the FrontPanel software
by using the buttons of the XEM3010 board. Figure shows extrema sam-
pled over a few seconds until the values became stable, no input signal applied.
The hex-values are of type 2’s complement.

=

FEEFE20E|FFF916)

Figure 3.12: Extreme values: minimum (left), maximum (right)

The first observation that comes to mind when looking at the two values is that
both are negative. This indicates some offset (DC-noise), otherwise the maxi-
mum value would be positive. By assuming that the non-DC noise influences
the signal equally in both directions (positive and negative) the noise swing
becomes:

Vioise = ivmaz ; Vimin = :I:FFF916hem ; FFF50E e,

= £5164¢c

The number of bits necessary to represent this value is:

Nypits = loga(516)bits = 9.01bits

Therefore, the number of noise-free bits comes to:

Npoise—free = (24 —9.01)bits = 14.99bits

Which is within the range guaranteed by the reference guide and corresponds
to a dynamic range of 90 dB.

3.2.5 Data Quick Test

The state machine used for storage of the extreme values as mentioned in the
previous section has been used for debugging purposes as well. When sampling

3.3 Implementation of Filters 43

a predefined number of values and storing them in the SDRAM these extreme
values should be present in the SDRAM. After loading the contents of the
SDRAM to the PC and investigating the data with a hex-editor a quick sanity
check could be performed by verifying that the two extreme values are present
in the data. This quick test came in handy when resolving the timing issues
which occurred when implementing the SDRAM controller.

3.3 Implementation of Filters

The realisation of a filter consists of a series of multiplications and additions.
The operands for the multiplications are the incoming data samples generated
by the ADC and the coefficient constants defining the filter. Multiplication
with a constant can with advantage be done by a chain of shifters and adders.
Since the filters in this projects are not fixed their coefficients are not constant.
Therefore, hardcoded multiplication is not an option. Instead the 32 multipliers
embedded on the FPGA are going to be used.

3.3.1 Data types

A decision has to be made regarding what number representation system (NRS)
is going to be used. The classic types are floating point and fixed point (such as
2’s complement). Since the data from the ADC is of 2’s complement the obvious
choice for this project is fixed point. The filter coefficients will, consequently,
also be of a fixed point form. Fixed point systems do have the advantages
of higher speed and reduced complexity. Furthermore, the multipliers on the
FPGA are designed for fixed point multiplication.

3.3.2 Quantization

The 32 multipliers on the FPGA can multiply two 18-bit operands and produce a
36-bit product, hence full precision. The intuitive choice for data and coefficient
width is, consequently, 18 bit. The data transmitted by the ADC is 24 bit wide
(23 in high speed mode) but a precision analysis has shown that only 15 bits
are noise-free. Therefore, the signal will be trimmed down to 17 bits. It might
seem odd to chose 17 and not 18 bits, but since the filter will be of a symmetric
type, the values fed to the multipliers will be a sum of two samples. To avoid
overflow problems, 17 bit is the safe choice.

44 Implementation

Setting the signal-width for the filter coefficients to 18 bits will influence the filter
due to quantization effects. These effects have been analyzed in a graphical way
by using MATLAB. The same filter specifications as declared in section are
used, but the data type has been changed from real to fixed point.

Figure [3.13] shows the result of changing the data type to fixed point.

Magnitude Response (dB)
T T

Magnitude (dB)

Magnitude (dB)
=)
®

Ll

08 0.85 0.9 0.95 1 1.05 1.15 1.2 1.25

Frequency (MHz)

(b) Close-up

Figure 3.13: Quantized Equiripple FIR filter

As can be seen, a 18 bit resolution is not enough to maintain the requirements
since the -105dB attenuation is not withhold. Choosing a wider vector for the
filter coeflicients will solve this issue. Tests have shown that 24 bits seem to
sufficient for all 5 channel types. A more mathematical approach as described
in [B] can be applied to assure the quantization effects are within limits. For
this project, which is primarily about proving a concept, 18 bit wide coefficients
will suffice.

3.3 Implementation of Filters 45

The fixed point representation used by MATLAB is of a fractional nature. The
radix point, separating the fractional part from the integer part, is placed outside
of the 18 bit vector (the coefficients are less than 1). How far outside changes
with the channel width of the signal (TETRA / TEDS). In a multi carrier system
this has to be accounted for, otherwise the filter outputs are not comparable.

3.3.3 Filter Resolution

A resolution of 250 Hz was required for positioning the passband in the frequency
band. MATLAB tests have shown that the filter coefficients change even when
moving the passband 10 Hz and the precision was found to be < 50 Hz. Hence,
a resolution of 250 Hz is granted.

3.3.4 Filter Architecture

There are different ways in implementing a filter’s structure. Basically one
can divide the implementation methods into three main categories: parallel,
sequential /serial or a combination of both. A parallel implementation is the
fastest in terms of latency but requires a lot of hardware resources. A serial
implementation reuses hardware but has a bigger latency (assuming the same
clock frequency is used). The third method is a combination of the first two
and has the benefits and drawbacks of both depending on the ratio between the
serial and the parallel part.

The FPGA has a limited amount of embedded multipliers but a basically un-
limited amount of adderd’] Hence, the amount of multiplications is much more
critical than the amount of additions. Since there is no requirement about min-
imizing the hardware utilization of the FPGA the best performance is achieved
by using all multipliers in parallel. Since this is not enough the design has to
be serialized as well. For this purpose the behaviour of the ADC’s data trans-
mission becomes a great advantage. The ADC transmits one bit at a time and
it takes 24 cycles to complete a sample transmission. The data-bit is synchro-
nised to a clock generated by the ADC itself. By using this clock signal for the
serialization part the multipliers can be reused up two 24 times for each data
sample. This of course requires the hardware being able to run at that clock
frequency.

Since the critical factor is the multiplication, a filter structure should be chosen
which does the best use of the multipliers. This type is called the symmetric

4The number of adders is limited to the amount of logic cells available on the FPGA

46 Implementation

structure which reduces the amount of multipliers to half as described in section
2.2)

The minimum filter order required was found to be 417, hence a lot more multi-
pliers than 16 are needed, 209 to be precise. Since the limit of parallel multiplica-
tions is defined by the multipliers embedded, sequential reuse of the multipliers
is necessary. By using all 24 cycles and the 32 multipliers up to 32 x 24 = 768
multiplications can be performed per data sample. This would be enough to
implement three filters.

The coefficients defining the filters need to be stored somewhere. To do this,
block memory designed with the CoreGenerator is used. For this project read-
only memory blocks will be used to hold predefined coeflicients generated with
MATLAB. Since several coefficients are going to be used each cycle (1 for each
multiplication) the output of this block memory will be a multiple of 18 bits.
For a filter with 209 coefficients @ = 8.67 ~ 9 multiplications each cycle are
necessary. This would require a memory output width of 9x 18 = 162bits. Asit
turns out, the CoreGenerator does not support a 162 bit wide output when using
18 bit vectors. For this reason, the filters used for the FPGA implementation
will be of a slightly lower order, namely 383. In a final product the coefficients
will not be stored hardcoded as ROMs on the FPGA, and, consequently, this
design choice has no influence on the final design, as long as the architecture is
flexible enough to support filters of a bigger order than 383. Setting the filter
192

order to 383 results in 57 = 8 multiplications per cycle. Hence, the output

vector of the ROM is defined to be 8 x 18 = 144 bits.

The type of the order number (even or odd) does influence the symmetric filter
structure. Since the minimum order was found to be odd the filter structure
used will only support filters of an odd order. The number of multiplications
(tapsums) is defined by 7' = £t = 38351 — 192 where L is denotes the order.
The output of the filter is described by the following equation:

ka k) +z(n—L+k) (3.1)

By dividing this equation into a parallel and serial part it can be rewritten as
follows:

1
:Z(Zch+m n—Mc+m)+x(n—L+Mc—m))> (3.2)

c=0 m=0

3.3 Implementation of Filters 47

where C' = 24 denotes the number of cycles (serial part) and M = 8 the number
of multipliers (parallel) part.

Figure shows the suggested architecture based on equation [3.2] applied on
this project, the VHDL implementation can be found in appendix

- DOUT Data
nalo oRoY .
Svgnalx ADC Receiver CLK1 = 30 MHz
sax FSM SCLK = 3+ CLK1 = 90 MHz

| CLK2 = 100 MHz
24 CLK3 = 48 MHz

Lk enable

[1

Filter || Filter [N 20 0 0 R IO IOV By Filter

Delay pipeline
taps-1taps-2[taps-3[taps-a | Lo
mux

CLK2

SDRAM

om-m

SCLK

Figure 3.14: Filter Architecture

48 Implementation

The design allows the number of multipliers to be {2,4, 6,8, 10, 12} which allows
filters of an order up to Lyae = 2(Mpmae - C) — 1 = 2(12-24) — 1 = 575. This
is based on the number of cycles being fixed at 24. A clock divider/multiplier
can easily be added in the design making it possible to vary the filter order even
more. Since this is a change in the serial part the number of cycles could basically
be unlimited, it just depends on the restrictions set by the FPGA, which is based
on the required throughput. The control unit requires the number of cycles not
to be less than 4.

The VHDL hardware design is extremely flexible and is formed by a set of
generics. The following can be defined through the generics:

e The width of the input signal (set to 17)

e The width of the input signals of the multipliers which should be equal
the input signal width +1, or wider (set to 18)

e The width of the filter coefficients which should be less or equal the width
of the multiplier inputs (set to 18)

e The amount of left-shift operations performed on the output (only relevant
for multi-filter systems)

e The number of multipliers used in parallel (set to 8)

The width of the filter inputs must of course fit the multiplier type available on
the specific FPGA. All internal signals are generated with full precision which
results in a quite wide output signal depending on the filter order. The output
is also of full precision, no truncation or rounding is applied. The architecture
is based on a pipelined design of six steps. The last step creates the final result
and applies a left-shift operation, if required. This shift operation is necessary
when implementing filters with different radix point placements since the results
are added before they are written to the SDRAM.

3.4 FPGA Resources

Implementation-tests have shown that the FPGA used for this project can ac-
commodate two filters, even though the FPGA basically has enough block mem-
ory for the coefficients and multipliers to hold three filters. The problem lies in
the sharing of the resources. The following error message occurs when trying to
synthesizing three filters:

3.5 Chapter Concluding Remarks 49

ERROR:Place:665 The design has 19 block-RAM components of which 17
block-RAM components require the adjacent multiplier site to remain empty.
This is because certain input pins of adjacent block-RAM and multiplier sites
share routing resources. In addition, the design has 24 multiplier components.
Therefore, the design would require a total of 41 multiplier sites on the device.
The current device has only 32 multiplier sites.

As a result of this issue the design will be limited to a multi-carrier system of
two carriers. When selecting another board for a final product, this issue should
be kept in mind. However, this might not even be an issue in newer FPGAs.
The Spartan 3 chip in this FPGA is of a rather old family. Xilinx’s datasheet
for this chip even states that the Spartan 3 should not be used for never designs.

3.5 Chapter Concluding Remarks

In this chapter a basic environment was created on the FPGA. This environ-
ment consists of an interface site capable to communicate with the ADC, to
store processed data in the SDRAM, and to unload the data to a PC through a
USB interface. Furthermore, a filter architecture was designed an implemented
allowing flexibility in the size of the filter. Implementations based on up 12 mul-
tipliers working in parallel are supported. An implementation of 8 multipliers
is used in this project connected to a driving clock of 90 MHz corresponding to
an effective clock of 8 - 90M Hz = 720M Hz. These 8 multipliers are used in a
serial loop of 24 cycles which corresponds to 192 multiplications per data cycle.
Given a symmetric structure this enables implementation of filters of order 383.

50

Implementation

CHAPTER 4

Testing

This chapter is all about verifying the implemented architecture through tests.
These tests are based on simulations performed in Modelsim and MATLAB.
Furthermore, measurements are verified. The first section deals with the state
machine receiving the data samples from the ADC. Afterwards the filter archi-
tecture will be tested.

4.1 ADC FSM

This section verifies that the state machine used to receive the samples from the
ADC has been implemented correctly by simulating its behaviour in Modelsim.
For clarity reasons the FSM diagram is shown again in figure 4.1

52 Testing

DRDY DRDY DRDY

data_ready = ‘0’
counter =23

data_ready = ‘0’
counter =23

AQyd

data_ready <= ‘1’
counter <= 23

I
data_ready <=0’

counter <= counter -1

data(counter) <= DOUT

Figure 4.1: ADC sample receiving FSM

In order to verify correct behaviour, two parts must be tested. The first part
is to verify that the state machine goes through the correct states. The second
part is to see if the correct output is generated.

Figure[4:2)shows a Modelsim screenshot. The system starts with a reset and the
init state is entered. Afterwards the DRDY signal goes high, thereby indicating
the beginning of a data sample. The very first sample should be ignored. For
this reason, the machine enters the idle state as a response to DRDY going low.
The machine remains in this state until DRDY goes high again. As can be seen
in the Modelsim snapshot, there exists a DOUT _buffer. This signal is necessary
because the counter defining where to store the incoming bit is delayed one cycle
compared to the incoming data bit. To synchronise them, the incoming data
bit is delayed together with DOUT.

When DRDY goes high the second time, the sample state is entered. The first
bit transmitted is DOUT = 1, which is the MSB. One clock cycle later the data
signal changes from its reset value (00FF00) to 80FF00. The counter now keeps
decreasing each cycle while DOUT is 0. The data signal changes accordingly.

53

4.1 ADC FSM

Figure 4.2: Modelsim screenshot showing the behaviour of the ADC FSM

54 Testing

Things become interesting when the counter reaches 1. Data(1) has been set
to DOUT=1. The next state is determined to be the data state and DOUT is
still high. The LSB should not be captured since it is not set by the ADC. To
verify, that the FSM does not sample the LSB, the incoming data is set high
in this simulation. The Modelsim screenshot shows, that the data’s LSB is not
being sampled. This verifies correct behaviour. During the data state the next
state is determined to be the init state, but as DRDY goes high it changes to
the idle state instead. Furthermore, the new_steady_data and the steady_data
signal is updated. Correct behaviour has therefore been verified.

4.2 Filter Architecture

An easy and extremely efficient way to verify a correctly implemented filter
architecture is to apply a unit impulse function and analyse the filter output.
The filter output corresponds to the impulse response which should be equal to
the filter’s coefficients.

