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Abstract

The continuous and safe delivery of electricity is a matter of concern amongst
almost everyone, from single customers at their homes to industry owners and
transmission system operators. Due to the nature of electricity, the amount
produced and consumed must be equal. If, for some unexpected reason, those
two quantities are not equal then the system is imbalanced and load demand
has to be shed. This occurrence is costly and undesired. The main tool that
transmission system operators have to avoid it is to allocate electricity reserves
and use them to balance up the system if required

An alternative probabilistic formulation to the traditional deterministic “n-1”
criteria is given in this thesis by using a stochastic programming framework. The
solution of the optimization model indicates the total amount of reserves that
must be allocated at the lowest possible cost. Moreover, two ways of accounting
for the risk are discussed, namely the Loss of Load Probability (LOLP) and
the Conditional Value at Risk (CVar) formulation. The scenarios are computed
from a function of reserve needs which takes into account the power load demand
forecast error, the wind production forecast error and the failures of the power
plants. Finally, the usefulness of the methods is tested with data from West
Denmark electricity area. The results show that the models are able to account
for the market principles and provide reasonable levels of optimal reserves, with
some room for improvement if the methodology is intended to be implemented
in a real system.
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Chapter 1

Introduction

Electricity is a commodity that must be supplied continuously at all times at
certain frequency. When this requirement is not fulfilled and there is shortage
of electricity, consumers can face the very costly consequences of outages: their
production being stopped or their systems collapsed. In a lesser extent, service
interruptions also affect electricity producers as they are not able to sell the
output of their plants. Therefore it is of high importance that the demand
is always covered. The main tool that market operators have in order to avoid
electricity interruptions is the allocation of reserves also called ancillary services.
In practice, scheduling reserves means that the system is operating at less than
full capacity and the extra capacity will only be used in case of disturbances,
also named contingencies.

In a system with thousands of components [1] the failure of a single component
is not a rare event. The reasons why components fail can go from tempera-
ture changes in the weather or in the operating temperature to simple human
mistakes. Nevertheless, other kind of disturbances than failures also have an
effect on the amount of load that must be shed, namely changes in the wind
and demand predictions. Unexpectedly big increase in the demand makes the
system imbalanced and corrective actions must be taken, either activating the
reserves or on the worse case, shedding load. Similarly happens with wind power
production. If the wind turns out to blow at less speed than forecast, the energy
input into the system will be lower than expected and thus imbalanced.
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If the security of the system wants to be maximized then the allocated ancillary
services should be as great as possible. This means that all power plants must
have their generators ready to be connected at any time if they are not producing
energy already. Besides the technical issues this constrain arises, the overall
probability of not meeting the demand will be decrease. From the economical
point of view this constrain would be highly expensive since producers are paid
to have their plants ready to produce at all times. On the contrary, if few reserve
is allocated, the cost of allocating reserve would decrease. This would lead to an
increase of the probability of facing an unprotected contingency and in case one
would happen, a high societal cost. The power system operator faces a trade-off
between the cost of allocating reserve and the societal cost of not allocating
enough.

The motivation of this thesis becomes obvious when studying the specific case
of West Denmark, also called DK1 area. Nowadays, a simple deterministic rule
is used to compute the amount of reserves that should be allocated. In the case
of manual reserves (ie. one of the three types or reserves) it is set equal to
the largest production unit online. This method is known as the n-1 criterion
does not take into account the probability of occurrence of contingencies such
as failures in the system or sudden changes in the demand and wind power
production.

The objective of this thesis is to develop an alternative method capable of
determining the optimal amount of reserve. The final aim is to minimize the cost
that the society has to pay in order to obtain a continuous and safe electricity
delivery, taking into account both the cost of purchasing reserves as well as the
cost derived from shedding load. The methodology proposed uses a stochastic
programming framework to deal with the stochastic nature of the power plant
failures, the wind power production and the electricity demand. Furthermore,
the performance of the models developed is tested in a case study. The data
related to DK1 area and includes information of wind power production, net
electricity demand and failures in the system from the 1st January 2009 at
00:00 CET to the 30th June 2012 at 23:00 CET.

1.1 Thesis overview

Chapter 2 starts by giving an overview of the electricity market structure in
Denmark, followed by a explanation of the reserve market and a definition of
the three types of reserves that can be allocated. Then the data used along the
thesis is briefly presented and graphically studied.
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Chapter 3 deals with the core of the thesis which is the three different models
for optimizing the total reserve level, first as a general formulation and then
specific to the study case.

Chapter 4 elaborates on the estimation of the price for allocating reserves and
also on the generation of scenarios characterized by a reserve need.

Chapter 5 shows the results of applying the models to the data.
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Chapter 2
Electricity market, reserve

market and data
presentation

Firstly in this chapter an overview of Danish electricity market and the way it
works is presented. Secondly, it is defined what reserve is and how is it managed
in West Denmark and finally the data used for the study case is shown.

2.1 Electricity as a commodity

Electricity is one of the most necessary elements in contemporary society. It is
used by millions of people in their houses and offices to empower appliances, cool
down or heat the air, amongst many other applications; industry owners need
it to create products or services. The energy produced by power plants is sold
as a commodity in markets. However, the market structure is quite different
to other products. The main differences with other markets are caused by the
nature of the electricity itself and the reasons can be summarized as[2]:

1. The physical system works much faster than any other market, electricity
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can be transported long distances in much faster way than other com-
modities. However, it requires special and expensive infrastructure called
a transmission system which have limitations on how much energy can be
transported simultaneously.

2. The energy from the generators is often pooled on the way to the con-
sumer, making the consumer unable to determine from which power plant
electricity comes from. The system operators play an important role in
this pooling, controlling it.

3. The electricity must be produced at the same time when it is consumed
as it cannot be stored at a reasonable price.

4. The demand is very inelastic and consumers do not modify their con-
sumption depending on the price. One reason is that electricity is hard
to substitute and another reason is that small consumers are not affected
by prices changes instantly. This fact could change if smart grids were
installed [3].

2.2 Market structure in Western Denmark

The electricity market in West Denmark is nowadays a competitive market,
where any qualified competitor can participate. It is liberalized as opposed to
centralized market so the competence amongst companies increases and there-
fore the efficiency is increased, hence the quality of the services with a minimum
cost [4]. West Denmark has been integrated into the Nordic Power exchange area
since 1999, trading energy through the Nord Pool Spot market[5]. The Nord
Pool Spot AS market is an organization that offers both day-ahead and intraday
markets to its customers, 370 companies from 20 countries. It is is owned by the
transmission system operators of Norway, Statnett SF, the Sweedish, Svenska
Kraftnat, the Finnish ,Fingrid Oyj, and the Danish Energinet.dk.

The grid corresponding to the West Denmark area or DK1 covers the Jutland
peninsula, Funen island and the rest of the islands west of the Great Belt. A
map illustrating the division is shown in Figure 2.1

Depending on the time when the electricity is traded one could distinguish
between two markets: The Financial Market for futures and forward contracts,
and the Nord Pool market and its three submarkets for short term transactions.
A summary time line is presented in Figure 2.2
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Figure 2.1: Map of Denmark. The West Denmark DK1 gird region is high-
lighted in orange while East Denmark or DK2 is colored in green.
The main transmission lines and power plants are included as well
[3]



8 Electricity market, reserve market and data presentation

Figure 2.2: Time line showing the organization of the markets in Denmark
along time

2.2.1 Financial Market

The financial market is used to settle contracts of energy delivered from 6 weeks
to three years into the future. The derivates are base and peak load futures
and forwards, options, and Contracts for Difference. The market itself is run
by the NASDAQ OMX Commodities group and it has been designed to satisfy
the needs of various participants[6]:

1. Producers, retailers and end-users who use the products as risk manage-
ment tools. The price is volatile and can vary a lot from day to day,
affected by many factors like weather, failures, or politics. The risk that
producers and consumers are facing is big. In order to minimize it, the
energy delivered in the future is sold at the reference System Price of the
total Nordic power market

2. Traders who profit from volatility in the power market, and contribute to
high liquidity and trade activity.

There is no physical delivery of financial market power contracts. Cash settle-
ment is made throughout the trading- and/or the delivery period, starting at
the due date of each contact (depending on whether the product is a future
or forward). Financial contracts are entered into without regard to techni-
cal conditions, such as grid congestion, access to capacity, and other technical
restrictions.[7]
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2.2.2 Nord Pool market

The Nord pool area consists of three sub-markets, all with different functions
at different trading times: Elspot, Elbas and Regulating Market.

2.2.2.1 Elspot

The Elspot Market, also known as the day-ahead market, allows Nordic market
participants trade power contracts for next-day physical delivery. At noon each
day, bids for either purchase or sale are collected. Figure 2.3 shows a timeline
with the process of bidding, accepting and production planning.

Three bidding types are available, namely hourly bids, block bids, and flexible
hourly bids. As soon as the noon deadline for participants to submit bids has
passed, all buy and sell orders are gathered into two curves for each power-
delivery hour: an aggregate demand curve and an aggregate supply curve. The
spot price for each hour is determined by the intersection of the aggregate supply
and demand curves. This spot price is also called the System Price.[8]

Figure 2.3: Time line showing the process of bidding, accepting and planning
at Elspot [2]

2.2.2.2 Elbas

Elbas is a continuous market where power trading takes place until one hour
before the power is delivered. Members submit bids stating how much power
they want to sell and buy and at what price. Trading is then set based on a
first-come, first-served basis between a seller and a buyer. West Denmark joined
this market in 2008. Since energy already traded on the Elspot market is higher
prioritized than energy traded on the Elbas market, transactions between areas
where transmission capacities are already fully utilized are not allowed.
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This market allows members to adjust their power production or consumption
plans close to delivery in case the production or consumption schedules deviate
from the original plan.

2.2.2.3 Real-time Market

In DK1 energinet.dk is in charge of the real-time market, also called regulating
market.

Cleared up to 45 minutes prior to the upcoming delivery hour, the regulating
market allocates load following bands among production units with capability to
provide this service and interest in providing it. A load following power plant is
a power plant that adjusts its power output as demand for electricity fluctuates
throughout the day.

The bids must be submitted to Energinet.dk and may cover an entire day of
operation. The entered prices and volumes can be adjusted by the player up
to 45 minutes prior to the upcoming delivery hour. Players must be able to
fully activate a given bid in maximum 15 minutes from receipt of the activation
order.

2.2.3 Ancillary services in West Denmark

The ancillary services guarantee that enough back-up generation is available in
case of equipment failure, drastic fluctuations of production from intermittent
sources and sudden demand changes [4]. Security os achieved trough electricity
reserves that both consumers and producers can offer. In DK1 the TSO En-
erginet.dk is responsible for purchasing security on behalf of the users of the
system. Energinet.dk pays the providers of the ancillary services and recover
the cost from the users trough taxes. Note producers are paid for the availability
of the energy, even though in the future it might not have to be consumed.

Depending on certain technical conditions, Energinet.dk buys several kinds of
reserves: primary reserves, secondary reserves, manual reserves and short-circuit
power, reactive reserves and voltage control reserves, being the three first types
the most relevant for this study. A generating unit can participate offering the
three first types of reserve as shown in Figure 2.4 even though in practice it
might provide none or one or two [9]
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Figure 2.4: Allocation of the capacity of a generating unit that participates
offering the three kinds of reserve plus a scheduled power

2.2.3.1 Primary reserves

The primary reserve regulation ensures that the balance between production
and consumption is restored after a deviation from the 50Hz of frequency. The
rotor of a generator spins at a different speed when the demand changes ie if
the demand increases the rotor spins slower. The first half of the reserve must
be activated within 15 seconds, while the second half must be fully supplying
within 30 seconds. The reserve must be supplied maximum for 15 minutes.
Energinet.dk buys two types of primary reserve, upwards regulation power and
downward regulation power, in case of under frequency or over frequency re-
spectively. An auction is held once a day for the coming day of operation. The
bids are sent before 15:00, stating an hour-by-hour volume and price having
the 24-hour period divided into six equally sized blocks. In 2011 the quantity
of the primary reserves sums up to +/- 27MW, having the option of buying
+/-90MW from other European transmission system operator as well as from
East Denmark area, the Nordic countries and Germany.
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2.2.3.2 Secondary reserves

The secondary reserve serves two proposes. One is to release the primary reserve
which has been activated and the other is to restore any imbalances on the inter-
connections to follow the agreed plan. The requested energy must be supplied
within 15 minutes and it can be supplied by a combination of unit in operation
and fast-start units. It consists of upward and downward regulation that can be
provided by several of production or consumption units. Energinet.dk currently
buys approx. +/- 90MW on a monthly basis, based on a recommendation from
the ENTSO-E RG Continental Europe organization.

