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Abstract

The thesis establishes the theory of Constraint Programming (CP) and playlists. It
applies techniques of CP, logic and functional programming with a similarity function
between music pieces to build an Automatic Playlist Generator. The product of the
thesis is a program in SML that generates playlists from a users query of suggestions
and banning of songs. The similarity function is build solely on measures in tempo
and key, which results in playlists that are somewhat useless. The program lack of
measures in timbre, rhythm and melody, but is left open for the implementation of
these. The thesis fianlly concludes that the techniques of CP and local search proves
efficient for solving the problem.
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Resumé

Projektet præsenterer den grundlæggende teori bag Constraint Programming (CP) og
playlists. Strategien i arbejdet med constraints, logisk og funktionel programmering
er anvendt til at opstille en Automatic Playlist Generator, som ogs̊a benytter sig af en
funktion til at sammenligne musiknumre. Produktet af projektet er et program i SML
der genererer playlists ud fra forslag og forbud p̊a sange fra et bibliotek. Funktionen
til sammenligning er alene baseret p̊a sammenligning imellem tempo og toner (key),
som resulterer i ubruglige playlists. Programmet mangler sammenligninger imellem
klangfarve (timbre), rytme og melodi, men den dynamiske tilgang gør at det let kan
implementeres. Til sidst sluttes af den anvendte CP og local search tilgang viser sig
effektiv til at løse problemet.
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Preface

Time spent on assembeling playlists for certain purposes often exceeds the actual use.
Some automatic playlist generation engines already exists, but they often lack the
possibility of altering the generated playlist - or the option of specifying the length.
The result is a repeated query for a playlist until one satisfies and another when it
runs out of songs to play.

This thesis is the product of a personal need for an Automatic Playlist Generator.

The thesis is produced under the Department of Informatics and Mathematical Mod-
elling at the Technical University of Denmark and it will presume some knowledge of
logic programming and functional programming as it will include an implementation
of a program in each language. The preconditions for the thesis are the courses 02156
Formal Logical Systems and 02157 Functional programming teached at the Technical
University of Denmark.

Lyngby, June 2010

Michael Lunøe
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Chapter 1

Introduction

Constraint Programming have successfully been applied to many problems. Music
similarity have within the area of Music Information Retrieval been discussed vastly.
Applications of music similarity include many different areas. Playlist generation
is one, that have recieved much attention. The reason could be the resemblance to
puzzles, which makes it applicable in many approaches. This project will focus on the
application of Automatic Playlists Generation (APG) using Constraint Programming.

With the aid of cost affordable storage and greater device inter-connectivity,
a listener’s personal music collection is capable of growing at an extraor-
dinary rate. When faced with such large music collections, listeners can
often become frustrated when trying to select their music. Hence, it be-
comes increasingly difficult for a listener to find music suited for a partic-
ular occasion [Reynolds et al., 2007].

The goal with this project is to see if Constraint Programming is applicable to the
problem of APG and if this approach is efficient. The problem formulation of the
project is stated in the next section.



2 Introduction

1.1 Problem description

The need for an automated filtering of music has become bigger the resent years due
to vast music libraries.

With focus on efficiency and logic a Constraint Programming (CP) approach to the
problem of Automated Playlist Generation (APG) is adressed, thus the project will
be implemented in a declarative programming language.

This APG will include a representation of the problem as a Constraint Satisfaction
Problem (CSP) and an application using CP.

An objective of the project is to apply a similarity function to the program in order
to improve the quality of the generated playlists.

The project will abstract from analysis of sound and will presume some information
on music available.

1.2 Structure

After an introduction to the subject of APG the problem is approached. Basic playlist
theory, problems that can be solved by CP, algorithms that implement CP. And the
application to the problem will be presented in chapter 2. To utilise algorithmic
choices an analysis of the strength and weaknesses of CP languages will be conducted
in chapter 3. The use of constraints to represent the problem in a declarative domain
places demands of decisions about the design and implementation of the system. The
chapter will therefore also include a representation of the problem and further algo-
rithmic choices tied to this decision along with the choice of a programming language.
In chapter 4 the overall design and structure of the program will be presented along
with a presentation of the specific functions in the program, thus forming the solution
to the problem.

In chapter 5 test results and analysis of complexities is presented and evaluated. A
discussion of the results is done in same chapter and finally the project is concluded
and the future prospects are discussed in chapter 6.
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1.3 Music theory

To be able to understand the background of choices in playlist generation the basic
theory of music must be introduced. The section begins with an introduction to basic
technical terms within the area of music and describes the features as a quality of the
digital signal of music.

Rhythm Any regular recurring motion, symmetry 1.

Tempo The speed of a given piece of music 2.

Beat The basic time unit of music 3.

Tone A specific pitch that represents the perceived fundamental frequency of a
sound 4.

Timbre The quality of a musical note or sound or tone that distinguishes different
types of sound production, such as voices or musical instruments 5.

Chord Any set of harmonically-related notes that is heard as if sounding simulta-
neously6.

Harmony Two or more notes played simultaneously to produce a chord 7.

Key A hierarchical scale of musical notes on which a composition is based8.

Melody A linear succession of musical tones which is perceived as a single entity 9.

To understand music in terms of these descriptions further it is helpfull to study the
digital understanding. As a digital signal a tone can be described by the frequency of
waves, which can be seen as both a vertical and horisontical quality of the the digital
signal. Rhythm is, on the other hand, a strictly horizontal quality of the digital
signal, because it is described by when the tones occur rather than which. This is,
however, not a sufficient description. Tones has to be regularly recurring, meaning
that patterns of occurances is repeated. This vauge definition makes it very complex
to deduce from a digital signal because every instrument (e.g. voice, guitar, drums,
etc.) can follow its own pattern generating a new pattern combined. It is, though,

1http://en.wikipedia.org/wiki/Rhythm
2http://en.wikipedia.org/wiki/Tempo
3http://en.wikipedia.org/wiki/Beat_(music)
4http://en.wikipedia.org/wiki/Pitch_(music)
5http://en.wikipedia.org/wiki/Timbre
6http://en.wikipedia.org/wiki/Chord_(music)
7http://en.wiktionary.org/wiki/harmony
8http://en.wiktionary.org/wiki/key
9http://en.wikipedia.org/wiki/Melody

http://en.wikipedia.org/wiki/Rhythm
http://en.wikipedia.org/wiki/Tempo
http://en.wikipedia.org/wiki/Beat_(music)
http://en.wikipedia.org/wiki/Pitch_(music)
http://en.wikipedia.org/wiki/Timbre
http://en.wikipedia.org/wiki/Chord_(music)
http://en.wiktionary.org/wiki/harmony
http://en.wiktionary.org/wiki/key
http://en.wikipedia.org/wiki/Melody
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possible to deduce patterns from digital signal processing [Foote et al., 2002]. The
tempo in modern music is usually indicated in beats per minute (bpm), i.e. the speed
of the music piece. As rhythm, tempo is a horisontical quality of the digital signal
and can be deduced from digital signal processing as well [Foote et al., 2002].

The timbre is characterised by many different qualities of the digital signal, e.g. the
rise, duration, and decay of the sound, and it is therefore possible to deduce from
digital signal processing. Global timbre refers to the timbre description covering the
full duration of a composition [Reynolds et al., 2007].

Because harmony operates on which tones that sound it can be viewed as a vertical
quality of the digital signal. In figure 1.1 is specified which keys, and therefore also
tones and chords, harmonise. The keys are in the figure represented by symbols
because further explaination of keys is beyond the scope of this project 10.

12B

12A

11B

10B

9B

8B

7B

6B

5B

4B

3B

2B

1B

1A

2A

3A

4A

5A
6A

7A

8A

9A

10A

11A

Figure 1.1: The figure shows the circle of fifths with symbols of 1A to 12B to represent
the keys. An A means that it is a minor key and B major. For two keys to be harmonic
they must be the same or right beside it, e.g. 2A is harmonic with 1A, 2A, 3A and
2B.

Because the key specifies which tones or chords that may be used in the composition
of a music piece the digital signal processing can deduce the global key(s), i.e. the
key of the whole composition [Anglade et al., 2009].

Lastly the melody is described by both which tones and when they sound. This
means that a melody contains a rhythm and for the melody to sound good, it must
consist of harmonic succeeding tones or chords.

10Further explaination is given at Wikipedia, http://en.wikipedia.org/wiki/Key_(music).

http://en.wikipedia.org/wiki/Key_(music)


Chapter 2

Theory

This chapter establishes the basic playlist theory and the principles of Constraint
Porgramming (CP). It will function as the knowledge base on which the project is
buildt and introduce the methods and tools to solve the problem along with the
discussion in chapter 3.

2.1 Playlist theory

To be able to compose a playlist of good quality it is necessary to study what is
considered to be good charateristics of a playlist and which methods have proven
effective in a sense of song selection. This will be presented in this section, but first
a research on the use and purpose of playlists is conducted.

Some playlists are created for personal use by oneself or a few close
friends - primarily as background for another activity [...] A playlist may
be created to reflect a particular mood or emotion in the creator [...] A
playlist might also be shared as “party music”, in this context mainly
as background rather than as dance music or the center focus for the
party [Cunningham et al., 2006].
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The assignment is to provide a series of songs, that go great together and consists
of songs in the mood and/or activity of the users choice. To know what the user
wants, it is crucial to gather information from the user. The task of conducting a
suitable playlist is limited by manually gathered information and efficiency, because
the user is interested in a fast solution, without much effort. Some automatised
information gatherings go as far as measuring the tempature, weather and noise in
the environment, where the playlist is needed [Reynolds et al., 2007]. Others mainly
rely on manually provided information [Pauws et al., 2006].

A good balance between automatised information gathering and easy information
retrieval from the user is needed to fulfil these demands and yield good playlist results.
Relevance feedback is a technique to improve the quality of the returned playlist in
reponse to a user’s query by incorporating feedback from the user [Logan, 2002]. The
use of relevance feedback in playlist generation has in many respects proven to be a
good solution [Logan, 2002]
[Pampalk and Gasser, 2006][Pampalk et al., 2005][Reynolds et al., 2007]. A common
approach to get immediate information of what the user wants is the use of seed songs,
i.e. a song that represents the type of music the user wants, to listen to and constitutes
the basis of the playlist.

Many different approaches have been researched with respect to meeting the require-
ment of good playlists, but they all use some sort of similarity function between
songs.

There are various measures for different aspects of similarity func-
tions in the litterature [...]: melodic and timbral measures have gener-
ally received the most attention, but rhythmic and harmonic ones have
also been considered, and metadata such as artist, lyrics, year of release,
sales figures, chart position and label classification may also be exam-
ined [Allan et al., 2007].

In addition to the, by [Allan et al., 2007], suggested similarity measures in tempo,
genre and duration has been suggested [Reynolds et al., 2007][Pauws et al., 2006]. To
decrease and specify the music collection before engaging in an actual playlist gen-
eration collaborate filtering is commonly used. Collaborate filtering is a community
process, as it employs a multi-user approach that uses explicit preference to match
songs to a specific user [Reynolds et al., 2007]. But for this to work the system has
to have access to a music community.

The next section will present the theory of Constraint Programming.
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2.2 Constraint Programming (CP)

This section introduces the concept of CP and Constraint Satisfaction Problems
(CSP). It serves as background knowlegde for working with and understanding CP.
The indtroduction to CSP will refer to [Russell and Norvig, 2003] and [Apt, 2006].

To classify if a problem is suited for CP a definition of a CSP is needed.

Definition 2.1 A Constraint Satisfaction Problem (or CSP) is defined by the 3-tuple
(X ,D, C), where X is the set of variables, D is the corresponding set of domains and C
is the set of constraints on the variables. Each variable, xi, in X has a corresponding
domain, Di, of possible values, vi ∈ Di. A state of the problem is defined by the
n-tuple of variables, (x1, . . . , xn), where some or all variables are assigned noted by
xi = vi. A complete assignment is the assignment of every variable in the n-tuple,
i.e. an element of the cartesian product between domains D1 × . . . ×Dn. Let A be
a complete assignment, A = (d1, . . . , dn) ∈ D1 × . . . × Dn of n variables and ci be
one of k combinations of m variables from the assignment A, ci = (di1 , . . . , dim

) ∈
Di1 × . . . ×Dim

. Every element dij
from ci is therefore contained in A. If all those

k combinations of variables formed by ci is contained in the constraint C, then A is
a solution to C. C is said to be a constraint on the variables xi1 , . . . , xim

. This can
be expressed by

A = (d1, . . . , dn) ∈ D1 × . . .×Dn

ci = (di1 , . . . , dim
) ∈ Di1 × . . .×Dim

, where dij
∈ A

ci ∈ C ⊆ Di1 × . . .×Dim
, where i ∈ [1; k], m ∈ [1; n]

If the size of the tuple yielded by ci is 1, i.e. m = 1 then C is said to be unary. If
m = 2, C is said to be binary and global if it contains every element of the assignment,
i.e m = n. An assignment, that fulfils the above for every C ∈ C, i.e. does not violate
any constraints, is said to be a solution to the CSP. If there exists a solution to the
CSP, it is said to be consistent, otherwise inconsistent [Russell and Norvig, 2003, p.
137][Apt, 2006, p. 9].