To do this, a test filter has been designed. Its first and last coefficients are
shown below:

15, 8, -15, -14, 8, 30, 1, -37, -25, 39, 52, -21, -80,
“15, 94, 71, -81, -131, 31, 179, 56, -188, -168, 140,
275, -24, -340, -148, 325, 343, -204, -505, -23, 573,

......................... -61995, 31272, 78981, 6064, -78190,
~44016, 58849, 73453, -24707, -86396, -16684, 80456,
55695, -54946, -82931, 15843, 91560, 27920, -79080,
_66071, 48028, 89489, -5458, -92464, -38719, 74130

Figure [£.3] shows the output of a simulated impulse function. The first few
cycles and the center of the response is shown. It can be seen, that the data
signal has the value 1 for a single cycle and 0 for all others. By comparing the
result values to the coefficients above it can be shown that the filter works as
expected. The first four values are 15,8,-15,-14 in both cases.

4.2 Filter Architecture 55

T5as8 82464 |-38718)74130 (38719] 92964 J-5458

Figure 4.3: Impulse response simulated with Modelsim

The plots then skips a lot of cycles. The value 74130 is received for two clock
cycles indicating the center of the impulse response which corresponds to the
last filter coefficient. Afterwards the coefficients are received in reverse order.

Even though this test confirms correct behaviour, it has not tested the entire
architecture. The delay pipeline is filled with a lot of zeros and a single 1 rippling
through it. Hence, only one multiplier and some of the adders are used each
cycle. To utilize the entire architecture, another test is performed. This test
sets the input to 0 and changes it to 1 at some point, and corresponds to a unit
step function. The filter will respond to this change and after a while it will
assume a stable value. To find this value, a MATLAB script has been written
which can be found in [I0]. The outcome of the script is shown in figure
The first plot shows the entire step response while the second one is a close up
of the end of the response.

x 10

10FT T T T =

50 \”‘H‘ ’ |

MW ‘ ’H”‘
‘”\’ “‘u
of AN [Pammramaaamann
| "
| . . \

{1]
[0
= 0 50 100 150 200 250 300 350 400 450 500
c
o 60F
@® 51
= 501 A

401

30+ 28

26
20F 20 N /22
14 /

100 /12 \ /7

or 1

14 1 1 11 110 1 1 1 1

374 376 378 380 382 384 386
sample

Figure 4.4: MATLAB simulated response of a test filter.

56 Testing

It can be seen that the filter settles at the value 22. Figure[4.5]shows a Modelsim
simulation of the filter. Clearly the implemented architecture settles at the same
value.

Figure 4.5: Test filter response in Modelsim

Figure shows a close-up of the last cycles. The values match the values
generated with MATLAB. Correct filter implementation has therefore been ver-
ified.

Figure 4.6: Test filter response in Modelsim - close-up

Last but not least the same tests have been performed on the FPGA. By ana-
lyzing the contents of the SDRAM with MATLAB it could be verified that the
contents hold the same values as the Modelsim simulations.

CHAPTER 5

Results

This chapter presents the results obtained with a set of filters implemented with
the architecture presented in The signal applied on the input terminals of
the ADC is generated by two signal generators, one for TETRA/TEDS signals
and the other for blocker signals represented by a sine wave. The filters used
are designed with MATLAB’s filterbuilder tool and the filter coefficients are
implemented as read-only block memory generated with the Core-Generator.
Due to the nature of the memory, as explained in section the filters’ order
is set to 383. As stated in section a filter order slightly bigger than this
is necessary to meet all requirements. Furthermore, quantization effects due
to the 18-bit wide coefficients, will influence the results as well. Since these
alterations only affect the stop-band, all requirements, except for -105 dB stop-
band attenuation, should be met.

In order to use different filters, a set of bit-files was created, each containing
one or two filters. Furthermore, a bit-file without filters was used to sample
unfiltered data for comparison. By loading the different bit files to the FPGA,
the filters applied could be changed. The measurements have been taken as
described in section [3.2] which can be broken down to the following:

1. Store sampled data (filtered or unfiltered) in the SDRAM.
2. Read SDRAM content and export it as a file to a PC
3. Analyse data file with MATLAB

58 Results

Consequently all the plots shown in this chapter are based on data sampled with
the FPGA, unless otherwise stated. Furthermore, all plots have been normal-

ized, hence the maximum value occurring in a set of sampled data corresponds
to 0 dB.

5.1 Single Carrier

This section shows results gained with a single filter applied. The first plots (see
ﬁgure show sampled data (no filter applied) of a TETRA channel located at
800 kHz and a blocker at 1300 kHz. The peak-to-peak voltage for both signals
is set to 200 mV, this voltage is used for all signals.

x 10°

20

-
O
1

=)
S 10 b
=
S

5 -
@®
S

0 -

5 | | | | | | | |

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
sample
(a) Sampled data - time domain
0 T T T T T T T T

magnitude / dB

frequency / Hz
(b) Sampled data - frequency domain

Figure 5.1: Sampled values in the time- and frequency-domain for a TETRA
signal at 800kHz and a sine blocker at 1300kHz

5.1 Single Carrier 59

The data plot shown consists of 16384 samples corresponding to 128 kB sampled
data gained by continuously sampling for approximately 4.3 ms. The driving
clock at the ADC was set to 30 MHz resulting in a Nyquist frequency of 1.875
MHz. The system allows to process up to 32 MB of data, which corresponds to a
sample time of approximately 1 second. This amount of data is extremely heavy
to analyse, hence 128kB of data was used as it proved to be an appropriate size.

A window function of type Hanning is applied to expose the noise-floor and
to avoid artefacts such as peak smearing. This function was applied during the
analysis in MATLAB and is not part of the implementation. The result is shown
in figure [5.2] which shows a much clearer picture of the sampled values. At 1.6
MHz the first harmonic of the incoming TETRA signal is visible.

x 10
20 T T T T T T T T
151 .
]
o
2 10 .
=
S
@ °f i
S
0 -
I~ Il Il Il Il Il Il Il Il
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
sample
(a) Sampled data - time domain
0 T T T 1 1 1 1 1
m
©
-~ -
()
©
>
=
C
S i
®
S
_1 5 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
6
x 10

frequency / Hz
(b) Sampled data - frequency domain

Figure 5.2: Sampled values in time- and frequency-domain for a TETRA signal
at 800kHz and a sine blocker at 1300kHz with a Hanning window applied.

60 Results

The next configuration loaded to the FPGA contained a filter designed for a
TETRA signal at 800 kHz. The data fed to the filter were not the incoming
samples from the ADC, but a step function generated on-board. The result is
the filter’s impulse response as shown in figure [5.3

x 10°

1F]

0.5[h

magnitude
o

0.5, -

1 1
1900 1950 2000 2050 2100 2150 2200 2250

sample

(a) Impulse response - time domain

0 T T T T T T T T T

-100, .

magnitude / dB

-20 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

frequency / Hz
(b) Impulse response - frequency domain

Figure 5.3: Filter for a TETRA signal at 800kHz, order = 383

The impulse response shows that the stop-band settles at around -100dB and
not at -105dB. As discussed, this is due to the quantization effects and the
slightly lower order than the minimum order required.

The next step is to apply this filter on incoming data. The expected result is
the data plot from figure [5.2] with the blocker suppressed by -100dB. Figure
shows the expected result, a Hanning window has been applied.

5.1 Single Carrier 61

-100- 1

-150- 1

magnitude / dB

-200Q b

_25 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

frequency / Hz x10

Figure 5.4: Filtered TETRA signal with blocker at 1300 kHz

As can be seen, the blocker has been suppressed down to -100dB as has the
noise-floor, except for the part in the transition from the pass-band to the stop-
band. The reason for the TETRA signal looking slightly different in this plot
compared to the first plot is that the samples are taken at two different time
instances. Figure [5.5] shows the incoming signal, filtered signal and blocker
requirements in one plot, zoomed close to the channel and blocker.

I I I T I T T T T
Incoming Data

—-20+H — Filtered Data

> Blocker Requirements

| T
-100} ﬂW\ | ‘

e

-120-

magnitude / dB

-140

-160-

-180-

(ke il \Ml LAl WWW | |
3 4 5 6 7

frequency / Hz

Figure 5.5: Combined plot showing the incoming signal, filtered signal, and
blocker requirements

62 Results

It seems like the blocker has been suppressed down to the required level, but
zooming in closer would reveal that this, as expected, is not the case, since this
would require a filter of a slightly bigger filter order.

As mentioned, the incoming data and the filtered data are sampled at two
different time instances. To visualize the pass-band’s impact on the incoming
signal the filter’s architecture has been simulated in MATLAB making it possible
to compare unfiltered and filtered data of the same data set. This is shown in

figure

0 T T
Incoming data
— Filtered data
-50 u
m
©
~
o 199 | b
o
=}
=
c -15G- b
(@)
®
= -200- b
_25C | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10°
frequency / Hz
(a) Full view
I
ok Incoming data i
— Filtered data
m
©
~ 5 -
()]
o
=)
=
c
(@]
© -10- b
1S
-15- [! ! ! ! A . .
7.9 7.95 8 8.05 8.1
x 10°

frequency / Hz
(b) Close-up

Figure 5.6: Filter influence in the passband

5.1 Single Carrier 63

The first plot shows the full view. In the passband the unfiltered data (red) is
hidden behind the filtered data (blue) indicating that the signal has not been
modified significantly. The requirements state that a ripple of 1 dB in the
passband is acceptable, the filter applied has been designed with respect to this
requirement. The second plot shows a magnification of the passband. Small
differences are visible but they are within requirements and thereby confirming
correct behaviour of the filter.

The next two plots show the result of moving the blocker closer to the TETRA
channel. Figure [5.7] shows the blocker at 900 kHZ and figure [5.8 at 850 kHz.

1 1 1 I I I I I
OH Incoming Data l T
— Filtered Data Al a‘[
—20H X Blocker Requirements 4

l“l ;I[" ‘\"“Fi:,‘i. WA “‘ e i i‘l.‘ T

-12¢ g

! AP
—1og-| T\ ‘

magnitude / dB

-14¢- =

-160- n

6.5 7 7.5 8 8.5 9 9.5 10

frequency / Hz

Figure 5.7: TETRA signal at 800kHz and blocker at 900kHz

As before, the measurements are taken at different time instances. The plots,
show that the tight blocker requirements close to the channel are, due to the
nature of the FIR filter, easily met. The gap between the blocker’s peak and
the blocker requirement can be exploited to improve the filter, thereby reducing
the minimum order slightly.

64 Results

T
Incoming Data
on Filtered Data) 7

I

> Blocker Requirements (I

3

magnitude / dB

1 1 1 1
8 8.5 9 9.5

x 10°

frequency / Hz

Figure 5.8: TETRA signal at 800kHz and blocker at 850kHz

In a TETRA network it may happen that two channels are located directly next
to each other. It is therefore relevant to know how the filter affects a neighbour
channel. This is shown in figure [5.9 The filter cuts through the neighbour
channel, letting one side almost untouched and suppressing the other side up to
-30 dB. The center frequency is suppressed by -10 dB.

e I T B R S S S SRR A
oH [TETRA channel
["""INeighbour channel
-5+ Filter B
o d
5 10
~
O -15 d
5 15
>
=
c -20- b
(@)
@
£ -5 8
_30- d
_35- d
1 1 1
75 76 7.7 7.8 7.9 8 8.1 8.2 8.3 8.4

x10°
frequency / Hz

Figure 5.9: Two TETRA channels placed next to each other. The wanted
channel’s filter affects a neighbour channel

5.2 Dual Carrier 65

5.2 Dual Carrier

When using two filters, the output of the individual filters has been added,
which makes it easy to analyse the data. But this also means, that frequencies
suppressed equally by both filters will appear to be twice as strong (compared
to a single filter system) which corresponds to +3 dB. In a final system, the
filter outputs will be transmitted individually and not added. Therefore, when
comparing the filtered blockers to the requirements, 3 dB should be subtracted.
Plots that point out this behaviour will be presented.

The plot in figure shows a system with two TETRA carriers and a blocker
in between them.

0 T T
Incoming Data I
— Filtered Data |
-50-| < Blocker Requirements -
g bl B
; ~10dH “,MM‘ V\\N‘\ [\‘u‘ ‘\‘ R MNW‘ ‘h 'M |
o
2
‘c
g 150 1
£
-200- B
_25 Il Il Il Il Il Il Il Il Il
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
6
frequency / Hz x 10
(a) Dual TETRA system - full view
0 ’ ‘ 4
Incoming Data ‘M “\‘ ! i
— Filtered Data " w‘ ‘“]
> Blocker Requirements | ‘ |
8 50 1
°
o
g bl B Wb
[S) W) i W il i] M 1‘;,&” J\I
g f ' i
£ -10(
-150 i
L L L L L L
6.5 7 7.5 8 8.5 9 9.5

frequency / Hz
(b) Dual TETRA system - close-up

Figure 5.10: Results gained with two TETRA channels and a blocker placed at
850kHz

66 Results

Clearly, a dual carrier system works just as well as a single carrier.

As mentioned, adding the filter outputs can influence the measured output.
Magnifying the blocker’s peak for the single and dual carrier system reveals this
issue. This is shown in figure As expected, the blocker level is about 3 dB
stronger for the dual carrier system (-99.5 dB versus -102.5 dB).

98\ -

-98.5- 1

o]

-99.9- \ -

-100- -

-100.5-]
8.5 9

9.5

magnitude / dB

frequency / Hz x10°
(a) As indicated by the arrow, the blocker is located at 850 kHz. To the left

and the right are the two TETRA channels.
83 84 85

T § i | T T
-102- \
8.6

x10°

-102.9-

magnitude / dB

-103-

T T
I I
76 7.7 7.8 7.9 8 8.1 8.2

frequency / Hz

(b) Blocker located at 850kHz with a TETRA channel to the left

Figure 5.11: Blocker peaks for single and dual carrier TETRA system

Care must be taken when implementing a dual carrier system based on two
different channel types. Figure shows the impulse response of a system
based on a TETRA channel located at 800 kHz and a TEDS U50 channel
located at 1 MHz.

5.2 Dual Carrier 67

magnitude / dB

frequency / Hz

Figure 5.12: Impulse response for dualcarrier system with a TETRA channel at
800kHz and a U50 channel at 1MHz

Clearly their magnitudes have peaks of different strengths. This behaviour was
discussed in section and grounds in the position of the radix point of
the filter coefficients. This can be fixed by shifting the output of one filter
accordingly before adding the filter outputs. The result of doing so is shown in

figure 5.13]

magnitude / dB

frequency / Hz

Figure 5.13: Impulse response with matched radix points

Applying this dual filter on incoming data with a blocker placed in between is
shown in figure [5.15

68 Results

Incoming Data
-20-| — Filtered Data [B
X Blocker Requirements

magnitude / dB

1 1 1 N, 1 |

5 6 7 8 9 10 11
x 10

frequency / Hz

Figure 5.14: Dual carrier sustem for TETRA and a TEDS-U50 channel located
at 800 kHz and 1 MHz, respectively. A blocker is located a 900 kHz.