2.2.3.3 Manual reserves

Also called tertiary reserves, relieves the secondary reserve in the event of minor
imbalances and ensures that the demand is fulfilled, in the event of outages,
restrictions affecting productions plants and international connections. It is
used to release the secondary reserve as it is usually less costly. It must be
supplied in full within 15 minutes of activation, so usually it is players with fast
start units as gas turbines who usually bid into this market. Players must send
their hourly volume and bids before 9:30 on the day before the day of operation
and each bid must be of a minimum of 10MW and a maximum of 50MW. The
bids are sorted according to the price per MW and the requirements are covered
by selecting cheaper bids first. Bids are always accepted in their entirely or not
at all, meaning that in situations where acceptance of a bid of more than 25MW
will lead to excess of fulfillment of the requirement for reserves during the hour
in question, such bids can be disregarded.[10]

Energinet.dk activates the reserve by manually ordering upward and downward
regulation to the suppliers. The method used to determine the requirements for
reserve is known as the n-1 rule: setting the minimum amount of manual reserves
to be the capacity of the largest online generator. In West Denmark, the amount
of manual reserve bought during the considered period varies considerably as
shown in Figure 2.5.

2.3 Spinning Reserve definition

An alternative way of differentiating between types of reserves is to split them
into spinning reserves and non-spinning reserves. From [9] “The spinning reserve
is the unused capacity which can be activated on decision of the system operator
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Figure 2.5: Total purchase of upward manual reserve in MW/h in DK1

and which is provided devices which are synchronized to the network and able
to affect the active power”. Similarly, non-spinning reserves are the reserves
that are not activated on the decision of the system operator. According to
this definition, spinning reserves are equal to the manual reserves. Secondary
and primary reserves are not included in the definition since they are controlled
automatically.

2.4 Presentation of data

All the data used for the study case in this project refers to the period from the
1st January 2009 at 00:00 CET to the 30 June 2012 at 23:00 CET. The training
period goes from the 1st January 2009 at 00:00 CET to the 30st June 2011 at
23:00 CET, while the test period is set to be from the 1st July 2011 at 00:00
CET to the 30th June 2012 at 23:00. The resolution is hourly with a total of
30646 observations, 21863 belong to the training set and 8783 to the test set.
All the data refers to the are of West Denmark, also called DK1 area .

The optimization model will use the following data information to draw empir-
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ical results:

1. Scenarios of wind power production and power load demand forecast errors

2. Scenarios of the quantity of MW as a consequence of power plant outages

3. Power net demand forecasts

The data is briefly presented in the following subsections.

2.4.1 Scenarios of wind power production and power load
demand

Scenarios for wind power and power load have been provided by ENFOR A/S.
Scenarios are created in pairs so the correlation between both variables is already
taken into account. There are 5000 pairs of scenarios each hour covering the
whole test data period. They are generated with a lead time of 24 hours at 9:00
CET in the morning.

The input of the models developed in this project is the forecast error of both
the power load and the wind power production. It is assumed that wind power
producers bid into the electricity market their expected production. If a scenario
has a greater value of wind power production than what was expected then there
will be extra power to sell; if, on the other hand, the realized wind is less than
the expected value and some reserves will be needed. Similarly with the power
load, it is assumed that the amount of power purchased in Nordpool is equal to
the expected power load demand.

Scenarios are assumed to be all the possible realizations of reality. The more
scenarios, the more accurate representation of reality, but on the other hand
more computational complexity having here a trade-off between accuracy and
complexity.

2.4.2 Mega Watts failed

In order to have the most realistic picture possible of how many MW failed
at DK1, it is needed to gather information about failures of all central power
stations, combined heat and power (CHP) plants, wind and solar farms and
transmission lines. Due to the fact that the information is many times confi-
dential, only known by the owners of the generating units, or it simply does not
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exist, not all the data required for a perfect representation of reality has been
acquired. Only the most relevant electricity sources were considered, a complete
list of the considered power plants is displayed in Table 2.1. The gathering of
the missing data and its modeling has been left for future work. The reason
why information about certain power plants is known is because they are big
enough to be required to send Urgent Market Messages (UMM) to the Nord-
pool application. All members of the market are obliged to publish a UMM
online when planned outages and unplanned outages happen, as well as failures
in the power lines. In this project, only the unplanned outages or failures are
considered, being published if the outage fulfills the following conditions [11]:

1. More than 100MW for one transmission facility, including changes of such
plans in the next 6-week period. This means that small failures of less
than 100MW are not registered in the system and therefore not taken into
account in this project.

2. More than 400MW for one transmission facility for the current calendar
year and three calendar years forward, including changes of such plans.

Plant name Capacity biggest unit in MW
Asnæsværket 640
Enstedværket 262
Esbjergværket 378
Fynsværket 362
Horns Rev 160

Nordjyllandsværket 411
Skærbækværket 392
Studstrupværket 350

Table 2.1: Central power plants in Denmark which failures affect DK1

A UMM shall be published immediately and no later than 60 minutes after
the information occurred and includes information about the amount of MW
scheduled and failed, the power plant name, the company running it, the area
affected and the cause for the event. If an outage lasts for less than 60 minutes,
it is not mandatory to send any UMM.

One should note that the coal-fire power plant Asnæsværket is located at Sjæal-
land and belongs to the DK2 region; however, according to the urgent Market
Messages the plant has sent, its failures have an effect on DK1 and therefore
have been considered.
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A complete list of all UMM can be found at [5]. Thanks to the help of Power
Data Service at Nord Pool Spot, it was possible to access their FTP servers and
use their database to select only the messages tagged as "failures" and such that
the area affected is DK1. A script in R was used to read all the messages and
can be found in Appendix. During the considered period there was a total of
278 outages. Putting the same information into a time series, for every hour it
is known how many MW of electricity have failed and also from which power
plant. The data is shown in Figure 2.6.
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Figure 2.6: On the upper plot, the total amount of MW of electricity that
failed from power plants that affected DK1, as recorded in the Ur-
gent Market Messages application of Nord Pool Spot. The botton
plot is a zoomed version of the upper plot on the year 2009.

The outage data is characterized by being very sparse, containing many zeros,
since most of the times there are no failures and plants work as planned. There is
a total of 29952 observations of which 27662 are zeros, or approximately 92.22%.
At a first glance it is beleived that seasonality has to be taken into account. As
one can see in on the left side of Figure 2.7, the mean of the MW failed at each
hour of the day tends to be higher at certain hours of the day; similar issue
happens for the week days and the mean of every month. This all indicates that
seasonality should be studied. The seasonality of the MW that failed could be
induced by the total production of the power plants, or similarly by the power
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load, since the higher the power load is, usually the more power plants will be
ON and therefore the MW failed will increase. This effect can be reduced by
dividing the total MW failed by the power load. The right side of Figure 2.7
reveals that there is still seasonality to be studied.
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Figure 2.7: On the left side: The mean of the amount of MW failed per hour,
week day and month. On the right side: The mean of the amount
of MW failed divided by the net load ear hour, week day and
month

Due to the nature of the data, the modeling presents several challenges. At a
fist glance, one could say that autoregressive methods will not perform very well
since they are not able to capture such jumps. Methods of Generalized Linear
Models and Hidden Markov Models have been proved to be adequate and are
deeply explained in Section 4.2.2.

2.4.3 Net demand in DK1

The Net Demand is defined as the sum of the West Danish consumption ex-
cluding transmission loss. The data was download from [3] and it is shown in
Figure 2.8.

The net demand was chosen to be as an indicator of how much the system is
being used. It seems reasonable to state that the more energy is demanded,
the more power plants are activated and more generators are subject to fail.
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Figure 2.8: Net demand in DK1

Another reason for choosing this variable is the fact that generated scenarios
characterized by the power load are available for this thesis given by the team
at ENFOR S/A. Other variables could have been included in the model as the
total production at DK1; however, in that case scenarios characterized by the
new variables should be generated since they are not available and thus this
task is left for future work.



Chapter 3
Models for optimizing

Spinning reserve

3.1 Previous work

Traditionally market operators use a deterministic criterion to calculate the
amount of reserves that should be scheduled. In Denmark [10], the amount of
tertiary reserve is equal to the capacity of the largest generator. This criteria is
commonly named as the "n-1" criteria. In other systems like in Spain [12] the
amount of tertiary reserves is equal to the capacity of the largest generator plus
2% of the forecasted load. The UCTE reccomends a minimum requirement of
secondary reserves calculated for each control area with the following formula
[13]:

R =
√
a× Lmax + b2 − b

Where the parameters a and b are calculated empirically, currently set at a = 10
MW and b at 150 MW. The Lmax is defined as the hourly maximum of the
load of the day. Similarly, the The Western Interconnection of North America
organization requires an amount of contingency reserves equal to the greater of
(1) the most severe single contingency, and (2) the amount equal to five percent
of the total load served by hydro generation, and seven percent of the total
load served by thermal generation in the balancing authority or reserve sharing
group [13].
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Deterministic methods have been used in systems with very low penetration of
renewable energy and fairly predictable load, since the biggest potential reserve
needs arises from outages of large generation units. With increasing share of
renewables (and decentralized production in general) in the production portfolio,
renewable will naturally have a larger influence on the system’s imbalance - both
because of their own increasing imbalances and the consequent decommissioning
of conventional power plants. Hence the potential outages or contract deviations
of these plants has to be accounted for when reserve power is allocated once their
share in the production portfolio becomes significant.

The second group of methods can be tagged as probabilistic. In [14] the author
explains the computation of two reliability metrics, the Expected Energy Not
Served and the Loss Of Load Probability and imposes a bound on them when
calculating the traditional Unit Commitment (UC) problem. Reference [15]
proposes a method to determine the spinning reserves requirements for each
period of optimization horizon in an auxiliary computation prior to the UC
commitment. This auxiliary computation consists of solving minimizing a cost
function consisting of the sum of the running costs plus the cost of not serving
energy. In [16] it is studied how wind power generation and load forecast errors
as well as the possible contingencies affect the optimization of SR. Reference [17]
uses outage probability information and assumes wind power and load forecast
errors to be Gaussian distributed. The author does not tackle the UC problem.
In [18] proposes a two-stage stochastic programming model to account for the
stochastic nature of the wind power generation when clearing the market.

3.2 Problem identification

As explained in previous section, the manual reserves in Denmark are deter-
mined before 9.30 am when Energynet.dk collects the bids from producers who
are willing to offer some quantity of reserve at some price. Energinet.dk sorts
the bids for upward and downward regulation capacity according to price per
MW and covers its requirements by selecting bids according to increasing price.
Bids are always accepted in their entirely or not at all[10]. In situations where
acceptance of a bid for more than 25 MW will lead to excess fulfillment of the
requirement for reserves during the hour in question, Energinet.dk can disregard
such bids.

Recall that the the Elspot market is cleared at 12:00 for the day ahead deploy-
ment. This means that at 9.30 am, when the manual reserves are settled, the
production bids are not known yet hence the unit commitment problem cannot
be addressed. In the following sections the production schedule of electricity is
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neglected. As a consequence, the production ramp up and ramp down limits
and start-up costs are not relevant for this thesis either.

