
A Logical Approach to
Sentiment Analysis

Niklas Christoffer Petersen

Kongens Lyngby 2012
IMM-MSc-2012-126

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

c© 2012 Niklas Christoffer Petersen
IMM-MSc-2012-126

Summary (English)

This thesis presents a formal logical approach for entity level sentiment analysis which
utilizes machine learning techniques for efficient syntactical tagging, and performs a
deep structural analysis of the syntactical properties of texts in order to yield precise
results.

The method should be seen as an alternative to pure machine learning methods
for sentiment analysis, which are argued to have high difficulties in capturing long
distance dependencies, and be dependent on significant amount of domain specific
training data.

To demonstrate the method a proof of concept implementation is presented, and used
for testing the method on real data sets. The results shows that the method yields
high correctness, but further investment are needed in order to improve its robustness.

ii

Summary (Danish)

Denne afhandling præsenterer en formel logisk tilgang for meningsanalyse på enheds-
niveau, som anvender machine learning-teknikker for effektiv syntaktisk tagging, og
udfører en dyb struktural analyse af syntaktiske egenskaber af tekster for at give
præcise resultater.

Metoden skal ses som et alternativ til metoder for meningsanalyse baseret på ren
machine learning. Det argumenteres at disse har høje vanskeligheder med at opfange
langdistance relationer, samt være afhængig af en betydelig mængde af domænespe-
cifik træningsdata.

For at demonstrere metoden præsenteres en proof of concept implemtentering, som
anvendes til afprøvning af metoden på virkelige datasæt. Resultaterne viser, at meto-
den giver høj korrekthed, men yderligere investeringer er nødvendige for at forbedre
sikre robustheden af metoden.

iv

Preface

This thesis was prepared at Department of Informatics and Mathematical Modelling
at the Technical University of Denmark in partial fulfilment of the requirements for
acquiring the MSc degree in Computer Science and Engineering.

The project concerns extraction of opinions occurring in natural language text, also
known as sentiment analysis and the thesis presents a formal logical method as a
proposed solution. The reader is assumed to have reasonable knowledge of combina-
torial logic and formal languages, as well as fundamental knowledge of computational
linguistics.

This project was conducted in the period April 1, 2012 to September 30, 2012 under
the supervision of Jørgen Villadsen, and was valued at 35 ECTS credit points. The
project specific learning objectives for the project were:

• Understand and extend modern techniques for processing of
natural language texts using formal logical systems.

• Demonstrate methods for formal reasoning with respect to nat-
ural language understanding.

• Present a proof of concept system, that is a fully functional
implementation of essential theoretical presented methods.

Kgs. Lyngby, September 30, 2012

Niklas Christoffer Petersen

vi

Acknowledgements

I would like to thank my supervisor Jørgen Villadsen for his help and guidance during
the entire project, and for his lectures in the course Formal Logical Systems (02156)
which sparked my interest in the area of formal logic and later lead to my deep interest
in computational linguistics. He has also acted as supervisor for several free-standing
projects on my master study with focus on natural language processing and formal
semantics, and also supervised my bachelor project which shared a few areas with
this work, however on a far more novice level.

Also the courses Program Analysis (02242) and Functional Programming (02157)
have contributed with knowledge crucial to the completion of my thesis. I attended
the 24th European Summer School in Logic, Language and Information (ESSLLI-
2012) in Opole, Poland during the project, which also provided highly advanced
knowledge that has been applied in this thesis.

I would also like to give thanks to Henriette Jensen and Johannes Svante Spurke-
land for providing test data by individually labeling review texts. Further thanks
to Michael Lunøe and Johannes Svante Spurkeland for sparring and constructive
feedback during this prject.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Classical data collection . 2
1.2 Natural language data collection . 3
1.3 Sentiment of a text . 5
1.4 The logical approach . 7
1.5 Related work . 8
1.6 Using real data sets . 9

2 Sentiment analysis 11
2.1 Tokenization . 12
2.2 Lexical-syntactic analysis . 13
2.3 Mildly context-sensitive grammars . 14
2.4 Semantic analysis . 15

3 Combinatory categorial grammar 17
3.1 Combinatory rules . 19
3.2 Coordination . 23
3.3 Features and agreement . 24
3.4 Extending the semantics . 25

x CONTENTS

4 Lexicon acquisition and annotation 31
4.1 Maximum entropy tagging . 32
4.2 Annotating the lexicon . 33
4.3 Semantic networks . 37
4.4 Sentiment polarity of adjectives . 38
4.5 Sentiment polarity of adverbs . 40
4.6 Completing the analysis . 41

5 Implementation 43
5.1 Data structures . 44
5.2 Reducing semantic expressions . 45
5.3 Interacting with the C&C toolchain 45
5.4 WordNet interface and semantic networks 47
5.5 Overall analysis and extraction algorithm 50

6 Evaluation 51
6.1 Test data set . 51
6.2 Test results . 52
6.3 Understanding the results . 53

7 Discussion 55
7.1 Future work . 57

8 Conclusion 59

A A naive attempt for lexicon acquisition 61

B Source code 65

C Labeled test data 79

Bibliography 83

Chapter 1

Introduction

The study of opinion is a one of the oldest fields, with roots in philosophy, going back
to the Ancient Greek philosophers. The wide adoption of the Internet has made it
possible for individuals to express their subjective opinions to an extent much more
far-reaching then possible before. This has recently been intensified even more due
to the explosive popularity of social networks and microblogging services.

The amount of opinion data available is often huge compared to what traditional
opinion analyses, e.g. questionnaire surveys, requires to yield significant results. Fur-
thermore the opinions cover nearly every thinkable topic. This gives incentive, given
that the potential value of such opinions can be great, if information can be extracted
effectively and precisely. Given enough opinions on some topic of interest, they can
yield significant indication of collective opinion shifts, e.g. shifts in market trends,
political sympathies, etc. The interest in such shifts is far from recent, and is a well
established subfield of the psychometrics and has strong scientific grounds in both
psychology and statistics.

However, since these opinions are often stated in an informal setting using natural
language, usual methods developed for traditional opinion analyses, e.g. questionnaire
surveys, cannot be directly applied on the data. The burst of computational power
available has meanwhile made it possible to automatically analyze and classify these
huge amounts of opinion data. The application of computational methods to extract
such opinions are more commonly known as sentiment analysis.

2 Introduction

This thesis presents a formal logical method to extract the sentiment of natural
language text reviews. In this chapter traditional methods for data collection of
sentiments are briefly considered and thereafter the overall challenges involved in col-
lecting reviews stated in natural language are presented. The opinions considered in
this thesis are in form of product and service reviews, however most of the techniques
presented can be generalized to other types of topics.

1.1 Classical data collection

One of the most used approaches to collect data for opinion analyses is through
questionnaire surveys. Most of us are familiar with such surveys, where the subject
is forced to answer questions with a fixed scale. For instance, given the statement
“The rooms at the Swissôtel Hotel are of high quality.”, a subject must answer by
selecting one of a predefined set of answers, e.g. as shown in Figure 1.1.

1. Strongly disagree

2. Disagree

3. Neither agree nor disagree

4. Agree

5. Strongly agree

Figure 1.1: Likert scale.

Such scales, where the subject indicates the level of agreement, are know as Likert
scales, originally presented by Likert [1932], and has been one of the favorite methods
of collection data for opinion analyses. Other scales are also widely used, for instance
the Guttman scale [Guttman, 1949], where the questions are binary (yes/no) and
ordered such that answering yes to a questions implies the answer yes to all questions
ordered below this. An example is shown in Figure 1.2. Thus the answer on both a
Likert and a Guttman scale can be captured by a single opinion value.

Given a set of answers, the result of such surveys are fairly easy to compute. At its
simplest it can be a per question average of the opinion values, however it is mostly
also interesting to connect the questions – for instance how does subjects’ answer to
the above statement influent their answer to the statement “The food at the Swissôtel
Restaurant is of high quality.”, etc.

1.2 Natural language data collection 3

1. I like eating out

2. I like going to restaurants

3. I like going to themed restaurants

4. I like going to Chinese restaurants

5. I like going to Beijing-style Chinese restaurants

Figure 1.2: Guttman scale.

One advantage of using fixed frameworks as the Likert and Guttman scales is that the
result of the data collection is highly well-structured, and multiple answers are known
to be provided by the same subject. This makes further analysis as the example just
mentioned possible, something that will be much harder to achieve when harvesting
reviews from the Internet, where the author of the review is presumably unknown, or
at least not connected to any other reviews. Furthermore, since most questionnaire
surveys are conducted in relatively controlled settings, where the subjects in many
cases have been preselected to constitute a representative sample of some population,
the results intuitively have relative high certainty.

However these properties also contributes to some of the disadvantages of classical
data collection, namely the difficulty of getting people to answer them. Another issue
is that people only can answer on the questions that are provided, which mean that
significant aspects of the subjects opinion might not be uncovered if it is not captured
by a question.

1.2 Natural language data collection

In this thesis it is argued that a far more natural way for subjects to express their
opinions is through their most natural communication form, i.e. their language. The
strongest incentive for considering natural language texts as a data source is simply
the amount of data available through the Internet. This especially includes posts
on social networking and microblogging services, e.g. Facebook1 and Twitter2, where
people often express the opinion on products and services, but also online resellers
allowing their consumers to publicly review their producs such as Amazon3

1Facebook, http://www.facebook.com/
2Twitter, http://www.twitter.com/
3Amazon, http://www.amazon.com/

http://www.facebook.com/
http://www.twitter.com/
http://www.amazon.com/

4 Introduction

This though introduces the need for efficient candidate filtering as the posts in general,
of cause, are not constrained to a specific entity or topic of interest. This can be fairly
easy achieved as most of the services provides APIs that allows keyword filtering. The
approach also raises ethical issues, since the author of the post might never realize that
it is being used for the purpose of opinion analysis. Larger texts, such as blog posts,
could indeed also be considered, however the contextual aspects of large, contiguous
texts often makes interpretation extremely complex, thus making it a difficult task
to extract opinions on a specific entity. In this thesis only relatively short reviews are
thus considered.

One concern is whether texts harvested from the Internet can constitute a represen-
tative sample of the population in question. The actual population, of course, rely
on the target of the analysis. This is a non-trivial study itself, but just to demon-
strate the sample bias that often are present consider Figure 1.3. The figure shows
the age distribution of respectively Twitter Users and the population of Denmark cf.
[Pingdom, 2010] and [Eurostat, 2010]. If the target group was Danes in general, har-
vesting opinions from Twitter without any correction would presumably cause some
age groups to be vastly overrepresented, i.e. the mid-aged Danes, while others would
be underrepresented, i.e. young and old Danes.

0–17 18–24 25–34 35–44 45–54 55–64 65+

0%

10%

20%

30%

Age in years

Denmark Twitter

Figure 1.3: Age of Twitter Users and population of Denmark.

Further details on this issue will not be concerned, but it is indeed necessary to correct
collected data for sampling bias in order to draw any significant conclusions, such that
the distribution of collected opinions indeed follows the target of the analysis.

Another more progressive approach for natural language data collection could be
opinion seeking queries as the one shown in (1.1). Such queries are intended to
ensure succinct reviews that clearly relate to the entity in question (e.g. product or
service) with respect to a specific topic of interest.

1.3 Sentiment of a text 5

What do you think about pricing at the Holiday Inn, London? (1.1)

This method might not seem that different from that of the previously mentioned
Likert scales, but it still allows the reviewer to answer with a much broader sentiment
and lets the reviewer argue for his/hers answer as shown in the examples (1.2, 1.3).

The price is moderate for the service and the location. (1.2)

Overall an above average hotel based on location and price but not
one for a romantic getaway! (1.3)

1.3 Sentiment of a text

This section gives a succinct presentation of sentiment analysis, and introduce it as
a research field. The research in sentiment analysis has only recently enjoyed high
activity cf. [Liu, 2007], [Pang and Lee, 2008], which probably is due to a combination
of the progress in machine learning research, the availability of huge data sets through
the Internet, and finally the commercial applications that the field offers. Liu [2007,
chap. 11] identify three kinds of sentiment analysis:

• Sentiment classification builds on text classification principles, to assign the
text a sentiment polarity, e.g. to classify the entire text as either positive or
negative. This kind of analysis works on document level, and thus no details
are discovered about the entity of the opinions that are expressed by the text.
The result is somewhat coarse, e.g. it seems to be hard to classify (1.4) as either
positive or negative, since it contains multiple opinions.

The buffet was expensive, but the view is amazing. (1.4)

• Feature-based sentiment analysis works on sentence level to discover opinions
about entities present in the text. The analysis still assigns sentiment polarities,
but on an entity level, e.g. the text (1.4) may be analyzed to express a negative
opinion about the buffet, and a positive opinion about the view.

• Comparative sentence and relation analysis focus on opinions that describes
similarities or differences of more than one entity, e.g. (1.5).

The rooms at Holiday Inn are cleaner than those at Swissôtel. (1.5)

6 Introduction

The kind of analysis presented by this thesis is closest to the feature-based sentiment
analysis, however Liu [2007, chap. 11] solely describes methods that uses machine
learning approaches, whereas this thesis focuses on a formal logical approach. The
difference between these approaches, and arguments for basing the solution on formal
logic will be disclosed in the next section, and further details on the overall analytic
approach is presented in Chapter 2.

Finally Liu [2007, chap. 11] identify two ways of expression opinion in texts, respec-
tively explicit and implicit sentiments. An explicit sentiment is present when the
sentence directly expresses an opinion about a subject, e.g. (1.6), whereas an im-
plicit sentiment is present when the sentence implies an opinion, e.g. (1.7). Clearly
sentences can contain a mix of explicit and implicit sentiments.

The food for our event was delicious. (1.6)

When the food arrived it was the wrong order. (1.7)

Most research focus on the explicit case, since identifying and evaluating implicit
sentiment is an extremely difficult task which requires a high level of domain specific
knowledge, e.g. in (1.7) where most people would regard it as negative if a restaurant
served another dish then what they ordered. To emphasize this high domain depen-
dency Pang and Lee [2008] considers the sentence (1.8), which in the domain of book
reviews implies a positive sentiment, but the exact same sentence implies a negative
sentiment in the domain of movie reviews.

Go read the book! (1.8)

The thesis will thus focus on the explicit case, since the implicit case was considered
to simply require too much domain specific knowledge. This is due to two reasons,
firstly the presented solution should be adaptable to any domain, and thus tying it
too closely to one type of domain knowledge was not an option, secondly the amount
of domain knowledge required is in the vast number of cases simply not available, and
thus needs to be constructed or collected. With that said the explicit case is neither
domain independent, which is a problematic briefly touched in the next section, and
detailed in Section 2.4.

1.4 The logical approach 7

1.4 The logical approach

A coarse classification of the different approaches to sentiment analysis is to divide it
into two classes: formal approaches and machine learning approaches. To avoid any
confusion this thesis will present a method that belong to the formal class.

• Formal approaches models the texts to analyze as a formal language, i.e. using
a formal grammar. This allows a deep syntactic analysis of the texts, yield-
ing the structures of the texts, e.g. sentences, phrases and words for phrase
structure grammars, and binary relations for dependency grammars. Semantic
information is then extractable by augmenting and inspecting these structures.
The result of the semantic analysis is then subject to the actual sentiment anal-
ysis, by identifying positive and negative concepts, and how these modifies the
subjects and objects in the sentences.

• Machine learning approaches uses feature extraction to train probabilistic mod-
els from a set of labeled train data, e.g. a set of texts where each text is labeled
as either positive or negative for the sentiment classification-kind analysis. The
model is then applied to the actual data set of which an analysis is desired. If
the feature extracting really does captures the features that are significant with
respect to a text either being negative or positive, and the texts to analyze has
the same probability distribution as the training data, then the text will be
classified correctly.

Notice that the presented classification only should be interpreted for the process of
the actual sentiment analysis, not any preprocessing steps needed in order to apply
the approach. Concretely the presented formal approach indeed do rely on machine
learning techniques in order to efficiently identify lexical-syntactic properties of the
text to analyze as will be covered in Chapter 4.

The motivation for focusing on the formal approach is two-folded: Firstly, different
domains can have very different ways of expressing sentiment. What is considered as
positive in one domain can be negative in another, and vice-verse. Likewise what is
weighted as significant (i.e. either positive or negative) in one domain maybe com-
pletely nonsense in another, and again vice-verse, Scientific findings for this are shown
by Blitzer et al. [2007], but also really follows from basic intuition. Labeled train data
are sparse, and since machine learning mostly assumes at least some portion of labeled
target data are available this constitutes an issue with the pure machine learning ap-
proach. The end result is that the models follows different probability distributions,
which complicates the approach, since such biases needs to be corrected, which is not
a trivial task.

8 Introduction

Secondly, machine learning will usually classify sentiment on document, sentence or
simply on word level, but not on an entity level. This can have unintended results
when trying to analyze sentences with coordination of sentiments for multiple entities,
e.g. (1.4). The machine learning approaches that do try to analyze on entity level, e.g.
feature-based sentiment analysis by Liu [2007, chap. 11], relies on some fixed window
for feature extraction, e.g. Liu [2007, chap. 11] uses n-grams. As a result such methods
fails to detect long distance dependencies between an entity and opinion stated about
that entity. An illustration of this is shown by the potentially unbound number of
relative clauses allowed in English, e.g. (1.9), where breakfast is described as best,
however one would need to use a window size of at least 9 to detect this relation,
which is much larger then normally considered (Liu only considers up to trigrams).

The breakfast that was served Friday morning was the best I ever
had!

(1.9)

Formal logical systems are opposed to machine learning extremely precise in results.
A conclusion (e.g. the sentiment value for a specific subject in a given text) is only
possible if there exists a logical proof for this conclusion.

Thesis: It is the thesis that a logical approach will be able to capture these
complex and long distance relationships between entities and sentiments,
thus achieving a more fine-grained entity level sentiment analysis.

With that said, a logical approach indeed also suffers from obvious issues, most
notable robustness, e.g. if there are missing, or incorrect axioms a formal logical
system will not be able to conclude anything, whereas a machine learning approach
will always be able to give an estimate, which might be a very uncertain estimate,
but at least a result. This issue of robustness is crucial in the context of review
texts, since such may not always be grammatical correct, or even be constituted by
sentences. In Section 2.2 this issue will be addressed further, and throughout this
thesis it will be a returning challenge. Details on the logical approach is presented in
Chapter 3

1.5 Related work

In the following notable related work on sentiment analysis is briefly presented. As
mentioned there are two main flavors of sentiment analysis, namely implicit and
explicit. Most of the work found focus solely on the explicit kind of sentiment, just
like this work does.

1.6 Using real data sets 9

Furthermore it seems that there is a strong imbalance between the formal approaches
and machine learning approaches, with respect to amount of research, i.e. there exists
a lot of research on sentiment analysis using machine leaning compared to research
embracing formal methods.

Notably related work using formal approaches include Tan et al. [2011], who presents
a method of extracting sentiment from dependency structures, and also focus on
capturing long distance dependencies. As dependency structures simply can be seen
as binary relations on words, it is indeed a formal approach. However what seems
rather surprising is that in the end they only classify on sentence-level, and thus in
this process loose entity of the dependency.

The most similar work on sentiment analysis found using a formal approach is the
work by Simančík and Lee [2009]. The paper presents a method to detect sentiment
of newspaper headlines, in fact partially using the same grammar formalism that
later will be presented and used in this work, however without the combinatorial
logic approach. The paper focus on some specific problems arising with analyzing
newspaper headlines, e.g. such as headline texts often do not constitute a complete
sentence, etc. However the paper also present more general methods, including a
method for building a highly covering map from words to polarities based on a small
set of positive and negative seed words. This method has been adopted by this thesis,
as it solves the assignment of polarity values on the lexical level quite elegantly, and
is very loosely coupled to the domain. However their actual semantic analysis, which
unfortunately is described somewhat shallow in the paper, seem to suffer from severe
problems with respect to certain phrase structures, e.g. dependent clauses.

1.6 Using real data sets

For the presented method to be truly convincing it is desired to present a fully
functional proof of concept implementation that shows at least the most essential
capabilities. However, for such product to be demonstrated properly, real data is
required. Testing in on some tiny pseudo data set constructed for the sole purpose
of this demonstration would not be convincing. Chapter 5 presents essential aspects
of this proof of concept implementation.

An immediate concern that raises when dealing with real data sets is the possibility
of incorrect grammar and spelling. A solution that would only work on perfect texts
(i.e. text with perfectly correct grammar and spelling) would not be adequate. Rea-
sons for this could be that word is simply absent from the system’s vocabulary (e.g.
misspelled), or on a grammatical incorrect form (e.g. wrong person, gender, tense,
case, etc.).

10 Introduction

Dealing with major grammatical errors, such as wrong word order is a much harder
problem, since even small changes in, for instance, the relative order of subject, object,
verb etc. may result in an major change in interpretation. Thus it is proposed, only
to focus on minor grammatical errors such as incorrect form. Chapter 6 presents an
evaluation of the implementation on actual review data.

