
General Game Player for Board
Games

Lukas Berger

Kongens Lyngby 2012

IMM-MSc-2012-0001

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-MSc-2012-0001

Summary

This project presents the implementation of a General Game Player capable of
playing an arbitrary board game for two players. The players compete against
each other by taking turns. The system uses game descriptions defined by the
Game Description Language.

The implementation of the General Game Player was developed in Objective-
C and is based on the modified Min-Max algorithm. The modifications adapt
the algorithm to be able to find a solution to a given problem without the
knowledge specific to a current game. A performance analysis is performed after
introducing multithreading to check if utilising modern computer hardware can
decrease the time needed to find the solution.

ii

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark and at the Tsinghua Uni-
versity in China in fulfilment of the requirements for acquiring an M.Sc. in
Informatics.

The thesis deals with the implementation of a system capable of playing an
arbitrary board game for two players.

The thesis consists of a report and one application.

Lyngby, 20-September-2012

Lukas Berger

iv

Acknowledgements

I would like to thank everyone who made this thesis possible.

My supervisor Jørgen Fischer Nilsson for guiding me through the whole process
and giving me a lot of useful feedback. Thank you for always being there for
me whenever I needed help.

I would like to thank Thomas Bolander for allowing me to use his game ’Kolibrat’
for the testing purposes.

I would like to thank all my friends for the moral support that they have pro-
vided me: Ashley Keufsson, Yuxiao Wang, Emil Rydza, Chiara Cigarini, Elisa
Canesci, Bevin Gee, Laurent Arribe, Yu Xin, Paw Berliot Sort Jensen and Jens
Kruse Mikkelsen. Thank you for your support.

Last but not least I would like to show my gratitude to my whole family for the
love and support I received and especially to my mother Krystyna Berger for
always being there for me.

A lot of work done for the project was done during the exchange at the Tsinghua
University in Beijing, China. I have to admit that the whole experience was
amongst the most amazing things that have happened in my life and I would
like to show my gratitude to all of the people I have met there.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1

2 Game Description Language 3
2.1 Background . 4

2.1.1 Datalog . 4
2.1.2 Knowledge Interchange Format 6

2.2 Specification . 7
2.2.1 GDL Additions . 8
2.2.2 GDL Syntax Summary . 12

3 Game Playing 15
3.1 Kolibrat . 15

3.1.1 Overview . 15
3.1.2 Legal Moves . 17
3.1.3 Game goals . 22

3.2 Game Trees . 23
3.2.1 Min-Max Algorithm . 25

3.3 Heuristics[4] . 26

4 Implementation 29
4.1 Overview . 29
4.2 Data Structures . 30

4.2.1 Design Decision . 30
4.2.2 String representation . 31

viii CONTENTS

4.2.3 Description . 32
4.2.4 GPDataModel . 35

4.3 GDL Parser . 38
4.4 Game Player . 40

4.4.1 Game Tree Node . 41
4.4.2 Node Expansion . 43
4.4.3 New node generation . 45
4.4.4 Goal and terminal checking 46
4.4.5 Game Tree Traversal . 46

5 Discussion 49
5.1 Heuristics and Min-Max node value 49
5.2 Min-Max Modifications . 50
5.3 The Frame Problem . 51
5.4 Multithreading . 52

6 Summary 55

A Appendices 57
A.1 Tic-Tac-Toe game rules written in GDL 57

B Appendices 61
B.1 Kolibrat game rules written in GDL 61

C Appendices 71
C.1 Software Instructions . 71

Bibliography 73

Chapter 1

Introduction

General Game Playing (GGP) is a branch of Computer Science that tries to
develop a General Game Playing System that accepts a formal description of a
specified game and then plays the game e↵ectively without any human interven-
tion. This intervention might include any changes to the original source code
or algorithms used for the system.[1]

Unlike specialised game players, such as Deep Blue (a Chess player), general
game players do not rely on algorithms designed in advance for specific games
- they are able to play di↵erent kinds of games.[1] The General Game Playing
System, which can be simply called a Game Agent, should be flexible enough to
be able to read a set of specifications describing a game to be played and then
based on those rules construct a sequence of actions that will lead it to at least
one of the predefined game goals.

The project described in this report is dealing with a specific subsection of
General Game Playing (Board Games for two players) and is divided into two
main parts. The first part deals with reading and parsing a set of specifications
for a provided game and generating a representation of a game world based on
those rules. The second part deals with the Game Agent taking actions (legal
moves) in the game world processed in the first part. Those actions should
create a sequence that will lead to one of the predefined game goals.

2 Introduction

The solution to the first part has been mainly provided by scientists from the
Stanford University. A set of rules has been formalised in a Game Description
Language (GDL in short) that provides a toolset for describing games in a stan-
dardised manner. The Game Description Language has been a very important
part of this MSc project and will be described in details in the second chapter
of this report.

The second part has still a lot of space for improvement. The Stanford University
is organising a competition on a yearly basis, where students from around the
world try to compete and come up with the best solution to this problem.
The results are getting better every year but there is still a long way to go.
Implementing and testing this part was one of the main goals for this MSc
project. Additionally, ways of improving the solution by utilising a modern
computer hardware have also been tested.

General Game Playing is a very important field of Artificial Intelligence. Some
real life examples like creating a schedule for a train network or a cargo distri-
bution problem in a warehouse can also be described as a set of rules with the
help of the Game Description Language. Once the description of a problem is
created it can be used by a well developed Game Agent to try to find a solution
to it. The situation described above is out of the scope of this project but it
serves as a good example of a potential that GGP has and the project itself can
serve as a solid foundation for a future work of this nature.[1]

This report is divided into the following chapters:

Game Description Language this chapter describes the foundations
of the Game Description Language that was used for describing the
rule’s of the games to be played as a set of formalised rules.

Game Playing in this chapter a theoretical background for the algo-
rithms and methods used for the project are described.

Implementation this chapter describes the design decisions and details
used for the implementation of the project.

Discussion is a chapter where encountered problems and their solutions
are described. Additionally, some results are also described in this
section.

Summary summarises the work done on the project and proposes a fu-
ture work that can be done to extend it.

Chapter 2

Game Description Language

Board Games for two players can be described with a certain set of rules. For
each state of the game a set of legal moves can be applied and the players
have a full view of the game environment at any time. Additionally, one of the
properties of the board games dictates that players compete against each other
in turns, meaning that if one player takes an action then the other Player has
to wait.

In theory, for such an environment it should be possible to derive a directed
graph. At any time of the game a unique state can be created for the game
environment with outgoing arcs representing a move made by each player during
the duration of his turn. Each node of the graph (state) would hold facts that
are true in a current development of the game world. Since the number of
players is limited to two and their percepts and actions are finite, the graph will
have a finite size. This means that in theory it is possible to represent a whole
game world (with all of it’s developments at any time) with such a graph. A
partial example of such a graph for a simple game like Tic-Tac-Toe is presented
in figure 2.1 below.

However, the graph described above has it’s limitations. For games like Tic-
Tac-Toe where the number of states (state space) is just 26830 it is possible to
generate and store the whole graph. For more complex games like Chess the
state space increases dramatically to 1028, which is impractical for a direct use

4 Game Description Language

X X X

X X X

OX OX X

O

Figure 2.1: A simplified example of the Tic-Tac-Toe’s game state graph. The
initial state is shown on top and the successor states below. Note
that this example is only a partial representation of the state graph
for Tic-Tac-Toe.

in reasoning.

This limitation was one of the reasons why the Game Description Language
was created. GDL allows General Game Playing reasoning to be performed
e�ciently providing a set of rules for a compact and modular representation
of the game world and its dynamics. GDL also provides a standardised way
of representing a game world for any game. This property can be used as a
foundation for developing a General Game Player.[2]

2.1 Background

2.1.1 Datalog

The Game Description Language is based on the Datalog query language, which
was previously used for deductive database systems. Datalog is a solid founda-
tion for the GDL since it’s main goal was to make deductions based on the rules

2.1 Background 5

and facts stored in a database. The Game Description Language introduces new
elements to the original language.

Datalog itself is a very complex language and not all of it’s elements have been
adopted in GDL. It is important to summarise and briefly describe the ones
that laid the foundations for the Game Description Language. The naming
conventions have been modified and adapted for the purposes of this project.

Variable Denoted by a capital letter. The scope of a variable is not lim-
ited to any specified type. Referred as Object Variable in Datalog
terminology. (e.g. X, Y, Z)

Constant Denoted by a lowercase letter or a string starting with a low-
ercase letter. Referred as Constant Variable in Datalog terminology.
(e.g. a, b ,c)

Sentence Denoted by a lowercase letter or a lowercase string. Sentence
is used to bound variables and constants together. It is possible for
a sentence not to have any parameters. Datalog distinguishes two
types of sentences: a function (takes both variables and constants)
and a relation (bounds only constants together) but for the purposes
of GDL and this project those two types have been merged together
into a sentence. (e.g. father(John, Jim), distinct(n, N))

Rule It is a logical implication of the following form: a (b ^ ... ^ c.
The implied value - ’a’ is called a head of the rule and composes of
only one Sentence described above. It is not allowed to put a negated
sentence in the head of the Rule. The sentence ’a’ is true if and only
if all of the sentences - b ^ ... ^ c, called the tail of the rule, are
also true. There is no limit on how many sentences there are in the
Rule’s tail. Referred as Datalog Rule in Datalog terminology. (e.g.
(father(John, X) <= son(X, John)))

Disjunction Provides a mechanism of connecting multiple sentences to-
gether and will hold if at least one of the sentences in it is true.
(e.g. (son(John, Jim) <= (father(John, Jim) | father(Jim, John))))
A Disjunction can only appear in the Datalog’s Rule tail as it’s task
is to enable two or more rules to be joint together. (e.g. (son(John,
Jim) <= (father(John, Jim))) or (son(John, Jim) <= father(Jim,
John))))

Negation Negates the truth value of the sentence. (e.g.˜father(Jim,

6 Game Description Language

John))

2.1.2 Knowledge Interchange Format

Knowledge Interchange Format (KIF) is a language designed for use in the in-
terchange of knowledge among disparate computer systems (created by di↵erent
programmers, at di↵erent times, in di↵erent languages, and so forth).[3]

The Game Description Language is becoming a universal language used for many
projects. The latest specification of the language has adopted the Knowledge
Interchange Format for it syntax and semantics.[2]

The project described in this report is dealing with an implementation of the
General Game Player, the syntax and semantics of Datalog are represented in
compliance with the Knowledge Interchange Format (KIF), which makes reading
of the language clear for both computers and humans.

A list below presents a comparison of Datalog syntax between the original and
the KIF form.

Variable KIF allows variables to be denoted by a lowercase letter or a
lowercase string with a question mark in front.

1 DATALOG: X, Y, P
2 KIF : ?x , ?y , ? p laye r

Constant KIF allows constants to be denoted by a single letter or a
string.

1 DATALOG: a , b , white
2 KIF : a , B, White

Sentence In KIF, sentences are enclosed in brackets whenever they have
parameters. There are no commas used to separate components of
the sentence.

1 DATALOG: f a th e r (John , Jim)
2 KIF : (f a t h e r John Jim)

2.2 Specification 7

Rule In KIF, all the sentences in the Datalog rule’s head and tail have
to be adopted to KIF. Additionally, the implication sign is moved in
front of the whole sentence.

1 DATALOG: (f a t h e r (John , Jim) <= son (Jim , John))
2 KIF : (<= (f a th e r John Jim) (son Jim John))

Disjunction In KIF the sentences that are the components of the dis-
junction are transformed into KIF. Disjunction uses the ’or’ prefix
before the sentences.

1 DATALOG: (f a t h e r (John , Jim) | f a t h e r (Jim , John))
2 KIF : (or (f a t h e r John Jim) (f a th e r Jim John))

Negation In case of negation, again, the sentence is converted to KIF
and the negation sign is transformed into ’not’ prefix.

1 DATALOG: ˜ f a th e r (Jim , John)
2 KIF : not (f a t h e r Jim John)

2.2 Specification

GDL describes the state of a game world in terms of a set of facts. The transition
function between states (the rules of the game) are described using logical rules
in GDL. These rules define a set of facts (that are true in the next state) in
terms of the current state and the move of the player.[2]

These rules allow to deduct the next state based on the move applied in the
current state. The elements of the Game Description Language the initial state,
the transition functions allow a creation of a graph described in the beginning
of Chapter 2. Additionally, GDL introduces a way of controlling and checking
if a certain move can be performed by describing the required conditions for it.
GDL language is also used to describe the terminal states, to define legal moves
and to set goal conditions.[2]

8 Game Description Language

2.2.1 GDL Additions

One of the main di↵erences between Datalog and GDL is the fact that the
Game Description Language allows sentences to be nested in each other, while
Datalog does not. Using this property it is possible to define a certain set of
control sentences that take another sentence as a parameter. For example a
nested sentence like: initial(cell 1 1 blank) can be used to describe the initial
state of the game.