This definition seems to leave the problem very open, so that many problems can be
modelled to a CSP, but it is not all for which it is effective to solve this way. Also
there are different approaches to solve the problem, but they all rely on the same
structure - they are general to solving CSPs. In operating with CSPs some problems
needs an optimal solution, for this are the formulation of Constraint Optimisation
Problems.

Definition 2.2 A Constraint Optimisation Problem (COP) is a subset of CSPs and
is defined by the 4-tuple (X ,D, C,O), where the three first elements are defined as in
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a CSP in definition 2.1 and O is an objective (or cost) function, that determines the
quality of a current state.

S → R ∈ O

S is the set of solutions to the COP and R is the set of real numbers [Apt, 2006, p.
43].

A CSP can be visualised by a constraint graph where vertexes in the graph corre-
sponds to variables of the CSP and edges corresponds to constraint relations. In
the following are two examples of CSPs that should help to get a notion of working
with CSPs. The two examples each have properties that can relate to the problem
of Automatic Playlist Generation. Constraint graphs are explained for them both.

2.2.1 Cryptarithmetic puzzle

The classic example of an CSP is the cryptarithmetic puzzle, where symbols are
replaced with digits for an equation to make sense. When these problems deals with
valid sums it is referred to as a alphametic problem.

In the following letters from the alphabet are the symbols to replace with digits, so
it satisfies the sum.

SEND

+MORE

MONEY

The variables are X = {S, E, N, D, M, O, R, Y } and the corresponding domains are
seen below:

D =















S ∈ [1; 9], M ∈ [1; 9],
E ∈ [0; 9], O ∈ [0; 9],
N ∈ [0; 9], R ∈ [0; 9],
D ∈ [0; 9], Y ∈ [0; 9]















The values of S and M are leading digits and are therefore further restricted to being a
non-zero integer. The problem is formulated as an equality constraint where every x 6=
y for x, y ∈ {S, E, N, D, M, O, R, Y } or as it is often represented all_diff(S, E, N, D,-
M, O, R, Y ). The constraints are formulated as the following.

C =















1000 · S + 100 · E + 10 ·N + D
+1000 ·M + 100 ·O + 10 ·R + E

= 10000 ·M + 1000 ·O + 100 ·N + 10 ·E + Y,
all_diff(S, E, N, D, M, O, R, Y )














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K8
R

Y

S E

N

D

MO

Figure 2.1: The figure shows the constraint graph for the SEND MORE MONEY -
problem. The number of constraint bindings or edges in the complete graph is

|EKn
| = n(n−1)

2 ⇒ |EK8
| = 8(8−1)

2 = 28 [Nielsen, 1995].

The corresponding constraint graph is in figure 2.1.

In stead of one big equality the problem can be divided into smaller subproblems,
which simplifies the process of solving it. The division introduces however new vari-
ables, that carries a value from one column to the next, and with that altered
and additional constraints. In fact, every high-order constraint with a finite do-
main can be reduced to binary constraints if enough auxiliary variables are intro-
duced [Russell and Norvig, 2003].

C =























D + E = Y + α1 · 10,
α1 + N + R = E + α2 · 10,
α2 + E + O = N + α3 · 10,
α3 + S + M = O + α4 · 10,

α4 = M























The domain of each letter remains and the domain of every carry is, αi ∈ [0; 1]. This
formulation of the problem is equivalent to the calculation method of sum by hand.
The constraint graph for this problem is much more complex and a constraint hyper
graph aids the visualisation, see figure 2.2. Each constraint is in the hyper graph a
square box connected to the varables that it constrains.

Because every constraint does not include every variable it can be viewed as a com-
posite problem, see figure 2.3.

The tree decomposition of the constraint graph can be helpful to get an overview of
the problem. Each subproblem can be solved individually and the consequence of this
can be transferred to the next subproblem until the whole problem has been solved.
It is a good visiualisation of where lazy evaluation can be used, because subproblems
can be ”left open” until a solution of these is needed.
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Y D E R N O S M

α1 α2 α3 α4

Figure 2.2: Hyper graph for the carry representation of the SEND MORE MONEY -
problem. Each square is a constraint and each edge from it a relation to a variable.

The solution to the SEND MORE MONEY -problem is

9567

+1085

10652

There exists only one solution to the problem, which can be shown by a search
tree [Apt, 2006, p. 11][Russell and Norvig, 2003, p. 140].

2.2.2 The n-Queens problem

The goal of the n-Queens problem is to place n queens on a n-size chessboard so that
no queen attacks another, i.e. the diagonals, rows and columns are free for every
queen. The problem can be represented as a CSP by the following.

X =
{

x1, . . . , xn

}

,

D =
{

x1 ∈ [1; n], . . . , xn ∈ [1; n]
}

,

C =







all_diff(x1, . . . , xn),
xi − xj 6= i− j for i ∈ [1; n− 1] and j ∈ [i + 1, n],
xi − xj 6= j − i for i ∈ [1; n− 1] and j ∈ [i + 1, n]







.

The variabels, X , consists of a list of variables of numbers. Each position in the
list represents the horisontical position and the value represents the vertical position,
hence the domain of each variable xi is [1; n]. The vertical alignment is an implicit
constraint of the position in the variable list, the all_diff() constraint constrains
the horisontical alignment and the two last constraints handles the diagonals. The
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Y

D

E R

N

O

SM

Y D

Eα1

E

R

N

α1α2

E

N

O

α2α3

O

S

M

α3α4

M

α4

Figure 2.3: A tree decomposition of the constraint graph for the carry representation
of the SEND MORE MONEY -problem. Each vertex consists either of a subproblem
or a variable and each edge a constraint. The constraints that connect subproblems
constrains mutual variables of the subproblems [Russell and Norvig, 2003, p. 154].
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constraint graph is the complete graph, where each variable is constrained by the
others in three different ways, i.e. every constraint in the CSP constrains all variables.

A solution to the 4-Queens problem is given in figure 2.4. The domain for each value
is listed and the underlined values are chosen values.

{1, 2, 3, 4}
{1, 2, 3, 4}
{1, 2, 3, 4}
{1, 2, 3, 4}

{1}
{3, 4}
{2, 4}
{2, 3}

{1}
{3}
{}
{2}

{1}
{4}
{2}
{3}

{1}
{4}
{2}
{}

{2, 3, 4}
{1, 2, 3, 4}
{1, 2, 3, 4}
{1, 2, 3, 4}

{2}
{4}
{1, 3}
{1, 3, 4}

{2}
{4}
{1}
{1, 3}

{2}
{4}
{1}
{1, 3}

{2}
{4}
{1}
{3}

{3, 4}
{1, 2, 3, 4}
{1, 2, 3, 4}
{1, 2, 3, 4}

Figure 2.4: The search tree for solution of the 4-Queens problem with domains for
each variable. The underlined values are chosen values for the variables. Each value
corresponds to a vertical position and each position of domains consists of the ho-
risontal position. The search is stopped with the first discovery of a solution. If all
solutions is sought the search would continue with the leftmost node indicated by the
unended edge.

There exists only solutions for n = 1 or n ≥ 4, but no expression for the number
of solutions to a given n. The n-Queens problem can also be formulated as a COP,
where a simple objective function could be the number of constraint violations in the
current state [Apt, 2006, p. 13].
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2.3 CP heuristics

A heuristic function is in CP defined as a function that answers one or more of the
following questions.

1. Which variable to select.

2. Which value to select.

3. Which constraint to split.

4. What are the implications of the current variable assignments for the other
unassigned variables.

5. When a path fails - that is, a state is reached in which a domain is empty - can
the search avoid this failure in subsequent paths
[Apt, 2006, p. 64][Russell and Norvig, 2003, p. 143].

Number 3 and 4 is the result of Split and Constraint Propagation, respectively. A
Split is a division of a CSP into two or more CSPs over constraints or domains. A
property of this split is that the union of the new CSPs has to be equivalent to the
original problem. An example of a Split over constraints is given in section 2.2.1, by
the decomposition of the constraint graph of the SEND MORE MONEY -problem
and over domain the so called enumeration of variables in the solution to the 4-
Queens problem in figure 2.4. The enumeration of variables splits the CSP into two
equivalent problems over a variable’s domain. The current variable is in the first case
given a possible value from the domain and removed from the domain in the other.
Continuing this proces, until the domain is empty, generating a new CSP for every
value before proceeding, is called labeling. The branching of the tree would then be
the number of possible values in the domain of the current variable [Apt, 2006, p.
62][Russell and Norvig, 2003, p. 146].

Constraint Propagation is also used in the 4-Queens solution. Constraint Propagation
on a variable is the appliance of knowledge from the assignment of another variable
onto the domain of this. This means that if the assignment of a variable removes the
possibility of some values to others in the solution, the domains of these variables can
be reduced. An example of this is arc consistency. If every constraint is represented
by an arc, as it is done in the constraint graph, just directed, arc consistency is when
there for every value exists some value that it is consistent with. This property is
used in figure 2.4 [Apt, 2006, p. 66 and 138].
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2.4 Generic solve procedure for CP

To solve a CSP a generic procedure, determining the processes a CSP shall undergo
for it to be solved, can be helpful. Such a procedure is presented in this section.

Heuristics that can be applied to a CSP was presented in the previous section, where
two processes were specific to CP and is computed directly in the generic procedure,
see figure 2.5.

Solve(csp) returns a solution or failure
inputs:

csp, a constraint satisfaction problem

continue← True
current← csp
while continue and not Solution(current) do

Preprocess(current)
Constraint Propagation(current)
if not Solution(current)

if Atomic
continue← False

else Proceed by Cases(Split(current))
else return current
return failure

Figure 2.5: The generic procedure Solve() for solving a CSP. The Solution() is a
goal test function and the Preprocess() is a procedure to bring the CSP to a desired
form. The Constraint Propagation() uses information of the current assignments
to restrict values of others and Atomic() is a test if search does not need to proceed,
that is the outcome of the CSP (or sub-CSP) can be directly computed. The Split()
divides the CSP into one or more sub-CSPs and Proceed by Cases() deals with
the order of which sub-CSP to handle next [Apt, 2006, p. 59].

All processes in the generic procedure can be defined for every CSP. Not all are
necessarily used, but can be considered when implementing the program.

Analysis of CP will after this chapter aid the algorithmic choices and choice of data-
structure.



Chapter 3

Analysis

In this chapter an analysis of CP and a discussion of the appliance on Automatic
Playlist Generation (APG) is conducted. A discussion of the implications by a rep-
resentation of the problem in declarative languages will aid the choices in datastruc-
tures. Finally, a discussion on algorithms and heuristic functions to solve the problem
will aid the algorithmic choices.

3.1 Algorithms for CSPs

When working with CSPs several specific algorithms exists to solve the problem.
Backtracking search is a depth-first search that backtracks to the parent node,
whenever there exists an empty domain for a variable. It then continues with the
next descendant spanning the whole tree. Every node in the tree is a CSP and the al-
gorithm stop with the first assignment that satisfies the CSP if a single solution or in-
consistancy is sought. If every solution is wanted the algorithm continues untill every
leaf has been generated. Because the search tree is generated without further informa-
tion about the problem, than that given in the problem formulation, it is a uniformed
search and therefore not expected to perform very well [Russell and Norvig, 2003, p.
73].
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If, on the other hand, information is gathered and used while searching, the search can
be improved. An example of this is the branch and bound search. The branch and
bound search uses a heuristic function to bound the search. The branch and bound
heuristic presumes an objective function, where it in each step, holds the current best
assignment. This allows the search to prune the search tree, or bound the search,
whenever the objective function yields a worse result than the current best. Another
example of a heuristic function is the most constrained variable (MCV) heuristic. This
function always selects the variable that appears in the largest number of constraints,
to be assigned next. When used with backtracking, the performance can be greatly
improved [Apt, 2006, pp. 337].