Chapter 2

Sentiment analysis

An continuous analog to the sentiment polarity model presented in the introduction is
to weight the classification. Thus the polarity is essential a value in some predefined
interval, [−ω;ω], as illustrated by Figure 2.1. An opinion with value close to −ω is
considered highly negative, whereas a value close to ω is considered highly positive.
Opinions with values close to zero are considered almost neutral. This model allows
the overall process of the sentiment analysis presented by this thesis to be given by
Definition 2.1.

−ω 0 ω

Figure 2.1: Continuous sentiment polarity model.

Definition 2.1 A sentiment analysis A is a computation on a review text T ∈ Σ?

with respect to a subject of interest s ∈ E, where Σ? denotes the set of all texts, and
E is the set of all entities. The result is an normalized score as shown in (2.1). The
yielded score should reflect the polarity of the given subject of interest in the text,
i.e. whether the overall opinion is positive, negative, or neutral.

A : Σ? → E→ [−ω;ω] (2.1)

�

12 Sentiment analysis

It should be evident that this computation is far from trivial, and constitutes the
cornerstone of this project. There are several steps needed, if such computation
should yield any reasonable result. As mentioned in the introduction the goal is
a logical approach for achieving this. The following outlines the overall steps to
be completed, their associated problematics in this process, and succinctly presents
different approaches to solve each step. The chosen approach for each step will be
presented in much more details in later chapters.

2.1 Tokenization

In order to even start processing natural language texts, it is essential to be able to
identify the elementary parts, i.e. lexical units and punctuation marks, that consti-
tutes a text. Decent tokenization is essential for all subsequent steps. However even
identifying the different sentences in a text can yield a difficult task. Consider for
instance the text (2.2) which is taken from the Wall Street Journal (WSJ) corpus
[Paul and Baker, 1992]. There are six periods in it, but only two of them indicates
sentence boundaries, and delimits the text into its two sentences.

Pierre Vinken, 61 years old, will join the board as a nonexecutive
director Nov. 29. Mr. Vinken is chairman of Elsevier N.V., the
Dutch publishing group.

(2.2)

The domain of small review texts allows some restrictions and assumptions, that
at least will ease this issue. For instance it is argued that the review texts will
be fairly succinct, and thus it seems like a valid assumption that they will consists
of only a few sentences. Its is argued that this indeed is achievable by sufficient
instructing and constraining the reviewers doing data collection, e.g. only allowing
up to a certain number of characters. This allows sentences in such phrases to be
processed independently (i.e. as two separate review texts).

Even with this assumption, the process of identifying the sentences, and the lexical
units and punctuation marks within them, is not a trivial task. Webster and Kit[1992]
criticizes the neglection of this process, as most natural language processing (NLP)
studies focus purely on analysis, and assumes this process has already been performed.
Such common assumptions might derive from English being a relatively easy language
to tokenize. This is due to its space marks as explicit delimiters between words,
as opposed to other languages, e.g. Chinese which has no delimiters at all. This
might hint that tokenization is very language dependent. And even though English
is considered simple to tokenize, a naive approach like segmenting by the occurrence
of spaces fails for the text (2.3), which is also from the WSJ corpus, as it would
yield lexical units such as “(or”, “perceived,” and “rate),”. Simply consider all groups

2.2 Lexical-syntactic analysis 13

of non-alphanumerics as punctuation marks does not work either, since this would
fail for i.a. ordinal numbers, currency symbols, and abbreviations, e.g. “Nov.” and
“Elsevier N.V.” in text (2.2). Both of these methods also fail to recognize “Pierre
Vinken” and “Elsevier N.V.” as single proper noun units, which is arguably the most
sane choice for such.

One of the fastest growing segments of the wine market is the cat-
egory of superpremiums – wines limited in production, of excep-
tional quality (or so perceived, at any rate), and with exceedingly
high prices. (2.3)

Padró et al. [2010] presents a framework of analytic tools, developed in the recent
years, for various NLP tasks. Specially interesting is the morphological analyzer,
which applies a cascade of specialized (i.e. language dependent) processors to solve
exactly the tokenization. The most simple of them use pattern matching algorithms
to recognize numbers, dates, quantity expressions (e.g. ratios, percentages and mon-
etary amounts), etc. More advanced processing are needed for proper nouns, which
relies on a two-level solution: first it applies a fast pattern matching, utilizing that
proper nouns are mostly capitalized; and secondly statistical classifiers are applied as
described by Carreras et al. [2002]. These recognize proper nouns with accuracy of
respectively 90% and over 92%. The analyzer also tries to identify lexical units that
are composed of multiple words, e.g. proper nouns and idioms.

It is thus possible, by the use of this framework, to preprocess the raw review texts
collected from users, and ensure that they will be tokenized into segments that are
suitable for the lexical-syntactic analysis. Thus more details on the tokenizer will not
be presented.

2.2 Lexical-syntactic analysis

The syntactic analysis determines the grammatical structure of the input texts with
respect to the rules of the English language. It is expected that the reader is familiar
with English grammar rules and syntactic categories, including phrasal categories
and lexical categories (also called parts of speech). As mentioned earlier it is essential
that the presented method is able to cope with real data, collected from actual review
scenarios. This implies a robust syntactic analysis, accepting a large vocabulary and
a wide range of sentence structures. In order to calculate the actual polarity it is
essential to have semantic annotations on the lexical units. It is argued that a feasible
and suitable solution is to use a grammar that is lexicalized, i.e. where the rules are
essentially language independent, and the syntactic properties are derived from a
lexicon. Thus the development of a lexicalized grammar is mainly a task of acquiring
a suitable lexicon for the desired language.

14 Sentiment analysis

Even though the task of syntactic analysis now is largely reduced to a task of lexi-
con acquisition, which will be addressed in Chapter 4, there are still general concerns
that are worth acknowledging. Hockenmaier et al. [2004, p. 108-110] identifies several
issues in being able to efficiently handle natural language texts solely with lexical-
ized grammars, mainly due to the need for entries for various combinations of proper
nouns, abbreviated terms, dates, numbers, etc. Instead they suggest to use pat-
tern matching and statistical techniques as a preprocessing step, for which efficient
components exists, which translate into reduced complexity for the actual syntactic
analysis. The tokenization framework [Padró et al., 2010] introduced in the previ-
ous section does exactly such kind of identification, and thus this should not yield
significant problems.

However the domain of small review texts also introduce problematics that may not an
constitute major concerns in other domains, most notable the possibility of incorrect
grammar and spelling, since the texts comes unedited from humans with varying
English skills. Recall from the Section that a solution that only would work on perfect
texts (i.e. texts of sentences with completely correct grammar and spelling) would
not be adequate. The grammar shoulf at least be able to handle minor misspellings.
Reasons for this could be that word is simply absent from the system’s vocabulary
(e.g. misspelled), or on a grammatical incorrect form (e.g. wrong person, gender,
tense, case, etc.).

2.3 Mildly context-sensitive grammars

There exists formal proofs that some natural language structures requires formal
power beyond context-free grammars (CFG), i.e. [Shieber, 1985] and [Bresnan et al.,
1982]. Thus the search for grammars with more expressive power has long been a
major study within the field of computational linguistics. The goal is a grammar that
is so restrictive as possible, allowing efficient syntactic analysis, but still capable of
capturing these structures. The class of mildly context-sensitive grammars are con-
jectured to be powerful enough to model natural languages while remaining efficient
with respect to syntactic analysis cf. [Joshi et al., 1990].

Different grammar formalisms from this class has been considered, including Tree
Adjunct Grammar (TAG) [Joshi et al., 1975], in its lexicalized form (LTAG), Head
Grammar (HG) [Pollard, 1984] and Combinatory Categorial Grammar (CCG) [Steed-
man, 1998]. It has been shown that these are all equal in expressive power by
Vijay-Shanker and Weir [1994]. The grammar formalism chosen for the purpose of
this thesis is Combinatory Categorial Grammar (CCG), pioneered largely by Steed-
man [2000]. CCG adds a layer of combinatory logic onto pure Categorial Grammar,
which allows an elegant and succinct formation of higher-order semantic expressions

2.4 Semantic analysis 15

directly from the syntactic analysis. Since the goal of this thesis is a logical approach
to sentiment analysis, CCG’s native use of combinatory logic seemed like the most
reasonable choice. Chapter 3 will formally introduce the CCG in much more detail.

2.4 Semantic analysis

The overall process of semantic analysis in the context of sentiment analysis is to
identify the polarity of the entities appearing in the text, and to relate these entities
to the subject of interest of the sentiment analysis. The approach is to annotate the
lexical units of adjectives and adverbs with suitable polarities, and then fold these
onto the phrasal structures, yielded by the syntactic analysis, in order to identify the
bindings of these polarities, i.e. which entities they modify directly or indirectly.

There exists datasets that tries to bind a general polarity to each word in a lexicon,
e.g. [Esuli and Sebastiani, 2006] and [Baccianella et al., 2010]. While such might be
fine for general sentiment analyses, or analyses where the domain is not known, it
is argued that better results can be achieved by using a domain specific annotation.
For instance the adjective “huge” might be considered positive for a review describing
rooms at a hotel, while negative for a review describing sizes of cell phones.

As already mentioned, the use of a lexicalized syntactic analysis allows the annotation
to appear directly on the entries in the lexicon. A manual annotation of a large lexicon
is evidently not a feasible approach. Furthermore the model must also be generic
enough so it can be adapted to ideally any domain contexts with minimum efforts,
i.e. it is not desired to tie the model to any specific domain, or type of domains. To
achieve such a model that is loosely coupled to the domain the concept of semantics
networks was chosen cf. Russell and Norvig [2009, p. 454–456].

A semantic network is in its simplest form just a collection of different semantic
concepts, and relations between them. The idea is to dynamically construct such
semantic networks from a small set of domain specific knowledge, namely a set of
positive and negative seed concepts in the domain – a technique presented by Simančík
and Lee [2009]. Section 4.3 in Chapter 4 will presents details on the approach of
calculating the polarities of adjectives and adverbs and additionally present some
handling of negations.

The final result of the sentiment analysis is simply the aggregation of the results
yielded for each of the results of the semantic analysis.

16 Sentiment analysis

Chapter 3

Combinatory categorial
grammar

In this chapter the formalism of Combinatory Categorial Grammar (CCG) is intro-
duced, and based on this applied to the proposed sentiment analysis introduced in
the previous chapter. For the purpose of explaining and demonstrating CCG a small
fragment of English is used. This allow the usage of a “handwritten” lexicon initially.
In Chapter 4 the issues related to acquiring, and analyzing with, a wide coverage
lexicon are addressed. A CCG lexicon is defined cf. Definition 3.1.

Definition 3.1 A CCG lexicon, Lccg, is mapping from a lexical unit, w ∈ Σ?, to
a set of 2-tuples, each containing a lexical category and semantic expression that the
unit can entail cf. (3.1), where Γ denotes the set of lexical and phrasal categories,
and Λ denotes the set of semantic expressions.

Lccg : Σ? → P(Γ× Λ) (3.1)

�

A tagging of a lexical unit w ∈ Σ? is simply the selection of one of the pairs yielded
by Lccg(w). Thus given some ordered set of lexical units, which constitutes the text
T ∈ Σ? to analyse, there might exists many different taggings. This is simply due to
the fact that a lexical unit can entail different lexical categories (e.g. “service” is both
a noun and a verb), and different semantic expressions (e.g. the noun “service” can

18 Combinatory categorial grammar

both refer to assistance and tableware). The number of taggings can thus be large,
but is always finite.

The set of lexical and phrasal categories, Γ, is of a somewhat advanced structure in
the CCG presented, since it follows recent work by Baldridge and Kruijff [2003] to
incorporate modalities. A category is either primitive or compound. The set of prim-
itive categories, Γprim ⊂ Γ, is language dependent and, for the English language, it
consists of S (sentence), NP (noun phrase), N (noun) and PP (prepositional phrase).
Compound categories are recursively defined by the infix operators /ι (forward slash)
and \ι (backward slash), i.e. if α and β are members of Γ, then so are α/ιβ and
α\ιβ. This allows the formation of all other lexical and phrasal categories needed.
The operators are left associative, but to avoid confusion inner compound categories
are always encapsulated in parentheses througout this thesis.

The basic intuitive interpretation of α/ιβ and α\ιβ is as a function that takes a
category β as argument and yields a result of category α. Thus the argument is always
stated on the right side of the operators, and the result on the left. The operator
determines the dictionality of the application, i.e. where the argument should appear
relative to the function: the forward operator (/ι) denotes that the argument must
appear on the right of the function, whereas the backward operator (\ι) denotes that
the argument must appear on the left. The subscript, ι, denotes the modality of the
operator, which is a member of a finite set of modalities M and will be utilized to
restrict acceptence in the next section.

The syntactic categories constitutes a type system for the semantic expressions, with
a set of primitive types, Tprim = {τx | x ∈ Γprim}. Thus, if a lexicon entry has category
(N \ιN)/ι(S/ιNP) then the associated semantic expression must honor this, and have
type (τnp → τs)→ τn → τn (→ is right assosiative). This is a result of the Principle of
Categorial Type Transparency [Montague, 1974], and the set of all types are denoted
T . For now it is sufficient to describe the set of semantic expressions, Λ, as the set
of simply-typed λ-expressions, Λ′, cf. Definition 3.2. In Section 3.4 this is extended
to support the desired sentiment analysis.

Definition 3.2 The set of simply typed λ-expressions, Λ′, is defined recursively,
where an expression, e, is either a variable x from an infinite set of typed variables
V = {v1 : τα, v2 : τβ , . . .}, a functional abstraction, or a functional application. For
futher details see for instance [Barendregt et al., 2012].

x : τ ∈ V ⇒ x : τ ∈ Λ′ (Variable)
x : τα ∈ V, e : τβ ∈ Λ′ ⇒ λx.e : τα → τβ ∈ Λ′ (Abstraction)

e1 : τα → τβ ∈ Λ′, e2 : τα ∈ Λ′ ⇒ (e1e2) : τβ ∈ Λ′ (Application)

�

3.1 Combinatory rules 19

3.1 Combinatory rules

CCGs can be seen as a logical deductive proof system where the axioms are members
of Γ × Λ. A text T ∈ Σ? is accepted as a sentence in the language, if there exists a
deductive proof for S , for some tagging of T .

The inference rules of the proof system are known as combinators, since they take
one or more function pairs, in the form of instances of Γ × Λ, and produces new
instances from the same set. The combinators determines the expressive power of
the grammar. A deep presentation of which rules are needed, and thus the linguistic
motivation behind this, is out of the scope of this thesis. In the following essential
combinators covered by Steedman [2011, chap. 6] are succinctly described, which
constitutes a midely context-sensitive class grammar. These are the development of
the combinatory rules Steedman presented in [2000, chap. 3], however with signifi-
cant changes with respect to coordinating conjucntions, due to the introduction of
modalities on the infix operators.

The set of modalities used,M, follows [Baldridge and Kruijff, 2003] and [Steedman,
2011], whereM = {?, �,×, ·}. The set is partially ordered cf. the lattice (3.2).

?

� ×

· (3.2)

The basic concept of annotating the infix operators with ι ∈ M, is to restrict the
application of inferrence rules during deduction in order ensure the soundness of the
system. Categories with ? is most restrictive, allowing only basic rules, � allows rules
which perserves the word order, × allows rules which permutate the word order, and
finally categories with · allows any rule without restrictions. The partial ordering
allows the most restrictive categories to also be included in the less restrictive, e.g.
any rule that assumes α/�β will also be valid for α/·β. Since · permits any rule it
is convenient to simply write / and \ instead of respectively /· and \·, i.e. the dot is
omitted from these operators.

The simplest combinator is the functional application, which simply allows the in-
stances to be used as functions and arguments, as already described. The forward
and backward functional application combinator can be formulated as respectivly (>)
and (<), where X and Y are variables ranging over lexical and phrasal categories,
and f and a are variables ranging over semantic expressions. Since the operators are
annotated with ?, the rules can apply to even the most restrictive categories. For

20 Combinatory categorial grammar

readability instances (α, e) of Γ × Λ is written α : e. Notice that since the semantic
expressions are typed, the application of f on a is sound.

X/?Y : f Y : a ⇒ X : f a (>)
Y : a X\?Y : f ⇒ X : f a (<)

With only these two simple combinatory rules, (>) and (<), the system is capable
of capturing any context-free langauge cf. Steedman [2000, p. 34]. For the fragment
of English, used to demonstrate CCG, the lexicon is considered to be finite, and it
is thus possible, and also convinient, to simply write the mapping of entailment as a
subset of Σ?×Γ×Λ. Figure 3.1 shows a fragment of this demonstration lexicon. For
readability, instances (w,α, e) of Σ? × Γ × Λ is written w |= α : e. Notice that the
semantic expressions are not yet specified, since it for now is sufficient that just the
type of the expressions is correct, and this follows implicitly from the category of the
entry.

the |= NP/�N : (. . .) (Determiners)
an |= NP/�N : (. . .)

hotel |= N : (. . .) (Nouns)
service |= N : (. . .)

had |= (S\NP)/NP : (. . .) (Transative verbs)
exceptional |= N /N : (. . .) (Adjectives)

Figure 3.1: A fragment of a tiny handwritten lexicon.

The lexicon for instance shows how determiners can be modeled by the category
which takes a noun on the right and yields a noun phrase. Likewise a transitive verb
is modeled by a category which first takes a noun phrase on the right (the object),
then a noun phrase on the left (the subject) and lastly yields a sentence. Figure 3.2
shows the deduction of S from the simple declarative sentence “the hotel had an
exceptional service” (semantics are omitted).

the

NP/�N

hotel

N

NP
>

had

(S\NP)/NP

an

NP/�N

exceptional

N /N

service

N

N
>

NP
>

S\NP
>

S
<

Figure 3.2: Deduction of simple declarative sentence.

3.1 Combinatory rules 21

Besides functional application, CCG also has a set of more restrictive rules, including
functional composition, defined by the forward and backward functional composition
combinators, respectively (>B) and (<B), where Z likewise is a variable ranging over
Γ, and g over Λ.

X/�Y : f Y /�Z : g ⇒ X/�Z : λa.f(g a) (>B)
Y \�Z : g X\�Y : f ⇒ X\�Z : λa.f(g a) (<B)

Notice that the semantic expression yielded by (>B) and (<B) is equivalent to regular
functional composition (◦) of f and g, but since f ◦ g 6∈ Λ they need to be written as
λ-expressions.

Functional composition is often used in connection with another rule, namely type-
raising, defined by the forward and backward type-raising combinators, respectively
(>T) and (<T), where T is a variable ranging over categories.

X : a ⇒ T /ι(T \ιX) : λf.fa (>T)
X : a ⇒ T \ι(T /ιX) : λf.fa (<T)

Type-rasing allows a often primitive category, X, to raise into a category that instead
captures a compound category, which is a function over X. The modality of the
result is not controllable and is thus often suppressed, however any constrains of the
applicability of X of cause continue cf. [Baldridge and Kruijff, 2003].

Notice that the introduction of these rules, i.e. functional composition and type-
raising, allows deductional ambiguity, i.e. a proof for a sentence may be achievable by
multiple deductions as shown in Figure 3.3 (trivial deductions are assumed). However
such ambiguities are immaterial, since they do not correspond to semantic ambigui-
ties.

the hotel
· · ·
NP

provided

(S\NP)/NP

a service
· · ·
NP

S\�NP
>

S
<

the hotel
· · ·
NP

S/(S\NP)
>T

provided

(S\NP)/NP

S/�NP
>B

a service
· · ·
NP

S
<

Figure 3.3: Multiple deductions of the same sentence.

A system with these rules demonstrates what is arguably CCG’s most unique advan-
tage, namely the ability to handle unbounded dependencies without any additional
lexicon entries. For instance a transitive verb, with the same category as shown in

22 Combinatory categorial grammar

that |= (N \�N)/(S/�NP) : (. . .) (Relative pronouns)
that |= (N \�N)/(S\�NP) : (. . .)

Figure 3.4: Fragment of lexicon for the relative pronoun “that”.

Figure 3.1, can participate in relative clauses as shown in Example 3.1, given the
presence of a small set of entries for relative pronouns, e.g. Figure 3.4.

Example 3.1 Figure 3.5 shows an example of both type-rasing and functional com-
position. The transitive verb (provided) is requiring an object in the form of a noun
phrase to its right. However, since it participate in a relative clause, its object is given
by the noun that the clause modifies. Type raising allows the subject of the relative
clause to raise into a category that can compose with the verb, and thus allows the
relative pronoun (that) to bind the relative clause to the noun.

service

N

that

(N \�N)/(S/�NP)

the hotel
· · ·
NP

S/(S\NP)
>T

provided

(S\NP)/NP

S/NP
>B

N \�N
>

N
<

Figure 3.5: Deduction of noun phrase with relative clause.

�

The last set of rules presented here is the crossed functional composition, defined by
the forward and backward crossed functional composition combinators, respectively
(>B×) and (<B×).

X/×Y : f Y \×Z : g ⇒ X\×Z : λa.f(g a) (>B×)
Y /×Z : g X\×Y : f ⇒ X/×Z : λa.f(g a) (<B×)

Crossed functional composition allows permutation of the word order. This is use-
full to allow adverbs in sentences with shifting of heavy noun phrases as shown in
Example 3.2.