GDL is able to define a set of keywords that when used as a name of the Sentence
can be transformed into a set of rules of a game. The next subsections will define
and explain all the GDL keywords and give an example for all of them based on
a simple game of Tic-tac-Toe. For a full GDL description of Tic-Tac-Toe refer
to Appendix A.1.

2.2.1.1 Role Keyword

The game description defines the players of the game through the ’role’ keyword.
In Tic-Tac-Toe, there are two players that mark the game board with ’x’ and
’o’. This fact can be easily described with GDL in the following manner:

1 (r o l e x)
2 (r o l e o)

2.2.1.2 Init Keyword

1 2 3

1

2

3

Figure 2.2: The Initial state of the Tic-Tac-Toe game board.

The game description states which facts are true in the initial state of the game
by using the ’init’ keyword. All the parameters used in the init sentence have to

2.2 Specification 9

be constants as the initial state of the game is known. In case of Tic-Tac-Toe,
assuming that the first move belongs to player ’x’, the initial state shown in the
figure 2.2 can be described in the following way:

1 (i n i t (c e l l 1 1 blank))
2 (i n i t (c e l l 1 2 blank))
3 (i n i t (c e l l 1 3 blank))
4 (i n i t (c e l l 2 1 blank))
5 (i n i t (c e l l 2 2 blank))
6 (i n i t (c e l l 2 3 blank))
7 (i n i t (c e l l 3 1 blank))
8 (i n i t (c e l l 3 2 blank))
9 (i n i t (c e l l 3 3 blank))

10 (i n i t (c on t r o l x))

2.2.1.3 True Keyword

O

X

1 2 3

1

2

3

Figure 2.3: The state of the Tic-Tac-Toe game board after both players have
made their first move.

The ’true’ keyword is very similar to the ’init’ keyword. Instead of describing a
fact that holds in the initial state of the game, they are used to describe which
facts hold in the current game state (for example after a players move). Assum-
ing that the player ’o’ has made his move in the last turn the GDL description
of the game board shown in figure 2.3 looks as follows:

1 (t rue (c e l l 1 1 blank))
2 (t rue (c e l l 1 2 blank))
3 (t rue (c e l l 1 3 o))
4 (t rue (c e l l 2 1 blank))
5 (t rue (c e l l 2 2 x))

10 Game Description Language

6 (t rue (c e l l 2 3 blank))
7 (t rue (c e l l 3 1 blank))
8 (t rue (c e l l 3 2 blank))
9 (t rue (c e l l 3 3 blank))

10 (t rue (c on t r o l x))

2.2.1.4 Next Keyword

The ’next’ keyword is usually used in a head sentence of a Rule and it is used
to describe which facts will hold in the next state of the game. For Tic-Tac-Toe
this relation can be used to describe alternating moves between the game players:

1 (<= (next (c on t r o l x))
2 (t rue (c on t r o l o)))

2.2.1.5 Legal Keyword

The ’legal’ keyword allows to specify which moves are allowed for a specific
player in each of the game states. It usually appears in the Rule’s head sentence
and has to meet the conditions in the Rule’s tail to hold. In Tic-Tac-Toe this
relation can be used to describe the action of marking an empty cell:

1 (<= (l e g a l ? p laye r (mark ?x ?y))
2 (t rue (c e l l ?x ?y blank))
3 (t rue (c on t r o l ? p laye r)))

Given the move belongs to the player ’x’ and the game state is described in the
figure 2.3 then if the player wants to mark a cell (1,3), the rule described above
would take the following form:

1 (<= (l e g a l x (mark 1 3))
2 (t rue (c e l l 1 3 blank))
3 (t rue (c on t r o l x)))

As the condition true (cell 1 3 blank) is not satisfied in the game state from the
figure 2.3 it follows that the move is invalid for a current game state.

2.2 Specification 11

2.2.1.6 Does Keyword

The ’does’ keyword allows to infer which actions were actually taken by a player
for each of the game states. For Tic-Tac-Toe this relation to describe which move
was made by players in any given state. For example:

1 (does x (mark 2 1))
2 (does o noop)

2.2.1.7 Goal Keyword

X

O

O

XX

1 2 3

1

2

3

Figure 2.4: One of the possible Tic-Tac-Toe winning states for player ’x’.

The ’goal’ keyword is used to assign a certain score for a specified player that
once met will terminate the game making the player a winner. The minimum
value is 0 and the winning value is 100 (any score from 0 to 100 is allowed). In
Tic-Tac-Toe a winning condition for a player would be to have a line made of
his marks, like example shown in figure 2.4:

1 (<= (goa l x 100)
2 (t rue (c e l l 1 2 x))
3 (t rue (c e l l 2 2 x))
4 (t rue (c e l l 2 3 x)))

2.2.1.8 Terminal Keyword

The ’terminal’ keyword is used to describe a state of a game where no more
moves are possible and the game should terminate. In Tic-Tac-Toe such a state

12 Game Description Language

would be when either the board is full or one of the players has successfully
marked a line:

1 (<= termina l
2 (r o l e ? p laye r)
3 (l i n e ? p laye r))
4 (<= termina l
5 (not open))

2.2.2 GDL Syntax Summary

Name Example Description
Variable ?x, ?player Denoted by a question mark followed

by a lowercase letter or a string.
Constant red, player Denoted by a lowercase letter or a

string.
Sentence (cell 1 1 blank) GDL Sentence starts with a name

represented by a lowercase string,
followed by constants and variables
(parameters). GDL allows a sen-
tence to take another sentence as a
parameter in some cases. It is also
allowed to have no parameters in the
sentence.

Rule (<= (legal x noop)
(true (control o)))

Consists of a head (a GDL sentence
immediately after the <= sign) and
a tail (all the remaining GDL sen-
tences after the head sentence). The
head is a GDL Sentence that will
hold once all the sentences in the tail
are satisfied.

Disjunction (or (p ?x)(q ?x)) Holds only if at least one of the sen-
tences is true.

Negation (not (p ?x)) Inverts the truth value for a specified
sentence.

Table 2.1: GDL’s Datalog Foundation syntax and semantics. The Usage ex-
ample is based on a GDL game description written in KIF.

2.2 Specification 13

Additionally, the Game Description Language defines a set of keywords that
are required for describing a game. Those relations provide tools needed for
a description of a game environment at any time of the game. Most of the
additions are based on the GDL sentence and inherit the usage from it.

Name Example Description
Role (role white) Uses the word ’role’ as a GDL sen-

tence’s name and always takes one
constant as a parameter. Used to
initialise game players by assigning
their names from the parameter.

Init (init (control x)) Init sentence is used to define which
sentences are true in the initial state
of the game. Basically, a GDL sen-
tence with a predefined name ’init’
that takes a sentence as a parame-
ter. The sentence in the parameter
must be true in the initial state of
the game.

True (true (control x)) Uses the same syntax as the init
sentence but a word ’true’ for the
name. Used to define which sen-
tences hold for a current develop-
ment of the game world (state).

Next (next (control x)) A GDL sentence named ’next’ with
one argument - another sentence that
will hold in the next game update.
The ’next’ sentence is used as a head
of the Datalog rule and needs to be
satisfied by all the sentences in the
Datalog rule’s tail to hold.

Legal (legal x noop) A GDL sentence named ’legal’ takes
one argument - another sentence that
defines a possible move in the current
state. The ’legal’ sentence is used as
a head of the Datalog rule and needs
to be satisfied by all the sentences in
the Datalog rule’s tail to hold.

14 Game Description Language

Name Example Description
Does (does ?p (mark ?m ?n)) A GDL sentence named ’does’ with

two parameters - the first one is a
variable or constant representing a
player and a second one is a sentence
that holds for a player in a current
move. Indicates the moves actually
made by players in a particular state.

Terminal terminal Uses a GDL sentence named ’termi-
nal’ with no parameters. Used as a
head in a Datalog rule that is sat-
isfied only if all the GDL sentences
in the tail hold. Used to specify the
conditions that cause the game to
terminate.

Goal (goal ?player 100) Indicates the goal state for the play-
ers. Assigned a value from 0 to
100 where 100 is the winning con-
dition - the final state of the game.
The ’goal’ relation is a GDL sen-
tence with a first parameter being a
variable or a constant representing a
player and a second one is a maxi-
mum value of a goal for the specified
player. Based on the Datalog rule -
placed in the Datalog rule’s head and
all the components in the tail have
to hold in order for the goal to be
reached.

Distinct (distinct ?x ?m) GDL adds a special sentence that al-
lows to check if two variables or con-
stants are not the same.

Table 2.2: GDL additions syntax and semantics. The Usage example is based
on a GDL game description written in KIF.

Chapter 3

Game Playing

This chapter will describe the theory and background that laid foundations for
writing this MSc thesis and it is divided into three parts.

The first part will introduce a fictional board game called ’Kolibrat’. This game
will be introduced due to the fact that it’s di�culty and complexity lays between
Chess and Tic-Tac-Toe, making it a very good choice for the testing purposes
described in Chapter 5. ’Kolibrat’ will also be used as a base example through
the remaining chapters of this report. The second part will be dealing with the
theory on how to create a directed graph of game states, connected via transition
functions (moves) using the game trees. The final part will discuss possible
ways of optimising a game tree traversal by using optimisation algorithms and
heuristics.

3.1 Kolibrat

3.1.1 Overview

’Kolibrat’ is a board game developed by an Associate Professor of the Tech-
nical University of Denmark - Tomas Bolander. It’s complexity goes beyond

16 Game Playing

Tic-Tac-Toe while still being less complex then the Chess. The board game of
Kolibrat consists of a 3 by 4 grid with two homelines as shown in the figure 3.5
below. There are two players of the game represented with two colours - Red
and Black. The players can add pieces to the board by placing them on their
homelines.

1 2 3

1

2

3

4

Figure 3.1: A board game representation for Kolibrat. The cells (1,1), (1,2)
and (1,3) are a part of the Black player’s homeline and correspond-
ing cells on the bottom of the board (3,1), (3,2) and (3,3) being
the homeline of the Red player.

The initial state of the game board can be described using the GDL language
in the following way:

1 (i n i t (c e l l 1 1 blank))
2 (i n i t (c e l l 1 2 blank))
3 (i n i t (c e l l 1 3 blank))
4 (i n i t (c e l l 2 1 blank))
5 (i n i t (c e l l 2 2 blank))
6 (i n i t (c e l l 2 3 blank))
7 (i n i t (c e l l 3 1 blank))
8 (i n i t (c e l l 3 2 blank))
9 (i n i t (c e l l 3 3 blank))

10 (i n i t (c e l l 4 1 blank))
11 (i n i t (c e l l 4 2 blank))
12 (i n i t (c e l l 4 3 blank))
13 (homeline 1 1 black)
14 (homeline 1 2 black)
15 (homeline 1 3 black)
16 (homeline 4 1 red)
17 (homeline 4 2 red)

3.1 Kolibrat 17

18 (homeline 4 3 red)

For a full GDL description of ’Kolibrat’ refer to Appendix B.1.

3.1.2 Legal Moves

’Kolibrat’ is a typical example of a turn based board game. This means that the
moves made by players alternate in turns. Once one of the players had made
his move the right to make the next one goes to his opponent. A list of legal
moves for each payer during his turn is presented in the next subsections below.

3.1.2.1 Insert a piece

During a player’s turn he is allowed to add a new piece of his colour to his
homeline. This move is only valid if the player’s homeline contains a cell that
is not obstructed by any pieces. This move terminates the players turn.

1 ; ; I n s e r t i n g a p i e c e
2 ; ; Condit ions
3 ; ; 1 . Ce l l i s blank
4 ; ; 2 . Player i s in c on t r o l
5 ; ; 3 . Ce l l i s p l ay e r s homeline
6

7 (<= (l e g a l ? p laye r (i n s e r t ?x ?y))
8 (t rue (c e l l ?x ?y blank))
9 (t rue (c on t r o l ? p laye r))

10 (homeline ?x ?y ? p laye r))
11

12 ; ; Update a c e l l with the p l aye r s p i e c e
13

14 (<= (next (c e l l ?x ?y ? p laye r))
15 (does ? p laye r (i n s e r t ?x ?y)))

Figure 3.2: A KIF description of the conditions and updates for inserting a
piece in ’Kolibrat’.