The enumeration and Constraint Propagation heuristics are both direct properties of
the forward checking search. The algorithm used in figure 2.4 is forward checking.
Forward checking uses propagation to detect inconsistency whenever a variable is
assigned to a value, but it does not detect if the removal of values generates new
inconsistancies. A stronger propagation is to repeatedly applying arc consistency
until no inconsistancy is left. This is the property of the MAC (Maintaining Arc
Consistency) algorithm. The worst-case time is O(n2d3) for the total number of arcs
n and the total number of values d in a problem [Russell and Norvig, 2003, p. 146]. Of
cause arc consistency , or MAC, does not find every consistency. The arc consistency
checks for inconsistency in any two adjacent variables. If the check is expanded to
include the second adjacent variable it is referred to as path consistency [Apt, 2006,
p. 150][Russell and Norvig, 2003, p. 147].

Finally we have the Min-Conflicts algorithm. It is the result of the application of
local search to CSPs. It uses the min-conflicts heuristic, i.e. choosing the value that
results in a minimum number of conflicts. Its algorithm is shown in figure 3.1.

Local search are algorithms that do not care about which path they take to a solu-
tion, just that they find one. The Min-Conflicts algorithm operates by moving to
neighbors from a current state. It can be applied to both CSPs and COPs. In the
latter the techniques of hill climbing and simulated annealing can be used to improve
the search. Local search has proven very effective in solving many CSPs and COPs.
For the Min-Conflicts algorithm to work an initial complete assignment is needed,
so it can operate on a current state. The efficiency is, of cause, depending on the
initial state [Russell and Norvig, 2003].

In [Russell and Norvig, 2003, p. 143] a thorough survey on commonly used algorithms
efficiency on commonly known CSPs is conducted and the results from the n-Queens
problem is listed in table 3.1.

Table 3.1 shows that the min-conflicts local search is by far the most efficient al-
gorithm for solving the n-Queens problem. The initial assignment could, with this
problem, be randomly chosen or a greedy algorithm and the neighbor states could be
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Min-Conflicts(csp, max steps) returns a solution or failure
inputs:

csp, a constraint satisfaction problem
max steps, the number of steps allowed before giving up

current← an initial complete assignment for csp
for i = 1 to max steps do

if current is not a solution for csp
return current

var ← a randomly chosen,
conflicted variable from Variables[csp]

value← the value v,
that minimises Conflicts(var, v, current, csp)

set var = value in current
return failure

Figure 3.1: The Min-Conflicts algorithm for solving CSPs by local search. The
initial state may be chosen randomly or by a greedy assignment process that choses
a minimal conflict value for each variable in turn. The Conflicts function counts
the number of constraints violated by a particular value, given the rest of the current
assignment [Russell and Norvig, 2003, p. 151].

Problem Backtracking BT+MCV Forward Checking FC+MCV Min-Conflicts
n-Queens (> 40,000K) 13,500K (>40,000K) 817K 4K

Table 3.1: Comparison of various CSP algorithms on the n-Queens problem. The
algorithms from left to right, are simple backtracking, backtracking with most con-
strained variable (MCV) heuristic, forward checking, forward checking with MCV,
and min-conflicts local search. Listed in each cell is the median number of consis-
tency checks (over five runs), required to solve all n-Queens problems for n from 2 to
50; note that all entries are in thousands (K). Numbers in parentheses mean that no
answer was found in allotted number of checks [Russell and Norvig, 2003, p. 143].
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generated by moving a queen or swapping two queens. The conflicts function could
return the number constraints violated by the assignment of a variable to a given
value [Apt, 2006, pp. 372][Russell and Norvig, 2003, p. 150].

Before continuing the discussion of algorithmic choices a representation of the problem
is needed.

3.2 Problem representation

On the basis of the theory presented in section 2.2 the problem of APG is formulated
formally as a CSP. Because a song consists of a list of specific information each
variable, si, consists of a vector where si,k is k’th attribute. In addition the domain,
di, is also represented by a vector specifying the domain of every attribute in si,
di,k. On the other hand a constraint functions is defined as a relationship between
attributes of the same type in variables, see equation 3.1.
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cu = (si,x),
cb = (si,x, si+1,x),

cg = (si1,x, . . . , sin,x)







O =
{

oi = (si → B/R)
}

(3.1)

In the equation B/R is either a boolean or real depending on whether the problem
is a COP or not, respectively. cu is the set of unary constraints, cb is the set of binary
constraints and cg is the set of global constraints. The unary and global constraints
are trivial since they only constrains a single variable and the whole set, respectively.
The unary constraints can be any of the variables in the playlist, but this does not
tie the problem closer, since the problem can be handled by it self before considering
any other problems. The binary constraints, on the other hand, ties the problem in a
linked list because it is defined for every succeeding variable. The tree decomposition
of the constriant graph of the APG problem is shown in figure 3.2.

This representation of the problem seems to support the local search algorithms if
the global constraints can be propagated to the other domains. If this is done after
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Figure 3.2: A tree decomposition of the constraint graph for the automatic playlist
generation problem. Each vertex consists either of a subproblem or a variable. The
complete graph of six vertexes models the global constraint sub-problem and the rest
models the linked list of binary constraints.

assigning the first variable only the binary constraints needs to be fulfilled, which can
be done step by step.

A resemblance of this problem to the n-Queens problem can be seen in the formulation
of variables and domains. Each variable has a place in the list generating the implicit
constraint that no other song can have the same position. Furthermore every variable
has a domain consisting of the set of possible values and there is no difference between
allowed values when no variable have been assigned jet, which is also equal to the
n-Queens problem. The difference between the formulation of variables and domains
of this problem and the n-Queens problem is that this contains one more dimension.

3.3 Algorithmic choices and datastructures

At this point the main algorithm of min-conflicts local search is chosen. This section
will adress the subjects of intial assignment, the conflicts function and heuristics
specific to the problem.

In choosing a beneficial initial assignment one must consider the structure of the
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constraints tied to the problem. As described above the problem is tied mostly by
the binary constraints. This generates challenges to the possiblities of an initial
assignment because every unary constraint only has effect on the other attributes
of the same variable. This is because the unary constraint is very specific to a
single attribute and thereby only very few variables can fulfil this demand generating
implicit constraints on the other attributes. After the unary constraints have been
applied, the globals can be applied, setting the boundaries for the rest of the variables.

The global constraints cannot be applied before the unary because they are defined
as the overall spectrum of values allowed in a playlist and therefore needs a point of
reference.

After this the binary constraints can be applied setting further boundaries for the
variable in the list.

Inspiration from the n-Queens problem aids the choosing of the initial assignment.
A random assignment and the greedy algorithm have been mentioned as suitors
[Russell and Norvig, 2003, 151], but a genetic algorithm could also be an answer.
The Genetic Algorithm works by matching and mutating an initial set of ran-
dom assignments. It is inspired by the process of natural selection in genetics, hence
the name. The initial population is matched by a fitness function that determines
the pairwise compatibility - in the n-Queens problem this could be the number of
nonattacking pairs queens. A crossover point is chosen randomly and “children” are
produced by assembeling each “parent” parts (each parent can produce either one or
two children, in the first case the best can be chosen). A small probability determines
if a state is mutated. The mutations are again chosen randomly, in this case, by mov-
ing a queen to a random new place. The process is continued until a satisfactory state
has been reached or enough time have elapsed. The process frequently takes large
steps in the state space early in the process and smaller later, due to similarity in
the state space. Because of the early large steps the algorithm can quickly produce a
good proposition for the main algorithm [Russell and Norvig, 2003, pp. 116]. There
is no guarantee that it performs well and the iterations needed multiplied by the cost
of the functions together with the initial random assignment is not free.

In the case of a random initial assignment, that will be somewhat fast, the perfor-
mance all depends on the main algorithm, that has to work harder to produce a
solution to the problem.

In between these is the case of the greedy algorithm, that performs well and pull
some of the weight from the main algorithm. There is just one problem that makes it
complicated for the greedy algorithm. The greedy algorithm will built on problems,
if not every assignment is a solution, which would be much to ask. Because the rest
of the list is built on an erroneous state it will attract other errors. So the lists could
very well, after one problem is missed, be assigned to wrong values.
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The conflicts function could be consisting of the number of constraints violated, if
the problem is represented as a CSP. On the other hand, a calculation of violation of
each attribute represented in a variable, would give a very accurate match percentage
if the problem is represented as a COP. See the problem representation, equation 3.1.

The choice of heuristic to choose value is obviously the min-conflicts heuristic, but as
already mentioned the hill climbing and simulated annealing heuristics can be used, if
the problem is chosen to be represented as a COP. Hill climbing algorithms comes in
many different variants, but the basic hill climbing algorithm, often referred to as the
greedy local search, operates by taking the best neighbor without further concern.
A variant that in particular have is proven effective for the n-Queens problem is the
Random-restart hill climbing. It operates with restarting a hill climbing at a random
generated state, until a solution is reached, and can do so in approximately 25 steps. It
solves the 8-Queens problem in less than a minute [Russell and Norvig, 2003, p. 114].
Another example is simulated annealing which uses a combination of hill climbing
and random walk. A research on the performance in this matter would be profitable,
but is beyond the boundaries of this project.

3.4 CP languages

In this section properties of programming languages that are fit for working with
CSPs will be discussed, but only Standard Meta Language (SML) and Prolog with
the bounds library, will be adressed due to boundaries of the project.

The Prolog programming language has a very effective and useful library, bounds,
that can be used to work with Constraint Logic Programming (CLP). In this library
features for working with variables, domains of values and constraints are built-in.
Domains are defined by ranges of integers or as a union of these. Constraint can be
computed using the built-in arithmetic operators, implications and refined constraints
in the bounds library. The solutions are found by assigning variables in the desired
order, e.g. the MCV heuristic is already implemented in the language and can be used
upon request. Also propagation is built-in and is invoked by default when working
with CLP. This makes the solving of problems very effective and all the other features
of the Prolog engine is still available, which opens the possibilities, but as mentioned
with the domains, the CLP is bound to work with integers 1.

SML’s strengths are in the high-order functional programming possibilities. Types
and datatypes are open for definition, making it easy to work with compound vari-
ables. Also concurrency of the solving is an obvious advantage when working with
SML. Finally there exists functional languages that work with constraints based on

1For more information see http://www.swi-prolog.org/man/clpfd.html

http://www.swi-prolog.org/man/clpfd.html
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the SML, Alice ML is one. This language utilise concurrency as well, but suffers as
the Prolog bounds library from being tied to work with integers 2.

Prolog and SML are both declarative languages and the usage of logic is therefore
implicit in both cases. Logic is however used exclusively in Prolog.

A small experiment was conducted in Prolog, where variables available from the
music library consisted of facts and functions were used to implement constraints,
see figure 3.3.

Three things comes to mind when analysing the program. The only constraint that
is actually used from the bounds library is the all_different(+Vars) constraint,
no domain is defined for any variable and finally that the library is a constraint
itself. When studying each constraint it is realised that only keys and tempo are
numerical constraints, making the numerical domains for variables useless. To link
our variables (songs) to the library a relation between variables (attributes) have to
be defined. The tuples_in(+Tuples, +Extension) constraint at first seems to be
helpful in constraining our variables to the library. But is determined less useful after
closer inspection, because the relation (Extension) has to be tuples of integers. This
constraint is the only implemented constraint that links a relation between variables
and if the songs cannot be taken from the library the program will solve the problem
and then see if the solution exists in the library afterwards. This approach is very
inefficient because the program can come up with many solutions to the playlist before
finding a full solution, that can be found in the library. Converting every attribute in
a song to a numerical value would do the trick, but would use a lot of space having
the library listed as a look-up table with the corresponding hash-values. The program
in figure 3.3 solves the problem using Prolog’s own library and with the help of only
the all_different(+Vars) constraint, but does not do so very effectively. A test
shows that the program can find a list of 7 songs from a library of 10 songs, that can
be combined without violating any constraints in less than a second, but uses more
than 9 minutes! to find a combination of 9 songs.

The full source code for a test and the program with comments in Prolog is found in
appendix A.2.