3.2 Coordination 23

Example 3.2 Normally an adverb is put after the object of the verb it modifies
in English, e.g. “the hotel served breakfast daily”. However if the object of the verb
becomes “heavy” it may sometimes be moved to the end of the sentence, e.g. “the hotel
served daily a large breakfast with fresh juice”.

In such cases the adverb needs to compose with the verb, before the verb combines
with its object. The crossed functional composition allows exatly such structures as
shown in Figure 3.6.

the hotel
· · ·
NP

served

(S\NP)/NP

daily

(S\NP)\(S\NP)

(S\NP)/NP
<B×

a large breakfast with fresh juice
· · ·
NP

S\NP
>

S
<

Figure 3.6: Deduction of “heavy” noun phrase shifting.

�

Steedman [2000; 2011] introduces a few additional combinators to capture even more
“exotic” linguistic phenomenas. Recollect that the rules are language independent,
and indeed some of the additional phenomenas covered by Steedman are either consid-
ered infrequent (e.g. parasitic gaps), or even absent (e.g. cross-serial dependencies),
from the English language desired to cover by this sentiment analysis. It will later be
shown (Chapter 4) that the rules already presented indeed cover a substantial part
of English.

3.2 Coordination

As mentioned in the introduction, one of the goals is to correctly capture the senti-
ment of entities in sentences with coordination of multiple opinions.

Coordination by appearance of a coordinating conjunction, such as and, or, but,
punctuation and comma, etc., can be modeled simply by the intuition that such
should bind two constituents of same syntactic category, but with different semantic
expressions, and yield a result also of that category. Some examples of the and
coordinating conjunction are shown in Figure 3.7.

24 Combinatory categorial grammar

and |= (S\?S)/?S : (. . .) (Conjunctions)
and |= (N \?N)/?N : (. . .)

and |= (NP\?NP)/?NP : (. . .)

. . .

Figure 3.7: Fragment of lexicon for the coordinating conjunction “and”.

It now becomes evident, why the modalities are needed, since application of the
crossed composition combinators without any restrictions could allow scrambled sen-
tences to be deducted falsely, e.g. Figure 3.8.

I

NP

the service
· · ·
NP

enjoyed

(S\NP)/NP

and

(NP\NP)/NP

the view
· · ·
NP

NP\NP
>

(S\NP)\NP
>B×

S\NP
<

S
<

Figure 3.8: Unsound deduction of sentence given absence of modalities.

Similar pit-falls are possible if unresticted application of (>B) and (<B) was allowed,
as shown by Baldridge [2002, chap. 4] for the Turkish language. This justifies the
requirement for the modalities Baldridge originally proposed in [2002, chap. 5] and
Baldridge and Kruijff presented in a refined version in [2003].

3.3 Features and agreement

The syntactic analysis until now has concerned the acceptable order of lexical units
based on their categories. However, to guarantee that the accepted phrases indeed
follows correct grammar, the features of the lexical units must also agree. The set
of features that might apply is language dependent, for instance most indo-european
languages state features for person (e.g. 1st, 2nd or 3rd), number (e.g. singular or
plural), gender (e.g. male or female), etc. To incorporate this the primitive cate-
gories, Γprim, cannot be seen as atomic entities, but instead as structures that carries
features, e.g. Sdcl and NP sg,3rd denotes respectively a declarative sentence, and a sin-
gular, 3rd-person noun phrase. A set of features agrees with another if they do not
contain different elements of the same kind. For instance NP sg,3rd agree with NP sg,
but not with NPpl,3rd, etc.

3.4 Extending the semantics 25

However, as mentioned in Section 2.2, a strict enforcement is not intended for the
purpose of sentiment analysis, e.g. reviews containing small grammatical errors, such
as wrong number as shown in (3.3), should not be discarded simply for this reason.

The hotel have great service (3.3)

However completely ignoring the features is neither an option. An evident demon-
stration of this is the usage of predicative adjectives, e.g. adjectives that modify the
subject in a sentence with a linking verb as shown in Figure 3.9. Without the correct
features, having such entries in the lexicon would allow sentences as “the hotel great”,
which of cause is not desired. The linguistic background for the which features are
considered necessary for English is not within the scope of this thesis, but one is given
by Hockenmaier [2003], and that feature-set will be used.

the service
· · ·
NP

was

(Sdcl\NP)/(Sadj\NP)

great

Sadj\NP
Sdcl\NP

>

Sdcl
<

Figure 3.9: Sentence with predicative adjective.

3.4 Extending the semantics

The CCG presented in the previous sections has been based on established literature,
but in order to apply the grammar formalism to the area of sentiment analysis the
expressive power of the semantics needs to be adapted to this task. Until now the
semantics has not been of major concern, recall that it just was defined as simply
typed λ-expressions cf. Definition 3.2. Furthermore the actual semantics of these
semantic expressions has not been disclosed, other than the initial use of λ-expressions
might hint that ordinary conventions of such presumably apply. The syntax of the
semantic expressions are given by Definition 3.3.

Definition 3.3 The set of semantic expressions, Λ, is defined as a superset of Λ’
(see Definition 3.2). Besides variables, functional abstraction and functional applica-
tion, the following structures are available:

• A n-ary functor (n ≥ 0) with name f from an infinite set of functor names,
polarity j ∈ [−ω;ω], and impact argument k (0 ≤ k ≤ n).

• A sequence of n semantic expressions of the same type.

26 Combinatory categorial grammar

• The change of impact argument.

• The change of an expression’s polarity.

• The scale of an expression’s polarity. The magnitude of which an expression’s
polarity may scale is given by [−ψ;ψ].

Formally this can be stated:

e1, . . . , en ∈ Λ, 0 ≤ k ≤ n, j ∈ [−ω;ω] ⇒ fkj (e1, . . . , en) ∈ Λ (Functor)

e1 : τ, . . . , en : τ ∈ Λ ⇒ 〈e1, . . . , en〉 : τ ∈ Λ (Sequence)

e : τ ∈ Λ, 0 ≤ k′ ⇒ e;k′ : τ (Impact change)
e : τ ∈ Λ, j ∈ [−ω;ω] ⇒ e◦j : τ ∈ Λ (Change)
e : τ ∈ Λ, j ∈ [−ψ;ψ] ⇒ e•j : τ ∈ Λ (Scale)

�

The semantics includes normal α-conversion and β-, η-reduction as shown in the
semantic rewrite rules for the semantic expressions given by Definition 3.4. More
interesting are the rules that actually allow the binding of polarities to the phrase
structures. The change of a functor itself is given by the rule (FC1), which applies
to functors with, impact argument, k = 0. For any other value of k the functor acts
like a non-capturing enclosure that passes on any change to its k’th argument as
follows from (FC2). The change of a sequence of expressions is simply the change of
each element in the sequence cf. (SC). Finally it is allowed to push change inside an
abstraction as shown in (PC), simply to ensure the applicability of the β-reduction
rule. Completely analogue rules are provided for the scaling as shown in respectively
(FS1), (FS2), (SS) and (PS). Finally the change of impact allows change of a functors
impact argument cf. (IC). Notice that these change, scale, push and impact change
rules are type preserving, and for readability type annotation is omitted from these
rules.

Definition 3.4 The rewrite rules of the semantic expressions are given by the
following, where e1[x 7→ e2] denotes the safe substitution of x with e2 in e1, and
FV (e) denotes the set of free variables in e. For details see for instance [Barendregt
et al., 2012].

(λx.e) : τ ⇒ (λy.e[x 7→ y]) : τ y 6∈ FV (e) (α)
((λx.e1) : τα → τβ) (e2 : τα) ⇒ e1[x 7→ e2] : τβ (β)

(λx.(e x)) : τ ⇒ e : τ x 6∈ FV (e) (η)

3.4 Extending the semantics 27

f0j (e1, . . . , en)◦j′ ⇒ f0
j+̂j′

(e1, . . . , en) (FC1)

fkj (e1, . . . en)◦j′ ⇒ fkj (e1, . . . , ek◦j′ , . . . en) (FC2)

〈e1, . . . , en〉◦j′ ⇒ 〈e1◦j′ , . . . , en◦j′〉 (SC)
(λx.e)◦j′ ⇒ λx.(e◦j′) (PC)

f0j (e1, . . . , en)•j′ ⇒ f0j ·̂ j′(e1, . . . , en) (FS1)

fkj (e1, . . . en)•j′ ⇒ fkj (e1, . . . , ek•j′ , . . . en) (FS2)

〈e1, . . . , en〉•j′ ⇒ 〈e1•j′ , . . . , en•j′〉 (SS)
(λx.e)•j′ ⇒ λx.(e•j′) (PS)

fkj (e1, . . . en);k′ ⇒ fk
′

j (e1, . . . en) (IC)

(3.4)

�

It is assumed that the addition and multiplication operator, respectively +̂ and ·̂ ,
always yields a result within [−ω;ω] cf. Definition 3.5.

Definition 3.5 The operators +̂ and ·̂ are defined cf. (3.5) and (3.6) such that
they always yield a result in the range [−ω;ω], even if the pure addition and multi-
plication might not be in this range.

j+̂j′ =

−ω if j + j′ < −ω
ω if j + j′ > ω

j + j′ otherwise
(3.5)

j ·̂ j′ =

−ω if j · j′ < −ω
ω if j · j′ > ω

j · j′ otherwise
(3.6)

�

The presented definition of semantic expressions allows the binding between expressed
sentiment and entities in the text to be analyzed, given that each lexicon entry have
associated the proper expression. Chapter 4 will go into more detail on how this
is done for a wide-covering lexicon, but for know it is simply assumed that these

28 Combinatory categorial grammar

are available as part of the small “handwritten” demonstration lexicon. Example 3.3
shows how to apply this for the simple declarative sentence from Figure 3.2, while
Example 3.4 considers an example with long distance dependencies.

Example 3.3 Figure 3.10 shows the deduction proof for the sentence “the hotel had
an exceptional service” including semantics. The entity “service” is modified by the
adjective “exceptional” which is immediately to the left of the entity. The semantic
expression associated to “service” is simply the zero-argument functor, initial with a
neutral sentiment value. The adjective has the “changed identity function” as expres-
sion with a change value of 40. Upon application of combinatorial rules, semantic
expressions are reduced based on the rewrite rules given in Definition 3.4. The conclu-
sion of the deduction proof is a sentence with a semantic expression preserving most
of the surface structure, and includes the bounded sentiment values on the functors.
Notice that nouns, verbs, etc. are reduced to their lemma for functor naming.

the

NPnb/N : λx.x

hotel

N : hotel0

NPnb : hotel0
>

had

(Sdcl\NP)/NP : λx.λy.have00(x, y)

an

NPnb/N : λx.x

exceptional

N/N : λx.(x◦40)

service

N : service0

N : service40
>

NPnb : service40
>

Sdcl\NP : λy.have00(service40, y)
>

Sdcl : have00(service40,hotel0)
<

Figure 3.10: Deduction of simple declarative sentence with semantics.

�

Example 3.4 Figure 3.11 shows the deduction proof for the sentence “the breakfast
that the restaurant served daily was excellent” including semantics, and demonstrates
variations of all combinator rules introduced. Most interesting is the correct bind-
ing between “breakfast” and “excellent”, even though these are far from each other in
the surface structure of the sentence. Furthermore the adverb “daily” correctly mod-
ifies the transitive verb “served”, even though the verb is missing it’s object since it
paritipates in a relative clause.

When the relative pronoun binds the dependent clause to the main clause, it “closes”
it for further modification by changing the impact argument of the functor inflicted
by the verb of the dependent clause, such that further modification will impact the
subject of the main clause.

�

As demonstrated by the examples, the CCG grammar formalism has successfully
adapted to the area of sentiment analysis, and is indeed capable of capturing the
long distance dependencies that pure machine learning techniques struggles with.

3.4
E
xtending

the
sem

antics
29

the

NPnb/N : λx.x

breakfast

N : breakfast0

that

(N\�N)/(Sdcl/�NP) : λx.λy.((x y);1)

the restaurant
· · ·

NPnb : restaurant0
>

SX/(SX\NP) : λf.(f restaurant0)
>T

served

(Sdcl\NP)/NP : λx.λy.serve00(x, y)

daily

(SX\NP)\(SX\NP) : λx.(x◦5)

(Sdcl\NP)/NP : λx.λy.serve05(x, y)
<B×

Sdcl/NP : λx.serve05(x, restaurant0)
>B

N\�N : λy.serve15(y, restaurant0)
>

N : serve15(breakfast0, restaurant0)
<

NP : serve15(breakfast0, restaurant0)
<

was

(Sdcl\NP)/(Sadj\NP) : λx.x

excellent

Sadj\NP : λx.(x◦25)

Sdcl\NP : λx.(x◦25)
>

Sdcl : serve15(breakfast25, restaurant0)
<

Figure 3.11: Sentiment of sentence with long distance dependencies.

30 Combinatory categorial grammar

Chapter 4

Lexicon acquisition and
annotation

The tiny languages captured by “handwritten” lexicons, such as the one demonstrated
in the previous chapter, are obviously not a sane option when the grammar is to accept
a large vocabulary and a wide range of sentence structures.

In order to use the presented model on actual data, the acquisition of a wide covering
lexicon is crucial. Initially considerable effort was made to try to build a CCG lexicon
from a POS-tagged corpus (part-of-speech-tagged corpus). A POS-tagged corpus is
simply a corpus where each token is tagged with a POS-tag, e.g. noun, verb, etc.
There is no deep structure in such a corpus as opposed to a treebank. This approach
turned up to have extensive issues as a result of this lack of structure, some of which
are detailed in Appendix A which succinctly describes the process of the attempt.

There exists some wide covering CCG lexicons, most notable CCGbank, compiled by
Hockenmaier and Steedman [2007] by techniques presented by [Hockenmaier, 2003].
It is essentially a translation of almost the entire Penn Treebank [Marcus et al.,
1993], which contains over 4.5 million tokens, and where each sentence structure
has been analyzed in full and annotated. The result is a highly covering lexicon,
with some entries having assigned over 100 different lexical categories. Clearly such
lexicons only constitutes half of the previous defined Lccg map, i.e. only the lexical
categories, Γ. The problem of obtaining a full lexicon, that also yields semantics
expressions, is addressed in the next section. It is also worth mentioning that since

32 Lexicon acquisition and annotation

Baldridge’s [2002] work on modalities only slightly predates Hockenmaier’s [2003]
work on CCGBank, the CCGBank does not incorporate modalities1. However more
unfortunately is that CCGBank is not free to use, mainly due to license restrictions
on the Penn Treebank.

What might not be as obvious is that besides obtaining a wide-covering lexicon, Lccg,
an even harder problem is for some text T to select the right tagging from Lccg(w)
for each token w ∈ T . Hockenmaier and Steedman [2007] calculate that the expected
number of lexical categories per token is 19.2 for the CCGBank. This mean that
an exhaustive search of even a short sentence (seven tokens) is expected to consider
over 960 million (19.27 ≈ 961 852 772) possible taggings. This is clearly not a feasible
approach, even if the parsing can explore all possible deductions in polynomial time
of the number of possible taggings. The number of lexical categories assigned to
each token needs to be reduced, however simple reductions as just assigning the most
frequent category observed in some training set (for instance CCGBank) for each
token is not a solution. This would fail to accept a large amount of valid sentences,
simply because it is missing the correct categories.

4.1 Maximum entropy tagging

Clearly a solution need to base the reduction on the setting of the token, i.e. in
which context the token appears. Clark [2002] presents a machine learning approach
based on a maximum entropy model that estimate the probability that a token is
to be assigned a particular category, given the features of the local context, e.g. the
POS-tag of the current and adjacent tokens, etc. This is used to select a subset of
possible categories for a token, by selecting categories with a probability within a
factor of the category with highest probability. Clark shows that the average number
of lexical categories per token can be reduced to 3.8 while the parser still recognize
98.4% of unseen data. Clark and Curran [2007] presents a complete parser, which
utilizes this tagging model, and a series of (log-linear) models to speed-up the actual
deduction once the tagging model has assigned a set of categories to each token.
What maybe even more interesting is that models trained on the full CCGBank,
along with toolchain to use them (called the C&C tools), can be licensed freely for
education or research purposes. For this reason it was chosen to use these models
and tools.

Furthermore, even though the models neither incorporates modalities, since they are
trained on the CCGBank, the deduction models solve many of these problems, since
a more plausible deduction (i.e. a deduction seen more frequent in the CCGBank)

1There does exists another project, OpenCCG, started by Baldridge, which actually does incor-
porate modalities, but it has little documentation and was therefore not deemed mature enough.

4.2 Annotating the lexicon 33

always will suppress other less plausible deductions. Special care are taken about
coordination, so neither here seems the lack of modalities to yield significant issues.
Furthermore since the tagging models are based on trained data, which also can
contain minor grammatical errors and misspellings, it is still able to assign categories
to lexical entries even though they might be incorrect spelled or of wrong form.

4.2 Annotating the lexicon

The output from the C&C toolchain can be printed in various formats, including
Prolog, which was considered the closest to the presented model, as it, given some
set of tokens, w1, . . . , wn, simply returns a lexicon and a deduction. An illustrative
output for the tokens “the service was great” is given in Figure 4.1. In Chapter 5
more details on the actual format and the processing of it is given.

α1 ≡ the : thedt |= NPnb/N

α2 ≡ service : servicenn |= N

α3 ≡ was : bevbd |= (Sdcl\NP)/(Sadj\NP)

α4 ≡ great : greatjj |= Sadj\NP

(a) Lexicon

α1 α2

NPnb

>
α3 α4

Sdcl\NP
>

Sdcl
<

(b) Deduction

Figure 4.1: Illustration of output from the C&C toolchain.

Clearly, deductions in the style previously presented is trivially obtained by substitut-
ing the axioms placeholders with the lexicon entries associated. The C&C toolchain
also has a build-in morphological analyzer which allow the lexicon to provide the
lemma of the tokens, as well as its POS-tag2. Both of these will be proven conve-
nient later.

There is however one essential component missing from the lexicon, namely the se-
mantic expressions. However due to the Principle of Categorial Type Transparency
it is known exactly what the types of the semantic expressions should be. There are
currently a total of 429 different tags in the C&C tagging model, thus trying to han-
dle each of these cases individually is almost as senseless choice as trying to manually
construct the lexicon, and certainly not very robust for changes in the lexical cate-
gories. The solution is to handle some cases that need special treatment, and then use
a generic annotation algorithm for all other cases. Both the generic and the special
case algorithms will be a transformation (T ,Σ?) → Λ, where the first argument is
the type, τ ∈ T , to construct, and the second argument is the lemma, ` ∈ Σ?, of

2Since the C&C models are trained on CCGBank, which in turn are a translation of The Penn
Treebank (PTB), the POS-tag-set used is equivalent to that of PTB cf. [Marcus et al., 1993].

34 Lexicon acquisition and annotation

the lexicon entry to annotate. Since the special case algorithms will fallback to the
generic approach, in case preconditions for the case are not met, it is convenient to
start with the generic algorithm, Ugen, which is given by Definition 4.1.

Definition 4.1 The generic semantic annotation algorithm, Ugen (4.1), for a type
τ and lemma ` is defined by the auxiliary function U ′gen, which takes two additional
arguments, namely an infinite set of variables V cf. Definition 3.2, and an ordered set
of sub-expressions, (denoted A), which initially is empty.

Ugen(τ, `) = U ′gen(τ, `,V, ∅) (4.1)

If τ is primitive, i.e. τ ∈ Tprim, then the generic algorithm simply return a functor
with name `, polarity and impact argument both set to 0, and the ordered set A
as arguments. Otherwise there must exist unique values for τα, τβ ∈ T , such that
τα → τβ = τ , and in this case the algorithm return an abstraction of τα on variable
v ∈ V , and recursively generates an expression for τβ .

U ′gen(τ, `, V,A) =

{
`00(A) : τ if τ ∈ Tprim
λv.U ′gen(τβ , `, V \ {v}, A′) : τ otherwise, where:

v ∈ V
τα → τβ = τ

A′ =

A[e : τα → τγ 7→ ev : τγ] if e′ : τα → τγ ∈ A
A[e : τγ 7→ ve : τδ] if τγ → τδ = τα ∧ e′ : τγ ∈ A
A ∪ {v : τ} otherwise

The recursive call also removes the abstracted variable v from the set of variables,
thus avoiding recursive abstractions to use it. The ordered set of sub-expressions, A,
is modified cf. A′, where the notation A[e1 : τ1 7→ e2 : τ2] is the substitution of all
elements in A of type τ1 with e2 : τ2. Note that e1 and τ1 might be used to determine
the new value and type of the substituted elements. Since the two conditions on A′
are not mutual exclusive, if both apply the the first case will be selected. The value
of A′ can be explained in an informal, but possibly easier to understand, manner:

• If there is a least one function in A, that takes an argument of type τα, then
apply v (which is known to by of type τα) to all such functions in A.

• If the type of v itself is a function (i.e. τγ → τδ = τα), and A contains at least
one element that can be used as argument, then substitute all such arguments
in A by applying them to v.

• Otherwise, simply append v to A.