18 Game Playing

3.1.2.2 Move a piece

Players are allowed to move their pieces on the game board during their turn.
The move has to be done forward and diagonally like shown in Figure 3.3. The
cell to which the player wants to move his piece to has to be empty. Moving a
piece terminates the turn for a current player.

1 2 3

1

2

3

4

Figure 3.3: An overview of the moves for both Players in Kolibrat. The arrows
represent the possible locations for each of the pieces on the game
board.

1 ; ; Moving forward
2 ; ; Condit ions
3 ; ; 1 . Ce l l to move to i s blank
4 ; ; 2 . Ce l l to move from has a p i e c e
5 ; ; 3 . Ce l l [m, n] i s a va l i d move l o c a t i o n
6

7 (<= (l e g a l ? p laye r (move ?x ?y ?m ?n))
8 (t rue (c e l l ?x ?y ? p laye r))
9 (t rue (c e l l ?m ?n blank))

10 (movable ? p laye r ?x ?y ?m ?n))
11

12 ; ; Update the game board a f t e r the move
13 (<= (next (c e l l ?x ?y blank))
14 (does ? p laye r (move ?x ?y ?m ?n)))
15 (<= (next (c e l l ?m ?n ? p laye r))
16 (does ? p laye r (move ?x ?y ?m ?n)))

Figure 3.4: A KIF description of the conditions and updates for moving a
piece in ’Kolibrat’.

3.1 Kolibrat 19

3.1.2.3 Attack a piece

Each player is allowed to take down the opponent’s piece if it is neighbouring
diagonally with any of the active players pieces. The move can only be taken
forward and the opponents piece has to be removed from the board and replaced
with the piece that attacked it. This move ends the current player’s turn.

1 2 3

1

2

3

4

Figure 3.5: A possible Kolibrat game development when the Red player can
attack the Black player’s piece.

1 ; ; Attacking the opponent
2 ; ; Condit ions
3 ; ; 1 . Player i s next to opponent
4 ; ; 2 . & 3 . Opponent i s next to p laye r
5 ; ; 4 . Player at tack i s a va l i d move
6

7 (<= (l e g a l ? p laye r (at tack ?x ?y ?m ?n))
8 (t rue (c e l l ?x ?y ? p laye r))
9 (t rue (c e l l ?m ?n ? p laye r))

10 (opponent ? p layer1 ? p laye r)
11 (a t tackab l e ? p laye r ?x ?y ?m ?n))

Figure 3.6: A KIF description of Attacking a piece.

3.1.2.4 Jump over multiple pieces

Players are allowed to jump over opponent’s pieces. In order for this move to
be valid opponents piece has to be directly in front of the player’s piece and the

20 Game Playing

jump can only be done in a straight line. It is possible to jump over more then
one piece. There has to be an empty space right behind the opponents pieces
for the move to be valid (like shown in Figure 3.7). The move terminates the
current player’s turn.

1 2 3

1

2

3

4

1 2 3

1

2

3

4

Figure 3.7: Possible configurations for jumping over opponent’s pieces in Koli-
brat.

1 ; ; Jumping over one p i e c e
2 ; ; 1 . Player i s on [x , y]
3 ; ; 2 . Opponent i s in f r on t
4 ; ; 3 . Des t inat i on Ce l l i s [u , v] i s blank
5

6 (<= (l e g a l ? p laye r (jump ?x ?y ?m ?n ?u ?v))
7 (t rue (c e l l ?x ?y ? p laye r))
8 (t rue (c e l l ?m ?n ? p layer1))
9 (t rue (c e l l ?u ?v blank))

10 (t rue (c on t r o l ? p laye r))
11 (opponent ? p laye r ? p layer1)
12 (jumpable ? p laye r ?x ?y ?m ?n ?u ?v))
13

14 (<= (l e g a l ? p laye r (double jump ?x ?y ?m ?n ?u ?v ? r ? t))
15 (t rue (c e l l ?x ?y ? p laye r))
16 (t rue (c e l l ?m ?n ? p layer1))
17 (t rue (c e l l ?u ?v ? p layer1))
18 (t rue (c e l l ? r ? t blank))
19 (t rue (c on t r o l ? p laye r))
20 (opponent ? p layer1 ? p laye r)
21 (double jumpable ? p laye r ?x ?y ?m ?n ?u ?v ? r ? t))

Figure 3.8: A KIF description of jumping over a piece in ’Kolibrat’.

3.1 Kolibrat 21

3.1.2.5 Skip a turn

For some configurations of the game board, like for example shown in figure 3.9,
it is possible that player will be unable to apply any of the legal moves available
for the game. In that case he has to wait until a legal move can be taken.

1 2 3

1

2

3

4

Figure 3.9: A Possible game board configuration with no legal moves for the
Black player.

1 (<= (next (c on t r o l b lack))
2 (t rue (c on t r o l red))
3 (has l ega l move black))
4

5 (<= (next (c on t r o l red))
6 (t rue (c on t r o l b lack))
7 (has l ega l move red))

Figure 3.10: A KIF description of Skipping a turn in ’Kolibrat’.

3.1.2.6 Removing own piece

Once a player’s piece is successfully moved to the opponent’s homeline it can
be removed for a point.

22 Game Playing

1 ; ; Removing p i e c e from the board
2 ; ; Condit ions
3 ; ; 1 . Player has a p i e c e
4 ; ; 2 . P iece i s on the opponents homeline
5

6 (<= (l e g a l ? p laye r (remove ?x ?y))
7 (t rue (c e l l ?x ?y ? p laye r))
8 (t rue (c on t r o l ? p laye r))
9 (removable ? p laye r ?x ?y))

10

11 ; ; Update a p l ay e r s s co r e
12 (<= (next (s co r e ? p laye r ?n))
13 (t rue (s co r e ? p laye r ?m))
14 (does ? p laye r (remove ?x ?y))
15 (add ?m ?n))

Figure 3.11: A KIF description of the conditions and updates of removing a
piece in ’Kolibrat’.

3.1.3 Game goals

One of the game goals for ’Kolibrat’ is for a player to collect five points by re-
moving their pieces from the opponent’s homeline. If any of the players manages
to collect five points the game will terminate.

1 (<= (goa l ? p laye r 100)
2 (t rue (s co r e ? p laye r 100)))
3

4 (<= termina l
5 (t rue (s co r e ? p laye r 100)))

Figure 3.12: A KIF description of the game goal and a terminal state for
’Kolibrat’.

3.2 Game Trees 23

3.2 Game Trees

In order to create a game tree a well defined game description is needed. For a
game description to be well defined the following components are required[4]:

Initial state is used to describe a set of facts that hold for the initial state
of the game world. In case of for example ’Kolibrat’ this information
would include the description of the state of the game board before
any of the players have made any moves and the information on which
of the players should start the game.

Actions should describe a set of legal moves available to each player.
Each of the actions should also have a successor function assigned
to it that would allow to determine what changes to the game world
have been done by taking the move. A good example of a legal move
for ’Kolibrat’ would be the ability of a player to insert a piece onto
a game board and the successor function would make sure that the
game board has been updated to include the new piece and that the
control has been passed to another player.

Goal Test Once an action is made and the game world is updated the
need to check the state of the world is required. Each game has a
goal (or a set of goals) assigned to it that enable game to end with
a victory of one of the players. For Kolibrat simply checking the
amount of points collected by players would be a good example of a
goal test.

Path Cost Each action made by player should have a cost assigned to it.
The total cost of making a move would be a sum of all the step costs
that lead the player to reach a current state. The ways of calculating
and estimating the cost and a step cost will be described in details
in the next section of this chapter called Heuristics.

Now that the problem has been well defined it needs to be solved. The compo-
nents described above can be used to create a Game Tree. A Game Tree is a
directed graph that is generated by the initial state and the successor function.
Basically, by applying a transition function (a game move) to the initial state,
a set of new game states is generated. Each of the newly generated states can
be expanded even further until a terminal or goal state is reached. An example
of a game tree for the Kolibrat game is shown in figure 3.13.

24 Game Playing

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

1 2 3

1

2

3

4

Figure 3.13: A partial Game Tree for Kolibrat.

Figure 3.13 shows some of the expansions in the ’Kolibrat’ Game Tree for the
first two moves made by players in Kolibrat. The root of the game tree is a node
corresponding to the initial state of the game board. The first step is to test
whether this is a goal state. Since the initial state is rarely a goal state, we need
to consider some other states. This is done by expanding the root node - that
is, applying the successor function to the node, thereby generating a new set of
states. In this case, we get three new states all modifying the initial game board
configuration with the piece of the Red player inserted into his homeline. All the
expanded states with their transitions create a space state. Ideally, from this
point expansion of nodes that will lead to a game goal would be preferable[4].

3.2 Game Trees 25

3.2.1 Min-Max Algorithm

As mentioned in the introduction expanding a whole tree for a complex game
like Chess might be impossible due to an enormous amount of states. That is
why it is important to derive a good search strategy. A Min-Max algorithm is
a recursive algorithm, providing a good strategy for finding a next move for the
player.

The Min-Max algorithm is based on a basic principle. First travel from the
given node by entering the node’s children. Afterwards continue the process re-
cursively by entering each of the entered node’s child until a certain (specified)
depth is reached. For each of the reached nodes use an evaluation function that
allows to calculate a certain value (Min-Max value) that indicates how good it
would be for a player to reach the specified node:

40

20 0 -∞ 10 20

0

1

2

3

Figure 3.14: An evaluation of a Min-Max value for a game tree nodes at a
depth of 3. Note that some terminal nodes at the depth of 2
have also been evaluated.

Nodes that satisfy a goal for a current player are valued with a positive infinity.
The nodes for which the opponent wins hold a value of a negative infinity. The
figure 3.14 above shows a node expansion for both players. The Red and the
Black player are marked by respectively coloured circles.

The nodes reached in the Min-Max tree are then traversed upwards. For each
node at a level closer to the original node it’s Min-Max value is evaluated by
comparing the values in the node’s children. The process is presented in the

26 Game Playing

figure below.

20

-∞ 20

20 -∞ 40 20

20 0 -∞ 10 20

0 MAX

1 MIN

2 MAX

3 MIN

Figure 3.15: An example of a Min-Max tree expansion.

Depending on the player the selected value for each node is either the Minimal or
Maximal. Since the move in the figure above belongs to the Red player than all
the nodes where the move belongs to him will always take the maximum value
from it’s children. This process will be opposite for the opponent as the node
value for him will be evaluated by taking the minimal value from the node’s
children. Once the tree has been traversed upwards and the values have been
passed to the initial node, the move for a player is determined by choosing a
child with a maximum Min-Max value.

3.3 Heuristics[4]

While performing a search on for example a Game Tree a heuristic function tries
to estimate the heuristic value of the nodes that need to be checked in order
to find a solution for a given problem. Based on the heuristic value the search
algorithm can make a decision on which branch to follow during the search.

The heuristic value tries to estimate which of the expanded nodes, or simply
moves, are the most likely to lead the search to find a goal state for a given
player (without looking through irrelevant nodes). This approach can make the
time needed to find a best move for a player significantly lower as there is no
need to expand the nodes that will not lead to the solution. The expansion of

3.3 Heuristics[4] 27

the nodes especially in case of the General Game Playing is a very important
issue.

The heuristic value proves to be very hard to be estimated in case of General
Game Playing as usually it is calculated based on facts that are very specific
for a domain of a specific game. Heuristic function also needs to be always
admissible, meaning that it should never overestimate the cost of reaching the
goal. A good example on how to create a heuristic function can be shown on a
8-puzzle slide game:

7

1

65

3

2

8

4 5

2

8

1

7

4

6

3

Initial state Goal state

Figure 3.16: Initial and goal state for the 8-puzzle sliding game.

One example of a heuristic function for the game shown in the figure above could
be simply a measure on how many misplaced tiles are there in the current game
state. This estimation method is called the Hamming Distance. This estimation
is always admissible because in order to put a tile into it’s proper slot it will
need to be moved at least once.

As presented in the example shown above finding a good heuristic estimation
is a very domain specific problem that is very di�cult to be achieved in case of
General Game Playing.