After the discussion on the subject of using CP in APG a specific solution to the
problem will be presented, first the overall design in the next chapter and the imple-
mentation in the following.

2For more information see http://www.ps.uni-saarland.de/alice/manual/

http://www.ps.uni-saarland.de/alice/manual/


3.4 CP languages 23

/* Returns a subset of Y */

subset ([A|X], Y) :- member (A, Y), subset (X, Y).

subset ([], _). % The empty set is a subset of every set .

/* Returns two succeeding elements of Pl */

succ(X, Y, Pl) :-

append (_, [X, Y|_], Pl).

/* Returns if two succeeding artist lists contains equal artists */

neq_art (Ar1 , Ar2) :-

intersection(Ar1 , Ar2 , []).

/* Returns if two succeeding tempi are corresponding */

in_temp (T1 , T2) :-

T1 =< T2 + 10,

T1 >= T2 - 10.

/* Returns if two succeeding lists of keys are harmonic */

harm(Ks1 , Ks2) :-

member (K1 , Ks1 ),

member (K2 , Ks2 ),

((K1 =< K2 + 1,

K1 >= K2 - 1);

K1 =:= K2 + 12; % from minor to major

K1 =:= K2 - 12) , !. % from major to minor

/** Automatic Playlist Generator : *

* Computes a playlist , Pl , from library of songs , *

* a given seed song and length */

apg ((N, Ar , Al, T, Ks), L, Pl) :-

length (Pl , L),

s(N, Ar, Al , T, Ks), % seed in library

findall ((X1 , X2 , X3, X4 , X5),

s(X1 , X2 , X3, X4 , X5),

Library ), % compute library

append ([(N, Ar , Al , T, Ks)], Tl , Pl), % seed first in list

subset (Tl , Library ), % rest a subset of the library

all_different(Pl),

forall (succ((_, Ar1 , Al1 , T1 ,Ks1),

(_, Ar2 , Al2 , T2 , Ks2), Pl), % two successors

(neq_art (Ar1 , Ar2), % different artists

Al1 \= Al2 , % different albums

in_temp (T1 , T2), % corresponding tempo

harm(Ks1 , Ks2 ))), % harmonic keys

!. % cut after finding a solution

Figure 3.3: succ() is a function to get two succeeding variables in a list, neq_art()
is constraint for every songs artists to be different from its succeeding, in_temp() is
constraint for every song to be within [−10; 10] in bpm of a succeeding and harm()

is constraint for every song to be in harmony with its succeeding. apg() is the main
function to compose a playlist og length L, given a seed song. A song consists of
s(#N, #Ar, #Al, #T, #Ks), where #N is the title, #Ar the list of artists, #Al the
name of the album, #T the tempo in bpm and #Ks a list of the keys. The keys are
here converted to be numerical values from 1− 24 in stead of 1A− 12B.
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Chapter 4

Implementation

The program that have been implemented on the basis of the established theory and
analysis is prestented in this chapter. It has been implemented in Moscow ML, which
is a light-weight implementation of SML1.

4.1 Datastructure

To work with the problem specificly choices on attributes in the variables and thereby
their domains has to be made. Below is a representation of variables in the program.
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keysi refers to the global key of a song from the circle of fifths presented in figure 1.1.
Due to delimitation of the project it has only been possible to get information on

1For more information see http://www.itu.dk/~sestoft/mosml.html.

http://www.itu.dk/~sestoft/mosml.html
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tempo (bpm) and global key for every song to base the similarity function between
songs upon. Based on the theory conducted in section 2.1 constraints on the variables
are listed below.

C =















































all_different(si),
artistsi 6= artistsi−1 ∧ artistsi 6= artistsi+1,
albumi 6= albumi−1 ∧ albumi 6= albumi+1,

tempoi < tempoi+1 + 10 ∧ tempoi < tempoi−1 + 10∧
tempoi > tempoi−1 − 10 ∧ tempoi > tempoi+1 − 10,

tempoi < +5 · length · tempoj∧
tempoi > −5 · length · tempoj for i 6= j,

keysi = keysi ∨ keysi = keysi ± 1 ∨ keysi = keysi ± 12















































The constraints are from above: every song should be different, every succeeding
artist must be different, every song must be in tempo with its succeeding and lastly
the songs must harmonise with its succeeding. Number 1 and 5 are global constraints
and the rest are binary. The place of a song is not constrained because it is merely
for convinience and always corresponds to the position in the variable list. Unary
constraints are generated implicitly by the interface functions. The domain is defined
to meet the constraints and to make it as easy to compute the wanted result as
possible.
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The domain does not entirely follow the problem description in equation 3.1, but
the idea of defining a domain for every attribute remains, except for the already
mentioned place.

The playlist generator consists of three interface functions. One to compose a playlist
of a given length from a seed song, and two, to model the proposed playlist into a
satisfying result. This will give the user the opportunity to change the playlist if it
does not fulfil the expectations by adding more and more information to the playlist
until it does. The two modelling functions consists of a suggest song function to add
a desired song to the playlist and a ban song function to remove an unwanted.
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On the basis of the above stated descriptions the datastructure is defined below.

(* place , name , artist (s), album , tempo (bpm ), key (s) *)

type song =

int * string * string list * string * real * string list;

(* library of songs *)

type library =

song list;

(* playlist *)

type playlist =

song list;

(* place , banned songs , illegal artists , illegal albums

lower limit tempo , upper limit tempo , legal keys *)

type domain =

int * song list * string list * string list *

real * real * string list;

(* function that constrains domains *)

type constraint =

song * domain list -> domain list;

(* argument for solution calculation *)

datatype arg = InsertA of song

| ListA of playlist ;

The types song and domain follows the definition above directly. Furthermore the
type constraint consists of a function from a song and domain list to a new domain

list because it is defined as a propagation function. Lastly the datatype arg provides
the possibility of defining a function generally to handle both a song and a playlist.
This is useful when writing the function solution(), that determines whether a song
or a playlist is a solution given a corresponding domain.

4.2 Functions

To easily access and model information of songs, domains, playlists and domain lists
a series of basic functions are defined after the datastructure. The code of these
basic functions are kept out of the report for the purpose of minimising space. All
source code of the program can be found in appendix A.1. Among the basic functions
some more critical functions exists. These are solution(), obj() and constraint-
Prop(). solution() is, as described earlier, defined for both a single song and a
whole playlist. It simply consists of boolean expressions that express if every attribute
obeys its corresponding domain and a recursive call if the argument is a list. The
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obj() function simply returns a number for how much a domain is open, i.e. how
possible it is for song from the library to fulfil the demands. constraintProp() is
constraint propagation function that runs through the list of constraints and applies
them to a given domain. The main functions consists of randomAssign(), mcv(),
conflicts() and minConflicts(). The randomAssign() assigns, as the name
suggests, every variable in the playlist to randomly chosen values from the library.
The mcv() is an implementation of the MCV heuristic for variable selection based on
the objective function and is used in the main algorithm. The conflicts() function
follows the function of the same name in the main algorithm, but instead of returning
a variable that minimises the problem it returns a minimised CSP, see figure 4.1.

conflicts(var, csp, max steps) returns a possibly modified CSP
inputs:

var, a conflicted variable
csp, a constraint satisfaction problem
max steps, the number of steps allowed

to minimise the problem
for i = 1 to max steps do

current← get random song from Library[csp]
if solution(current, csp)

csp′ ← constraintProp(current, csp)
if obj(csp′) < obj(csp)

var ← current
csp← csp′

return csp

Figure 4.1: Library[] gets the library of songs from csp and the solution() function
returns whether current satisfies csp. constrainProp() propagates the knowledge
from assigning the variable to current in csp and the obj() function returns a number
for how closed the domains are in a CSP.

It uses constraint progation and the objective function to determine whether the CSP
is minimised. The main function minConflicts() follows the algorithm showed in
figure 3.1 except that it does not do the initial assignment, it does not choose a
random conflicted variable and it contains a check for impossible domains in the
for-loop. In stead of a random variable it uses mcv() to find the most constrainted
variable. If it finds an impossible domain it returns failure as it is also does if all steps
are used and no solution is found. conflicts() is called by the main function with
40 as max steps, meaning that it finds the best value of 40 tries - if any is found.
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The program initially uses seven constraint or propagation functions, one for each
constraint defined earlier and one for an interface function, which will be discussed
afterwards. The first constraint places itself in every banned song domain except
for itself ensuring that no other variable can be assigned to the same song. The
next two places artists and albums in the neighbouring songs illegal artists and
illegal albums, respectively. The binary tempo constraint defines new lower and
upper tempo limits for every domain by the following two functions:

lower limitj = max(lower_limitj, tempoi − 10 · abs(i− j))

upper limitj = min(upper_limitj, tempoi + 10 · abs(i− j))

The global tempo constraint is defined by the follwing functions:

lower limitj = max(lower_limitj, tempoi − 5 · size)

upper limitj = min(upper_limitj, tempoi + 5 · size)

size is the length of the playlist considered. Both tempo constraints contains a check
so that it is never possible to assign a limit to a negative value. The last constraint is
the most complex. It first updates its own domain and then uses a list of tuples with
harmonic keys to determine new legal keys for every song composing the intersection
with legal keys generating the new legal keys. This check could have been made
more efficient by converting keys to numerical values from 1 to 24 in stead2, but is
kept in the original signature so that information for a song is not changed.

The interface consists, as mentioned, of three functions apg(), suggestSong() and
banSong(). The algorithm for apg() is in figure 4.2.

It uses the random restart hill climbing algorithm on the min conflicts local search.
suggestSong() and banSong() uses the same pattern, but they respectively sug-
gests and bans a selected song from a given complete assignment before the call to
the min conflicts local search. suggestSong() makes use of the already defined
constraints to propagate to the other domains and banSong() makes use of a to
the purpose defined constraint. It places the specified song in every banned songsi

domain and removes the song from the playlist, so that no variables are assigned to
this value.

4.3 Sample session

Below is a sample session of the program. It generates a playlist of 10 songs with
“Wildcat.mp3” as seed song using the apg() function.

2See the Prolog experiment in figure 3.3 to see it implemented as described.
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apg(seed, csp) returns a solution
inputs:

seed, a seed song for the playlist
csp, a constraint satisfaction problem

current← randomAssign(seed, csp)
current′ ← minConflicts(current, size[current] · 10)
if Not solution(current′)

current′ ← apg(seed, csp)
return current′

Figure 4.2: Algorithm for the recursive automatic playlist generator. It uses random-
Assign() to randomly and completely assign the variables in csp with seed as seed
song and then call minConflicts() to try to solve the problem and then calls itself
recursively until a solution is found.

- use "apg.sml";

> ...

- use "constraints .sml";

> ...

- use "library .sml";

> ...

- val s1 = setPlace (List.nth(l, 1363) , 0);

> val s1 = (0, "Wildcat .mp3 ", ["Ratatat "], "Classics ", 116.0 , ["4A"]) :

int * string * string list * string * real * string list

- val (ds1 , pl1) = apg(s1 , cs, l, 10);

> ...

- playlistPrint(pl1);

>

0, Wildcat .mp3 , [Ratatat ], Classics , 116.0 , [4A].

1, Rain.mp3 , [Kerri Chandler ], Unknown Album , 123.0 , [3A].

2, Couchez Avec Toi 2.mp3 , [Vive la fete], Paris , 123.0 , [2A].

3, The Call Of The Ktulu .mp3 , [Metallica ], S&M, 128.0 , [1A, 3B].

4, Let There Be Light .mp3 , [Justice ], Cross , 123.0 , [2A, 3B].

5, Take A Bow.mp3 , [Muse], Black Holes & Revelations , 131.0 , [2A, 5A].

6, Hallelujah .mp3 , [Keith Jarrett ], Unknown Album , 124.0 , [10A, 2A].

7, The Thing That Should Not Be.mp3 , [Metallica ], S&M, 116.0 , [2A].

8, I Should Know.mp3 , [Dirty Vegas], Dirty Vegas , 123.0 , [2A].

9, Pont Des Arts.mp3 , [St. Germain ], Tourist , 124.0 , [2A, 1A].

> val it = () : unit

-

The suggestSong() and banSong() is used similarly but needs a domain list in
addition to alter a given playlist. Sample queries suggesting “About A Girl.mp3” and
banning song number 5 from the given playlist are given below.