�

4.2 Annotating the lexicon 35

The get a little familiar with how the generic semantic annotation algorithm works,
Example 4.1 shows the computation of some types and lemmas.

Example 4.1 Table 4.1 shows the result of applying Ugen on some lemmas and
types. The result for a noun as “room” is simply the zero-argument functor of the
same name. The transitive verb “provide” captures two noun phrases, and yields a
functor with them as arguments.

More interesting is the type for the determiner “every”, when used for instance to
modify a performance verb, as shown in Figure 4.2. It starts by capturing a noun,
then a function over noun phrases, and lastly a noun phrase. The semantic expression
generated for this type is a functor, with simply the noun as first argument, and where
the second argument is the captured function applied on the noun phrase.

Lemma Type Generic semantic expression

room τn room0
0

provide τnp → τnp → τs λx.λy.provide00(x, y)
every τn → (τnp → τs)→ (τnp → τs) λx.λy.λz.every0

0(x, y z)

Table 4.1: Some input/output of generic annotation algorithm

cleaned
VBN

Spss\NP : λx.clean0
0(x)

every
DT

((Sx\NP)\(Sx\NP))/N : λx.λy.λz.every0
0(x, y z)

day
NN

N : day0

(Sx\NP)\(Sx\NP) : λy.λz.every0
0(day0.0, y z)

>

Spss\NP : λz.every0
0(day0, clean0

0(z))
<

Figure 4.2: Complex determiner modifying performance verb.

�

Clearly the generic algorithm does not provide much use with respect to extracting
the sentiment of entities in the text, i.e. it only provide some safe structures that
are guaranteed to have the correct type. The more interesting annotation is actually
handled by the special case algorithms. How this is done is determined by a combi-
nation of the POS-tag and the category of the entry. Most of these treatments are
very simple, with the handling of adjectives and adverbs being the most interesting.
The following briefly goes through each of the special case annotations.

36 Lexicon acquisition and annotation

• Determiners with simple category, i.e. NP/N , are simply mapped to the iden-
tity function, λx.x. While determiners have high focus in other NLP tasks, such
as determine if a sentence is valid, the importance does not seem significant in
sentiment analysis, e.g. whether an opinion is stated about an entity or the
entity does not change the overall polarity of the opinion bound to that entity.

• Nouns are in general just handled by the generic algorithm, however in some
cases of multi-word nouns, the sub-lexical entities may be tagged with the
category N /N . In these cases the partial noun is annotated with a list structure,
that eventually will capture the entire noun, i.e. λx.〈Ugen(τn, `), x〉, where ` is
the lemma of the entity to annotate.

• Verbs are just as nouns in general handled by the generic algorithm, how-
ever linking verbs is a special case, since they relate the subject (i.e. an en-
tity) with one or more predicative adjectives. Linking verbs have the category
(Sdcl\NP)/(Sadj\NP), and since the linked adjectives directly describes the sub-
ject of the phrase such verbs are simply annotated with the identity function,
λx.x.

• Adjectives can have a series of different categories depending on how they par-
ticipate in the sentence, however most of them have the type τα → τβ , where
τα, τβ ∈ Tprim. These are annotated with the change of the argument, i.e.
λx.x◦j , where j is a value determined based on the lemma of the adjective.
Notice that this assumes implicit type conversion of the parameter from τα to
τβ , however since these are both primitive, this is a sane type cast. Details on
how the value j is calculated are given in Section 4.4.

• Adverbs are annotated in a fashion closely related to that of adjectives. However
the result might either by a change or a scale, a choice determined by the lemma:
normally adverbs are annotated by the change in the same manner as adjectives,
however intensifiers and qualifiers, i.e. adverbs that respectively strengthens or
weakens the meaning, are scaled. Section 4.5 gives further details on how this
choice is made. Finally special care are taken about negating adverbs, i.e. “not”,
which are scaled with a value j = −1.

• Prepositions and relative pronouns need to change the impact argument of
captured partial sentences, i.e. preposition phrases and relative clauses, such
that further modification should bind to the subject of the entire phrase as
were illustrated by Example 3.4.

• Conjunctions are annotated by an algorithm closely similar to Ugen, however
instead of yielding a functor of arguments, the algorithm yields a list structure.
This allow any modification to bind on each of the conjugated sub-phrases.

4.3 Semantic networks 37

4.3 Semantic networks

An understanding of the domain of the review is needed in order to reason about the
polarity of the entities present in the text to analyse. For this purpose the concept
of semantic networks is introduced. Formally a semantic network is a structure cf.
Definition 4.2.

Definition 4.2 a semantic network is a quadruple (L, S,R,M) where:

• L ⊂ Σ? is the set of lexical units recognized by the network.

• S is the set of semantic concepts in the network.

• R is a set of binary relations on S where the relation r ∈ R describes links
between semantic concepts, i.e. r ⊂ S × S.

• M is a mapping from lexical units to a set of semantic entities that the lexical
unit can entail, i.e. M : L→ P(S).

�

Notice that S and R constitutes a set of graphs, i.e. for each relation r ∈ R the
graph (S, r). The graph is undirected if r is symmetric, and directed if r is asym-
metric. An illustrative example of such a graph, denoting a relation in an extract
of a semantic network of adjective concepts is given in Figure 4.3. Since a lexical
unit might entail many different concepts cf. Definition 4.2, semantic concepts are
described by the set of lexical unit that can entail it, each denoted with the index
that uniquely identifies that meaning of the lexical unit. For instance in Figure 4.3
the 4th meaning of olympian entail the same semantic concept as the 1st meaning of
both exceptional and exceeding.

exceeding#1 exceptional#1 olympian#4

extraordinary#1

incomparable#1 uncomparable#1

best#1

uncommon#1

unusual#1

superior#1

impressive#1

Figure 4.3: Illustration of relation in a semantic network.

38 Lexicon acquisition and annotation

The concrete semantic network used is WordNet, originally presented by Miller [1995],
and later presented in depth by Fellbaum [1998]. Like it was the issue when acquiring
a lexicon for the syntactic analysis, the availability of free semantic networks is very
sparse. It has not been possible to find other competing networks with a coverage
close to that of WordNet, and thus the decision of using WordNet is really based on it
being the only choice. With that said, it is argued that WordNet is a quite extensive
semantic network, which in its most recent revision (3.0) contains a relatively large
number of semantic concepts, namely |S| ≈ 117 000, while the number of lexical units
recognized may be argued is not as covering as ideally, namely |L| ≈ 155 000.

WordNet contains a variety of relations, R, however for the purpose of calculating
sentiment polarity values, only the following were considered interesting:

• The similar -relation, rsimilar, links closely similar semantic concepts, i.e. con-
cepts having almost the synonymies mensing in most contexts. The relation is
present for most concepts entailed by adjectives.

• The see also-relation, rsee-also, links coarsely similar semantic concepts, i.e. con-
cepts having a clear different meaning, but may be interpreted interchangeably
for some contexts. Figure 4.3 on the preceding page shows an example of exactly
the see also-relation.

• The pertainym-relation, rpertainym, links the adjectives from which an adverb
was derived, e.g. extreme is the pertainym of extremely.

4.4 Sentiment polarity of adjectives

The approach used to calculate sentiment polarity values for adjectives is very similar
to the one presented by Simančík and Lee [2009], namely a domain specific set of
positive and negative seed concepts are identified, respectively Spos and Sneg. Each
semantic concept in the sets can be described by a lexical unit and the specific index
for that lexical unit that entail the desired concept, e.g. as shown in (4.2) and (4.3).

Spos = {clean#1, quiet#1, friendly#1, cheap#1} (4.2)
Sneg = {dirty#1, noisy#1, unfriendly#1, expensive#1} (4.3)

The graph Gadj, given by (4.4), is considered to calculate the sentiment polarity
change inflicted by the adjective. Notice that the graph includes both the similar -
relation and the see also-relation, as is desired to be able to reason about as large a

4.4 Sentiment polarity of adjectives 39

set of adjectives as possible, and thus both closely and coarsely related concepts are
considered.

Gadj = (S, rsimilar ∪ rsee-also) (4.4)

Given an adjective with lemma ` ∈ Σ?, the set of semantic concepts that this adjective
may entail, M(`), should provide the basis for the sentiment polarity change inflicted
by the adjective. The overall approach is to base the polarity change on the distances
between the concepts yielded by M(`) and the seed concepts in Gadj. However, as
the system only has very limited domain knowledge, namely Spos and Sneg, there
are no sure way of choosing which of the semantic concepts yielded by M(`) is the
“right” interpretation of `. Considering all of the possible concepts yielded by M(`)
nigher seem like a sane choice, since this would evidently flatten the polarities and
end in vague results. The method used to solve this semantic ambiguity follows
from the rational assumption that adjectives stated in the texts presumably are to
be interpreted within the domain given by the seed concepts. Thus concepts from
M(`) that are strongly related to one or more seed concepts should be preferred over
weaklier related concepts. The solution is to select the n closest relations between
M(`) and respectively Spos and Sneg, thus reasoning greedily positively, respectively
greedily negatively, about `. The multiset of all distances to either seed set for some
lemma ` is given by Dadj(`, S

′), where S′ is either Spos or Sneg cf. (4.5), and where
dadj is the distance function for Gadj. The sub-multiset of Dadj(`, S

′) which contains
the minimal n values is denoted Dn

adj(`, S
′).

Dadj(`, S
′) = [dadj(s, s

′) | s ∈M(`), s′ ∈ S′] where S′ ∈ {Spos, Sneg } (4.5)

Finally the sentiment polarity for an adjective with lemma `, denoted padj(`), is then
given by the difference of the sums of the n minimal normalized distances cf. (4.6),
where N is a normalization factor, ensuring that padj(`) ∈ [−ω;ω]. This follows the
intuition, that positive adjectives are closer to Spos than Sneg and vice-verse.

padj(`) =

 ∑
j∈Dn

adj(`,Sneg)

N · j

−
 ∑
j∈Dn

adj(`,Spos)

N · j

 (4.6)

Clearly this intuition is only valid if |Spos| ≈ |Sneg|, or more precisely, the probability
of some random semantic concept is close to a positive concept should be the same
as the probability of it being close to a negative concept.

The semantic expression of an adverb with type τα → τα is given by eadj(`) in (4.7).

eadj(`) = λx.x◦padj(`) (4.7)

40 Lexicon acquisition and annotation

The calculation of padj(`) can be generalized for any semantic graph G, given its
distance function d, and sets of respectively positive and negative seed concepts Sp

and Sn cf. (4.8). This generalization will be convenient in a moment, and padj is
trivially expressible in terms of p: padj(`) = N · p(dadj, Spos, Sneg, `).

p(d, Sp, Sn, `) =

 ∑
j∈Dn

d (`,Sn)

j

−
 ∑
j∈Dn

d (`,Sp)

j

 (4.8)

where:

Dd(`, S
′) = [d(s, s′) | s ∈M(`), s′ ∈ S′]

4.5 Sentiment polarity of adverbs

The approach for calculating sentiment polarity values for adverbs is very similar
to the approach used for adjectives. In fact, since WordNet does not define neither
rsimilar nor rsee-also on adverbs the basic approach is simply to lookup the adjective
from which the adverb is derived from, if any, using rpertainym. However since adverbs
might also intensify or qualify the meaning of a verb, adjective, or another adverb,
some special treatment are presented for this. Analog to the positive and negative
concepts, sets of respectively intensifying and qualifying seed adjectives are stated,
e.g. (4.9) and (4.10).

Sintensify = {extreme#1,much#1,more#1)} (4.9)
Squalify = {moderate#1, little#1, less#1)} (4.10)

Recall from Section 4.2 that intensifiers and qualifiers are scaling the value of the
verb, adjective or adverb they modify. To calculate the factor of which an intensifier
or qualifier inflicts, the graph Gscale, given by (4.11), is considered. The graph only
contains the similar -relation, since related intensifiers, respectively qualifiers, seem
to be captured most precisely by only considering closely similar adjectives to the
selected seeds cf. [Simančík and Lee, 2009]. Also notice that, unlike Spos and Sneg,
these sets does not rely on the domain, as they only strengthens or weakens domain
specific polarities.

Gscale = (S, rsimilar) (4.11)

The value of a polarity scaling is then given by the exponential function (4.12) with
range

[
1
2 ; 2
]
, i.e. the value of p(dscale, Sintensify, Squalify, `) is normalized using N such

4.6 Completing the analysis 41

it yields the range [−1; 1]. Thus a strong intensifier can double the sentiment polarity
value of the unit it modifies, analogously a strong qualifier can reduce it by half.

pscale(`) = 2N ·p(dscale,Sintensify,Squalify,`) (4.12)

Whether an adverb is considered an intensifier/qualifier or an normal adverb is de-
termined by the value of pscale(`′), where `′ is the pertainym of the adverb. The
semantic expression of an adverb with type τα → τα is given by eadverb(`) in (4.13).
If pscale(`′) 6= 1 then the adverb is considered as an intensifier/qualifier and scales
the lexical unit it inflicts, otherwise if the adverb is an derivation of an adjective it
simply changes the inflicted unit with the value of the adjective. Finally the adverb
can be one of a small set of predefined negatives, Lneg, in this case the polarity of the
inflicted unit is flipped. Otherwise the adverb is discarded by simply being annotated
with the identity function.

eadverb(`) =

λx.x•pscale(`′) if M(`)×M(`′) ⊂ rpertainym and pscale(`′) 6= 1

λx.x◦padj(`′) if M(`)×M(`′) ⊂ rpertainym
λx.x•−1 if ` ∈ Lneg

λx.x otherwise

(4.13)

4.6 Completing the analysis

All the components needed in order to calculate the sentiment for entities in a text
have now been presented. The final step is to connect the components in a pipeline,
allowing to compute the complete analysis originally presented originally in the start
of Chapter 2. Recall that the presented analysis in a calculation of type (2.1), repeated
here for convenience.

A : Σ? → E→ [−ω;ω] (2.1)

After initial preprocessing (i.e. tokenization), the text is processed by the lexical-
syntactic analysis using the C&C toolchain. The resulting lexicon is annotated with
semantic expressions using the algorithms and semantic network structures described
previous in this chapter. The deduction proof is then reconstructed based on the par-
tial (i.e. syntax only) proof from the C&C toolchain. The resulting deduction proof
uses the combinator rules over both lexical and semantic expressions presented in
Chapter 3. During the reconstruction process, semantic expressions are reduced us-
ing the rewrite rules presented in Section 3.4. If these steeps completes successfully
the deduction proof should yield a conclusion for a sentence with a closed semantic

42 Lexicon acquisition and annotation

expression. By closed semantic expression is meant that the expression is only con-
sisting of functors and sequences. Details and examples of what might fail during
this process will be elaborated upon evaluation of the system in Chapter 6.

The resulting semantic expression, e, is then inspected by the auxiliary sentiment
extraction function E : E→ Λ→ P([−ω;ω]) cf. Definition 4.3.

Definition 4.3 The extraction of sentiment, for a given subject of interest, s, from
a given semantic expression, e, is defined recursively by the function E cf. 4.14. If the
expression is a functor with same name as the subject of interest, then the sentiment
value of this functor is included in the resulting set, otherwise the value is simply
discarded. In both cases the function is recursively applied to the subexpressions of
the funtor. If the expression is a sequence, the function is simply recursively applied
to all subexpressions in the sequence. Should the expression unexpectively include
expressions of other kinds than functors and sequences, the function just yields the
empty set.

E(s, e) =

{j} ∪

⋃
e′∈E′ E(s, e′) if e is f ij(E′) and s = f⋃

e′∈E′ E(s, e′) if e is f ij(E′) and s 6= f⋃
e′∈E′ E(s, e′) if e is 〈E′〉
∅ otherwise

(4.14)

�

Finally the algorithm for the complete sentiment analysis can be formulated cf. Fig-
ure 4.4. The Select function simply selects the strongest opinion extracted (i.e. the
sentiment with largest absolute value). This is a very simple choice but are sufficient
for evaluating the algorithm, which will be done in Chapter 6.

A(text , s)

text ′ ← Preprocess(text)
(lexicon, proof)← SyntaxAnalysis(text ′)
lexicon ′ ← Annotate(lexicon)
proof ′ ← ReconstructProof(lexicon ′, proof)
(α : e)← Conclusion(proof ′)
return Select(E(s, e))

Figure 4.4: Algorithm for sentiment analysis.

Chapter 5

Implementation

In order to demonstrate the logical approach, introduced in the previous chapters, a
proof of concept system was implemented. In the following sections key aspects of the
implementation of this system will be presented. A complete walk-though will not be
presented, but the complete source code for the implementation is available in Ap-
pendix ??. Also notice that code segments presented in this chapter maybe simplified
from the source code to ease understanding. For instance the C&C-toolchain uses
some additional primitive categories to handle conjunctions, commas and punctua-
tions that are not consider theoretical or implementationwise interesting, as they are
translatable to the set of categories already presented. In the actual implementation
of the proof of concept system this is exactly what is done, once the output from the
C&C-toolchain has been parsed.

It was chosen to use the purely functional, non-strict programming language Haskell
for implementing the proof of concept system. The reason Haskell, specifically the
Glasgow Haskell Compiler, was chosen as programming language and platform, was
i.a. its ability to elegantly and effectively implement a parser for the output of the
C&C-toolchain. Data structures are like in many other functional languages also
possible to state in a very succinct and neat manner, which allow Haskell to model the
extended semantics presented in Section 3.4, as well as any other structure presented,
e.g. deduction proofs, lexical and phrasal categories, etc.

44 Implementation

5.1 Data structures

Data structures are stated in Haskell by the means of type constructors and data
constructors. To model for instance lexical and phrasal categories the two infix oper-
ators, :/ and :\ are declared (using / and \ was not considered wise, as / is already
used for devision by the Haskell Prelude) as shown in Figure 5.1. The agreement of
an primitive category is simply a set of features cf. Section 3.3, which is easiest mod-
eled using the list structure. As features are just values from some language specific
finite set they are simply modeled by nullary data constructors. One might argue
that features have different types, e.g. person, number, gender, etc. However it is
convenient to simply regard all features as being of the same type, a model borrowed
from van Eijck and Unger [2010, chap. 9].

infix 9 :/ -- Forward slash operator
infix 9 :\ -- Backward slash operator

type Agreement = [Feature]

data Category = S Agreement -- Sentence
| N Agreement -- Noun
| NP Agreement -- Noun Phrase
| PP Agreement -- Preposision Phrase
| Category :/ Category -- Forward slash
| Category :\ Category -- Backward slash

data Feature = FDcl | FAdj | FNb | FNg | ...

Figure 5.1: Example of declaring the data structure for categories.

The code shown in Figure 5.1 is really all what is needed to represent the syntactic
structure of categories. Another illustration of one of the data structural advantages
of using a functional programming language is shown in Figure 5.2. Notice how
the declaration of the syntax for the semantic expressions is completely analog to the
formal syntax given in Definition 3.2 and 3.3, with the exception that the implemented
syntax is untyped. The reason why types are omitted from the implemented model
of semantic expressions is simply that they are always accompanied by a category,
and thus the type of the expression is trivially obtainable when needed.

data SExpr = Var String -- Variable
| Abs String SExpr -- Lambda abstraction
| App SExpr SExpr -- Lambda application
| Fun String Float Int [SExpr] -- Functor
| Seq [SExpr] -- Sequence
| ImpactChange SExpr Int -- Impact change
| Change SExpr Float -- Change
| Scale SExpr Float -- Scale

Figure 5.2: Example of declaring the data structure for semantic expressions.

5.2 Reducing semantic expressions 45

5.2 Reducing semantic expressions

With data structures available for representing the syntax of the semantic expressions
it is time to focus on reducing the expression using the semantic rules presented in
Definition 3.4. This can be easily done in a functional language by specifying a re-
duction function, i.e. a function that recursively rewrites semantic expressions based
on the rules presented in the definition. By using the pattern matching available in
Haskell, each rule can be implemented in a one-to-one manner by a function decla-
ration that only accepts the pattern of that rule. For instance Figure 5.3 shows the
implementation of the (FC1), (SC) and (PC) rules. A small set of additional func-
tion declarations are needed to allow reduction inside a structure that itself cannot
be reduced, and finally the identity function matches any pattern not captured by
any of the other function declarations. Notice that η-reduction was not implemented,
since this rule is merely a performance enhancing rule.

-- (FC1)
reduce (Change (Fun f j 0 ts) j’) =

Fun f (j + j’) 0 $ map reduce ts

-- (SC)
reduce (Change (Seq ts) j’) =

Seq $ map (reduce . flip Change j’) ts

-- (PC)
reduce (Change (Abs x t) j’) =

Abs x $ reduce $ Change t j’

Figure 5.3: Example of declaring the rules for semantic expressions.

5.3 Interacting with the C&C toolchain

When processing multiple texts the most effective way of interaction with the C&C
toolchain is by running a server instance of it, since this allows the toolchain to only
load the trained models once (which are quite large). The server can be interacted
with through a SOAP web service [Box et al., 2000]. It seem a somewhat strange
choice that Clark and Curran choose to base the communication with the server on
SOAP, since the only data structure ever exchanged is single strings (the text to
parse as input, and the raw Prolog style string as output). It was chosen not to
interact directly with the web service from Haskell, since no mature SOAP libraries
are currently available natively for Haskell. Instead it was chosen to use a small
client program distributed along with the C&C tools, allowing communication with
the SOAP web service through the clients standard input/output.