It should be noted that the models presented in this chapter will deal with
the total reserve needs, meaning that no difference is made between primary,
secondary or manual reserve. It is assumed that the TSO would take care of
distributing the total needs amongst the three types of reserves.

All in all, there are five assumptions needed to be done:

1. Wind power producers bid into the Elspot market their expected produc-
tion.

2. Energinet.dk buys the expected power load demand at the day ahead
market.

3. Only producers who offer their reserves at the reserve market can take
part into the real-time market.

4. Providing down-regulation is easier than up-regulation, hence it will be
neglected.

5. The regulating power coming form the neighbor countries, namely Ger-
many, Sweden, Norway and Denmark East, is neglected.

3.3 General formulation

This section presents three different model formulation for the optimal compu-
tation of the total reserve needs in a general form.

The total reserves that should be purchased are assumed to be affected by three
main factors or uncertainty sources:

1. Wind power production

2. Electricity demand

3. Forced outages of power plants, namely failures in the plants that make
the production stop.

Other factors could be considered as the reserves provided by the interconnec-
tions with neighbor countries, failures of transmission lines and CHP plants or
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solar energy production , but for simplicity only those three factors will be taken
into account in this project.

As explained in 2.4.1, it is assumed that wind power producers bid into the elec-
tricity market their expected production. If the actual wind power production
is greater than what was expected then there will be extra power to sell; if, on
the other hand, the realized wind is lower than the expected value some reserves
will be needed. One could say that if the forecasts were perfect and the errors
equal to zero, no reserve would be needed. Likewise, if the errors are huge,
big reserves are necessary to account for the possible variations. Similarly with
the power load, it is assumed that the amount of power purchased in Nordpool
is equal to the expected power load demand. Finally the predicted outages of
power plants will lead directly to reserve needs.

The three reserve factors can be combined into one by convolving their distribu-
tions. If εw the forecast error of the wind power production with a distribution
fεw , εd is the forecast error of the electricity demand with distribution fεd and
fout the forecast distribution of the forced outages, then the distribution of the
reserve needs f(z) will be given by the convolution of the three distributions:

fz = fεw ∗ fεd ∗ fout

This procedure is considered as a general formulation and will not be used in
the study case. It could be useful in a very simplified approach where the
three distributions are known. In a more realistic example, the distributions
are not given in a closed form which would lead to more complex numerical
issues. An alternative way of solving this is by scenario generation techniques,
characterizing the possible scenarios by different realizations of the stochastic
variables.

3.3.1 Expected Power Not Served (EPNS) model

The aim of this model is to minimize the function representing the total cost of
allocating reserve plus the cost of the Expected Power Not Served (EPNS). The
EPNS is incurred when the allocated reserves are smaller than actually needed.
1 MW of not served power costs to the society an amount represented by the
Value of Loss Load V lol. The optimal solution is one such that the total cost is
minimized, as represented in Figure 3.1.

In mathematical terms, the objective function is to minimize the cost which
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Figure 3.1: Representation of the total cost function of the EPNS model. The
total cost is the sum of the allocating costs plus the cost of not
allocating enough power.

depends on the variables Ri:

min
Ri

∑
i

λiRi + V LOL × EENS (3.1)

With a number of constrains:

RT =
∑

Ri (3.2)

Ri ≤ Rmaxi (3.3)

EPNS =

∫ ∞
RT

zf(z)dz (3.4)

Ri ≥ 0 ∀i (3.5)

where the variables are

Ri Reserve provided by generator i in MW

RT Total amount of reserve. This is the quantity we are more
interested in
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and the data

λi Price to which generator i sells its availability of providing
reserve in Euro. The actual activation costs (if the reserves
are deployed) is not known at the time when the reserve
market closes.

V LOL Value of Loss Load, or the cost that society pays for shedding
1 MW of load demand in Euro.

EPNS Expected Power Not Served in MW.

Rmaxi Maximum amount of power offered by generator i in MW.

f(z) Density function of variable Z, computed as the convolution
of the distribution of the wind power production forecast
error, the electricity demand forecast error and the forecast
outages of power plants.

Equation 3.2 defines the total reserve needs as the sum of the contribution of
each individual producer. When the producers submit a bid it is stated what
is the maximum amount of reserve they can provide, this fact is indicated in
Equation 3.3. Other alternative types of bids can be formulated as well, like
stating a minimum for their reserve provided or the possibility of accepting
either the whole quantity bid or none.

The Value of Loss Load V LOL represents cost that society pays for shedding
1 MW of load demand (in Euro). The estimation os this parameter is quite
complex to estimate. Some authors like [19] suggest that it should be approxi-
mately 100 times higher than the average price of electricity. Another possible
approximation could be the maximum bid allowed to enter into the electricity
market. In any case, it is supposed to be a very high value to be determined by
the system operator.

When solving the problem with a computer software like GAMS, unless f(z)
has a close and easy form, equation 3.4 must be modified: the integral must
be discretized. A grid of W points is drawn from all the possible values of
Z. Each zw has its corresponding probability f ′(zw). Since, in practice, one
cannot discretize a function by infinite number of points, the probabilities must
be scaled by f(zw) = f ′(zw)∑W

w=1 f
′(zw)

so they satisfy that
∑W
w=1 f(zw) = 1. Then

equation 3.4 must be substituted by
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EENS =

W∑
w=1

ywzwf(zw) ∀w (3.6)

RT − zw > M(1− yw) ∀w (3.7)

−(RT − zw) ≤Myw ∀w (3.8)
yw ∈ {0, 1} ∀w (3.9)

Where M is a relatively big value at least greater than the maximum of zw. The
auxiliary binary variables yw model the same idea as the integral

∫∞
RT . Only

values of reserve greater than RT are taken into account in the calculation of
the EENS. Namely,

yw =

{
1, if zw > RT

0, if zw≤ RT

The same formulation can be applied in the case that the reality is represented
trough scenarios as in [4] instead of directly specifying f(z). If so, the formula-
tion corresponds to a two-stage stochastic programming, with:

1. First stage variables: Ri and RT , representing the decision that has to be
made at the current time.

2. Second stage variable: zw, representing the reserve needs at the time of
deployment on scenario w. Each scenario is characterized by a realization
of the stochastic variable Z reserve needs. More on how this variables is
modeled and scenario generation is found at Section 4. The probability of
each scenario is πw = f(zw).

3.3.2 Loss of Load Probability (LOLP) model

The Loss Of Load Probability (LOLP) is "the probability that the available
generation, including spinning reserve, cannot meet the system load" [14]. An-
other way of defining the same idea more suited to this thesis would be as the
probability that the reserves needed exceed the scheduled reserve.

The objective function is the minimization of the cost:

min
Ri

∑
i

λiRi (3.10)
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Constrained by:

RT =
∑

Ri (3.11)

Ri ≤ Rmaxi (3.12)

LOLP =

∫ ∞
RT

f(z)dz (3.13)

LOLP ≤ β (3.14)
Ri ≥ 0 ∀i (3.15)

As f(z) represents the reserve needs, the area located under the curve is the
probability of having a certain amount of reserve needed. Therefore, the area
situated under the curve from z = RT to z = ∞ is the probability of not
having enough reserves, namely the Loss Of Load Probability. It is constrained
by a parameter target β at Equation 3.14, which must be determined by the
transmission system operator. The smaller β is, the more reserves will be needed,
as the LOLP has to be small. On the other hand, if β would be equal to 1, no
reserves are needed at all.

Similarly as in the previous section, Equation 3.13 cannot be easily modeled
into a computer software like GAMS unless it has a close and easy form, so it
has to be discretized. A grid of W points is drawn from all the possible values
of Z, each zw with its corresponding probability f(zw). Equation 3.13 must be
substituted by

LOLP =

W∑
w=1

ywf(zw) (3.16)

RT − zw > M(1− yw) ∀w (3.17)

−(RT − zw) ≤Myw ∀w (3.18)
yw ∈ {0, 1} ∀w (3.19)

Where M is a relatively big value, in this case it has to be greater of equal than
the maximum of zw. The auxiliary binary variables yw means that

yw =

{
1, if zw > RT

0, if zw≤ RT
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Figure 3.2: Representation of a probability density function and its corre-
sponding VaR and CVaR values with a level of α

As in the previous subsection, the same formulation is valid if zw is seen as a
scenario characterized by a reserve need and f(zw) = πw the probability of it
to realize.

3.3.3 Conditional Value at Risk (CVaR) formulation

Before the model itself is presented it will be introduced the risk measure called
Conditional Value at Risk (CVaR) also known as mean excess loss, mean short-
fall, or tail Value at Risk. Defined as in [20], with respect to a specified proba-
bility level α, the α-VaR of a portfolio is the lowest amount ξ such that, with
probability α, the loss will not exceed ξ, whereas the α-CVaR is the conditional
expectation of losses above that amount ξ. An intuitive idea of how it works
can be seen in Figure 3.2. The gray shaded area corresponds to an area of α
situated on the left of the VaR. Both distributions, black and blue, have the
same VaR value. However, the conditional expectation above the VaR, namely
the CVaR, is greater on the blue distribution that on the black one. If the
probability distributions refer to costs as they do in this project, minimizing the
CVaR is a way of reducing the risk of having very high costs; in other words,
minimizing the CVaR is similar to minimizing the worst cases scenarios.

The value of α should be decided by the TSO depending on how averse to risk
they are. If α = 0 then minimizing the CVaR is equivalent to minimizing the
total cost, which is exactly what has been done in Section 3.3.1 in the EPNS
model. As α increases risk is reduced. In this project, increasing α will make
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the solution RT increase too. Having more reserves allocated reduces the risk.

The proposed formulation uses scenarios to characterize the reserve that will be
needed in the future. How to generate those scenarios is addressed in Section 4.
The formulation corresponds to a two-stage stochastic programming, with Ri
and RT as first stage variables, representing the decision that has to be made
at the current time, and zw as a second-stage variable, representing the reserve
needs at the time of deployment on scenario w. Each scenario is characterized
by a realization of the stochastic variable Z reserve needs. The probability of
each scenario is πw = f(zw).

The objective function is the minimization of the CVaR, computed in a linear
way similarly as in [20]. The final objective is to minimize the cost.

min
Ri,Rt,Lw

CV aRα = ξ − 1

1− α

W∑
w=1

πwηw (3.20)

Constrained by:

ηw ≥ −ECostw + ξ ∀w (3.21)

Costw =
∑
i

λiRi + V LOLLw ∀w (3.22)

RTw =
∑

Ri ∀w (3.23)

Lw =

{
0 if zw< RT

zw −RT if zw ≥ RT
∀w (3.24)

Ri ≤ Rmaxi ∀i (3.25)
Ri ≥ 0 ∀i (3.26)
ηw ≥ 0 ∀w (3.27)

Where ξ is the VaR, ηw an auxiliary variable indicating the difference between
the VaR and the cost of scenario w and Lw represents the amount of lacking
reserve. The objective function 3.20 and the first constrain 3.21 are used to
linearly define the CV aRα. Once the optimal solution is obtained, one could
calculate the Expected Power Not Served: EPNS =

∑W
w=1 πwLw.

Equation 3.24 has to be defined in a linear way that GAMS can compile. The
two implications can be formulated as a linear set of constrains. An extra
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auxiliary continuous variable Sw and a binary variable yw must be defined so
3.24 is substituted by

Lw = (zw −RT )− Sw ∀w (3.28)
−ywR̄ ≤ Lw ≤ ywR̄ ∀w (3.29)

−(1− yw)R̄ ≤ Sw ≤ (1− yw)R̄ ∀w (3.30)

−(1− yw)R̄ ≤ (zw −RT ) ≤ ywR̄ ∀w (3.31)
yw ∈ {0, 1} ∀w (3.32)

With R̄ as an upper bound of zw−RT . In such a way, when zw < RT , zw−RT <
0, therefore yw = 0 and Lw = 0. Similarly if zw > RT then yw = 1.