What happens when the distance between the channels is increased is shown in

figure [5.14]

1 1 1 1 1 1 1 1 1
Incoming Data
Filtered Data

X Blocker Requirements

magnitude / dB

1

5 6 7 8 9

frequency / Hz

Figure 5.15: Dual carrier sustem for TETRA and a TEDS-U50 channel located
at 800 kHz and 1.2 MHz, respectively. A blocker is located a 1 MHz.

5.3 FPGA Utilization 69

Yet again the system behaves as requested and the blocker requirements have
been met. In figure [5.14] the blocker is almost suppressed down to -120dB. This
can be led back to the heavy ripples in the stop-band as depicted in figure [5.13]
Apparently the blocker is located at a low point in the stop band resulting in
additional suppression.

The final plot in figure [5.16] shows the impulse response for a TEDS U100 and
U150 filter system. Since no masks were available to create input signals for
these specifications, no data samples are available. The filter response shows
that quantization effects are a little stronger for these wide-channel filters.

U150

magnitude / dB

frequency / Hz

Figure 5.16: U150 and U100 impulse response

5.3 FPGA Utilization

This section contains screendumps showing the utilization of the FPGA in Xilinx
for different designs.

The picture in figure shows the utilization of a design with no filters imple-
mented. This design was used to sample unprocessed data from the ADC. The
required resources are used for the interface to the ADC and the USB port.

70 Results

Logic Utilization Used Available Utilization
Mumber of Slice Flip Flops 871 26,624 3%
MNumber of 4input LUTs 832 26,624 3%
Mumber of occupied Slices 785 13,312 5%
Mumber of Slices containing only related logic 785 7a5 100%
Mumber of Slices containing unrelated logic o 785 0%
Total Number of 4input LUTs 1,008 26,624 3%
Mumber used as logic 832
Mumber used as a route-thru 176
Mumber of bonded I0Bs 94 n 42%
I0B Flip Flops 32
I0B Master Pads 3
10B Slave Pads 3
Number of RAME 165 4 32 12%
Number of BUFGMUXs 3 8 37%
MNumber of DCMs 2 4 50%
Average Fanout of Non-Clock Mets 3.08

Figure 5.17: Utilization for a no-filter system (interfaces)

Figure shows the utilization of a system with a single filter while figure [
is obtained for a system with two filters.

Logic Utilization Used Available Utilization
Mumber of Slice Fip Flops 8,578 26,624 32%
Mumber of 4input LUTs 5,263 26,624 19%
Mumber of occupied Slices 6,483 13,312 48%
Mumber of Slices containing only related logic 6,483 6,483 100%
Mumber of Slices containing unrelated logic 1] 6,483 0%
Total Mumber of 4 input LTS 5,443 26,624 20%
Mumber used as logic 5,263
Number used as a route-thru 180
Mumber of bonded [0Bs 94 221 425
I0E Flip Flops 32
I0B Master Pads 3
10B Slave Pads 3
Number of RAME 165 E] 32 28%
Number of MULT18X 185 8 32 25%
Number of BUFGMUXs 3] 37%
Number of DCMs 2 4 50%
Average Fanout of Mon-Clock Nets 3.42

Figure 5.18: Utilization for a single-filter system (order=383)

5.4 Latency 71

Logic Utilization Used Available Utilization
Mumber of Slice Flip Flops 9,725 26,624 36%
Mumber of 4input LUTs 9,782 26,624 36%
Mumber of occupied Slices 8,364 13,312 B6%%
Mumber of Slices containing only related logic 8,864 8,864 100%:
Mumber of Slices containing unrelated logic 1] 8,864 0%
Total Mumber of 4input LUTs 9,966 26,624 37%
Mumber used as logic 9,782
Number used as a route-thru 184
Mumber of bonded I0Bs 94 221 42%
I0B Flip Flops 32
I0B Master Pads 3
10B Slave Pads 3
MNumber of RAME 165 14 32 43%
Mumber of MULT18%18s 16 32 50%
Number of BUFGMUXs 3 8 37%
Mumber of DCMs 2 4 50%
Average Fanout of Non-Clock Nets 3.59

Figure 5.19: Utilization for a dual-filter system (orders=383)

5.4 Latency

The latency of the filter architecture corresponds to one data cycle of the ADC.
Running the ADC with a clock frequency of 30.24 MHz results in a data rate
of % = 3.78 MSPS. Hence, the latency comes to ﬁs = 265ns. A
few clocks are added due to the pipelined addition which increases the latency
to somewhere between 300ns and 350ns.

72

Results

CHAPTER 6

Future Work

In order to take this project to the next level a more suitable FPGA has to be
selected. The following contains useful observations and necessary changes for
doing so.

The dynamic range in the output signal of the ADC used in this project does
not have the required dynamic range for a final design neither does the imple-
mented hardware model. An increase in the dynamic range of the incoming
data requires bigger multipliers, hence a bigger FPGA. A dynamic range of 120
dB requires a resolution of 20 bits. Since the data in the delay pipeline is added
before entering the multipliers (only true for a symmetric structures as used in
this project) at least 21 bit multipliers are necessary. Bigger multipliers would
also deal with the quantization effects and a safe choice would be 24x24 bits
multipliers. This would allow a dynamic range of up to 138 dB in the input
signal and reduce the quantization effects to a minimum. Furthermore, a bigger
FPGA would allow the implementation of more than two filters.

Since 24x24 bit multipliers are hard to find in an FPGA an alternative solution
is to combine up to 4 18x18 bit multipliers which would result in a 36x36 bit
multiplier. However, this requires a lot of multipliers. The total number of mul-
tipliers, based on the 24 iterations, required for a suitable TETRA system filter,
is 9. Hence, 36 multipliers would be needed for such a filter when combining
the multipliers.

74 Future Work

The figures in the FPGA utilization section of chapter[5]can be used to determine
a proper sized FPGA. The critical numbers seem to be the number of slices, the
amount of block memory (RAMBI16s) and of course the multipliers. An issue
regarding resource allocation between the block memory and the multipliers was
discovered for the FPGA used in this project. This should be kept in mind when
selecting a bigger FPGA.

In order to use the suggested architecture in a design where the filter coefficients
are delivered by an external source the block memory holding the coefficients
needs to be modified. In this project read-only memory (ROM) with hardcoded
filter coeflicients was used. This has to be replaced by rewritable memory blocks
(RAM). Furthermore, a control unit needs to be added to manage the sweep of
the filter coefficients.

1Q demodulation was not within the scope of this project. If IQ modulation is
going to be added to the design, the FPGA should have additional resources,
accordingly.

Last but not least, the FPGA should have sufficient IO resources in order to
transmit multiple filter outputs separately. This, of course, depends on the
number of filters and the desired dynamic range of the output values.

CHAPTER 7

Conclusion

The purpose of this project was to implement digital filtering in an FPGA. This
filtering is part of the receiver in a base station which handles wireless TETRA
and TEDS communication. In order to design a suitable hardware model, an
analysis on filter types based on predefined requirements is performed in chapter
This chapter concludes that band-pass FIR filters are the right choice due to
their stability and linearity. Moreover, it is concluded that the filter structure
should be of a symmetric type since this reduces the amount of multiplications
which is a critical resource in an FPGA. The filter order must be kept as low as
possible in order to make the best use of the multipliers. A set of filter design
algorithms were analyzed and the Equiripple method gave the best results in
terms of the order number, which was found to be 417.

An important note is that the filters in this receiver model are not going to be
constant, it must be possible to change them. Based on this, an architecture was
developed in chapter 3] which allows the implementation of symmetric FIR filters
of different sizes. The filter order can vary from 7 to 575 in predefined steps and
several filters can be implemented at the same time depending on the resources
available on the FPGA. This is achieved by a resizeable, partly parallel, and
partly serial architecture. The serial part can easily be modified in order to
support even bigger filters. In order to let the filter coefficients be replaceable
they are stored in block memory. In this prototype design the block memory
has no write access, hence, the coefficients are not changeable. Exchanging this

76 Conclusion

read-only block memory with writeable memory will grant changeable filters.

The filter architecture is embedded in a system capable of communicating with
an AD(E and receive data from it. Furthermore, data processed on the FPGA is
stored in the on-board SDRAM. The contents of this memory can be accessed
through an interface designed for this purpose. This interface consists of a
module implemented in the FPGA and a script executed on a PC. The board
and the PC are communicating through a USB connection.

Correct implementation of the architecture and the interfaces has been verified
and documented in chapter [

Finally, a couple of single and dual carrier filter systems were created which
were applied with TETRA/TEDS signals and sine blockers. The results are
documented in chapter || The filters used were of order 383 which is slightly
lower than the minimum order necessary to meet requirements. The results
obtained are indeed satisfying except for filter coefficient quantization effects.
These effects can be minimized by increasing the width of the filter coefficients’
vectors as mentioned in chapter [f] However, this would have exceeded the
resources available on the FGPA made available for the scope of the project.

Inot any ADC but the ADC used in this project

APPENDIX A

Additional Tables And Figures

LED FPGA Pin
D2 V14

D3 u14

D4 T14

D5 V15

D6 u15

D7 V16

D8 V17

D9 uU16
Button FPGA Pin
S1 P7

S2 P6

Figure A.1: XEM3010 LED and button pins

78

Additional Tables And Figures

Host Interface | FPGA
Pin Pin
HI_IN[O] N10
HI_IN[1] V2
HI_IN[2] V3
HI_IN[3] V12
HI_IN[4] R8
HI_IN[5] T8
HI_IN[6] V8
HI_IN[7] V7
HI_OUT(0] V10
HI_OUT[1] V11
HI_INOUT[0] [T7
HI_INOUT[1] R7
HI_INOUT[2] [V9
HI_INOUT[3] U9
HI_INOUT[4] P11
HI_INOUT[5] N11
HI_INOUTI[6] R12
HI_INOUT[7] | T12
HI_INOUT[8] U6
HI_INOUT[9] |V5
HI_INOUT[10] | U5
HI_INOUT[11] | V4
HI_INOUT[12] | U4
HI_INOUT[13] | T4
HI_INOUT[14] [T5
HI_INOUT[15] |R5
HI_MUXSEL R9

Figure A.2: XEM3010 80 pin connector

79

JP2 FPGA Length JP2 FPGA Length
Pin | Connection |Pin LVDS (mm) Pin Connection | Pin LVDS (mm)
1 DGND 2 +3.3VDD

3 +2.5VDD 4 +3.3VDD

5 JTAG_TCK 6 +3.3VDD

7 JTAG_TMS 8 X_TDO

9 X_TDI 10 -

1 SYS_CLK4 12 -

13 DGND 14 DGND

15 | XBUS-1 T16 (*) LO1P_3 [17.196 16 XBUS-0 u18 L16P_3 17.089
17 | XBUS-3 T17 (*) LOIN_3 |12.588 18 XBUS-2 T18 L16N_3 17.172
19 | XBUS-5 R16 L17P_3 |[13.817 20 XBUS-4 R17 L19N_3 18.255
21 XBUS-7 P15 L21N_3 |14.607 22 XBUS-6 R18 L19P_3 16.923
23 | XBUS-9 P16 L17N_3 |13.276 24 XBUS-8 P17 L20P_3 18.006
25 | XBUS-11 N15 L21P_3 | 14.359 26 XBUS-10 P18 L20N_3 16.675
27 | XBUS-13 M15 L23N_3 [14.442 28 XBUS-12 N17 L24P_3 17.757
29 | XBUS-15 M16 L23P_3 [13.110 30 XBUS-14 M18 L24N_3 17.426
31 XBUS-17 L15 L34N_3 |16.068 32 XBUS-16 L17 L35P_3 18.450
33 | XBUS-19 L16 L34P_3 |[14.736 34 XBUS-18 L18 L35N_3 16.885
35 |+VCCO3 36 DGND

37 | xBUS-21 N14 (1) |[L22P 3 [13.950 38 XBUS-20 [K17 L40N_3 [17.509
39 [XBUS-23 M14 (1) |[L22N_3 |[14.282 40 XBUS-22 K18 L40P_3 16.509
41 | XBUS-25 K13 (f) |[L39N_3 |14.951 42 XBUS-24 L14 (t) |L27N_3 19.266
43 | XBUS-27 K14 (f) |[L39P_3 |13.619 44 XBUS-26 L13 () |L27P_3 19.935
45 | XBUS-29 K15 - 12.288 46 XBUS-28 J13 (1) - 21.426
47 | XBUS-31 J14 (1) L40P_2 |[14.316 48 XBUS-30 H13 (f) |L27N_2 22.119
49 | XBUS-33 J15 L40N_2 |12.868 50 XBUS-32 H14 (1) |L27P_2 20.539
51 | XBUS-35 G14 (t) |[L22P_2 |16.068 52 XBUS-34 J18 L39N_2 15.680
53 [XBUS-37 F14 (1) L22N_2 |15.736 54 XBUS-36 J17 L39P_2 16.929
55 |+VCCO2 56 DGND

57 | XBUS-39 H16 L34N_2 |[10.791 58 XBUS-38 H18 L35P_2 15.515
59 | XBUS-41 H15 L34P_2 |[12.163 60 XBUS-40 H17 L35N_2 16.680
61 | XBUS-43 G16 L24P_2 |[11.205 62 XBUS-42 G18 L23N_2 156.515
63 | XBUS-45 G15 L24N_2 |12.205 64 XBUS-44 F17 L23P_2 15.686
65 | XBUS-47 F15 L21N_2 [12.039 66 XBUS-46 E18 L20P_2 14.355
67 | XBUS-49 E16 L19P_2 |10.956 68 XBUS-48 E17 L20N_2 15.686
69 | XBUS-51 E15 L21P_2 |[12.288 70 XBUS-50 D18 L17P_2 15.018
71 XBUS-53 D16 L19N_2 |11.205 72 XBUS-52 D17 L17N_2 16.101
73 | XBUS-55 C17 (%) LO1P_2 |10.785 74 XBUS-54 C18 L16P_2 14.852
75 | XBUS-57 C16 (*) LOIN_2 |11.453 76 XBUS-56 B18 L16N_2 16.601
77 | XCLK1 F10 L32P_1 21.992 78 DGND

79 | XCLK2 E10 L32N_1 |[21.756 80 DGND

Notes: *-Pinis a DCI pin with optionally-installed resistors.