28 Game Playing

Chapter 4

Implementation

4.1 Overview

This chapter contains a detailed description of the implementation of the Gen-
eral Game Player and is divided into three parts.

The first part deals with the design decisions and the implementation of the data
structures used in this project. The second part describes the implementation
of the algorithms used for the Game Description Language parser. Finally,
the design decisions and the implementation of the actual Game Player are
described.

The project has been implemented in Objective-C. The choice of the right pro-
gramming language for the project was a very important task and is motivated
with the following key points:

Flexibility Objective-C is a modern programming language that o↵ers
a lot of flexibility by providing dynamic typing. Dynamic typic, if
executed properly, gives programmers more freedom and allows a
cleaner, more readable code to be created. For example, by using
dynamic typing, objects of di↵erent type can be stored in one data
structure instead of having to create a separate container for every

30 Implementation

data type or cast the data back and forth. This feature proved to be
useful for the Game Player’s implementation as GDL Sentences and
GDL Rules could be stored in one array simultaneously.

Memory Management Objective-C, just like Java, is a high level pro-
gramming language allowing complex programs to be written with
ease. One of the di↵erences between those languages is that Java
is a standalone programming language, while Objective-C is a su-
perset of C allowing a robust memory management to be used by
the programmer. In case of a General Game Player that sometimes
needs to store huge data structures in the memory an e�cient way
of allocating and freeing the memory is very important.

High performance Computing One of the goals for this projects was
to check how does utilising modern computer hardware can improve
the computation time for a General Game Player to make a move.
Objective-C provides a rich toolset for multicore programming that
fits this purpose.

One of the downsides of using Objective-C is the fact that the language has
not been used for scientific purposes for a very long time. This fact limits the
number of available libraries and solutions, that were implemented for similar
projects and that could be potentially used for this project. That was the reason
why the whole implementation of this project has been done manually.

The project has been implemented on a MacBook Pro with a quad core Intel
Core i7 processor (with 8 threads) and 8 GB of 1333MHz Ram memory.

4.2 Data Structures

4.2.1 Design Decision

One of the most important decision to make, while designing a General Game
Playing Agent, was to carefully select the data structures used. There are many
factors that need to be taken into account. As mentioned in the introduction,
a game tree for a complex game, like for example chess, can have as many as
1028 states. Each state (a game tree node) needs to store information about a
current development of the game environment. As a result the size of the game
tree can easily exceed a memory capacity of even the newest computer systems.
This problem was one of the main considerations when choosing data structures
used in this project.

4.2 Data Structures 31

Objective-C is an Object Oriented programming language that provides a very
e�cient way of storing data by introducing classes. Additionally, the Foundation
Framework (provided by Apple) enables those classes to be stored and modified
in data structures, like for example arrays, that allow easy data manipulation.

4.2.2 String representation

Game Description Language is a combination of a syntax that is understandable
for computers and readable for humans. It often uses strings to describe vari-
ables, relations etc. The downside of this fact is that strings are not the most
e�cient in case of the processing power. Comparing two strings can involve
comparing all the characters in both of them, which could be considerably more
expensive than just comparing two integers. Additionally, strings are one of the
least e�cient data structures in case of memory usage. Even with e�cient data
structures for the game tree nodes, strings can significantly increase the memory
usage and the computation time.

The solution to this problem was to read all the strings from the GDL file and to
store each unique string once in a vector. The index of each string in that vector
would be a kind of a ’pointer’ that can be e�ciently stored in the game tree
node (instead of the whole string). This way in order to check if two constants
are equal a very quick integer comparison can be done instead of comparing the
whole strings. If the index of two items that are being compared is equal then
the strings in the string vector also have to be equal. The index to the strings
containing variables can be saved as a negative value. This way the variables
can be distinguished from the constants. Additionally, the comparison between
a constant and variable can be done easily as if one of the integers compared is
negative then the comparison will always assume that the compared values are
equal.

In case a user requests the data to be displayed it can be easily restored from
the vector by using the index as a pointer to the original string. The illustration
below presents the idea on how does the concept work in practice.

32 Implementation

(init (control
white))

GDL File Parse file

Strings Vector (sv):
[0] init
[1] control
[2] white

Game Tree Node:
0, 1, 2

Display node

Node:
log: ((sv[0] (sv[1] sv[2]))
output: (init (control white))

Figure 4.1: A simplified illustration of the string representation mechanism.

4.2.3 Description

4.2.3.1 GDLSentence

1 @inte r f a c e GDLSentence : NSObject
2

3 @property NSInteger p r e f i x ;
4 @property NSInteger p laye r ;
5 @property (strong , nonatomic) NSArray ⇤ cond i t i on s ;
6

7 + (GDLSentence ⇤) sentenceWithStr ing : (NSString ⇤) s t r i n g ;
8 + (GDLSentence ⇤) r egu la rSentenceForSt r ing : (NSString

⇤) s t r i n g ;
9

10 @end

GDLSentence class is a direct representation of the GDL Sentence defined by
the Game Description Language. It is the most basic data structure used in
the scope of this project and it serves as a foundation for more complex data
structures described in the following subsections.

There are three properties defined in the GDLSentence class - an integer named
’prefix’ for storing the information about the type of the sentence (e.g. init,
true, etc.), a second integer called ’player’ for storing the player’s information
(for the sentences of for example the legal type) and finally an array that can
store another GDLSentence (or sentences).

The type of the sentence stored in the GDLSentence object is determined by
the GDL prefix of a sentence description:

4.2 Data Structures 33

GDL Example Type
(homeline ?x ?y ?player) No prefix - a regular GDL sentence.
(not (greater ?y ?n)) ’Not’ prefix - a negation of a regular

GDL sentence.
(or (greater ?y ?n)(smaller ?y ?n))) ’Or’ prefix - a disjunction of multiple

GDL sentences.
(true (control r)) ’True’ prefix - a regular GDL Sentence

that is true for a current game devel-
opment.

(not (true (cell ?m ?n blank)) ’Not true’ prefix - a regular GDL Sen-
tence that is not true for a current
game development.

(does ?player (insert ?x ?y)) ’Does’ prefix - a regular GDL Sentence
that is currently executed by a speci-
fied player.

Table 4.1: GDL Sentence prefix assignments.

The simplest type of a GDLSentence mentioned in the table above is called
a regular sentence. A GDLSentence of this type is used to store sentences
without any prefixes, like for example cell 1 1 blank. This fact is reflected in
the conditions property of the GDLSentence class. Instead of storing other
sentences that are nested within each other the array will hold a set of integers
that are representing the name, the variables and the constants of a sentence (in
accordance to the string representation mechanism described in section 4.2.2).

GDL Description:
true (cell 1 1 blank)

String representation mechanism:
[0] = cell, [1] = 1, [2] = blank

Parse sentences:
GDLSentence1 GDLSentence2

prefix = GDL_REGULAR
player = NO_PLAYER
conditions = [0][1][1][2]

prefix = GDL_TRUE_TYPE
player = NO_PLAYER

conditions = [GDLSentence2]

Figure 4.2: A simplified illustration of the string representation mechanism.

34 Implementation

The process described above can be achieved thanks to the dynamic typing of-
fered by Objective-C. The GDLSentence class also o↵ers two class constructors,
for creating new sentences:

sentenceWithString given a GDL description of a sentence parse all of
the sentence’s components and return a pointer to a new GDLSen-
tence object initialised with the parsed components.

regularSentenceForString given a GDL description of a regular sen-
tence create a GDLSentence object with the conditions initialised
according to the string representation mechanism.

4.2.3.2 GDLRule

1 #import ”GDLSentence . h” ;
2

3 @inte r f a c e GDLRule : NSObject
4

5 @property (strong , nonatomic) GDLSentence ⇤ ruleHead ;
6 @property (strong , nonatomic) NSArray ⇤ r u l eTa i l ;
7

8 + (GDLRule ⇤) ru leWithStr ing : (NSString ⇤) s t r i n g ;
9

10 @end

The GDLRule object allows instances of GDLSentences to be joined together.
The GDLRule class is compliant with the Game Description Language rule as it
holds two properties: ruleHead that holds a GDLSentence that will be satisfied
if all of the GDLSentences (conditions) stored in the ruleTail property will hold.

The GDLRule class provides a single constructor for creating GDLRule objects.
Given a GDL string containing a description of a rule, extract the sentences
that are nested in the description and then using constructors provided by the
GDLSentence class initialise the properties of the rule.

4.2 Data Structures 35

4.2.4 GPDataModel

1 @inte r f a c e GPDataModel : NSObject
2

3 @property (strong , nonatomic) NSMutableArray ⇤ r o l e s ;
4 @property (strong , nonatomic) NSMutableArray ⇤ i n i t i a l ;
5 @property (strong , nonatomic) NSMutableArray ⇤ l e g a l ;
6 @property (strong , nonatomic) NSMutableArray ⇤next ;
7 @property (strong , nonatomic) NSMutableArray ⇤ t e rmina l ;
8 @property (strong , nonatomic) NSMutableArray ⇤ goa l ;
9 @property (strong , nonatomic) NSMutableArray ⇤ cond i t i on ;

10 @property (strong , nonatomic) NSMutableArray ⇤ f a c t ;
11

12 // Data model .
13 � (void) addRolesObject : (NSInteger) ob j e c t ;
14 � (void) add In i t i a lOb j e c t : (GDLSentence ⇤) ob j e c t ;
15 � (void) addFactObject : (GDLSentence ⇤) ob j e c t ;
16 � (void) addLegalObject : (GDLRule ⇤) ob j e c t ;
17 � (void) addNextObject : (GDLRule ⇤) ob j e c t ;
18 � (void) addTerminalObject : (GDLRule ⇤) ob j e c t ;
19 � (void) addGoalObject : (GDLRule ⇤) ob j e c t ;
20 � (void) addCondit ionObject : (GDLRule ⇤) ob j e c t ;
21

22 + (GPDataModel ⇤)mainDataModel ;
23 + (void) resetMainDataModel ;
24 � (void) setup ;
25

26 � (NSArray ⇤) cond i t i onsForCond i t i on : (GDLSentence
⇤) cond i t i on f o rP l aye r : (NSInteger) p laye r ;

27 � (BOOL) fac tCanBeSat i s f i ed : (GDLSentence ⇤) f a c t ;
28 � (NSArray ⇤) var i ab l e sForFact : (GDLSentence ⇤) sentence ;
29 � (NSArray ⇤) sentencesFromStr ing : (NSString ⇤) s t r i n g ;
30

31 // S t r ing r ep r e s en t a t i on mechanism .
32 @property (strong , nonatomic) NSMutableArray ⇤ s t r i n g s ;
33

34 � (NSInteger) indexForStr ing : (NSString ⇤) s t r i n g ;
35 � (NSString ⇤) s t r ingFor Index : (NSInteger) index ;
36

37 @end

The GPDataModel class is responsible for storing the data parsed from a GDL
description and to manage the string representation mechanism. The Game

36 Implementation

Description Language provides a structure to group certain types of sentences
and rules by introducing prefixes, like for example true or init. This fact can be
used to define class properties for storing each of the groups:

Roles defined in @property (strong, nonatomic) NSMutableArray *roles;
is an array that stores integer values that represent the players of the
game according to the string representation mechanism.

Initial defined in @property (strong, nonatomic) NSMutableArray *ini-
tial; is an array that stores GDLSentences. The sentences stored in
this data structures contain a description of an initial state of the
game board.

Legal defined in @property (strong, nonatomic) NSMutableArray *legal;
is an array that stores GDLRules. The sentences stored in this data
structures contain a description of legal moves defined in the Game
Description and their conditions.

Next defined in @property (strong, nonatomic) NSMutableArray *next;
is an array that stores GDLRules. The sentences stored in this data
structures contain a description of game updates that will occur once
a move has been done.

Terminal defined in@property (strong, nonatomic) NSMutableArray *ter-
minal; is an array that stores GDLRules. The sentences stored in this
data structures contain information on conditions that once met will
terminate the game (e.g. no moves left).

Goal defined in @property (strong, nonatomic) NSMutableArray *goal;
is an array that stores GDLRules. The sentences stored in this data
structures contain information on the goal conditions that allow to
derive which states are the goal states.

Condition defined in @property (strong, nonatomic) NSMutableArray
*condition; is an array that stores GDLRules. The rules stored in
this data structure can be described as conditions (GDL rules) that
appear freely in the Game Description. A good example of such a
condition would be a check if a piece on a board can be moved to a
new cell (<= (movable red ?x ?y ?m ?n)(greater ?x ?m)).