4.4 Application of the program 31

- val s2 = setPlace (List.nth(l, 11) , 4);

> val s2 = (4, "About A Girl.mp3", ["Nirvana "],

"MTV Unplugged In New York", 122.0 , ["2A"]) :

int * string * string list * string * real * string list

- val (ds2 , pl2 ) = suggestSong (s2, pl1 , cs, ds1 , l);

> ...

- val (ds3 , pl3 ) = banSong (List.nth(pl2 , 5), pl2 , cs , ds2 , l);

> ...

4.4 Application of the program

The program is meant to be used as the main engine for a playlist generator in,
e.g. an online music community, a music playing program or wherever an automatic
playlist generator can be of use. It should work together with information of every
song in the library, which could be done by analysis of the digital signal when the
song is added to the library. If the library is very large a collaborate filtering would
be useful to narrow down the search space quickly. The interface functions makes
relevance feedback possible and the application that implements the program should
make use of these features.
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Chapter 5

Discussion

This chapter will establish an evaluation of the implementation and discuss the quality
of the solution based on the established theory and analysis. The evaluation will
include a presentation of test results from functional and statistical tests.

5.1 Evaluation

Two types of tests have been run on the program; one for the functionalities and one
for statistical reasons. The first test generates a playlist of a specified length from a
specific seed song, s1. Then it suggests a specific song, s2 at place 4 in this list. The
specifications of s1 (at place 0) and s2 is seen in their respective domains from the
screen dump below.

(* Screen dump of domain from terminal in functional test *)

val ds =

[(0, [s2], [], [],

116.0 , 116.0 , ["4A"]),

(1, [s1 , s2], ["Artist1 "], ["Album1 "],

106.0 , 126.0 , ["3A", "4A", "5A", "4B"]),

(2, [s1 ,s2], [], [],

102.0 , 136.0 , ["2A", "3A", "4A", "3B"]),

(3, [s1 ,s2], ["Artist2 "], ["Album2 "],

112.0 , 132.0 , ["1A", "2A", "3A", "2B"]),
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(4, [s1], [], [], 122.0 , 122.0 , ["2A"]),

(5, [s1 , s2], ["Artist2 "], ["Album2 "],

112.0 , 132.0 , ["1A", "2A", "3A", "2B"]),

(6, [s1 , s2], [], [], 102.0 , 142.0 ,

["1A", "2A", "3A", "4A",

"12A", "1B", "2B", "3B"]),

(7, [s1 , s2], [], [], 92.0, 152.0 ,

["1A", "2A", "3A", "4A", "5A", "11A",

"12A", "1B", "2B", "3B", "4B", "12B"]),

(8, [s1 , s2], [], [], 82.0, 162.0 ,

["1A", "2A", "3A", "4A", "5A", "6A", "10A", "11A",

"12A", "1B", "2B", "3B", "4B", "5B", "11B", "12B"]),

(9, [s1 , s2], [], [], 72.0, 166.0 ,

["1A", "2A", "3A", "4A", "5A",

"6A", "7A", "9A", "10A", "11A",

"12A", "1B", "2B", "3B", "4B",

"5B", "6B", "10B", "11B", "12B"]),

(10, [s1, s2], [], [], 67.0, 171.0 ,

["1A", "2A", "3A", "4A", "5A", "6A",

"7A", "8A", "9A", "10A", "11A", "12A",

"1B", "2B", "3B", "4B", "5B", "6B",

"7B", "9B", "10B", "11B", "12B"])] : domain list

It is also seen that the other domains have been propagated so that a solution to
any other place would be a solution to the current playlist. From the propagation
it is also seen that the domains between the two assignments are very narrow due
to close positions of the seed and the suggested song. It is only the last song in the
playlist that has a full open domain, with respect to banned songs, illegal artists,
illegal albums and legal keys, and a range of 104 bpm in tempo, which it is fair to
say that almost every song would fulfil.

A second song is now suggested to list, that causes an empty domain, meaning that
the request cannot be fulfilled. The test catches this failure in the query and throws
a Failure exception of impossible domain. Lastly song number 5 is banned from the
second list. The test is set up to run on playlists of length 10, but can easily be
altered. It has been run several times on lengths 10, 50, 100 and 500, which it solves
all problems for the first three within a few seconds and uses less than 1,5 minute to
solve each with length 500.

The second test is a test for the rate of succes for the program. The random restart
hill climbing has been turned of in the program and then a function generates a
random assignment from a random seed song and then suggests a random song at a
random place to the playlist for each 10th song in the playlist, besides the seed song.
If a failure is encountered the test adds one to the number of failures and tries to
solve the problem again. It does so until it has solved the problem and then it moves
on to the next iteration. If at any time an impossible domain is generated the test
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restarts until it finds a problem that can be solved. The test is run 100 times for
playlists of length 50 to find the best number of iterations for the main algorithm and
then this number is used to run 100 times with length 10 and 100 to find the rate of
succes. The results is shown in table 5.1

Length Iterations max steps Failures p
50 100 4 25 0,75
50 100 5 23 0,77
50 100 6 7 0,93
50 100 7 12 0,88
50 100 8 7 0,93
50 100 9 3 0,97
50 100 10 1 0,99
10 100 10 0 1,0

100 100 10 1 0,99

Table 5.1: Length is the length of the playlist, max steps is the number of steps used
in the main algorithm, Failures is the number of failures generated by the statistical
test and p is the probability of success.

Both tests are included in appendix A.1. On the basis of the small statistical analysis
it is fair to say that it rarely needs to use the random restart, but it is used for
completeness.

The worst case time complexity can be estimated to O(n2 · 1
p
), where n is the length of

the playlist and p is the probability of success, because max steps in minConflicts()
is linearly depended on the length of the playlist and so is mcv() and conflicts().
For the above used number of iterations on a playlist of length 50 the worstcase
time comlexity would be estimated to be 2475 iterations. The probability of success
depends both on the size of the library and the objective function and yields the
chance for the conflicts() to hit a song in the library that fulfils the domain of the
variable. The search is in the best case bound to linearly time complexity due to the
initial assignment. The worst case space complexity is estimated to O(n2 + l), where
n is the size of the playlist and l is the size of the library. Each domain can contain at
most every song in banned songi generating the squared parameter and the playlist
only uses n, because only a finite number neighboring states are generated in each
step of the search. Finally the size of the library needs to be considered.

That the time comlexity is only bound to the library in the probability is good because
it is qualitative factor and does not matter how big it is, only that it contains a good
selection of songs to complement the playlist. An initial filtering of the library would
improve the probability of success and thereby the efficiency.
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These assesments are based solely on the algorithms and does not take into account
that SML uses linear time when retrieving and changing information from lists and
uses much space due to numerous recursive functions. This slows the program sig-
nificantly. Also the choice of using 10 · 40 tries to find a good value (10 in the
interfacefunctions and 40 in conflicts()) for every variable is decided on the basis
that variables had to have a number of tries each to find a solution. And the weight
of giving the main algorithm 10 times each variable to choose the right variable and
the conflicts() 40 to find the right value was sensible. After practical testing these
values also seemed to get good results.

The program uses a combination of the minimum conflicts and most constrained
variable heuristic and assigns a variable to a value only if the value is a solution to
the current state. This results in the in figure 5.1 showed scenarios.

si

sj

(a) The worst-case scenario when assigning a
variable after another, where the domain is de-
creased as much as possible.

si sj

(b) The best-case scenario when assigning a
variable after another, where the domain is de-
creased with a minimum.

Figure 5.1: The two figures shows a playlist of horisontal spaces each outlined by
vertical blur lines. A variable si from the list is assigned to a value. The solid
dark line indicates the domain after this assignment. Another variable sj is then
assigned to another value within the domain. The dashed line shows the domain
after assigning only this variable and the white space outlines the decreased domain
after propagating when si is already assigned. The gray area is outside this domain.

The program strides with every new variable sj to come as close to the level of the
current state as possible due to these heuristics. The level of the state (here only one
other assignment) is in figure 5.1 indicated by arrows from si. One could say that it
for every assignment tries to leave the domain as open as possible.

The problem of APG have been formulated as a CSP and the priciples of CP have
successfully been used to solve the problem. A constraint propagation function have
been implemented to the APG and because constraint propagation is invoked once
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every time a variable is assigned to a value the principles of arc consistancy is also
achieved.

The playlists that are generated by the program all fulfils the requirements and are
with the library of about 5000 songs (to a point) different every time. The extensive
use of randomness in the algorithms provides a solid basis for the playlists to differ.
But the playlists are, nonetheless, somewhat useless. They greatly lack the use of
timbral, rhythmic and melodics measures thus violating rules of similarity in music.
The latter is obvious to a conneoisseur, when experiencing that e.g. rock easily is
followed by electronica or classical music in the playlists that are generated. These
are examples of violations of all three types.

5.2 Efficiency improvements

The first obvious improvement would be to choose another programming language
so that the program is not slowed by look-up in lists. A programming language
that has a library that supports constraint programming could aid the structure of
the program and the use a general algorithm for constraint propagation. Also this
could provide the option of using a generic Split function to divide the problem
into subproblems. Regardsless of what a Split function would aid solve process by
generating a search tree so the techniques of concurrency are applicable. The split
would also, and maybe more importantly, apply the ”divide and conquer” procedure
for the main algorithm which could improve the search. One way is to find the
most constrained part of the domain of the variable under consideration. The mcv()
function could easily be divided into sub functions, that each could handle a part of
the domain. Then a solution to the next most constrained part of the domain could
be found until one is found that fulfils the whole domain. But for this to work the
constraint library needs to be able to operate on variables of both strings and integers.
The domain for strings could be defined as regular expressions, but that would leave
them infinite due to the pumping lemma of regular expressions 1. Another approach
would be to implement a generic constraint that could tie variables together, as it
is done in the Prolog bounds library with tuples_in(+Tuples, +Extension), just
with variables. This approach, though, leaves the propagation procedure less efficient
because it has to go through every tuple to find relations between variables. What
makes the propagation procedure so efficient with integers is that equations defines
relations between variables generally and domains restrict the values. The variables
are just inserted into the equation and values can be determined. If the problem
should be applied to a generic constraint library a convertion to integers would be
the best solution. A system of values for each variable is needed so domains can be
defined, e.g. artists are hashed to values between 1 to n where n is the number of

1For more information see http://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages.

http://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
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different artists in the music library. This does not take combinations of different
artists into account. Further comblications to this solution might arise, but is outside
the scope of this project to research.

The global constraints tie the problem very closely together, but as stated in the
theory section 2.2, every high-order constraint can be redefined as binary constraints
if enough auxiliary variables are introduced. If the problem is redefined so every
constraint are at most binary, then a definition of a Split function would be even
more effective. A way to do this for the all_diff() constraint is to define a variable
within the banned songsi domain that refers to the next variable’s banned songsi+1,
i.e. banned songsi+1 ∈ banned songi.

The program only implements arc consistancy. But because the problem is defined
with mutual relations between variables, the problem is always consistent - that is if
the music library can fulfil the domain and the users query is not impossible to fulfil.
Consider again the two cases in figure 5.1. Even if the worst-case scenario is applied
every time a solution to the problem still exists, given an infinite library of songs.
There will always exist a path, represented by the white space between si and sj in
figure 5.1(a). But the library is finite and a possibility exists that no other variable
fulfils the narrow demands between si and sj .

It could have been educational to see the difference between the now implemented
initial random assignment and an initial genetic assignment. It is hard to predict
the outcome of a this due to binary constrained problem. An assessment is that the
genetic algorithm works well with global and unary constraints, but could be left
powerless with binary constraints. This assessment is based on the fact that if one
variable is assigned to value that does not fulfil its domain then the variables linked
to this will also be unfit for the solution. This is not the case when dealing with
global or unary constraints.

5.3 Improvements of quality

The playlists that are generated by the program is not ready for qualitative research
at the time being due to lack of similarity measures. It is therefore problematic
to discuss the effect of the implemented features. These circumstances are changed
if the program is extended to include similarity measures in rhythm, melody and
timbre. Fortunately the program works dynamically on attributes and domains of
songs and the constraints of these, so it is very easy expand the CSP of the program to
include these measures. Some programming languages has libraries to process audio
signals and retrieve information from the music just by invoking a function. This
way the abstraction from the digital signal processing can be kept. Some technical
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improvements will be discussed in the following.

Because the problem already uses an objective function the problem would be easy to
convert to a COP. If it is done the techniques of simulated annealing can be applied
to find the best solution to a problem that may be impossible to solve. This would
improve the quality of the playlists because no playlist is generated by the program
at this point if an impossible query is met.