1 - Some routing on inner layer is not necessarily 50Q.

Figure A.3: OkHost interface pins

80 Additional Tables And Figures

FPGA CLK

[/oRDY
R32

[DRDY

DOUT

R29
100

R28 10k
] ololo |n 5 —|o|o
0 1<
= BRR 2 © oc;g
B B o i
B ®| |m
m

CONTROL

Figure A.4: Physical connection of ADC - FPGA

r@ Bandpass Design u

Bandpass Design

Design & bandpass filter.

Save variable as: Hbp2 View Filter Response

Main Data Types | Code Generation

Filter specifications

Impulse response: IF]R v]
Order mode: lMlmmum v] Order:
Filter Type: ISingIe—rate v]

Frequency specifications

Frequency units: [Hz v] Input Fs: 4000
Fstop1: 1000-50 Fpassi: 1000-12.5
Fpass2: 1000+12.5 Fstop2: 1000+50

Magnitude specifications

Magnitude units: |dB -
Astopl: 105 Apass: 1
Astop2: 105
||| Algorithm
Design method: [Equir\pp\e v]
Structure: EDirect—form FIR vi

¥ Design options

Density factor: 16

Phase constraint: [LIFIEEF 'l

Minimum order: [Ddd vl

Uniform grid

[oK H Cancel H Help H Apply]

Figure A.5: filterbuilder screenshot of Equiripple design for TETRA

82

Additional Tables And Figures

Design Specifications
Sampling Freguency
Besponse
Specification

First Stopkand Edge
First Passkand Edge
Second Passkband Edge
Second Stopband Edge
First Stopband Atten.
Passkband Bipple
Second Stopband RAtten.

Measurements

Sampling Freguency
First Stopkand Edge
First &-dB Point

First 3-dB Point

First Passband Edge
Second Passband Edge
Second 3-d4dB Point
Second &-dB Point
Second Stopband Edge
First Stopkand Atten.
Passkband Bipple

Second Stopband Atten.
First Transition Width
Second Transition Width

Irplementation Cost
Number of Multipliers
Number of Adders
MNumber of States

Figure A.6: info screenshot of Equiripple design for TETRA

Multiplications per Input Sample
Additions per Input Sample

Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR
Filter Length z 418

Stable : ¥es

Linezr Phase : Yes (Iype 2)
Design Method Information
Design Algorithm : eguiripple
Design Options

Density Factor : 1@

Maximum Phase : false

Minimim Order : odd

Minimum Phase : false

Tniform Grid : true

4 kH=
Bandpass

Fatl, Fpl, Fpz, FatZ, hatl, Bp, Batd

950 Hz
987.5 Hz
1.0125 kH=z
1.05 kH=
105 dB

1 dB

105 dB

4 kHz

950 Hz

977 _.3223 Hz
9B81.3854 Hz
987_.5 Hz
1.0125 kH=
1.018e kH=
1.0227 kH=
1.05 kH=
105.41€1 dB
0.54855 dB
105.3782 4B
37.5 Hz
37.5 Hz

418
417
417
418
417

83

r Al
Q Bandpass Design M

Bandpass Design

Design & bandpass filter.

Save variable as: Hbp2 View Filter Response

Main Data Types | Code Generation

Filter specifications

Impulse response: IF]R v]
Order mode: lMlmmum v] Order:
Filter Type: ISingIe—rate v]

Frequency specifications

Frequency units: [Hz v] Input Fs: 4000
Fstop1: 1000-50 Fpassi: 1000-12.5
Fpass2: 1000+12.5 Fstop2: 1000+50

Magnitude specifications

Magnitude units: |dB -
Astopl: 105 Apass: 1
Astop2: 105
|| Algorithm
Design method: [Kaiser window v]
Structure: [Direct—form FIR v]

¥ Design options

Scale passband

[oK H Cancel]E Help Apply

A = —

Figure A.7: filterbuilder screenshot of Kaiser-window design for TETRA

Additional Tables And Figures

Discrete-Time FIE Filter (real)

Filter Structure : Direct-Form FIR
Filter Length : 723

Stable z Yes

Linear Phase : Yes (Type 1)

Design Method Informstion

Design Algorithm : kaiserwin
Design Options
ScalePassband : true

Design Specifications

First Stopband AZtten.
Passkand Ripple

Second Stopband Atten.
First Transition Width

104.07e5% dB

104.07e5% dB
37.5 Hz

0.00011738 dB

Sampling Fregquency : 4 kH=z
Hesponse : Bandpass
Specification : Fatl,Fpl,Fp2, FatZ, Rstl, bLp, BAst2
First Stopband Edge : 850 H=

First Passkand Edge : 887.5 H=
Second Passband Edge : 1.0125 kH=
Second Stopband Edge : 1.05 kH=z
First Stopband Ztten. : 105 dB
Passkand Ripple 1 dB

Second Stopbkand Ztten. : 105 dB
Measurements

Sampling Fregquency : 4 kH=

First Stopband Edge : 850 H=
First &-dB Point : 89g8.75 H=
First 3-dB Point z 971_.59085 H=
First Passkand Edge : 8987.5 H=z
Second Passbkband Edge : 1.0125 kH=
Second 3-d4dB Point : 1.0281 kH=
Second &-dB Point : 1.0313 kH=
Second Stopband Edge = 1.05 kH=

Second Transition Width 37.5 H=

Irplementation Cost

Number of Multipliers : 715
Humber of Adders : T1B
Number of States z TEZ
Multiplications per Input Sample - 715
kdditions per Input Sample : T1B

Figure A.8: info screenshot of Kaiser-window design for TETRA

d Al
Q Bandpass Design M

Bandpass Design

Design & bandpass filter.

Save variable as: Hbp2 View Filter Response

Main Data Types | Code Generation

Filter specifications

Impulse response: IF]R v]
Order mode: ISpecfv v] Order: 600
Filter Type: ISingIe—rate v]

Frequency specifications

Frequency constraints: [Passband and stopband edges -
Frequency units: [Hz ¥ | Input Fs: 4000

Fstop1: 1000-50 Fpassi: 1000-12.5

Fpass2: 1000+12.5 Fstop2: 1000+50

Magnitude specifications

Magnitude constraints: |Unconstrained -
|

Algorithm

Design method: [FIR least-squares v]
I Structure: [Direct—form FIR v]

¥ Design options
Wstopl: 1
Wpass: 1

Wstop2: 1

[oK][Cancel]E Help Apply

Figure A.9: filterbuilder screenshot of least-squares design for TETRA

86

Additional Tables And Figures

Discrete—Time FIR Filter (real)

Direct-Form FIR

Filter Structure

Filter Length 01
Stakle : Yes
Linear Phase : Yes

(Type 1)

Design Method Information

Design Algorithm :

Design Options
Wpass =
HWatopl
HWatop2

o
Foe e

Design Specifications

firls

Sampling Fregquency : 4 kH=
Hesponse : Bandpass
Specification : N, Fatl, Fpl,Fp2,Fsti
FilterOrder : €00

First Stopband Edge : 9350 Hz
First Passkband Edge : S87.5 Hz
Second Passkband Edge : 1.0125 kH=
Second Stopband Edge : 1.05 kH=
Measurements

Sampling Fregquency 4 kH=
First Stopkand Edge 350 H=z

Firast &-dB Point

Firast 3-dB Point

First Passkand Edge
Second Passbkand Edge
Second 3-dB Point
Second &-dB Point
Second Stopkand Edge
First Stopband Atten.
Dasskand Bipple

Second Stopband Atten.
First Transition Width
Second Transition Width

Implementation Cost

Humber of Multipliers
Number of Rdders

Numbker of States
Multiplications per Input
Bdditions per Input Sample

9659.3027 Hz
972.8059% Hz
987.5 Hz
1.0125 kH=z
1.0272 kH=
1.0307 kH=z
1.05 kH=z
BZ.587e dB
0.001220& dB
BZ.587e dB
37.5 Hz
37.5 Hz

20l
a00
a00
a0l
[Ju]a]

Sample

Figure A.10: info screenshot of least-squares design for TETRA

©O00 O U kW -

APPENDIX B

Source Code

B.1 UCF file

The following shows the contents of the XEM3010.ucf file which holds pin dec-
larations and timing constraints.

FrontPanel Host

Interface

pins

NET
NET
NET
NET
NET
NET
NET
NET

NET
NET

NET
NET
NET
NET
NET
NET
NET
NET

”hi_in <0>”
”hi_in <1>”
7?7 hi_in <2>7
7hi_in <3>”
7hi_in <4>”
7 hi_in <5>”
”hi_in <6>”
7 hi_in <7>”

”hi_out<0>” LOC = "V
”hi_out<1>” LOC ="

”hi_inout <0>"
”hi_inout <1>”
”hi_inout <2>”
”hi_inout <3>”
”hi_-inout <4>"
”hi_inout <5>"
”hi_inout <6>”
”hi_inout <7>”

Loc
Loc
Loc
Loc
LocC
Loc
Loc
Loc

Loc
LocC
LocC
Loc
Loc
Loc
LocC
LocC

76

7

78

79

80

88

Source Code

NET ”hi_inout <8>" LOC = "U6”;
NET ”hi_inout <9>" LOC = "V5";
NET ”hi_inout <10>” LOC H
NET ”hi_inout <11>” LOC H
NET ”hi_-inout <12>” LOC H
NET ”hi_inout <13>" LocC H
NET ”hi_inout <14>” LOC = 7T5”7;
NET ”hi_inout <15>” LOC = "R5”;
NET ”"hi_muxsel” LOC = "R9”7;
NET ”7i2c_sda” LOC = "R13” | PULLUP ;
NET 7i2c_scl” Loc = "U13” | PULLUP ;
#NET " jtag_-tck” LOC = "P14”
#NET " jtag-tms” LOC = ”"R14”
#NET " jtag_tdi” LOC = ”R10”
LOC = 7"P12”

#NET 7 jtag_tdo”
s

#
PLL Clock pins

#

NET 7clkl”

#NET 7 clk2”

#NET 7 clk3”

SDRAM
e

#The min setup (TSU)
#we need to add this
#

NET sdram_addr [x] OFF
NET sdram_data[*]| OFF
NET sdram_ras_n OFFSE
NET sdram_cas_n OFFSE
NET sdram_cs_n OFFSET
NET sdram_we_n OFFSET
NET sdram_bank [*]| OFF

#The max clock—to—out
delay

#we need to

NET sdram_data [*]
6.3

add this
OFF

#Set NODELAY mode for

of the SDRAM—8 is 2ns, plus 500ps of board delay
OFFSET to all outputs to SDRAM

SET = 0UT 2.5 BEFORE clkl

SET = 0UT 2.5 BEFORE clkl ;

T = 0OUT : 2.5 : BEFORE clkl ;

T = 0UT 2.5 BEFORE clkl ;

= 0UT : 2.5 : BEFORE clkl ;

= 0UT : 2.5 BEFORE clkl ;

SET = 0UT : 2.5 BEFORE clkl ;

(Tac) of the SDRAM—8 is 6ns, plus 300ps of board<«
OFFSET to all inputs from SDRAM

SET = 1IN 6.5 VALID 0.8 AFTER Clkl ; #<«
inputs from SDRAM.

#By default , the IBUF has a DELAY element to guarantee 0 hold time

#By turning off the DELAY element, we save ~500ps in IBUF delay

NET sdram_data[*] NODELAY | SLEW = "FAST” ;

NET sdram_addr [*] SLEW = ”"FAST” | IOSTANDARD = SSTL2_I;

NET sdram_bank [x] SLEW = "FAST” | IOSTANDARD = SSTL2_I;

NET ”sdram-_cke” LOC = "F8” | SLEW = ”"FAST” | IOSTANDARD = SSTL2_I;

NET ”sdram_cas_n” LOC = "E11” | SLEW = "FAST” | IOSTANDARD = SSTL2_I+>
3

NET ”sdram_ras_n” LOC = ”"D12” | SLEW = "FAST” | IOSTANDARD = SSTL2_I+«>
5

NET ”sdram_-we_n” LoC = "E7” | SLEW = "FAST” | IOSTANDARD = SSTL2_I+>
5

NET ”sdram_cs_n” LOC = "E8” ‘ SLEW = "FAST” | IOSTANDARD = SSTL2_I<
5

NET ”sdram_ldgm” LOC = "D9” | SLEW = "FAST” | IOSTANDARD = SSTL2_I+
5

NET ”sdram_udqm?” LOC = 7A9” | SLEW = "FAST” | IOSTANDARD = SSTL2_I+>

)

B.1 UCF file

89

NET ”sdram_addr<0>" LocC A15”
NET ”sdram_addr<1>” LocC ”A16”

”sdram_addr <2>" LoC ?B15”
NET ”sdram-_addr<3>” Loc 7 B14’

NET ”sdram_addr<4>"
NET ”sdram_addr<5>"
”sdram_addr <6>"
NET ”sdram_addr<7>"
NET ”sdram-_addr<8>"
NET ”sdram_addr<9>"
NET ”sdram_addr<10>"
”?sdram_addr <11>”
NET ”sdram_addr<12>"

NET ”sdram_bank<0>” LOC = "Cl127;

NET ”sdram_bank<1>” LOC = "Al4”;

NET ”sdram_data<0>" LOC =

NET ”sdram_data<1>" LoC =

NET ”sdram_data<2>" LoC =
”sdram_data<3>" LoC =

NET ”sdram_data<4>" LoC =

NET ”sdram_data<5>" LoC =

NET ”sdram_data<6>" LoC =

NET ”sdram_data<7>" LoC =

NET ”sdram_data<8>" LOC =

”sdram_data<9>" LoC
NET ”sdram_data<10>"
NET ”sdram_data<11>"
NET ”sdram_data<12>"
NET ”sdram_data<13>”
NET ”sdram_data<14>"
NET ”sdram_data<15>"

LEDS

NET 7led <0>” LOC = "V147
NET ”led<1>” LOC = "U14”;
NET ”led<2>” LoC = "Tl14”
NET 7led <3>” LOC = 7"V157;
NET 7led <4>” LOoC = 7"U157;
NET 7led <5>” LOC = "V167;
NET 7led<6>” LO0C = "VI177;
NET ”led <7>” LOC = "U16”;
e

Buttons

B

NET "BTN_right” LOC = "P7";
NET ”"BTN_left” LOC = "P6”;
Control

NET 7START”

PIN 42 — START
; # PIN 48 — DRO
PIN 50 — DRI

NET "DRATE<0>”
NET "DRATE<1>”