3.4 Scenario formulation. Study case.

When the optimization models are implemented in a real set up, the transmission
system operation, namely Energinet.dk, would run the optimization model at
9:30 am for the next 24 hours right after the reserve market is closed. At that
time of the day, the values of the prices λi are known. Those prices, together
with the corresponding Rmax composes the bid of each producer.

A simplification of the real procedure must be done when dealing with the study
case. The historical values of λi and Rmax were not available for this project
and an alternative similar formulation must be defined according to the data
that we have. A function of reserve costs g(z) is estimated, representing the
cost of allocation of upward reserve in Eur per z MW. The product

∑
λiRi

will be replaced by the piecewise approximation of ĝ(z), having the variables
Ri removed. The estimation of g(z) as a piece-wise constant approximation of
a third degree polynomial is discussed in Section 4.1. The mid-point of each
interval is named Rmidq and the corresponding fitted value of the cost at the
mid-point of interval q is represented by λ̂midq .

In order to express a piecewise constant function in GAMS it is necessary to
define a new continuous positive variable 0 ≤ Rintq ≤ R̄int which indicates how
much of the interval q is being accounted for. R̄int is the length of the interval,
being set to 30 with a total of 62 intervals going from 0 to 1890. The equivalence
RT =

∑63
q=1R

int
q holds and defines the total scheduled reserves.
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For the study case, the modified LOLP models remains as

min
RT

ĝ(RT ) = min
RT

λ̂midq Rintq (3.33)

Constrained by:

LOLP =

5000∑
w=1

ywπw (3.34)

LOLP ≤ β (3.35)

RT =

62∑
q=1

Rintq (3.36)

RT − zw > M(1− yw) ∀w (3.37)

−(RT − zw) ≤Myw ∀w (3.38)

RT ≥ 0 (3.39)

0 ≤ Rintq ≤ 30 ∀q (3.40)

yw ∈ {0, 1} ∀w (3.41)

The optimal solution of this problem can be computed analytically. Recall that
πw = 1

W = 1
5000 , ∀w. At the optimal solution it will be satisfied that the

LOLP = β. By constrain 3.34 we know that in the optimal solution there will
be W × β scenarios for which zw > RT . Therefore, the optimal RT∗ is equal to
the (1− β)-quantile of the set of scenarios zw : w = 1...W

The CVaR model (equivalent to the EPNS model when α = 0) is

min
Ri,Rint

t ,Lw

CV aRα = ξ − 1

1− α

5000∑
w=1

πwηw (3.42)
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Constrained by:

ηw ≥ −Costw + ξ ∀w (3.43)

Costw = λ̂midq Rintq + V LOLLw ∀w (3.44)

RT =

62∑
q=1

Rintq (3.45)

Lw = (zw −RT )− Sw ∀w (3.46)
−ywR̄ ≤ Lw ≤ ywR̄ ∀w (3.47)

−(1− yw)R̄ ≤ Sw ≤ (1− yw)R̄ ∀w (3.48)

−(1− yw)R̄ ≤ (zw −RT ) ≤ ywR̄ ∀w (3.49)
yw ∈ {0, 1} ∀w (3.50)

0 ≤ Rintq ≤ 30 ∀q (3.51)

RT ≥ 0 ∀i (3.52)
ηw ≥ 0 ∀w (3.53)

The implementation of the model in GAMS is included in Appendix B.1

The optimization models described in this chapter do not include any time de-
pendencies, meaning that the models can be run independently from one hour
to another. In reality, ramp up and down constrains and start-up cost are rele-
vant facts to take into account, so future studies should consider implementing
this fact. Furthermore, if time dependencies are allowed it would be possible to
include block contracts into the model.
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Chapter 4

Estimation of functions.
Scenario generation

When applying the optimization models described above to the real life problem
it is necessary to estimate two functions: the price of allocating reserves ĝ(z) and
the function of reserve need from which scenarios will be drawn, both discussed
in this section.

4.1 Estimation of the function price of reserve

The estimation of the reserve cost function ĝ(R) is elaborated in this section.
The estimation of a function that represents the cost of providing reserve was
introduced in Section 3.4. The bids that producers submit to the reserve market
are available for the transmission system operator before the market closes, but
unfortunately that data is not available for this project; in order to adjust the
optimization models to the the available data and test the efficiency of such, the
bids of producers λi and Rmax are substituted by a cost function being g(z) the
cost of allocation of z upward reserve in Eur.

In practice the function of reserve costs has to fulfill two properties:
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1. Monotonically increasing. Allocating up reserves implies first that the
power plant cannot bid into the daily ahead market that capacity and
therefore the availability of that capacity has to be paid for. Secondly,
the cost of fuel, startup and equipment failure increases when up reserve
increases and that has to be paid for too.

2. Non-negative. By the basic principles of a market, if allocating reserve
would have a negative cost then producers would not bid into the market
at all.

If λ(z) is the price for allocating 1 MW of reserve, it seems reasonable to assume
that λ(z) will increase exponentially: the price per MW of increasing z from
500 MW to 501 MW has to be greater than increasing z from 0 MW to 1 MW.
A second order polynomial with no intercept is assumed to be adequate; if so,
the price of allocating a total of z MW of reserve will be fitted by a third order
polynomial.

Given the total amount of purchases manual reserve at time t, PMRt, and the
market price of up reserve allocating of PMRt MW at time t in Euro, λMt , the
estimated function of reserve costs is

λ̂Mt = 5.3158 PMRt − 0.0299 PMR2
t + 0.000054PMR3

t (4.1)

The scatter plot of the data and the estimated function can be seen in Figure
4.1. The data appears to be quite heteroscedastic and hence other ways of
estimating the function should be further studied in the future as weighted least
squares methods. Also it could be interesting to study how the cost depends
on the hour of the day, the week day or the month, or even on the wind power
production and power load. It seems logical to think that in systems with high
penetration of wind power, at night time a big share of the demand will be
supplied by wind power producers and therefore other cheap sources might offer
will offer their regulating power. Nevertheless for the sake of this project the
third degree polynomial reflects the real relations well enough.

When the optimal solution is computed with a computer software like GAMS,
there are two ways of specifying the cost function:

1. Complete specification of the polynomial. The functions becomes non
linear, facing the drawback that the solving time increases.
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Figure 4.1: Plot of the upward manual reserves against the market price dur-
ing the test period and a linear regression used to predict the price
given the total amount of reserve to schedule.

2. Piece-wise constant approximation. The objective remains linear and
therefore easy and fast to solve, with the drawback that it is only an
approximation. Even so, it can be more suited to the reality because in
practice when the bids are collected they form a “stairs” function. Another
advantage is that more complex functions than three degree polynomials
can be discretized using the same procedure.

The second option was chosen for being more simple and general too. There
are a total of 62 intervals spanning from RI1 = 0 to RI63 = 1890 with a length
of RIq − RIq−1 = 30 each. The reference point chosen is the mid-point of the
interval, named Rmidq and the corresponding fitted value of the cost at interval
q is represented by λ̂midq . The function itself is defined as

ĝz = λ̂midq if RIq < z ≤ RIq+1 (4.2)

The way it is implemented in a linear programming shape was presented in
Section 3.4.
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4.2 Scenario generation

The adapted optimization models for the study case that are shown in Section
3.4 need as a input scenarios. Each scenario is characterized by a stochastic vari-
able that represents the reserve needs. The reserve needs variable is composed
by the sum of three variables: the forecast error of the wind power production +
the forecast error of the power load + MW failed due to outages. Scenarios are
generated of each individual variable and afterwards summed. The correlation
between the first two forecast errors is taken into account and the MW failed is
assumed to be independent from the other two variables. The remaining of the
section explains how the scenarios for each of the three variables are computed.

4.2.1 Wind power production & power load

As explained in Section 2.4.1 the scenarios of wind power production and power
load have been generated by ENFOR, having 5000 pairs of scenarios per hour
for the whole test set period. The correlation between both variables is taken
into account at the generation process and hence they have to be treated in
pairs. Every given pair of scenarios is characterized by two values: A wind
power production and a power load.

Instead of using the forecast values it is more interesting to compute the forecast
error of both variables. The forecast error leads to a need of reserves: if the
forecast error is greater more reserves will be needed to cover for the variation.
If the forecast error is positive and big, then upward reserves are needed; if
on the other hand is negative, downward reserve can be allocated. This later
case is not taken into account since allocating down reserve is much easier than
upwards.

4.2.2 Amount of MW failed

In order to generate scenarios characterized by the amount of MW that failed it
is first necessary to build a model that characterizes the data and its dependen-
cies. In this section, several statistical methods are explained and the reliability
of their forecasts compared. Afterwards scenarios are drawn from the most suit-
able model, which in turns out to be a combination between a Bernoulli and
Gamma Generalized Linear Model (GLM).

Define Xt as the amount of MW that have failed at time t due to outages and
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unforeseen events and Yt as a binary variable which value is 1 if there is an
outage at time t and 0 if there is no outage. The power load demand is denoted
as nt for every time t.

The first approach consists of a two-stage modeling. In the first stage, a model
for the presence/absence of a failure yt is done trough a Bernoulli General Linear
Model (GLM). In the second stage it is modeled the amount of energy failed
conditioned to knowing there is a failure xt|yt = 1, as a Poisson GLM and also as
a Gamma GLM. The second approach consists of two Hidden Markov models: a
binomial state distribution, with nt as total number of trial and a Poisson state-
dependent distribution with non homogeneous transition probabilities. All the
modeling steps are explained in the subsections below.

4.2.2.1 Model yt as a GLM Bernoulli

A simple first method to approach the modeling of this type of data is to consider
only the presence or absence of a failure as a response variable, disregarding the
amount of MW that occurred during the outage. The variable Yt is defined as

Yt =

{
1 if failure occurs at time t
0 otherwise

(4.3)

It is natural to assume that Yt follows a binary distribution, Yt ∼ bern(pt) and
model the response variable as a Generalized Linear Model. The link function
chosen is the logit function. The explanatory variables are the hour of the
day, the day of the week and the month, all represented through sinusoidal
curves. Many sinusoidal terms were considered of the form k(1)cos(2πhourt),
k(2)cos(2πdayt) and k(3)cos(2πmontht) with k(1) = 1...24. k(2) = 1...7 and
k(3) = 1...12, also using the sin functions in a similar way. Only the most
relevant were kept using an approximate χ2-distribution test as in [21]. The
final model is
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(4.8)

The final model shows that the hour of the day is not significant when predicting
the probability of having an outage, being the day of the week and the month
the only significant factors. The parameters of the model are relative to the
train set data. In practice, the parameters can be updated every day at 9:30 am
CET right before the reserve market is cleared including data from the previous
24 hours.

Since the aim of this model is to forecast future probabilities of failures, one way
of illustrating how well it works is by constructing a reliability plot, shown in
Figure 4.2. As explained in [22], it consists of a plot of the observed probabilities
on the Y axis against the forecast probabilities on the X axis. Three lines are
shown in the graph: the reliability of the training set in green; the reliability
of the test set in red, with no parameter updates; and the reliability of the test
set updating the model parameters every day at 9:00 am in blue. Ideally, all
lines should be close to the diagonal. However, for probabilities greater than 0.1
the blue and red lines are quite far form it. All in all, this plot indicates that
this model is relatively good when forecasting but still with a lot of room for
improvement. As future work, other methods should be considered, for exam-
ple including transition probabilities between the two “states” or by including
information about previous observations as covariates.

Other ways to compare the quality of the forecast is by computing the ranked
probability skill score, quantifying the extent to which a forecast strategy im-
proved the predictions with respect to a reference forecast, as in [23]. This
method was left for future work.
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4.2.2.2 Model xt|yt = 1 as a GLM Poisson

In this section it is presented a method to model Xt|Yt = 1, namely the amount
of MW that failed conditioned to knowing that there is an outage.