Also it could be educational to try to observe the effects of a collaborate filtering with
the APG engine. A test similar to the statistical test presented in the beginning of
this chapter could aid the assessment of the rate of success.

The relevance feedback seems to operate quite good with the suggestion of songs,
but the ban song does make use of the information given by the user, when a song is
banned. It just removes the song from the lists and makes sure that it is not added
again. A research on the subject what information can be drawn from banning a
song would be beneficial.

Finally the program does not make use of information about the users habits. It is,
though, at this point not possible because the APG is not implemented in a music
program.
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Chapter 6

Conclusion

The problem of Automaitc Playlist Generation (APG) have proven suited for Con-
straint Programming (CP). The technique of constraint propagation is successfully
applied to the problem. The problem is thus kept at a level of consistancy that in-
sures a solution to every problem that is initially consistent, given an extensive music
library. The problems are also solved effectively with the help from the appliance
of local search to CP. The implementation of the program in another programming
language is, though, preferable to get rid of unnecessary iterations.

The playlist that are generated are somewhat useless at this point. They could,
though, be improved drastically by adding timbral, rhythmic and melodic measures
to the similarity function in the program. The program is left open for these new
features to be implemented.

If the project was to be extended the first step would be to gather information of more
musical measures so a qualitative research of the playlists could be conducted. Next
step would be to transfer the program to another programming language to get the
full benefit of the efficiancy improvements. And maybe with this consider a language
that has a library with digital signal processing functions so that the previous stated
requirements can be met. After this the problem could be redefined to a COP and
the techniques of simulated annealing could be applied. Finally an application of the
APG in a music program so that its potetial can be utilised.
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Appendix A

Appendix

A.1 SML source

A.1.1 apg.sml

load "List";

2 load "Int";

load "Real";

4 load "Random ";

6 (* ******************************************************

* *

8 *Contains functions for Automatic Playlist Generation *

* *

10 *Author : Michael øLune *

* *

12 ****************************************************** *)

14 (* *******************

* Type decleration *

16 ******************* *)

18 (* place , name , artist (s), album , tempo (bpm ), key (s) *)

type song =

20 int * string * string list * string * real * string list;
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22 (* library of songs *)

type library =

24 song list;

26 (* playlist *)

type playlist =

28 song list;

30 (* place , banned songs , illegal artists , illegal albums

lower limit tempo , upper limit tempo , legal keys *)

32 type domain =

int * song list * string list * string list *

34 real * real * string list;

36 (* function that constrains domains *)

type constraint =

38 song * domain list -> domain list;

40 (* argument for solution calculation *)

datatype arg = InsertA of song

42 | ListA of playlist ;

44 exception Failure of string ;

46 (* list of possible keys *)

val possKeys =

48 ["1A", "2A", "3A", "4A", "5A", "6A",

"7A", "8A", "9A", "10A", "11A", "12A",

50 "1B", "2B", "3B", "4B", "5B", "6B",

"7B", "8B", "9B", "10B", "11B", "12B"];

52
(* ******************

54 * Basic functions *

****************** *)

56
(* return true if two song are equal otherwise false *)

58 infix 6 eq;

fun (nam , art , al, _, tem , keys) eq

60 (nam ’, art ’, al ’, _, tem ’, keys ’) =

nam = nam ’ andalso

62 art = art ’ andalso

al = al ’ andalso

64 tem = tem ’ andalso

keys = keys ’;

66
infix 6 neq ;

68 fun s1 neq s2 = not(s1 eq s2);

70 (* getters for attributes in song *)

fun getPlace (place , _, _, _, _, _) = place;

72 fun getName (_, name , _, _, _, _) = name;

fun getArtists (_, _, artist , _, _, _) = artist ;

74 fun getAlbum (_, _, _, album , _, _) = album;

fun getTempo (_, _, _, _, tempo , _) = tempo;

76 fun getKeys (_, _, _, _, _, keys) = keys;
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78 (* setters for attributes in song *)

fun setPlace ((_, nam , art , al , tem , keys), p) =

80 (p, nam , art , al , tem , keys);

fun setName ((p, _, art , al, tem , keys), nam ) =

82 (p, nam , art , al , tem , keys);

fun setArtists ((p, nam , _, al , tem , keys), art ) =

84 (p, nam , art , al , tem , keys);

fun setAlbum ((p, nam , art , _, tem , keys), al) =

86 (p, nam , art , al , tem , keys);

fun setTempo ((p, nam , art , al , _, keys), tem) =

88 (p, nam , art , al , tem , keys);

fun setKeys ((p, nam , art , al , tem , _), keys) =

90 (p, nam , art , al , tem , keys);

92 (* getters for attributes in domain *)

fun getDPlace (place , _, _, _, _, _, _) = place ;

94 fun getBans (_, bans , _, _, _, _, _) = bans;

fun getDArtists (_, _, artists , _, _, _, _) = artists ;

96 fun getDAlbums (_, _, _, albums , _, _, _) = albums ;

fun getLower (_, _, _, _, lLimit , _, _) = lLimit ;

98 fun getUpper (_, _, _, _, _, uLimit , _) = uLimit ;

fun getDKeys (_, _, _, _, _, _, keys) = keys;

100
(* setters for attributes in domain *)

102 fun setDPlace ((_, bans , art , alb , lLimit , uLimit , keys):domain , p) =

(p, bans , art , alb , lLimit , uLimit , keys);

104 fun setBans ((p, _, art , alb , lLimit , uLimit , keys):domain , bans) =

(p, bans , art , alb , lLimit , uLimit , keys);

106 fun setDArtists ((p, bans , _, alb , lLimit , uLimit , keys):domain , art) =

(p, bans , art , alb , lLimit , uLimit , keys);

108 fun setDAlbums ((p, bans , art , _, lLimit , uLimit , keys):domain , alb) =

(p, bans , art , alb , lLimit , uLimit , keys);

110 fun setLower ((p, bans , art , alb , _, uLimit , keys):domain , lLimit ) =

(p, bans , art , alb , lLimit , uLimit , keys);

112 fun setUpper ((p, bans , art , alb , lLimit , _, keys):domain , uLimit ) =

(p, bans , art , alb , lLimit , uLimit , keys);

114 fun setDKeys ((p, bans , art , alb , lLimit , uLimit , _):domain , keys) =

(p, bans , art , alb , lLimit , uLimit , keys);

116
(* places a song at specified place in playlist *)

118 fun place (s:song ,pl:playlist ) =

let val p = getPlace (s)

120 val hd = List.take(pl , p)

val tl = List.drop(pl , p)

122 val tl’ = List.map (fn x =>

setPlace (x, getPlace (x)+1)) tl

124 in hd@[setPlace (s, p)]@tl ’

end ;

126
(* removes a song from a playlist *)

128 fun remove (s:song , pl:playlist ) =

let val p = getPlace (s)

130 val hd = List.take(pl , p)

val tl = List.drop(pl , p+1)
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132 val tl’ = List.map (fn x =>

setPlace (x, getPlace (x) -1)) tl

134 in hd@tl ’

end ;

136
(* default full domain *)

138 fun defaultDomain(p) =

(getPlace (p), [], [], [], 0.0, 1000.0 , possKeys );

140
(* remove domain from domain list *)

142 fun removeD (d:domain , ds:domain list) =

let val p = getDPlace (d)

144 val hd = List.take(ds, p)

val tl = List.drop(ds, p+1)

146 val tl’ = List.map (fn x =>

setDPlace (d, getDPlace (x) -1)) tl

148 in hd@tl ’

end ;

150
(* internal ban constraint *)

152 fun banC(s, ds) =

List.map (fn x =>

154 setBans (x, getBans (x)@[s])) ds;

156 (* generates a random number in range [min ; max ] *)

local val gen =

158 let val g = Random .newgen ()

in ref g

160 end ;

in fun ran(min , max) =

162 let val g = !gen

in Random .range(min , max) g

164 end ;

end ;

166
(* selects a random song from domain *)

168 fun getSong ([]) = raise Failure "getSong "

| getSong (l:library ) =

170 let val r = ran (0, List.length (l))

in List.nth(l, r)

172 end ;

174 (* returns the number of times a song is in a list *)

fun containsSong(s:song , pl:playlist ) =

176 List.foldr (fn (x, b) =>

if x eq s

178 then 1.0+b

else b) 0.0 pl;

180
(* returns whether the song or playlist is a solution or not *)

182 fun solution (arg:arg , ds:domain list) =

case arg of InsertA (s) =>

184 let val d = List.nth(ds , getPlace (s))

val temp = getTempo (s)

186 (* song is not banned *)
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in containsSong(s, getBans (d)) = 0.0 andalso

188 (* is not of illegal artist *)

(List.all (fn x =>

190 List.all (fn y =>

x <> y) ( getDArtists (d))) (getArtists (s))) andalso

192 (* is not in illegal album *)

(List.all (fn x =>

194 x <> getAlbum (s)) (getDAlbums (d))) andalso

(* within lower limits of tempo *)

196 getLower (d) <= temp andalso

(* within upper limits of tempo *)

198 getUpper (d) >= temp andalso

(* has legal key *)

200 (List.exists (fn x =>

List.exists (fn y =>

202 x = y) (getDKeys (d)))

(getKeys (s)))

204 end

| ListA ([]) => true (* empty playlist *)

206 | ListA(s::pl) => solution (InsertA (s), ds) andalso

solution (ListA(pl), ds); (* recursive call *)

208
(* returns the objective for a domain *)

210 fun obj(d) =

let val art = Real.fromInt (List.length ( getDArtists (d)))

212 val alb = Real.fromInt (List.length ( getDAlbums (d)))

val diffT = getUpper (d)-getLower (d) + 0.1

214 val key = Real.fromInt (List.length (possKeys ) -

List.length (getDKeys (d)))

216 in art + alb + 100.0/ diffT + key

end ;

218
(* propagates constraints from one variable onto others *)

220 fun constraintProp(s:song , cs:constraint list , ds:domain list) =

(* project each constraint on every variable domain *)

222 List.foldr (fn (c, b) => c(s, b)) ds cs;

224 (* builds or resizes a domain from a playlist *)

fun buildDomain (pl:playlist , cs:constraint list , ds:domain list) =

226 let val dSize = List.length (ds)

val plSize = List.length (pl)

228 in if dSize < plSize

(* fill with default domains *)

230 then let val ds ’ = List.foldl (fn (x, b) =>

if getPlace (x) > dSize -1

232 then b@[ defaultDomain(x)]

else b) ds pl

234 (* find suggested songs *)

val sugg = List.foldr (fn (x, b) =>

236 (List.filter (fn y =>

List.all (fn z =>

238 y neq z) b)

(getBans (x)))@b)

240 [] ds ’

(* update domain for every suggested song *)
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242 in (List.foldr (fn (x, b) =>

constraintProp(x, cs , b)) ds’ sugg)

244 end

else List.take(ds , plSize )

246 end ;

248 (* returns whether the domain is impossible to fulfull *)

fun impDomain ([]) = false (* empty domain *)

250 | impDomain ((d::ds):domain list) = (* general case *)

(* impossible tempo *)

252 (getUpper (d) < getLower (d)) orelse

(* no legal keys left *)

254 (List.length (getDKeys (d)) = 0) orelse

(* recursive call *)

256 (impDomain (ds));

258 (* *****************

* Main functions *

260 ******************)

262 (* generates a random assignment *)

fun randomAssign(hdInt , tlInt , pl:playlist , l:library ) =

264 (* if last song to place *)

if hdInt >= tlInt

266 (* place last song *)

then pl@[setPlace (getSong (l), tlInt )]

268 (* recursive call *)

else randomAssign(hdInt +1, tlInt , pl@

270 [setPlace (getSong (l), hdInt )], l);

272 (* recursive function to find the most constrained domain *)

fun recVar (d:domain , _, []) = d

274 | recVar (d:domain , dC, (d’:: ds):domain list) = (* general case *)

let val dC ’ = obj(d’)

276 in if dC’ > dC

then recVar (d’, dC ’, ds) (* update domain *)

278 else recVar (d, dC, ds) (* discard domain *)

end ;

280
(* selects the most constrained variable *)

282 fun mcv(pl:playlist , ds:domain list) =

let val ds ’ = List.filter (fn x =>

284 not(solution (InsertA (List.nth (pl ,

getDPlace (x))),

286 ds))) ds

val d = List.hd(ds ’)