NET ”DRATE<2>” Loc ”?J18”; # PIN 52 — DR2
NET "FPATH” LoC = ”J17”; # PIN 54 — FPATH
NET 7" CS_inv” Loc = 7G18”; # PIN 62 — /CS
NET ”LL_.CONFIG” LOC = "E18”; # PIN 66 — LL CFG
NET "LVDS” LOoC = "E17”; # PIN 68 — LVDS

90

Source Code

NET ”SCLK_SEL” Loc = ”"D18”; # PIN 70 — CLK SEL

NET "PDWN” L0C = ”"D17”; # PIN 72 — PDWN

B

DATA

#NET "FPGACLK” SYS_.CLK4 (CKLD); # PIN 11 — FPGA_CLK

NET "DRDY_P” LOC = "R16”7 ‘IUSTANDARD = LVDS_25 ; # PIN 19 — DRDY

NET "DRDY.N” LOC = ”"P16” |IOSTANDARD = LVDS_25 ; # PIN 23 — /DRDY

NET ”"SCLK_P” LOC = ”"F10”; +# PIN 77 — SCLK

NET "SCLK-N” LOC = "E10”; # PIN 79 — /SCLK

NET 7"DOUT_P” LOC = "U18” ‘IOSTANDARD = LVDS_25 ; # PIN 16 — DOUT

NET ”"DOUT.N” LoC = "T18’ ‘IUSTANDARD = LVDS_25 ; # PIN 18 — /DOUT

NET ”clkl” TNM_NET = clki;

TIMESPEC TS_clkl = PERIOD "clk1” 10 ns HIGH 50%; #100 MHz Memory clock

NET 7 hi_in<0>” TNM_NET = hi_in<0>;

TIMESPEC TS_hi_in_O_ = PERIOD " hi_in<0>" 20 ns HIGH 50%; #48MHz USB <>
clock

NET 7"SCLK_P” TNM_NET = SCLK_P;

TIMESPEC TS_SCLK_P = PERIOD "SCLK_P” 10.8 ns HIGH 50%; # 30,244 MHz <

ADC clock (32MHz)

©00 O Uk W -

40

41

42

43

44

45

B.2 Main.vhd 91

B.2 Main.vhd

This is the top file of the VHDL implementation, all interfaces are part of this
code.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

Library UNISIM; — Xilinx primitives
use UNISIM.vcomponents.all;

use FRONTPANEL. all;

entity Main is
Port (clki : in STD_LOGIC; — SDRAM clk
BTN_left : in STD_LOGIC;
BTN_right : in STD_LOGIC;
led : out STD_LOGIC_VECTOR (7 downto 0);

—— USB Host
hi_muxsel, i2c_scl, i2c_sda : out STD_LOGIC;

hi_in : in std_logic_vector (7 downto 0); ——Host <«
interface input signals.

hi_out : out std_logic_vector (1 downto 0); ——Host <«
interface output signals.

hi_inout : inout std_logic_vector (15 downto 0);——Host <

interface bidirectional signals.

—— SDRAM

sdram_data : inout std_logic_vector (15 downto 0);

sdram_cke : out std_logic; — clock enable

sdram_bank : out std_logic_vector(l downto O); —— bank <+
selection

sdram_addr : out std_logic_vector(lQ downto 0); —— address

sdram_cs_n : out std_logic;

sdram_ras_n : out std_logic;

sdram_cas_n : out std_logic;

sdram_we_n : out std_logic;

sdram_ldqm : out std_logic;

sdram_udqm : out std_logic;

— ADC

START : out STD_LOGIC; —— pulse=single —sample, constant=<
continously —sampling

PDWN : out STD_LOGIC; —— power down, active low [inverted<
77]

SCLK_SEL : out STD_LOGIC; —— (CLK SEL) shift—clock source <>
select: O=internally , l=externally

LVDS : out STD_LOGIC; — LVDS(0) / CMOS(1) compatible <«
voltage level [inverted?7]

LL_CONFIG : out STD_LOGIC; —— low latency digital filter: 0=«
single —cycle , 1=fast—response

FPATH : out STD_LOGIC; — digital filter path selection: 0=+
wide—bandwidth , l=low—latency

DRATE : out STD_LOGIC_VECTOR (2 downto 0); —— data rate <

selection

92

Source Code

CS_inv : out STD_LOGIC; —— chip select , active low

SCLK_N : in STD_LOGIC; — nmnegative shift clock

SCLK_P : inout STD_LOGIC; —— positive shift clock, O=input, <
l=output

DOUT_N : in STD_LOGIC; —— mnegative LVDS serial data

DOUT_P : in STD_LOGIC; —— positive LVDS serial data

DRDY_N : in STD_LOGIC; — negative data ready

DRDY_P : in STD_LOGIC — positive data ready

)5

end Main;

architecture Behavioral of Main is

COMPONENT' sdramctrl
PORT(

clk : IN std_logic;
clk_read : IN std_logic;
reset : IN std_logic;
cmd_pagewrite : IN std_logic;
cmd_pageread : IN std_logic;
rowaddr_in : IN std_logic_vector (14 downto 0);
fifo_din : IN std_logic_vector (15 downto 0);
sdram_d : INOUT std_logic_vector(15 downto 0);
cmd_ack : OUT std_logic;
cmd_done : OUT std_logic;
fifo_dout : OUT std_logic_vector (15 downto 0);
fifo_write : OUT std_logic;
fifo_read : OUT std_logic;
sdram_cmd : OUT std_logic_vector (3 downto 0);
sdram_ba : OUT std_logic_vector (1 downto 0);
sdram_a : OUT std_logic_vector (12 downto 0)

)
END COMPONENT;

COMPONENT dcm_sys

PORT (
CLKIN_IN : IN std_logic;
RST_IN : IN std_logic;
CLKIN_IBUFG_OUT : OUT std_logic;
CLKO_OUT : OUT std_logic;
LOCKED_OUT : OUT std_logic

)
END COMPONENT;

COMPONENT fifo_gen
PORT(
rst : in std_logic;
wr_clk : IN std_logic;
rd_clk : IN std_logic;
din : IN std_logic_vector (15 downto 0);
wr_en : IN std_logic;
rd_en : IN std_logic;

dout : OUT std_logic_vector (15 downto 0);
full : OUT std_logic;
empty : OUT std_logic;

rd_data_count : OUT std_logic_vector (10 downto 0);
wr_data_count : OUT std_logic_vector (10 downto O)

)
END COMPONENT;

COMPONENT' fifo_64_16

B.2 Main.vhd 93

110 PORT(

111 rst : in std_logic;

112 wr_clk : IN std_logic;

113 rd_clk : IN std_logic;

114 din : IN std_logic_vector (63 downto 0);

115 wr_en : IN std_logic;

116 rd_en : IN std_logic;

117 dout : OUT std_logic_vector (15 downto 0);

118 full : OUT std_logic;

119 empty : OUT std_logic;

120 rd_data_count : OUT std_logic_vector(lO downto 0);

121 wr_data_count : OUT std_logic_vector(S downto 0)

122)

123 END COMPONENT;

124

125 signal reset: std_logic;

126

127 — clock dividers

128 constant C : integer := 50000000; — number used for clock division

129 signal counterl, counter2, counter3 : integer range 0 to C;

130 signal ledsl, leds2, leds3 : std_logic;

131

132 —— OkHost

133 constant W : integer :=3; —number of output wires connected usb <
host interface (HI)

134 signal hi_data: std_logic_vector(23 downto 0);

135 signal ti_clk: std_logic; — Output Buffered copy of the host <«
interface clock (48 MHz). This signal does not need to be <

connected to the target end—points because it is replicated <«
within OKI.

136 signal okl : std_logic_vector (30 downto 0); —(HI to target) Control«
signals to the target endpoints.

137 signal ok2, ok2_21, ok2_20, ok2_pipe_out : std_logic_vector(l6 —
downto 0); ——(Target to HI) Input Control signals from the <«
target endpoints.

138 signal ok2s : std_logic_vector (Wx17—1 downto 0);

139 signal triggers : std_logic_vector (15 downto 0);

140 signal pipe_out_data : std_logic_vector (15 downto 0);

141 signal pipe_out_rdy : std_logic;

142

143 —— SDRAM

144 signal rd_wr_switch : std_logic;

145 signal sdram_clk : std_logic;

146 signal sdram_cmd : std_logic_vector(3 downto O); ——cs_n, ras.n, <
cas_n, we.n

147 signal cmd_pagewrite : std_logic;

148 signal cmd_pageread : std_logic;

149 signal cmd_ack : std_logic;

150 signal cmd_done : std_logic;

151 signal sdram_rowaddr_read, sdram_rowaddr_write ,sdram_rowaddr_in : <
unsigned(14 downto 0);

152 signal sdram_reset : std_logic;

153

154 signal ram_rd_en, ram_wr_en, sdram_rd_en, sdram_wr_en : std_logic;

155 type ram_states is (idle, r_ack_wait, w_ack_wait, busy);

156 signal ram_state : ram_states;

157 signal ram_data : std_logic_vector (23 downto 0);

158 signal cont_counter : unsigned(15 downto 0);

159 signal ramcounter : unsigned(22 downto 0); ——22 =32mB ——14 = 128 kb

160 —— (7 downto 0) = 1 page = 1kByte data

161

162 type transfer_states is (state_A, state_B);

163 signal transfer_state : transfer_states;

164

94 Source Code

signal init : std_logic;
— FIFOs
signal fifo_out_din : std_logic_vector (15 downto 0);
signal fifo_out_full : std_logic;
signal fifo_out_empty : std_logic;
signal fifo_out_wr_en : std_logic;
signal fifo_out_rd_en : std_logic;
signal fifo_out_dout : std_logic_vector (15 downto 0);
signal fifo_out_status : std_logic_vector(lO downto O);
signal fifo_in_dout : std_logic_vector(15 downto 0);
signal fifo_in_wr_en : std_logic;
signal fifo_in_rd_en : std_logic;
signal fifo_in_empty : std_logic;
signal fifo_in_full : std_logic;
signal fifo_in_din : std_logic_vector (63 downto 0);
signal fifo_in_status : std_logic_vector (10 downto 0);

signal fault_fifo_in_empty, fault_fifo_out_empty, fault_fifo_in_full<«>

, fault_fifo_out_full : std_logic;
— FILTER
signal result_ready : std_logic;

signal filter_outl, filter_out2: signed(63 downto 0);

— ADC

signal data : std_logic_vector (23 downto 0);
signal DOUT, DRDY, SCLK : std_logic;

signal min, max, steady_data : signed(23 downto 0);
signal smaller, bigger , new_steady_data : std_logic;

type adc_states is (adc_init7 adc_skip, adc_idle, adc_sample, <

adc_data);

signal adc_state, adc_next : adc_states;

signal data_counter : integer range 0 to 23;

signal steady_data_en, data_counter_en, data_counter_reset , <
DOUT_buffer , data_counter_low : std_logic;

—— unit step function
signal step : signed(23 downto 0);
signal step_counter : unsigned(12 downto 0);

begin

3 3K 3K Ok K K R Ok K 3K 3k K K Ok K R 3k K K K 3K 3k 3k Ok Sk Kk K R K 3K sk Sk Ok Ok kR 3k K K 3K sk sk ok Ok kR kK K K sk sk Sk Ok Ok kR Sk Ok K Kk Sk ok ok
—_— OkHost
sk sk kK K ok K K oK K R K oK oK R K Sk sk kK K Sk sk kK K 3K sk kK K sk sk ok K sk sk o K ok sk ok K ok ok ok K ok ok K K R R K Kk
okHI : entity okHost
port map (hi_in => hi_in,
hi_out => hi_out,
hi_inout => hi_inout,

ti_clk => ti_clk, —out
okl => okl, —out
ok2 => ok2); ——in

ok2s <= ok2_pipe_out & ok2_21 & o0k2_20;

wireOR okWireOR
generic map (N => 3)
port map (ok2 => ok2,

B.2 Main.vhd

95

ok2s => ok2s);

wire20 : okWireOut
port map (okl => okl
ok2 => o0k2_20,
ep_addr => x7207,
ep_datain => hi_data (15 downto 0)); — 16 bit

wire21 : okWireOut
port map (okl => okl,
ok2 => ok2_21,
ep_addr => x”"217,
ep_datain => hi_data (23 downto 8)); — 16 bit

trigInl : okTriggerlIn
port map (okl => okl,
ep_addr => x”537,
ep_clk => not sdram_clk,
ep_trigger => triggers);

pipeOutA3 : okPipeOut
port map (okl => okl
ok2 => ok2_pipe_out,
ep_addr => x"7a3”,
ep_datain => pipe_out_data,
ep_read => pipe_out_rdy);

sk ok ok ok sk ok ok kok ok ok kK ok ok ok sk ok ok ok ok sk ok ok ok ok stk sk o ok ok sk o ok ok ok ok sk ok ok ok ok sk ok Kk Kk sk ok ok ok
—_ LVDS BUFFERS
—— 3k 3k 3k 3k ok ok 3k sk sk ok Ok 3k 3k 3k ok ok sk sk sk 3k ok ok sk sk 3k ok sk sk sk sk ok Ok 3k sk sk ok ok sk sk sk ok kK sk sk 3k ok sk sk sk ok ok Sk sk sk Sk ok ok sk sk sk ok ok kR ke
IBUFDS_1 : IBUFDS
port map (

0 => DOUT,

I => DOUT_P,

IB => DOUT_N);

IBUFDS_2 : IBUFDS
port map (
0 => DRDY,
I => DRDY_P,
IB => DRDY_N);

IBUFDS_3 : IBUFDS
port map (
0 => sclk,
I => SCLK_P,
IB => SCLK_N);

K 3K 3K KKK K M R K K K 3Kk K KK K K R K R K 3Kk 3k K K K K 3 R R K 3K 3Kk K KK Sk K R R R K 3Kk 3K KK K K K K R K 3K 3K K K K K R R K K K ok
— FILTER(s)

sk sk sk sk ok ok ok ok sk ok ok o ok ok sk ok o ok sk sk sk sk sk sk ok sk sk sk sk ok ok s sk sk ok o sk sk ok ok o ok ko K Kk kK K R R kR

FILTERA : ENTITY work.myfilter?2
generic map (filterblock => 1)
port map (
clk => SCLK,
reset => reset,
new_data => new_steady_data,

data => signed(steady_data (23 downto 7)), — ADC data
—_ data => step (16 downto 0), —— impulse response
— data => '0' & x70001”, — constant data

result_ready => result_ready,
result => filter_outl

96 Source Code

)