The time series {xt|yt = 1, t = 1...T} is not properly modeled by an autoregres-
sive model. The times between observations are either one hour because there
as been an outage on the previous hour, or many hours, since most of the times
there are no outages. Instead, a GLM model with sinusoidals of the time as
regression variables was chosen.
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Figure 4.3: Histogram of xt|yt = 1

A histogram of the response variable xt|yt = 1 is shown in Figure 4.3. A positive
distribution is needed. A GLM with Poisson response variable is chosen as a
first approach. This means that it is assumed Xt|Yt = 1 ∼ Pois(λt) with a
logarithmic link. The explanatory variables are the hour of the day, the day
of the week and the month, all represented through sinusoidal curves. Many
sinusoidal terms were considered of the form k(1)cos(2πhourt), k(2)cos(2πwdayt)
and k(3)cos(2πmontht) with k(1) = 1...24. k(2) = 1...7 and k(3) = 1...12, also
using the sin functions in a similar way. Only the most relevant were kept using
an approximate χ2-distribution test as in [21]. The final model is
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ηt = log(λt) = µ+ α1cos

(
2πdayt
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+ (4.9)
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)
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)
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(
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)
+ (4.12)

α8sin

(
4

2πmontht
12

)
(4.13)

As it turns out, the hour of the day is not significant when fitting the data.

In order to check up on how well the model performs at forecasting a reliability
plot is built, see Figure 4.4. The green line corresponds to the reliability of the
training set, the red line to the reliability of the model when predicting the test
set, and the blue line to the reliability of the model that is updated every day
at 9:00 am when predicting the test set. All three lines reveal that some of the
model assumptions do not hold, since the “slope” of the line is clearly different
than 1. In order to solve this issue, in the next section it is introduced a model
with different assumptions and also more information through the ratio between
Xt and the power load demand.
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Figure 4.4: Reliability plot of the total amount of MW failed, Xt, when there
is an outage
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4.2.2.3 Model xt

nt
|yt = 1 as a GLM Gamma

As seen in previous section, modeling xt|yt = 1 as a Poisson GLM is not really
adequate hence other distribution for the response variables will be studied in
this section. There is one source of information that has not been used yet:
the power load demand nt. It seems reasonable to state that the more energy
is demanded, the more power plants are activated and more generators are
subject to fail. This section explores how nt could affect our predictions of
Xt. There are two ways of achieving this: by including nt as an explanatory
variable or alternatively to model directly Xt

nt
|Yt = 1, both alternatives equally

good at a first sight. The histogram of Xt

nt
|Yt = 1 is depicted in Figure 4.5. It

clearly resembles to the Gamma distribution density with the right parameters,
therefore the second option was chosen.
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Figure 4.5: Histogram of xt

nt
|yt = 1

It is assumed that Xt

nt
|Yt ∼ Gamma(st, k), where k is the shape parameter, com-

mon for all observations, and st the scale parameter at time t. The probability
density function is defined as

f(x) =
1

Γ(k)skt
xk− 1e−

x
st (4.14)
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With a mean of µt = kst and variance σ2 = ks2t . The canonical link for the
gamma distribution is the inverse link η = 1/µ. As in previous sections 4.2.2
and 4.2.2.2 the explanatory variables are several sinusoidals. After keeping only
the significant terms the mode in terms of the canonical link is

ηt =
1

µt
= µ+ α1cos

(
2πhourt

7

)
+ (4.15)

α2cos

(
2

2πhourt
7

)
+ α3sin

(
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12

)
+ (4.16)

α4sin
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2
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12

)
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)
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)
+ α7cos
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2
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12

)
+ (4.18)

α8sin

(
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)
+ α9sin

(
3
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12

)
+ (4.19)
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)
+ α11sin

(
2
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12

)
+ (4.20)

α12sin

(
3

2πmontht
12

)
(4.21)

It turns out that when predicting the ratio Xt/nt the hour, the week day and
the month are significant terms.

The reliability plot is shown in Figure 4.6. The reliability of the test set (blue
line) when updating the parameters every day at 9:00 is slightly better than
when they are not updated; The line is relatively close to the diagonal so the
forecast can be considered satisfactory. In fact, this is the model chosen for
generating scenarios; next subsections will explore the performance of other
types of model that finally turn out being inadequate.
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4.2.2.4 Model xt

nt
as a HMM with binomial state dependent distri-

bution

In this section a brief introduction to a Hidden Markov Model (HMM) with
binomial state-dependent distribution is explained and the results of applying
the technique to the outages data.

Let Xt be a variable representing the amount of MW that failed from power
plants at time t and nt the power load demand at time t. Two assumptions have
to be made: first, both Xt and nt are considered integer non negative values.
Second, it is assumed that Xt ≤ nt. In theory, if the exported quantity of MWh
is positive, more MW can fail than than consumed in the producers’ region. In
practice, the study reveals that this assumption holds at least for the period
considered in West Denmark. If nt is not integer for any t = 1, 2, ..., T then it
is rounded to the closest integer.

The model consists of two parts. An unobserved “parameter process” called state
of the Markov chain, represented as {Ct : t = 1, 2..T} satisfying the Markov
property, and secondly a “state-dependent process” {Xt : t = 1, 2 . . . T} such
that the distribution of Xt is known when the state Ct is known [24]. This
distribution is called state-dependent distribution and it is set to be binomial.
For i = 1 . . .m, being m the total number of states:

pi(x) = P (Xt = xt|Ct = i) =

(
nt!

xt(nt − xt)

)
πxt
i (1− πi)nt−xt (4.22)

Where πi is the probability of having a success if the chain is at state i, and
therefore the amount of MW failed Xt can be seen as the number of successes
at time t. Note that it is assumed 0 ≤ xt ≤ 1 so the binomial distribution seems
appropriate; however, different state-dependent distributions can be used like
Gamma. This is left for future work.

The transition probability matrix indicates the probabilities of the chain moving
from one state to the next one. Let γij = P (Ct = i|Ct−1 = j) and

Γ =


γ11 γ12 . . . γ1m
γ21 γ22 . . . γ2m
...

...
. . .

...
γm1 γm2 . . . γmm


In this case, since Γ does not depend on time it is called a homogeneous Markov
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chain. In Figure 4.7 it is shown a directed graph, where each arrow indicates
which element depend on which, so X2 depends on C2 and C2 depends only on
C1 and so on. Other types of structures as second order Markov chains could
have also been implemented, where the transition probabilities depend not only
on the last state but on two states back.

Figure 4.7: Directed graph of a basic HMM where arrows represent dependen-
cies between variables.

The likelihood LT of the model is given by

LT = δinitP(x1)ΓP(x2)ΓP(x2) . . .ΓP(xT )1′ (4.23)

Where T is the total number of observations and δinit is the initial distribution
of the Markov chain. The parameters of the model are estimated by maximiz-
ing LT . Due to the great amount of data, direct optimization is too complex;
instead, a Baunm-Welch algorithm also known as Expectation Maximization
(EM) algorithm was implemented in R. It treats the states as missing data and
exploits the fact that the complete-data log-likelihood (CDLL) may be straight-
forward to maximize even when the likelihood of the observed data is not. The
sequence of states is represented by c1, c2, ...cT and the zero-one random vari-
ables defined as uj(t) = 1 if and only if ct = j,(t = 1, 2, ..., T ). Also define
vjk(t) = 1 if and only if ct−1 = j and ct = k (t = 2, 3, ..., T ).

With this notation, the complete-data log-likelihood of an HMM is the proba-
bility of observing the data x1, x2, ...xT plus the missing values c1, c2, ...cT :

log
(
P (xT , cT

)
= log

(
δinitc1

T∏
t=1

γct−1ct

T∏
t=1

pct(x)

)
= (4.24)

log δc1 +

T∑
t=1

log γct−1ct +

T∑
t=2

log pct(x) (4.25)
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By using the previously defined variables, the CDLL remains

log
(
P
(
xT , cT

))
(4.26)

=

m∑
j=1

uj(t)log δ
init
j +

m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t)

)
log γjk

+

m∑
j=1

T∑
t=2

uj(t) log pj(xt) (4.27)

= term1 + term2 + term3 (4.28)

The algorithm follows two steps:

1. E step. Compute the conditional expectations of the missing data given
the observations and the current estimate of the parameters, namely re-
place uj(t) and vjk(t) by their conditional expectations given the obser-
vations.

2. M step. Maximize, with respect to δinit, Γ and π, the complete-data log-
likelihood with the functions of the missing data replaced in it by their
conditional expectations. The CDLL splits into three terms, each of them
depending only on one parameters set, which means they can be maxi-
mized independently from each other. The maximal value of term 1 and 2
are independent from the state-dependent distribution and can be found
in [24]. Term 3 depends on the nature of the state-dependent distribu-
tion. In this case, the maximal solution is given by π̂i =

∑T
t=1 ûi(t)xt∑T
t=1 ûi(t)nt

. See
Appendix A for a justification.

The two steps are repeated until some convergence criterion is satisfied. The
algorithm was implemented in R taking as a base the code in [24].

The next question that arises is: How many states should the chain have? One
way of selecting the number of states is by computing the Bayesian Information
Criteria (BIC) and the Akaike Information Criteria (AIC) of the model of the
training set. One can see in Figure 4.8 that the more states the better both
criteria become. However, for five or more states the improvement tends to slow
down. Due to computational issues it was decided that five states is the most
adequate.

In Table 4.1 one can see the estimated of the parameters after the likelihood
is maximized. As expected, state number 1 accounts for all the observations
when xt = 0 and therefore p1 = 0. The transition probability matrix Γ and the
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stationary distribution δreveal that state 1 is also more likely than the others.
To give an example, when the chain is in state 1 at time t−1, there is a 0.99145
probability that at time t the chain is still at state 1.

pi δi Γ
0.0000 0.9208 0.99145 0.00195 0.00373 0.00250 0.00034
0.0659 0.0189 0.10729 0.87404 0.01385 0.00479 0
0.1408 0.0273 0.11105 0.01657 0.80640 0.06112 0.00484
0.2197 0.0269 0.09179 0.00508 0.053757 0.82462 0.02474
0.3595 0.0058 0.05470 0 0.0233 0.11330 0.80867

Table 4.1: Estimation of the parameters p and Γ and the resulting stationary
distribution δ of a 5 state HMM with binomial as state-dependent
distribution

In order to check the performance of the method the reliability of the model on
the test set is computed. This is done in two steps: first, only considering how
good the predicted probability of presence/absence of a failure is, and second
by considering the amount of MW that failed given that there is a failure. In
both cases it is considered the case where the model parameters are updated
everyday at 9:00 am.

Figure 4.9 shows that the reliability of the model when the parameters are
updated (green line) is relatively satisfactory. When the parameters are not
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updated, the forecast probability tends to the stationary distribution, so the
probability of having a failure tends to 1 − 0.9208 = 0.0792. Updating the
parameters seems more adequate.

How well the model predicts the amount of MW that failed is shown in Figure
4.10. In this case, updating the parameters daily dot not make a big difference.
Both lines tend to underestimate the real frequency as if the model is not able
to capture some of the pattern of the data. By introducing another state-
dependent distribution and time dependencies in the transition probabilities in
the next section this issue has been tried to be solved.
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Figure 4.9: Reliability plot of the 5 state HMM with binomial state-
distribution, considering only the presence/absence of a failure,
yt. Red line corresponds to the model where parameters are es-
timated one and green line to the model where parameters are
updated daily
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Figure 4.10: Reliability plot of the 5 state HMM with binomial state-
distribution, considering only the amount of MW that failed con-
ditioned to the fact that a failure occurred, namely xt|yt = 1.
Red line corresponds to the model where parameters are esti-
mated one and green line to the model where parameters are
updated daily
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4.2.2.5 Model xt as a non-homogeneous HMM Poisson state depen-
dent distribution, covariates on the transition probabilities

In this section is is presented a Hidden Markov Model for the total amount
of MW that failed, having state-dependent distributions as Poisson and non-
homogeneous transition probabilities, namely that the transition probabilities
depend on time and also on the power load demand (nt).