46 Implementation

The implemented parser for the Prolog style output yielded by the C&C toolchain,
presented briefly in Section 4.2, uses the Parsec library for Haskell by Leijen [2001].
Parsec is a strong monadic parser combinator, that among other things allows fast
and efficient parsing of LL[1] grammars, and can thus easily capture the subset of
the Prolog language used by the C&C-toolchain. Parsec differs significantly from
common Yacc approaches, since it describes the grammar directly in Haskell, without
the need of some intermediate language or processing tools.

Figure 5.4 shows the actual raw output from the C&C-toolchain that is the basis the
illustration in Figure 4.1 shown back in Section 4.2. The first section of the output
represents the deduction tree, while the second represents the lexicon (obviously
without semantic expressions).

ccg(1,
ba(’S[dcl]’,
fa(’NP[nb]’,
lf(1,1,’NP[nb]/N’),
lf(1,2,’N’)),

fa(’S[dcl]\NP’,
lf(1,3,’(S[dcl]\NP)/(S[adj]\NP)’),
lf(1,4,’S[adj]\NP’)))).

w(1, 1, ’the’, ’the’, ’DT’, ’I-NP’, ’O’, ’NP[nb]/N’).
w(1, 2, ’service’, ’service’, ’NN’, ’I-NP’, ’O’, ’N’).
w(1, 3, ’was’, ’be’, ’VBD’, ’I-VP’, ’O’, ’(S[dcl]\NP)/(S[adj]\NP)’).
w(1, 4, ’great’, ’great’, ’JJ’, ’I-ADJP’, ’O’, ’S[adj]\NP’).

Figure 5.4: Raw output from the C&C toolchain.

One of the most admirable features of Parsec is its parser combinator library, con-
taining a verity of bundled auxiliary functions, which allows the declaration of ad-
vanced parsers by combining smaller parsing functions. To parse for instance the
categories present in both of the sections one can build an expression parser simply
by stating the symbol, precedence and associativity of the operators.

Figure 5.5 shows the parser for categories. The precedence of the operators are given
by the outer list in the operator table, while operators within the same inner list have
the same precedence, which is in the case for both of the categorial infix operators.
Finally a category is declared as either compound (i.e. a category expression), or as
one of the four primitive categories. Notice how the parser needs to first try to parse
noun phrases (NP), and then nouns (N), since the parser otherwise could successfully
parse a noun, and then meet an unexpected “P”, which would cause a parser error.

The parsing of the lexicon is considered trivial, since its structure is flat with the
exception of the category. The parser for the deduction proof is simply stated by two
abstract rules, unary (e.g. for capturing type-raise) and binary (e.g. for capturing
functional application), along with a top-rule for choosing specific instances of the

5.4 WordNet interface and semantic networks 47

pCategoryExpr :: Parser Category
pCategoryExpr = buildExpressionParser pCategoryOpTable pCategory

pCategoryOpTable :: OperatorTable Char st Category
pCategoryOpTable = [[op "/" (:/) AssocLeft ,

op "\\" (:\) AssocLeft]]
where

op s f a = Infix (string s >> return f) a

pCategory :: Parser Category
pCategory = pParens pCategoryExpr

<|> (pCategory ’ "S" S)
<|> try (pCategory ’ "NP" NP)
<|> (pCategory ’ "N" N)
<|> (pCategory ’ "PP" PP)
<?> "category"

Figure 5.5: Example of parsing categorial expression.

rules. Besides this there is several rules for handling C&C’s relatively verbose rules
for coordination, especially in connection with commas and punctuations.

5.4 WordNet interface and semantic networks

To lookup semantic concepts and relations in the WordNet data files an open source
interface library by Daumé III [2008] was used as base. However the interface was not
complete, and missed critical features. For instance the library could only calculate
the closure of two semantic concepts, which of cause only is possible when the relation
forms a partial order, e.g. as is the case with the hyponym/hypernym relation and the
holonym/meronym relation. Therefore the library has undergone significant rewrite
and cleanup in order to use it for the presented purpose.

To model semantic networks another open source library was used, namely the Func-
tional Graph Library (FGL). The library implements efficient functional graph rep-
resentation and algorithms presented by Erwig [2001]. However transforming the
relational representation of WordNet into an actual graph in the sense of FGL is
somewhat tricky. The reason for this is that intended usage of the WordNet data
files do not exposes S, and neither r in the form of a subset of S × S, which makes
good sense since this representation does not scale well with |S|. Instead it is intended
to query using the lookup function, M , which is indexed and allows logarithmic time
lookup of lexical units; likewise a relation, r̂, is a function from one semantic con-
cept to a set of related concepts, i.e. r̂ : S → P(S). This structure makes querying
WordNet efficient, but also allows some optimization with respect to calculating the
sentiment polarity value of lexical units. Recall from Section 4.3 that the approach is

48 Implementation

to select a set of respectively positive and negative seed concepts, and then measure
the difference of the sum of distances from a lexical unit to these. However instead
of regarding the entire graph (S, r) only a subgraph (S′, r′) is considered, namely the
subgraph that constitutes the connected component that contains all semantic con-
cepts that are reachable from the seed concepts using the relation function r̂. This
of cause assumes that r is symmetric, which is also the case for rsimilar and rsee-also
cf. Section 4.3.

The construction of (S′, r′) for some set of positive and negative seed semantic con-
cepts, respectively Spos and Sneg, is denoted the unfolding of Spos ∪ Sneg using r̂. It
is done using simple depth first search with the set of initially “unvisited” semantic
concepts Spos ∪ Sneg. The FGL requires nodes to be assigned a unique index, and it
is also clearly necessary to keep track of which semantic concepts has already been
assigned a node in the graph, i.e. which nodes are considered visited. Lastly the set
S′ and r′ should be build incrementally. In an imperative programming language
maintaining such mutable state is straight forward, but in a purely functional pro-
gramming language such as Haskell this require somewhat advanced techniques if it
should be implemented efficiently. Launchbury and Peyton Jones [1994] presents a
method to allow functional algorithms to update internal state, while still externally
be purely functional algorithms with absolutely no side-effects. An implementation
of Launchbury and Peyton Jones’s method is available in Haskell through strict state
threads and the strict state-transformer monad.

Figure 5.6 shows the Haskell code for unfolding semantic graphs. The actual unfolding
are done by the function unfoldST, which yields a state transformer with computation
result of (Map a Node, Gr a Int), i.e. a map from the type of items to unfold, a,
(e.g. semantic concepts) to nodes in the FGL graph and the actual FGL graph with
nodes of type a and edges simply with integer weights (all edges have weight 1).

Since the ST structure conforms to the laws of monads state transformation com-
putations can be chained into a pipeline, and thus even though the code for the
algorithm might look almost imperatively, it is indeed purely functional. Initially
three references to mutable state are constructed given each of the states an initial
value. The visit function simply “visits” an item (e.g. semantic concept): if the
item has already been visited, the unique index for its corresponding node in the
FGL graph is simply returned; otherwise a new unique node index is allocated and
outgoing relations from this item are visited by recursive calls. Mutable states can
by modified by the modifySTRef function, which takes a reference to the state to
modify, and a transformation function over the state. When the depth first search
finishes, the map and FGL graph are returned as non-mutable structures as the result
of the computation.

5.4 WordNet interface and semantic networks 49

-- | Unfold the a graph using the given relation and seeds.
unfoldG :: (Ord a) => (a -> [a]) -> [a] -> (Map a Node , Gr a Int)
unfoldG r seeds = runST $ unfoldST r seeds

-- | State trasformer for unfolding graphs.
unfoldST :: (Ord a) => (a -> [a]) -> [a] -> ST s (Map a Node , Gr a Int)
unfoldST r seeds =

do mapRef <- newSTRef Map.empty -- Map from Item to Node
nodesRef <- newSTRef [] -- List of Node/[Edge] pairs
idRef <- newSTRef 0 -- Counter for indexing nodes
-- Recursively visits n
let visit n =

do -- Test if n has already been visited
test <- (return . Map.lookup n =<< readSTRef mapRef)
case test of

Just v -> return v
Nothing ->

do -- Get next id for this item
i <- readSTRef idRef
modifySTRef idRef (+1)
-- Update item/node map
modifySTRef mapRef (Map.insert n i)
-- Recursively visit related items
ks <- mapM visit $ r n
let ns = ((i,n), [(i,k,1) | k <- ks])
modifySTRef nodesRef (ns:)
return i

-- Visit seeds
mapM visit seeds
-- Read results and return map/graph -pair
list <- readSTRef nodesRef
nodeMap <- readSTRef mapRef
let nodes = [n | (n, _) <- list]
let edges = concat [es | (_, es) <- list]
return (nodeMap , mkGraph nodes edges)

Figure 5.6: Example of usage of strict state threads.

50 Implementation

5.5 Overall analysis and extraction algorithm

The implemented program loads a set of review texts from a plain text file. The texts
are presumed to have been preprocessed by decent tokenization cf. Section 2.1, and
each line in the file should constitute a sentence. The set of positive and negative
seed concepts, as well as the subject of interest are simply defined directly in the
source code for the program, since it is intended simply as a proof of concept system.

The program prints the result of the analysis (if any) for each of the input sentences.
The implemented extraction algorithm also makes a very primitive pronoun resolu-
tion, namely that the third person pronouns it, they and them are simply identified
as the subject of interest.

Chapter 6

Evaluation

This chapter evaluates the presented logical approach for sentiment analysis, specifi-
cally the proof of concept implementation presented in the previous section. In order
to truly classify the capabilities of the system, real test-data are needed. In this
chapter a test data set is introduced, and results from evaluation of the system on
this set are presented. The results are explained, and it is considered whether the
robustness and the correctness of the solution is significantly high enough for real
applications.

6.1 Test data set

There are several free to use labeled review data set available (most of them consisting
of movie reviews for some reason). However recall that most research have focused
on classifying sentiment on document, sentence or simply on word level, but not on
entity level cf. Section 1.4 on page 7. This mean that it unfortunately has not been
possible to find any free data set there was labeled on entity level.

The test data set chosen for evaluation of the system is the Opinosis data set [Ganesan
et al., 2010]. The data set consists of approximately 7000 texts from actual user
reviews on a number of different topics. The topics are ranging over different product
and services, from consumer electronics (e.g. GPS navigation, music players, etc.) to

52 Evaluation

hotels and restaurants. They are harvested from several online resellers and service
providers, including i.a. Amazon1 and TripAdvisor2. The data set is neither labeled
on entity level (or any other level for that matter), since it originally was used for
evaluating an automatic summarization project by Ganesan et al. However the source
of the reviews was one of the main reasons to use Opinosis Dataset for the evaluation,
since it was one of the original goals of the project, that a solution could process real
data.

After a coarse review of the data set it is safe to argue that the data set chosen for
evaluation indeed includes all of the problematics discussed in Section 2.2 on page 14.
Since the data set is unlabeled it was chosen to label a small subset of it in order to
measure the robustness and the correctness of the presented solution. To avoid bi-
ases toward how the proof of concept system analyzes text the labeling was performed
independently by two individuals which had no knowledge of how the presented solu-
tion processes texts. As the example texts throughout this thesis might have hinted,
the subset chosen was from the set of hotel and restaurant reviews. It was, of cause,
a subset that had not previously been used to test the implementation during devel-
opment, however fixing the evaluation on the domain of hotel and restaurant reviews
allowed the choice of relevant seed concepts cf. Section 4.4. The subject of interest
chosen for the analysis were hotel rooms, and the subset was thus randomly sampled
from texts with high probability of containing this entity (i.e. containing any morpho-
logical form of the noun “room”). This approach were chosen, since there otherwise
are no chance the proof of concept system can yield a result for the text.

The individuals were given a subset of 35 review texts, and should mark each text
as either positive, negative or unknown with respect to the given subject of interest.
Out of the 35 review text the two subject’s positive/negative labeling agreed on 34
of them, while unknowns and disagreements were discarded. Thus the inter-human
concordance for the test data set was 97.1%, which is very high, and would arguable
drop if just a few more individuals were used for label annotation. The full subset
samples, as well as each subjects marking is available in Table C.1 in Appendix C.

6.2 Test results

The test data set was processed by the proof of concept system and the system was
able to yield a sentiment value for the “room” entity for just 38.2% of the test texts.
An entity sentiment value is considered to agree with the human labeling, if had the
correct sign (i.e. positive sentiment values agreed with positive labels, and negative
values with negative labels). As mentioned it is hard to compare the results to any

1Amazon, http://www.amazon.com/
2TripAdvisor, http://www.tripadvisor.com/

http://www.amazon.com/
http://www.tripadvisor.com/

6.3 Understanding the results 53

baseline, since no published results has been obtainable for entity level sentiment
analysis. The baseline presented here is thus a sentence-level baseline, calculated
by using the Natural Language Toolkit (NLTK) for Python using a Naive Bayes
Classifier (trained on movie reviews though rather than hotel reviews). The raw
sentiment values calculated by the presented method are also available for each text
in the test data set in Table C.1 in Appendix C. The precision and recall results for
both the baseline, and the presented method are shown in Table 6.1. As seen the
recall is somewhat low for the proof of concept system, which is addressed in the next
section, while it is argued that precision of the system is indeed acceptable, since even
humans will not reach a 100% agreement.

Baseline Presented method
Precision 71.5% 92.3%
Recall 44.1% 35.3%

Table 6.1: Precision and recall results for proof of concept system.

6.3 Understanding the results

To investigate the low recall, focus was turned to clarifying why the presented method
only yields results for 38.2% of the test data set. The C&C toolchain was able to
give a syntactic deduction proof for 94.4% of the test data set. However after closer
inspection of the proofs constructed for texts in the test data set, it was discovered
that approximately only half of these proofs were correct. This is of cause a major
handicap for the presented method, since it is highly reliable on correct deduction
proofs.

The reason the C&C toolchain behaves so inadequately is indeed expected, and thus
a low racall was also expected, even though it is lower then hoped for. Recall from
Section 4.1 that the C&C parser could recognize 98.4% of unseen data. However there
is one major assumption if this promise should be met: the probability distribution
of the input should of cause follow the same distribution as the training data that
the C&C models was created from. The models were trained on The CCGbank
[Hockenmaier and Steedman, 2007] and thereby follows the distribution of The Penn
Treebank [Marcus et al., 1993]. That this follows a different probability distribution
than the Opinosis data set may not be that surprising, since the treebank consists
mostly of well-written newspaper texts. To illustrate this consider Figure 6.1 which
shows the probability distribution of sentence length (i.e. number of words) in: the
set of hotels and restaurants reviews of Opinosis (2059 sentences); and respectively a
subset of Wall Street Jounal (WSJ) corpus, which is a representative and free to use

54 Evaluation

sample of The Penn Treebank (3914 sentences). This measure gives a clear indication
that the two data sets indeed follows different probability distributions.

10 20 30 40 50 60
0%

1%

2%

3%

4%

5%

Sentence length in number of words

Hotels and restaurants WSJ

Figure 6.1: Sentence length distribution in representative subsets of Opinosis and
The Penn Treebank.

At best this may however only explain half of missing results. To explain the rest focus
needs to be turned to those sentences for which the C&C toolchain constructs proofs
correctly, but does not yield any results. Consider Figure 6.2 which shows the de-
duction proof for test sentence #9, which most humans, like the two individuals used
for labeling, would agree expressed a positive opinion about the rooms. However the
sentiment extraction algorithm fails to capture this, even though it is worth noticing,
that the semantic expression in the conclusion of the proof, i.e. furnish0

95.0(room0.0),
indeed contains a positive sentiment value.

Rooms
NNS

N : room0.0

NP : room0.0

were
VBD

(Sdcl\NP)/(Spss\NP) : λx.x

nicely
RB

(SX\NP)\(SX\NP) : λx.(x◦95.0)

(Sdcl\NP)/(Spss\NP) : λx.(x◦95.0)
<B×

furnished
VBN

Spss\NP : λx.furnish0
0.0(x)

Sdcl\NP : λx.furnish0
95.0(x)

>

Sdcl : furnish0
95.0(room0.0)

<

.

.

Sdcl\Sdcl : λx.x

Sdcl : furnish0
95.0(room0.0)

<

Figure 6.2: Sentence positive about room, but with no sentiment value on its func-
tor.

In the next chapter solutions for these problems are proposed and discussed, and it
is argued that even though the recall results for the test data set are unacceptable
low, applications for the presented method are indeed possible given some additional
effort.

Chapter 7

Discussion

The presented method for entity level sentiment analysis using deep sentence struc-
ture analysis has shown acceptable correction results, but inadequate robustness cf.
the previous chapter.

The biggest issue for the demonstrated proof of concept system is the lack of correct
syntactic tagging models. It is argued that models following a closer probability
distribution of review texts than The Penn Treebank models would have improved
the robustness of the system significantly. One might think, that if syntactic labeled
target data are needed, then the presented logical method really suffers the same
issue as machine learning approaches, i.e. domain dependence. However it is argued
that exactly because the models needed are of syntactic level, and not of sentiment
level, they really do not need to be domain specific, but only genre specific. This
reduces the number of models needed, as a syntactic tagging model for reviews might
cover several domains, and thus the domain independence of the presented method
is intact.

To back this argument up, consider Figure 7.1 which shows the probability distri-
bution of sentence lengths in two clearly different sentiment domains, namely hotels
and restaurants (2059 samples) and GPS navigation equipment (583 samples). This
measure gives strong indications, that a robust syntactic level model for either do-
main would also be fairly robust for the other. The same is intuitively not true for
sentiment level models.

56 Discussion

10 20 30 40 50 60
0%

1%

2%

3%

4%

5%

Sentence length in number of words

Hotels and restaurants Navigation

Figure 7.1: Sentence length distribution for different review topics.

An interesting experiment would have been to see how the presented method per-
formed on such genre specific syntactic models. Building covering treebanks for each
genre to train such models is an enormous task, and clearly has not been achievable in
this project even for a single genre (The Penn Treebank took eight years to compile).
However Søgaard [2012] presents methods for cross-domain semi-supervised learning,
i.e. the combination of labeled (e.g. CCGBank) and unlabeled (e.g. review texts) data
from different domains (e.g. syntactic genre). This allows the construction of models
that utilizes the knowledge present in the labeled data, but also biases it toward the
distribution of the unlabeled data. The learning accuracy is of cause not as signifi-
cant as compared to learning with large amounts of labeled target data, but it can
improve cases as the one presented in this thesis greatly. The reason why this was
not performed in this project is partly due to it was not prioritized, and the fact that
the method still assumes access to raw labeled data (e.g. CCGBank) which was not
available.

The other issue identified when analyzing the low robustness was the failure of ex-
tracting sentiment values, even though they were actually present in the semantic
expression yielded by the conclusion of the deduction proof. This clearly shows that
the simple extraction algorithm given by Definition 4.3 is too constitutive, i.e. it
turned out to be insufficient to only extract sentiment values at the atomic functor
level for the subject of interest. However, since the knowledge is actually present, it
is argued that more advanced extraction algorithms would be able to capture these
cases.

The reason why more advanced extraction algorithms were not considered was that
it would require more test data to validate that such advanced extraction strategies
are well-behaved. Recall that it has not possible to find quality test data labeled on

7.1 Future work 57

entity level, and it was considered too time consuming to manually construct large
amounts of entity labeled data.

With these issue addressed, it is argued that the proof of concept system indeed shows
at least the potential of the presented method, and further investment in labeled
data, both syntactic tagging data, and labeled test data, would make the solution
more robust.

7.1 Future work

Besides resolving the issue presented as the major cause of the low robustness, the
presented method also leaves plenty of opportunities for expansion. This could include
a more sophisticated pronoun resolution than the one presented in Section 5.5.

Likewise even more advanced extraction strategies could also include relating enti-
ties by the use of some of the abstract topological relations available in semantic
networks, e.g. hyponym/hypernym and holonym/meronym. With such relations, a
strong sentiment of the entity room might inflict the sentiment value of hotel, since
room is a meronym of building, and hotel is a hyponym of building.

58 Discussion

Chapter 8

Conclusion

This thesis has presented a formal logical method for entity level sentiment analysis,
which utilizesmachine learning techniques for efficient syntactic tagging. The method
should be seen as an alternative to pure machine learning methods, which have been
argued inadequate for capturing long distance dependencies between an entity and
opinions, and of being highly dependent on the domain of the sentiment analysis.

The main aspects of method was presented in three stages:

• The Combinatory Categorial Grammar (CCG) formalism, presented in Chap-
ter 3, is a modern and formal logical technique for processing of natural language
texts. The semantics of the system was extended in order to apply it to the
field of entity level sentiment analysis.

• In order to allow the presented method to work on a large vocabulary and a
wide range of sentence structures, Chapter 4 described the usage of statistical
models for syntactic tagging of the texts, after it had been argued that such an
approach is the only reasonable. Algorithms for building semantic expressions
from the syntactic information was presented, along with a formal method for
reasoning about the sentiment expressed in natural language texts by the use
of semantic networks.