FILTER1 : ENTITY work.myfilter2
generic map (filterblock => 4, FRAC_SHIFT => 2)
port map (

clk => SCLK,

reset => reset,

new_data => new_steady_data,

data => signed(steady_data(23 downto 7)), — ADCdata
—_ data => step (16 downto 0), — impulse response
—_— result_ready => result_ready ,

result => filter_out2

)

sk Kk ok sk sk sk ok R Sk ok sk oK R oK oK sk ok K ok sk sk Kk ok sk sk Ok Rk ok sk oK R sk ok sk ok Sk sk sk sk SRk ok sk sk ROk R Sk oKk oK R sk ok sk ok Sk ok ok sk o ok
— STEP FUNCTION

et EEEEEEEEEEEEEESEESEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEERSESEESEESE]

step_response: process(sclk, reset) begin
if (reset = '1') then
step <= (others => '0");
step_counter <= (others => '0")

;
elsif (sclk'event and sclk = '1') then
if (new_steady_data = '1') then
step <= x” 0000007 ;
if (step_counter(step_counter 'left) = '0') then
step_counter <= step_counter +41;
if (step_counter(step_counter 'left—1) = '1') then

step_counter <= (others => '1');
step <= x”70000017;
end if;
end if;
end if;
end if;
end process;

sk sk ok sk sk sk ok o sk sk sk ok o o sk sk ok ok o 3k sk ok ko 3 3k o K ok o K K K K R K K
—_— SDRAM / FIFOs

T 3 KOO K K R R K 3K Kk K K K K K R R R K 3k K K K K K R R R K 3K Kk Sk K K K R R K 3K sk Sk Ok Ok Sk K R R R K Kk Ok Ok Ok K R R R K K sk Sk Ok Ok

sdram_cke <= '1';

sdram_cs_n <= sdram_cmd (3)

sdram_ras_n <= sdram_cmd(2)
)
)

3

sdram_cas_n <= sdram_cmd (1
sdram_we_n <= sdram_cmd (0
sdram_ldgm <= '0';
sdram_udqm <= '0';

)
)
)

SDRAM: sdramctrl
PORT MAP(
clk => not sdram_clk,
clk_read => not sdram_clk,
reset => sdram_reset,

cmd_pagewrite => cmd_pagewrite,

cmd_pageread => cmd_pageread,

cmd_ack => cmd_ack ,

cmd_done => cmd_done ,

rowaddr_in => std_logic_vector (sdram_rowaddr_in),

fifo_din => fifo_in_dout,

418

420

B.2 Main.vhd

97

fifo_dout
fifo_write
fifo_read

=> fifo_out_din,
=> fifo_out_wr_en,
=> fifo_in_rd_en,

sdram_cmd
sdram_ba => sdram_bank,
sdram_a => sdram_addr ,
sdram_d => sdram_data

)

sdramDCM
PORT MAP(
CLKIN_IN => clk1l,
RST_IN => '0',
.CLKIN_IBUFG_OUT() ,
CLKO_OUT => sdram_clk
.LOCKED.OUT ()
)5

fifo_in: fifo_64_16
PORT MAP(
rst => reset,
wr_clk => Sclk,
rd_clk => not sdram_clk,
din => fifo_in_din,

dcm_sys

wr_en => fifo_in_wr_en,
rd_en => fifo_in_rd_en,
dout => fifo_in_dout ,

full => fifo_in_full,
empty => fifo_in_empty ,
rd_data_count => fifo_in_status

)

fifo_out: fifo_gen —(16/16)
PORT MAP(

din => fifo_out_din,
rd_clk => ti_clk,
rd_en => fifo_out_rd_en,
rst => reset,
wr_clk => not sdram_clk,
wr_en => fifo_out_wr_en,
dout => fifo_out_dout ,
empty => fifo_out_empty ,
full => fifo_out_full,
wr_data_count => fifo_out_status

)

=> sdram_cmd, — {cs_n,

ras-n , cas-n, we,n}

sk sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk sk ok o ok sk sk sk ok sk sk sk sk ok o sk sk sk ok o sk sk ok ok o ok K ok K Kk kK K R R R

1/0 CONTROLS

K 3K 3K 3K KK Kk R ok R K 3K K K Ok K K R K R K 3K 3k K K K Kk R R K 3K 3k K Ok Ok kR R R K K 3K 3K K K K R R R R K 3K 3Kk K K Ok Kk R R K K Kk

hi_muxsel <= '0O'; — force active usb interfacing

i2¢c_scl <= 'Z'; — tied to high impedance

i2c_sda <= 'Z'; — tied to high impedance

reset <= not(BTN_left) and not(BTN_right); — BTNs are active low
START <= not reset;

PDWN <= '1'; — allways power on, active low

LVDS <= '0"'; —— high speed requires LVDS (setting is ignored <«

under highspeed)
SCLK_SEL <= '0O'; —— must be generated
therefore this setting is ignored
LL_CONFIG <= '1'; — must be high when
FPATH <= '0'; — wide—bandwidth
DRATE <= 71017 —— high speed mode:

internally under highspeed,
under highspeed

using wide—bandwidth (WB)

—

98 Source Code

CS_inv <= '0"'; — O=normal, 1=high impedance on DOUTP: used when<>

DOUTP is communicated through a shared bus

led (0) <= ledsl; — divided ti clock
led (1) <= leds2; — divided sdram clock
led (2) <= leds3; —— divided sclk clock

led(3) <= not(fault_fifo_in_full or fault_fifo_out_full or <
fault_fifo_in_empty or fault_fifo_out_empty) H

— led (0) <= not fault_fifo_in_empty ;
— led (1) <= not fault_fifo_in_full;
—— led (2) <= not fault_fifo_out_empty;
— led (3) <= not fault_fifo_out_full;

led(4) <= not(fifo_in_empty);
led(5) <= not(fifo_in_full);

led (6) <= not(fifo_out_empty);
led(7) <= not(fifo_out_full);

process (BTN_left , BTN_right, min, max, steady_data, ram_data)
begin

if (BTN_left = 'O' and BTN_right = 'l1') then
hi_data <= std_logic_vector (min);

elsif (BTN_left = 'l' and BTN_right = '0O') then
hi_data <= std_logic_vector (max);

else
hi_data <= std_logic_vector (ram_data);

end if;

end process;

pipe_out_data <= fifo_out_dout;

ram_data <= '0' & std_logic_vector(sdram_rowaddr_in) & x”0A” WHEN <

transfer_state = state_A ELSE '0' & std_logic_vector («
sdram_rowaddr_in) & x”70B”;

— WRITE DATA TO FIFO—IN IF SDRAM IS IN WRITE MODE
process (reset, Sclk) begin

if (reset = 'l1') then
init <= '1"';
fifo_in_wr_en <= '0';

fifo_in_din <= (others => '0');
ramcounter <= (others => '0');
cont_counter <= (others => '0');
rd_wr_switch <= '0"';
elsif (Sclk = '1' and Sclk'event) then
fifo_in_din <= std_logic_vector (shift_left(filter_outl ,1)+4<«
filter_out2);

if ((ramcounter (ramcounter 'left) = '1')) then
rd_wr_switch <= '1"';

else
rd_wr_switch <= '0';

end if;

fifo_in_wr_en <= '0';

cont_counter <= cont_counter +41;

if (cont_counter > 4000) then —— counter used to wait for the

SDRAM compliting its initiation phase

init <= '0';

end if;

if (rd_wr_switch = '0' and init = '0') then

P

534

535

536

537

539

B.2 Main.vhd 99

if (result_ready = 'l1') then
ramcounter <= ramcounter +1; — counting transmitted samples
fifo_in_wr_en <= 'l1';
end if;
end if;
end if;
end process;
sync : process(sdram_clk) begin
if (sdram_clk'event and sdram_clk = '0O') then

sdram_wr_en <= ram_wr_en;
sdram_rd_en <= ram_rd_en;
sdram_reset <= reset;
end if;
end process;

transferFSM : process(reset, ti_clk) begin
if reset = 'l1' then
ram_wr_en <= '0';
ram_rd_en <= '0"';

transfer_state <= state_A;
fifo_out_rd_en <= '0';

elsif (ti_clk'event and ti_clk = '1') then
ram_wr_en <= '0';
ram_rd_en <= '0';

fifo_out_rd_en <= pipe_out_rdy;

case transfer_state is
when state_A => — WRITE TO SDRAM

ram_wr_en <= 'l1';
transfer_state <= state_A;
if (triggers (1) = '1') then
transfer_state <= state_B;
end if;
when state_B => — READ FROM SDRAM
ram_rd_en <= '1';
transfer_state <= state_B;
if (triggers(0) = '1') then
transfer_state <= state_A;
end if;

end case;
end if;
end process;

sk sk sk sk ok ok ok sk ok ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk sk ok ok 3k sk ok ok ok 3k sk ok ok ok ok 3k sk ok K o 3 o kK ok kK K K kK Rk
—_ SDRAM NEGOTIATOR
K 3K 3K KKK K M R K K K 3Kk K KK K K R K R K 3Kk 3k K K K K 3 R R K 3K 3Kk K KK Sk K R R R K 3Kk 3K KK K K K K R K 3K 3K K K K K R R K K K ok

——// SDRAM transfer negotiator

—// This block handles communication between the SDRAM controller <
and

—// the FIFOs. The FIFOs act as a simplified cache, holding at <
least

—// a full page on—chip while the PC reads the FIFO. This <
dramatically

—// increases DRAM access performance since full pages can be read <
very

—// quickly . Since the PC transfers are slower than the DRAM, <«
there is

—// no fear of underrun.

559

560
561
562
563
564
565

566

100 Source Code

process (sdram_clk, sdram_reset) begin
if (sdram_reset = 'l1') then
ram_state <= idle;
cmd_pagewrite <= '0';
cmd_pageread <= '0';
sdram_rowaddr_in <= (others => '0');
sdram_rowaddr_read <= (others => '0');
sdram_rowaddr_write <= (others => '0"');

elsif (sdram_clk='0' and sdram_clk 'event) then
cmd_pagewrite <= '0';
cmd_pageread <= '0';

case (ram_state) is
when idle =>
ram_state <= idle;

—— If SDRAM WRITEs are enabled, trigger a block write whenever
—— the Pipe In buffer is at least 1/4 full (1 page, 512 words)<«>

if ((sdram_wr_en = 'l1') and (unsigned(fifo_in_status (10 downto«
7)) >= 70100”)) then —0100
ram_state <= w_ack_wait;
sdram_rowaddr_in <= sdram_rowaddr_write;

—— If SDRAM READs are enabled, trigger a block read whenever
—— the Pipe Out buffer has room for at least 1 page (512 words<+>

elsif ((sdram_rd_en = 'l') and (unsigned(fifo_out_status (10 <
downto 7)) <= 710007)) then
ram_state <= r_ack_wait;
sdram_rowaddr_in <= sdram_rowaddr_read;
end if;

when w_ack_wait =>

cmd_pagewrite <= '1"';
ram_state <= w_ack_wait;
if (cmd_ack = '1') then

sdram_rowaddr _write <= sdram_rowaddr_write +1;
ram_state <= busy;
end if;

when r_ack_wait =>
cmd_pageread <= 'l1';
ram_state <= r_ack_wait;
if (cmd_ack = 'l1') then
sdram_rowaddr_read <= sdram_rowaddr_read + 1;
ram_state <= busy;
end if;

when busy =>
ram_state <= busy;

if (cmd_done = '1') then
ram_state <= idle;
end if;

end case;
end if;
end process;

3 KKK K K R R K 3K 3k K K K K K R R R K K K K K K K R R R K 3K sk Sk Ok K Sk R R K 3K sk Sk Ok Ok Sk R R R R K sk sk Ok Ok Ok K R R R K K sk Sk Ok Ok

B.2 Main.vhd 101

— FIFO FAULTS

K 3K 3K 3K K K Kk R K K K 3K 3K K Ok kR R ok R K 3K 3k K Ok Ok Kk 3k K K 3K 3k K Ok Ok kR 3k ok R K 3k 3Kk K Ok Sk Rk K K K 3K 3K K K Ok kK R R K K Kk

process (ti_clk, reset) begin

if (reset = '1') then
fault_fifo_out_empty <= '0';
elsif (ti_clk = '1' and ti_clk'event) then
if ((fifo_out_rd_en = '1') and (fifo_out_empty = '1')) then
fault_fifo_out_empty <= '1';
end if;
end if;

end process;

process (sclk, reset) begin
if (reset = '1') then
fault_fifo_in_full <= '0';
FC<=(others => '0"');
elsif (sclk = 'l' and sclk'event) then
if ((fifo_in_wr_en = 'l1') and (fifo_in_full = '1')) then
fault_fifo_in_full <= '1';
FC <= FC+1;
end if;
end if;
end process;

process (reset, sdram_clk) begin
if (reset = '1') then

fault_fifo_out_full <= '0';

fault_fifo_in_empty <= '0';

elsif (sdram_clk = 'O' and sdram_clk'event) then
if ((fifo_out_wr_en = '1') and (fifo_out_full = '1')) then
fault_fifo_out_full <= '1';
end if;
if ((fifo_in_rd_en = 'l1') and (fifo_in_empty = '1')) then
fault_fifo_in_empty <= '1';
end if;
end if;

end process;

ks s oK K K 3K sk oK R KK 3K oK KRR 3K oK K IR 3K 3K KR OK 3K K KR K 3K K KR K 3K K K RO K K KK K K K KK K K K KK K K K K K K K K Kk
— CLOCK DIVIDERS

sk sk sk ok ok ok ok ok ok ok ok o ok ok sk ok ok sk sk sk ok sk sk sk o sk sk sk sk o ok s sk sk ok ok sk sk ok ok o 3k ok kK Kk kK R R R R R

led_clockl: process(ti_clk, reset)
begin

if reset = 'l1' then

ledsl <= '0';

counterl <= O0;

elsif (ti_clk = '0O' and ti_clk'event) then

if counterl = C then
ledsl <= not ledsl; — toggle divided clock
counterl <= O0;

else
counterl <= counterl +41;

end if;

end if;

end process;

led_clock2: process(sdram_clk, reset)
begin

if reset = '1' then

leds2 <= '0";

counter2 <= 0;