There are two possible ways of including covariates in a HMM: in the state-
dependent probabilities or in the transition probabilities. Covariates (for ex-
ample, time) should be incorporated in the state-dependent probabilities when
time trend and seasonality could be present. However, by looking at the raw
data plot 2.8 trend and seasonality do not seem very clear. It is logical to think
that if the power plants installed at DK1 do not vary along the time period, the
mean of the outages should not vary either. On the other hand, if covariates
are on the transition probabilities, the probability of failure can vary with time
as well as with other terms like nt which in this case seems more reasonable.

The state-dependent distribution is set to be Poisson distribution; Xt is non-
negative and integer so it is appropriate. The density is given by

pi(x) = P (Xt = x(t)|Ct = i) = eλi
λi
xt!

(4.29)

With λi as the Poisson parameter of state i.

The main difficulty of this model lays on the transition probability matrix which
will depend on the hour of the day and on nt. Consider a HMM with m states.
For i 6= j, the transition probabilities tγij are modeled as

logit (tγij) = βij(1) + βij(2)cos

(
2πt

24

)
+ βij(3)sin

(
2πt

24

)
+ βij(4)nt (4.30)

The case when i = j can be deducted from the fact that
∑m
j γi,j = 1 as in

[25]. Note that logit(p) = p
1−p . After inverting the logit function, the transition

probability matrix remains
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tΓ =



1
1+

∑m
j=1 exp(β11y′t)

exp(β12y
′
t)

1+
∑m

j=1 exp(β1jy′t)
. . .

exp(β1my
′
t)

1+
∑m

j=1 exp(β1jy′t)

exp(β21y
′
t)

1+
∑m

j=1 exp(β2jy′t)
1

1+
∑m

j=1 exp(β2jy′t)
. . .

exp(β2my
′
t)

1+
∑m

j=1 exp(β2jy′t)

...
...

. . .
...

exp(βm1y
′
t)

1+
∑m

j=1 exp(βmjy′t)
exp(βm2y

′
t)

1+
∑m

j=1 exp(βmjy′t)
. . . 1

1+
∑m

j=1 exp(βmjy′t)


(4.31)

The total number of parameters is m due to pi(x) plus 4×m× (m− 1) due to
Γ. The likelihood of the model is:

Lt = δP(x1) 2ΓP(x2) 3ΓP(x2) . . . TΓP(xT )1′ (4.32)

The algorithm used to estimate the parameters is again the Expectation Maxi-
mization algorithm, see previous section 4.2.2.4 for more details about it. The
implementation of the EM algorithm together with other useful functions in R
code can be found in Appendix B.2. The biggest difficulty of the implementa-
tion comes when optimizing the second term of the complete-data log-likelihood.
No direct optimization formula was found and therefore it has to be maximized
numerically by the R function optim. Term 3 of the CDLL is maximized for

λ̂i =

∑T
t=1 ûj(t)xt∑T
t=1 ûj(t)

where ûj(t) is the conditional expectation calculated in the expectation step.

Table 4.2 shows the AIC and BIC criteria of the model with two, three and
four states. The more states are included, the better both criteria are so far.
Ideally more states should be included until the BIC reaches a flat area or the
AIC starts to increase. However, due to the rapidly growth of parameters it was
not possible to achieve more complex model than with four states. Note that
the 4-state model took around 52 hours to be fitted at the IMM-DTU servers;
a model with more than 4 states is too complex given the big amount of data.
For computational reasons, the parameters of this model are not updated and
they are only computed once.

The estimates of the λ parameters are λ̂ = (0, 166.72, 416.97, 714.68)

The performance of the model can be seen in the reliability diagram on Figure
4.10. Red line corresponds to the model predicting only the presence/absence
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States AIC BIC
2 79608.51 79682.77
3 55967.79 56168.29
4 29639.28 30053.27

Table 4.2: Table showing the AIC and BIC values for 2,3 and 4 states.

of a failure. The reason why the line does not go further than 0.4 is that
the probability of having a failure (P (yt = 1)) is low. The performance is
satisfactory for small probabilities but not so good when greater than 0.2. Green
line represents the performance of the model when predicting Xt|Yt = 1. It it
fairly good since it is close to the diagonal; however, it is similar to 4.6, being
the GLM-gamma model much simpler. The conclusion is that this model is not
more useful than simpler models and hence simple models are preferred.
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4.2.3 Remarks on the chosen model

When looking at the reliability plots presented in the previous section it is
clear that none of the model is perfect, none of then have a clearly outstanding
performance. Nevertheless one of the models should be chosen.

The two stage approach was chosen for the scenario generation, with a Bernoulli
GLM of the presence/absence of outage followed by a Gamma GLM of the
amount of MW failed when an outage happens. The reliability of the Gamma
GLM 4.4 is very similar to 4.6 and to 4.11 with the advantage that it is much
simpler. The reliability of the forecasts of the binary HMM when predicting the
presence/absence in 4.9 is slightly better than the Bernoulli GLM in 4.2 but the
simpler model is preferred since the difference is not too big.

Some final remarks:

• The probability of having a failure in the system does depend on time,
but not on the previous observation. By common sense one could say that
it a unit failed on the previous hour, it is likely that next hour will be
disconnected too. An attempt to account for this information was done
by developing the HMM models, turning out not to be adequate.

• Since the outage probabilities do not depend on previous observations, the
reality is not correctly modeled having here some source of future work.
However, none of the optimization models include time dependencies. One
could run the optimization of each hour and the result would not affect
any other hour at all. So the fact that one scenario at time t depends
on the value of the scenario at time t − 1 will not affect the final result,
or at least, not too much. Instead, what is more relevant is the marginal
distribution for every hour.

• Updating the model parameters every day gives good results. The “ideal”
model to be developed in the future should be fast to update.
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Chapter 5

Results from study case

The optimization models described in the preceding chapter are tested on actual
data. The performance of the LOLP model and CVaR model is examined and
the validity of the results presented below.

5.1 Computational & data issues

The test set period goes from the 1st July 2011 at 00:00 CET to the 30th June
2012 at 23:00, summing up to a total of 8772 hours. The whole test period was
used when comparing methods to generate scenarios and also when they were
generated. If time and computational power was greater, the whole test year
would be considered for the optimization model as well; however, due to limited
resources and time, only four weeks randomly chosen along the period are used,
one week per season and per position in the month:

1. Second week of September 2011

2. Third week of January 2012

3. Fourth week of April 2012
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4. First week June 2012

With a total of 672 hours

The interpretation of the solution given by the optimization models should be
taken cautiously. It represents the total reserve needs incurred by the deviation
of the wind power production and the power load demand from its forecasts
plus the effect of outages in power plants. Recall that an assumption states
that those three factors are the only affecting the need of reserves, which in
reality might be more like interaction with neighbors and failures of transmission
lines. Secondly it should be noted that in the models no difference is made
between primary, secondary or manual reserve. The solution representing the
total reserve needs make no difference between the kinds of reserve; it is assumed
that the TSO would take care of distributing the total needs amongst the three
types of reserves.

Ideally the solution should be compared with the actual need of reserves. This
information is not available and instead the performance of the optimization
model is compared to the scenarios of reserve need, which are assumed to be all
the possible realization of the reserve needs anyways. If the scenarios character-
ized by the reserve needs represent the actual process well, the comparison can
be extrapolated to reality.

5.2 Energinet.dk policy

In this section, the actual strategy followed by Energinet.dk is compared to the
scenarios generated. The total reserve scheduled by Energinet.dk is calculated
by summing the primary, secondary and manual reserve at every hour, excluding
the short-circuit power, reactive reserves, voltage control reserves and reserves
provided by the neighbor areas.

The upper plot in Figure 5.1 shows in dark blue the sum of the primary, sec-
ondary and tertiary reserves at the four selected weeks. On the lower plot it
is shown the proportion of the scenarios that have greater total reserve needs
than the actual reserve scheduled by Energinet.dk: this ratio is equivalent to the
LOLP. This plot tells us that some of the assumptions done do not necessary
hold. In reality, during those four weeks no deficit of power has been recorded.
However, the LOLP is quite high at certain times, suggesting that some load
shedding could very possibly be incurred. This contradictions reveals that the
generated scenarios of reserve needs do not necessarily adjust to the reality and
further efforts should be done at studying how feasible the assumptions are.
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Figure 5.1: The upper plot shows the actual primary reserve, the secondary
reserve, the manual reserve and the sum of the three at the four
selected weeks. The bottom plot shows the percentage of the sce-
narios that are greater than the total reserves scheduled.

It should be noted in Figure 5.1 the behavior of the LOLP at the four main
spikes, suggesting that the LOLP is much more high at those hours that at the
rest and consequently the reserve needs too. One possible cause of this spikes is
that much stronger wind than expected is realized being above the cut-out speed
of the rotor thus causing production of the generators being reduced to zero.
As a result, the reserve needs incurred by this event is very high. Surprisingly,
the four spikes happen at 12:00 CET, which suggests that another unlikely but
possible reason could be a systematic error at the generation stage or simply
a human mistake. The beauty of the optimization models presented is that
is those cases of high reserve needs are predicted, then more reserves will be
bought and the system will keep running safe.
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In Figure 5.2 it can be seen a similar plot showing the relationship between the
actual reserves scheduled by Energinet.dk and the resulting LOLP. As expected,
when RTOT increases the LOLP tends to decrease.
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Figure 5.2: The LOLP is computed taking as total reserves the actual sched-
uled by Energinet.dk. When RTOT increases the LOLP tend to
decrease.
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5.3 Results from the LOLP model

The implementation of this method was discussed at Section 3.4. The parameter
that can vary in this model is β which is an upper bound to the LOLP. It turns
out that in the optimal solution the relation β = LOLP is satisfied. The value
of β should be in practice given by the TSO; however, it is of interest to perform
a sensitivity analysis and study how the modification of the parameter would
affect the solution.

The solution along the four testing weeks can be seen in Figure 5.3. The level
of Rtot varies depending on the time when the model is run and the predicted
reserve needs at that time. As expected, when β decreases , the probability
of not having enough reserves decreases and thus the total reserve is forced to
increase.
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Figure 5.3: The solution of the LOLP-model along the four testing weeks. As
β decreases, Rtot increases.

It is interesting to study how the total reserve varies along the day and if there
is a specific time when more reserves are needed. This can be seen in Figure 5.4,
where the median of Rtot is displayed along the 24 hours of the day. According
to that plot, in general more reserves should be scheduled in the morning and
specifically at 12:00, being 13:00 and several hours afterwards when least reserves
are needed. At times when the load demand is higher like in the morning, more
reserves are scheduled.

Finally it is analyzed how much improvement is achieved by using the LOLP
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Figure 5.4: Median reserve level along the hours of the day, computer with
the LOLP-model.

model compared to a very basic method which allocates constant reserves at
all times. The blue line in Figure 5.5 corresponds to the solution of the LOLP
model while red line corresponds to the basic constant model. The incurred
LOLP by both solutions is displayed on the x-axis while the average solution
of total reserves on the y-axis. To give an illustrative example, lets say the
system operator wants to keep the probability of loosing load at 0.05. If the
basic method is used then the total reserves to schedule should be constantly set
to 417 MW; furthermore, if the LOLP method is used, on average 386 MW will
be needed. The LOLP-model gives schedules less reserves for the same safety
level.
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Figure 5.5: Efficient frontier plot, blue line corresponds to the solution of
the LOLP model while red line corresponds to the basic constant
model.
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5.4 Results from the CVaR model

The implementation of this method was described at Section 3.4. Recall that
there are two parameters to determine: α, which controls the CVaR risk mea-
sure, and the Value of Loss Load V LOL which accounts for the cost to society
when 1 MW of demand is shed. A sensitivity analysis is performed to find out
how these two parameters affect the solution.

Figure 5.6 shows a efficiency frontier plot summarizing the behavior of the
model. On the x axis it is displayed the average LOLP ie. the probability
that the reserve needed is higher than the solution Rtot

∗
; on the y axis, the to-

tal expected cost, which accounts for providing reserve costs plus the expected
power not served cost. The different colored lines correspond to solutions with
same V LOL, and finally the numbers drawn along the line correspond to the
α parameter. As the LOLP decreases, the total cost increases because more
reserves are scheduled. Also, increasing value of loss load implies increasing
reserve: shedding 1 MW of load demand is more costly.