Fact defined in @property (strong, nonatomic) NSMutableArray *fact; is
an array that stores GDLSentences. Some games have certain fact
that will hold during the whole game. Those facts are described as
regular GDL sentences that appear freely in the Game description.
For example homeline 1 1 black.

The data structures described above have been divided into groups due to the
fact that in case a single data type needs to be checked (like for example a fact)

4.2 Data Structures 37

then there is no need to iterate through all the data stored in the Data Model.
An e�cient iteration can be conducted only through a relevant group. This
data management increases the overall performance. All of the properties also
have setter methods allowing easy assignment and ensure that the data passed
to those structures is of a valid type.

The data model has been designed in a way that there is only one static in-
stance of the data model accessible through the whole program. This approach
increases the performance (as the data does not need to be passed back and
forth) and it is presented in the figure below:

GPDataModel
static GPDataModel

*mainDataModel
GPPlayer

data = [GPDataModel mainDataModel]

GPParser
data = [GPDataModel mainDataModel]

Figure 4.3: A simplified illustration of the data model design.

The GPDataModel contains a class method + (GPDataModel *)mainData-
Model; that returns a pointer to the main, static data model instance. This
way there is no need to reallocate memory and the data model can be accessed
at any moment without the need to create local copies or variables of it.

The data model also implements a set of utility methods listed below:

conditionsForCondition As mentioned in the list of data groups above,
a game description can contain a certain set of conditions. A condi-
tion is a GDL rule where the sentence in the rule’s head will hold only
if all of the conditions in the rule’s tail will also hold. This method
given a condition name will return an array of the GDL sentences
that are present in the condition’s tail.

factCanBeSatisifed This method given a GDLSentence will determine
if the sentence can be satisfied for a current game description by com-
paring it with the facts about the game (stored in the fact property).

variablesForFact Given a GDLSentence containing a fact with with un-
known variables return a set of possible assignments for the variables.

sentencesFromString Given a GDL string containing a description of
a multiple GDL sentences extract the sentences and return an array
containing them.

38 Implementation

The Data Model also contains the implementation for the string representation
mechanism. For this purpose a property called string has been defined and it is
used to store the unique list of the strings read from the GDL game description.
There are two methods defined for accessing this property - stringForIndex,
which given an integer returns the corresponding string stored in the strings
property and indexForString that given a string returns an integer that points
to that string.

4.3 GDL Parser

The Game Description parser is responsible for processing a game description
read from a GDL file, parse it and then save the parsed data in a corresponding
data structure held by the data model.

1 @property (weak) IBOutlet NSTextField ⇤ r o l e sLabe l ;
2 @property (weak) IBOutlet NSTextField ⇤ i n i t i a l L a b e l ;
3 @property (weak) IBOutlet NSTextField ⇤movesLabel ;
4 @property (weak) IBOutlet NSTextField ⇤nextLabel ;
5 @property (weak) IBOutlet NSTextField ⇤ te rmina lLabe l ;
6 @property (weak) IBOutlet NSTextField ⇤ goa l sLabe l ;
7 @property (weak) IBOutlet NSTextField ⇤ cond i t i on sLabe l ;
8 @property (weak) IBOutlet NSTextField ⇤ f a c t sLabe l ;
9 @property (weak) IBOutlet NSTextField ⇤ in fo rmat ionLabe l ;

10 @property (s t rong) IBOutlet NSTextView ⇤ in formationView ;
11 @property (s t rong) IBOutlet NSPopover

⇤ in formationPopover ;
12

13 � (void) setup ;
14 � (void) parseURL : (NSURL ⇤) u r l ;
15 � (void) p roce s sExpre s s i on : (NSString ⇤) exp r e s s i on ;
16 � (IBAction) s e l e c t F i l e : (id) sender ;

The GPParser class does not store any data on it’s own. It uses the static data
model described in the previous section to save the parsed information. The
properties defined in the class header are connected with the Graphical User
Interface and will not be described in details. For more information about the
User Interface and the program operation have a look into the appendix.

The class defines a set of method used for the parsing operation of a Game
Description Language file:

4.3 GDL Parser 39

- (void)parseURL:(NSURL *)url; The parse url method processes a
raw text file containing a game description and extracts the GDL
sentences and rules from it. Afterwards the extracted expressions
are passed to the processExpression method described below.

1 READ ur l
2 bracketsCount = 0
3 termStarted = 0
4 commentLine = 0
5 exp r e s s i on = ””
6

7 FOR charac t e r IN u r l
8 // Process ing a comment l i n e .
9 IF (cha rac t e r == ’ ; ’)

10 commentLine = 1
11 // An end o f a l i n e .
12 ELIF (charac t e r == ’ \n ’)
13 IF (commentLine == 1) THEN commentLine = 0
14

15 IF (commentLine == 0)
16 // New expre s s i on s t a r t e d .
17 IF (cha rac t e r == ’ (’)
18 bracketsCount++
19 termStarted = 1
20 ELIF (charac t e r == ’) ’)
21 bracketCount��
22 // Express ion has ended .
23 IF (bracketCount == 0) AND (termStarted ==

1)
24 termStarted = 0
25

26 // Current ly p roce s s ing a l i n e wi th an
expre s s i on .

27 IF (termStarted == 1) AND (commentLine == 0)
28 exp r e s s i on ADD charac t e r
29 ELIF (termStarted == 0)
30 PROCESS EXPRESSION expr e s s i on

- (void)processExpression:(NSString *)expression; This method ac-
cepts a GDL description of a sentence or a rule. The description has
to be well formed which means that a single rule or a single sentence
with a proper amount of brackets needs to be passed.

40 Implementation

1 READ expr e s s i on
2

3 IF (exp r e s s i on . p r e f i x == ” r o l e ”)
4 dataModel ADDROLE expr e s s i on
5 ELIF (exp r e s s i on . p r e f i x == ” i n i t ”)
6 dataModel ADD INITIAL expr e s s i on
7 ELIF (exp r e s s i on . p r e f i x == ”<=(l e g a l ”)
8 dataModel ADD LEGAL expr e s s i on
9 ELIF (exp r e s s i on . p r e f i x == ”<=(next ”)

10 dataModel ADDNEXT expr e s s i on
11 ELIF (exp r e s s i on . p r e f i x == ”<=termina l ”)
12 dataModel ADDTERMINAL expr e s s i on
13 ELIF (exp r e s s i on . p r e f i x == ”<=(goa l ”)
14 dataModel ADDGOAL expr e s s i on
15 ELIF (exp r e s s i on . p r e f i x == ”<=”)
16 dataModel ADD CONDITION expr e s s i on
17 ELSE
18 dataModel ADD FACT expr e s s i on

- (IBAction)selectFile:(id)sender; A utility method that provides a
user with a file chooser that allows to specify a GDL file to be parsed.

- (void)setup; A utility method that is used to prepare a data model for
accepting new data.

4.4 Game Player

The GPPlayer class is responsible for the initialisation of the game tree, expan-
sion of the game tree nodes and the process of searching through the game tree
in order to find a right move for a player - the solution.

1 @inte r f a c e GPPlayer : NSViewControl ler
<PlayerViewDataSource>

2

3 @property (weak , nonatomic) GPTreeNode ⇤ se l ectedNode ;
4 @property (s t rong) GPTreeNode ⇤ root ;
5 @property BOOL usesMul t i th read ing ;
6

7 � (void) in i t i a l i z eGameTree ;
8 � (void) expandNode : (GPTreeNode ⇤) node ;

4.4 Game Player 41

9 � (void) se tSe l ec tedNode : (GPTreeNode ⇤) se l ectedNode ;
10 � (GPTreeNode ⇤) computerMoveForNode : (GPTreeNode ⇤) node ;
11 � (void) expandComputerNode : (GPTreeNode ⇤) node

andDepth : (NSInteger) depth ;
12

13 @end

The methods o↵ered by this class are described in details in the following sub-
section. The GPPlayer class holds three properties:

@property GPTreeNode *selectedNode A pointer to a game tree
node that has been selected by a player.

@property GPTreeNode *root A root node of a game tree.

@property BOOL usesMultithreading a boolean variable that allows
to specify if multithreading should be used for the node expansion.

The concepts behind the implementation of the class methods of the GPPlayer
are described in details in the following subsections.

4.4.1 Game Tree Node

As described in section 3.2, a game tree is a directed graph of game tree nodes
connected via moves taken by players. A node for a game tree is defined in the
GPTreeNode class and looks as follows:

1 #import ”GDLRule . h”
2 #import ”GDLSentence . h”
3 #import ”GPDataModel . h”
4

5 @inte r f a c e GPTreeNode : NSObject
6

7 @property (weak) GPTreeNode ⇤parent ;
8 @property (s t rong) NSArray ⇤ ch i l d r en ;
9 @property (s t rong) NSArray ⇤ s t a t e s ;

10 @property (s t rong) GDLSentence ⇤move ;
11 @property NSInteger t e rmina lS ta t e ;
12 @property NSInteger goa lS ta t e ;
13

14 � (id) in i tWithParent : (GPTreeNode ⇤) parent ;

42 Implementation

15

16 � (void) expand ;
17 � (void) expandWithThreads ;
18

19 � (NSString ⇤) s t a t eDe s c r i p t i on ;
20

21 @end

The implementation of the Game Tree Node o↵ers all the properties needed for
storing the game states and traversing the game tree:

@property (weak) GPTreeNode *parent; A pointer to a parent node
of the current node. Allows to backtrack steps taken that lead to the
current node.

@property (strong) NSArray *children; An array of game tree nodes
that can be reached from the current node by making a move.

@property (strong) NSArray *states; A list of GDL sentences that
define the game world description for the current node.

@property (strong) GDLSentence *move; A GDL sentence holding
information about the move that was taken in order to create the
current node.

@property NSInteger terminalState; An integer value that indicates
if the current node is a terminal state of the game.

@property NSInteger goalState; An integer value that indicates if
the current node is a goal state for the game tree.

The class implements four methods that provide mechanisms for initialisation,
manipulation and obtaining a description of the game tree nodes:

- (id)initWithParent:(GPTreeNode *)parent; Given a pointer to the
parent node, initialise a new Game Tree node with default values and
the given parent node.

- (void)expand; A method for expanding a current node.

1 READ node
2

3 FOR move IN dataModel . l e g a l
4 node EXPANDWITHMOVE move

4.4 Game Player 43

- (void)expandWithThreads; Similar to expand but uses multithread-
ing.

1 READ node
2

3 operationQueue = CREATEQUEUE
4

5 FOR move IN dataModel . l e g a l
6 operationQueue ADD (node EXPANDWITHMOVE move)

- (NSString *)stateDescription; returns a string representation of the
states of the current node.

4.4.2 Node Expansion

Hidden from the header files the Game Tree node implements additional method
for expanding the game tree node with a move. This process is divided into the
following steps:

Step 1: Extract Variable Mappings

All possible variable assignments for the rule are extracted from the rule’s tail.
This is done by checking the variable mappings for the ’true’ sentences and the
facts in the rule’s tail:

1 READ move , node
2

3 variableMapping = []
4

5 FOR sentence IN move . t a i l
6 IF (sentence . type == GDL TRUE SENTENCE)
7 FOR s t a t e IN node . s t a t e s
8 IF (sentence . name == s t a t e . name)
9 FOR i = 0 TO sentence . c ond i t i on s . count

10 variableMapping ADD [sentence [i] , s t a t e [i]]
11 ELIF (sentence . type == GDL REGULAR SENTENCE)
12 FOR f a c t IN dataModel . f a c t s
13 IF (sentence . name == f a c t . name)
14 FOR i = 0 TO sentence . c ond i t i on s . count
15 variableMapping ADD [sentence [i] , f a c t [i]]

44 Implementation

16

17 WRITE variableMapping

Step 2: Filter Variable Mappings

The pseudocode written above extracts all the possible variable mappings with-
out checking their validity. The variable mappings that satisfy one of the facts
might not be true for a di↵erent condition of the rule being processed. That is
why it is important to filter the variable mappings that cannot be satisfied:

1 READ move , varaiableMapping
2

3 f i l t e r edMapp ing = []
4

5 FOR f a c t IN move . cond i t i on
6 IF (f a c t . type == GDL REGULAR SENTENCE)
7 FOR mapping IN variableMapping
8 FOR cond i t i on IN f a c t . c ond i t i on s
9 IF (cond i t i on . type == mapping . type)

10 (cond i t i on REPLACEWITH mapping)
11

12 // Check i f the mapped f a c t can be s a t i s f i e d .
13 IF (dataModel FACT SATISFIED f a c t) THEN

(f i l t e r edMapp ing ADD mapping)

Step 3: Genereate Variable Combinations

With the filtered variables a list of possible solutions can be generated by creat-
ing unique combinations of the variables. The computation time of this process
is greatly improved by reducing the amount of variables in the second step.