102 Source Code

elsif (sdram_clk = '0O' and sdram_clk 'event) then
if counter2 = C then
leds2 <= not leds2; —— toggle divided clock
counter2 <= 0;
else
counter2 <= counter2 +1;
end if;
end if;

end process;

led_clock3: process(sclk, reset)
begin

if reset = 'l' then

leds3 <= '0';

counter3 <= 0;

elsif (sclk = '0' and sclk'event) then

if counter3 = C then
leds3 <= not leds3; — toggle divided clock
counter3 <= 0;

else
counter3 <= counter3 +41;

end if;

end if;

end process;

sk sk sk ke sk sk sk ke sk sk sk ks sk sk ks sk sk Ok Sk sk sk R SR kR R R R KRR R R R R R R R R R R R R K
—_ STORE MIN/MAX SAMPLES

sk sk ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok 3k sk ok ok ok 3k 3k ok ok k3 3 kK K o K K K kR R KRR R R R KRR R R R R R R R K K

smaller <= 'l1' WHEN steady_data < min ELSE '0';
bigger <= 'l' WHEN steady_data > max ELSE '0';

min_max: process(reset, sclk) — storing the min. and max values
begin
if reset = 'l' then
min <= X”7FFFFF”; ——set to largest value possible
max <= X”800000”; —set to smallest value possible
elsif(sclk'event and sclk='1l"') then
if (fifo_in_wr_en = 'l1') then
if (smaller = 'l') then
min <= steady_data;
elsif (bigger = 'l1') then
max <= steady_data;
end if;
end if;
end if;

end process;

sk ok ok ok o ok ok ok K oK ok K ok K K ok K oK K ok K oK K K ok K oK R K ok K oK K K ok K oKk K ok K oK kK ok K oKk K ok K oKk K ok K Kk K ok Kk K

—_— ADC DATA SAMPLES FSM

—— the LSB of the data signal is always 0 (the ADC doesn't sample this<«
bit either when drate = 101)

ok ok ok s ok o ok ok S ok o ok K K ok ok K K ok o ok K K ok o oK K K ok o oK K K ok K KK K ok o oKk K o o Sk K ok o Sk K ok o Kk o K

dataCounter : proccss(sclk, data_counter_en , data_counter_reset)
begin
if data_counter_reset = 'l' then

data_counter <= 23;

elsif (sclk'event and sclk='1l"') then
if data_counter_en = 'l' then
data_counter <= data_counter —1;

B.2 Main.vhd

103

end if;
end if;
end process;

process (sclk, reset)
begin
if (reset = '1') then
data<= x”00ff00”;
DOUT_buffer <= '0';
adc_state <= adc_init;
steady_data <= x”70f0f0f";
new_steady_data <= '0';
elsif (sclk'event and sclk = 'l1') then
DOUT _buffer <= DOUT;
adc_state <= adc_next;
new_steady_data <= '0" —
data(data_counter) <= DOUT buffer;

if steady_data_en = 'l' then
new_steady_data <= 'l1';
steady_data <= signed(data);
end if;
end if;
end process;
adc_output_logic : process(adc_state, data)
begin
data_counter_reset <= '0';
data_counter_en <= '0';

steady_data_en <= '0°';

case adc_state is
when adc_init =>
data_counter_reset <= 'l1';
when adc_skip =>
when adc_idle =>
when adc_sample =>

data_counter_en <= '1';
when adc_data =>

steady_data_en <= '1';

data_counter_reset <= 'l1';

end case;
end process;

data_counter_low <= 'l' WHEN data_counter = 1 ELSE '0';
adc_next_state_logic : process(adc_sta‘ce7 DRDY , data_counter_low)
begin

adc_next <= adc_state;

case adc_state is
when adc_init =>

if (DRDY = '1') then
adc_next <= adc_skip;
end if;
when adc_skip =>
if (DRDY = '0') then
adc_next <= adc_idle;
end if;

when adc_idle =>

if (DRDY = '1') then
adc_next <= adc_sample;
end if;

104 Source Code

when adc_sample =>

if (data_counter_low = 'l') then
adc_next <= adc_data;

end if;

when adc_data =>

if (DRDY = '1') then
adc_next <= adc_sample;

else
adc_next <= adc_init;

end if;

end case;
end process;
ko ok ok ok ok ok ok ok ok K ok K ok K ok o Kk K ok o oKk K ok o ok ok ok o oKk ok ok o Kok ok o o ok ok o o Kk ok o o ok ok R Kk ok

end Behavioral;

O OO0~ Uk WN -

—

B.3 myfilter2.vhd 105

B.3 myfilter2.vhd

This is the VHDL implementation of the filter architecture.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.all;

entity myfilter2 is

generic (INPUT_WIDTH : integer := 17;

MULT_WIDTH : integer := 18;

COEF_WIDTH : integer := 18;

FRAC_SHIFT : integer := 0; — used to sync the radix point <
when multiple filters are used

CYCLES_DIVIDER : integer := 1; — must not be changed since no<
clock divider/multiplier has been implemented

MULTS : integer := 8; —— number of multipliers used in each <«

cycle (must be even number, the final amount of <«
multiplications must be <= 576

filterblock : integer := 1); —— selects which filter to <>
implemented (the filters are hardcoded)

Port (

data : in signed (INPUT_WIDTH—-1 downto 0);
result : out SIGNED (63 downto 0);
new_data : in std_logic;

result_ready : out std_logic;

clk : in STD_LOGIC;
reset : in STD_LOGIC);

end myfilter2;

architecture Behavioral of myfilter2 is

COMPONENT MULT18X18
port (
P : out signed (2*MULT_WIDTH—1 downto 0);
A : in signed (MULT_WIDTH-1 downto 0);
B : in signed (MULT_WIDTH-—1 downto 0));
END COMPONENT;

—— order must odd!! up to 575

constant CYCLES : integer := 24/CYCLES_DIVIDER;—— number of multplier <«
reuse within one data cycle (2,4,6,8,10,12)

constant COEFFICIENTS : integer := MULTSxCYCLES; —— Filter #length, <«
must l)(‘, even

constant TAPS : integer := 2xCOEFFICIENTS; — Filter length , must be <«

even (odd order)

TYPE mult_out_type IS ARRAY (NATURAL range <>) OF signed(2xMULT_WIDTH <«

—1 DOWNTO 0) ;
SIGNAL mult_out : mult_out_type (0 TO MULTS —1);
TYPE mult_in IS ARRAY (NATURAL range <>) OF signed (MULT_WIDTH—1 DOWNIO+
0);
SIGNAL mult_in_A : mult_in (0 TO MULTS —1);
SIGNAL mult_in_B : mult_in (0 TO MULTS —1);

TYPE coeff_type IS ARRAY (NATURAL range <>) OF signed (COEF_WIDTH-1 <«
downto 0);
signal coeff : coeff_type(0 to MULTS —1);

47
48

49

106 Source Code

TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF signed (<
INPUT_WIDTH—1 DOWNIO 0) ;

SIGNAL delay_pipeline : delay_pipeline_type (0 TO <«
TAPS —1);
TYPE tapsum_type IS ARRAY (NATURAL range <>) OF signed (INPUT_WIDTH <
DOWNTIO 0) ;
SIGNAL tapsum : tapsum_type (0 TO MULTS —1);
TYPE products_type IS ARRAY (NATURAL range <>) OF signed (2%«MULT_WIDTH <«
—1 DOWNIO 0) ;
SIGNAL products : products_type (0 to (MULTS—1));
TYPE sums_type IS ARRAY (NATURAL range <>) OF signed (43 DOWNIO 0) ;
SIGNAL sums : sums_type (0 to 5);
SIGNAL sums_buffer : sums_type (0 to 5);
signal resultA, resultB : SIGNED(63 downto 0);

— Filter Coefficients
signal filter_coef_addr_small : STD_LOGIC_VECTOR (7 DOWNIO 0) ;
signal filter_coef_dout_small :STD_LOGIC_VECTOR (17 DOWNIO 0);

signal filter_coef_addr_big : STD_LOGIC_VECTOR (4 DOWNIO 0) ;
signal filter_coef_dout_big :STD_LOGIC_VECTOR (18xMULTS—1 DOWNIO 0);

signal coef_counter , coef_counter2 : integer range 0 to CYCLES —1;
signal indexA, indexB : integer range 0 to (CYCLES —1)*MULTS;

HARDCODED FILTERS <

COMPONENT' tetra800
PORT (
clka : IN STD_LOGIC;
addra : IN STD_LOGIC_VECTOR (7 DOWNIO 0);
douta : OUT STD_LOGIC_VECTOR (17 DOWNTO 0);
clkb : IN STD_LOGIC;
addrb : IN STD_LOGIC_VECTOR (4 DOWNIO 0);
doutb : OUT STD_LOGIC_VECTOR (18+MULTS—1 DOWNIO 0)

)
END COMPONENT;

COMPONENT tetra900
PORT (
clka : IN STD_LOGIC;
addra : IN STD_LOGIC_VECTOR (7 DOWNIO 0) ;
douta : OUT STD_LOGIC_VECTOR (17 DOWNTO 0);
clkb : IN STD_LOGIC;
addrb : IN STD_LOGIC_VECTOR (4 DOWNIO 0);
doutb : OUT STD_LOGIC_VECTOR (18*MULTS—1 DOWNIO 0)

)
END COMPONENT;

COMPONENT' U50w1M
PORT (
clka : IN STD_LOGIC;
addra : IN STD_LDGIC_VECTUR(7 DOWNTO 0);
douta : OUT STD_LDGIC_VECTOR(17 DOWNTO 0);
clkb : IN STD_LOGIC;
addrb : IN STD_LOGIC_VECTUR(4 DOWNTO 0) ;
doutb : OUT STD_LOGIC_VECTDR(18*MULTS*1 DOWNTO 0)

)
END COMPONENT;

B.3 myfilter2.vhd

107

COMPONENT U50w12M
PORT (
clka : IN STD_LOGIC;
addra : IN STD_LOGIC_VECTOR (7 DOWNTIO 0);
douta : OUT STD_LOGIC_VECTOR (17 DOWNIO 0) ;
clkb : IN STD_LOGIC;
addrb : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
doutb : OUT STD_LOGIC_VECTOR (18 MULTS—1 DOWNIO 0)

)
END COMPONENT;

COMPONENT' U150w700
PORT (
clka : IN STD_LOGIC;
addra : IN STD_LUGIC_VECTDR.(7 DOWNTO 0);
douta : OUT STD_LDGIC_VECTOR(17 DOWNTO O);
clkb : IN STD_LOGIC;
addrb : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
doutb : OUT STD_LUGIC_VECTDR(18*MULTS*1 DOWNTO 0)

)
END COMPONENT;

COMPONENT U100w13M
PORT (
clka : IN STD_LOGIC;
addra : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR (17 DOWNIO 0) ;
clkb : IN STD_LOGIC;
addrb : IN STD_LUGIC_VECTDR.(4 DOWNTO 0);
doutb : OUT STD_LDGIC_VECTOR(18*MULTS71 DOWNTO 0)

) s
END COMPONENT;

COMPONENT tetra800khz2 ——testfilter
PORT (

clka : IN STD_LOGIC;

addra : IN STD_LOGIC_VECTOR (7 DOWNIO O);
douta : OUT STD_LUGIC_VECTDR(17 DOWNTO 0);
clkb : IN STD_LOGIC;

addrb : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
doutb : OUT STD_LOGIC_VECTOR (143 DOWNIO 0)

)
END COMPONENT;

begin

B1 : if filterblock = 1 generate
filter_coef: tetra800
port map(

clka => clk,
addra => filter_coef_addr_small,
douta => filter_coef_dout_small,
clkb => clk,
addrb => filter_coef_addr_big,
doutb => filter_coef_dout_big

)5

end generate B1;

B2 : if filterblock = 2 generate
filter_coef: tetra900
port map(
clka => clk,

108

Source Code

end

B3

end

B4

end

B5

end

B6

end

BO

addra => filter_coef_addr_small ,
douta => filter_coef_dout_small,
clkb => clk,
addrb => filter_coef_addr_big,
doutb => filter_coef_dout_big

)

generate B2;

if filterblock = 3 generate
filter_coef: U50wlM
— (RADIX POINT @21)
port map(
clka => clk,
addra => filter_coef_addr_small ,
douta => filter_coef_dout_small,
clkb => clk,
addrb => filter_coef_addr_big,
doutb => filter_coef_dout_big
)

generate B3;

if filterblock = 4 generate
filter_coef: U50w12M
— (RADIX POINT @21)
port map(
clka => clk,
addra => filter_coef_addr_small,
douta => filter_coef_dout_small,
clkb => clk,
addrb => filter_coef_addr_big,
doutb => filter_coef_dout_big
)

generate B4;

if filterblock = 5 generate
filter_coef: U150w700
—— (RADIX POINT @20)
port map(
clka => clk,
addra => filter_coef_addr_small ,
douta => filter_coef_dout_small,
clkb => clk,
addrb => filter_coef_addr_big,
doutb => filter_coef_dout_big
)3

generate B5;

if filterblock = 6 generate
filter_coef: U100wl3M
— (RADIX POINT @20)
port map(
clka => clk,
addra => filter_coef_addr_small ,
douta => filter_coef_dout_small,
clkb => clk,
addrb => filter_coef_addr_big,
doutb => filter_coef_dout_big
)

generate B6;

if filterblock = 0 generate
filter_coef: tetra800khz2
— testfilter
port map(

clka => clk,

B.3 myfilter2.vhd 109

addra => filter_coef_addr_small ,
douta => filter_coef_dout_small,
clkb => clk,
addrb => filter_coef_addr_big,
doutb => filter_coef_dout_big

)5

end generate BO;

filter_coef_addr_small <= std_logic_vector(to_unsigned(coef_counter<—>

,7)) & '1'; — dummy value
filter_coef_addr_big <= (others => '0') WHEN coef_counter = CYCLES —2¢>
ELSE

std_logic_vector (to_unsigned(1l, 5))WHEN coef_counter = <
CYCLES —1 ELSE
std_logic_vector (to_unsigned(coef_counter+2,5));

counter_control : process(clk, reset) begin
if (reset = '1') then
coef_counter <= 0;
coef_counter2 <= 0; —buffered counter, used for timing <
optimisation
elsif (clk = 'l' and clk'event) then
coef_counter <= 0;
coef_counter2 <= 0;
if (coef_counter = CYCLES—1) then
coef_counter <= 0;
coef_counter2 <= 0;
elsif (coef_counter /= 0) then
coef_counter <= coef_counter -+1;
coef_counter2 <= coef_counter2 +1;
elsif (new_data = '1') then
coef_counter <= coef_counter +41;
coef_counter2 <= coef_counter2 +1;
end if;
end if;
end process;