• Chapter 5 presented essential details about the proof of concept system, which

60 Conclusion

has been fully implemented, using functional programming, in order to demon-
strate and test the presented method.

Finally the presented method was evaluated against a small set of manually an-
notated data. The evaluation showed, that while the correctness of the presented
method seem acceptably high, its robustness is currently inadequate for most real
world applications as presented in Chapter 6. However it was argued in the previous
chapter that it indeed is possible to improve the robustness significantly given further
investment and development of the method.

Appendix A

A naive attempt for lexicon
acquisition

This appendix describes the efforts that was initially made in order to acquire a CCG
lexicon by transforming a tagged corpus, namely the Brown Corpus. The approach
turned out to be very naive, and was dropped in favor for the C&C models trained
on the CCGBank [Hockenmaier and Steedman, 2007], in turn The Penn Treebank
[Marcus et al., 1993].

The Brown Corpus

English is governed by convention rather than formal code, i.e. there is no regulating
body like the Académie française. Instead, authoritative dictionaries, i.a. Oxford
English Dictionary, describe usage rather than defining it. Thus in order to acquire
a covering lexicon it is necessary to build it from large amount of English text.

The Brown Corpus was compiled by Francis and Kucera [1979] by collecting written
works printed in United States during the year 1961. The corpus consists of just over
one million words taken from 500 American English sample texts, with the intension
of covering a highly representative variety of writing styles and sentence structures.

62 A naive attempt for lexicon acquisition

Notable drawbacks of the Brown Corpus include its age, i.e. there are evidently
review topics where essential and recurring words used in present day writing was
not coined yet or rarely used back 50 years ago. For instance does the Brown Corpus
not recognize the word internet. However it is one of the only larger free to use
tagged corpus available, and for this reason is was chosen for the attempt. Even
early analysis showed that coverage would be disappointing, since the Brown Copus
only contains 80.4% of the words of the hotels and restaurants subset of the Opinosis
data set [Ganesan et al., 2010] (3793 words). This mean that every 5th word would
on average be a guess in the blind. However the approach was continued to see how
many sentences would be possible to syntactic analyze with the lexicon.

The corpus is annotated with part of speech tags, but does not include the deep
structure of a treebank. There is a total of 82 different tags, some examples are shown
in Table A.1. As shown from the extract the tags include very limited information,
and while some features can be extracted (e.g. tense, person) in some cases, the
tagging gives no indication of the context.

Tag Description
VB verb, base form
VBD verb, past tense
VBG verb, present participle/gerund
VBN verb, past participle
VBP verb, non 3rd person, singular, present
VBZ verb, 3rd. singular present

Table A.1: Extract from the Brown tagging set.

Without any contextual information the approach for translating this information into
lexical categories becomes very coarse. For instance there are no way of determining
whether a verb is intransitive, transitive, or di-transitive. The chosen method was
simply to over-generate, i.e. for every verb, entries for all three types of verbs was
added to the lexicon. In total 62 of such rules were defined, which produced a lexicon
containing CCG categories for 84.5% of the 56 057 unique tokens present in the Brown
Corpus.

Evaluating the lexicon

To evaluate the coverage of the acquired lexicon an shift-reduce parser was imple-
mented in Haskell. It is not the most efficient parsing strategy, but was simple to

63

implement and considered efficiently enough to test the lexicon. A representative
sample of the hotels and restaurants subset of the Opinosis data set was selected
(156 sentences). The result was that the parser only was able to parse 10.9% of
the sentences. The result was very disappointing, and it was not even considered
whether these even were correctly parsed. Instead it was recognized that building a
CCG lexicon from only a tagged corpus is not a feasible approach. Further develop-
ment of the approach was dropped and instead the component was replaced with the
C&C tools [Clark and Curran, 2007].

64 A naive attempt for lexicon acquisition

Appendix B

Source code

Complete source code for the proof of concept solution presented can be downloaded
from the url: http://www.student.dtu.dk/~s072466/msc.zip.

The following lists the essential Haskell code files for the implementation. Main.hs
defines the extraction and analysis algorithms, i.e. E and A, and also includes the
main entry point for the application. The syntax and semantics for the semantic ex-
pressions are defined in Lambda.hs. The implementation of Combinatory Categorial
Grammar (CCG) is defined by CCG.hs, and Annotate.hs defines both the generic
annotation algorithm Ugen, as well as the special case annotation algorithms. Finally
Parser.hs defines the parser for the output from the C&C toolchain. The following
listing thus thereby not include the WordNet interface.

Main.hs

{−# LANGUAGE Implic itParams #−}

module Main where
import Data .Map (Map)
import qual i f ied Data .Map as Map
import Data .Maybe
import Data . Char
import Control .Monad

import Parser
import CCG
import Annotate

http://www.student.dtu.dk/~s072466/msc.zip

66 Source code

import WordNet hiding (Word)

matchE : : S t r ing −> Str ing −> Bool
matchE s s ’ = (map toLower s ’) == s | |

(map toLower s ’) == " i t " | |
(map toLower s ’) == "they" | |
(map toLower s ’) == "them"

ext rac t : : S t r ing −> SExpr −> [Float]
ex t rac t s (Fun s ’ j _ es) | matchE s s ’ = j : (concat $ map (ex t rac t s) es)

| o therwise = (concat $ map (ex t rac t s) es)
ex t rac t s (Seq es) = (concat $ map (ex t rac t s) es)
ex t rac t _ _ = []

ana lyse : : (Word −> Word) −> Str ing −> (Str ing , Int) −> IO ((Int , Maybe Float))
ana lyse annotationAlgorithm sub j e c t (sentence , index) = do

t r e e <− runCc annotationAlgorithm sentence
i f (i s Ju s t t r e e) then do

let sexpr = nodeExpr $ fromJust t r e e
l e t r = ext rac t sub j e c t sexpr
l e t m = (maximum r) + (minimum r)
i f (nu l l r) then return (index , Nothing)
else i f (m > 0) then

return $ (index , Just $ maximum r)
else i f (m < 0) then

return $ (index , Just $ minimum r)
else

return (index , Nothing)
else

return (index , Nothing)

main : : IO ()
main = do wne <− in i t ia l izeWordNetWithOptions Nothing Nothing

−− Def ine p o s i t i v e concepts
l e t adj_pos_list = [("good" , 1) , (" b e au t i f u l " , 1) , (" p l easant " , 1) , (" c l ean " ,

1) , (" qu i e t " , 1) , (" f r i e n d l y " , 1) , ("cheap" , 1) , (" f a s t " , 1) , (" l a r g e " ,
1) , (" n i c e " ,1)]

l e t adj_neg_list = [("bad" , 1) , (" hideous " , 1) , (" unpleasant " , 1) , (" d i r t y " ,
1) , (" no i sy " , 1) , (" un f r i end ly " , 1) , (" expens ive " , 1) , (" slow" , 1) , (" smal l
" , 1) , (" nasty " ,1)]

−− Def ine i n t e n s i f i e r s concepts
l e t i n t e n s i f i e r s = [(" extreme" , 1) , ("much" , 1) , ("more" , 1)]
l e t q u a l i f i e r = [("moderate" , 1) , (" l i t t l e " , 1) , (" l e s s " , 1)]

−− Load the synse t s that corresponds to the words in the above l i s t s .
l e t s_pos = (l e t ?wne = wne in map (\(w, i) −> head $ search w Adj i)

adj_pos_l ist)
l e t s_neg = (l e t ?wne = wne in map (\(w, i) −> head $ search w Adj i)

adj_neg_list)

−− Load the synse t s that corresponds to the words in the above l i s t s .
l e t i n t e n s i f i e r s_ s s = (l e t ?wne = wne in map (\(w, i) −> head $ search w Adj i)

i n t e n s i f i e r s)
l e t qua l i f i e r_ s s = (l e t ?wne = wne in map (\(w, i) −> head $ search w Adj i)

q u a l i f i e r)

−− Print i n f o about the seed concepts
putStr "\n\n"

putStr $ " Po s i t i v e concepts : \ n"
putStr $ un l i n e s $ map show s_pos
putStr "\n"
putStr $ "Negative concepts : \ n"
putStr $ un l i n e s $ map show s_neg
putStr "\n"
putStr $ " I n t e n s i f y i n g concepts : \ n"
putStr $ un l i n e s $ map show i n t e n s i f i e r s_ s s
putStr "\n"
putStr $ " Qua l i fy ing concepts : \ n"
putStr $ un l i n e s $ map show qua l i f i e r_ s s

putStr "\n\n"

−− Build semantic networks and annotat ion environment
putStr "Unfolding semantic networks . . . \ n"
l e t (adjMap , adjGraph) = (l e t ?wne = wne in unfoldG (\x −> (re latedBy S imi l a r x

++ relatedBy SeeAlso x)) (s_pos ++ s_neg))
l e t (scaleMap , scaleGraph) = (l e t ?wne = wne in unfoldG (re latedBy S imi l a r) (

i n t e n s i f i e r s_ s s ++ qua l i f i e r_ s s))
putStr $ "− Change network : " ++ (show $ Map. s i z e adjMap) ++ " concepts . \ n"
putStr $ "− Sca le network : " ++ (show $ Map. s i z e scaleMap) ++ " concepts . \ n"

67

l e t adjPosRoots = map (fromJust . f l i p Map. lookup adjMap) s_pos
l e t adjNegRoots = map (fromJust . f l i p Map. lookup adjMap) s_neg
l e t adj_fun = pAdj adjGraph adjPosRoots adjNegRoots . catMaybes . map (f l i p Map.

lookup adjMap)

l e t s c a l e I n t e n s i f i e r sR o o t s = map (fromJust . f l i p Map. lookup scaleMap)
i n t e n s i f i e r s_ s s

l e t s c a l eQua l i f i e rRoo t s = map (fromJust . f l i p Map. lookup scaleMap) qu a l i f i e r_ s s
l e t scaleFun = pScale scaleGraph s c a l e I n t e n s i f i e r sR o o t s s c a l eQua l i f i e rRoo t s .

catMaybes . map (f l i p Map. lookup scaleMap)

l e t env = AnnotationEnv {
wnEnv = wne ,
adjFun = adj_fun ,
scaleFun = scaleFun

}

−− Load review data
reviewData <− l i f tM l i n e s $ r eadF i l e " . . / Data/ rooms_swissotel_chicago_a . txt "

−− Analyse
r e s u l t <− mapM (analyse (annotateWord env) "room") $ z ip reviewData [1 . .]

−− Print r e s u l t s
putStr "\n\n"
putStr "Resu l t s : \ n"
putStr $ un l i n e s (map (\(i , r) −> (show i) ++ " : " ++ (show r)) r e s u l t)
putStr "\n\n"
putStr "Finshed .\ n"
return ()

Lambda.hs

module Lambda where
import Data . L i s t (nub , union , (\ \)) ;

−− | Data s t ru c tu r e f o r semantic exp r e s s i on s
data SExpr = Var St r ing −− Var iab le

| Abs St r ing SExpr −− Lambda abs t r a c t i on
| App SExpr SExpr −− Lambda app l i c a t i on
| Fun Str ing Float Int [SExpr] −− Functor
| Seq [SExpr] −− Sequence
| ImpactChange SExpr Int −− Impact change
| Change SExpr Float −− Change
| Sca l e SExpr Float −− Sca le
deriving (Eq)

−− | Returns the s e t o f f r e e v a r i ab l e s in the given expre s s i on
f r e e : : SExpr −> [Str ing]
f r e e (Var x) = [x]
f r e e (App e1 e2) = (f r e e e1) ‘ union ‘ (f r e e e2)
f r e e (Abs x e) = (f r e e e) \\ [x]
f r e e (Fun _ _ _ es) = nub $ concat $ map f r e e es
f r e e (ImpactChange e _) = (f r e e e)
f r e e (Seq es) = nub $ concat $ map f r e e es
f r e e (Change e _) = (f r e e e)
f r e e (Sca le e _) = (f r e e e)

−− | Safe s ub s t i t u t i on o f v a r i ab l e s x ’ with e ’ in e
subst : : SExpr −> Str ing −> SExpr −> SExpr
subst e@(Var x) x ’ e ’ | x == x ’ = e ’

| o therwise = e
subst e@(App e1 e2) x ’ e ’ = App (subst e1 x ’ e ’) (subst e2 x ’ e ’)
subst e@(Abs x e1) x ’ e ’ | x == x ’ =

−− x i s bound in e , so do not cont inue
e

| x ‘ elem ‘ f r e e e ’ =
−− x i s in FV(e ’) , need alpha−convers ion o f x :
l e t x ’ ’ = head $ xVars \\ (f r e e e1 ‘ union ‘ f r e e e ’)
in subst (Abs x ’ ’ $ subst e1 x (Var x ’ ’)) x ’ e ’

| o therwise =
−− otherwi se j u s t cont inue
Abs x (subst e1 x ’ e ’)

subst e@(Fun f j k es) x ’ e ’ = Fun f j k $ (map (\ e1 −> subst e1 x ’ e ’)) es
subst e@(Seq es) x ’ e ’ = Seq $ (map (\ e1 −> subst e1 x ’ e ’)) es
subst e@(ImpactChange e1 k ’) x ’ e ’ = ImpactChange (subst e1 x ’ e ’) k ’
subst e@(Change e1 j) x ’ e ’ = Change (subst e1 x ’ e ’) j
subst e@(Sca le e1 j) x ’ e ’ = Sca le (subst e1 x ’ e ’) j

68 Source code

−− | Reduces a semantic expre s s i on
reduce : : SExpr −> SExpr
−− −reduct ion
reduce (App (Abs x t) t ’) = reduce $ subst (reduce t) x (reduce t ’)
reduce (App t1 t2) = i f (t1 /= t1 ’) then (reduce $ App t1 ’ t2) else (App t1

’ t2)
where t1 ’ = reduce t1

reduce (Abs x t) = Abs x $ reduce t
reduce (Fun f j k t s) = Fun f j k $ map reduce t s
reduce (Seq t s) = Seq $ map reduce t s
−− FC1 , FC2 , SC and PC ru l e s :
reduce (Change (Fun f j 0 t s) j ’) = Fun f (j + j ’) 0 $ map reduce t s
reduce (Change (Fun f j k t s) j ’) = Fun f j k $ map reduce $ (take (k − 1) t s) ++

[Change (t s ! ! (k − 1)) j ’] ++ (drop k t s)
reduce (Change (Seq t s) j ’) = Seq $ map (reduce . f l i p Change j ’) t s
reduce (Change (Abs x t) j ’) = Abs x $ reduce $ Change t j ’
reduce (Change t j) = i f (t /= t ’) then (reduce $ Change t ’ j) else (Change

t ’ j)
where t ’ = reduce t

−− FS1 , FC2 , SS and PS ru l e s :
reduce (Sca le (Fun f j 0 t s) j ’) = Fun f (i f j == 0 then j ’ else j ∗ j ’) 0 $ map reduce

t s
reduce (Sca le (Fun f j k t s) j ’) = Fun f j k $ map reduce $ (take (k − 1) t s) ++

[Sca le (t s ! ! (k − 1)) j ’] ++ (drop k t s)
reduce (Sca le (Seq t s) v) = Seq $ map (reduce . f l i p Sca le v) t s
reduce (Sca le (Abs x t) v) = Abs x $ reduce $ Sca le t v
reduce (Sca le t j) = i f (t /= t ’) then (reduce $ Sca le t ’ j) else (Sca l e t ’

j)
where t ’ = reduce t

−− IC ru l e :
reduce (ImpactChange (Fun f j k t s) k ’) = Fun f j k ’ t s
reduce (ImpactChange t k ’) = i f (t /= t ’) then

(reduce $ ImpactChange t ’ k ’)
else

(ImpactChange t k ’)
where t ’ = reduce t

−− Otherwise
reduce x = x

−− | Creates an i n f i n i t e l i s t o f v a r i a b l e s [x , x ’ , x ’ ’ , . . .]
xVars : : [S t r ing]
xVars = i t e r a t e (++ " ’ ") "x"

zVars : : [S t r ing]
zVars = i t e r a t e (++ " ’ ") "z"

fVars : : [S t r ing]
fVars = i t e r a t e (++ " ’ ") " f "

−− | Creates an i n f i n i t e l i s t o f v a r i a b l e s [x , y , z , x ’ , y ’ z ’ , x ’ ’ , y ’ ’ , z ’ ’ , . . .]
xyzVars : : [S t r ing]
xyzVars = [v ++ v ’ | v ’ <− (i t e r a t e (++ " ’ ") "") , v <− ["x" , "y" , "z"]]

−− | I d en t i t y semantic expre s s i on
l i d = Abs "x" $ Var "x"

−− | Determines i f the expre s s i on complex , i . e . needs pa r en the s i s
isComplexExpr : : SExpr −> Bool
isComplexExpr (App _ _) = True
isComplexExpr (Seq _) = True
isComplexExpr (ImpactChange _ _) = True
isComplexExpr (Change _ _) = True
isComplexExpr (Sca le _ _) = True
isComplexExpr _ = False

−− | Pretty p r i n t i ng o f data s t r u c tu r e s
instance Show SExpr where

showsPrec d (Var x) = (showString x)
showsPrec d (Abs x t) = (showString $ "\\" ++ x ++ " . ") . (shows t)
showsPrec d (App t1 t2) = (showParen (isComplexExpr t1) (shows t1)) .

(showString " ") .
(showParen (isComplexExpr t2) (shows t2))

showsPrec d (Fun f j _ []) = (showString $ f ++ " ’ " ++ (show j))
showsPrec d (Fun f j k t s) = (showString $ f ++ " ’ " ++ (show j) ++ " (") .

(showList ’ t s) . (showString ") ")
where showList ’ : : Show a => [a] −> ShowS

showList ’ [] = showString ""
showList ’ [a] = shows a
showList ’ (a1 : a2 : as) = (shows a1) .

(showString " , ") .
(showList ’ (a2 : as))

showsPrec d (ImpactChange t k ’) = (shows t) . (showString "−>") . (shows k ’)
showsPrec d (Seq t s) = (shows t s)
showsPrec d (Change t1 v) = (shows t1) . (showString "") . (shows v)
showsPrec d (Sca l e t1 v) = (shows t1) . (showString "") . (shows v)

69

CCG.hs

{−# LANGUAGE TypeSynonymInstances , F l e x i b l e I n s t an c e s #−}
module CCG (

module Uni f i ca t i on ,
module Lambda ,
module CCG

) where
import Un i f i c a t i on
import Lambda

type Token = Str ing −− Lex i ca l entry
type Lemma = Str ing −− Lemma of l e x i c a l entry
type Pos = Str ing −− Part o f spearch

−− | Data s t ru c tu r e f o r l e x i c a l un i t s .
data Word = Word {

token : : Token ,
lemma : : Lemma,
pos : : Pos ,
category : : Category ,
expr : : SExpr

}
deriving (Eq)

type Lexicon = [Word]

in f ix 9 :/ −− Forward s l a sh operator
in f ix 9 :\ −− Backward s l a sh operator

type Agreement = [Feature]

data Category = S { agreement : : Agreement } −− Sentence
| N { agreement : : Agreement } −− Noun
| NP { agreement : : Agreement } −− Noun Phrase
| PP { agreement : : Agreement } −− Prepos i s i on Phrase
| CONJ { agreement : : Agreement } −− Conjugation (temperary category)
| Punctuation { agreement : : Agreement } −− Punctation (temperary category)
| Comma { agreement : : Agreement } −− Comma (temperary category)
| Category : / Category −− Forward s l a sh
| Category : \ Category −− Backward s l a sh
deriving (Eq)

data Feature = FDcl | FAdj | FEm | FInv −− Sentence
| FTo | FB | FPt | FPss −− Verbs
| FNg | FNb | FFor
| FThr | FFrg −− Fragments
| FQ | FWq | FQem −− Questions
| FVar St r ing −− Var iab l e s
| FUnknown Str ing −− Unknowns
deriving (Eq , Show)

data PTree = PWord Word
| PFwdApp { nCategory : : Category , nExpr : : SExpr , n1 : : PTree , n2 : : PTree }
| PBwdApp { nCategory : : Category , nExpr : : SExpr , n1 : : PTree , n2 : : PTree }
| PFwdComp { nCategory : : Category , nExpr : : SExpr , n1 : : PTree , n2 : : PTree }
| PBwdComp { nCategory : : Category , nExpr : : SExpr , n1 : : PTree , n2 : : PTree }
| PBwdXComp { nCategory : : Category , nExpr : : SExpr , n1 : : PTree , n2 : : PTree }
| PFwdTR { nCategory : : Category , nExpr : : SExpr , n1 : : PTree }
| PLexRaise { nCategory : : Category , nExpr : : SExpr , n1 : : PTree }
deriving (Eq , Show)

−− | Gets the category o f a node in the deduction t r e e .
nodeCategory : : PTree −> Category
nodeCategory (PWord w) = category w
nodeCategory x = nCategory x

−− | Gets the semantic expre s s i on o f a node in the deduction t r e e .
nodeExpr : : PTree −> SExpr
nodeExpr (PWord w) = expr w
nodeExpr x = nExpr x

instance Un i f i ab l e Category where
S _ =? S _ = True
N _ =? N _ = True
NP _ =? NP _ = True
PP _ =? PP _ = True
CONJ _ =? CONJ _ = True
Punctuation _ =? Punctuation _ = True
Comma _ =? Comma _ = True
(a : / b) =? (a ’ : / b ’) = a =? a ’ && b =? b ’
(a : \ b) =? (a ’ : \ b ’) = a =? a ’ && b =? b ’
_ =? _ = False

−− | Return i f a category i s compound .