288 (* find most constrained variable *)

val d’ = recVar (d, obj(d), ds ’)

290 in List.nth(pl , getDPlace (d’))

end ;

292
(* returns the playlist that minimizes s *)

294 fun conflicts (var , _, pl:playlist , cs:constraint list ,

ds:domain list , _, 0) = (* no more attempts , return current *)

296 (* if new variable found *)
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if var neq List.nth(pl, getPlace (var ))

298 (* place in playlist *)

then (constraintProp(var , cs , ds),

300 place (var , remove (var , pl)))

(* no change *)

302 else (ds , pl)

| conflicts (var , v, pl:playlist , cs:constraint list ,

304 ds:domain list , l:library , max) = (* general case *)

let val p = getPlace (var)

306 val s = setPlace (getSong (l), p)

(* song is a solution *)

308 in if solution (InsertA (s), ds)

(* return new domain , pl *)

310 then let val ds ’ = constraintProp(s, cs , ds)

val v’ = List.foldr (fn (x, b) =>

312 b+obj(x)) 0.0 ds’

in if v’ < v

314 (* update var *)

then conflicts (s, v’, pl, cs , ds , l, max -1)

316 (* discard s *)

else conflicts (var , v, pl , cs , ds, l, max -1)

318 end

else conflicts (var , v, pl , cs, ds , l, max -1) (* discard s *)

320 end ;

322 (* main recursive algorithm : *

* Replaces conflicted variables max times . *

324 * Returns a minimized playlist *)

fun minConflict (pl , _, ds , _, 0) =

326 raise Failure "no solution " (* return current if no more attemps *)

| minConflict (pl:playlist , cs:constraint list ,

328 ds:domain list , l:library , max) = (* general case *)

if solution (ListA (pl), ds) (* if playlist is a solution *)

330 then pl (* return current *)

else if impDomain (ds) (* domain cannot be fulfilled *)

332 then raise Failure "impossible domain "

else let val var = mcv(pl , ds) (* select variable *)

334 val n = Real.fromInt (List.length (pl))

(* pl that minimizes var *)

336 val (ds’, pl ’) =

conflicts (var , n*n*1000.0 , pl, cs , ds , l, 40)

338 in minConflict (pl’, cs , ds ’, l, max -1)

end ;

340
(* **********************

342 * Interface functions *

********************** *)

344
(* suggests a song for a playlist *)

346 fun suggestSong (s:song , pl:playlist , cs: constraint list ,

ds:domain list , l:library ) =

348 let val pl’ = place(s, pl) (* place song in pl *)

val ds’ = constraintProp(s, cs , ds) (* propagation *)

350 val ds’’ = buildDomain (pl’, cs , ds ’) (* expand domain *)

(* try solve problem *)
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352 in (ds’’, minConflict (pl ’, cs , ds ’’, l,

List.length (pl ’) *10))

354 handle Failure "no solution " =>

suggestSong (s, pl , cs, ds , l)

356 end ;

358 (* bans a song from a playlist *)

fun banSong (s:song , pl:playlist , cs:constraint list ,

360 ds:domain list , l:library ) =

(* remove domain and propagate *)

362 let val ds’ = banC(s, removeD (List.nth(ds, getPlace (s)), ds))

(* remove banned song from playlist *)

364 val pl’ = remove (s, pl)

(* try solve problem *)

366 in (ds’, minConflict (pl ’, cs, ds ’, l, List.length (pl ’) *10))

handle Failure "no solution " =>

368 banSong (s, pl , cs , ds, l)

end ;

370
(* main algorithm generates a playlist from a seed song *)

372 fun apg(s:song , cs:constraint list , l:library , size) =

if size >= 1 (* must at least contain 1 song *)

374 then let val s’ = setPlace (s, 0) (* place first in playlist *)

(* randomly assign rest of playlist *)

376 val pl = randomAssign(1, size -1, [s’], l)

(* build new domain list *)

378 val ds = buildDomain (pl , cs , [])

(* propagate *)

380 val ds ’ = constraintProp(s’, cs , ds)

(* try to sovle problem *)

382 in (ds ’, minConflict (pl, cs , ds ’, l, size *10))

handle Failure "no solution " =>

384 apg(s, cs , l, size)

end

386 else raise Failure "the playlist must at least contain 1 song";

388 (* *********************

* Printing functions *

390 ********************* *)

392 (* song to string *)

fun songToString(s:song) =

394 let val artl = getArtists (s) handle Blind => [""]

val art = List.foldr (fn (x, b) => x ^ ", " ^ b) "" artl

396 val art ’ = String .substring (art , 0, String .size(art) -2)

val keyl = getKeys (s) handle Blind => [""]

398 val key = List.foldr (fn (x, b) => x ^ ", " ^ b) "" keyl

val key ’ = String .substring (key , 0, String .size(key) -2)

400 in Int.toString (getPlace (s)) ^ ", " ^

getName (s) ^ ", [" ^

402 art ’ ^ "], " ^

getAlbum (s) ^ ", " ^

404 Real.toString (getTempo (s)) ^ ", [" ^

key ’ ^ "]."

406 end ;
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408 (* pretty printer *)

fun playlistPrint(pl:playlist ) =

410 let val str = "\n" ^ List.foldr (fn (x, b) => songToString(x) ^ "\n"

^ b) "" pl ^ "\n"

in print (str)

412 end ;

../SML/apg.sml

A.1.2 constraints.sml

(* ***********************

2 * Constriant functions *

*********************** *)

4
(* place song only once in from playlist : Global *)

6 fun allDiff (s, ds) =

List.map (fn x =>

8 (* songs own domain *)

if getPlace (s) <> getDPlace (x) andalso

10 (* song is not already banned *)

List.all (fn y => s neq y) (getBans (x))

12 (* add to banned songs *)

then setBans (x, getBans (x)@[s])

14 (* do nothing *)

else x) ds;

16
(* adds s to illegal artists to a given domain *)

18 fun updateArtists s d =

let val sArtists = getArtists (s)

20 val dArtists = getDArtists (d)

(* domain belongs to song next to s *)

22 in if Int.abs(getPlace (s) - getDPlace (d)) = 1

(* add if not in illegal domain artists *)

24 then setDArtists (d, List.foldl (fn (y, b) =>

if List.all (fn z =>

26 y <> z) dArtists

then y::b

28 else b) dArtists sArtists )

else d

30 end ;

32 (* artist of the next song must not be the same: Binary *)

fun neqArtists (s, ds) =

34 let val p = getPlace (s)

(* get all before s-1 *)

36 val hd = List.take(ds , p-1) handle Subscript => []

(* get all after s+1 *)

38 val tl = List.drop(ds , p+2) handle Subscript => []

(* get the list of [0,..., s+1] *)

40 val curr = List.take(ds , p+2)
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(* s does not have a successer : [.... , s] *)

42 handle Subscript => List.take(ds, p+1)

(* get the list of [s-1, s, s+1] *)

44 val curr ’ = List.drop(curr , p -1)

(* s does not have a preceeder : [s ,...] *)

46 handle Subscript => List.drop(curr , p)

(* update illegal artists in [s-1, s, s+1] *)

48 val curr ’’ = List.map (updateArtists s) curr ’

in hd@curr ’’@tl

50 end ;

52 (* adds s to illegal album to a given domain *)

fun updateAlbum s d =

54 let val sAlbum = getAlbum (s)

val dAlbums = getDAlbums (d)

56 (* domain belongs to song next to s *)

in if Int.abs(getPlace (s) - getDPlace (d)) = 1

58 (* add if not in illegal domain album *)

then setDAlbums (d, if List.all (fn x =>

60 x <> sAlbum ) dAlbums

then sAlbum :: dAlbums

62 else dAlbums )

else d

64 end ;

66 (* album of the next song must not be the same: Binary *)

fun neqAlbums (s, ds) =

68 let val p = getPlace (s)

(* get all before s-1 *)

70 val hd = List.take(ds, p-1) handle Subscript => []

(* get all after s+1 *)

72 val tl = List.drop(ds, p+2) handle Subscript => []

(* get the list of [0,..., s+1] *)

74 val curr = List.take(ds , p+2)

(* s does not have a successer : [.... , s] *)

76 handle Subscript => List.take(ds, p+1)

(* get the list of [s-1, s, s+1] *)

78 val curr ’ = List.drop(curr , p -1)

(* s does not have a preceeder : [s ,...] *)

80 handle Subscript => List.drop(curr , p)

(* update illegal album in [s-1, s, s+1] *)

82 val curr ’’ = List.map (updateAlbum s) curr ’

in hd@curr ’’@tl

84 end ;

86 (* updates upper tempo limit of domain *)

fun updateUpper (s, d) =

88 let val uLimit = getUpper (d)

(* calculate new upper limit *)

90 val newLimit = getTempo (s)+10.0 *

Real.fromInt (Int.abs(getPlace (s)-getDPlace (d)))

92 (* update upper limit *)

in setUpper (d, Real.min (newLimit , uLimit ))

94 end ;
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96 (* updates lower tempo limit of domain *)

fun updateLower (s, d) =

98 let val lLimit = getLower (d)

val diff = Real.fromInt (Int.abs(getPlace (s)-getDPlace (d)))

100 val temp = getTempo (s)

(* new limit not lower than 0.0 *)

102 val newLimit = if temp > 10.0* diff

then temp - 10.0* diff

104 else 0.0

(* update lower limit *)

106 in setLower (d, Real.max(newLimit , lLimit ))

end ;

108
(* tempo must be within [-10; 10] for the next song: Binary *)

110 fun binaryTempo (s, ds) =

(* update upper and lower tempo limit *)

112 List.map (fn x =>

updateLower (s, updateUpper (s, x))) ds;

114
(* updates upper and lower tempo limit from size of playlist *)

116 fun updateLimits(size , temp , d) =

let val uLimit = getUpper (d)

118 val lLimit = getLower (d)

val newLow = if temp > 5.0 * size then temp - 5.0 * size else

0.0

120 in setLower (setUpper (d, Real.min(temp + 5.0 * size , uLimit )),

Real.max (newLow , lLimit ))

122 end ;

124 (* tempo of every song must be within [-5* length ; 5* length ]: Global *)

fun globalTempo (s, ds) =

126 (* update global tempo limits *)

List.map (fn x =>

128 updateLimits(Real.fromInt (List.length (ds)),

getTempo (s), x)) ds;

130
(* tuples of harmonic keys *)

132 val harmKeys =

[("1A", "1B"), ("1A", "12A"), ("1A", "2A"), ("1A", "1A"),

134 ("2A", "2B"), ("2A", "3A"), ("2A", "2A"), ("2A", "1A"),

("3A", "3B"), ("3A", "4A"), ("3A", "3A"), ("3A", "2A"),

136 ("4A", "4B"), ("4A", "5A"), ("4A", "4A"), ("4A", "3A"),

("5A", "5B"), ("5A", "6A"), ("5A", "5A"), ("5A", "4A"),

138 ("6A", "6B"), ("6A", "7A"), ("6A", "6A"), ("6A", "5A"),

("7A", "7B"), ("7A", "8A"), ("7A", "7A"), ("7A", "6A"),

140 ("8A", "8B"), ("8A", "9A"), ("8A", "8A"), ("8A", "7A"),

("9A", "9B"), ("9A", "10A"), ("9A", "9A"), ("9A", "8A"),

142 ("10A", "10B"), ("10A", "11A"), ("10A", "10A"), ("10A", "9A"),

("11A", "11B"), ("11A", "12A"), ("11A", "11A"), ("11A", "10A"),

144 ("12A", "12B"), ("12A", "12A"), ("12A", "11A"), ("12A", "1A"),

("1B", "12B"), ("1B", "2B"), ("1B", "1B"), ("1B", "1A"),

146 ("2B", "3B"), ("2B", "2B"), ("2B", "1B"), ("2B", "2A"),

("3B", "4B"), ("3B", "3B"), ("3B", "2B"), ("3B", "3A"),

148 ("4B", "5B"), ("4B", "4B"), ("4B", "3B"), ("4B", "4A"),

("5B", "6B"), ("5B", "5B"), ("5B", "4B"), ("5B", "5A"),
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150 ("6B", "7B"), ("6B", "6B"), ("6B", "5B"), ("6B", "6A"),