— loading the coefficients for one cycle
gen_c: for N in 0 to (MULTS—1) generate
coeff (N) <= signed(filter_coef_dout_big(COEF_WIDTH*N+(COEF_WIDTH >
—1) downto COEF_WIDTHx*N));
end generate;

— delay pipeline

delay_pipe : process (clk, reset) begin
if reset = 'l1' then
delay_pipeline (0 to (TAPS—1)) <= (others => (others => '0'));
elsif clk'event and clk = 'l1' then
if new_data= 'l' then

delay_pipeline (0) <= data;
delay_pipeline(l to TAPS—1) <= delay_pipeline(0 to TAPS—2);
end if;
end if;
end process;

—— calculationg the tapsums
indexA <= coef_counter*MULTS;
indexB <= coef_counter2*xMULTS;

process (clk, reset)
variable indexl: integer ;
variable index2: integer ;

110 Source Code

begin
if (reset = '1') then
tapsum (0 TO (MULTS —1)) <= (OTHERS =>(OTHERS => '0'"));
elsif (clk'event and clk="'1") then
for N in 1 to (MULTS) loop
index1 : N—1+ indexA;
index2 : TAPS—N—indexB;
tapsum(N—1) <= resize(delay_pipeline(index1), INPUT_WIDTH+1) 4 <«
resize(delay_pipeline(index2), INPUT_WIDTH+1);
end loop;
end if;
end process;

— instantiating the multipliers
gen_1: for I in 1 to MULTS generate
MULT_A : MULT18X18
port map (
P => mult_out (I—-1),
A => mult_in_A(I-1),
B => mult_in_B(I-1)
)

;
end generate gen_1;

— connecting multiplier inputs:
gen_in: for I in 1 to MULTS generate
mult_in_A(I—-1) <= resize(coeff(I—1),MULT_WIDTH);
mult_in_B(I—1) <= resize(tapsum(I—1), MULT_WIDTH);
end generate gen_in;

— creating muxs to control adder inputs
genning : for N in 1 to (MULTS/2) generate
sums_buffer (N—1) <= sums(N—1) WHEN coef_counter /= 3 ELSE (others <
=>'0'); — hardcoded
end generate genning;

— adder tree
addition : process(clk, reset) begin
if (reset = '1') then
result <= (others => '0"');
result_ready <= '0';
sums (0 TO sums 'right) <= (OTHERS => (OTHERS => '0'));
elsif (clk'event and clk="'1l") then
result_ready <= '0';

for N in 1 to (MULTS) loop
products (N—1) <= (mult_out(N—1));
end loop;

for N in 1 to (MULTS/2) loop
sums (N—1) <= sums_buffer (N—1) 4+ products ((N—1))+ products (MULTS«
/2+(N=1));

end loop;

resultA <= resize(sums(0) ,64) + resize(sums (1) ,64) + resize(sums<+>

(2) ,64);
resultB <= resize(sums(3) ,64) + resize(sums(4),64) + resize(sums<>
(5),64);
if (coef_counter = 4) then —— hardcoded

result_ready <= '1';
result <= shift_left(resultA+resultB, FRAC_SHIFT);
end if;

357
358

360

B.3 myfilter2.vhd

111

end if;
end process;

end Behavioral;

© 00Uk WN -

112 Source Code

B.4 ADC.xfp

This is the source code for USB GUI loaded with FrontPanel used to communi-
cate with the FPGA.

<?xml version="1.0" encoding="1SO—-8859—1"7>
<!—
ADG-FPGA Data Collector

—>

<!—
Panel 2

—>

<object class="okPanel” name="panell”>
<title>WireOut Panel</title>
<size>320,210</size>

<object class="0kLED”>
<position>15,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££00</color>
<endpoint>0x21</endpoint>
<bit>15</bit>

</object>

<object class="0kLED”>
<position>25,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££00</color>
<endpoint>0x21</endpoint>
<bit>14</bit>

</object>

<object class="okLED”>
<position>35,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x21</endpoint>
<bit>13</bit>

</object>

<object class="okLED”">
<position>45,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££00</color>
<endpoint>0x21</endpoint>
<bit>12</bit>

</object>

<object class="okLED”>
<position>65,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££00</color>
<endpoint>0x21</endpoint>

B.4 ADC.xfp

113

<bit>11</bit>
</object>

<object class="okLED”>
<position>75,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x21</endpoint>
<bit>10</bit>

</object>

<object class="okLED”>
<position>85,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x21</endpoint>
<bit>9</bit>

</object>

<object class="okLED”>
<position>95,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00£f£00</color>
<endpoint>0x21</endpoint>
<bit>8</bit>

</object>

<object class="0okLED”>

<position>115,80</position>

<size>10,10</size>
<style>CRICLE</style>
<color>#00£f£f00</color>
<endpoint>0x21</endpoint>
<bit>7</bit>

</object>

<object class="0okLED”>

<position>125,80</position>

<size>10,10</size>
<style>CRICLE</style>
<color>#00£f£f00</color>
<endpoint>0x21</endpoint>
<bit>6</bit>

</object>

<object class="0okLED”>

<position>135,80</position>

<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x21</endpoint>
<bit>5</bit>

</object>

<object class="0okLED”>

<position>145,80</position>

<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x21</endpoint>
<bit>4</bit>

</object>

114

Source Code

<object class="okLED”>
<position>165,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££00</color>
<endpoint>0x21</endpoint>
<bit>3</bit>

</object>

<object class="0kLED”>
<position>175,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x21</endpoint>
<bit>2</bit>

</object>

<object class="0okLED”>
<position>185,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££00</color>
<endpoint>0x21</endpoint>
<bit>1</bit>

</object>

<object class="0kLED”>
<position>195,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x21</endpoint>
<bit>0</bit>

</object>

<object class="okLED”>
<position>210,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00£f£f00</color>
<endpoint>0x20</endpoint>
<bit>7</bit>

</object>

<object class="okLED”>
<position>220,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00£f£00</color>
<endpoint>0x20</endpoint>
<bit>6</bit>

</object>

<object class="okLED”>
<position>230,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££00</color>
<endpoint>0x20</endpoint>
<bit>5</bit>

</object>

<object class="okLED"”>

B.4 ADC.xfp

115

<position>240,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00£f£f00</color>
<endpoint>0x20</endpoint>
<bit>4</bit>

</object>

<object class="okLED”>
<position>260,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x20</endpoint>
<bit>3</bit>

</object>

<object class="okLED”>
<position>270,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££f00</color>
<endpoint>0x20</endpoint>
<bit>2</bit>

</object>

<object class="okLED”>
<position>280,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00££00</color>
<endpoint>0x20</endpoint>
<bit>1</bit>

</object>

<object class="okLED”>
<position>290,80</position>
<size>10,10</size>
<style>CRICLE</style>
<color>#00£f£f00</color>
<endpoint>0x20</endpoint>
<bit>0</bit>

</object>

<object class="okHex">
<color>#00£000</color>
<position>10,10</position>
<size>44,60</size>

<tooltip>WireOut21[23:20]</tooltip>

<endpoint>0x21</endpoint>
<bit>12</bit>

</object>

<object class="okHex">
<color>#00£000</color>
<position>60,10</position>
<size>44,60</size>

<tooltip>WireOut21[19:16]</tooltip>

<endpoint>0x21</endpoint>
<bit>8</bit>

</object>

<object class="okHex">
<color>#00£000</color>
<position>110,10</position>
<size>44,60</size>

116

Source Code

<tooltip>WireOut21[15:12]</tooltip>
<endpoint>0x21</endpoint>
<bit>4</bit>

</object>

<object class="okHex">
<color>#00£000</color>
<position>160,10</position>
<size>44,60</size>
<tooltip>WireOut21[11:8]</tooltip>
<endpoint>0x21</endpoint>
<bit>0</bit>

</object>

<object class="okHex”>
<color>#00£000</color>
<position>210,10</position>
<size>44,60</size>
<tooltip>WireOut21[7:4]</tooltip>
<endpoint>0x20</endpoint>
<bit>4</bit>

</object>

<object class="okHex">
<color>#00£000</color>
<position>260,10</position>
<size>44,60</size>
<tooltip>WireOut21[3:0]</tooltip>
<endpoint>0x20</endpoint>
<bit>0</bit>

</object>

<object class="okFilePipe”>
<label>Capture Data</label>
<position>90,120</position>
<size>150,30</size>
<endpoint>0xa3</endpoint>
<!— <length>33554432</length> —>
<length>131072</length>

<tooltip>Read a file from Pipe 0xA3</tooltip>

<!— <append />

<starttrigger><endpoint>0x40</endpoint><bit>0</bit></starttrigger>
<donetrigger><endpoint>0x40</endpoint><bit>1</bit></donetrigger>

—>
</object>

<object class="okTriggerButton”>
<label>[A] WRITE</label>
<position>40,170</position>
<size>100,25</size>
<endpoint>0x53</endpoint>
<bit>0</bit>
<tooltip>Load 1 Page </tooltip>

</object>

<object class="okTriggerButton”>
<label>[B] READ</label>
<position>180,170</position>
<size>100,25</size>
<endpoint>0x53</endpoint>
<bit>1</bit>
<tooltip>Store 1 Page </tooltip>

</object>

</object>

<object class="okPanel” name="panel2”>

B.4 ADC.xfp

117

<title>ADC—FPGA Data Collector</title>
<size>200,20</size>

<!— PLL22393 settings
These will only be visible when the attached device
a 22393 PLL (XEM3010).
—>
<object class="0kPLL22393">
<label>PLL1</label>
<position>10,0</position>
<size>40,15</size>
<pll0 p="400" q:”48”/>
<outputO0 source="pll0_0" divider="8">on</output0>
<outputl source="ref” divider="1">on</outputl>
</object>
<object class="0kPLL22393">
<label>PLL2</label>
<position>130,0</position>
<size>40,15</size>
<pll0 p="400" q="48"/>
<outputO0 source="pll0_0" divider="16">on</output0>
<outputl source="ref” divider="2">on</outputl>
</object>

<object class="okCFrontPanel”>
<object class="IsFrontPanelEnabled”>
</object>
</object>
</object>

</resource>

has

© 0O Uk WN -

118 Source Code

B.5 myfilter2.m

This is the code used to simulate the filter architecture in MATLAB.

clc
close all
clear all

% load coefficients
fid=fopen('tetra.txt','rt"');
a=fscanf (fid, '%c');

fclose (fid);

coefl = regexp(a,',','split');
C = (size(coefl,2)); %number of rows
coefsl = zeros(1,C);

for i = 1:¢C
coefs1(i) = str2double(cell2mat (coefl(i)));
end

TAPS = 2xC;

MULTS = 8;

cycles = 24;

S = 1000; %samples
data = ones(1,S);

d_pipe = zeros (1,TAPS);
results = zeros (1,TAPS —100);
tapsums = zeros (1,MULTS);
coeffl = zeros (1, MULTS);
productsl = zeros (1, MULTS);

for L = 1:8;

result_templ = O0;

d_pipe (2: TAPS) = d_pipe (1:TAPS—1);
d_pipe(l) = data(L);

for M = l:cycles; %multiplier cycles

index = (M—1)*xMULTS;
for N = 1:MULTS; %multiplier data
index1l = N + index;
index2 = TAPS+1 — (N 4+ index) ;
tapsums (N) = d_pipe(index1l) + d_pipe(index2);
end
for N = 1:MULTS;
coeff1(N) = coefsl(N4+(M—1)*xMULTS);

end
for N = 1:MULTS;
result_templ = result_templ + tapsums(N) * coeffl(N);
end
end
results (L) = result_templ ;
end
Fs = 378000; % Sampling frequency
T = 1/Fs; % Sample time
L = length(results); % Length of signal

t (0:L—1)*T; % Time vector

B.5 myfilter2.m

119

NFFT = 2 nextpow2(L); % Next power

sample = zeros(1,L);
for k = 1:L;

sample (k) = k;
end

figure (1)
subplot (211);
plot (sample ,results, 'r—"');
subplot (212);
Y = fft (results ,NFFT)/L;
f = Fs/2«+linspace (0,1 ,NFFT/2+1);
YY = 2xabs(Y(1:NFFT/241));
YYdb = mag2db (YY/max(YY));
plot (£,YYdb, 'r')

of 2 from

length

of y

120 Source Code

Bibliography

Micron Technology Inc. Sdr sdram mt48lc64m4a2, mt48lc32m8a2,
mt48lc16m16a2 specifications. PDF: 09005aef8091e6d1, 256Mb_sdr.pdf -
Rev. N 1/10 EN, 1999.

Opal Kelly Incorporated. Xem3010 user’s manual. 20091113.

Texas Instruments. Ads1675. 4MSPS 24-Bit Analog-to-Digital Converter,
SBAS416D-DECEMBER 2008-REVISED AUGUST 2010.

Texas Instruments. Ads1675ref. User’s Guide, SBAU162A-December 2009-
Revised September 2010.

Dimitris G. Manolakis John G Proakis. Digital Signal Processing - Princi-
ples, Algorithms, and Applications /4. edition. Pearson, 2007.

Opal Kelly. Frontpanel user manual. 2012-01-03.

Edmund Lai. Practical Digital Signal Processing for Engineers and Tech-
nicians. Elsevier, Newnes, 2004.

Ricardo A. Losada. Digital Filters - Principals and Applications with MAT-
LAB. John Wiley and Sons Inc, 2011.

Uwe Meyer-Baese. Digital Signal Processing with Field Programmable Gate
Arrays 3. edtion. Springer, 2007.

Fred J. Taylor. Digital Filters with MATLAB. The MathWorks Inc., 2008.

Xilinx. Timing constraints user guide. UG612 (v 13.1), March 1, 2011.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Project Description
	1.2 Approach
	1.3 Equipment
	1.4 Software Tools
	1.5 Setup
	1.6 Thesis Structure

	2 Digital Filters
	2.1 Filter Types
	2.2 Filter Structures
	2.3 Requirements
	2.4 Filter Analysis
	2.5 FIR Filters
	2.6 Chapter Concluding Remarks

	3 Implementation
	3.1 Creating an Environment
	3.2 SDRAM
	3.3 Implementation of Filters
	3.4 FPGA Resources
	3.5 Chapter Concluding Remarks

	4 Testing
	4.1 ADC FSM
	4.2 Filter Architecture

	5 Results
	5.1 Single Carrier
	5.2 Dual Carrier
	5.3 FPGA Utilization
	5.4 Latency

	6 Future Work
	7 Conclusion
	A Additional Tables And Figures
	B Source Code
	B.1 UCF file
	B.2 Main.vhd
	B.3 myfilter2.vhd
	B.4 ADC.xfp
	B.5 myfilter2.m