This is the kind of plot that the TSO would be using if this method is imple-
mented in a system. According to the information they gather from the pro-
ducers and consumers about the V LOL and their policies regarding the LOLP
and the total cost, α is chosen and the optimization model run for the following
24 hours.

The value of the solution Rtot
∗

t at time t along the four testing weeks is displayed
in 5.7 on Page 68. On the upper plot the optimization was run with V LOL =
10000 while on the bottom plot with V LOL = 75000. For the same α and time
t, the solution Rtot

∗

t is always greater with greater V LOL. Similarly, greater
α means the TSO is more risk averse and therefore Rtot

∗

t increases. If V LOL
would be ∞, then the solution Rtot

∗

t would be equal to the scenario in which
the reserve needs is maximum, for any α. Likewise if α = 1 for any V LOL. Note
the small “stairs” on the solution lines are caused by the discretization of the
cost function.

In order to analyze the different reserve needs along the day, the median of the
LOLP and the median of the Expected Power Not Served (EPNS) is shown in
5.8. The probability of loosing load changes along the day: in the afternoon,
from 13:00 to 19:00 it is less probable not to cover all the reserve needs than
at the rest of the hours. Similarly, at those hours the EPNS is lower than the
rest. This fact could be caused by a lesser wind production and load demand
and thus lower forecast errors.
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Figure 5.6: Each colored line corresponds to a different V LOl, being the num-
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Figure 5.7: Optimal total reserve along the four testing weeks, computer with
the CVaR model. On the upper plot the optimization was run
with a V lol of 10000, while on the bottom plot with V lol equal
to 75000. The colored lines correspond to different values of the
parameter α. As V lol and α increases, the solution Rtot
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increases too.
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5.5 General remarks about the results

The performance of the methods indicates that they could work in a real system
providing reasonable levels of total reserve to schedule. However, the solutions
had to be compared to the generated scenarios since the actual reserve needs
was not known. This means that if the scenarios characterized by the reserve
needs represent the actual process well, the comparison can be extrapolated to
reality. The quality of the methods will directly depend on the quality of the
scenarios.

There are several ways scenarios could represent better the real reserve needs.
First, by simply generating more scenarios. This seems an fairly good approach
specially in this case since one is more interested in the unlikely events of outages
happening or big forecast errors occurring. The more scenarios, the more of this
cases will be included. A second approach is to include more variables which
have an effect on the reserve needs, for example transmission line failures or
regulating power coming or going to neighbor areas. Last but not least, by
improving the already existing statistical models of wind power production,
power load demand and failure rate, specially this last one.

Which of the two methods is more useful should be addressed by the TSO
depending on its preferences. If the main concern is the probability of not
having enough reserves, or similarly the number of hours per year allowed to
be load shedding, then the LOLP method is more appropriate. On the other
hand, if the main concern are the cases when outages cause big societal costs,
the CVaR method should be used. As a general observation, the CVaR method
produces more safe solutions with greater reserve allocations than the LOLP
method, basically because the cost of not serving power is accounted for in the
objective function.



Chapter 6

Conclusion

Electricity must be supplied continuously and at certain level, balancing up the
quantity that customers demand with the quantity that producers produce. If,
for some unexpected reason, those two quantities are not equal then the system
is imbalanced and load demand has to be shed. This occurrence is costly and
undesired. The main tool that transmission system operators have to avoid
it is to allocate electricity reserves and use them to balance up the system if
required. During this thesis, the goal has been to define probabilistic methods
to determine the optimal level of reserve required.

There is a main difference between the approach given in this thesis and the com-
mon approach given in the literature. The organization of the market structure
is quite different from one country to another. Many of the Market Operators
around the world organize theirs markets in such a way that at the day ahead
market both unit commitment and reserves are cleared. This gives the MO in-
formation about which producers will be on and how much will they contribute
with, information that can be used when determining the reserve levels. In
some other markets, more specifically in West Denmark, the reserves are set
more than two hours before the day ahead market closes, having no information
about which units will be online and hence being the traditional probabilistic
methods not useful for this case. The work of this thesis focuses on this last
kind of market structure; the methods developed can however be used at both
ways of arranging the markets.
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Three methods described in Chapter 3 give an alternative to the traditional
deterministic “n-1” criteria. All of them use as a main input a function repre-
senting the probability that certain reserves will be needed. The first half of the
chapter explores methods which use this function in the case that it is known
in a closed form. The second half approaches similar methods by a stochastic
programming formulation using scenario generation techniques, which in fact
proven to be useful at the study case, presented in Chapter 5.

The first of the two methods implemented imposes a target on the Loss of Load
Probability (LOLP) while the function representing the cost is minimized. The
second method uses the Conditional Value at Risk (CVaR) measure to account
for the risk of having cases with big costs, either because the cost of providing
reserve is big or because the cost of not allocating enough power is big. Both
methods turn out to be useful, each having different capabilities. The LOLP
method explores how the probability of not having enough reserves affects the
solution and will be more useful if this is the concern of the Transmission System
Operator. The CVaR approach gives the TSO more tools to account for the
“worse case” scenarios.

The generation of scenarios is discussed in Chapter 4. It was assumed that three
factors have an impact on the reserve needs, namely the forecast error of the
wind power production, the forecast error of the power load demand and the
forecast outages of power plants. The first two factors are modeled and given by
ENFOR S/A. The third factor is subject to study in this thesis. The system is
treated as a whole and when forecasting outages no difference is made between
power plants. Efforts were made to model the failures as a hidden Markov
model yet scenarios were finally generated from a combination of a Bernoulli
Generalized Linear Model (GLM) and a Poisson GLM.

All in all, this thesis provides some useful methods to determine the optimal level
of reserves that should be scheduled in a probabilistic way. Still more analyses
should done, increasing the complexity while increasing the applicability in a real
system as West Denmark. Nevertheless, a first step is done towards a method
capable of using the available resources in the most efficient and economic way.

6.1 Future work

The West Denmark area, as well as the rest of the European electricity areas, are
interconnected with their neighbor areas exchanging electricity and balancing
power amongst them. With the increasing penetration of wind power produc-
tion, the whole system is more subject to fluctuations being the safety of the
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system threatened. In the future it would be of interest to question to what
extent safe individual areas implies a safe global system and try to develop a
method capable of modeling the interconnections between the different areas.

The presented optimization methods seem to strongly rely on the scenarios
generated. If such scenarios would be improved the overall practicability would
increase too. In the first place a more adequate model of power plant failures
should be worked on since the approach taken on this thesis did not perform
as satisfactory as expected. For instance by adaptive models whose probability
of observing a failure and its quantity would depend on the observation at
the hour before. Secondly, including more factors into the scenario generation
stage will represent the reality more precisely and practicability would definitely
increase. Those factors could include outages from combined hear and power
plants, transmission line failures or reserve needs coming from neighbor areas.

Further studies should concentrate their efforts on what would happen if the
assumptions are dropped. Disregarding the assumption that only producers
who bid into the reserve market can actually deploy it could be modeled as a
three-stage stochastic model if the proper data is available. The models pre-
sented could account for this fact too if scenarios characterized by the amount of
regulating power available that was not purchased in advanced were generated.
Assuming that providing down-regulating power is allowed would be feasible to
include in any of the cases.
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Appendix A

Maximization of the third
term from the CDLL

The Expectation-Maximization algorithm that is presented in 4.2.2.4 requires
to maximize the third term of the complete data log-likelihood with respect to
the parameters π:

max
π

term3 =

m∑
j=1

T∑
t=1

ûj(t)log (tpj(xt)) = (A.1)

m∑
j=1

T∑
t=1

ûj(t)log

(
nt!

xt!(nt − xt)!
πxt
j (1− πj)nt−xt

)
= (A.2)

m∑
j=1

T∑
t=1

ûj(t)

(
log

nt!

xt!nt
+ xtlog πj + (nt − xt)log(1− πj)

)
(A.3)

Deriving with respect to πi:
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∂term3

∂πi
=

T∑
t=1

(
xt
πi
− ûi(t)(nt − xt)

1− πi

)
(A.4)

The last step is to make the previous Equation A.4 equal to zero and solve the
equation with respect to πi:

T∑
t=1

ûi(t)

(
xt
πi
− (nt − xt)

1− πi

)
= 0; (A.5)

∑T
t=1 ûi(t)xt
πi

=

∑T
t=1 ûi(t)(nt − xt)

1− πi
; (A.6)

(1− πi)(
T∑
t=1

ûi(t)xt) = πi(

T∑
t=1

ûi(t)(nt − xt)); (A.7)

πi =

∑T
t=1 ûi(t)xt∑T

t=1 ûi(t)xt +
∑T
t=1 ûi(t)(nt − xt)

; (A.8)

πi =

∑T
t=1 ûi(t)xt∑T
t=1 ûi(t)nt

(A.9)

It has been proven that the maximum is achieved at π̂i =
frac

∑T
t=1 ûi(t)xt

∑T
t=1 ûi(t)nt for all i = 1 . . .m
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Selected code examples

B.1 GAMS code for the CVaR model formula-
tion

Below it is presented the code used to solve the CVaR model introduced in
Section 3.4. The script runs the optimization for several values of α given in
line 21 to 27. Other input parameters as the Value of Loss Load (ie. Vlol),
the scenarios of reserve needs (ie. z) and the steps piecewise approximation to
the cost function R_piece_cost(g) are imported from a .gdx file called input
created with MatLab. At the end of the script, in line 93, the solution is again
exported to a .gdx file which is further analyzed with Matlab.

1 SETS
2 w Scenario /w1*w5000/
3 g Piecewise intervals /g1*g63/
4 a alpha /a1*a7/;
5
6 SCALAR
7 alpha defines the CVaR
8 Vlol Value of Loss Load
9 Rbound Upper bound for R /1800/

10 status Status of the solver
11 pi Probability fo each scenario /0.0002/
12 ;
13
14 PARAMETER
15 z(w) capacity need at scenario w
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16 Rtot_sol(a) Solution , total reserves to schedule
17 EPNS_sol(a) Solution , Expected Power Not Served
18 COST_sol(a) Solution , total cost
19 status_sol(a) Solution , solver status
20 alpha_param(a) alpha values
21 / a1 0
22 a2 0.25
23 a3 0.5
24 a4 0.75
25 a5 0.9
26 a6 0.95
27 a7 0.99/
28 price_fit_rtot(g) Cost of Rtot estimated by a piecewise function;
29
30 *Import Data from gdx file , created with MatLab
31 $gdxin input
32 $load Vlol z price_fit_rtot
33 $gdxin
34
35 VARIABLES
36 Rtot total reserve
37 CO(w) total cost
38 CVar Conditional Value at Risk
39 VaR Value at Risk
40 EPNS Expected Power Not Served
41 S(w) Auxiliary variable
42 R_piece_cost(g) piecewise represnetation of the Rtot;
43 BINARY VARIABLES y(w);
44 POSITIVE VARIABLES Rtot ,etta(w), L(w),R_piece_cost(g);
45
46 EQUATIONS
47 FO auxiliary constrain modeling the CVar
48 Eq1(w) auxiliary constrain for modeling CVaR
49 COST(w) cost of our decisions
50 DefineL(w)
51 bound1_eq1(w)
52 bound1_eq2(w)
53 bound2_eq1(w)
54 bound2_eq2(w)
55 bound3_eq1(w)
56 bound3_eq2(w)
57 EPNS_EQ define the EPNS
58 R_piece_cost_eq Definition of the piecewise function
59 max_r_piece_cost(g) ;
60
61
62 FO.. CVaR =e= VaR - (1/(1-alpha)) * sum(w,pi*etta(w));
63 Eq1(w).. etta(w) =g= CO(w) + VaR;
64
65 COST(w).. CO(w) =e= sum(g,price_fit_rtot(g)*R_piece_cost(g)) + Vlol*L(

w);
66
67 R_piece_cost_eq.. Rtot =e= sum(g,R_piece_cost(g));
68 max_r_piece_cost(g).. R_piece_cost(g) =l= 30;
69
70 DefineL(w).. L(w) =e= (z(w) - Rtot) - s(w);
71
72 bound1_eq1(w).. -y(w)*Rbound =l= L(w);
73 bound1_eq2(w).. L(w) =l= y(w)*Rbound;
74
75 bound2_eq1(w).. -(1-y(w))*Rbound =l= S(w);
76 bound2_eq2(w).. S(w) =l= (1-y(w))*Rbound;
77
78 bound3_eq1(w).. -(1-y(w))*Rbound =l= z(w) - Rtot;
79 bound3_eq2(w).. z(w) - Rtot =l= y(w)*Rbound;
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80
81 EPNS_eq.. EPNS =e= sum(w, pi*L(w));
82
83
84 MODEL RESERVE /ALL/;
85
86 LOOP(a,alpha = alpha_param(a);
87 SOLVE RESERVE USING mip maximizing CVaR;
88 Rtot_sol(a) = Rtot.l;
89 COST_sol(a) = sum(w,CO.l(w))/5000;
90 EPNS_sol(a) = EPNS.l;
91 status_sol(a) = RESERVE.modelstat;
92 )
93 execute_unload ’solution ’,Rtot_sol , EPNS_sol ,COST_sol ,status_sol;