Step 4: Filter solutions

Finally, for every combination derived in step 3 check if all of the variables sat-
isfy all of the rule’s tail conditions:

1 READ move , combination , node
2

3 FOR cond i t i on IN move . c ond i t i on s
4 IF (cond i t i on . type == GDL TRUE TYPE)

4.4 Game Player 45

5 cond i t i on = (cond i t i on . v a r i a b l e s REPLACEWITH
combination . v a r i a b l e s)

6 RETURN (node IS VALID STATE cond i t i on)
7 ELIF (cond i t i on . type == GDL REGULAR TYPE)
8 cond i t i on = (cond i t i on . v a r i a b l e s REPLACEWITH

combination . v a r i a b l e s)
9 RETURN (dataModel IS VALID FACT cond i t i on)

10 ELIF (cond i t i on . type == GDL NOT TYPE)
11 cond i t i on = (cond i t i on . v a r i a b l e s REPLACEWITH

combination . v a r i a b l e s)
12 RETURN NOT (dataModel IS VALID FACT sentence)
13 ELIF (cond i t i on . type == GDL OR TYPE)
14 FOR sentence IN cond i t i on
15 sentence = (sentence . v a r i a b l e s REPLACEWITH

combination . v a r i a b l e s)
16 RETURN (dataModel IS VALID FACT sentence)

4.4.3 New node generation

Once a valid set of solutions has been found it needs to be applied to generate
new Game Tree nodes. This is done by replacing the variables in the move rule’s
head with the variables from the solution and applying the move to the child
node:

1 READ so lu t i on s , move , node
2

3 childMove = []
4

5 FOR so l u t i o n IN s o l u t i o n s
6 childMove = (move . ruleHead REPLACE VARIABLES so l u t i o n)
7 chi ldNode = (NEW node WITHMOVE childMove)
8 chi ldNode . parent = node
9 node . ch i l d r en ADD childNode

The child nodes generated during the node expansion process need to be updated
with a set of states that are valid for the current game world development.

The states generation for the new nodes is done by extracting the information
from the Next conditions stored in the data model. Due to the fact that the

46 Implementation

Next updates are also GDL Rules, the mechanism for finding and filtering the
variable mappings and then creating the combinations of them can be reused
from the previous section 4.4.2. Afterwards the validity of the combinations
need to be checked:

1 READ next , va r i ab l e s , node
2

3 FOR cond i t i on IN next . t a i l
4 IF (cond i t i on . type == GDL DOES TYPE)
5 IF NOT (node .move == (cond i t i on WITH va r i a b l e s))

WRITE NO
6 ELIF (cond i t i on . type == GDL TRUE TYPE)
7 IF NOT (node . parent . s t a t e s CONTAINS (cond i t i on WITH

va r i a b l e s)) WRITE NO
8 ELIF (cond i t i on . type == GDL REGULAR TYPE)
9 IF NOT (dataModel . f a c t s CONTAINS (cond i t i on WITH

va r i a b l e s)) WRITE NO
10 ELIF (cond i t i on . type == GDL LEGAL TYPE)
11 IF NOT (node . parent . c h i l d r en . moves CONTAINS

(cond i t i on WITH va r i a b l e s)) WRITE NO
12

13 WRITE YES

If all the conditions in the Next tail are satisfied then the variables in the head’s
sentence are replaced with the variables from the valid combination and the
state is added to the new node’s state list.

4.4.4 Goal and terminal checking

Both goals and terminal conditions stored in the data model are GDL Rules.
This makes the process of checking, if the current node is either the goal state
or the terminal, easier as the mechanisms for checking the validity of a rule
described in the section 4.4.2 can be fully reused.

4.4.5 Game Tree Traversal

With the node expansion mechanism fully implemented a game tree traversal
mechanism can be described. The search function expands the nodes of the tree

4.4 Game Player 47

on the go until a certain (predefined) depth is reached. This method is called
breadth search. Once a certain depth has been reached a Min-Max value of
the node (at that depth) is evaluated. The process is done recursively in the
following manner:

1 READ l i s tOfNodes , currentNode
2

3 EXPANDNODE currentNode WITH depth
4

5 // Method d e f i n i t i o n
6 DEFINE (EXPANDNODE node WITH depth) :
7 IF (depth > 0)
8 node EXPAND
9 FOR ch i l d IN node

10 EXPANDNODE ch i l d WITH (depth � 1)
11

12 IF (depth == 0)
13 node . minmaxValue = node CALCULATEMINMAX
14 l i s tOfNodes ADD node

Once a list of nodes at the specified depth has been created their Min-Max val-
ues can be backed-up recursively to the initial node that the move needs to be
decided for:

1 READ l i s tOfNodes , currentNode
2

3 FOR node IN l i s tOfNodes
4 MINMAXFORNODE node
5

6 // Method d e f i n i t i o n
7 DEFINE (MINMAXFORNODE node) :
8 IF (node . p laye r == MIN PLAYER)
9 node . parent . minmaxValue = node . parent . c h i l d [0]

10 FOR ch i l d IN node . parent
11 IF (node . parent . minmaxValue > ch i l d . minmaxValue)
12 node . parent . minmaxValue = ch i l d . minmaxValue
13

14 ELIF (node . p laye r == MAXPLAYER)
15 node . parent . minmaxValue = node . parent . c h i l d [0]
16 FOR ch i l d IN node . parent
17 IF (node . parent . minmaxValue < ch i l d . minmaxValue)
18 node . parent . minmaxValue = ch i l d . minmaxValue

48 Implementation

19

20 // F ina l l y make sure t ha t the minmax va lue i s e v e l ua t e d
21 // f o r the parent node , cont inue u n t i l curren t node

reached .
22 IF (node != currentNode)
23 MINMAXFORNODE node . parent

In this manner the Min-Max values are passed up to the current node and the
best possible move can be chosen in accordance with the Min-Max algorithm
described in Chapter 4. In case that the Min-Max algorithm was unable to find
the best possible option the move will be chosen randomly from the legal moves
of the current node.

Chapter 5

Discussion

5.1 Heuristics and Min-Max node value

In Game Playing finding a solution involves searching through a Game Tree.
The search function expands the Game Tree nodes that are most likely to lead
to the goal state. This process can be achieved with a help of a carefully crafted
heuristic function. This task is very di�cult in case of General Game Playing. A
well defined heuristic function is using a knowledge specific to a certain problem
and cannot be reused for other problems. The same problem occurs for the
estimation of the Min-Max value used for the Min-Max search algorithm.

This was the reason why a Min-Max value estimation and a heuristic function
were joined together for this project. This combination was used for node value
estimation for the Min-Max algorithm by using the following properties of the
Min-Max value:

Terminal State if a state causes the game to end without anyone win-
ning assign a value of 0 to the expanded node.

Goal State if a goal state is reached for the current player then assign
the value of the expanded node to a positive infinity and if the node
is a winning node for the opponent mark it with a negative infinity.

50 Discussion

For the remaining nodes that could not be evaluated with the classical Min-Max
estimation, a certain heuristic function needs to be used. This can be achieved
by using the score property of the Game Description Language. A well defined
game in GDL will keep track of a certain score that will be present for all nodes.
The value of the score can be assigned a positive integer from 0 to 100, where
reaching 100 will mean that a goal state for a player has been reached. For
games like ’Kolibrat’ if a player removes a piece from the board his score will
increase by 20. This is a good estimation of a heuristic value for a current node
and can be used for the purposes of the Min-Max algorithm. It will try to find
the moves that will increase the value of the score.

The approach described above works in many cases but it is still possible that
during a time limit for a move no nodes with a score di↵erent than 0 will be
reached. In such a case in order to render the game playable a random legal
move needs to be chosen.

5.2 Min-Max Modifications

Min-Max is a search algorithm that is very often used for games that are played
by two players, making it a good choice for the purposes of this project. It is
quite easy to implement and with a good evaluation function it can produce
good results fairly quickly.

As mentioned in the previous section in case of the General Game Playing
estimating a Min-Max value of a specific node is not as straight forward as for
a single game. That is why it was important to introduce some modification
to the original Min-Max algorithm in order to make it work with the General
Game Player.

The original Min-Max uses the depth-first node expansion method that reduces
the memory usage by expanding the nodes deepest in the tree. This approach
reduces the memory usage, as the most probable nodes are expanded based on
the calculated Min-Max value. Unfortunately, without the accurate means of
calculating this value expanding the game tree in this manner might cause the
algorithm to spend time on expanding a branch that will not yield the expected
results.

That is why the Min-Max node expansion method was modified in order to
use the breadth-first node expansion method. This method expands the nodes
recursively until a specified depth is reached. Afterwards the Min-Max values
are calculated on the deepest level and then backed up normally according to

5.3 The Frame Problem 51

the classical Min-Max algorithm. In this way more nodes at deeper levels are
expanded and a possible Min-Max value estimation is more likely to be reached.
The downside of this approach is that it increases the memory usage. That is
why it was very important for the data structures to be very e�cient and that
the memory can be freed and allocated manually as needed.

Another modification that was done to the original Min-Max algorithm was
that the algorithm keeps all the expanded nodes for a current move. The reason
for this approach is that in some cases after reaching a specified depth of the
tree there is no guarantee that a Min-Max estimation will be found. If the
time limit for the move allows the depth of the tree can be increased and the
probability of finding the solution will also increase. This approach consumes
considerably more memory but it reduces the computation time, making a game
more playable.

5.3 The Frame Problem

To most AI researchers, the frame problem is the challenge of representing the
e↵ects of action in logic without having to represent explicitly a large number of
intuitively obvious non-e↵ects[5]. This is a very important consideration in case
of the General Game Playing as passing irrelevant information to the expanded
nodes might render any game unplayable.

The frame problem was one of the main considerations when the GDL Game
Description of ’Kolibrat’ was created. The problem was easily satisfied for the
moves taken by the players as a direct action (a move) modified a certain cell
on the game board. The problem appeared when there was a need to update
the remaining cells.

This problem was solved by introducing a separate rule for each of the possible
moves. In case a player has taken a specified move a separate game update will
be chosen from the list presented below:

1 (<= (next (c e l l ?x ?y ?mark))
2 (t rue (c e l l ?x ?y ?mark))
3 (d i s t i n c tC e l l ?x ?y ?m ?n)
4 (does ? p laye r (i n s e r t ?m ?n)))
5

6 (<= (next (c e l l ?x ?y ?mark))
7 (t rue (c e l l ?x ?y ?mark))
8 (d i s t i n c tC e l l ?x ?y ?m ?n)

52 Discussion

9 (d i s t i n c tC e l l ?x ?y ?u ?v)
10 (does ? p laye r (move ?m ?n ?u ?v)))
11

12 (<= (next (c e l l ?x ?y ?mark))
13 (t rue (c e l l ?x ?y ?mark))
14 (d i s t i n c tC e l l ?x ?y ?m ?n)
15 (d i s t i n c tC e l l ?x ?y ?u ?v)
16 (does ? p laye r (double jump ?m ?n ? i ? j ? r ? t ?u ?v)))
17

18 (<= (next (c e l l ?x ?y ?mark))
19 (t rue (c e l l ?x ?y ?mark))
20 (d i s t i n c tC e l l ?x ?y ?m ?n)
21 (does ? p laye r (remove ?m ?n)))
22

23 (<= (next (c e l l ?x ?y ?mark))
24 (t rue (c e l l ?x ?y ?mark))
25 (d i s t i n c tC e l l ?x ?y ?m ?n)
26 (d i s t i n c tC e l l ?x ?y ?u ?v)
27 (does ? p laye r (jump ?m ?n ? i ? j ?u ?v)))
28

29 (<= (next (s co r e ? p laye r ?p))
30 (t rue (s co r e ? p laye r ?p))
31 (opponent ? p laye r ? p layer1)
32 (does ? p layer1 (remove ?x ?y)))

This way the una↵ected cells can be filtered (from the ones a↵ected by each
move) and passed to the newly expanded node.