70 Source code

isComplex : : Category −> Bool
isComplex (_ :/ _) = True
isComplex (_ :\ _) = True
isComplex _ = False

−− | Return the argument o f the type i n f l i c t e d by a compound category .
arg : : Category −> Maybe Category
arg (_:\ x) = Just x
arg (_:/ x) = Just x
arg x = Nothing

−− | Return the r e s u l t o f the type i n f l i c t e d by a compound category .
r e s : : Category −> Maybe Category
r e s (x : _) = Just x
r e s (x : /_) = Just x
r e s _ = Nothing

−− | Pre t ty p r i n t i ng o f Word
instance Show Word where

showsPrec d (Word { token = t , lemma = lemma , pos = p , category = c , expr = e }) =
(showString t) . (showString "~") . (showString lemma) . (showString "/") .
(showString p) . (showString " ") . (shows c) . (showString " : ") .
(shows e)

−− | Pre t ty p r i n t i ng o f Category
instance Show Category where

showsPrec d (S a) = showString "S" . (showString " ") . (shows a)
showsPrec d (N a) = showString "N" . (showString " ") . (shows a)
showsPrec d (NP a) = showString "NP" . (showString " ") . (shows a)
showsPrec d (PP a) = showString "PP" . (showString " ") . (shows a)
showsPrec d (CONJ a) = showString "CONJ" . (showString " ") . (shows a)
showsPrec d (Punctuation a) = showString " . " . (showString " ") . (shows a)
showsPrec d (Comma a) = showString " , " . (showString " ") . (shows a)
showsPrec d (a : / b) =

((showParen (isComplex a) (shows a)) .
(showString "/") .
(showParen (isComplex b) (shows b)))

showsPrec d (a : \ b) =
((showParen (isComplex a) (shows a)) .
(showString "\\") .
(showParen (isComplex b) (shows b)))

Annotate.hs

{−# LANGUAGE Implic itParams #−}

module Annotate where

import Control .Monad .ST
import Data . STRef
import Data . L i s t (s o r t)
import Data .Map (Map)
import qual i f ied Data .Map as Map
import Data .Maybe
import Data . Graph . Induct ive

import CCG
import WordNet hiding (Word)

data AnnotationEnv = AnnotationEnv {
wnEnv : : WordNetEnv ,
adjFun : : [SearchResult] −> Float , −− rename to adjChange?
scaleFun : : [SearchResult] −> Float −− rename to ad jSca l e ?

}

−− Parameters f o r the annotat ion
omega = 100
n = 5

−− | Unfold the graph us ing the given r e l a t i o n and seeds .
unfoldG : : (Ord a) => (a −> [a]) −> [a] −> (Map a Node , Gr a Int)
unfoldG r seeds = runST $ unfoldST r seeds

−− | State t ra s fo rmer f o r un fo ld ing graphs .
unfoldST : : (Ord a) => (a −> [a]) −> [a] −> ST s (Map a Node , Gr a Int)
unfoldST r seeds =

do mapRef <− newSTRef Map. empty −− Map from Item to Node
nodesRef <− newSTRef [] −− L i s t o f Node / [Edge] pa i r s
idRef <− newSTRef 0 −− Counter f o r index ing nodes
−− Recurs ive ly v i s i t s n
l e t v i s i t n =

71

do −− Test i f n has a l ready been v i s i t e d
t e s t <− (return . Map. lookup n =<< readSTRef mapRef)
case t e s t of

Just v −> return v
Nothing −>

do −− Get next id f o r t h i s item
i <− readSTRef idRef
modifySTRef idRef (+1)
−− Update item/node map
modifySTRef mapRef (Map. i n s e r t n i)
−− Recurs ive ly v i s i t r e l a t ed items
ks <− mapM v i s i t $ r n
l e t ns = ((i , n) , [(i , k , 1) | k <− ks])
modifySTRef nodesRef (ns :)
return i

−− Vi s i t seeds
mapM v i s i t seeds
−− Read r e s u l t s and return map/graph−pa i r
l i s t <− readSTRef nodesRef
nodeMap <− readSTRef mapRef
l e t nodes = [n | (n , _) <− l i s t]
l e t edges = concat [es | (_, es) <− l i s t]
return (nodeMap , mkGraph nodes edges)

−− | Po l a r i t y value f o r ad j e c t i v e graphs
pAdj : : Real b => Gr a b −> [Node] −> [Node] −> [Node] −> Float
pAdj gr pns nns qns = (sum $ distAdj nns qns) − (sum $ distAdj pns qns)

where
distAdj : : [Node] −> [Node] −> [Float]
d i s tAdj sns qns = take n $ so r t [normAdj (l ength (sp sn qn gr) −

1) | sn <− sns , qn <− qns]

normAdj : : Int −> Float
normAdj x | x < 0 | | x > 10 = omega / (f romInteg ra l n)

| o therwi se = (f romInteg ra l x / 10) ∗ (omega / (
f romInteg ra l n))

−− | Po l a r i t y value f o r s c a l e graphs
pScale : : Real b => Gr a b −> [Node] −> [Node] −> [Node] −> Float
pScale gr pns nns qns = 2∗∗((sum $ d i s t S c a l e nns qns) − (sum $ d i s t S c a l e pns qns))

where
d i s t S c a l e : : [Node] −> [Node] −> [Float]
d i s t S c a l e sns qns = take n $ so r t [normScale (l ength (sp sn qn

gr) − 1) | sn <− sns , qn <− qns]

normScale : : Int −> Float
normScale x | x < 0 | | x > 10 = 1 / (f romInteg ra l n)

| o therwise = (f romInteg ra l x / 10) ∗ (1 / (
f romInteg ra l n))

concat2 : : [[a]] −> [a]
concat2 [] = []
concat2 x = l e t nonEmpty = f i l t e r (not . nu l l) x

in (map head nonEmpty) ++ concat2 (map t a i l nonEmpty)

shi ftTerm : : SExpr −> Int −> SExpr
shiftTerm (Abs x t) k ’ = Abs x (shi ftTerm t k ’)
shi ftTerm (Fun f j k t s) k ’ = Fun f j k ’ t s

i sDet pos = pos == "DT"
isAdj pos = (take 2 pos) == "JJ"
isVerb pos = (take 2 pos) == "VB"
isAdverb pos = (take 2 pos) == "RB"
isNoun pos = (take 2 pos) == "NN" | | pos == "PRP"
isP pos = pos == "IN" | | pos == "TO" | | pos == "WDT"

annotateDet env w@(Word { category = c , token = t , lemma = l })
| c =? NP [] : / N [] =

w { expr = l i d }
| otherwise =

annotateAny env w

annotateNoun env w@(Word { category = c , token = t , lemma = l })
| c =? N [] : / N [] =

w { expr = (Abs "x" $ Seq [Fun l 0 0 [] , Var "x"]) } −− Part o f mult i l e x i c a l noun
| otherwise =

annotateAny env w

annotateVerb env w@(Word { category = c , token = t , lemma = l })
| c =? (S [FDcl] : \ NP []) : / (S [FAdj] : \ NP []) =

w { expr = l i d } −− Linking verb
| otherwise = annotateAny env w

annotateAdj env w@(Word { category = c , lemma = l })
| (S [FAdj] : \ NP []) =? c | | (NP [] : / NP []) =? c | | (N [] : / N []) =? c =

l e t query = (l e t ?wne = (wnEnv env) in search l Adj Al lSenses)

72 Source code

value = (adjFun env) query
in w { expr = (Abs "x" $ Change (Var "x") value) }

| otherwise =
annotateAny env w

annotateAdverb env w@(Word { category = c , lemma = l })
| arg c =? re s c =

l e t −− Try to lookup ad j e c t i v e pertainyms
query = (l e t ?wne = (wnEnv env) in (concat2 $ map (re latedBy Pertainym) (search l

Adv Al lSenses)) ++ (search l Adj Al lSenses))
sca l eVa lue = (scaleFun env) $ f i l t e r ((==) Adj . srPOS) $ query
changeValue = (adjFun env) $ f i l t e r ((==) Adj . srPOS) $ query

in i f sca l eVa lue /= 1 then
w { expr = (Abs "x" $ Sca le (Var "x") $ sca l eVa lue) }

else
w { expr = (Abs "x" $ Change (Var "x") $ changeValue) }

| otherwise =
annotateAny env w

annotateP env w@(Word { category = c })
| (NP [] : \ NP []) : / (S [] : / NP []) =? c =

w { expr = Abs "x" $ Abs "y" $ ImpactChange (App (Var "x") (Var "y")) 1 }
| (NP [] : \ NP []) : / (S [] : \ NP []) =? c =

w { expr = Abs "x" $ Abs "y" $ ImpactChange (App (Var "x") (Var "y")) 2 }
| (NP [] : \ NP []) : / NP [] =? c =

w { expr = shiftTerm (expr w’) 2 }
| otherwise =

w’
where w’ = annotateAny env w

annotateAny _ w@(Word { token = t , category = c , lemma = l }) =
w { expr = constructTerm xyzVars [] c }
where

constructTerm : : [S t r ing] −> [(SExpr , Category)] −> Category −> SExpr
constructTerm vs t s c = case c of

r : \ a −> const ruc tAbst rac t i on vs t s a r
r : / a −> const ruc tAbst rac t i on vs t s a r
_ −> Fun l 0 0 $ r ev e r s e $ [v | (v , _) <− t s]

cons t ruc tAbst rac t i on : : [S t r ing] −> [(SExpr , Category)] −> Category −> Category −>
SExpr

cons t ruc tAbst rac t i on (v : vs) t s a r = −− a = tau_alpha , r = tau_beta
l e t t = Var v −− NP

cond1 = any (\(_, t) −> (Just a) =? arg t) t s −− types where a migth be used as
argument

cond2 = any (\(_, t) −> arg a =? (Just t)) t s −− types where a migth be used as
funct i on

term = i f cond1 then map (\(t ’ , c ’) −> i f Just a =? arg c ’ then (App t ’ t ,
fromJust $ r e s c ’) else (t ’ , c ’)) t s else

i f cond2 then map (\(t ’ , c ’) −> i f arg a =? Just c ’ then (App t t ’ ,
fromJust $ r e s a) else (t ’ , c ’)) t s else

(t , a) : t s

in
Abs v (constructTerm vs (term) r)

−− | Spe c i a l annotat ion f o r C&C conj−ru l e
annotateConj : : Category −> Word −> Word
annotateConj cat w@(Word { lemma = l }) =

w { expr = Abs "x" $ Abs "y" $ constructTerm [] cat }
where

newVar used = head $ dropWhile (‘ elem ‘ used) $ (i t e r a t e (++ " ’ ") "z")
constructTerm : : [S t r ing] −> Category −> SExpr
constructTerm used c = case c of

a :\ _ −> l e t v = newVar used in Abs v (constructTerm (v : used) a)
a : / _ −> l e t v = newVar used in Abs v (constructTerm (v : used) a)
_ −> Seq $ map (\ term −> f o l d r (f l i p App) term $ map Var used) [Var "x" , Var "y

"]

−− | Aux i l i a ry funct i on f o r annotat ion f o r C&C lp /rp−ru l e
f l a t t e n : : Category −> [Category]
f l a t t e n (a : \ b) = b : f l a t t e n a
f l a t t e n (a : / b) = b : f l a t t e n a
f l a t t e n a = [a]

−− | Spe c i a l annotat ion f o r C&C lp /rp−ru l e
annotateConj ’ : : Word −> Word
annotateConj ’ w@(Word { lemma = l , category = c }) =

l e t f = f l a t t e n c
c1 = f ! ! 0
c2 = f ! ! 1
cr = f ! ! 2

in
case l ength f of

1 −> er r o r "Annotate Conj : We expect l e a s t t −> t . "
2 −> w { expr = l i d } −− Dummy conjec t ion , j u s t return ident i ty , f o r in s tance , and

. in " funny , and happy ."

73

_ −> w { expr = Abs "x" $ Abs "y" $ constructTerm [] c2 }
where

newVar used = head $ dropWhile (‘ elem ‘ used) $ zVars
constructTerm : : [S t r ing] −> Category −> SExpr
constructTerm used c = case c of

a :\ _ −> l e t v = newVar used in Abs v (constructTerm (v : used) a)
a : / _ −> l e t v = newVar used in Abs v (constructTerm (v : used) a)
_ −> Seq $ map (\ term −> fo l d r (f l i p App) term $ r eve r s e $ map Var used) [Var "

x" , Var "y"]

−− | Spe c i a l annotat ion f o r C&C ltc−ru l e
annotateLtc : : Lexicon −> Word −> Word
annotateLtc _ w@(Word { token = t , category = c , lemma = l }) =

w { expr = constructTerm xyzVars [] c }
where

constructTerm : : [S t r ing] −> [(SExpr , Category)] −> Category −> SExpr
constructTerm vs t s c = case c of

r : \ a −> const ruc tAbst rac t i on vs t s a r
r : / a −> const ruc tAbst rac t i on vs t s a r
_ −> Seq $ r ev e r s e $ [v | (v , _) <− t s]

cons t ruc tAbst rac t i on : : [S t r ing] −> [(SExpr , Category)] −> Category −> Category −>
SExpr

cons t ruc tAbst rac t i on (v : vs) t s a r = −− a = tau_alpha , r = tau_beta
l e t t = Var v −− NP

cond = any (\(_, t) −> (Just a) =? arg t) t s −− types where a migth be used as
argument

term = i f cond then map (\(t ’ , c ’) −> i f Just a =? arg c ’ then (App t ’ t ,
fromJust $ r e s c ’) else (t ’ , c ’)) t s else

(t , a) : t s
in

Abs v (constructTerm vs (term) r)

annotateWord : : AnnotationEnv −> Word −> Word
annotateWord env w@(Word { pos = pos })

| i sDet pos = annotateDet env w
| i sAdj pos = annotateAdj env w
| i sVerb pos = annotateVerb env w
| isAdverb pos = annotateAdverb env w
| isNoun pos = annotateNoun env w
| isP pos = annotateP env w
| otherwise = annotateAny env w

Parser.hs

{−# LANGUAGE Implic itParams #−}
module Parser (

parseLexicon ,
parseTree ,
runCc

) where

−− Misc .
import Control .Monad
import Data . Char
import Data .Maybe

−− Parsec
import Text . ParserCombinators . Parsec hiding (token)
import Text . ParserCombinators . Parsec . Expr

−− Proccess handl ing
import System . Process
import GHC. IO . Handle

−− Data St ruc ture s
import CCG
import Annotate

pLexicon : : Parser [Word]
pLexicon = pLexiconEntry ‘ endBy ‘ newl ine

pLexiconEntry : : Parser Word
pLexiconEntry = do (s t r i n g "w(")

many1 d i g i t
(s t r i n g " , ")
many1 d i g i t
(s t r i n g " , ’ ")
t <− pToken
(s t r i n g " ’ , ’ ")

74 Source code

lemma <− pToken
(s t r i n g " ’ , ’ ")
pos <− pToken
(s t r i n g " ’ , ’ ")
pToken
(s t r i n g " ’ , ’ ")
pToken
(s t r i n g " ’ , ’ ")
c <− pCategoryExpr
(s t r i n g " ’) . ")
return $ Word t lemma pos c (Var "?")

pTree : : Lexicon −> Parser PTree
pTree l = do (s t r i n g " ccg (")

many1 d i g i t
(s t r i n g " , ")
t <− pSubtree l
(s t r i n g ") . ")
return t

pSubtree : : Lexicon −> Parser PTree
pSubtree l = do t ry (pBRule l " fa " $ \c t1 t2 −> PFwdApp c (reduce $ App (nodeExpr

t1) (nodeExpr t2)) t1 t2)
<|> try (pBRule l "ba" $ \c t1 t2 −> PBwdApp c (reduce $ App (nodeExpr

t2) (nodeExpr t1)) t1 t2)
<|> try (pBRule l " f c " $ \c t1 t2 −> PFwdComp c (reduce $ Abs "x" $ App

(nodeExpr t1) (App (nodeExpr t2) (Var "x"))) t1 t2)
<|> try (pBRule l "bc" $ \c t1 t2 −> PBwdComp c (reduce $ Abs "x" $ App

(nodeExpr t2) (App (nodeExpr t1) (Var "x"))) t1 t2)
<|> try (pBRule l "bx" $ \c t1 t2 −> PBwdXComp c (reduce $ Abs "x" $ App

(nodeExpr t2) (App (nodeExpr t1) (Var "x"))) t1 t2)
<|> try (pURule l " t r " $ \c t −> PFwdTR c (reduce $ Abs " f " (App (

Var " f ") $ nodeExpr t)) t)
<|> try (pConj l)
<|> try (pConj ’ ’ l)
<|> try (pConj ’ ’ ’ l)
<|> try (pLex l)
<|> try (pWord l)
<?> " subtree "

pURule : : Lexicon −> Str ing −> (Category −> PTree −> PTree) −> Parser PTree
pURule l f r = do (s t r i n g f)

(s t r i n g " (’ ")
c <− pCategoryExpr
(s t r i n g " ’ , ")
t <− pSubtree l
(s t r i n g ") ")
return $ r c t

pBRule : : Lexicon −> Str ing −> (Category −> PTree −> PTree −> PTree) −> Parser PTree
pBRule l f r = do (s t r i n g f)

(s t r i n g " (’ ")
c <− pCategoryExpr
(s t r i n g " ’ , ")
t1 <− pSubtree l
(s t r i n g " , ")
t2 <− pSubtree l
(s t r i n g ") ")
return $ r c t1 t2

pConj : : Lexicon −> Parser PTree
pConj l = do r <− (t ry (s t r i n g " conj ") <|> (s t r i n g " lp "))

(s t r i n g " (’ ")
t <− pToken
(s t r i n g " ’ , ’ ")
c1 <− pCategoryExpr
(s t r i n g " ’ , ’ ")
c2 <− pCategoryExpr
(s t r i n g " ’ , ")
t1 <− pSubtree l
(s t r i n g " , ")
t2 <− pSubtree l
(s t r i n g ") ")
l e t t1 ’ = case t1 of

PWord w −> Just $ PWord $ annotateConj c1 $ w { category = (c1
: \ c1) : / c1 }

otherwi se −> Nothing
i f (i sNothing t1 ’) then

unexpected (" Le f t ch i l d o f a conjunct ion ru l e ’ " ++ r ++ " ’ should be a
word . ")

else
return $ PFwdApp c2 (reduce $ App (nodeExpr (fromJust t1 ’)) (nodeExpr t2))

(fromJust t1 ’) t2

pConj ’ ’ ’ : : Lexicon −> Parser PTree
pConj ’ ’ ’ l = do r <− (t ry (s t r i n g " lp ") <|> (s t r i n g " l t c "))

(s t r i n g " (’ ")

75

c <− pCategoryExpr
(s t r i n g " ’ , ")
t1 <− pSubtree l
(s t r i n g " , ")
t2 <− pSubtree l
(s t r i n g ") ")
l e t t1 ’ = case t1 of

PWord w −> Just $ PWord $
case r of

" lp " −> annotateConj ’ $ w { category = c :/ c }
" l t c " −> annotateLtc l (w { category = c :/ (nodeCategory

t2) })
otherwi se −> Nothing

i f (i sNothing t1 ’) then
unexpected $ " Le f t ch i l d o f a conjunct ion ru l e ’ " ++ r ++ " ’ should be a

word . "
else

return $ PFwdApp c (reduce $ App (nodeExpr (fromJust t1 ’)) (nodeExpr t2)
) (fromJust t1 ’) t2

pConj ’ ’ : : Lexicon −> Parser PTree
pConj ’ ’ l = do r <− (s t r i n g " rp")

(s t r i n g " (’ ")
c1 <− pCategoryExpr
(s t r i n g " ’ , ")
token <− optionMaybe (do { char ’ \ ’ ’ ; t <− pToken ; char ’ \ ’ ’ ; char ’ , ’ ;

return t })
c2 <− optionMaybe (do { char ’ \ ’ ’ ; c <− pCategoryExpr ; char ’ \ ’ ’ ; char ’ , ’ ;

return c })
t1 <− pSubtree l
(s t r i n g " , ")
t2 <− pSubtree l
(s t r i n g ") ")
l e t t2 ’ = case t2 of

PWord w −> Just $ PWord $ annotateConj ’ $ w { category = c1
:\ c1 }

otherwi se −> Nothing
i f (i sNothing t2 ’) then

unexpected $ "Right ch i l d o f a conjunct ion ru l e ’ " ++ r ++ " ’ should be a
word . "

else
return $ PBwdApp c1 (reduce $ App (nodeExpr (fromJust t2 ’)) (nodeExpr t1)