B.2 R code. Non-homogeneous HMM with Pois-
son state-distribution

The following code is a compilation of functions used to fit a Hidden Markov
Model with Poisson state-distribution and non-homogeneous transition proba-
bilities. The code is based on the examples given in [24]. Function number 1
codes the same matrix as in Equation 4.31. The Expectation-Maximization
algorithm is coded in function 3. Along the whole set of functions, beta
represents the parameters of tΓ arranged in a K × 4 matrix with K as the
number of parameters, in the way that beta[1,p] = β12(p), beta[2,p] =
β13(p), . . . , beta[K,p] = βm−1,m(p) for p = 1 . . . 4. The number of states is
represented as m, the Poisson parameter as a vector of length m is called lambda
and the initial distribution delta. The series is given in x and the power load
demand in nMW.

1 ################################################
2 ### 1. Transition probabilities with covariates #
3 ################################################
4
5 gamma.nonH = function(beta ,time ,nMW ,m){
6 gamma = matrix(NA,ncol=m,nrow=m)
7 k = 1
8 for(i in 1:m){
9 for(j in 1:m){

10 if(i == j){
11 gamma[i,j] = 1
12 }else{
13 gamma[i,j] = exp( beta[k,1] + beta[k,2]*cos(2*pi*time/24) + beta[k

,3]*sin(2*pi*time/24) + beta[k,4]*nMW )
14 k = k+1
15 }
16 }
17 }
18 # Normalize
19 gamma = gamma/rowSums(gamma)
20
21 return(gamma)
22 }
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23
24
25 ###########################################
26 ### 2. Forward and backward probabilities #
27 ###########################################
28
29 pois.HMM.lalphabeta.nonH <-function(x,m,lambda ,delta ,beta ,nMW){
30 if(is.null(delta)){
31 print("Please provide delta")
32 return(NA)
33 }
34 n <- length(x)
35 lalpha <- lbeta <-matrix(NA ,m,n)
36 allprobs <- outer(x,lambda ,dpois)
37 foo <- delta*allprobs [1,]
38 sumfoo <- sum(foo)
39 lscale <- log(sumfoo)
40 foo <- foo/sumfoo
41 lalpha [,1] <- log(foo)+lscale
42 for (i in 2:n){
43 foo <- foo
44 sumfoo <- sum(foo)
45 lscale <- lscale+log(sumfoo)
46 foo <- foo/sumfoo
47 lalpha[,i] <- log(foo)+lscale
48 }
49 lbeta[,n] <- rep(0,m)
50 foo <- rep (1/m,m)
51 lscale <- log(m)
52 for (i in (n-1) :1){
53 foo <- gamma.nonH(beta ,i,nMW[i],m)
54 lbeta[,i] <- log(foo)+lscale
55 sumfoo <- sum(foo)
56 foo <- foo/sumfoo
57 lscale <- lscale+log(sumfoo)
58 }
59 list(la=lalpha ,lb=lbeta)
60 }
61
62
63 ########################################
64 ### 3. EM estimation of a Poisson HMM #
65 ########################################
66
67 pois.HMM.EM.nonH <- function(x,m,lambda ,beta ,delta , nMW , maxiter =1000 ,

reltol =0.00001 , crittol =0.00001 ,track=TRUE ,...){
68
69 lambda.next <- lambda
70 beta.next <- beta
71 delta.next <- delta
72 n = length(x)
73
74 # Keep track of the params
75 lambda.track = lambda
76 beta.track = list()
77 beta.track [[1]] = beta
78 delta.track = delta
79
80 for (iter in 1: maxiter){
81 fb <- pois.HMM.lalphabeta.nonH(x,m,lambda ,delta=delta ,beta ,nMW) # return

the log -lik
82 la <- fb$la
83 lb <- fb$lb
84
85 # Scale the log -lik , Sec 3.2
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86 c <- max(la[,n])
87 llk <- c+log(sum(exp(la[,n]-c)))
88
89 if(is.na(llk)) {
90 print(paste("Loglikelihood is not a number. Stopped at iter ",iter))
91 return(NA)
92 }
93
94 ## E-step
95 # m number of states
96 u = matrix(NA ,ncol=n,nrow=m)
97 v = list()
98 for(t in 1:n){
99 v[[t]] = matrix(NA ,m,m)

100 gamma.e.step = gamma.nonH(beta ,t,nMW[t],m)
101 for(j in 1:m){
102 # Eq. 4.13
103 u[j,t] = exp(la[j,t] + lb[j,t]- llk)
104
105 for(k in 1:m){
106 # Eq. 4.14
107 if(t>1 && t<=n){
108 v[[t-1]][j,k] = exp( la[j,t-1] + log(gamma.e.step[j,k]) + log(

dpois(x[t],lambda[k])) + lb[k,t] - llk)
109 }
110 }
111 }
112 }
113
114 ## M-step. Maximize the CDLL
115 #Term 1
116 delta.next = u[,1]/sum(u[,1]) # The sum should be equal to 1
117
118 # Term 2. See function below.
119 opt = optim(par = beta ,term2.nonH ,v.estim = v, nMW=nMW ,m=m,
120 control = list(maxit = 20000, reltol = reltol))
121 beta.next = opt$par
122 if(opt$convergence !=0) {
123 print("Term 2 not sucessfully optimized")
124 if(opt$convergence == 1) print("MaxIter reached.")
125 }
126
127 # Term 3.
128 lambda.next =as.numeric( t( u %*% x / apply(u,1,sum)))
129
130 ## Check for tolerance
131 crit = sum(abs(lambda - lambda.next)) +
132 sum(abs(beta -beta.next)) +
133 sum(abs(delta -delta.next))
134 if(crit <crittol){
135 np <- 4*m*(m-1) + m
136 AIC <- -2*(llk -np)
137 BIC <- -2*llk+np*log(n)
138 return(list(lambda=lambda ,beta=beta ,delta=delta ,
139 mllk=-llk ,AIC=AIC ,BIC=BIC ,iterations = iter ,
140 lambda.track = lambda.track , beta.track = beta.track ,
141 delta.track = delta.track))
142 }
143 lambda <- lambda.next
144 beta <- beta.next
145 delta <- delta.next
146
147 print(paste("Iterarion number",iter))
148
149 # Keep track of the parameters
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150 lambda.track = cbind(lambda.track ,lambda)
151 beta.track[[iter +1]] = beta
152 delta.track = cbind(delta.track ,delta)
153 }
154 print(paste ("No convergence after",maxiter ," iterations "))
155 NA
156 }
157
158
159 ###############
160 ### 4. Term 2 #
161 ###############
162
163 term2.nonH = function(beta ,v.estim ,nMW ,m){
164 beta = matrix(beta ,ncol =4)
165 ret = 0
166 n = length(v.estim)
167
168 for(t in 2:n){
169 log.gamma = log(gamma.nonH(beta ,t,nMW[t],m))
170 ret = ret + sum(v.estim[[t-1]]*log.gamma)
171 }
172
173 return(-ret)
174 }
175
176
177 #############################
178 ### 5. Forecast distribution #
179 #############################
180
181 pois.HMM.forecast <- function(x,m,lambda ,beta , nMW , delta=NULL ,xrange=NULL

,H,nMW.forecast ,...){
182 if(is.null(delta)){
183 print("Please provide delta")
184 return(NA)
185 }
186
187 if(is.null(xrange))
188 xrange <-qpois (0.001 , min(lambda)):
189 qpois (0.999 , max(lambda))
190
191 n <- length(x)
192 allprobs <- outer(x,lambda ,dpois)
193 allprobs <- ifelse (!is.na(allprobs),allprobs ,1)
194 foo <- delta*allprobs [1,]
195 sumfoo <- sum(foo)
196 lscale <- log(sumfoo)
197 foo <- foo/sumfoo
198 for (i in 2:n){
199 foo <- foo %*% gamma.nonH(beta ,i,nMW[i],m)*allprobs[i,]
200 sumfoo <- sum(foo)
201 lscale <- lscale+log(sumfoo)
202 foo <- foo/sumfoo
203 }
204 H = length(nMW.forecast)
205 xi <- matrix(NA ,nrow=m,ncol=H)
206 for (i in 1:H){
207 foo <- foo %*% gamma.nonH(beta ,n+i,nMW.forecast[i],m)
208 xi[,i] <- foo
209 }
210
211 allprobs <- outer(xrange ,lambda ,dpois)
212 fdists <- allprobs %*%xi[,1:H]
213 list(xrange=xrange ,fdists=fdists)
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214 }
215
216
217 ##################################################################
218 ### 6. Conditional distribution of one observation given the rest #
219 ##################################################################
220
221 pois.HMM.conditionals <-function(x,m,lambda ,beta ,delta ,nMW ,xrange=NULL

,...){
222 if(is.null(delta)){
223 print("Please provide delta")
224 return(NA)
225 }
226
227 if(is.null(xrange))
228 xrange <-qpois (0.001 , min(lambda)):
229 qpois (0.999 , max(lambda))
230
231 n <- length(x)
232 fb <- pois.HMM.lalphabeta.nonH(x,m,lambda ,delta=delta ,beta ,nMW = nMW)
233 la <- fb$la
234 lb <- fb$lb
235 la <- cbind(log(delta),la)
236 lafact <- apply(la ,2,max)
237 lbfact <- apply(lb ,2,max)
238 w <- matrix(NA ,ncol=n,nrow=m)
239 for (i in 1:n){
240 foo <- (exp(la[,i]-lafact[i])%*% gamma.nonH(beta ,i,nMW[i],m))*
241 exp(lb[,i]-lbfact[i])
242 w[,i] <- foo/sum(foo)
243 }
244 allprobs <- outer(xrange ,lambda ,dpois)
245 cdists <- allprobs %*%w
246 list(xrange=xrange ,cdists=cdists)
247 }
248
249
250 #################################
251 ### 7. Ordinary pseudo -residuals #
252 #################################
253
254 pois.HMM.pseudo_residuals <- function(x,m,lambda ,beta , delta ,nMW ,...){
255 n <- length(x)
256 cdists <- pois.HMM.conditionals(x,m,lambda , beta , nMW = nMW , delta=delta

,xrange =0: max(x))$cdists
257 cumdists <- rbind(rep(0,n),apply(cdists ,2,cumsum))
258 ul <- uh <- rep(NA ,n)
259 for (i in 1:n){
260 ul[i] <- cumdists[x[i]+1,i]
261 uh[i] <- cumdists[x[i]+2,i]
262 }
263 um <- 0.5*(ul+uh)
264 npsr <- qnorm(rbind(ul ,um ,uh))
265 npsr
266 }
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