5.4 Multithreading

Multithreading as a programming technique allows multiple threads to exist
within a single process. Those threads share the process resources, like for ex-
ample the data model used in this project, but are able to run independently[6].
In this way a computation time can be decreased by for example expanding two
nodes at the same time concurrently.

One of the purposes of this project was to check if utilising modern computer
hardware can improve the performance of a General Game Player by using
multithreading. The Game Tree expansion mechanism was designed and im-
plemented with Multithreading in mind. This way the real speedup could be

5.4 Multithreading 53

measured. The table below shows a single node expansion time for a game of
’Kolibrat’ with and without multithreading.

Multithreading No Multithreading
0.037845 s 0.081293 s
0.035321 s 0.076830 s
0.035119 s 0.075838 s

Table 5.1: Comprison of a node expansion time for Kolibrat.

The obtained results give an average time of 0.036095 seconds for multithread-
ing and an average time of 0.077987 second when no multithreading was used.
This yields a speedup of almost 2.2 times when multithreading is used.

0.10 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Node expansion time in [s]

 No Multithreading

Multithreading

Figure 5.1: A speed comparison of a Kolibrat game tree node expansion.

54 Discussion

Chapter 6

Summary

The main goal for the project was to design and implement a program capable
of playing more then one board game for two players. The final implementation
was tested and it managed to find moves for games like Tic-Tac-Toe, Kolibrat
and Checkers.

One of the assumptions made for the project was to use the Game Description
Language for the description of the games to be played. The game agent was
written in compliance with the newest GDL specification. This approach made
the project open for accepting and testing new game descriptions and providing
a standardised manner for possible future updates.

The user interface of the project o↵ers a user the ability to observe the game
that is being played and to play against the computer by choosing a move from
the set of legal moves. Making the project interactive was also amongst the
goals of this project.

One of the assumptions made in the project proposal was to use Alpha-Beta
pruning in order to optimise the search done by the Min-Max algorithm. Alpha-
Beta pruning can e↵ectively cut the number of the nodes that need to be ex-
panded by the factor of two. The advantages of this method could not be utilised
in this project. Alpha-Beta pruning depends on an accurate estimation of the
Min-Max value that can not be fully achieved in the scope of this project, as

56 Summary

described in Chapter 5.

For the future work it would be recommended to try to expand the program so
that it can play not only two player board games but a multi agent problems
described in GDL. This way the project might lay foundations for a solution to
the Stanford University Competition, that was an inspiration for this project.

Appendix A

Appendices

A.1 Tic-Tac-Toe game rules written in GDL

1 ;
2 ; ; Tic�Tac�Toe ; ;
3 ; ; �������������������������� ; ;
4 ; ; Lukas Berger , s081733 , DTU ; ;
5 ; ; 2012 ; ;
6 ;
7

8 ;
9 ; ; Roles ; ;

10 ;
11

12 (r o l e x)
13 (r o l e o)
14

15 ;
16 ; ; I n i t i a l State ; ;
17 ;
18

19 (i n i t (c e l l 1 1 b))

58 Appendices

20 (i n i t (c e l l 1 2 b))
21 (i n i t (c e l l 1 3 b))
22 (i n i t (c e l l 2 1 b))
23 (i n i t (c e l l 2 2 b))
24 (i n i t (c e l l 2 3 b))
25 (i n i t (c e l l 3 1 b))
26 (i n i t (c e l l 3 2 b))
27 (i n i t (c e l l 3 3 b))
28 (i n i t (c on t r o l x))
29

30 ;
31 ; ; Legal Moves ; ;
32 ;
33

34 (<= (l e g a l ? p laye r (mark ?x ?y))
35 (t rue (c e l l ?x ?y b))
36 (t rue (c on t r o l ? p laye r)))
37

38 (<= (l e g a l x noop)
39 (t rue (c on t r o l o)))
40

41 (<= (l e g a l o noop)
42 (t rue (c on t r o l x)))
43

44 ;
45 ; ; Board d e s c r i p t i o n ; ;
46 ;
47

48 (<= (row ?x ? p laye r)
49 (t rue (c e l l ?x 1 ? p laye r))
50 (t rue (c e l l ?x 2 ? p laye r))
51 (t rue (c e l l ?x 3 ? p laye r)))
52

53 (<= (column ?y ? p laye r)
54 (t rue (c e l l 1 ?y ? p laye r))
55 (t rue (c e l l 2 ?y ? p laye r))
56 (t rue (c e l l 3 ?y ? p laye r)))
57

58 (<= (diagona l ? p laye r)
59 (t rue (c e l l 1 1 ? p laye r))
60 (t rue (c e l l 2 2 ? p laye r))
61 (t rue (c e l l 3 3 ? p laye r)))
62

63 (<= (diagona l ? p laye r)

A.1 Tic-Tac-Toe game rules written in GDL 59

64 (t rue (c e l l 1 3 ? p laye r))
65 (t rue (c e l l 2 2 ? p laye r))
66 (t rue (c e l l 3 1 ? p laye r)))
67

68 (<= (l i n e ? p laye r)
69 (row ?x ? p laye r))
70

71 (<= (l i n e ? p laye r)
72 (column ?y ? p laye r))
73

74 (<= (l i n e ? p laye r)
75 (d iagona l ? p laye r))
76

77 (<= open
78 (t rue (c e l l ?x ?y b)))
79

80 (<= (d i s t i n c tC e l l ?x ?y ?m ?n)
81 (d i s t i n c t ?x ?m))
82

83 (<= (d i s t i n c tC e l l ?x ?y ?m ?n)
84 (d i s t i n c t ?y ?n))
85

86 ;
87 ; ; Game Updates ; ;
88 ;
89

90 (<= (next (c e l l ?x ?y ? p laye r))
91 (does ? p laye r (mark ?x ?y)))
92

93 (<= (next (c e l l ?x ?y ?mark))
94 (t rue (c e l l ?x ?y ?mark))
95 (does ? p laye r (mark ?m ?n))
96 (d i s t i n c tC e l l ?x ?y ?m ?n))
97

98 (<= (next (c on t r o l x))
99 (t rue (c on t r o l o)))

100

101 (<= (next (c on t r o l o))
102 (t rue (c on t r o l x)))
103

104 ;
105 ; ; Goals ; ;
106 ;
107

60 Appendices

108 (<= (goa l ? p laye r 100)
109 (l i n e ? p laye r))
110

111 (<= (goa l ? p laye r 50)
112 (not (l i n e x))
113 (not (l i n e o))
114 (not open))
115

116 (<= (goa l ? p layer1 0)
117 (l i n e ? p layer2)
118 (d i s t i n c t ? p layer1 ? p layer2))
119

120 (<= (goa l ? p laye r 0)
121 (not (l i n e x))
122 (not (l i n e o))
123 open)
124

125 ;
126 ; ; Terminal ; ;
127 ;
128

129 (<= termina l
130 (l i n e ? p laye r))
131

132 (<= termina l
133 (not open))

Appendix B

Appendices

B.1 Kolibrat game rules written in GDL

1 ;
2 ; ; Ko l ib rat ; ;
3 ; ; �������������������������� ; ;
4 ; ; Lukas Berger , s081733 , DTU ; ;
5 ; ; 2012 ; ;
6 ;
7

8 ;
9 ; ; Roles ; ;

10 ;
11

12 (r o l e b lack)
13 (r o l e red)
14

15 ;
16 ; ; I n i t i a l State ; ;
17 ;
18

19 (i n i t (c e l l 1 1 blank))

62 Appendices

20 (i n i t (c e l l 1 2 blank))
21 (i n i t (c e l l 1 3 blank))
22 (i n i t (c e l l 2 1 blank))
23 (i n i t (c e l l 2 2 blank))
24 (i n i t (c e l l 2 3 blank))
25 (i n i t (c e l l 3 1 blank))
26 (i n i t (c e l l 3 2 blank))
27 (i n i t (c e l l 3 3 blank))
28 (i n i t (c e l l 4 1 blank))
29 (i n i t (c e l l 4 2 blank))
30 (i n i t (c e l l 4 3 blank))
31 (i n i t (s c o r e b lack 0))
32 (i n i t (s c o r e red 0))
33 (i n i t (c on t r o l b lack))
34

35 ;
36 ; ; Legal Moves ; ;
37 ;
38

39 ; ; Moving forward
40 ; ; Condit ions
41 ; ; 1 . Ce l l to move to i s blank
42 ; ; 2 . Ce l l to move from has a p i e c e
43 ; ; 3 . Ce l l [m, n] i s a va l i d move l o c a t i o n
44

45 (<= (l e g a l ? p laye r (move ?x ?y ?m ?n))
46 (t rue (c e l l ?x ?y ? p laye r))
47 (t rue (c e l l ?m ?n blank))
48 (t rue (c on t r o l ? p laye r))
49 (movable ? p laye r ?x ?y ?m ?n))
50

51 ; ; I n s e r t i n g a p i e c e
52 ; ; Condit ions
53 ; ; 1 . Ce l l i s blank
54 ; ; 2 . Ce l l be longs to p l ay e r s homeline
55 ; ; 3 . Player i s in c on t r o l
56

57 (<= (l e g a l ? p laye r (i n s e r t ?x ?y))
58 (t rue (c e l l ?x ?y blank))
59 (t rue (c on t r o l ? p laye r))
60 (homeline ?x ?y ? p laye r))
61

62 ; ; Jumping over one p i e c e
63 ; ; Condit ions

B.1 Kolibrat game rules written in GDL 63

64 ; ; 1 . Player i s on [x , y]
65 ; ; 2 . Opponent i s in f r on t
66 ; ; 3 . Des t inat i on Ce l l i s [u , v] i s blank
67 ; ; 4 . A l l the c e l l s are in the same columns
68

69 (<= (l e g a l ? p laye r (jump ?x ?y ?m ?n ?u ?v))
70 (t rue (c e l l ?x ?y ? p laye r))
71 (t rue (c e l l ?m ?n ? p layer1))
72 (t rue (c e l l ?u ?v blank))
73 (t rue (c on t r o l ? p laye r))
74 (opponent ? p laye r ? p layer1)
75 (jumpable ? p laye r ?x ?y ?m ?n ?u ?v))
76

77 (<= (l e g a l ? p laye r (double jump ?x ?y ?m ?n ?u ?v ? r ? t))
78 (t rue (c e l l ?x ?y ? p laye r))
79 (t rue (c e l l ?m ?n ? p layer1))
80 (t rue (c e l l ?u ?v ? p layer1))
81 (t rue (c e l l ? r ? t blank))
82 (t rue (c on t r o l ? p laye r))
83 (opponent ? p layer1 ? p laye r)
84 (double jumpable ? p laye r ?x ?y ?m ?n ?u ?v ? r

? t))
85

86 ; ; Attacking the opponent
87 ; ; Condit ions
88 ; ; 1 . Player i s next to opponent
89 ; ; 2 . & 3 . Opponent i s next to p laye r
90 ; ; 4 . Player at tack i s a va l i d move
91

92 (<= (l e g a l ? p laye r (at tack ?x ?y ?m ?n))
93 (t rue (c e l l ?x ?y ? p laye r))
94 (t rue (c e l l ?m ?n ? p laye r))
95 (t rue (c on t r o l ? p laye r))
96 (opponent ? p layer1 ? p laye r)
97 (a t tackab l e ? p laye r ?x ?y ?m ?n))
98

99 ; ; Removing p i e c e from the board
100 ; ; Condit ions
101 ; ; 1 . Player has a p i e c e
102 ; ; 2 . P iece i s on the opponents homeline
103

104 (<= (l e g a l ? p laye r (remove ?x ?y))
105 (t rue (c e l l ?x ?y ? p laye r))
106 (t rue (c on t r o l ? p laye r))

64 Appendices

107 (removable ? p laye r ?x ?y))
108

109 ; ; Move be longs to a p laye r in c on t r o l
110

111 ;(<= (l e g a l b lack noop)
112 ; (t rue (c on t r o l red)))
113

114 ;(<= (l e g a l red noop)
115 ; (t rue (c on t r o l b lack)))
116

117 ;
118 ; ; Board d e s c r i p t i o n ; ;
119 ;
120

121 ; ; Move from [x , y] to [m, n]
122

123 (<= (movable red ?x ?y ?m ?n)
124 (g r e a t e r ?x ?m)
125 (or (g r e a t e r ?y ?n) (sma l l e r ?y ?n)))
126