) t1 (fromJust t2 ’)

pLex : : Lexicon −> Parser PTree
pLex l = do (s t r i n g " l ex (’ ")

c1 <− pCategoryExpr
(s t r i n g " ’ , ’ ")
c2 <− pCategoryExpr
(s t r i n g " ’ , ")
t <− pSubtree l
(s t r i n g ") ")
return $ PLexRaise c2 (nodeExpr t) t

pWord : : Lexicon −> Parser PTree
pWord l = do (s t r i n g " l f (")

(many1 d i g i t)
(s t r i n g " , ")
wordIndex <− (many1 d i g i t)
(s t r i n g " , ’ ")
c <− pCategoryExpr
(s t r i n g " ’) ")
return $ PWord (l ! ! ((read wordIndex : : Int) − 1))

pToken : : Parser St r ing
pToken = many1 $ upper <|> lower <|> d i g i t <|> oneOf "_−$, . ! ? " <|> escaped <|> (char ’ ’ >>

return ’ \ ’ ’)

escaped = char ’\\ ’ >> cho i ce (zipWith escapedChar codes replacements)
escapedChar code replacement = char code >> return replacement
codes = [’ \ ’ ’ , ’ " ’]
replacements = [’ \ ’ ’ , ’ " ’]

pParens : : Parser a −> Parser a
pParens = between (char ’ (’) (char ’) ’)

pBrackets : : Parser a −> Parser a
pBrackets = between (char ’ [’) (char ’] ’)

pCategoryExpr : : Parser Category
pCategoryExpr = bui ldExpres s ionParse r pCategoryOpTable pCategory

pCategoryOpTable : : OperatorTable Char s t Category
pCategoryOpTable = [[op "/" (: /) AssocLeft ,

op "\\" (: \) AssocLeft]]
where

op s f a = I n f i x (s t r i n g s >> return f) a

76 Source code

pCategory : : Parser Category
pCategory = pParens pCategoryExpr

<|> (pCategory ’ "S" S)
<|> try (pCategory ’ "NP" NP)
<|> (pCategory ’ "N" N)
<|> (pCategory ’ "PP" PP)
<|> (pCategory ’ " conj " CONJ)
<|> (pCategory ’ " . " Punctuation)
<|> (pCategory ’ " , " Comma)
<?> " category "

pCategory ’ : : S t r ing −> (Agreement −> Category) −> Parser Category
pCategory ’ s c = do s t r i n g s

a <− pAgreement
return $ c a

pAgreement : : Parser Agreement
pAgreement = option [] (pBrackets $ pFeature ‘ sepBy ‘ (char ’ , ’))

pFeature : : Parser Feature
pFeature = try (s t r i n g " dc l " >> return FDcl)

<|> try (s t r i n g " adj " >> return FAdj)
<|> try (s t r i n g "pt" >> return FPt)
<|> try (s t r i n g "nb" >> return FNb)
<|> try (s t r i n g "ng" >> return FNg)
<|> try (s t r i n g "em" >> return FEm)
<|> try (s t r i n g " inv " >> return FInv)
<|> try (s t r i n g " pss " >> return FPss)
<|> try (s t r i n g "b" >> return FB)
<|> try (s t r i n g " to " >> return FTo)
<|> try (s t r i n g " thr " >> return FThr)
<|> try (s t r i n g " f r g " >> return FFrg)
<|> try (s t r i n g "wq" >> return FWq)
<|> try (s t r i n g "qem" >> return FQem)
<|> try (s t r i n g "q" >> return FQ)
<|> try (s t r i n g " f o r " >> return FFor)
<|> (do { v <− many1 upper ; return $ FVar v })
<|> (do { v <− many1 lower ; return $ FUnknown v })
<?> " f ea tu r e "

parseLexicon : : S t r ing −> Lexicon
parseLexicon s t r =

case parse pLexicon "Parse e r r o r : " s t r of
Lef t e −> er r o r $ show e
Right r −> r

parseTree : : Lexicon −> Str ing −> (Maybe PTree)
parseTree l s t r =

case parse (pTree l) "Parse e r r o r : " s t r of
Lef t e −> Nothing −− e r r o r $ show e
Right r −> Just r

ge tSec t i on : : Handle −> Str ing −> IO (Maybe St r ing)
ge tSec t i on h s =

do −− hWaitForInput h (−1)
eo f <− hIsEOF h
i f eo f then

return Nothing
else do

inpStr <− hGetLine h
i f inpStr == "" then

return $ Just s
else do
−− putStr ("Got l i n e : " ++ inpStr ++ "\n")
ge tSec t i on h (s ++ inpStr ++ "\n")

runCc : : (Word −> Word) −> Str ing −> IO (Maybe PTree)
runCc a s = do

(Just inHandle , Just outHandle , _, processHandle) <−
c r ea t eProce s s (proc "bin / soap_cl i ent_f ix " [

"−−ur l " , " http :// l o c a l h o s t :9000 "]) {
std_in = CreatePipe ,
std_out = CreatePipe

}
hSetBuf f e r ing inHandle L ineBuf f e r ing
hSetBuf f e r ing outHandle L ineBuf f e r ing

putStr "\n"
putStr "Pars ing : \ n"
putStr s
putStr "\n"
hPutStr inHandle s
hPutStr inHandle "\n"

ge tSec t i on outHandle "" −− Discard comments
ge tSec t i on outHandle "" −− Discard functor d e c l a r a t i on s

77

t r e e <− ge tSec t i on outHandle "" −− Tree
l e x i c on <− ge tSec t i on outHandle "" −− Lexicon

i f (i s Ju s t t r e e) && (i s Ju s t l e x i c on) then
do let l = map a $ parseLexicon $ fromJust l e x i c on

l e t tree ’ = f i l t e r (not . i sSpace) $ fromJust t r e e
l e t t = parseTree l tree ’
return t

else
return Nothing

78 Source code

Appendix C

Labeled test data

The following table consists of a random sample chosen from the “Swissotel Hotel”
topic of the Opinosis data set [Ganesan et al., 2010] which contain any morphological
form of the subject of interest: hotel rooms. Each sentence in the data set (which
may not constitute a complete review) has been labeled independently by two human
individuals with respect to the subject of interest: hotel rooms. Furthermore the table
contains results for the baseline (sentence level polarity value), and results for the
presented method (entity level polarity value of subject of interest).

80
Labeled

test
data

Review text Human A Human B Presented method
1 The rooms are in pretty shabby condition , but they are clean . Negative Negative Unknown

2
The rooms are spacious and have nice views, I was NOT im-
pressed with the mattress and every, little, tiny thing costs
money .

Unknown Unknown N/A

3

The rooms look like they were just remodled and upgraded,
there was an HD TV and a nice iHome docking station to put
my iPod so I could set the alarm to wake up with my music
instead of the radio .

Positive Positive Unknown

4 The rooms were cleaned spic and span every day . Positive Positive Unknown

5
When I got to the room , I thought the new rooms would have
a plasma since the website implies the new rooms would have
them , but I guess those come later .

Negative Negative Unknown

6 Very impressed with rooms and view ! Positive Positive Unknown
7 The rooms are not all that big . Negative Negative Unknown
8 Expensive Parking but great rooms . Positive Positive 30.0

9 Rooms were nicely furnished . Positive Positive Unknown

10 The rooms are very clean , comfortable and spacious and up-to-
date . Positive Positive 52.0

11
I’ve olny ever stayed in the “standard” rooms in this property ,
all of which are spacious and airy , and function well for both
business or leisure travellers .

Positive Positive Unknown

12

It does suffer , however , from a trend that I have been noticing
that as rooms at business class hotels are upgraded , particularly
with a patch panel for the big LCD , TV , drawer space becomes
less and less .

Negative Negative Unknown

13 We even got upgraded to one of the corner rooms which also
looked west toward Michigan Ave and the Wrigley building . Positive Positive Unknown

14 The rooms were very clean , the service was polite and helpful ,
and it’s near the heart of Chicago ! Positive Positive 52.0

15 You can see downtown and or the Navy Pier from most of the
rooms . Positive Positive Unknown

81
Review text Human A Human B Presented method

16

no more bathrobes in corner rooms suites , coffee service in
room is parred way down , the buffet offered in the cafe is not
as bountiful , although the cafe staff is inpeccable and extremely
gracious and will bring you what you wish , check in staff not
at all eager to upgrade you, even though you may be a frequent
visitor .

Negative Negative Unknown

17 Our rooms were nice and didn’t look worn or old . Positive Positive Unknown
18 Rooms at the hotel are getting somewhat tired . Negative Negative 0.8

19 Great Location great rooms and bed but no help from desk
personnel . Positive Positive 38.0

20 While the rooms are quite nice , I was dismayed by the snotty
service I received at the Swissotel in Chicago . Positive Positive 72.0

21 Rooms are dated , our corner room’s bathroom was shabby . Negative Negative Unknown

22 The hotel was very nice , rooms were big , the pool hot tub area
was very nice , and the location was great and easy to get to . Positive Positive 10.0

23 Rooms are good quality and clean , what you would expect from
a four star business hotel . Positive Positive 46.0

24
The view from the rooms was fantastic , My daughters are al-
lergic to feathers and all trace of them were removed from the
room as soon as we advised housekeeping .

Positive Positive Unknown

25 The Swissotel is one of our favorite hotels in Chicago and the
corner rooms have the most fantastic views in the city . Positive Positive Unknown

26 Then again , the rooms are much larger and the view more than
makes up for it . Positive Positive 26.0

27 Rooms in similar hotels would usually be about $250 , 300 . Positive Positive Unknown

28 The actual hotel and rooms were very nice with amazing views
, the staff was extremely rude . Positive Positive 8.0

29 The rooms were clean , and upscale for the low price we paid . Positive Positive Unknown

30 Thanks to TravelZoo I was able to find an amazing deal , lakeside
rooms for $129 night as part of a spring promotion . Positive Positive Unknown

31 I recieved a great deal on the rooms here and it was wonderful . Positive Positive 8.0

82
Labeled

test
data

Review text Human A Human B Presented method
32 The room was huge as hotel rooms go . Positive Positive 26.0

33 Hotel was very clean and the rooms were comfy . Positive Positive Unknown
34 word to the wise , avoid the rooms ending with 11 . Negative Negative Unknown

35 The rooms are large and well , appointed , the staff was very
professional and friendly , and the view was striking ! Positive Positive 34.0

Table C.1: Labeled test data, subject of interest: Room

Bibliography

[Baccianella et al., 2010] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani.
SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and
Opinion Mining. In Proceedings of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10). European Language Resources Asso-
ciation (ELRA), 2010.

[Baldridge and Kruijff, 2003] Jason Baldridge and Geert-Jan M. Kruijff. Multi-
Modal Combinatory Categorial Grammar. In Proceedings of the tenth conference
on European chapter of the Association for Computational Linguistics - Volume 1,
EACL ’03, pages 211–218, Stroudsburg, PA, USA, 2003. Association for Compu-
tational Linguistics.

[Baldridge, 2002] Jason Baldridge. Lexically Specified Derivational Control in Com-
binatory Categorial Grammar. PhD thesis, University of Edinburgh, 2002.

[Barendregt et al., 2012] Henk Barendregt, Wil Dekkers, and Richard Statman.
Lambda Calculus with Types (Perspectives in Logic). Draft for unpublished book,
http://www.cs.ru.nl/~henk/book.pdf, 2012.

[Blitzer et al., 2007] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies,
Bollywood, Boomboxes and Blenders: Domain Adaptation for Sentiment Classifi-
cation. In In ACL, pages 187–205, 2007.

[Box et al., 2000] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman,
Noah Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple
Object Access Protocol (SOAP) 1.1. Url: http://www.w3.org/TR/soap/, 2000.

[Bresnan et al., 1982] J. Bresnan, R. M. Kaplan, S. Peters, and A. Zaenen. Cross-
Serial Dependencies in Dutch. Linguistic Inquiry, 13(fall):613–635+, 1982.

http://www.cs.ru.nl/~henk/book.pdf
http://www.w3.org/TR/soap/

84 BIBLIOGRAPHY

[Carreras et al., 2002] Xavier Carreras, Lluís Màrquez, and Lluís Padró. Named En-
tity Extraction using AdaBoost. In Proceedings of the 6th Conference on Natural
Language Learning - Volume 20, COLING-2002, pages 1–4, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics.

[Clark and Curran, 2007] Stephen Clark and James R. Curran. Wide-Coverage Ef-
ficient Statistical Parsing with CCG and Log-linear Models. Computational Lin-
guistics, 33(4):493–552, 12 2007.

[Clark, 2002] Stephen Clark. A Supertagger for Combinatory Categorial Grammar.
In Proceedings of the 6th International Workshop on Tree Adjoining Grammars
and Related Frameworks (TAG+6), pages 19–24, Venice, Italy, 2002.

[Daumé III, 2008] Hal Daumé III. HWordNet - A Haskell Interface to WordNet. Url:
http://www.umiacs.umd.edu/~hal/, 2008.

[Erwig, 2001] Martin Erwig. Inductive Graphs and Functional Graph Algorithms.
Journal of Functional Programming, 11(5):467–492, 2001.

[Esuli and Sebastiani, 2006] Andrea Esuli and Fabrizio Sebastiani. SentiWordNet:
A Publicly Available Lexical Resource for Opinion Mining. In Proceedings of the
5th Conference on Language Resources and Evaluation (LREC’06), pages 417–422.
European Language Resources Association (ELRA), 2006.

[Eurostat, 2010] Eurostat. Population on 1 January by Age and Sex. Url: http:
//ec.europa.eu/eurostat, 2010.

[Fellbaum, 1998] Christiane Fellbaum, editor. WordNet: An Electronic Lexical
Database (Language, Speech, and Communication). The MIT Press, illustrated
edition edition, 1998.

[Francis and Kucera, 1979] W. Nelson Francis and Henry Kucera. Brown Corpus
Manual. Technical report, Department of Linguistics, Brown University, Provi-
dence, Rhode Island, US, 1979.

[Ganesan et al., 2010] Kavita Ganesan, Cheng Xiang Zhai, and Jiawei Han. Opinosis:
A graph based approach to abstractive summarization of highly redundant opin-
ions. In Proceedings of the 23rd International Conference on Computational Lin-
guistics (COLING ’10), 2010.

[Guttman, 1949] Louis Guttman. The Basis for Scalogram Analysis, 1949.

[Hockenmaier and Steedman, 2007] Julia Hockenmaier and Mark Steedman. CCG-
bank: A Corpus of CCG Derivations and Dependency Structures Extracted from
the Penn Treebank. Computational Linguistics, 33(3):355–396, 2007.

[Hockenmaier et al., 2004] Julia Hockenmaier, Gann Bierner, and Jason Baldridge.
Extending the Coverage of a CCG System. Journal of Language and Computation,
2:165–208, 2004.

http://www.umiacs.umd.edu/~hal/
http://ec.europa.eu/eurostat
http://ec.europa.eu/eurostat

BIBLIOGRAPHY 85

[Hockenmaier, 2003] Julia Hockenmaier. Data and Models for Statistical Parsing with
Combinatory Categorial Grammar. PhD thesis, University of Edinburgh, 2003.

[Joshi et al., 1975] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree
Adjunct Grammars. Journal of Computer and System Sciences, 10(1):136–163,
1975.

[Joshi et al., 1990] Aravind K. Joshi, K. Vijay Shanker, and David Weir. The Con-
vergence Of Mildly Context-Sensitive Grammar Formalisms, 1990.

[Launchbury and Peyton Jones, 1994] John Launchbury and Simon L. Peyton Jones.
Lazy Functional State Threads. In Proceedings of the ACM SIGPLAN 1994 Con-
ference on Programming Language Design and Implementation, PLDI ’94, pages
24–35, New York, NY, USA, 1994. ACM.

[Leijen, 2001] Daan Leijen. Parsec, A Fast Combinator Parser. University of Utrecht,
Department of Computer Science, PO.Box 80.089, 3508 TB Utrecht, The Nether-
lands, 2001.

[Likert, 1932] Rensis Likert. A Technique for The Measurement of Attitudes.
Archives of Psychology, 22(140):1–55, 1932.

[Liu, 2007] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage
Data. Springer, 2007.

[Marcus et al., 1993] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice
Santorini. Building a Large Annotated Corpus of English: the Penn Treebank.
Computational Linguistics, 19(2):313–330, 1993.

[Miller, 1995] George A. Miller. WordNet: A Lexical Database for English. Commu-
nications of the ACM, 38(11):39–41, 1995.

[Montague, 1974] Richard Montague. Formal Philosophy: Selected Papers of Richard
Montague. Yale University Press, 1974.

[Padró et al., 2010] Lluís Padró, Samuel Reese, Eneko Agirre, and Aitor Soroa. Se-
mantic Services in FreeLing 2.1: WordNet and UKB. In Pushpak Bhattacharyya,
Christiane Fellbaum, and Piek Vossen, editors, Principles, Construction, and Ap-
plication of Multilingual Wordnets, pages 99–105, Mumbai, India, February 2010.
Global Wordnet Conference 2010, Narosa Publishing House.

[Pang and Lee, 2008] Bo Pang and Lillian Lee. Opinion Mining and Sentiment Anal-
ysis. Foundations and Trends in Information Retrieval, 2(1-2):1–135, 2008.

[Paul and Baker, 1992] Douglas B. Paul and Janet M. Baker. The design for the
Wall Street Journal-based CSR corpus. In Proceedings of the workshop on Speech
and Natural Language, pages 357–362, Stroudsburg, PA, USA, 1992. Association
for Computational Linguistics.

86 BIBLIOGRAPHY

[Pingdom, 2010] Pingdom. Study: Ages of Social Network Users. Url: http://
pingdom.com/, 2010.

[Pollard, 1984] Carl Pollard. Generalized Context-Free Grammars, Head Grammars
and Natural Language. PhD thesis, Stanford University, 1984.

[Russell and Norvig, 2009] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 3rd edition, 2009.

[Shieber, 1985] Stuart M. Shieber. Evidence Against the Context-Freeness of Natural
Language. Linguistics and Philosophy, 8(3):333–343, 1985.

[Simančík and Lee, 2009] František Simančík and Mark Lee. A CCG-based System
for Valence Shifting for Sentiment Analysis. Research in Computing Science, 41:99–
108, 2009.

[Steedman, 1998] Mark Steedman. Categorial Grammar, 1998.

[Steedman, 2000] Mark Steedman. The Syntactic Process. The MIT Press, 2000.

[Steedman, 2011] Mark Steedman. Taking Scope: The Natural Semantics of Quan-
tifiers. The MIT Press, 2011.

[Søgaard, 2012] Anders Søgaard. Semi-supervised Learning. ESSLLI-2012 Lecture,
2012.

[Tan et al., 2011] Luke Kien-Weng Tan, Jin-Cheon Na, Yin-Leng Theng, and Kuiyu
Chang. Sentence-level Sentiment Polarity Classification using a Linguistic Ap-
proach. In Proceedings of the 13th International Conference on Asia-pacific Digital
Libraries: For Cultural Heritage, Knowledge Dissemination, and Future Creation,
ICADL’11, pages 77–87, Berlin, Heidelberg, 2011. Springer-Verlag.

[van Eijck and Unger, 2010] Jan van Eijck and Christina Unger. Computational Se-
mantics with Functional Programming. Cambridge University Press, New York,
NY, USA, 1st edition, 2010.

[Vijay-Shanker and Weir, 1994] K. Vijay-Shanker and David J. Weir. The Equiv-
alence Of Four Extensions Of Context-Free Grammars. Mathematical Systems
Theory, 27:27–511, 1994.

[Webster and Kit, 1992] Jonathan J. Webster and Chunyu Kit. Tokenization as the
Initial Phase in NLP. In Proceedings of the 14th Conference on Computational
Linguistics - Volume 4, COLING-1992, pages 1106–1110, Stroudsburg, PA, USA,
1992. Association for Computational Linguistics.

http://pingdom.com/
http://pingdom.com/

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Classical data collection
	1.2 Natural language data collection
	1.3 Sentiment of a text
	1.4 The logical approach
	1.5 Related work
	1.6 Using real data sets
	2 Sentiment analysis
	2.1 Tokenization
	2.2 Lexical-syntactic analysis
	2.3 Mildly context-sensitive grammars
	2.4 Semantic analysis
	3 Combinatory categorial grammar
	3.1 Combinatory rules
	3.2 Coordination
	3.3 Features and agreement
	3.4 Extending the semantics

	4 Lexicon acquisition and annotation
	4.1 Maximum entropy tagging
	4.2 Annotating the lexicon
	4.3 Semantic networks
	4.4 Sentiment polarity of adjectives
	4.5 Sentiment polarity of adverbs
	4.6 Completing the analysis

	5 Implementation
	5.1 Data structures
	5.2 Reducing semantic expressions
	5.3 Interacting with the C&C toolchain
	5.4 WordNet interface and semantic networks
	5.5 Overall analysis and extraction algorithm
	6 Evaluation
	6.1 Test data set
	6.2 Test results
	6.3 Understanding the results

	7 Discussion
	7.1 Future work

	8 Conclusion

	A A naive attempt for lexicon acquisition

	B Source code
	C Labeled test data
	Bibliography