("7B", "8B"), ("7B", "7B"), ("7B", "6B"), ("7B", "7A"),

152 ("8B", "9B"), ("8B", "8B"), ("8B", "7B"), ("8B", "8A"),

("9B", "10B"), ("9B", "9B"), ("9B", "8B"), ("9B", "9A"),

154 ("10B", "11B"), ("10B", "10B"), ("10B", "9B"), ("10B", "10A"),

("11B", "12B"), ("11B", "11B"), ("11B", "10B"), ("11B", "11A"),

156 ("12B", "12B"), ("12B", "11B"), ("12B", "1B"), ("12B", "12A")];

158 (* updates a domains legal keys given its preceeding *)

fun updateDKeys (d, d’) =

160 if getUpper (d’) = getLower (d’)

then d’

162 else let val keys = getDKeys (d)

val keys ’ = getDKeys (d’)

164 (* find new possible keys *)

val newKeys = List.foldr (fn ((k1 , k2), b) =>

166 if List.exists (fn x =>

k1 = x) keys

168 then k2::b

else b) [] harmKeys

170 (* intersection of newKeys and keys ’ *)

val keys ’’ = List.filter (fn x =>

172 List.exists (fn y =>

x = y) newKeys ) keys ’

174 in setDKeys (d’, keys ’’)

end ;

176
(* successer functions : updates the second given two arguments *)

178 (* roll right *)

fun succr _ [] = []

180 | succr _ [d] = [d]

| succr f (d::d’:: ds) = d:: succr f (f(d, d’)::ds);

182 (* roll left *)

fun succl _ [] = []

184 | succl _ [d] = [d]

| succl f (d’::d::ds) = f(d, d’):: succl f (d::ds);

186
(* key must be harmonic : Binary *)

188 fun harm(s, ds) =

let val p = getPlace (s)

190 val hd = List.take(ds, p)

val tl = List.drop(ds, p+1)

192 (* update corresponding domain *)

val d = setDKeys (List.nth (ds , p), getKeys (s))

194 (* update left from current *)

val hd’ = succl updateDKeys (hd@[d])

196 (* update right from current *)

val tl’ = succr updateDKeys (d::tl)

198 in hd ’@List.drop(tl’, 1)

end ;

200
(* list of constraints *)

202 val cs = [allDiff , neqArtists , neqAlbums ,

binaryTempo , globalTempo , harm];
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../SML/constraints.sml

A.1.3 functionalTest.sml

1 use "apg.sml ";

use "constraints .sml";

3 use "library .sml";

5 (* *****************

* Test functions *

7 ******************)

9 (* playlist of 10 songs with: *

* (Wildcat .mp3 , [Ratatat ], Classics ) *

11 * as seed song *)

val s1 = setPlace (List.nth(l, 1363) , 0);

13 val (ds1 , pl1) = apg(s1, cs, l, 10);

15 (* suggest : *

* (About A Gril.mp3 , [Nirvana ], MTV Unplugged In New York) *

17 * in place number 4 to playlist 1 *)

val s2 = setPlace (List.nth(l, 11) , 4);

19 val (ds2 , pl2) = suggestSong (s2 , pl1 , cs , ds1 , l);

21 (* suggest : *

* (Pile Of Gold.mp3 , [The Blow], Paper Television ) *

23 * in place number 7 to playlist 2 *)

val s3 = setPlace (List.nth(l, 242), 7);

25 val (ds3 , pl3) = suggestSong (s3 , pl2 , cs , ds2 , l)

(* if no solution exists *)

27 handle Failure "impossible domain " => ([], []);

29 (* bans song number 5 from playlist 2 *)

val (ds4 , pl4) = banSong (List.nth(pl2 , 5), pl2 , cs , ds2 , l);

31
(* *******************************

33 * print everything to terminal *

******************************* *)

35 print("\nPlaylist of 10 songs with (Wildcat .mp3 , [Ratatat ], Classics ) as

seed song:\n");

playlistPrint(pl1);

37 val sol1 = solution (ListA(pl1), ds1);

39 print("\nSuggest (About A Gril.mp3 , [Nirvana ], MTV Unplugged In New York

) in place number 4 to playlist 1:\n");

playlistPrint(pl2);

41 val sol2 = solution (ListA(pl2), ds2);

43 print("\nSuggest (Pile Of Gold.mp3 , [The Blow], Paper Television ) in

place number 7 to playlist number 2:\n");
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playlistPrint(pl3);

45 val sol3 = if List.length (pl3) = 0

then false

47 else solution (ListA (pl3), ds3);

49 print ("\nBans song:\n" ^ songToString(List.nth(pl2 , 5)) ^ "\nfrom

playlist 2:\n");

playlistPrint(pl4);

51 val sol4 = solution (ListA(pl4), ds4);

53 val all = sol1 andalso sol2 andalso not (sol3) andalso sol4;

../SML/functionalTest.sml

A.1.4 statisticalTest.sml

1 use "apg .sml";

use " constraints .sml";

3 use "library .sml";

5 (* *****************

* Test functions *

7 ******************)

9 (* list of constraints *)

val cs = [allDiff , neqArtists , neqAlbums ,

11 binaryTempo , globalTempo , harm];

13 (* suggest a number of songs to a playlist *)

fun sugg(pl , _, ds , _, 0) = (ds , pl)

15 | sugg(pl , cs , ds , l, n) =

(* get random song from library and place randomly *)

17 let val s = setPlace (getSong (l), ran (0, List.length (pl)))

val pl’ = place(s, pl) (* place song in pl *)

19 val ds’ = constraintProp(s, cs, ds) (* propagation *)

val ds’’ = buildDomain (pl ’, cs, ds ’) (* expand domain list *)

21 in if not(impDomain (ds ’’)) (* not impossible domain *)

then sugg(pl ’, cs , ds ’’, l, n-1) (* suggest a new song *)

23 else sugg(pl , cs, ds , l, n) (* try again *)

end

25
(* counts the number of failures given a length *

27 * of a playlist and a number of iterations *)

fun countFails (_, fails , 0, _) = fails

29 | countFails (size , fails , n, p) =

(* place first in playlist *)

31 let val s = setPlace (getSong (l), 0)

(* randomly assign rest of playlist *)

33 val pl = randomAssign(1, size -1, [s], l)

(* build new domain list *)

35 val ds = buildDomain (pl , cs, [])

(* propagate *)
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37 val ds’ = constraintProp(s, cs , ds)

(* one song suggestion per 10th song *)

39 val suggs = Real.trunc(Real.fromInt (size -1) /10.0)

val (ds ’’, pl ’) = sugg(pl, cs , ds ’, l, suggs )

41 (* try to solve problem *)

val pl’’ = minConflict (pl’, cs , ds’’, l, size*p)

43 handle Failure "impossible domain " => []

| Failure "no solution " => [s]

45 (* impossible domain try again *)

in case List.length (pl ’’) of 0 => countFails (size , fails , n, p)

47 (* failure found try again *)

| 1 => countFails (size , fails +1, n, p)

49 (* problem solved *)

| _ => countFails (size , fails , n-1, p)

51 end ;

53 val fails1 = countFails (50, 0, 100, 4);

val prob1 = Real.fromInt (fails1 )/10.0;

55
val fails2 = countFails (50, 0, 100, 5);

57 val prob2 = Real.fromInt (fails2 )/10.0;

59 val fails3 = countFails (50, 0, 100, 6);

val prob3 = Real.fromInt (fails3 )/10.0;

61
val fails4 = countFails (50, 0, 100, 7);

63 val prob4 = Real.fromInt (fails4 )/10.0;

65 val fails5 = countFails (50, 0, 100, 8);

val prob5 = Real.fromInt (fails5 )/10.0;

67
val fails6 = countFails (50, 0, 100, 9);

69 val prob6 = Real.fromInt (fails6 )/10.0;

71 val fails7 = countFails (50, 0, 100, 10);

val prob7 = Real.fromInt (fails7 )/10.0;

73
val fails8 = countFails (10, 0, 100, 10);

75 val prob8 = Real.fromInt (fails8 )/100.0;

77 val fails9 = countFails (100, 0, 100, 10) ;

val prob9 = Real.fromInt (fails9 )/100.0;

79
(*val fails10 = countFails (500, 0, 100, 10) ;

81 val prob10 = Real.fromInt (fails10 )/100.0; *)

../SML/statisticalTest.sml
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A.2 Prolog source

A.2.1 apg.pl

1 :- ensure_loaded(library (bounds )).

3 /** Knowledge base: *

* Sublist of songs from the library , *

5 * that can be combinded in a Playlist */

s(’Wildcat .mp3 ’, [’Ratatat ’], ’Classics ’, 116.0 , [4]).

7 s(’GimmeGimmeGimme.mp3 ’, [’Black Flag’],

’Unknown Album ’, 124.0 , [2, 3]) .

9 s(’For Whom The Bells Tolls .mp3 ’, [’Metallica ’],

’S&M [Disc 2]’, 128.0 , [2]).

11 s(’Fin Fang Foom (Feat. Little Princ .mp3 ’, [’Stereoheroes’],

’SaGs Indie Electro Rock Playlist August ’, 130.0 , [4, 3]).

13 s(’About A Girl.mp3 ’, [’Nirvana ’],

’MTV Unplugged In New York’, 122.0 , [2]).

15 s(’Behind the Bushes .mp3 ’, [’The Knife ’],

’Deep Cuts [Bonus Tracks ] Disc 1’, 120.0 , [2]).

17 s(’Wasting your time.mp3 ’, [’Raised Fist’],

’Ignoring the guidelines ’, 114.0 , [3]).

19 s(’Let There Be Light .mp3 ’, [’Justice ’],

’Cross ’, 123.0 , [2, 15]).

21 s(’Bach , Johann Sebastian - Air on a G.mp3 ’, [’Bach ’],

’Unknown Album ’, 125.0 , [2]).

23 s(’The Changeling .mp3 ’, [’Compilations’],

’L. A. Woman ’, 119.0 , [3]).

25 s(’11 Theme De Gerbier - Bof Larmee De.mp3 ’, [’Nouvelle Vague ’],

’Coming Home ’, 124.0 , [4]).

27
/* Returns a subset of Y */

29 subset ([A|X], Y) :- member (A, Y), subset (X, Y).

subset ([], _). % The empty set is a subset of every set .

31
/* Returns two succeeding elements of Pl */

33 succ(X, Y, Pl) :-

append (_, [X, Y|_], Pl).

35
/* Returns if two succeeding artist lists contains equal artists */

37 neq_art (Ar1 , Ar2) :-

intersection(Ar1 , Ar2 , []) .

39
/* Returns if two succeeding tempi are corresponding */

41 in_temp (T1, T2) :-

T1 =< T2 + 10,

43 T1 >= T2 - 10.

45 /* Returns if two succeeding lists of keys are harmonic */

harm(Ks1 , Ks2) :-

47 member (K1, Ks1),

member (K2, Ks2),

49 ((K1 =< K2 + 1,
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K1 >= K2 - 1);

51 K1 =:= K2 + 12; % from minor to major

K1 =:= K2 - 12) , !. % from major to minor

53
/** Automatic Playlist Generator : *

55 * Computes a playlist , Pl , from library of songs , *

* a given seed song and length */

57 apg ((N, Ar , Al, T, Ks), L, Pl) :-

length (Pl , L),

59 s(N, Ar, Al , T, Ks), % seed in library

findall ((X1 , X2 , X3, X4 , X5),

61 s(X1 , X2 , X3, X4 , X5),

Library ), % compute library

63 append ([(N, Ar , Al , T, Ks)], Tl , Pl), % seed first in list

subset (Tl , Library ), % rest a subset of the library

65 all_different(Pl),

forall (succ((_, Ar1 , Al1 , T1 ,Ks1),

67 (_, Ar2 , Al2 , T2 , Ks2), Pl), % two successors

(neq_art (Ar1 , Ar2), % different artists

69 Al1 \= Al2 , % different albums

in_temp (T1 , T2), % corresponding tempo

71 harm(Ks1 , Ks2 ))), % harmonic keys

!. % cut after finding a solution

../Prolog/apg.pl

A.2.2 test.pl

1 :- consult (apg).

3 /* test computing a playlist of 7 with Wildcat .mp3 as seed */

test(Pl):-

5 apg ((’Wildcat .mp3 ’, _, _, _, _), 7, Pl).

../Prolog/test.pl

A.3 Process
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Figure A.1: The figure shows a gantt diagram of the process project.
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