127 (<= (movable b lack ?x ?y ?m ?n)
128 (sma l l e r ?x ?m)
129 (or (g r e a t e r ?y ?n) (sma l l e r ?y ?n)))
130

131 (<= (at tackab l e red ?x ?y ?m ?n)
132 (g r e a t e r ?x ?m)
133 (not (g r e a t e r ?y ?n))
134 (not (sma l l e r ?y ?n)))
135

136 (<= (at tackab l e b lack ?x ?y ?m ?n)
137 (sma l l e r ?x ?m)
138 (not (g r e a t e r ?y ?n))
139 (not (sma l l e r ?y ?n)))
140

141 (<= (jumpable b lack ?x ?y ?m ?n ?u ?v)
142 (sma l l e r ?x ?m)
143 (sma l l e r ?m ?u)
144 (not (sma l l e r ?y ?n))
145 (not (g r e a t e r ?y ?n))
146 (not (sma l l e r ?n ?v))
147 (not (g r e a t e r ?n ?v)))
148

149 (<= (jumpable red ?x ?y ?m ?n ?u ?v)
150 (g r e a t e r ?x ?m)

B.1 Kolibrat game rules written in GDL 65

151 (g r e a t e r ?m ?u)
152 (not (sma l l e r ?y ?n))
153 (not (g r e a t e r ?y ?n))
154 (not (sma l l e r ?y ?v))
155 (not (g r e a t e r ?y ?v)))
156

157 (<= (double jumpable b lack ?x ?y ?m ?n ?u ?v ? r ? t)
158 (sma l l e r ?x ?m)
159 (sma l l e r ?m ?u)
160 (sma l l e r ?u ? r)
161 (not (sma l l e r ?y ?n))
162 (not (g r e a t e r ?y ?n))
163 (not (sma l l e r ?y ?v))
164 (not (g r e a t e r ?y ?v))
165 (not (sma l l e r ?y ? t))
166 (not (g r e a t e r ?y ? t)))
167

168 (<= (double jumpable red ?x ?y ?m ?n ?u ?v ? r ? t)
169 (g r e a t e r ?x ?m)
170 (g r e a t e r ?m ?u)
171 (g r e a t e r ?u ? r)
172 (not (sma l l e r ?y ?n))
173 (not (g r e a t e r ?y ?n))
174 (not (sma l l e r ?y ?v))
175 (not (g r e a t e r ?y ?v))
176 (not (sma l l e r ?y ? t))
177 (not (g r e a t e r ?y ? t)))
178

179 (<= (removable ? p laye r ?x ?y)
180 (opponent ? p laye r ? p layer1)
181 (homeline ?x ?y ? p layer1))
182

183

184 (homeline 1 1 black)
185 (homeline 1 2 black)
186 (homeline 1 3 black)
187 (homeline 4 1 red)
188 (homeline 4 2 red)
189 (homeline 4 3 red)
190

191 (g r e a t e r 2 1)
192 (g r e a t e r 3 2)
193 (g r e a t e r 4 3)
194

66 Appendices

195 (sma l l e r 1 2)
196 (sma l l e r 2 3)
197 (sma l l e r 3 4)
198

199 ;
200 ; ; Game Updates ; ;
201 ;
202

203 (<= (next (c e l l ?x ?y ? p laye r))
204 (does ? p laye r (i n s e r t ?x ?y)))
205

206 (<= (next (c e l l ?x ?y blank))
207 (does ? p laye r (move ?x ?y ?m ?n)))
208

209 (<= (next (c e l l ?m ?n ? p laye r))
210 (does ? p laye r (move ?x ?y ?m ?n)))
211

212 (<= (next (c e l l ?x ?y blank))
213 (does ? p laye r (jump ?x ?y ?m ?n ?u ?v)))
214

215 (<= (next (c e l l ?u ?v ? p laye r))
216 (does ? p laye r (jump ?x ?y ?m ?n ?u ?v)))
217

218 (<= (next (c e l l ?x ?y blank))
219 (does ? p laye r (double jump ?x ?y ?m ?n ?u ?v ? r

? t)))
220

221 (<= (next (c e l l ? r ? t ? p laye r))
222 (does ? p laye r (double jump ?x ?y ?m ?n ?u ?v ? r

? t)))
223

224 (<= (next (c e l l ?x ?y blank))
225 (does ? p laye r (remove ?x ?y)))
226

227 ; ; Remaining c e l l s
228

229 (<= (next (c e l l ?x ?y ?mark))
230 (t rue (c e l l ?x ?y ?mark))
231 (d i s t i n c tC e l l ?x ?y ?m ?n)
232 (does ? p laye r (i n s e r t ?m ?n)))
233

234 (<= (next (c e l l ?x ?y ?mark))
235 (t rue (c e l l ?x ?y ?mark))
236 (d i s t i n c tC e l l ?x ?y ?m ?n)

B.1 Kolibrat game rules written in GDL 67

237 (d i s t i n c tC e l l ?x ?y ?u ?v)
238 (does ? p laye r (move ?m ?n ?u ?v)))
239

240 (<= (next (c e l l ?x ?y ?mark))
241 (t rue (c e l l ?x ?y ?mark))
242 (d i s t i n c tC e l l ?x ?y ?m ?n)
243 (d i s t i n c tC e l l ?x ?y ?u ?v)
244 (does ? p laye r (double jump ?m ?n ? i ? j ? r ? t ?u ?v)))
245

246 (<= (next (c e l l ?x ?y ?mark))
247 (t rue (c e l l ?x ?y ?mark))
248 (d i s t i n c tC e l l ?x ?y ?m ?n)
249 (does ? p laye r (remove ?m ?n)))
250

251 (<= (next (c e l l ?x ?y ?mark))
252 (t rue (c e l l ?x ?y ?mark))
253 (d i s t i n c tC e l l ?x ?y ?m ?n)
254 (d i s t i n c tC e l l ?x ?y ?u ?v)
255 (does ? p laye r (jump ?m ?n ? i ? j ?u ?v)))
256

257 (<= (next (s co r e ? p laye r ?p))
258 (t rue (s co r e ? p laye r ?p))
259 (opponent ? p laye r ? p layer1)
260 (does ? p layer1 (remove ?x ?y)))
261

262 (<= (next (s co r e ? p laye r ?n))
263 (t rue (s co r e ? p laye r ?m))
264 (does ? p laye r (remove ?x ?y))
265 (add ?m ?n))
266

267 (<= (next (s co r e ? p laye r ?p))
268 (t rue (s co r e ? p laye r ?p))
269 (does ? p laye r (double jump ?x ?y ?m ?n ?u ?v ? r ? t)))
270

271 (<= (next (s co r e ? p laye r ?p))
272 (t rue (s co r e ? p laye r ?p))
273 (opponent ? p laye r ? p layer1)
274 (does ? p layer1 (double jump ?x ?y ?m ?n ?u ?v ? r

? t)))
275

276 (<= (next (s co r e ? p laye r ?p))
277 (t rue (s co r e ? p laye r ?p))
278 (does ? p laye r (jump ?x ?y ?m ?n ?u ?v)))
279

68 Appendices

280 (<= (next (s co r e ? p laye r ?p))
281 (t rue (s co r e ? p laye r ?p))
282 (opponent ? p laye r ? p layer1)
283 (does ? p layer1 (jump ?x ?y ?m ?n ?u ?v)))
284

285 (<= (next (s co r e ? p laye r ?p))
286 (t rue (s co r e ? p laye r ?p))
287 (opponent ? p laye r ? p layer1)
288 (does ? p layer1 (i n s e r t ?x ?y)))
289

290 (<= (next (s co r e ? p laye r ?p))
291 (t rue (s co r e ? p laye r ?p))
292 (does ? p laye r (move ?x ?y ?m ?n)))
293

294 (<= (next (s co r e ? p laye r ?p))
295 (t rue (s co r e ? p laye r ?p))
296 (opponent ? p laye r ? p layer1)
297 (does ? p layer1 (move ?x ?y ?m ?n)))
298

299 (<= (next (s co r e ? p laye r ?p))
300 (t rue (s co r e ? p laye r ?p))
301 (does ? p laye r (i n s e r t ?x ?y)))
302

303 (<= (has l ega l move ? p laye r)
304 (or (l e g a l ? p laye r (i n s e r t ?x ?y))
305 (l e g a l ? p laye r (move ?x ?y ?m ?n))
306 (l e g a l ? p laye r (jump ?x ?y ?m ?n ?u ?v))
307 (l e g a l ? p laye r (double jump ?x ?y ?m ?n

?u ?v ? r ? t))
308 (l e g a l ? p laye r (remove ?x ?y))))
309

310 (<= (next (c on t r o l b lack))
311 (t rue (c on t r o l red))
312 (has l ega l move black))
313

314 (<= (next (c on t r o l red))
315 (t rue (c on t r o l b lack))
316 (has l ega l move red))
317

318 (<= (d i s t i n c tC e l l ?x ?y ?m ?n)
319 (or (d i s t i n c t ?x ?m)
320 (d i s t i n c t ?y ?n)))
321

322 ;

B.1 Kolibrat game rules written in GDL 69

323 ; ; Goals ; ;
324 ;
325

326 (<= (goa l ? p laye r 100)
327 (t rue (s co r e ? p laye r 100)))
328

329 ;
330 ; ; Terminal ; ;
331 ;
332

333 (<= termina l
334 (t rue (s co r e ? p laye r 100)))
335

336 ;
337 ; ; Facts ; ;
338 ;
339

340 (opponent red black)
341 (opponent black red)
342

343 (add 0 20)
344 (add 20 40)
345 (add 40 60)
346 (add 60 80)
347 (add 80 100)

70 Appendices

Appendix C

Appendices

C.1 Software Instructions

In order to successfully parse and then play a selected game the following steps
need to be taken:

Step 1: After running the application a file containing a GDL game description
needs to be chosen by clicking on the ’select’ button in the upper right corner
of the program.

Step 2: After the GDL file has been parsed the information about the rules of
the game in the top part of the window should be updated. The view in the
lower right corner should also reflect the initial state of the game and a set of
possible moves rendered as red circles. The left side of the window allows the
user to specify if multithreading should be used for the node expansion. At this
point the user can specify a move that he wants to take by selecting it from a
drop down list in the bottom of the window.

Step 3: After the move has been taken by a player the computer will calculate
it’s move. Once the move has been calculated the changes in the game world
will be reflected in the view. A user will also be notified of the move taken by

72 Appendices

the computer. From this point a user can continue playing the game until one
of the terminal or goal nodes have been reached.

Figure C.1: A Graphical User Interface of the General Game Player developed
for the scope of this project.

Bibliography

[1] Michael Genesereth and Nathaniel Love. General game playing: Overview
of the aaai competition. 2005.

[2] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. General
game playing: Game description language specification. 2008.

[3] Stanford University. Knowledge interchange format, draft proposed ameri-
can national standard (dpans).

[4] Russell Norvig and Stuart Russell. Artificial Inteligence, A Modern Ap-
proach, 2nd Edition. Stanford University, 2003.

[5] Stanford University. Stanford encyclopedia of philosophy.

[6] Sergey Ignatchenko. Single-threading: Back to the future?, journal.

	Summary
	Preface
	Acknowledgements
	1 Introduction
	2 Game Description Language
	2.1 Background
	2.1.1 Datalog
	2.1.2 Knowledge Interchange Format

	2.2 Specification
	2.2.1 GDL Additions
	2.2.2 GDL Syntax Summary

	3 Game Playing
	3.1 Kolibrat
	3.1.1 Overview
	3.1.2 Legal Moves
	3.1.3 Game goals

	3.2 Game Trees
	3.2.1 Min-Max Algorithm

	3.3 HeuristicsAiModernApproach

	4 Implementation
	4.1 Overview
	4.2 Data Structures
	4.2.1 Design Decision
	4.2.2 String representation
	4.2.3 Description
	4.2.4 GPDataModel

	4.3 GDL Parser
	4.4 Game Player
	4.4.1 Game Tree Node
	4.4.2 Node Expansion
	4.4.3 New node generation
	4.4.4 Goal and terminal checking
	4.4.5 Game Tree Traversal

	5 Discussion
	5.1 Heuristics and Min-Max node value
	5.2 Min-Max Modifications
	5.3 The Frame Problem
	5.4 Multithreading

	6 Summary
	A Appendices
	A.1 Tic-Tac-Toe game rules written in GDL

	B Appendices
	B.1 Kolibrat game rules written in GDL

	C Appendices
	C.1 Software Instructions

	Bibliography

